
MySQL 5.1 Reference Manual



MySQL 5.1 Reference Manual
Abstract

This is the MySQL Reference Manual. It documents MySQL 5.1 through 5.1.25-rc.

Document generated on: 2008-04-17 (revision: 10517)

Copyright 1997-2008 MySQL AB

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: You may create a printed copy
of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or edited in
any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in a manner sim-
ilar to how MySQL disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar medium, provided
however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of
MySQL AB. MySQL AB reserves any and all rights to this documentation not expressly granted above.

For more information on the terms of this license, for details on how the MySQL documentation is built and produced, or if you are interested in doing a
translation, please contact us at <docs@mysql.com>.

If you want help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other
MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in vari-
ety of formats, including HTML, CHM and PDF formats, see MySQL Documentation Library.

http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc




Table of Contents
Preface .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
1. General Information .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. About This Manual .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Conventions Used in This Manual .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Overview of MySQL AB ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Overview of the MySQL Database Management System ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1. What is MySQL? ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2. History of MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.3. The Main Features of MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5. MySQL Development Roadmap ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1. What's New in MySQL 5.1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.2. What's Planned for MySQL 6.0 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6. MySQL Information Sources .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.6.1. MySQL Mailing Lists .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.6.2. MySQL Community Support at the MySQL Forums ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1.6.3. MySQL Community Support on Internet Relay Chat (IRC) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1.6.4. MySQL Enterprise .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

1.7. How to Report Bugs or Problems ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.8. MySQL Standards Compliance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

1.8.1. What Standards MySQL Follows ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
1.8.2. Selecting SQL Modes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
1.8.3. Running MySQL in ANSI Mode ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
1.8.4. MySQL Extensions to Standard SQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
1.8.5. MySQL Differences from Standard SQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
1.8.6. How MySQL Deals with Constraints .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

2. Installing and Upgrading MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
2.1. General Installation Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

2.1.1. Operating Systems Supported by MySQL Community Server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.1.2. Choosing Which MySQL Distribution to Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
2.1.3. How to Get MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
2.1.5. Installation Layouts .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

2.2. Standard MySQL Installation Using a Binary Distribution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
2.3. Installing MySQL on Windows ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

2.3.1. Choosing An Installation Package .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
2.3.2. Installing MySQL with the Automated Installer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
2.3.3. Using the MySQL Installation Wizard .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
2.3.4. Using the Configuration Wizard .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
2.3.5. Installing MySQL from a Noinstall Zip Archive .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
2.3.6. Extracting the Install Archive .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
2.3.7. Creating an Option File .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
2.3.8. Selecting a MySQL Server Type ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
2.3.9. Starting the Server for the First Time ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
2.3.10. Starting MySQL from the Windows Command Line .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
2.3.11. Starting MySQL as a Windows Service .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
2.3.12. Testing The MySQL Installation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.3.13. Troubleshooting a MySQL Installation Under Windows ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.3.14. Upgrading MySQL on Windows ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.3.15. MySQL on Windows Compared to MySQL on Unix .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

2.4. Installing MySQL from RPM Packages on Linux ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
2.5. Installing MySQL on Mac OS X ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
2.6. Installing MySQL on Solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
2.7. Installing MySQL on NetWare .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
2.8. Installing MySQL from tar.gz Packages on Other Unix-Like Systems ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
2.9. MySQL Installation Using a Source Distribution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

2.9.1. Source Installation Overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
2.9.2. Typical configure Options .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
2.9.3. Installing from the Development Source Tree .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
2.9.4. Dealing with Problems Compiling MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

iv



2.9.5. MIT-pthreads Notes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
2.9.6. Installing MySQL from Source on Windows ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
2.9.7. Compiling MySQL Clients on Windows ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

2.10. Post-Installation Setup and Testing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
2.10.1. Windows Post-Installation Procedures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
2.10.2. Unix Post-Installation Procedures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
2.10.3. Securing the Initial MySQL Accounts .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

2.11. Upgrading MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.11.1. Upgrading from MySQL 5.0 to 5.1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.11.2. Copying MySQL Databases to Another Machine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.12. Downgrading MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.12.1. Downgrading to MySQL 5.0 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.13. Operating System-Specific Notes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.13.1. Linux Notes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.13.2. Mac OS X Notes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2.13.3. Solaris Notes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.13.4. BSD Notes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.13.5. Other Unix Notes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

2.14. Environment Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
2.15. Perl Installation Notes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2.15.1. Installing Perl on Unix .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.15.2. Installing ActiveState Perl on Windows ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.15.3. Problems Using the Perl DBI/DBD Interface .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3. Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.1. Connecting to and Disconnecting from the Server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.2. Entering Queries .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.3. Creating and Using a Database .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.3.1. Creating and Selecting a Database .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.3.2. Creating a Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.3.3. Loading Data into a Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.3.4. Retrieving Information from a Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.4. Getting Information About Databases and Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.5. Using mysql in Batch Mode ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.6. Examples of Common Queries .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

3.6.1. The Maximum Value for a Column ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.6.2. The Row Holding the Maximum of a Certain Column ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.6.3. Maximum of Column per Group ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.6.4. The Rows Holding the Group-wise Maximum of a Certain Field .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.6.5. Using User-Defined Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.6.6. Using Foreign Keys .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.6.7. Searching on Two Keys .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.6.8. Calculating Visits Per Day ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.6.9. Using AUTO_INCREMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

3.7. Queries from the Twin Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.7.1. Find All Non-distributed Twins .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.7.2. Show a Table of Twin Pair Status .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.8. Using MySQL with Apache .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4. MySQL Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.1. Overview of MySQL Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.2. Using MySQL Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.2.1. Invoking MySQL Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.2.2. Specifying Program Options .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.2.3. Setting Environment Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.3. MySQL Server and Server-Startup Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.3.1. mysqld — The MySQL Server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.3.2. mysqld_safe — MySQL Server Startup Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.3.3. mysql.server — MySQL Server Startup Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.3.4. mysqld_multi — Manage Multiple MySQL Servers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.4. MySQL Installation-Related Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.4.1. comp_err — Compile MySQL Error Message File .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.4.2. make_win_bin_dist — Package MySQL Distribution as ZIP Archive .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.4.3. mysqlbug — Generate Bug Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.4.4. mysql_fix_privilege_tables — Upgrade MySQL System Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.4.5. mysql_install_db — Initialize MySQL Data Directory .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.4.6. mysql_secure_installation — Improve MySQL Installation Security .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

MySQL 5.1 Reference Manual

v



4.4.7. mysql_tzinfo_to_sql — Load the Time Zone Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.4.8. mysql_upgrade — Check Tables for MySQL Upgrade .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4.5. MySQL Client Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.5.1. mysql — The MySQL Command-Line Tool .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.5.2. mysqladmin — Client for Administering a MySQL Server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.5.3. mysqlcheck — A Table Maintenance and Repair Program ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.5.4. mysqldump — A Database Backup Program ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.5.5. mysqlimport — A Data Import Program ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
4.5.6. mysqlshow — Display Database, Table, and Column Information .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
4.5.7. mysqlslap — Load Emulation Client .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

4.6. MySQL Administrative and Utility Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.6.1. innochecksum — Offline InnoDB File Checksum Utility .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.6.2. myisam_ftdump — Display Full-Text Index information .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.6.3. myisamchk — MyISAM Table-Maintenance Utility .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.6.4. myisamlog — Display MyISAM Log File Contents .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
4.6.5. myisampack — Generate Compressed, Read-Only MyISAM Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
4.6.6. mysqlaccess — Client for Checking Access Privileges .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
4.6.7. mysqlbinlog — Utility for Processing Binary Log Files .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
4.6.8. mysqlhotcopy — A Database Backup Program ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
4.6.9. mysqlmanager — The MySQL Instance Manager .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
4.6.10. mysql_convert_table_format — Convert Tables to Use a Given Storage Engine .. . . . . . . . . . . . . . . 281
4.6.11. mysql_find_rows — Extract SQL Statements from Files .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
4.6.12. mysql_fix_extensions — Normalize Table Filename Extensions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
4.6.13. mysql_setpermission — Interactively Set Permissions in Grant Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
4.6.14. mysql_waitpid — Kill Process and Wait for Its Termination .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
4.6.15. mysql_zap — Kill Processes That Match a Pattern .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

4.7. MySQL Program Development Utilities .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
4.7.1. msql2mysql — Convert mSQL Programs for Use with MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
4.7.2. mysql_config — Get Compile Options for Compiling Clients .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
4.7.3. my_print_defaults — Display Options from Option Files .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
4.7.4. resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

4.8. Miscellaneous Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
4.8.1. perror — Explain Error Codes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
4.8.2. replace — A String-Replacement Utility .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
4.8.3. resolveip — Resolve Hostname to IP Address or Vice Versa .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

5. MySQL Server Administration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
5.1. The MySQL Server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

5.1.1. Option and Variable Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
5.1.2. Command Options .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5.1.3. System Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
5.1.4. Using System Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
5.1.5. Status Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
5.1.6. SQL Modes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
5.1.7. Server-Side Help .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
5.1.8. Server Response to Signals .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
5.1.9. The Shutdown Process .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

5.2. MySQL Server Logs .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
5.2.1. Selecting General Query and Slow Query Log Output Destinations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
5.2.2. The Error Log ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
5.2.3. The General Query Log ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
5.2.4. The Binary Log ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
5.2.5. The Slow Query Log ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
5.2.6. Server Log Maintenance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

5.3. General Security Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
5.3.1. General Security Guidelines .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
5.3.2. Making MySQL Secure Against Attackers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
5.3.3. Security-Related mysqld Options .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
5.3.4. Security Issues with LOAD DATA LOCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
5.3.5. How to Run MySQL as a Normal User .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

5.4. The MySQL Access Privilege System ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
5.4.1. What the Privilege System Does .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
5.4.2. How the Privilege System Works .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
5.4.3. Privileges Provided by MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
5.4.4. Connecting to the MySQL Server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
5.4.5. Access Control, Stage 1: Connection Verification .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

MySQL 5.1 Reference Manual

vi



5.4.6. Access Control, Stage 2: Request Verification .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
5.4.7. When Privilege Changes Take Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
5.4.8. Causes of Access denied Errors .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
5.4.9. Password Hashing as of MySQL 4.1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

5.5. MySQL User Account Management .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
5.5.1. MySQL Usernames and Passwords .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
5.5.2. Adding New User Accounts to MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
5.5.3. Removing User Accounts from MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
5.5.4. Limiting Account Resources .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
5.5.5. Assigning Account Passwords .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
5.5.6. Keeping Your Password Secure .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
5.5.7. Using Secure Connections .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

5.6. Running Multiple MySQL Servers on the Same Machine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
5.6.1. Running Multiple Servers on Windows ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
5.6.2. Running Multiple Servers on Unix .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
5.6.3. Using Client Programs in a Multiple-Server Environment .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

6. Backup and Recovery .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
6.1. Database Backups .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
6.2. Example Backup and Recovery Strategy ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

6.2.1. Backup Policy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
6.2.2. Using Backups for Recovery .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
6.2.3. Backup Strategy Summary ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

6.3. Point-in-Time Recovery .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
6.3.1. Specifying Times for Recovery .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
6.3.2. Specifying Positions for Recovery .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

6.4. Table Maintenance and Crash Recovery .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
6.4.1. Using myisamchk for Crash Recovery .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
6.4.2. How to Check MyISAM Tables for Errors .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
6.4.3. How to Repair Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
6.4.4. Table Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
6.4.5. Getting Information About a Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
6.4.6. Setting Up a Table Maintenance Schedule .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

7. Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
7.1. Optimization Overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

7.1.1. MySQL Design Limitations and Tradeoffs .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
7.1.2. Designing Applications for Portability .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
7.1.3. What We Have Used MySQL For .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
7.1.4. The MySQL Benchmark Suite .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
7.1.5. Using Your Own Benchmarks .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

7.2. Optimizing SELECT and Other Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
7.2.1. Optimizing Queries with EXPLAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
7.2.2. Estimating Query Performance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
7.2.3. Speed of SELECT Queries .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
7.2.4. WHERE Clause Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
7.2.5. Range Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
7.2.6. Index Merge Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
7.2.7. IS NULL Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
7.2.8. LEFT JOIN and RIGHT JOIN Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
7.2.9. Nested Join Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
7.2.10. Outer Join Simplification .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
7.2.11. ORDER BY Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
7.2.12. GROUP BY Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
7.2.13. DISTINCT Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
7.2.14. Optimizing IN/=ANY Subqueries .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
7.2.15. LIMIT Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
7.2.16. How to Avoid Table Scans .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
7.2.17. INFORMATION_SCHEMA Optimization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
7.2.18. Speed of INSERT Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
7.2.19. Speed of UPDATE Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
7.2.20. Speed of DELETE Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
7.2.21. Other Optimization Tips .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

7.3. Locking Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
7.3.1. Internal Locking Methods .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
7.3.2. Table Locking Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
7.3.3. Concurrent Inserts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

MySQL 5.1 Reference Manual

vii



7.3.4. External Locking .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
7.4. Optimizing Database Structure .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

7.4.1. Design Choices .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
7.4.2. Make Your Data as Small as Possible .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
7.4.3. Column Indexes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
7.4.4. Multiple-Column Indexes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
7.4.5. How MySQL Uses Indexes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
7.4.6. The MyISAM Key Cache .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
7.4.7. MyISAM Index Statistics Collection .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
7.4.8. How MySQL Opens and Closes Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
7.4.9. Drawbacks to Creating Many Tables in the Same Database .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

7.5. Optimizing the MySQL Server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
7.5.1. System Factors and Startup Parameter Tuning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
7.5.2. Tuning Server Parameters .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
7.5.3. Controlling Query Optimizer Performance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
7.5.4. The MySQL Query Cache .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
7.5.5. Examining Thread Information .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
7.5.6. How Compiling and Linking Affects the Speed of MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
7.5.7. How MySQL Uses Threads for Client Connections .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
7.5.8. How MySQL Uses Memory ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
7.5.9. How MySQL Uses Internal Temporary Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
7.5.10. How MySQL Uses DNS ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

7.6. Disk Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
7.6.1. Using Symbolic Links .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

8. Language Structure .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
8.1. Literal Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

8.1.1. Strings .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
8.1.2. Numbers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
8.1.3. Hexadecimal Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
8.1.4. Boolean Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
8.1.5. Bit-Field Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
8.1.6. NULL Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

8.2. Schema Object Names .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
8.2.1. Identifier Qualifiers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
8.2.2. Identifier Case Sensitivity .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
8.2.3. Mapping of Identifiers to Filenames .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
8.2.4. Function Name Parsing and Resolution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

8.3. Reserved Words .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
8.4. User-Defined Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
8.5. Comment Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

9. Internationalization and Localization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
9.1. Character Set Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

9.1.1. Character Sets and Collations in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
9.1.2. Character Sets and Collations in MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
9.1.3. Specifying Character Sets and Collations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
9.1.4. Connection Character Sets and Collations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
9.1.5. Collation Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
9.1.6. String Repertoire .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
9.1.7. Operations Affected by Character Set Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
9.1.8. Unicode Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
9.1.9. UTF-8 for Metadata .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
9.1.10. Column Character Set Conversion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
9.1.11. Character Sets and Collations That MySQL Supports .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

9.2. The Character Set Used for Data and Sorting .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
9.2.1. Using the German Character Set .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

9.3. Setting the Error Message Language .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
9.4. Adding a New Character Set .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

9.4.1. The Character Definition Arrays .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
9.4.2. String Collating Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
9.4.3. Multi-Byte Character Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

9.5. Problems With Character Sets .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
9.6. MySQL Server Time Zone Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
9.7. MySQL Server Locale Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

10. Data Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
10.1. Data Type Overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

MySQL 5.1 Reference Manual

viii



10.1.1. Overview of Numeric Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
10.1.2. Overview of Date and Time Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
10.1.3. Overview of String Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
10.1.4. Data Type Default Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

10.2. Numeric Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
10.3. Date and Time Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

10.3.1. The DATETIME, DATE, and TIMESTAMP Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
10.3.2. The TIME Type ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
10.3.3. The YEAR Type ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
10.3.4. Year 2000 Issues and Date Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

10.4. String Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
10.4.1. The CHAR and VARCHAR Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
10.4.2. The BINARY and VARBINARY Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
10.4.3. The BLOB and TEXT Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
10.4.4. The ENUM Type ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
10.4.5. The SET Type ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

10.5. Data Type Storage Requirements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
10.6. Choosing the Right Type for a Column ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
10.7. Using Data Types from Other Database Engines .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

11. Functions and Operators .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
11.1. Operator and Function Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
11.2. Operators .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

11.2.1. Operator Precedence .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
11.2.2. Type Conversion in Expression Evaluation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
11.2.3. Comparison Functions and Operators .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
11.2.4. Logical Operators .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

11.3. Control Flow Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
11.4. String Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

11.4.1. String Comparison Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
11.4.2. Regular Expressions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

11.5. Numeric Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
11.5.1. Arithmetic Operators .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
11.5.2. Mathematical Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

11.6. Date and Time Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
11.7. What Calendar Is Used By MySQL? ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
11.8. Full-Text Search Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

11.8.1. Natural Language Full-Text Searches .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
11.8.2. Boolean Full-Text Searches .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
11.8.3. Full-Text Searches with Query Expansion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
11.8.4. Full-Text Stopwords .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
11.8.5. Full-Text Restrictions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
11.8.6. Fine-Tuning MySQL Full-Text Search .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744

11.9. Cast Functions and Operators .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
11.10. XML Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
11.11. Other Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

11.11.1. Bit Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
11.11.2. Encryption and Compression Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
11.11.3. Information Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
11.11.4. Miscellaneous Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

11.12. Functions and Modifiers for Use with GROUP BY Clauses .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
11.12.1. GROUP BY (Aggregate) Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
11.12.2. GROUP BY Modifiers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
11.12.3. GROUP BY and HAVING with Hidden Fields .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

12. SQL Statement Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
12.1. Data Definition Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779

12.1.1. ALTER DATABASE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
12.1.2. ALTER LOGFILE GROUP Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
12.1.3. ALTER SERVER Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
12.1.4. ALTER TABLE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
12.1.5. ALTER TABLESPACE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
12.1.6. CREATE DATABASE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
12.1.7. CREATE INDEX Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
12.1.8. CREATE LOGFILE GROUP Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
12.1.9. CREATE SERVER Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
12.1.10. CREATE TABLE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

MySQL 5.1 Reference Manual

ix



12.1.11. CREATE TABLESPACE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
12.1.12. DROP DATABASE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
12.1.13. DROP INDEX Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
12.1.14. DROP LOGFILE GROUP Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
12.1.15. DROP SERVER Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
12.1.16. DROP TABLE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
12.1.17. DROP TABLESPACE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
12.1.18. RENAME DATABASE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
12.1.19. RENAME TABLE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

12.2. Data Manipulation Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
12.2.1. DELETE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
12.2.2. DO Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
12.2.3. HANDLER Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
12.2.4. INSERT Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
12.2.5. LOAD DATA INFILE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
12.2.6. REPLACE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830
12.2.7. SELECT Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
12.2.8. Subquery Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
12.2.9. TRUNCATE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854
12.2.10. UPDATE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

12.3. MySQL Utility Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
12.3.1. DESCRIBE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
12.3.2. EXPLAIN Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
12.3.3. HELP Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
12.3.4. USE Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859

12.4. MySQL Transactional and Locking Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
12.4.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
12.4.2. Statements That Cannot Be Rolled Back ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
12.4.3. Statements That Cause an Implicit Commit .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
12.4.4. SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
12.4.5. LOCK TABLES and UNLOCK TABLES Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
12.4.6. SET TRANSACTION Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
12.4.7. XA Transactions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866

12.5. Database Administration Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870
12.5.1. Account Management Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870
12.5.2. Table Maintenance Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879
12.5.3. SET Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
12.5.4. SHOW Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889
12.5.5. Other Administrative Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

12.6. Replication Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917
12.6.1. SQL Statements for Controlling Master Servers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917
12.6.2. SQL Statements for Controlling Slave Servers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919

12.7. SQL Syntax for Prepared Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927
13. Storage Engines .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930

13.1. Overview of MySQL Storage Engine Architecture .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
13.1.1. The Common Database Server Layer .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
13.1.2. Pluggable Storage Engine Architecture .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931

13.2. Supported Storage Engines .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932
13.2.1. Choosing a Storage Engine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
13.2.2. Comparing Transaction and Non-Transaction Engines .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
13.2.3. Other Storage Engines .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934

13.3. Setting the Storage Engine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
13.4. The MyISAM Storage Engine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935

13.4.1. MyISAM Startup Options .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
13.4.2. Space Needed for Keys .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938
13.4.3. MyISAM Table Storage Formats .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938
13.4.4. MyISAM Table Problems ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940

13.5. The InnoDB Storage Engine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
13.5.1. InnoDB Overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
13.5.2. InnoDB Contact Information .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
13.5.3. InnoDB Configuration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
13.5.4. InnoDB Startup Options and System Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
13.5.5. Creating the InnoDB Tablespace .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957
13.5.6. Creating and Using InnoDB Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958
13.5.7. Adding and Removing InnoDB Data and Log Files .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969

MySQL 5.1 Reference Manual

x



13.5.8. Backing Up and Recovering an InnoDB Database .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 970
13.5.9. Moving an InnoDB Database to Another Machine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972
13.5.10. InnoDB Transaction Model and Locking .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972
13.5.11. InnoDB Performance Tuning Tips .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979
13.5.12. Implementation of Multi-Versioning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984
13.5.13. InnoDB Table and Index Structures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
13.5.14. InnoDB File Space Management and Disk I/O ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987
13.5.15. InnoDB Error Handling .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988
13.5.16. Restrictions on InnoDB Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994
13.5.17. InnoDB Troubleshooting .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996

13.6. The MERGE Storage Engine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
13.6.1. MERGE Table Problems ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999

13.7. The MEMORY (HEAP) Storage Engine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1001
13.8. The EXAMPLE Storage Engine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1002
13.9. The FEDERATED Storage Engine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1003

13.9.1. FEDERATED Storage Engine Overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1003
13.9.2. How to Create FEDERATED Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1004
13.9.3. FEDERATED Storage Engine Notes and Tips .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1006
13.9.4. FEDERATED Storage Engine Resources .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1008

13.10. The ARCHIVE Storage Engine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1008
13.11. The CSV Storage Engine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1009

13.11.1. Repairing and Checking CSV Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1009
13.11.2. CSV Limitations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1010

13.12. The BLACKHOLE Storage Engine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1010
14. High Availability and Scalability .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1013

14.1. Using MySQL with DRBD for High Availability .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1015
14.1.1. Configuring the DRBD Environment .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1016
14.1.2. Configuring MySQL for DRBD ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1022
14.1.3. Optimizing Performance and Reliability .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1023

14.2. Using Linux HA Heartbeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1026
14.2.1. Heartbeat Configuration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1028
14.2.2. Using Heartbeat with MySQL and DRBD ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1029
14.2.3. Using Heartbeat with DRBD and dopd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1029
14.2.4. Dealing with System Level Errors .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1030

15. MySQL Load Balancer .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1032
15.1. Installing MySQL Load Balancer .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1032
15.2. Getting Started .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1032
15.3. Using MySQL Load Balancer .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1036
15.4. Known Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1036
15.5. MySQL Load Balancer FAQ ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1036

16. Replication .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1038
16.1. Replication Configuration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1038

16.1.1. How to Set Up Replication .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1039
16.1.2. Replication Formats .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1047
16.1.3. Replication Options and Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1050
16.1.4. Common Replication Administration Tasks .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1056

16.2. Replication Solutions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1058
16.2.1. Using Replication for Backups .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1059
16.2.2. Using Replication with Different Master and Slave Storage Engines .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1062
16.2.3. Using Replication for Scale-Out .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1063
16.2.4. Replicating Different Databases to Different Slaves .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1064
16.2.5. Improving Replication Performance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1065
16.2.6. Switching Masters During Failover .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1066
16.2.7. Setting Up Replication Using SSL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1069

16.3. Replication Notes and Tips .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1070
16.3.1. Replication Features and Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1070
16.3.2. Replication Compatibility Between MySQL Versions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1080
16.3.3. Upgrading a Replication Setup .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1080
16.3.4. Replication FAQ ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1081
16.3.5. Troubleshooting Replication .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1084
16.3.6. How to Report Replication Bugs or Problems ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1085

16.4. Replication Implementation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1086
16.4.1. Replication Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1086
16.4.2. Replication Relay and Status Files .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1087
16.4.3. How Servers Evaluate Replication Rules .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1089

MySQL 5.1 Reference Manual

xi



17. MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1092
17.1. MySQL Cluster Overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1092

17.1.1. MySQL Cluster Core Concepts .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1093
17.1.2. MySQL Cluster Nodes, Node Groups, Replicas, and Partitions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1094

17.2. MySQL Cluster 5.1 Carrier Grade Edition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1097
17.2.1. Major Differences Between MySQL 5.1 and MySQL Cluster 5.1 Carrier Grade Edition .. . . . . . . . . . . . . . . . .1099
17.2.2. MySQL Cluster 5.1 Carrier Grade Edition Releases .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1102

17.3. Simple Multi-Computer How-To ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1105
17.3.1. Hardware, Software, and Networking .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1107
17.3.2. Multi-Computer Installation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1108
17.3.3. Multi-Computer Configuration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1110
17.3.4. Initial Startup .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1112
17.3.5. Loading Sample Data and Performing Queries .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1113
17.3.6. Safe Shutdown and Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1116

17.4. MySQL Cluster Configuration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1116
17.4.1. Building MySQL Cluster from Source Code ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1116
17.4.2. Installing the Cluster Software .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1117
17.4.3. Quick Test Setup of MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1117
17.4.4. Configuration File .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1119
17.4.5. Overview of Cluster Configuration Parameters .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1149
17.4.6. Configuring Parameters for Local Checkpoints .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1157

17.5. MySQL Cluster Options and Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1158
17.5.1. MySQL Cluster Server Option and Variable Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1158
17.5.2. MySQL Cluster-Related Command Options for mysqld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1159
17.5.3. MySQL Cluster System Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1160
17.5.4. MySQL Cluster Status Variables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1165

17.6. Upgrading and Downgrading MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1166
17.6.1. Performing a Rolling Restart of the Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1166
17.6.2. Cluster Upgrade and Downgrade Compatibility .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1168

17.7. Process Management in MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1171
17.7.1. MySQL Server Process Usage for MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1171
17.7.2. ndbd — The Storage Engine Node Process .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1172
17.7.3. ndb_mgmd — The Management Server Process .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1174
17.7.4. ndb_mgm — The Management Client Process .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1174
17.7.5. Command Options for MySQL Cluster Processes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1174

17.8. Management of MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1178
17.8.1. Summary of MySQL Cluster Start Phases .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1178
17.8.2. Commands in the MySQL Cluster Management Client .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1180
17.8.3. Event Reports Generated in MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1181
17.8.4. Single User Mode ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1187
17.8.5. Quick Reference: MySQL Cluster SQL Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1188

17.9. MySQL Cluster Security Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1190
17.9.1. MySQL Cluster Security and Networking Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1190
17.9.2. MySQL Cluster and MySQL Privileges .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1194
17.9.3. MySQL Cluster and MySQL Security Procedures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1196

17.10. On-line Backup of MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1197
17.10.1. Cluster Backup Concepts .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1197
17.10.2. Using The Management Client to Create a Backup ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1198
17.10.3. ndb_restore — Restore a Cluster Backup ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1200
17.10.4. Configuration for Cluster Backup ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1204
17.10.5. Backup Troubleshooting .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1204

17.11. Cluster Utility Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1205
17.11.1. ndb_config — Extract NDB Configuration Information .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1206
17.11.2. ndb_cpcd — Automate Testing for NDB Development .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1208
17.11.3. ndb_delete_all — Delete All Rows from NDB Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1208
17.11.4. ndb_desc — Describe NDB Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1209
17.11.5. ndb_drop_index — Drop Index from NDB Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1210
17.11.6. ndb_drop_table — Drop NDB Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1210
17.11.7. ndb_error_reporter — NDB Error-Reporting Utility .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1211
17.11.8. ndb_print_backup_file — Print NDB Backup File Contents .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1211
17.11.9. ndb_print_schema_file — Print NDB Schema File Contents .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1211
17.11.10. ndb_print_sys_file — Print NDB System File Contents .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1211
17.11.11. ndbd_redo_log_reader — Check and Print Content of Cluster Redo Log ... . . . . . . . . . . . . . . . . . . . . .1212
17.11.12. ndb_select_all — Print Rows from NDB Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1212
17.11.13. ndb_select_count — Print Row Counts for NDB Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1214

MySQL 5.1 Reference Manual

xii



17.11.14. ndb_show_tables — Display List of NDB Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1214
17.11.15. ndb_size.pl — NDBCluster Size Requirement Estimator .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1215
17.11.16. ndb_waiter — Wait for Cluster to Reach a Given Status .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1219

17.12. MySQL Cluster Replication .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1220
17.12.1. Abbreviations and Symbols .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1221
17.12.2. Assumptions and General Requirements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1222
17.12.3. Known Issues in MySQL Cluster Replication .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1222
17.12.4. Cluster Replication Schema and Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1226
17.12.5. Preparing the Cluster for Replication .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1229
17.12.6. Starting Replication (Single Replication Channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1231
17.12.7. Using Two Replication Channels .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1232
17.12.8. Implementing Failover with MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1233
17.12.9. MySQL Cluster Backups With Replication .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1234
17.12.10. MySQL Cluster Replication Conflict Resolution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1238

17.13. MySQL Cluster Disk Data Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1242
17.13.1. Disk Data Objects .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1242
17.13.2. Disk Data Storage Requirements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1245
17.13.3. Disk Data Configuration Parameters .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1245

17.14. Using High-Speed Interconnects with MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1246
17.14.1. Configuring MySQL Cluster to use SCI Sockets .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1246
17.14.2. MySQL Cluster Interconnects and Performance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1249

17.15. Known Limitations of MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1250
17.15.1. Non-Compliance In SQL Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1250
17.15.2. Limits and Differences from Standard MySQL Limits .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1251
17.15.3. Limits Relating to Transaction Handling .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1252
17.15.4. Error Handling .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1253
17.15.5. Limits Associated with Database Objects .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1253
17.15.6. Unsupported Or Missing Features .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1254
17.15.7. Limitations Relating to Performance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1254
17.15.8. Issues Exclusive to MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1254
17.15.9. Limitations Relating to Disk Data Storage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1255
17.15.10. Limitations Relating to Multiple Cluster Nodes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1255
17.15.11. Previous MySQL Cluster Issues Resolved in MySQL 5.1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1256

17.16. MySQL Cluster Development Roadmap ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1258
17.16.1. MySQL Cluster Changes in MySQL 5.1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1258

17.17. MySQL Cluster Glossary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1259
18. Partitioning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1262

18.1. Overview of Partitioning in MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1262
18.2. Partition Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1264

18.2.1. RANGE Partitioning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1266
18.2.2. LIST Partitioning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1268
18.2.3. HASH Partitioning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1269
18.2.4. KEY Partitioning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1272
18.2.5. Subpartitioning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1273
18.2.6. How MySQL Partitioning Handles NULL Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1276

18.3. Partition Management .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1279
18.3.1. Management of RANGE and LIST Partitions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1280
18.3.2. Management of HASH and KEY Partitions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1284
18.3.3. Maintenance of Partitions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1285
18.3.4. Obtaining Information About Partitions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1285

18.4. Partition Pruning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1287
18.5. Restrictions and Limitations on Partitioning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1290

18.5.1. Partitioning Keys, Primary Keys, and Unique Keys .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1291
18.5.2. Partitioning Limitations Relating to Storage Engines .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1294
18.5.3. Partitioning Limitations Relating to Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1295

19. Spatial Extensions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1297
19.1. Introduction to MySQL Spatial Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1297
19.2. The OpenGIS Geometry Model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1298

19.2.1. The Geometry Class Hierarchy ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1298
19.2.2. Class Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1299
19.2.3. Class Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1300
19.2.4. Class Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1300
19.2.5. Class LineString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1300
19.2.6. Class Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1301
19.2.7. Class Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1301

MySQL 5.1 Reference Manual

xiii



19.2.8. Class GeometryCollection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1301
19.2.9. Class MultiPoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1302
19.2.10. Class MultiCurve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1302
19.2.11. Class MultiLineString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1302
19.2.12. Class MultiSurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1302
19.2.13. Class MultiPolygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1303

19.3. Supported Spatial Data Formats .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1303
19.3.1. Well-Known Text (WKT) Format .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1303
19.3.2. Well-Known Binary (WKB) Format .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1304

19.4. Creating a Spatially Enabled MySQL Database .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1305
19.4.1. MySQL Spatial Data Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1305
19.4.2. Creating Spatial Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1305
19.4.3. Creating Spatial Columns ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1308
19.4.4. Populating Spatial Columns ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1308
19.4.5. Fetching Spatial Data .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1309

19.5. Analyzing Spatial Information .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1309
19.5.1. Geometry Format Conversion Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1310
19.5.2. Geometry Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1310
19.5.3. Functions That Create New Geometries from Existing Ones .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1315
19.5.4. Functions for Testing Spatial Relations Between Geometric Objects .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1316
19.5.5. Relations on Geometry Minimal Bounding Rectangles (MBRs) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1316
19.5.6. Functions That Test Spatial Relationships Between Geometries .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1317

19.6. Optimizing Spatial Analysis .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1318
19.6.1. Creating Spatial Indexes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1318
19.6.2. Using a Spatial Index ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1319

19.7. MySQL Conformance and Compatibility .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1321
20. Stored Procedures and Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1322

20.1. Stored Routines and the Grant Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1322
20.2. Stored Routine Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1323

20.2.1. CREATE PROCEDURE and CREATE FUNCTION Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1323
20.2.2. ALTER PROCEDURE and ALTER FUNCTION Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1326
20.2.3. DROP PROCEDURE and DROP FUNCTION Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1327
20.2.4. CALL Statement Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1327
20.2.5. BEGIN ... END Compound Statement Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1328
20.2.6. DECLARE Statement Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1328
20.2.7. Variables in Stored Routines .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1328
20.2.8. Conditions and Handlers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1329
20.2.9. Cursors .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1331
20.2.10. Flow Control Constructs .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1333
20.2.11. RETURN Statement Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1336

20.3. Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1336
20.4. Binary Logging of Stored Routines and Triggers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1336

21. Triggers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1341
21.1. CREATE TRIGGER Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1341
21.2. DROP TRIGGER Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1344
21.3. Using Triggers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1344

22. Event Scheduler .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1347
22.1. Event Scheduler Overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1347
22.2. Event Scheduler Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1349

22.2.1. ALTER EVENT Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1350
22.2.2. CREATE EVENT Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1351
22.2.3. DROP EVENT Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1355

22.3. Event Metadata .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1355
22.4. Event Scheduler Status .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1355
22.5. The Event Scheduler and MySQL Privileges .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1356
22.6. Event Scheduler Limitations and Restrictions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1358

23. Views ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1360
23.1. ALTER VIEW Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1360
23.2. CREATE VIEW Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1360
23.3. DROP VIEW Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1366

24. INFORMATION_SCHEMA Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1367
24.1. The INFORMATION_SCHEMA SCHEMATA Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1368
24.2. The INFORMATION_SCHEMA TABLES Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1369
24.3. The INFORMATION_SCHEMA COLUMNS Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1370
24.4. The INFORMATION_SCHEMA STATISTICS Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1371

MySQL 5.1 Reference Manual

xiv



24.5. The INFORMATION_SCHEMA USER_PRIVILEGES Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1371
24.6. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1372
24.7. The INFORMATION_SCHEMA TABLE_PRIVILEGES Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1372
24.8. The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1373
24.9. The INFORMATION_SCHEMA CHARACTER_SETS Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1373
24.10. The INFORMATION_SCHEMA COLLATIONS Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1373
24.11. The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table .. . . . . . . . . . . . . . . . .1374
24.12. The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1374
24.13. The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1374
24.14. The INFORMATION_SCHEMA ROUTINES Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1375
24.15. The INFORMATION_SCHEMA VIEWS Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1376
24.16. The INFORMATION_SCHEMA TRIGGERS Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1377
24.17. The INFORMATION_SCHEMA PLUGINS Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1379
24.18. The INFORMATION_SCHEMA ENGINES Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1379
24.19. The INFORMATION_SCHEMA PARTITIONS Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1380
24.20. The INFORMATION_SCHEMA EVENTS Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1382
24.21. The INFORMATION_SCHEMA FILES Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1385
24.22. The INFORMATION_SCHEMA PROCESSLIST Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1389
24.23. The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1390
24.24. The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . .1391
24.25. The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables .. . . . . . . . . . . . . . . . .1391
24.26. Other INFORMATION_SCHEMA Tables .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1391
24.27. Extensions to SHOW Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1392

25. Precision Math .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1394
25.1. Types of Numeric Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1394
25.2. DECIMAL Data Type Changes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1394
25.3. Expression Handling .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1395
25.4. Rounding Behavior .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1397
25.5. Precision Math Examples .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1397

26. APIs and Libraries .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1401
26.1. libmysqld, the Embedded MySQL Server Library .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1401

26.1.1. Compiling Programs with libmysqld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1401
26.1.2. Restrictions When Using the Embedded MySQL Server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1402
26.1.3. Options with the Embedded Server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1402
26.1.4. Embedded Server Examples .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1402
26.1.5. Licensing the Embedded Server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1405

26.2. MySQL C API ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1405
26.2.1. C API Data Types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1406
26.2.2. C API Function Overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1409
26.2.3. C API Function Descriptions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1413
26.2.4. C API Prepared Statements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1455
26.2.5. C API Prepared Statement Data types .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1456
26.2.6. C API Prepared Statement Function Overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1460
26.2.7. C API Prepared Statement Function Descriptions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1463
26.2.8. C API Prepared Statement Problems ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1482
26.2.9. C API Handling of Multiple Statement Execution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1482
26.2.10. C API Handling of Date and Time Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1484
26.2.11. C API Threaded Function Descriptions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1485
26.2.12. C API Embedded Server Function Descriptions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1486
26.2.13. Controlling Automatic Reconnect Behavior .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1486
26.2.14. Common Questions and Problems When Using the C API .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1487
26.2.15. Building Client Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1489
26.2.16. How to Make a Threaded Client .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1489

26.3. MySQL PHP API .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1490
26.3.1. Common Problems with MySQL and PHP ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1491
26.3.2. Enabling Both mysql and mysqli in PHP ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1491

26.4. MySQL Perl API .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1492
26.5. MySQL C++ API .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1492
26.6. MySQL Python API .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1492
26.7. MySQL Tcl API .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1493
26.8. MySQL Eiffel Wrapper .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1493

27. Connectors .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1494
27.1. MySQL Connector/ODBC ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1494

27.1.1. Connector/ODBC Versions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1495
27.1.2. Connector/ODBC Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1495

MySQL 5.1 Reference Manual

xv



27.1.3. Connector/ODBC Installation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1499
27.1.4. Connector/ODBC Configuration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1518
27.1.5. Connector/ODBC Examples .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1538
27.1.6. Connector/ODBC Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1563
27.1.7. Connector/ODBC Notes and Tips .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1568
27.1.8. Connector/ODBC Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1577

27.2. MySQL Connector/NET ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1578
27.2.1. Connector/NET Versions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1579
27.2.2. Connector/NET Installation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1579
27.2.3. Connector/NET Examples and Usage Guide .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1585
27.2.4. Connector/NET Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1627
27.2.5. Connector/NET Notes and Tips .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1728
27.2.6. Connector/NET Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1744

27.3. MySQL Visual Studio Plugin .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1744
27.3.1. Installing the MySQL Visual Studio Plugin .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1744
27.3.2. Creating a connection to the MySQL server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1746
27.3.3. Using the MySQL Visual Studio Plugin .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1748
27.3.4. Visual Studio Plugin Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1754

27.4. MySQL Connector/J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1754
27.4.1. Connector/J Versions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1755
27.4.2. Connector/J Installation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1756
27.4.3. Connector/J Examples .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1760
27.4.4. Connector/J (JDBC) Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1760
27.4.5. Connector/J Notes and Tips .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1790
27.4.6. Connector/J Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1810

27.5. MySQL Connector/MXJ ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1812
27.5.1. Connector/MXJ Overview ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1812
27.5.2. Connector/MXJ Versions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1813
27.5.3. Connector/MXJ Installation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1813
27.5.4. Connector/MXJ Configuration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1818
27.5.5. Connector/MXJ Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1820
27.5.6. Connector/MXJ Notes and Tips .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1821
27.5.7. Connector/MXJ Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1826

27.6. Connector/PHP ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1827
28. MySQL Proxy ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1828

28.1. MySQL Proxy Supported Platforms ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1828
28.2. Installing MySQL Proxy ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1828

28.2.1. Installing MySQL Proxy from a binary distribution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1829
28.2.2. Installing MySQL Proxy from a source distribution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1829
28.2.3. Installing MySQL Proxy from the Subversion repository .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1829

28.3. MySQL Proxy Command Line Options .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1830
28.4. MySQL Proxy Scripting .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1831

28.4.1. Proxy Scripting Sequence During Query Injection .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1832
28.4.2. Internal Structures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1834
28.4.3. Capturing a connection with connect_server() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1837
28.4.4. Examining the handshake with read_handshake() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1837
28.4.5. Examining the authentication credentials with read_auth() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1838
28.4.6. Accessing authentication information with read_auth_result() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1838
28.4.7. Manipulating Queries with read_query() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1839
28.4.8. Manipulating Results with read_query_result() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1839

28.5. Using MySQL Proxy ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1841
28.5.1. Using the Administration Interface .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1841

29. Extending MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1843
29.1. MySQL Internals .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1843

29.1.1. MySQL Threads .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1843
29.1.2. MySQL Test Suite .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1843

29.2. The MySQL Plugin Interface .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1844
29.2.1. Characteristics of the Plugin Interface .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1844
29.2.2. Full-Text Parser Plugins .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1845
29.2.3. INSTALL PLUGIN Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1846
29.2.4. UNINSTALL PLUGIN Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1847
29.2.5. Writing Plugins .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1848

29.3. Adding New Functions to MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1859
29.3.1. Features of the User-Defined Function Interface .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1860
29.3.2. CREATE FUNCTION Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1860

MySQL 5.1 Reference Manual

xvi



29.3.3. DROP FUNCTION Syntax .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1861
29.3.4. Adding a New User-Defined Function .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1861
29.3.5. Adding a New Native Function .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1869

29.4. Adding New Procedures to MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1870
29.4.1. PROCEDURE ANALYSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1871
29.4.2. Writing a Procedure .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1871

29.5. Debugging and Porting MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1871
29.5.1. Debugging a MySQL Server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1872
29.5.2. Debugging a MySQL Client .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1877
29.5.3. The DBUG Package .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1878
29.5.4. Comments about RTS Threads .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1879
29.5.5. Differences Between Thread Packages .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1880

A. MySQL 5.1 Frequently Asked Questions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1881
A.1. MySQL 5.1 FAQ — General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1881
A.2. MySQL 5.1 FAQ — Storage Engines .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1882
A.3. MySQL 5.1 FAQ — Server SQL Mode ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1883
A.4. MySQL 5.1 FAQ — Stored Procedures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1884
A.5. MySQL 5.1 FAQ — Triggers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1887
A.6. MySQL 5.1 FAQ — Views ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1889
A.7. MySQL 5.0 FAQ — INFORMATION_SCHEMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1890
A.8. MySQL 5.1 FAQ — Migration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1890
A.9. MySQL 5.1 FAQ — Security .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1891
A.10. MySQL 5.1 FAQ — MySQL Cluster .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1892
A.11. MySQL 5.1 FAQ — MySQL Chinese, Japanese, and Korean Character Sets .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1900
A.12. MySQL 5.1 FAQ — Connectors & APIs .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1909
A.13. MySQL 5.1 FAQ — Replication .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1910
A.14. MySQL 5.1 FAQ — MySQL, DRBD, and Heartbeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1910

A.14.1. Distributed Replicated Block Device (DRBD) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1910
A.14.2. Linux Heartbeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1911
A.14.3. DRBD Architecture .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1911
A.14.4. DRBD and MySQL Replication .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1912
A.14.5. DRBD and File Systems ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1913
A.14.6. DRBD and LVM .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1914
A.14.7. DRBD and Virtualization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1914
A.14.8. DRBD and Security .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1914
A.14.9. DRBD and System Requirements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1915
A.14.10. DBRD and Support and Consulting .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1916

B. Errors, Error Codes, and Common Problems ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1918
B.1. Problems and Common Errors .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1918

B.1.1. How to Determine What Is Causing a Problem ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1918
B.1.2. Common Errors When Using MySQL Programs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1919
B.1.3. Installation-Related Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1930
B.1.4. Administration-Related Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1932
B.1.5. Query-Related Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1937
B.1.6. Optimizer-Related Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1942
B.1.7. Table Definition-Related Issues .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1943
B.1.8. Known Issues in MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1944

B.2. Server Error Codes and Messages .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1961
B.3. Client Error Codes and Messages .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1998

C. MySQL Change History .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2003
C.1. Changes in release 5.1.x (Development) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2003

C.1.1. Changes in MySQL 5.1.24-maria (Not yet released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2003
C.1.2. Changes in MySQL 5.1.24 (08 April 2008) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2003
C.1.3. Changes in MySQL 5.1.24 Carrier Grade Edition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2016
C.1.4. Changes in MySQL 5.1.23 (29 January 2008) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2019
C.1.5. Changes in MySQL 5.1.23 Carrier Grade Edition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2040
C.1.6. Changes in MySQL 5.1.22 (24 September 2007: Release Candidate) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2058
C.1.7. Changes in MySQL 5.1.22 Carrier Grade Edition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2059
C.1.8. Changes in MySQL 5.1.21 (16 August 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2070
C.1.9. Changes in MySQL 5.1.20 (25 June 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2081
C.1.10. Changes in MySQL 5.1.19 (25 May 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2089
C.1.11. Changes in MySQL 5.1.19 Carrier Grade Edition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2092
C.1.12. Changes in MySQL 5.1.18 (08 May 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2094
C.1.13. Changes in MySQL 5.1.18 Carrier Grade Edition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2105
C.1.14. Changes in MySQL 5.1.17 (04 April 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2106

MySQL 5.1 Reference Manual

xvii



C.1.15. Changes in MySQL 5.1.16 (26 February 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2114
C.1.16. Changes in MySQL 5.1.16 Carrier Grade Edition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2118
C.1.17. Changes in MySQL 5.1.15 (25 January 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2119
C.1.18. Changes in MySQL 5.1.15 Carrier Grade Edition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2127
C.1.19. Changes in MySQL 5.1.14 (05 December 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2142
C.1.20. Changes in MySQL 5.1.14 Carrier Grade Edition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2147
C.1.21. Changes in MySQL 5.1.13 (Not released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2148
C.1.22. Changes in MySQL 5.1.12 (24 October 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2152
C.1.23. Changes in MySQL 5.1.11 (26 May 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2178
C.1.24. Changes in MySQL 5.1.10 (Not released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2181
C.1.25. Changes in MySQL 5.1.9 (12 April 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2188
C.1.26. Changes in MySQL 5.1.8 (Not released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2190
C.1.27. Changes in MySQL 5.1.7 (27 February 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2197
C.1.28. Changes in MySQL 5.1.6 (01 February 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2201
C.1.29. Changes in MySQL 5.1.5 (10 January 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2205
C.1.30. Changes in MySQL 5.1.4 (21 December 2005) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2206
C.1.31. Changes in MySQL 5.1.3 (29 November 2005) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2208
C.1.32. Changes in MySQL 5.1.2 (Not released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2209
C.1.33. Changes in MySQL 5.1.1 (Not released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2209

C.2. MySQL Connector/ODBC (MyODBC) Change History .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2209
C.2.1. Changes in MySQL Connector/ODBC 5.1.3 (Not yet released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2209
C.2.2. Changes in MySQL Connector/ODBC 5.1.2 (13 February 2008) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2210
C.2.3. Changes in MySQL Connector/ODBC 5.1.1 (13 December 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2211
C.2.4. Changes in MySQL Connector/ODBC 5.1.0 (10 September 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2213
C.2.5. Changes in MySQL Connector/ODBC 5.0.12 (Never released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2213
C.2.6. Changes in MySQL Connector/ODBC 5.0.11 (31 January 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2214
C.2.7. Changes in MySQL Connector/ODBC 5.0.10 (14 December 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2214
C.2.8. Changes in MySQL Connector/ODBC 5.0.9 (22 November 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2214
C.2.9. Changes in MySQL Connector/ODBC 5.0.8 (17 November 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2215
C.2.10. Changes in MySQL Connector/ODBC 5.0.7 (08 November 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2216
C.2.11. Changes in MySQL Connector/ODBC 5.0.6 (03 November 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2216
C.2.12. Changes in MySQL Connector/ODBC 5.0.5 (17 October 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2216
C.2.13. Changes in Connector/ODBC 5.0.3 (Connector/ODBC 5.0 Alpha 3) (20 June 2006) .. . . . . . . . . . . . . . . . . . . . .2217
C.2.14. Changes in Connector/ODBC 5.0.2 (Never released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2217
C.2.15. Changes in Connector/ODBC 5.0.1 (Connector/ODBC 5.0 Alpha 2) (05 June 2006) .. . . . . . . . . . . . . . . . . . . . .2217
C.2.16. Changes in MySQL Connector/ODBC 3.51.24 (Not yet released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2218
C.2.17. Changes in MySQL Connector/ODBC 3.51.23 (09 January 2008) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2219
C.2.18. Changes in MySQL Connector/ODBC 3.51.22 (13 November 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2219
C.2.19. Changes in MySQL Connector/ODBC 3.51.21 (08 October 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2220
C.2.20. Changes in MySQL Connector/ODBC 3.51.20 (10 September 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2220
C.2.21. Changes in MySQL Connector/ODBC 3.51.19 (10 August 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2220
C.2.22. Changes in MySQL Connector/ODBC 3.51.18 (08 August 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2221
C.2.23. Changes in MySQL Connector/ODBC 3.51.17 (14 July 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2222
C.2.24. Changes in MySQL Connector/ODBC 3.51.16 (14 June 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2223
C.2.25. Changes in MySQL Connector/ODBC 3.51.15 (7 May 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2224
C.2.26. Changes in MySQL Connector/ODBC 3.51.14 (08 March 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2224
C.2.27. Changes in MySQL Connector/ODBC 3.51.13 (Never released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2225
C.2.28. Changes in MySQL Connector/ODBC 3.51.12 (11 Febrauary 2005) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2225
C.2.29. Changes in MySQL Connector/ODBC 3.51.11 (28 January 2005) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2225

C.3. MySQL Connector/NET Change History .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2226
C.3.1. Changes in MySQL Connector/NET 5.2.2 (Not yet released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2226
C.3.2. Changes in MySQL Connector/NET 5.2.1 (27 February 2008) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2226
C.3.3. Changes in MySQL Connector/NET 5.2.0 (11 February 2008) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2226
C.3.4. Changes in MySQL Connector/NET 5.1.6 (Not yet released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2227
C.3.5. Changes in MySQL Connector/NET 5.1.5 (Not yet released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2227
C.3.6. Changes in MySQL Connector/NET 5.1.4 (20 November 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2228
C.3.7. Changes in MySQL Connector/NET 5.1.3 (21 September 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2229
C.3.8. Changes in MySQL Connector/NET 5.1.2 (18 June 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2229
C.3.9. Changes in MySQL Connector/NET 5.1.1 (23 May 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2230
C.3.10. Changes in MySQL Connector/NET 5.1.0 (01 May 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2230
C.3.11. Changes in MySQL Connector/NET 5.0.9 (Not yet released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2230
C.3.12. Changes in MySQL Connector/NET 5.0.8 (21 August 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2231
C.3.13. Changes in MySQL Connector/NET 5.0.7 (18 May 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2232
C.3.14. Changes in MySQL Connector/NET 5.0.6 (22 March 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2232
C.3.15. Changes in MySQL Connector/NET 5.0.5 (07 March 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2233

MySQL 5.1 Reference Manual

xviii



C.3.16. Changes in MySQL Connector/NET 5.0.4 (Not released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2234
C.3.17. Changes in MySQL Connector/NET 5.0.3 (05 January 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2234
C.3.18. Changes in MySQL Connector/NET 5.0.2 (06 November 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2235
C.3.19. Changes in MySQL Connector/NET 5.0.1 (01 October 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2235
C.3.20. Changes in MySQL Connector/NET 5.0.0 (08 August 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2236
C.3.21. Changes in MySQL Connector/NET 1.0.11 (Not yet released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2236
C.3.22. Changes in MySQL Connector/NET 1.0.10 (24 August 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2237
C.3.23. Changes in MySQL Connector/NET 1.0.9 (02 February 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2237
C.3.24. Changes in MySQL Connector/NET 1.0.8 (20 October 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2238
C.3.25. Changes in MySQL Connector/NET 1.0.7 (21 November 2005) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2239
C.3.26. Changes in MySQL Connector/NET 1.0.6 (03 October 2005) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2240
C.3.27. Changes in MySQL Connector/NET 1.0.5 (29 August 2005) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2240
C.3.28. Changes in MySQL Connector/NET 1.0.4 (20 January 2005) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2241
C.3.29. Changes in MySQL Connector/NET 1.0.3 (12 October 2004) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2241
C.3.30. Changes in MySQL Connector/NET 1.0.2 (15 November 2004) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2242
C.3.31. Changes in MySQL Connector/NET 1.0.1 (27 October 2004) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2242
C.3.32. Changes in MySQL Connector/NET 1.0.0 (01 September 2004) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2244
C.3.33. Changes in MySQL Connector/NET Version 0.9.0 (30 August 2004) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2244
C.3.34. Changes in MySQL Connector/NET Version 0.76 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2247
C.3.35. Changes in MySQL Connector/NET Version 0.75 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2248
C.3.36. Changes in MySQL Connector/NET Version 0.74 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2248
C.3.37. Changes in MySQL Connector/NET Version 0.71 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2250
C.3.38. Changes in MySQL Connector/NET Version 0.70 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2250
C.3.39. Changes in MySQL Connector/NET Version 0.68 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2252
C.3.40. Changes in MySQL Connector/NET Version 0.65 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2252
C.3.41. Changes in MySQL Connector/NET Version 0.60 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2253
C.3.42. Changes in MySQL Connector/NET Version 0.50 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2253

C.4. MySQL Visual Studio Plugin Change History .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2253
C.4.1. Changes in MySQL Visual Studio Plugin 1.0.3 (Not yet released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2253
C.4.2. Changes in MySQL Visual Studio Plugin 1.0.2 (Not yet released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2253
C.4.3. Changes in MySQL Visual Studio Plugin 1.0.1 (4 October 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2253
C.4.4. Changes in MySQL Visual Studio Plugin 1.0.0 (4 October 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2254

C.5. MySQL Connector/J Change History .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2254
C.5.1. Changes in MySQL Connector/J 5.1.x .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2254
C.5.2. Changes in MySQL Connector/J 5.0.x .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2260
C.5.3. Changes in MySQL Connector/J 3.1.x .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2270
C.5.4. Changes in MySQL Connector/J 3.0.x .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2288
C.5.5. Changes in MySQL Connector/J 2.0.x .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2299
C.5.6. Changes in MySQL Connector/J 1.2b (04 July 1999) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2304
C.5.7. Changes in MySQL Connector/J 1.2.x and lower .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2305

C.6. MySQL Connector/MXJ Change History .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2308
C.6.1. Changes in MySQL Connector/MXJ 5.0.6 (04 May 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2308
C.6.2. Changes in MySQL Connector/MXJ 5.0.5 (14 March 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2309
C.6.3. Changes in MySQL Connector/MXJ 5.0.4 (28 January 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2310
C.6.4. Changes in MySQL Connector/MXJ 5.0.3 (24 June 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2311
C.6.5. Changes in MySQL Connector/MXJ 5.0.2 (15 June 2006) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2311
C.6.6. Changes in MySQL Connector/MXJ 5.0.1 (Never released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2312
C.6.7. Changes in MySQL Connector/MXJ 5.0.0 (09 December 2005) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2312

C.7. MySQL Proxy Change History .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2312
C.7.1. Changes in MySQL Proxy 0.6.0 (Not yet released) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2312
C.7.2. Changes in MySQL Proxy 0.5.1 (30 June 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2313
C.7.3. Changes in MySQL Proxy 0.5.0 (19 June 2007) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2314

D. Restrictions and Limits .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2315
D.1. Restrictions on Stored Routines, Triggers, and Events .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2315
D.2. Restrictions on Server-Side Cursors .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2317
D.3. Restrictions on Subqueries .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2317
D.4. Restrictions on Views ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2319
D.5. Restrictions on XA Transactions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2321
D.6. Restrictions on Character Sets .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2321
D.7. Limits in MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2321

D.7.1. Limits of Joins .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2321
D.7.2. The Maximum Number of Columns Per Table .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2322
D.7.3. Windows Platform Limitations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2323

E. Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2324
E.1. Developers at MySQL AB ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2324

MySQL 5.1 Reference Manual

xix



E.2. Contributors to MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2328
E.3. Documenters and translators .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2332
E.4. Libraries used by and included with MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2334
E.5. Packages that support MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2335
E.6. Tools that were used to create MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2335
E.7. Supporters of MySQL ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2335

Index ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2337

MySQL 5.1 Reference Manual

xx



List of Figures
13.1. The MySQL architecture using pluggable storage engines .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
13.2. FEDERATED table structure .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1003
14.1. DRBD Architecture .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1015
14.2. DRBD Architecture .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1023
14.3. DRBD Architecture .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1027
15.1. Replication architecture with clients using multiple MySQL slaves .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1033
15.2. Replication architecture with clients using dedicated MySQL slaves .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1033
15.3. Replication architecture with clients using MySQL Load Balancer .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1034
16.1. Using replication to improve the performance during scaleout .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1063
16.2. Using replication to replicate separate DBs to multiple hosts .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1064
16.3. Using an additional replication host to improve performance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1066
16.4. Redundancy using replication, initial structure .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1067
16.5. Redundancy using replication, after master failure .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1068
A.1. Active-Master MySQL server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1913

xxi



List of Tables
2.1. Build (configure) Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
4.1. mysqld_safe Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.2. mysql Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.3. mysqladmin Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.4. mysqlcheck Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.5. mysqldump Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.6. mysqlimport Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
4.7. mysqlimport Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
4.8. mysqlslap Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
4.9. myisamchk Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
4.10. mysqlaccess Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
4.11. mysqlbinlog Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
4.12. mysqlhotcopy Option Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
27.1. Mapping of MySQL Error Numbers to SQLStates .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1779

xxii



List of Examples
27.1. Obtaining a connection from the DriverManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1790
27.2. Using java.sql.Statement to execute a SELECT query .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1791
27.3. Stored Procedures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1792
27.4. Using Connection.prepareCall() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1792
27.5. Registering output parameters .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1793
27.6. Setting CallableStatement input parameters .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1793
27.7. Retrieving results and output parameter values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1794
27.8. Retrieving AUTO_INCREMENT column values using Statement.getGeneratedKeys() . . . . . . . . . . . . . . . . . . . . . . . . . .1794
27.9. Retrieving AUTO_INCREMENT column values using SELECT LAST_INSERT_ID() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1795
27.10. Retrieving AUTO_INCREMENT column values in Updatable ResultSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1796
27.11. Using a connection pool with a J2EE application server .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1798
27.12. Example of transaction with retry logic .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1808

xxiii



Preface
This is the Reference Manual for the MySQL Database System, version 5.1, through release 5.1.25-rc. It is not intended for use with
older versions of the MySQL software due to the many functional and other differences between MySQL 5.1 and previous versions. If
you are using an earlier release of the MySQL software, please refer to the MySQL 5.0 Reference Manual, which covers the 5.0 series of
MySQL software releases, or to MySQL 3.23, 4.0, 4.1 Reference Manual, which covers the 3.23, 4.0, and 4.1 series of MySQL software
releases. Differences between minor versions of MySQL 5.1 are noted in the present text with reference to release numbers (5.1.x).

xxiv

http://dev.mysql.com/doc/refman/5.0/en/
http://dev.mysql.com/doc/refman/4.1/en/


Chapter 1. General Information
The MySQL® software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server.
MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.
MySQL is a registered trademark of MySQL AB.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open Source product under the terms of the
GNU General Public License (http://www.fsf.org/licenses/) or can purchase a standard commercial license from MySQL AB. See ht-
tp://www.mysql.com/company/legal/licensing/ for more information on our licensing policies.

The following list describes some sections of particular interest in this manual:

• For a discussion about the capabilities of the MySQL Database Server, see Section 1.4.3, “The Main Features of MySQL”.

• For future plans, see Section 1.5, “MySQL Development Roadmap”.

• For installation instructions, see Chapter 2, Installing and Upgrading MySQL. For information about upgrading MySQL, see Sec-
tion 2.11, “Upgrading MySQL”.

• For a tutorial introduction to the MySQL Database Server, see Chapter 3, Tutorial.

• For information about configuring and administering MySQL Server, see Chapter 5, MySQL Server Administration.

• For information about setting up replication servers, see Chapter 16, Replication.

• For answers to a number of questions that are often asked concerning the MySQL Database Server and its capabilities, see Ap-
pendix A, MySQL 5.1 Frequently Asked Questions.

• For a list of currently known bugs and misfeatures, see Section B.1.8, “Known Issues in MySQL”.

• For a list of all the contributors to this project, see Appendix E, Credits.

• For a history of new features and bugfixes, see Appendix C, MySQL Change History.

• For tips on porting the MySQL Database Software to new architectures or operating systems, see MySQL Internals: Porting.

• For benchmarking information, see the sql-bench benchmarking directory in your MySQL distribution.

Important

To report errors (often called “bugs”), please use the instructions at Section 1.7, “How to Report Bugs or Problems”.

If you have found a sensitive security bug in MySQL Server, please let us know immediately by sending an email message
to <security@mysql.com>.

1.1. About This Manual
This is the Reference Manual for the MySQL Database System, version 5.1, through release 5.1.25-rc. It is not intended for use with
older versions of the MySQL software due to the many functional and other differences between MySQL 5.1 and previous versions. If
you are using an earlier release of the MySQL software, please refer to the MySQL 5.0 Reference Manual, which covers the 5.0 series of
MySQL software releases, or to MySQL 3.23, 4.0, 4.1 Reference Manual, which covers the 3.23, 4.0, and 4.1 series of MySQL software
releases. Differences between minor versions of MySQL 5.1 are noted in the present text with reference to release numbers (5.1.x).

Because this manual serves as a reference, it does not provide general instruction on SQL or relational database concepts. It also does
not teach you how to use your operating system or command-line interpreter.

The MySQL Database Software is under constant development, and the Reference Manual is updated frequently as well. The most re-
cent version of the manual is available online in searchable form at http://dev.mysql.com/doc/. Other formats also are available there,
including HTML, PDF, and Windows CHM versions.

The Reference Manual source files are written in DocBook XML format. The HTML version and other formats are produced automatic-
ally, primarily using the DocBook XSL stylesheets. For information about DocBook, see http://docbook.org/

1

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://dev.mysql.com/doc/refman/5.0/en/
http://dev.mysql.com/doc/refman/4.1/en/
http://dev.mysql.com/doc/
http://docbook.org/


The DocBook XML sources of this manual are available from http://dev.mysql.com/tech-resources/sources.html. You can check out a
copy of the documentation repository with this command:

svn checkout http://svn.mysql.com/svnpublic/mysqldoc/

If you have questions about using MySQL, you can ask them using our mailing lists or forums. See Section 1.6.1, “MySQL Mailing
Lists”, and Section 1.6.2, “MySQL Community Support at the MySQL Forums”. If you have suggestions concerning additions or cor-
rections to the manual itself, please send them to the documentation team at <docs@mysql.com>.

This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained by the MySQL Documentation
Team, consisting of Paul DuBois, Stefan Hinz, Jon Stephens, Martin MC Brown, and Peter Lavin. For the many other contributors, see
Appendix E, Credits.

The copyright to this manual is owned by the Swedish company MySQL AB. MySQL® and the MySQL logo are registered trademarks
of MySQL AB. Other trademarks and registered trademarks referred to in this manual are the property of their respective owners, and
are used for identification purposes only.

1.2. Conventions Used in This Manual
This manual uses certain typographical conventions:

• Text in this style is used for SQL statements; database, table, and column names; program listings and source code; and
environment variables. Example: “To reload the grant tables, use the FLUSH PRIVILEGES statement.”

• Text in this style indicates input that you type in examples.

• Text in this style indicates the names of executable programs and scripts, examples being mysql (the MySQL command
line client program) and mysqld (the MySQL server executable).

• Text in this style is used for variable input for which you should substitute a value of your own choosing.

• Filenames and directory names are written like this: “The global my.cnf file is located in the /etc directory.”

• Character sequences are written like this: “To specify a wildcard, use the ‘%’ character.”

• Text in this style is used for emphasis.

• Text in this style is used in table headings and to convey especially strong emphasis.

When commands are shown that are meant to be executed from within a particular program, the prompt shown preceding the command
indicates which command to use. For example, shell> indicates a command that you execute from your login shell, and mysql> in-
dicates a statement that you execute from the mysql client program:

shell> type a shell command here
mysql> type a mysql statement here

The “shell” is your command interpreter. On Unix, this is typically a program such as sh, csh, or bash. On Windows, the equivalent
program is command.com or cmd.exe, typically run in a console window.

When you enter a command or statement shown in an example, do not type the prompt shown in the example.

Database, table, and column names must often be substituted into statements. To indicate that such substitution is necessary, this manual
uses db_name, tbl_name, and col_name. For example, you might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own database, table, and column names, perhaps like
this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case sensitive and may be written in any lettercase. This manual uses uppercase.

General Information

2

http://dev.mysql.com/tech-resources/sources.html


In syntax descriptions, square brackets (“[” and “]”) indicate optional words or clauses. For example, in the following statement, IF
EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by vertical bars (“|”). When one member
from a set of choices may be chosen, the alternatives are listed within square brackets (“[” and “]”):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within braces (“{” and “}”):

{DESCRIBE | DESC} tbl_name [col_name | wild]

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a shorter version of more complex syntax. For
example, SELECT ... INTO OUTFILE is shorthand for the form of SELECT statement that has an INTO OUTFILE clause fol-
lowing other parts of the statement.

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In the following example, multiple re-
set_option values may be given, with each of those after the first preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the sequence to set the CC environment vari-
able and run the configure command looks like this in Bourne shell syntax:

shell> CC=gcc ./configure

If you are using csh or tcsh, you must issue commands somewhat differently:

shell> setenv CC gcc
shell> ./configure

1.3. Overview of MySQL AB
MySQL AB is the company of the MySQL founders and main developers. MySQL AB was originally established in Sweden by David
Axmark, Allan Larsson, and Michael “Monty” Widenius.

We are dedicated to developing the MySQL database software and promoting it to new users. MySQL AB owns the copyright to the
MySQL source code, the MySQL logo and (registered) trademark, and this manual. See Section 1.4, “Overview of the MySQL Data-
base Management System”.

The MySQL core values show our dedication to MySQL and Open Source.

These core values direct how MySQL AB works with the MySQL server software:

• To be the best and the most widely used database in the world

• To be available and affordable by all

• To be easy to use

• To be continuously improved while remaining fast and safe

• To be fun to use and improve

• To be free from bugs

These are the core values of the company MySQL AB and its employees:

General Information

3



• We subscribe to the Open Source philosophy and support the Open Source community

• We aim to be good citizens

• We prefer partners that share our values and mindset

• We answer email and provide support

• We are a virtual company, networking with others

• We work against software patents

The MySQL Web site (http://www.mysql.com/) provides the latest information about MySQL and MySQL AB.

By the way, the “AB” part of the company name is the acronym for the Swedish “aktiebolag,” or “stock company.” It translates to
“MySQL, Inc.” In fact, MySQL, Inc. and MySQL GmbH are examples of MySQL AB subsidiaries. They are located in the United
States and Germany, respectively.

1.4. Overview of the MySQL Database Management System

1.4.1. What is MySQL?
MySQL, the most popular Open Source SQL database management system, is developed, distributed, and supported by MySQL AB.
MySQL AB is a commercial company, founded by the MySQL developers. It is a second generation Open Source company that unites
Open Source values and methodology with a successful business model.

The MySQL Web site (http://www.mysql.com/) provides the latest information about MySQL software and MySQL AB.

• MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping list to a picture gallery or the vast amounts
of information in a corporate network. To add, access, and process data stored in a computer database, you need a database manage-
ment system such as MySQL Server. Since computers are very good at handling large amounts of data, database management sys-
tems play a central role in computing, as standalone utilities, or as parts of other applications.

• MySQL is a relational database management system.

A relational database stores data in separate tables rather than putting all the data in one big storeroom. This adds speed and flexibil-
ity. The SQL part of “MySQL” stands for “Structured Query Language.” SQL is the most common standardized language used to
access databases and is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986 and several ver-
sions exist. In this manual, “SQL-92” refers to the standard released in 1992, “SQL:1999” refers to the standard released in 1999,
and “SQL:2003” refers to the current version of the standard. We use the phrase “the SQL standard” to mean the current version of
the SQL Standard at any time.

• MySQL software is Open Source.

Open Source means that it is possible for anyone to use and modify the software. Anybody can download the MySQL software from
the Internet and use it without paying anything. If you wish, you may study the source code and change it to suit your needs. The
MySQL software uses the GPL (GNU General Public License), http://www.fsf.org/licenses/, to define what you may and may not
do with the software in different situations. If you feel uncomfortable with the GPL or need to embed MySQL code into a commer-
cial application, you can buy a commercially licensed version from us. See the MySQL Licensing Overview for more information
(http://www.mysql.com/company/legal/licensing/).

• The MySQL Database Server is very fast, reliable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server also has a practical set of features developed in close co-
operation with our users. You can find a performance comparison of MySQL Server with other database managers on our bench-
mark page. See Section 7.1.4, “The MySQL Benchmark Suite”.

MySQL Server was originally developed to handle large databases much faster than existing solutions and has been successfully
used in highly demanding production environments for several years. Although under constant development, MySQL Server today
offers a rich and useful set of functions. Its connectivity, speed, and security make MySQL Server highly suited for accessing data-
bases on the Internet.

General Information

4

http://www.mysql.com/
http://www.mysql.com/
http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/


• MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multi-threaded SQL server that supports different
backends, several different client programs and libraries, administrative tools, and a wide range of application programming inter-
faces (APIs).

We also provide MySQL Server as an embedded multi-threaded library that you can link into your application to get a smaller,
faster, easier-to-manage standalone product.

• A large amount of contributed MySQL software is available.

It is very likely that your favorite application or language supports the MySQL Database Server.

The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we don't mind if you pronounce it as “my sequel”
or in some other localized way.

1.4.2. History of MySQL
We started out with the intention of using the mSQL database system to connect to our tables using our own fast low-level (ISAM)
routines. However, after some testing, we came to the conclusion that mSQL was not fast enough or flexible enough for our needs. This
resulted in a new SQL interface to our database but with almost the same API interface as mSQL. This API was designed to allow third-
party code that was written for use with mSQL to be ported easily for use with MySQL.

MySQL is named after co-founder Monty Widenius's daughter, My.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen by the founders of MySQL AB from a huge list of names
suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose Twebaze, an Open Source soft-
ware developer from Swaziland, Africa. According to Ambrose, the feminine name Sakila has its roots in SiSwati, the local language of
Swaziland. Sakila is also the name of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.

1.4.3. The Main Features of MySQL
This section describes some of the important characteristics of the MySQL Database Software. See also Section 1.5, “MySQL Develop-
ment Roadmap”, for more information about current and upcoming features. In most respects, it applies to all versions of MySQL. For
information about features as they are introduced into MySQL on a series-specific basis, see the “In a Nutshell” section of the appropri-
ate Manual:

• MySQL 4.0 and 4.1: MySQL 4.0 in a Nutshell, and MySQL 4.1 in a Nutshell.

• MySQL 5.0: MySQL 5.0 in a Nutshell.

• MySQL 5.1: MySQL 5.1 in a Nutshell.

Internals and Portability:

• Written in C and C++.

• Tested with a broad range of different compilers.

• Works on many different platforms. See Section 2.1.1, “Operating Systems Supported by MySQL Community Server”.

• Uses GNU Automake, Autoconf, and Libtool for portability.

• The MySQL Server design is multi-layered with independent modules.

• Fully multi-threaded using kernel threads. It can easily use multiple CPUs if they are available.

• Provides transactional and non-transactional storage engines.

• Uses very fast B-tree disk tables (MyISAM) with index compression.

General Information

5

http://dev.mysql.com/doc/refman/4.1/en/mysql-4-0-nutshell.html
http://dev.mysql.com/doc/refman/4.1/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-nutshell.html


• Relatively easy to add other storage engines. This is useful if you want to provide an SQL interface for an in-house database.

• A very fast thread-based memory allocation system.

• Very fast joins using an optimized one-sweep multi-join.

• In-memory hash tables, which are used as temporary tables.

• SQL functions are implemented using a highly optimized class library and should be as fast as possible. Usually there is no memory
allocation at all after query initialization.

• The MySQL code is tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool (ht-
tp://developer.kde.org/~sewardj/).

• The server is available as a separate program for use in a client/server networked environment. It is also available as a library that
can be embedded (linked) into standalone applications. Such applications can be used in isolation or in environments where no net-
work is available.

Data Types:

• Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE, CHAR, VARCHAR, TEXT, BLOB, DATE,
TIME, DATETIME, TIMESTAMP, YEAR, SET, ENUM, and OpenGIS spatial types. See Chapter 10, Data Types.

• Fixed-length and variable-length records.

Statements and Functions:

• Full operator and function support in the SELECT list and WHERE clause of queries. For example:

mysql> SELECT CONCAT(first_name, ' ', last_name)
-> FROM citizen
-> WHERE income/dependents > 10000 AND age > 30;

• Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT(), COUNT(DISTINCT ...),
AVG(), STD(), SUM(), MAX(), MIN(), and GROUP_CONCAT()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and ODBC syntax.

• Support for aliases on tables and columns as required by standard SQL.

• DELETE, INSERT, REPLACE, and UPDATE return the number of rows that were changed (affected). It is possible to return the
number of rows matched instead by setting a flag when connecting to the server.

• The MySQL-specific SHOW statement can be used to retrieve information about databases, storage engines, tables, and indexes.
MySQL 5.0 adds support for the INFORMATION_SCHEMA database, implemented according to standard SQL.

• The EXPLAIN statement can be used to determine how the optimizer resolves a query.

• Function names do not clash with table or column names. For example, ABS is a valid column name. The only restriction is that for
a function call, no spaces are allowed between the function name and the “(” that follows it. See Section 8.3, “Reserved Words”.

• You can refer to tables from different databases in the same statement.

Security:

• A privilege and password system that is very flexible and secure, and that allows host-based verification.

• Passwords are secure because all password traffic is encrypted when you connect to a server.

Scalability and Limits:

General Information

6

http://developer.kde.org/~sewardj/
http://developer.kde.org/~sewardj/


• Handles large databases. We use MySQL Server with databases that contain 50 million records. We also know of users who use
MySQL Server with 60,000 tables and about 5,000,000,000 rows.

• Up to 64 indexes per table are allowed (32 before MySQL 4.1.2). Each index may consist of 1 to 16 columns or parts of columns.
The maximum index width is 1000 bytes (767 for InnoDB); before MySQL 4.1.2, the limit is 500 bytes. An index may use a prefix
of a column for CHAR, VARCHAR, BLOB, or TEXT column types.

Connectivity:

• Clients can connect to MySQL Server using several protocols:

• Clients can connect using TCP/IP sockets on any platform.

• On Windows systems in the NT family (NT, 2000, XP, 2003, or Vista), clients can connect using named pipes if the server is
started with the --enable-named-pipe option. In MySQL 4.1 and higher, Windows servers also support shared-memory
connections if started with the --shared-memory option. Clients can connect through shared memory by using the -
-protocol=memory option.

• On Unix systems, clients can connect using Unix domain socket files.

• MySQL client programs can be written in many languages. A client library written in C is available for clients written in C or C++,
or for any language that provides C bindings.

• APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, allowing MySQL clients to be written in many lan-
guages. See Chapter 26, APIs and Libraries.

• The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use ODBC (Open Database Con-
nectivity) connections. For example, you can use MS Access to connect to your MySQL server. Clients can be run on Windows or
Unix. MyODBC source is available. All ODBC 2.5 functions are supported, as are many others. See Chapter 27, Connectors.

• The Connector/J interface provides MySQL support for Java client programs that use JDBC connections. Clients can be run on Win-
dows or Unix. Connector/J source is available. See Chapter 27, Connectors.

• MySQL Connector/NET enables developers to easily create .NET applications that require secure, high-performance data con-
nectivity with MySQL. It implements the required ADO.NET interfaces and integrates into ADO.NET aware tools. Developers can
build applications using their choice of .NET languages. MySQL Connector/NET is a fully managed ADO.NET driver written in
100% pure C#. See Chapter 27, Connectors.

Localization:

• The server can provide error messages to clients in many languages. See Section 9.3, “Setting the Error Message Language”.

• Full support for several different character sets, including latin1 (cp1252), german, big5, ujis, and more. For example, the
Scandinavian characters “å”, “ä” and “ö” are allowed in table and column names. Unicode support is available as of MySQL 4.1.

• All data is saved in the chosen character set.

• Sorting and comparisons are done according to the chosen character set and collation (using latin1 and Swedish collation by de-
fault). It is possible to change this when the MySQL server is started. To see an example of very advanced sorting, look at the Czech
sorting code. MySQL Server supports many different character sets that can be specified at compile time and runtime.

• As of MySQL 4.1, the server time zone can be changed dynamically, and individual clients can specify their own time zone. Sec-
tion 9.6, “MySQL Server Time Zone Support”.

MySQL Enterprise
For assistance in getting optimal performance from your MySQL server subscribe to MySQL Enterprise. For
more information see http://www.mysql.com/products/enterprise/.

Clients and Tools:

General Information

7

http://www.mysql.com/products/enterprise/


• MySQL AB provides several client and utility programs. These include both command-line programs such as mysqldump and
mysqladmin, and graphical programs such as MySQL Administrator and MySQL Query Browser.

• MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These statements are available from
the command line through the mysqlcheck client. MySQL also includes myisamchk, a very fast command-line utility for per-
forming these operations on MyISAM tables. See Chapter 4, MySQL Programs.

• MySQL programs can be invoked with the --help or -? option to obtain online assistance.

1.5. MySQL Development Roadmap
This section describes the general MySQL development roadmap, provides an overview about features that have been implemented in
previous series and that are new in this current release series (5.1), and an overview about upcoming additions or changes in the next re-
lease series (6.0).

The maturity level of the release series covered in this manual (5.1) is release candidate. Information about maturity levels can be found
in Section 2.1.2.1, “Choosing Which Version of MySQL to Install”.

Before upgrading from one release series to the next, please see the notes in Section 2.11, “Upgrading MySQL”.

The most requested features and the versions in which they were implemented or are scheduled for implementation are summarized in
the following table:

Feature MySQL Series

Unions 4.0

Subqueries 4.1

R-trees 4.1 (for the MyISAM storage engine)

Stored procedures 5.0

Views 5.0

Cursors 5.0

XA transactions 5.0

Triggers 5.0 and 5.1

Event scheduler 5.1

Partitioning 5.1

Pluggable storage engine API 5.1

Plugin API 5.1

Row-based replication 5.1

Server log tables 5.1

Foreign keys 6.x (implemented in 3.23 for InnoDB)

1.5.1. What's New in MySQL 5.1
The following features have been added to MySQL 5.1.

• Partitioning. This capability enables distributing portions of individual tables across a filesystem, according to rules which can be
set when the table is created. In effect, different portions of a table are stored as separate tables in different locations, but from the
user point of view, the partitioned table is still a single table. Syntactically, this implements a number of new extensions to the CRE-
ATE TABLE, ALTER TABLE, and EXPLAIN ... SELECT statements. As of MySQL 5.1.6, queries against partitioned tables
can take advantage of partition pruning. In some cases, this can result in query execution that is an order of magnitude faster than
the same query against a non-partitioned version of the same table. See Chapter 18, Partitioning, for further information on this
functionality. (Author: Mikael Ronström)

• Row-based replication. Replication capabilities in MySQL originally were based on propagation of SQL statements from master
to slave. This is called statement-based replication. As of MySQL 5.1.5, another basis for replication is available. This is called

General Information

8



row-based replication. Instead of sending SQL statements to the slave, the master writes events to its binary log that indicate how
individual table rows are effected. As of MySQL 5.1.8, a third option is available: mixed. This will use statement-based replication
by default, and only switch to row-based replication in particular cases. See Section 16.1.2, “Replication Formats”. (Authors: Lars
Thalmann, Guilhem Bichot, Mats Kindahl)

• Plugin API. MySQL 5.1 adds support for a very flexible plugin API that enables loading and unloading of various components at
runtime, without restarting the server. Although the work on this is not finished yet, plugin full-text parsers are a first step in this
direction. This allows users to implement their own input filter on the indexed text, enabling full-text search capability on arbitrary
data such as PDF files or other document formats. A pre-parser full-text plugin performs the actual parsing and extraction of the text
and hands it over to the built-in MySQL full-text search. See Section 29.2, “The MySQL Plugin Interface”. (Author: Sergey Vo-
jtovich)

• Event scheduler. MySQL Events are tasks that run according to a schedule. When you create an event, you are creating a named
database object containing one or more SQL statements to be executed at one or more regular intervals, beginning and ending at a
specific date and time. Conceptually, this is similar to the idea of the Unix crontab (also known as a “cron job”) or the Windows
Task Scheduler. See Chapter 22, Event Scheduler. (Author: Andrey Hristov)

• Server log tables. Before MySQL 5.1, the server writes general query log and slow query log entries to log files. As of MySQL
5.1, the server's logging capabilities for these logs are more flexible. Log entries can be written to log files (as before) or to the
general_log and slow_log tables in the mysql database. If logging is enabled, either or both destinations can be selected.
The --log-output option controls the destination or destinations of log output. See Section 5.2.1, “Selecting General Query and
Slow Query Log Output Destinations”. (Author: Petr Chardin)

• Upgrade program. The mysql_upgrade program (available as of MySQL 5.1.7) checks all existing tables for incompatibilities
with the current version of MySQL Server and repairs them if necessary. This program should be run for each MySQL upgrade. See
Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”. (Authors: Alexey Botchkov, Mikael Widenius)

• MySQL Cluster replication. Replication between MySQL Clusters is now supported. It is now also possible to replicate between
a MySQL Cluster and a non-cluster database. See Section 17.12, “MySQL Cluster Replication”.

• MySQL Cluster disk data storage. In MySQL versions previous to 5.1.6, the NDBCluster storage engine was strictly in-
memory; beginning with MySQL 5.1.6, it is possible to store Cluster data (but not indexes) on disk. This allows MySQL Cluster to
scale upward with fewer hardware (RAM) requirements than previously. In addition, the Disk Data implementation includes a new
“no-steal” restoration algorithm for fast node restarts when storing very large amounts of data (terabyte range). See Section 17.13,
“MySQL Cluster Disk Data Tables”.

• Improved backups for MySQL Cluster. A fault arising in a single data node during a Cluster backup no longer causes the entire
backup to be aborted, as occurred in previous versions of MySQL Cluster.

• Backup of tablespaces. The mysqldump utility now supports an option for dumping tablespaces. Use -Y or -
-all-tablespaces to enable this functionality.

• Improvements to INFORMATION_SCHEMA. MySQL 5.1 provides much more information in its metadata database thasn was
available in MySQL 5.0. New tables in the INFORMATION_SCHEMA database include FILES, EVENTS, PARTITIONS, PRO-
CESSLIST, ENGINES, and PLUGINS.

• XML functions with XPath support. ExtractValue() returns the content of a fragment of XML matching a given XPath ex-
pression. UpdateXML() replaces the element selected from a fragment of XML by an XPath expression supplied by the user with
a second XML fragment (also user-supplied), and returns the modified XML. See Section 11.10, “XML Functions”. (Author: Alex-
ander Barkov)

• Load emulator. The mysqlslap program is designed to emulate client load for a MySQL server and report the timing of each
stage. It works as if multiple clients were accessing the server. See Section 4.5.7, “mysqlslap — Load Emulation Client”.
(Authors: Patrick Galbraith, Brian Aker)

1.5.2. What's Planned for MySQL 6.0

Note

This section remains subject to change as long as MySQL 6.0 development is in its early stages.

The following features will be added to MySQL 6.0, or change in MySQL 6.0:

General Information

9



• A new transactional storage engine (Falcon).

• Support for additional Unicode character sets: utf16, utf32, and 4-byte utf8. These character sets support supplementary Uni-
code characters; that is, characters outside the Basic Multilingual Plane (BMP).

• BACKUP DATABASE and RESTORE statements for backup and restore operations.

• Improvements in the INFORMATION_SCHEMA database, with the addition of the INFORMATION_SCHEMA.PARAMETERS table,
and new columns added to INFORMATION_SCHEMA.ROUTINES.

• Optimizer enhancements for faster subqueries and joins, including batched index access of table rows for sequences of disjoint
ranges by the MyISAM and InnoDB storage engines.

• RESET SLAVE no longer changes replication connection parameters. Previously, it reset them to the values specified on the com-
mand line.

• The syntax for the LOCK TABLES statement is extended to support transactional table locks that do not commit transactions auto-
matically. Following LOCK TABLES ... IN SHARE MODE or LOCK TABLES ... IN EXCLUSIVE MODE, you can ac-
cess tables not mentioned in the LOCK TABLES statement. You can now also issue these extended LOCK TABLES statements
many times in succession, adding additional tables to the locked set, and without unlocking any tables that were locked previously.
When using LOCK TABLES with IN SHARE MODE or IN EXCLUSIVE MODE, tables are not unlocked until the transaction
ends.

The behavior of LOCK TABLES when not using IN SHARE MODE or IN EXCLUSIVE MODE remains unchanged.

• Further enhancements to XML functionality, including a new LOAD XML statement.

• Support for extended comments for tables, columns, and indexes.

Several improvements for MySQL Cluster, made in MySQL Cluster 5.1 Carrier Grade Edition, will become generally available for
MySQL Cluster in MySQL 6.0:

• Replication conflict detection and resolution.

• Online ADD COLUMN, ADD INDEX, and DROP INDEX operations.

• Batch operations, resulting in significant speed improvements.

• Replication heartbeats, which enable real-time detection of replication failures and real-time failover.

• The ability to bind client applications and replication slaves to specific network interfaces.

• Enhancements to take advantage of real-time scheduling and to bind processes to specific CPUs on data node hosts having multiple
processors.

• The NDB API supports a new NdbRecord interface.

• The ability to use multiple cluster connections in mysqld using the --ndb-cluster-connection-pool option.

• Backup status reporting.

See Section 17.2.1, “Major Differences Between MySQL 5.1 and MySQL Cluster 5.1 Carrier Grade Edition” for additional MySQL
Cluster 5.1 Carrier Grade Edition features that are expected to be made available in MySQL 6.0.

The following constructs are deprecated and have been removed for MySQL 6.0 (they were actually removed in 5.2.5). Where alternat-
ives are shown, applications should be updated to use them.

• The table_type system variable (use storage_engine).

The TYPE table option to specify the storage engine for CREATE TABLE or ALTER TABLE (use ENGINE).

The SHOW TABLE TYPES SQL statement (use SHOW ENGINES).

• The log_bin_trust_routine_creators variable (use log_bin_trust_function_creators).

General Information

10



• TIMESTAMP(N): The ability to specify a display width of N (use without N).

• The SHOW INNODB STATUS and SHOW MUTEX STATUS SQL statements (use SHOW ENGINE INNODB STATUS for both of
these).

• The LOAD TABLE ... FROM MASTER and LOAD DATA FROM MASTER SQL statements.

• The SHOW PLUGIN SQL statement (use SHOW PLUGINS).

• The RESTORE TABLE SQL statement.

• The BACKUP TABLE SQL statement.

• The --master-xxx server options to set replication parameters (use the CHANGE MASTER statement).

1.6. MySQL Information Sources
This section lists sources of additional information that you may find helpful, such as the MySQL mailing lists and user forums, and In-
ternet Relay Chat.

1.6.1. MySQL Mailing Lists
This section introduces the MySQL mailing lists and provides guidelines as to how the lists should be used. When you subscribe to a
mailing list, you receive all postings to the list as email messages. You can also send your own questions and answers to the list.

To subscribe to or unsubscribe from any of the mailing lists described in this section, visit http://lists.mysql.com/. For most of them, you
can select the regular version of the list where you get individual messages, or a digest version where you get one large message per
day.

Please do not send messages about subscribing or unsubscribing to any of the mailing lists, because such messages are distributed auto-
matically to thousands of other users.

Your local site may have many subscribers to a MySQL mailing list. If so, the site may have a local mailing list, so that messages sent
from lists.mysql.com to your site are propagated to the local list. In such cases, please contact your system administrator to be ad-
ded to or dropped from the local MySQL list.

If you wish to have traffic for a mailing list go to a separate mailbox in your mail program, set up a filter based on the message headers.
You can use either the List-ID: or Delivered-To: headers to identify list messages.

The MySQL mailing lists are as follows:

• announce

This list is for announcements of new versions of MySQL and related programs. This is a low-volume list to which all MySQL
users should subscribe.

• mysql

This is the main list for general MySQL discussion. Please note that some topics are better discussed on the more-specialized lists. If
you post to the wrong list, you may not get an answer.

• bugs

This list is for people who want to stay informed about issues reported since the last release of MySQL or who want to be actively
involved in the process of bug hunting and fixing. See Section 1.7, “How to Report Bugs or Problems”.

• internals

This list is for people who work on the MySQL code. This is also the forum for discussions on MySQL development and for posting
patches.

• mysqldoc

General Information

11

http://lists.mysql.com/


This list is for people who work on the MySQL documentation: people from MySQL AB, translators, and other community mem-
bers.

• benchmarks

This list is for anyone interested in performance issues. Discussions concentrate on database performance (not limited to MySQL),
but also include broader categories such as performance of the kernel, filesystem, disk system, and so on.

• packagers

This list is for discussions on packaging and distributing MySQL. This is the forum used by distribution maintainers to exchange
ideas on packaging MySQL and on ensuring that MySQL looks and feels as similar as possible on all supported platforms and oper-
ating systems.

• java

This list is for discussions about the MySQL server and Java. It is mostly used to discuss JDBC drivers such as MySQL Connector/
J.

• win32

This list is for all topics concerning the MySQL software on Microsoft operating systems, such as Windows 9x, Me, NT, 2000, XP,
and 2003.

• myodbc

This list is for all topics concerning connecting to the MySQL server with ODBC.

• gui-tools

This list is for all topics concerning MySQL graphical user interface tools such as MySQL Administrator and MySQL Query
Browser.

• cluster

This list is for discussion of MySQL Cluster.

• dotnet

This list is for discussion of the MySQL server and the .NET platform. It is mostly related to MySQL Connector/Net.

• plusplus

This list is for all topics concerning programming with the C++ API for MySQL.

• perl

This list is for all topics concerning Perl support for MySQL with DBD::mysql.

If you're unable to get an answer to your questions from a MySQL mailing list or forum, one option is to purchase support from MySQL
AB. This puts you in direct contact with MySQL developers.

The following table shows some MySQL mailing lists in languages other than English. These lists are not operated by MySQL AB.

• <mysql-france-subscribe@yahoogroups.com>

A French mailing list.

• <list@tinc.net>

A Korean mailing list. To subscribe, email subscribe mysql your@email.address to this list.

• <mysql-de-request@lists.4t2.com>

General Information

12



A German mailing list. To subscribe, email subscribe mysql-de your@email.address to this list. You can find inform-
ation about this mailing list at http://www.4t2.com/mysql/.

• <mysql-br-request@listas.linkway.com.br>

A Portuguese mailing list. To subscribe, email subscribe mysql-br your@email.address to this list.

• <mysql-alta@elistas.net>

A Spanish mailing list. To subscribe, email subscribe mysql your@email.address to this list.

1.6.1.1. Guidelines for Using the Mailing Lists

Please don't post mail messages from your browser with HTML mode turned on. Many users don't read mail with a browser.

When you answer a question sent to a mailing list, if you consider your answer to have broad interest, you may want to post it to the list
instead of replying directly to the individual who asked. Try to make your answer general enough that people other than the original
poster may benefit from it. When you post to the list, please make sure that your answer is not a duplication of a previous answer.

Try to summarize the essential part of the question in your reply. Don't feel obliged to quote the entire original message.

When answers are sent to you individually and not to the mailing list, it is considered good etiquette to summarize the answers and send
the summary to the mailing list so that others may have the benefit of responses you received that helped you solve your problem.

1.6.2. MySQL Community Support at the MySQL Forums
The forums at http://forums.mysql.com are an important community resource. Many forums are available, grouped into these general
categories:

• Migration

• MySQL Usage

• MySQL Connectors

• Programming Languages

• Tools

• 3rd-Party Applications

• Storage Engines

• MySQL Technology

• SQL Standards

• Business

1.6.3. MySQL Community Support on Internet Relay Chat (IRC)
In addition to the various MySQL mailing lists and forums, you can find experienced community people on Internet Relay Chat (IRC).
These are the best networks/channels currently known to us:

freenode (see http://www.freenode.net/ for servers)

• #mysql is primarily for MySQL questions, but other database and general SQL questions are welcome. Questions about PHP, Perl,
or C in combination with MySQL are also common.

General Information

13

http://www.4t2.com/mysql/
http://forums.mysql.com
http://www.freenode.net/


If you are looking for IRC client software to connect to an IRC network, take a look at xChat (http://www.xchat.org/). X-Chat (GPL li-
censed) is available for Unix as well as for Windows platforms (a free Windows build of X-Chat is available at ht-
tp://www.silverex.org/download/).

1.6.4. MySQL Enterprise
MySQL AB offers technical support in the form of MySQL Enterprise. For organizations that rely on the MySQL DBMS for business-
critical production applications, MySQL Enterprise is a commercial subscription offering which includes:

• MySQL Enterprise Server

• MySQL Enterprise Monitor

• Monthly Rapid Updates and Quarterly Service Packs

• MySQL Knowledge Base

• 24x7 Technical and Consultative Support

MySQL Enterprise is available in multiple tiers, giving you the flexibility to choose the level of service that best matches your needs.
For more information see MySQL Enterprise.

1.7. How to Report Bugs or Problems
Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been reported already:

• Start by searching the MySQL online manual at http://dev.mysql.com/doc/. We try to keep the manual up to date by updating it fre-
quently with solutions to newly found problems. The change history (http://dev.mysql.com/doc/mysql/en/news.html) can be particu-
larly useful since it is quite possible that a newer version contains a solution to your problem.

• If you get a parse error for a SQL statement, please check your syntax closely. If you can't find something wrong with it, it's ex-
tremely likely that your current version of MySQL Server doesn't support the syntax you are using. If you are using the current ver-
sion and the manual doesn't cover the syntax that you are using, MySQL Server doesn't support your statement. In this case, your
options are to implement the syntax yourself or email <licensing@mysql.com> and ask for an offer to implement it.

If the manual covers the syntax you are using, but you have an older version of MySQL Server, you should check the MySQL
change history to see when the syntax was implemented. In this case, you have the option of upgrading to a newer version of
MySQL Server.

• For solutions to some common problems, see Section B.1, “Problems and Common Errors”.

• Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and fixed.

• Search the MySQL mailing list archives at http://lists.mysql.com/. See Section 1.6.1, “MySQL Mailing Lists”.

• You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual) that are located at the MySQL
AB Web site.

If you can't find an answer in the manual, the bugs database, or the mailing list archives, check with your local MySQL expert. If you
still can't find an answer to your question, please use the following guidelines for reporting the bug.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs database. This database is public and
can be browsed and searched by anyone. If you log in to the system, you can enter new reports. If you have no Web access, you can
generate a bug report by using the mysqlbug script described at the end of this section.

Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are noted in the change history.

If you have found a sensitive security bug in MySQL, you can send email to <security@mysql.com>.

To discuss problems with other users, you can use one of the MySQL mailing lists. Section 1.6.1, “MySQL Mailing Lists”.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for yourself. A good bug report,

General Information

14

http://www.xchat.org/
http://www.silverex.org/download/
http://www.silverex.org/download/
http://www.mysql.com/products/enterprise/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/mysql/en/news.html
http://bugs.mysql.com/
http://lists.mysql.com/
http://www.mysql.com/search/
http://bugs.mysql.com/
http://bugs.mysql.com/


containing a full test case for the bug, makes it very likely that we will fix the bug in the next release. This section helps you write your
report correctly so that you don't waste your time doing things that may not help us much or at all. Please read this section carefully and
make sure that all the information described here is included in your report.

Preferably, you should test the problem using the latest production or development version of MySQL Server before posting. Anyone
should be able to repeat the bug by just using mysql test < script_file on your test case or by running the shell or Perl script
that you include in the bug report. Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

It is most helpful when a good description of the problem is included in the bug report. That is, give a good example of everything you
did that led to the problem and describe, in exact detail, the problem itself. The best reports are those that include a full example show-
ing how to reproduce the bug or problem. See MySQL Internals: Porting.

Remember that it is possible for us to respond to a report containing too much information, but not to one containing too little. People
often omit facts because they think they know the cause of a problem and assume that some details don't matter. A good principle to fol-
low is that if you are in doubt about stating something, state it. It is faster and less troublesome to write a couple more lines in your re-
port than to wait longer for the answer if we must ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of the MySQL distribution that you use, and (b)
not fully describing the platform on which the MySQL server is installed (including the platform type and version number). These are
highly relevant pieces of information, and in 99 cases out of 100, the bug report is useless without them. Very often we get questions
like, “Why doesn't this work for me?” Then we find that the feature requested wasn't implemented in that MySQL version, or that a bug
described in a report has been fixed in newer MySQL versions. Errors often are platform-dependent. In such cases, it is next to im-
possible for us to fix anything without knowing the operating system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your compiler if it is related to the problem. Often
people find bugs in compilers and think the problem is MySQL-related. Most compilers are under development all the time and become
better version by version. To determine whether your problem depends on your compiler, we need to know what compiler you used.
Note that every compiling problem should be regarded as a bug and reported accordingly.

If a program produces an error message, it is very important to include the message in your report. If we try to search for something
from the archives, it is better that the error message reported exactly matches the one that the program produces. (Even the lettercase
should be observed.) It is best to copy and paste the entire error message into your report. You should never try to reproduce the mes-
sage from memory.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it with your report. See the MyO-
DBC section of Chapter 27, Connectors.

If your report includes long query output lines from test cases that you run with the mysql command-line tool, you can make the output
more readable by using the --vertical option or the \G statement terminator. The EXPLAIN SELECT example later in this section
demonstrates the use of \G.

Please include the following information in your report:

• The version number of the MySQL distribution you are using (for example, MySQL 5.0.19). You can find out which version you
are running by executing mysqladmin version. The mysqladmin program can be found in the bin directory under your
MySQL installation directory.

• The manufacturer and model of the machine on which you experience the problem.

• The operating system name and version. If you work with Windows, you can usually get the name and version number by double-
clicking your My Computer icon and pulling down the “Help/About Windows” menu. For most Unix-like operating systems, you
can get this information by executing the command uname -a.

• Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.

• If you are using a source distribution of the MySQL software, include the name and version number of the compiler that you used. If
you have a binary distribution, include the distribution name.

• If the problem occurs during compilation, include the exact error messages and also a few lines of context around the offending code
in the file where the error occurs.

• If mysqld died, you should also report the statement that crashed mysqld. You can usually get this information by running
mysqld with query logging enabled, and then looking in the log after mysqld crashes. See MySQL Internals: Porting.

• If a database table is related to the problem, include the output from the SHOW CREATE TABLE db_name.tbl_name state-

General Information

15

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://forge.mysql.com/wiki/MySQL_Internals_Porting


ment in the bug report. This is a very easy way to get the definition of any table in a database. The information helps us create a situ-
ation matching the one that you have experienced.

• The SQL mode in effect when the problem occurred can be significant, so please report the value of the sql_mode system vari-
able. For stored procedure, stored function, and trigger objects, the relevant sql_mode value is the one in effect when the object
was created. For a stored procedure or function, the SHOW CREATE PROCEDURE or SHOW CREATE FUNCTION statement
shows the relevant SQL mode, or you can query INFORMATION_SCHEMA for the information:

SELECT ROUTINE_SCHEMA, ROUTINE_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.ROUTINES;

For triggers, you can use this statement:

SELECT EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE, TRIGGER_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.TRIGGERS;

• For performance-related bugs or problems with SELECT statements, you should always include the output of EXPLAIN SELECT
..., and at least the number of rows that the SELECT statement produces. You should also include the output from SHOW CRE-
ATE TABLE tbl_name for each table that is involved. The more information you provide about your situation, the more likely it
is that someone can help you.

The following is an example of a very good bug report. The statements are run using the mysql command-line tool. Note the use of
the \G statement terminator for statements that would otherwise provide very long output lines that are difficult to read.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G

<output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G

<output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;

<A short version of the output from SELECT,
including the time taken to run the query>

mysql> SHOW STATUS;
<output from SHOW STATUS>

• If a bug or problem occurs while running mysqld, try to provide an input script that reproduces the anomaly. This script should in-
clude any necessary source files. The more closely the script can reproduce your situation, the better. If you can make a reproducible
test case, you should upload it to be attached to the bug report.

If you can't provide a script, you should at least include the output from mysqladmin variables extended-status
processlist in your report to provide some information on how your system is performing.

• If you can't produce a test case with only a few rows, or if the test table is too big to be included in the bug report (more than 10
rows), you should dump your tables using mysqldump and create a README file that describes your problem. Create a compressed
archive of your files using tar and gzip or zip, and use FTP to transfer the archive to ftp://ftp.mysql.com/pub/mysql/upload/.
Then enter the problem into our bugs database at http://bugs.mysql.com/.

• If you believe that the MySQL server produces a strange result from a statement, include not only the result, but also your opinion
of what the result should be, and an explanation describing the basis for your opinion.

• When you provide an example of the problem, it's better to use the table names, variable names, and so forth that exist in your actual
situation than to come up with new names. The problem could be related to the name of a table or variable. These cases are rare,
perhaps, but it is better to be safe than sorry. After all, it should be easier for you to provide an example that uses your actual situ-
ation, and it is by all means better for us. If you have data that you don't want to be visible to others in the bug report, you can use
FTP to transfer it to ftp://ftp.mysql.com/pub/mysql/upload/. If the information is really top secret and you don't want to show it even
to us, go ahead and provide an example using other names, but please regard this as the last choice.

• Include all the options given to the relevant programs, if possible. For example, indicate the options that you use when you start the
mysqld server, as well as the options that you use to run any MySQL client programs. The options to programs such as mysqld
and mysql, and to the configure script, are often key to resolving problems and are very relevant. It is never a bad idea to in-
clude them. If your problem involves a program written in a language such as Perl or PHP, please include the language processor's
version number, as well as the version for any modules that the program uses. For example, if you have a Perl script that uses the
DBI and DBD::mysql modules, include the version numbers for Perl, DBI, and DBD::mysql.

• If your question is related to the privilege system, please include the output of mysqlaccess, the output of mysqladmin re-
load, and all the error messages you get when trying to connect. When you test your privileges, you should first run mysqlac-

General Information

16

ftp://ftp.mysql.com/pub/mysql/upload/
http://bugs.mysql.com/
ftp://ftp.mysql.com/pub/mysql/upload/


cess. After this, execute mysqladmin reload version and try to connect with the program that gives you trouble.
mysqlaccess can be found in the bin directory under your MySQL installation directory.

• If you have a patch for a bug, do include it. But don't assume that the patch is all we need, or that we can use it, if you don't provide
some necessary information such as test cases showing the bug that your patch fixes. We might find problems with your patch or we
might not understand it at all. If so, we can't use it.

If we can't verify the exact purpose of the patch, we won't use it. Test cases help us here. Show that the patch handles all the situ-
ations that may occur. If we find a borderline case (even a rare one) where the patch won't work, it may be useless.

• Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the MySQL team can't guess such
things without first using a debugger to determine the real cause of a bug.

• Indicate in your bug report that you have checked the reference manual and mail archive so that others know you have tried to solve
the problem yourself.

• If the problem is that your data appears corrupt or you get errors when you access a particular table, you should first check your
tables and then try to repair them with CHECK TABLE and REPAIR TABLE or with myisamchk. See Chapter 5, MySQL Server
Administration.

If you are running Windows, please verify the value of lower_case_table_names using the SHOW VARIABLES LIKE
'lower_case_table_names' command. This variable affects how the server handles lettercase of database and table names.
Its effect for a given value should be as described in Section 8.2.2, “Identifier Case Sensitivity”.

• If you often get corrupted tables, you should try to find out when and why this happens. In this case, the error log in the MySQL
data directory may contain some information about what happened. (This is the file with the .err suffix in the name.) See Sec-
tion 5.2.2, “The Error Log”. Please include any relevant information from this file in your bug report. Normally mysqld should
never crash a table if nothing killed it in the middle of an update. If you can find the cause of mysqld dying, it's much easier for us
to provide you with a fix for the problem. See Section B.1.1, “How to Determine What Is Causing a Problem”.

• If possible, download and install the most recent version of MySQL Server and check whether it solves your problem. All versions
of the MySQL software are thoroughly tested and should work without problems. We believe in making everything as backward-
compatible as possible, and you should be able to switch MySQL versions without difficulty. See Section 2.1.2, “Choosing Which
MySQL Distribution to Install”.

If you have no Web access and cannot report a bug by visiting http://bugs.mysql.com/, you can use the mysqlbug script to generate a
bug report (or a report about any problem). mysqlbug helps you generate a report by determining much of the following information
automatically, but if something important is missing, please include it with your message. mysqlbug can be found in the scripts
directory (source distribution) and in the bin directory under your MySQL installation directory (binary distribution).

1.8. MySQL Standards Compliance
This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many extensions to the SQL standard,
and here you can find out what they are and how to use them. You can also find information about functionality missing from MySQL
Server, and how to work around some of the differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92” refers to the standard released in
1992, “SQL:1999” refers to the standard released in 1999, and “SQL:2003” refers to the current version of the standard. We use the
phrase “the SQL standard” or “standard SQL” to mean the current version of the SQL Standard at any time.

One of our main goals with the product is to continue to work toward compliance with the SQL standard, but without sacrificing speed
or reliability. We are not afraid to add extensions to SQL or support for non-SQL features if this greatly increases the usability of
MySQL Server for a large segment of our user base. The HANDLER interface is an example of this strategy. See Section 12.2.3,
“HANDLER Syntax”.

We continue to support transactional and non-transactional databases to satisfy both mission-critical 24/7 usage and heavy Web or log-
ging usage.

MySQL Server was originally designed to work with medium-sized databases (10-100 million rows, or about 100MB per table) on
small computer systems. Today MySQL Server handles terabyte-sized databases, but the code can also be compiled in a reduced ver-
sion suitable for hand-held and embedded devices. The compact design of the MySQL server makes development in both directions
possible without any conflicts in the source tree.

Currently, we are not targeting real-time support, although MySQL replication capabilities offer significant functionality.

General Information

17

http://bugs.mysql.com/


MySQL supports high-availability database clustering using the NDBCluster storage engine. See Chapter 17, MySQL Cluster.

We are implementing XML functionality beginning in MySQL 5.1, which supports most of the W3C XPath standard. We plan to in-
crease support for XML as part of future MySQL development. See Section 11.10, “XML Functions”.

1.8.1. What Standards MySQL Follows
Our aim is to support the full ANSI/ISO SQL standard, but without making concessions to speed and quality of the code.

ODBC levels 0-3.51.

1.8.2. Selecting SQL Modes
The MySQL server can operate in different SQL modes, and can apply these modes differentially for different clients. This capability
enables each application to tailor the server's operating mode to its own requirements.

SQL modes control aspects of server operation such as what SQL syntax MySQL should support and what kind of data validation
checks it should perform. This makes it easier to use MySQL in different environments and to use MySQL together with other database
servers.

You can set the default SQL mode by starting mysqld with the --sql-mode="mode_value" option. You can also change the
mode at runtime by setting the sql_mode system variable with a SET [SESSION|GLOBAL] sql_mode='mode_value' state-
ment.

For more information on setting the SQL mode, see Section 5.1.6, “SQL Modes”.

1.8.3. Running MySQL in ANSI Mode
You can tell mysqld to run in ANSI mode with the --ansi startup option. Running the server in ANSI mode is the same as starting it
with the following options:

--transaction-isolation=SERIALIZABLE --sql-mode=ANSI

You can achieve the same effect at runtime by executing these two statements:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = 'ANSI';

You can see that setting the sql_mode system variable to 'ANSI' enables all SQL mode options that are relevant for ANSI mode as
follows:

mysql> SET GLOBAL sql_mode='ANSI';
mysql> SELECT @@global.sql_mode;

-> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'

Note that running the server in ANSI mode with --ansi is not quite the same as setting the SQL mode to 'ANSI'. The --ansi op-
tion affects the SQL mode and also sets the transaction isolation level. Setting the SQL mode to 'ANSI' has no effect on the isolation
level.

See Section 5.1.2, “Command Options”, and Section 1.8.2, “Selecting SQL Modes”.

1.8.4. MySQL Extensions to Standard SQL
MySQL Server supports some extensions that you probably won't find in other SQL DBMSs. Be warned that if you use them, your code
won't be portable to other SQL servers. In some cases, you can write code that includes MySQL extensions, but is still portable, by us-
ing comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other SQL statement, but other SQL serv-
ers will ignore the extensions. For example, MySQL Server recognizes the STRAIGHT_JOIN keyword in the following statement, but
other servers will not:

General Information

18



SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the “!” character, the syntax within the comment is executed only if the MySQL version is greater
than or equal to the specified version number. The TEMPORARY keyword in the following comment is executed only by servers from
MySQL 3.23.02 or higher:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

The following descriptions list MySQL extensions, organized by category.

• Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory, and maps tables within a database to filenames
in the database directory. This has a few implications:

• Database and table names are case sensitive in MySQL Server on operating systems that have case-sensitive filenames (such as
most Unix systems). See Section 8.2.2, “Identifier Case Sensitivity”.

• You can use standard system commands to back up, rename, move, delete, and copy tables that are managed by the MyISAM
storage engine. For example, it is possible to rename a MyISAM table by renaming the .MYD, .MYI, and .frm files to which
the table corresponds. (Nevertheless, it is preferable to use RENAME TABLE or ALTER TABLE ... RENAME and let the
server rename the files.)

Database and table names cannot contain pathname separator characters (“/”, “\”).

• General language syntax

• By default, strings can be enclosed by either “"” or “'”, not just by “'”. (If the ANSI_QUOTES SQL mode is enabled, strings
can be enclosed only by “'” and the server interprets strings enclosed by “"” as identifiers.)

• “\” is the escape character in strings.

• In SQL statements, you can access tables from different databases with the db_name.tbl_name syntax. Some SQL servers
provide the same functionality but call this User space. MySQL Server doesn't support tablespaces such as used in state-
ments like this: CREATE TABLE ralph.my_table ... IN my_tablespace.

• SQL statement syntax

• The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

• The CREATE DATABASE, DROP DATABASE, and ALTER DATABASE statements. See Section 12.1.6, “CREATE DATA-
BASE Syntax”, Section 12.1.12, “DROP DATABASE Syntax”, and Section 12.1.1, “ALTER DATABASE Syntax”.

• The DO statement.

• EXPLAIN SELECT to obtain a description of how tables are processed by the query optimizer.

• The FLUSH and RESET statements.

• The SET statement. See Section 12.5.3, “SET Syntax”.

• The SHOW statement. See Section 12.5.4, “SHOW Syntax”. As of MySQL 5.0, the information produced by many of the MySQL-
specific SHOW statements can be obtained in more standard fashion by using SELECT to query INFORMATION_SCHEMA. See
Chapter 24, INFORMATION_SCHEMA Tables.

• Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle's LOAD DATA INFILE. See Sec-
tion 12.2.5, “LOAD DATA INFILE Syntax”.

• Use of RENAME TABLE. See Section 12.1.19, “RENAME TABLE Syntax”.

• Use of REPLACE instead of DELETE plus INSERT. See Section 12.2.6, “REPLACE Syntax”.

• Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in ALTER TABLE statements. Use
of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE statement. See Section 12.1.4, “ALTER TABLE

General Information

19



Syntax”.

• Use of index names, indexes on a prefix of a column, and use of INDEX or KEY in CREATE TABLE statements. See Sec-
tion 12.1.10, “CREATE TABLE Syntax”.

• Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

• Use of IF EXISTS with DROP TABLE and DROP DATABASE.

• The capability of dropping multiple tables with a single DROP TABLE statement.

• The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.

• INSERT INTO tbl_name SET col_name = ... syntax.

• The DELAYED clause of the INSERT and REPLACE statements.

• The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.

• Use of INTO OUTFILE or INTO DUMPFILE in SELECT statements. See Section 12.2.7, “SELECT Syntax”.

• Options such as STRAIGHT_JOIN or SQL_SMALL_RESULT in SELECT statements.

• You don't need to name all selected columns in the GROUP BY clause. This gives better performance for some very specific, but
quite normal queries. See Section 11.12, “Functions and Modifiers for Use with GROUP BY Clauses”.

• You can specify ASC and DESC with GROUP BY, not just with ORDER BY.

• The ability to set variables in a statement with the := assignment operator:

mysql> SELECT @a:=SUM(total),@b:=COUNT(*),@a/@b AS avg
-> FROM test_table;

mysql> SELECT @t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;

• Data types

• The MEDIUMINT, SET, and ENUM data types, and the various BLOB and TEXT data types.

• The AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL data type attributes.

• Functions and operators

• To make it easier for users who migrate from other SQL environments, MySQL Server supports aliases for many functions. For
example, all string functions support both standard SQL syntax and ODBC syntax.

• MySQL Server understands the || and && operators to mean logical OR and AND, as in the C programming language. In
MySQL Server, || and OR are synonyms, as are && and AND. Because of this nice syntax, MySQL Server doesn't support the
standard SQL || operator for string concatenation; use CONCAT() instead. Because CONCAT() takes any number of argu-
ments, it's easy to convert use of the || operator to MySQL Server.

• Use of COUNT(DISTINCT value_list) where value_list has more than one element.

• String comparisons are case-insensitive by default, with sort ordering determined by the collation of the current character set,
which is latin1 (cp1252 West European) by default. If you don't like this, you should declare your columns with the BINARY
attribute or use the BINARY cast, which causes comparisons to be done using the underlying character code values rather then a
lexical ordering.

• The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is supported for C programmers and for
compatibility with PostgreSQL.

• The =, <>, <=, <, >=, >, <<, >>, <=>, AND, OR, or LIKE operators may be used in expressions in the output column list (to the
left of the FROM) in SELECT statements. For example:

mysql> SELECT col1=1 AND col2=2 FROM my_table;

General Information

20



• The LAST_INSERT_ID() function returns the most recent AUTO_INCREMENT value. See Section 11.11.3, “Information
Functions”.

• LIKE is allowed on numeric values.

• The REGEXP and NOT REGEXP extended regular expression operators.

• CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server, these functions can take a variable
number of arguments.)

• The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(), ENCRYPT(), MD5(), ENCODE(),
DECODE(), PERIOD_ADD(), PERIOD_DIFF(), TO_DAYS(), and WEEKDAY() functions.

• Use of TRIM() to trim substrings. Standard SQL supports removal of single characters only.

• The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and GROUP_CONCAT(). See Section 11.12,
“Functions and Modifiers for Use with GROUP BY Clauses”.

For a prioritized list indicating when new extensions are added to MySQL Server, you should consult the online MySQL development
roadmap at http://dev.mysql.com/doc/mysql/en/roadmap.html.

1.8.5. MySQL Differences from Standard SQL
We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but MySQL Server performs operations
differently in some cases:

• There are several differences between the MySQL and standard SQL privilege systems. For example, in MySQL, privileges for a ta-
ble are not automatically revoked when you delete a table. You must explicitly issue a REVOKE statement to revoke privileges for a
table. For more information, see Section 12.5.1.5, “REVOKE Syntax”.

• The CAST() function does not support cast to REAL or BIGINT. See Section 11.9, “Cast Functions and Operators”.

1.8.5.1. SELECT INTO TABLE

MySQL Server doesn't support the SELECT ... INTO TABLE Sybase SQL extension. Instead, MySQL Server supports the IN-
SERT INTO ... SELECT standard SQL syntax, which is basically the same thing. See Section 12.2.4.1, “INSERT ... SELECT
Syntax”. For example:

INSERT INTO tbl_temp2 (fld_id)
SELECT tbl_temp1.fld_order_id
FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

Alternatively, you can use SELECT ... INTO OUTFILE or CREATE TABLE ... SELECT.

As of MySQL 5.0, you can use SELECT ... INTO with user-defined variables. The same syntax can also be used inside stored
routines using cursors and local variables. See Section 20.2.7.3, “SELECT ... INTO Statement”.

1.8.5.2. Transactions and Atomic Operations

MySQL Server (version 3.23-max and all versions 4.0 and above) supports transactions with the InnoDB transactional storage engine.
InnoDB provides full ACID compliance. See Chapter 13, Storage Engines. For information about InnoDB differences from standard
SQL with regard to treatment of transaction errors, see Section 13.5.15, “InnoDB Error Handling”.

The other non-transactional storage engines in MySQL Server (such as MyISAM) follow a different paradigm for data integrity called
“atomic operations.” In transactional terms, MyISAM tables effectively always operate in AUTOCOMMIT=1 mode. Atomic operations
often offer comparable integrity with higher performance.

Because MySQL Server supports both paradigms, you can decide whether your applications are best served by the speed of atomic op-
erations or the use of transactional features. This choice can be made on a per-table basis.

As noted, the trade-off for transactional versus non-transactional storage engines lies mostly in performance. Transactional tables have

General Information

21

http://dev.mysql.com/doc/mysql/en/roadmap.html


significantly higher memory and disk space requirements, and more CPU overhead. On the other hand, transactional storage engines
such as InnoDB also offer many significant features. MySQL Server's modular design allows the concurrent use of different storage
engines to suit different requirements and deliver optimum performance in all situations.

MySQL Enterprise
For expert advice on choosing and tuning storage engines, subscribe to the MySQL Enterprise Monitor. For
more information see http://www.mysql.com/products/enterprise/advisors.html.

But how do you use the features of MySQL Server to maintain rigorous integrity even with the non-transactional MyISAM tables, and
how do these features compare with the transactional storage engines?

• If your applications are written in a way that is dependent on being able to call ROLLBACK rather than COMMIT in critical situ-
ations, transactions are more convenient. Transactions also ensure that unfinished updates or corrupting activities are not committed
to the database; the server is given the opportunity to do an automatic rollback and your database is saved.

If you use non-transactional tables, MySQL Server in almost all cases allows you to resolve potential problems by including simple
checks before updates and by running simple scripts that check the databases for inconsistencies and automatically repair or warn if
such an inconsistency occurs. Note that just by using the MySQL log or even adding one extra log, you can normally fix tables per-
fectly with no data integrity loss.

• More often than not, critical transactional updates can be rewritten to be atomic. Generally speaking, all integrity problems that
transactions solve can be done with LOCK TABLES or atomic updates, ensuring that there are no automatic aborts from the server,
which is a common problem with transactional database systems.

• To be safe with MySQL Server, regardless of whether you use transactional tables, you only need to have backups and have binary
logging turned on. When that is true, you can recover from any situation that you could with any other transactional database sys-
tem. It is always good to have backups, regardless of which database system you use.

The transactional paradigm has its benefits and its drawbacks. Many users and application developers depend on the ease with which
they can code around problems where an abort appears to be necessary, or is necessary. However, even if you are new to the atomic op-
erations paradigm, or more familiar with transactions, do consider the speed benefit that non-transactional tables can offer on the order
of three to five times the speed of the fastest and most optimally tuned transactional tables.

In situations where integrity is of highest importance, MySQL Server offers transaction-level reliability and integrity even for non-
transactional tables. If you lock tables with LOCK TABLES, all updates stall until integrity checks are made. If you obtain a READ
LOCAL lock (as opposed to a write lock) for a table that allows concurrent inserts at the end of the table, reads are allowed, as are inserts
by other clients. The newly inserted records are not be seen by the client that has the read lock until it releases the lock. With INSERT
DELAYED, you can write inserts that go into a local queue until the locks are released, without having the client wait for the insert to
complete. See Section 7.3.3, “Concurrent Inserts”, and Section 12.2.4.2, “INSERT DELAYED Syntax”.

“Atomic,” in the sense that we mean it, is nothing magical. It only means that you can be sure that while each specific update is running,
no other user can interfere with it, and there can never be an automatic rollback (which can happen with transactional tables if you are
not very careful). MySQL Server also guarantees that there are no dirty reads.

Following are some techniques for working with non-transactional tables:

• Loops that need transactions normally can be coded with the help of LOCK TABLES, and you don't need cursors to update records
on the fly.

• To avoid using ROLLBACK, you can employ the following strategy:

1. Use LOCK TABLES to lock all the tables you want to access.

2. Test the conditions that must be true before performing the update.

3. Update if the conditions are satisfied.

4. Use UNLOCK TABLES to release your locks.

This is usually a much faster method than using transactions with possible rollbacks, although not always. The only situation this
solution doesn't handle is when someone kills the threads in the middle of an update. In that case, all locks are released but some of
the updates may not have been executed.

General Information

22

http://www.mysql.com/products/enterprise/advisors.html


• You can also use functions to update records in a single operation. You can get a very efficient application by using the following
techniques:

• Modify columns relative to their current value.

• Update only those columns that actually have changed.

For example, when we are updating customer information, we update only the customer data that has changed and test only that
none of the changed data, or data that depends on the changed data, has changed compared to the original row. The test for changed
data is done with the WHERE clause in the UPDATE statement. If the record wasn't updated, we give the client a message: “Some of
the data you have changed has been changed by another user.” Then we show the old row versus the new row in a window so that
the user can decide which version of the customer record to use.

This gives us something that is similar to column locking but is actually even better because we only update some of the columns,
using values that are relative to their current values. This means that typical UPDATE statements look something like these:

UPDATE tablename SET pay_back=pay_back+125;

UPDATE customer
SET
customer_date='current_date',
address='new address',
phone='new phone',
money_owed_to_us=money_owed_to_us-125

WHERE
customer_id=id AND address='old address' AND phone='old phone';

This is very efficient and works even if another client has changed the values in the pay_back or money_owed_to_us
columns.

• In many cases, users have wanted LOCK TABLES or ROLLBACK for the purpose of managing unique identifiers. This can be
handled much more efficiently without locking or rolling back by using an AUTO_INCREMENT column and either the
LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. See Section 11.11.3, “Information Func-
tions”, and Section 26.2.3.37, “mysql_insert_id()”.

You can generally code around the need for row-level locking. Some situations really do need it, and InnoDB tables support row-
level locking. Otherwise, with MyISAM tables, you can use a flag column in the table and do something like the following:

UPDATE tbl_name SET row_flag=1 WHERE id=ID;

MySQL returns 1 for the number of affected rows if the row was found and row_flag wasn't 1 in the original row. You can think
of this as though MySQL Server changed the preceding statement to:

UPDATE tbl_name SET row_flag=1 WHERE id=ID AND row_flag <> 1;

1.8.5.3. Stored Routines and Triggers

Stored procedures and functions are implemented beginning with MySQL 5.0. See Chapter 20, Stored Procedures and Functions.

Basic trigger functionality is implemented beginning with MySQL 5.0.2, with further development planned for MySQL 5.1. See
Chapter 21, Triggers.

1.8.5.4. Foreign Keys

In MySQL Server 3.23.44 and up, the InnoDB storage engine supports checking of foreign key constraints, including CASCADE, ON
DELETE, and ON UPDATE. See Section 13.5.6.4, “FOREIGN KEY Constraints”.

For storage engines other than InnoDB, MySQL Server parses the FOREIGN KEY syntax in CREATE TABLE statements, but does
not use or store it. In the future, the implementation will be extended to store this information in the table specification file so that it
may be retrieved by mysqldump and ODBC. At a later stage, foreign key constraints will be implemented for MyISAM tables as well.

Foreign key enforcement offers several benefits to database developers:

• Assuming proper design of the relationships, foreign key constraints make it more difficult for a programmer to introduce an incon-

General Information

23



sistency into the database.

• Centralized checking of constraints by the database server makes it unnecessary to perform these checks on the application side.
This eliminates the possibility that different applications may not all check the constraints in the same way.

• Using cascading updates and deletes can simplify the application code.

• Properly designed foreign key rules aid in documenting relationships between tables.

Do keep in mind that these benefits come at the cost of additional overhead for the database server to perform the necessary checks. Ad-
ditional checking by the server affects performance, which for some applications may be sufficiently undesirable as to be avoided if
possible. (Some major commercial applications have coded the foreign key logic at the application level for this reason.)

MySQL gives database developers the choice of which approach to use. If you don't need foreign keys and want to avoid the overhead
associated with enforcing referential integrity, you can choose another storage engine instead, such as MyISAM. (For example, the My-
ISAM storage engine offers very fast performance for applications that perform only INSERT and SELECT operations. In this case, the
table has no holes in the middle and the inserts can be performed concurrently with retrievals. See Section 7.3.3, “Concurrent Inserts”.)

If you choose not to take advantage of referential integrity checks, keep the following considerations in mind:

• In the absence of server-side foreign key relationship checking, the application itself must handle relationship issues. For example, it
must take care to insert rows into tables in the proper order, and to avoid creating orphaned child records. It must also be able to re-
cover from errors that occur in the middle of multiple-record insert operations.

• If ON DELETE is the only referential integrity capability an application needs, you can achieve a similar effect as of MySQL Server
4.0 by using multiple-table DELETE statements to delete rows from many tables with a single statement. See Section 12.2.1, “DE-
LETE Syntax”.

• A workaround for the lack of ON DELETE is to add the appropriate DELETE statements to your application when you delete re-
cords from a table that has a foreign key. In practice, this is often as quick as using foreign keys and is more portable.

Be aware that the use of foreign keys can sometimes lead to problems:

• Foreign key support addresses many referential integrity issues, but it is still necessary to design key relationships carefully to avoid
circular rules or incorrect combinations of cascading deletes.

• It is not uncommon for a DBA to create a topology of relationships that makes it difficult to restore individual tables from a backup.
(MySQL alleviates this difficulty by allowing you to temporarily disable foreign key checks when reloading a table that depends on
other tables. See Section 13.5.6.4, “FOREIGN KEY Constraints”. As of MySQL 4.1.1, mysqldump generates dump files that take
advantage of this capability automatically when they are reloaded.)

Note that foreign keys in SQL are used to check and enforce referential integrity, not to join tables. If you want to get results from mul-
tiple tables from a SELECT statement, you do this by performing a join between them:

SELECT * FROM t1 INNER JOIN t2 ON t1.id = t2.id;

See Section 12.2.7.1, “JOIN Syntax”, and Section 3.6.6, “Using Foreign Keys”.

The FOREIGN KEY syntax without ON DELETE ... is often used by ODBC applications to produce automatic WHERE clauses.

1.8.5.5. Views

Views (including updatable views) are implemented beginning with MySQL Server 5.0.1. See Chapter 23, Views.

Views are useful for allowing users to access a set of relations (tables) as if it were a single table, and limiting their access to just that.
Views can also be used to restrict access to rows (a subset of a particular table). For access control to columns, you can also use the
sophisticated privilege system in MySQL Server. See Section 5.4, “The MySQL Access Privilege System”.

In designing an implementation of views, our ambitious goal, as much as is possible within the confines of SQL, has been full compli-
ance with “Codd's Rule #6” for relational database systems: “All views that are theoretically updatable, should in practice also be updat-

General Information

24



able.”

1.8.5.6. '--' as the Start of a Comment

Standard SQL uses the C syntax /* this is a comment */ for comments, and MySQL Server supports this syntax as well.
MySQL also support extensions to this syntax that allow MySQL-specific SQL to be embedded in the comment, as described in Sec-
tion 8.5, “Comment Syntax”.

Standard SQL uses “--” as a start-comment sequence. MySQL Server uses “#” as the start comment character. MySQL Server 3.23.3
and up also supports a variant of the “--” comment style. That is, the “--” start-comment sequence must be followed by a space (or by
a control character such as a newline). The space is required to prevent problems with automatically generated SQL queries that use
constructs such as the following, where we automatically insert the value of the payment for payment:

UPDATE account SET credit=credit-payment

Consider about what happens if payment has a negative value such as -1:

UPDATE account SET credit=credit--1

credit--1 is a legal expression in SQL, but “--” is interpreted as the start of a comment, part of the expression is discarded. The
result is a statement that has a completely different meaning than intended:

UPDATE account SET credit=credit

The statement produces no change in value at all. This illustrates that allowing comments to start with “--” can have serious con-
sequences.

Using our implementation requires a space following the “--” in order for it to be recognized as a start-comment sequence in MySQL
Server 3.23.3 and newer. Therefore, credit--1 is safe to use.

Another safe feature is that the mysql command-line client ignores lines that start with “--”.

The following information is relevant only if you are running a MySQL version earlier than 3.23.3:

If you have an SQL script in a text file that contains “--” comments, you should use the replace utility as follows to convert the
comments to use “#” characters before executing the script:

shell> replace " --" " #" < text-file-with-funny-comments.sql \
| mysql db_name

That is safer than executing the script in the usual way:

shell> mysql db_name < text-file-with-funny-comments.sql

You can also edit the script file “in place” to change the “--” comments to “#” comments:

shell> replace " --" " #" -- text-file-with-funny-comments.sql

Change them back with this command:

shell> replace " #" " --" -- text-file-with-funny-comments.sql

See Section 4.8.2, “replace — A String-Replacement Utility”.

1.8.6. How MySQL Deals with Constraints
MySQL allows you to work both with transactional tables that allow rollback and with non-transactional tables that do not. Because of
this, constraint handling is a bit different in MySQL than in other DBMSs. We must handle the case when you have inserted or updated
a lot of rows in a non-transactional table for which changes cannot be rolled back when an error occurs.

The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect while parsing a statement to be ex-
ecuted, and tries to recover from any errors that occur while executing the statement. We do this in most cases, but not yet for all.

General Information

25



The options MySQL has when an error occurs are to stop the statement in the middle or to recover as well as possible from the problem
and continue. By default, the server follows the latter course. This means, for example, that the server may coerce illegal values to the
closest legal values.

Several SQL mode options are available to provide greater control over handling of bad data values and whether to continue statement
execution or abort when errors occur. Using these options, you can configure MySQL Server to act in a more traditional fashion that is
like other DBMSs that reject improper input. The SQL mode can be set globally at server startup to affect all clients. Individual clients
can set the SQL mode at runtime, which enables each client to select the behavior most appropriate for its requirements. See Sec-
tion 5.1.6, “SQL Modes”.

MySQL Enterprise
To be alerted when there is no form of server-enforced data integrity, subscribe to the MySQL Enterprise Monit-
or. For more information see http://www.mysql.com/products/enterprise/advisors.html.

The following sections describe how MySQL Server handles different types of constraints.

1.8.6.1. PRIMARY KEY and UNIQUE Index Constraints

Normally, errors occurs for data-change statements (such as INSERT or UPDATE) that would violate primary-key, unique-key, or for-
eign-key constraints. If you are using a transactional storage engine such as InnoDB, MySQL automatically rolls back the statement. If
you are using a non-transactional storage engine, MySQL stops processing the statement at the row for which the error occurred and
leaves any remaining rows unprocessed.

MySQL supports an IGNORE keyword for INSERT, UPDATE, and so forth. If you use it, MySQL ignores primary-key or unique-key
violations and continues processing with the next row. See the section for the statement that you are using (Section 12.2.4, “INSERT
Syntax”, Section 12.2.10, “UPDATE Syntax”, and so forth).

You can get information about the number of rows actually inserted or updated with the mysql_info() C API function. You can
also use the SHOW WARNINGS statement. See Section 26.2.3.35, “mysql_info()”, and Section 12.5.4.32, “SHOW WARNINGS Syn-
tax”.

Currently, only InnoDB tables support foreign keys. See Section 13.5.6.4, “FOREIGN KEY Constraints”. We plan to add foreign key
support by other storage engines in a future MySQL release. See Section 1.5, “MySQL Development Roadmap”.

1.8.6.2. Constraints on Invalid Data

By default, MySQL is forgiving of illegal or improper data values and coerces them to legal values for data entry. However, you can
change the server SQL mode to select more traditional treatment of bad values such that the server rejects them and aborts the statement
in which they occur. See Section 5.1.6, “SQL Modes”.

This section describes the default (forgiving) behavior of MySQL, as well as the strict SQL mode and how it differs.

If you are not using strict mode, then whenever you insert an “incorrect” value into a column, such as a NULL into a NOT NULL
column or a too-large numeric value into a numeric column, MySQL sets the column to the “best possible value” instead of producing
an error: The following rules describe in more detail how this works:

• If you try to store an out of range value into a numeric column, MySQL Server instead stores zero, the smallest possible value, or
the largest possible value, whichever is closest to the invalid value.

• For strings, MySQL stores either the empty string or as much of the string as can be stored in the column.

• If you try to store a string that doesn't start with a number into a numeric column, MySQL Server stores 0.

• Invalid values for ENUM and SET columns are handled as described in Section 1.8.6.3, “ENUM and SET Constraints”.

• MySQL allows you to store certain incorrect date values into DATE and DATETIME columns (such as '2000-02-31' or
'2000-02-00'). The idea is that it's not the job of the SQL server to validate dates. If MySQL can store a date value and retrieve
exactly the same value, MySQL stores it as given. If the date is totally wrong (outside the server's ability to store it), the special
“zero” date value '0000-00-00' is stored in the column instead.

• If you try to store NULL into a column that doesn't take NULL values, an error occurs for single-row INSERT statements. For mul-
tiple-row INSERT statements or for INSERT INTO ... SELECT statements, MySQL Server stores the implicit default value
for the column data type. In general, this is 0 for numeric types, the empty string ('') for string types, and the “zero” value for date
and time types. Implicit default values are discussed in Section 10.1.4, “Data Type Default Values”.

General Information

26

http://www.mysql.com/products/enterprise/advisors.html


• If an INSERT statement specifies no value for a column, MySQL inserts its default value if the column definition includes an expli-
cit DEFAULT clause. If the definition has no such DEFAULT clause, MySQL inserts the implicit default value for the column data
type.

The reason for using the preceding rules in non-strict mode is that we can't check these conditions until the statement has begun execut-
ing. We can't just roll back if we encounter a problem after updating a few rows, because the storage engine may not support rollback.
The option of terminating the statement is not that good; in this case, the update would be “half done,” which is probably the worst pos-
sible scenario. In this case, it's better to “do the best you can” and then continue as if nothing happened.

In MySQL 5.0.2 and up, you can select stricter treatment of input values by using the STRICT_TRANS_TABLES or
STRICT_ALL_TABLES SQL modes:

SET sql_mode = 'STRICT_TRANS_TABLES';
SET sql_mode = 'STRICT_ALL_TABLES';

STRICT_TRANS_TABLES enables strict mode for transactional storage engines, and also to some extent for non-transactional engines.
It works like this:

• For transactional storage engines, bad data values occurring anywhere in a statement cause the statement to abort and roll back.

• For non-transactional storage engines, a statement aborts if the error occurs in the first row to be inserted or updated. (When the er-
ror occurs in the first row, the statement can be aborted to leave the table unchanged, just as for a transactional table.) Errors in rows
after the first do not abort the statement, because the table has already been changed by the first row. Instead, bad data values are ad-
justed and result in warnings rather than errors. In other words, with STRICT_TRANS_TABLES, a wrong value causes MySQL to
roll back all updates done so far, if that can be done without changing the table. But once the table has been changed, further errors
result in adjustments and warnings.

For even stricter checking, enable STRICT_ALL_TABLES. This is the same as STRICT_TRANS_TABLES except that for non-
transactional storage engines, errors abort the statement even for bad data in rows following the first row. This means that if an error oc-
curs partway through a multiple-row insert or update for a non-transactional table, a partial update results. Earlier rows are inserted or
updated, but those from the point of the error on are not. To avoid this for non-transactional tables, either use single-row statements or
else use STRICT_TRANS_TABLES if conversion warnings rather than errors are acceptable. To avoid problems in the first place, do
not use MySQL to check column content. It is safest (and often faster) to let the application ensure that it passes only legal values to the
database.

With either of the strict mode options, you can cause errors to be treated as warnings by using INSERT IGNORE or UPDATE IG-
NORE rather than INSERT or UPDATE without IGNORE.

1.8.6.3. ENUM and SET Constraints

ENUM and SET columns provide an efficient way to define columns that can contain only a given set of values. See Section 10.4.4, “The
ENUM Type”, and Section 10.4.5, “The SET Type”. However, before MySQL 5.0.2, ENUM and SET columns do not provide true con-
straints on entry of invalid data:

• ENUM columns always have a default value. If you specify no default value, then it is NULL for columns that can have NULL, other-
wise it is the first enumeration value in the column definition.

• If you insert an incorrect value into an ENUM column or if you force a value into an ENUM column with IGNORE, it is set to the re-
served enumeration value of 0, which is displayed as an empty string in string context.

• If you insert an incorrect value into a SET column, the incorrect value is ignored. For example, if the column can contain the values
'a', 'b', and 'c', an attempt to assign 'a,x,b,y' results in a value of 'a,b'.

As of MySQL 5.0.2, you can configure the server to use strict SQL mode. See Section 5.1.6, “SQL Modes”. With strict mode enabled,
the definition of a ENUM or SET column does act as a constraint on values entered into the column. An error occurs for values that do
not satisfy these conditions:

• An ENUM value must be one of those listed in the column definition, or the internal numeric equivalent thereof. The value cannot be
the error value (that is, 0 or the empty string). For a column defined as ENUM('a','b','c'), values such as '', 'd', or 'ax'

General Information

27



are illegal and are rejected.

• A SET value must be the empty string or a value consisting only of the values listed in the column definition separated by commas.
For a column defined as SET('a','b','c'), values such as 'd' or 'a,b,c,d' are illegal and are rejected.

Errors for invalid values can be suppressed in strict mode if you use INSERT IGNORE or UPDATE IGNORE. In this case, a warning
is generated rather than an error. For ENUM, the value is inserted as the error member (0). For SET, the value is inserted as given except
that any invalid substrings are deleted. For example, 'a,x,b,y' results in a value of 'a,b'.

General Information

28



Chapter 2. Installing and Upgrading MySQL
This chapter describes how to obtain and install MySQL. A summary of the procedure follows and later sections provide the details. If
you plan to upgrade an existing version of MySQL to a newer version rather than install MySQL for the first time, see Section 2.11,
“Upgrading MySQL”, for information about upgrade procedures and about issues that you should consider before upgrading.

If you are interested in migrating to MySQL from another database system, you may wish to read Section A.8, “MySQL 5.1 FAQ —
Migration”, which contains answers to some common questions concerning migration issues.

1. Determine whether MySQL runs and is supported on your platform. Please note that not all platforms are equally suitable for
running MySQL, and that not all platforms on which MySQL is known to run are officially supported by MySQL AB:

• For MySQL Enterprise Server, the officially supported platforms are listed at ht-
tp://www.mysql.com/support/supportedplatforms.html.

• MySQL Community Server runs on the platforms listed at Section 2.1.1, “Operating Systems Supported by MySQL Com-
munity Server”.

2. Choose which distribution to install. Several versions of MySQL are available, and most are available in several distribution
formats. You can choose from pre-packaged distributions containing binary (precompiled) programs or source code. When in
doubt, use a binary distribution. We also provide public access to our current source tree for those who want to see our most recent
developments and help us test new code. To determine which version and type of distribution you should use, see Section 2.1.2,
“Choosing Which MySQL Distribution to Install”.

3. Download the distribution that you want to install. For instructions, see Section 2.1.3, “How to Get MySQL”. To verify the in-
tegrity of the distribution, use the instructions in Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums or GnuPG”.

4. Install the distribution. To install MySQL from a binary distribution, use the instructions in Section 2.2, “Standard MySQL In-
stallation Using a Binary Distribution”. To install MySQL from a source distribution or from the current development source tree,
use the instructions in Section 2.9, “MySQL Installation Using a Source Distribution”.

If you encounter installation difficulties, see Section 2.13, “Operating System-Specific Notes”, for information on solving prob-
lems for particular platforms.

5. Perform any necessary post-installation setup. After installing MySQL, read Section 2.10, “Post-Installation Setup and
Testing”. This section contains important information about making sure the MySQL server is working properly. It also describes
how to secure the initial MySQL user accounts, which have no passwords until you assign passwords. The section applies whether
you install MySQL using a binary or source distribution.

6. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See Section 2.15, “Perl Installation
Notes”.

2.1. General Installation Issues
The MySQL installation procedure depends on whether you will install MySQL Enterprise Server or MySQL Community Server. The
set of applicable platforms depends on which distribution you will install:

• For MySQL Enterprise Server, the officially supported platforms are listed at ht-
tp://www.mysql.com/support/supportedplatforms.html.

• MySQL Community Server runs on the platforms listed at Section 2.1.1, “Operating Systems Supported by MySQL Community
Server”.

For MySQL Enterprise Server, install the main distribution plus any service packs or hotfixes that you wish to apply using the Enter-
prise Installer. For platforms that do not yet have an Enterprise Installer, use the Community Server instructions.

For MySQL Community Server, install the main distribution plus any hotfixes and updates:

• Download a binary release, or download a source release and build MySQL yourself from the source code.

29

http://www.mysql.com/support/supportedplatforms.html
http://www.mysql.com/support/supportedplatforms.html
http://www.mysql.com/support/supportedplatforms.html
http://www.mysql.com/support/supportedplatforms.html


• Retrieve MySQL from the BitKeeper tree and build it from source. The BitKeeper tree contains the latest developer code.

The immediately following sections contain the information necessary to choose, download, and verify your distribution. The instruc-
tions in later sections of the chapter describe how to install the distribution that you choose. For binary distributions, see the instructions
at Section 2.2, “Standard MySQL Installation Using a Binary Distribution”. To build MySQL from source, use the instructions at Sec-
tion 2.9, “MySQL Installation Using a Source Distribution”.

2.1.1. Operating Systems Supported by MySQL Community Server
This section lists the operating systems on which MySQL Community Server is known to run.

Important

MySQL AB does not necessarily provide official support for all the platforms listed in this section. For information about
those platforms which MySQL AB officially supports, see MySQL Server Supported Platforms on the MySQL Web site.

We use GNU Autoconf, so it is possible to port MySQL to all modern systems that have a C++ compiler and a working implementation
of POSIX threads. (Thread support is needed for the server. To compile only the client code, the only requirement is a C++ compiler.)

MySQL has been reported to compile successfully on the following combinations of operating system and thread package.

• AIX 4.x, 5.x with native threads. See Section 2.13.5.3, “IBM-AIX notes”.

• Amiga.

• FreeBSD 5.x and up with native threads.

• HP-UX 11.x with the native threads. See Section 2.13.5.2, “HP-UX Version 11.x Notes”.

• Linux, builds on all fairly recent Linux distributions with glibc 2.3. See Section 2.13.1, “Linux Notes”.

• Mac OS X. See Section 2.13.2, “Mac OS X Notes”.

• NetBSD 1.3/1.4 Intel and NetBSD 1.3 Alpha. See Section 2.13.4.2, “NetBSD Notes”.

• Novell NetWare 6.0 and 6.5. See Section 2.7, “Installing MySQL on NetWare”.

• OpenBSD 2.5 and with native threads. OpenBSD earlier than 2.5 with the MIT-pthreads package. See Section 2.13.4.3, “OpenBSD
2.5 Notes”.

• SCO OpenServer 5.0.X with a recent port of the FSU Pthreads package. See Section 2.13.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”.

• SCO Openserver 6.0.x. See Section 2.13.5.9, “SCO OpenServer 6.0.x Notes”.

• SCO UnixWare 7.1.x. See Section 2.13.5.10, “SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes”.

• SGI Irix 6.x with native threads. See Section 2.13.5.7, “SGI Irix Notes”.

• Solaris 2.5 and above with native threads on SPARC and x86. See Section 2.13.3, “Solaris Notes”.

• Tru64 Unix. See Section 2.13.5.5, “Alpha-DEC-UNIX Notes (Tru64)”.

• Windows 2000, XP, and Windows Server 2003. See Section 2.3, “Installing MySQL on Windows”.

MySQL has also been known to run on other systems in the past. See Section 2.13, “Operating System-Specific Notes”. Some porting
effort might be required for current versions of MySQL on these systems.

Not all platforms are equally well-suited for running MySQL. How well a certain platform is suited for a high-load mission-critical
MySQL server is determined by the following factors:

• General stability of the thread library. A platform may have an excellent reputation otherwise, but MySQL is only as stable as the

Installing and Upgrading MySQL

30

http://www.mysql.com/support/supportedplatforms.html


thread library it calls, even if everything else is perfect.

• The capability of the kernel and the thread library to take advantage of symmetric multi-processor (SMP) systems. In other words,
when a process creates a thread, it should be possible for that thread to run on a CPU different from the original process.

• The capability of the kernel and the thread library to run many threads that acquire and release a mutex over a short critical region
frequently without excessive context switches. If the implementation of pthread_mutex_lock() is too anxious to yield CPU
time, this hurts MySQL tremendously. If this issue is not taken care of, adding extra CPUs actually makes MySQL slower.

• General filesystem stability and performance.

• If your tables are large, performance is affected by the ability of the filesystem to deal with large files at all and to deal with them ef-
ficiently.

• Our level of expertise here at MySQL AB with the platform. If we know a platform well, we enable platform-specific optimizations
and fixes at compile time. We can also provide advice on configuring your system optimally for MySQL.

• The amount of testing we have done internally for similar configurations.

• The number of users that have run MySQL successfully on the platform in similar configurations. If this number is high, the likeli-
hood of encountering platform-specific surprises is much smaller.

2.1.2. Choosing Which MySQL Distribution to Install
When preparing to install MySQL, you should decide which version to use. MySQL development occurs in several release series, and
you can pick the one that best fits your needs. After deciding which version to install, you can choose a distribution format. Releases are
available in binary or source format.

2.1.2.1. Choosing Which Version of MySQL to Install

The first decision to make is whether you want to use a production (stable) release or a development release. In the MySQL develop-
ment process, multiple release series co-exist, each at a different stage of maturity:

• MySQL 5.1 is the current development release series.

• MySQL 5.0 is the current stable (production-quality) release series. New releases are issued for bugfixes only; no new features are
being added that could effect stability.

• MySQL 4.1, 4.0 and 3.23 are the old stable (production-quality) release series. MySQL 4.1 is now at the end of the product life-
cycle. Active development and support for these versions has ended. Extended support for MySQL 4.1 and 4.0 is available. Accord-
ing to the MySQL Lifecycle Policy (see http://www.mysql.com/company/legal/lifecycle/#policy), only Security and Severity Level
1 issues will still be fixed for MySQL 4.0 and 4.1.

We do not believe in a complete code freeze because this prevents us from making bugfixes and other fixes that must be done. By
“somewhat frozen” we mean that we may add small things that should not affect anything that currently works in a production release.
Naturally, relevant bugfixes from an earlier series propagate to later series.

Normally, if you are beginning to use MySQL for the first time or trying to port it to some system for which there is no binary distribu-
tion, we recommend going with the production release series. Currently, this is MySQL 5.0. All MySQL releases, even those from de-
velopment series, are checked with the MySQL benchmarks and an extensive test suite before being issued.

If you are running an older system and want to upgrade, but do not want to take the chance of having a non-seamless upgrade, you
should upgrade to the latest version in the same release series you are using (where only the last part of the version number is newer
than yours). We have tried to fix only fatal bugs and make only small, relatively “safe” changes to that version.

If you want to use new features not present in the production release series, you can use a version from a development series. Note that
development releases are not as stable as production releases.

If you want to use the very latest sources containing all current patches and bugfixes, you can use one of our BitKeeper repositories.
These are not “releases” as such, but are available as previews of the code on which future releases are to be based.

The MySQL naming scheme uses release names that consist of three numbers and a suffix; for example, mysql-5.0.12-beta. The num-

Installing and Upgrading MySQL

31

http://www.mysql.com/company/legal/lifecycle/#policy


bers within the release name are interpreted as follows:

• The first number (5) is the major version and describes the file format. All MySQL 5 releases have the same file format.

• The second number (0) is the release level. Taken together, the major version and release level constitute the release series number.

• The third number (12) is the version number within the release series. This is incremented for each new release. Usually you want
the latest version for the series you have chosen.

For each minor update, the last number in the version string is incremented. When there are major new features or minor incompatibilit-
ies with previous versions, the second number in the version string is incremented. When the file format changes, the first number is in-
creased.

Release names also include a suffix to indicates the stability level of the release. Releases within a series progress through a set of suf-
fixes to indicate how the stability level improves. The possible suffixes are:

• alpha indicates that the release is for preview purposes only. Known bugs should be documented in the News section (see Ap-
pendix C, MySQL Change History). Most alpha releases implement new commands and extensions. Active development that may
involve major code changes can occur in an alpha release. However, we do conduct testing before issuing a release.

• beta indicates that the release is appropriate for use with new development. Within beta releases, the features and compatibility
should remain consistent. However, beta releases may contain numerous and major unaddressed bugs.

All APIs, externally visible structures, and columns for SQL statements will not change during future beta, release candidate, or pro-
duction releases.

• rc indicates a Release Candidate. Release candidates are believed to be stable, having passed all of MySQL's internal testing, and
with all known fatal runtime bugs fixed. However, the release has not been in widespread use long enough to know for sure that all
bugs have been identified. Only minor fixes are added. (A release candidate is what formerly was known as a gamma release.)

• If there is no suffix, it indicates that the release is a General Availability (GA) or Production release. GA releases are stable, having
successfully passed through all earlier release stages and are believed to be reliable, free of serious bugs, and suitable for use in pro-
duction systems. Only critical bugfixes are applied to the release.

MySQL uses a naming scheme that is slightly different from most other products. In general, it is usually safe to use any version that
has been out for a couple of weeks without being replaced by a new version within the same release series.

All releases of MySQL are run through our standard tests and benchmarks to ensure that they are relatively safe to use. Because the
standard tests are extended over time to check for all previously found bugs, the test suite keeps getting better.

All releases have been tested at least with these tools:

• An internal test suite

The mysql-test directory contains an extensive set of test cases. We run these tests for every server binary. See Section 29.1.2,
“MySQL Test Suite”, for more information about this test suite.

• The MySQL benchmark suite

This suite runs a range of common queries. It is also a test to determine whether the latest batch of optimizations actually made the
code faster. See Section 7.1.4, “The MySQL Benchmark Suite”.

• The crash-me test

This test tries to determine what features the database supports and what its capabilities and limitations are. See Section 7.1.4, “The
MySQL Benchmark Suite”.

We also test the newest MySQL version in our internal production environment, on at least one machine. We have more than 100GB of
data to work with.

2.1.2.2. Choosing a Distribution Format

Installing and Upgrading MySQL

32



After choosing which version of MySQL to install, you should decide whether to use a binary distribution or a source distribution. In
most cases, you should probably use a binary distribution, if one exists for your platform. Binary distributions are available in native
format for many platforms, such as RPM files for Linux or PKG package installers for Mac OS X or Solaris. Distributions also are
available as Zip archives or compressed tar files.

Reasons to choose a binary distribution include the following:

• Binary distributions generally are easier to install than source distributions.

• To satisfy different user requirements, we provide several servers in binary distributions. mysqld is an optimized server that is a
smaller, faster binary. mysqld-debug is compiled with debugging support.

Each of these servers is compiled from the same source distribution, though with different configuration options. All native MySQL
clients can connect to servers from either MySQL version.

Under some circumstances, you may be better off installing MySQL from a source distribution:

• You want to install MySQL at some explicit location. The standard binary distributions are ready to run at any installation location,
but you might require even more flexibility to place MySQL components where you want.

• You want to configure mysqld to ensure that features are available that might not be included in the standard binary distributions.
Here is a list of the most common extra options that you may want to use to ensure feature availability:

• --with-libwrap

• --with-named-z-libs (this is done for some of the binaries)

• --with-debug[=full]

• You want to configure mysqld without some features that are included in the standard binary distributions. For example, distribu-
tions normally are compiled with support for all character sets. If you want a smaller MySQL server, you can recompile it with sup-
port for only the character sets you need.

• You have a special compiler (such as pgcc) or want to use compiler options that are better optimized for your processor. Binary
distributions are compiled with options that should work on a variety of processors from the same processor family.

• You want to use the latest sources from one of the BitKeeper repositories to have access to all current bugfixes. For example, if you
have found a bug and reported it to the MySQL development team, the bugfix is committed to the source repository and you can ac-
cess it there. The bugfix does not appear in a release until a release actually is issued.

• You want to read (or modify) the C and C++ code that makes up MySQL. For this purpose, you should get a source distribution, be-
cause the source code is always the ultimate manual.

• Source distributions contain more tests and examples than binary distributions.

2.1.2.3. How and When Updates Are Released

MySQL is evolving quite rapidly and we want to share new developments with other MySQL users. We try to produce a new release
whenever we have new and useful features that others also seem to have a need for.

We also try to help users who request features that are easy to implement. We take note of what our licensed users want, and we espe-
cially take note of what our support customers want and try to help them in this regard.

No one is required to download a new release. The News section helps you determine whether the new release has something you really
want. See Appendix C, MySQL Change History.

We use the following policy when updating MySQL:

• Enterprise Server releases are meant to appear every 18 months, supplemented by quarterly service packs and monthly rapid up-
dates. Community Server releases are meant to appear 2–3 times per year.

Installing and Upgrading MySQL

33



• Releases are issued within each series. Enterprise Server releases are numbered using even numbers (for example, 5.1.20). Com-
munity Server releases are numbered using odd numbers (for example, 5.1.21).

• Binary distributions for some platforms are made by us for major releases. Other people may make binary distributions for other
systems, but probably less frequently.

• We make fixes available as soon as we have identified and corrected small or non-critical but annoying bugs. The fixes are available
in source form immediately from our public BitKeeper repositories, and are included in the next release.

• If by any chance a security vulnerability or critical bug is found in a release, our policy is to fix it in a new release as soon as pos-
sible. (We would like other companies to do this, too!)

2.1.2.4. MySQL Binaries Compiled by MySQL AB

As a service of MySQL AB, we provide a set of binary distributions of MySQL that are compiled on systems at our site or on systems
where supporters of MySQL kindly have given us access to their machines.

In addition to the binaries provided in platform-specific package formats, we offer binary distributions for a number of platforms in the
form of compressed tar files (.tar.gz files). See Section 2.2, “Standard MySQL Installation Using a Binary Distribution”.

The RPM distributions for MySQL 5.1 releases that we make available through our Web site are generated by MySQL AB.

For Windows distributions, see Section 2.3, “Installing MySQL on Windows”.

These distributions are generated using the script Build-tools/Do-compile, which compiles the source code and creates the bin-
ary tar.gz archive using scripts/make_binary_distribution.

These binaries are configured and built with the following compilers and options. This information can also be obtained by looking at
the variables COMP_ENV_INFO and CONFIGURE_LINE inside the script bin/mysqlbug of every binary tar file distribution.

Anyone who has more optimal options for any of the following configure commands can mail them to the MySQL internals
mailing list. See Section 1.6.1, “MySQL Mailing Lists”.

If you want to compile a debug version of MySQL, you should add --with-debug or --with-debug=full to the following
configure commands and remove any -fomit-frame-pointer options.

The following binaries are built on MySQL AB development systems:

• Linux 2.4.xx x86 with gcc 2.95.3:

CFLAGS="-O2 -mcpu=pentiumpro" CXX=gcc CXXFLAGS="-O2 -mcpu=pentiumpro
-felide-constructors" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --disable-shared
--with-client-ldflags=-all-static --with-mysqld-ldflags=-all-static

• Linux 2.4.x x86 with icc (Intel C++ Compiler 8.1 or later releases):

CC=icc CXX=icpc CFLAGS="-O3 -unroll2 -ip -mp -no-gcc -restrict"
CXXFLAGS="-O3 -unroll2 -ip -mp -no-gcc -restrict" ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --enable-assembler
--disable-shared --with-client-ldflags=-all-static
--with-mysqld-ldflags=-all-static --with-embedded-server --with-innodb

Note that versions 8.1 and newer of the Intel compiler have separate drivers for 'pure' C (icc) and C++ (icpc); if you use icc
version 8.0 or older for building MySQL, you will need to set CXX=icc.

• Linux 2.4.xx Intel Itanium 2 with ecc (Intel C++ Itanium Compiler 7.0):

CC=ecc CFLAGS="-O2 -tpp2 -ip -nolib_inline" CXX=ecc CXXFLAGS="-O2
-tpp2 -ip -nolib_inline" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile

Installing and Upgrading MySQL

34



• Linux 2.4.xx Intel Itanium with ecc (Intel C++ Itanium Compiler 7.0):

CC=ecc CFLAGS=-tpp1 CXX=ecc CXXFLAGS=-tpp1 ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile

• Linux 2.4.xx alpha with ccc (Compaq C V6.2-505 / Compaq C++ V6.3-006):

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx CXXFLAGS="-fast -arch
generic -noexceptions -nortti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-mysqld-ldflags=-non_shared
--with-client-ldflags=-non_shared --disable-shared

• Linux 2.x.xx ppc with gcc 2.95.4:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared --with-embedded-server
--with-innodb

• Linux 2.4.xx s390 with gcc 2.95.3:

CFLAGS="-O2" CXX=gcc CXXFLAGS="-O2 -felide-constructors" ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-client-ldflags=-all-static --with-mysqld-ldflags=-all-static

• Linux 2.4.xx x86_64 (AMD64) with gcc 3.2.1:

CXX=gcc ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

• Sun Solaris 8 x86 with gcc 3.2.3:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared --with-innodb

• Sun Solaris 8 SPARC with gcc 3.2:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --with-named-z-libs=no
--with-named-curses-libs=-lcurses --disable-shared

• Sun Solaris 8 SPARC 64-bit with gcc 3.2:

CC=gcc CFLAGS="-O3 -m64 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-m64 -fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no
--with-named-curses-libs=-lcurses --disable-shared

• Sun Solaris 9 SPARC with gcc 2.95.3:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --with-named-curses-libs=-lcurses
--disable-shared

Installing and Upgrading MySQL

35



• Sun Solaris 9 SPARC with cc-5.0 (Sun Forte 5.0):

CC=cc-5.0 CXX=CC ASFLAGS="-xarch=v9" CFLAGS="-Xa -xstrconst -mt
-D_FORTEC_ -xarch=v9" CXXFLAGS="-noex -mt -D_FORTEC_ -xarch=v9"
./configure --prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --enable-assembler
--with-named-z-libs=no --enable-thread-safe-client --disable-shared

• IBM AIX 4.3.2 ppc with gcc 3.2.3:

CFLAGS="-O2 -mcpu=powerpc -Wa,-many " CXX=gcc CXXFLAGS="-O2
-mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --disable-shared

• IBM AIX 4.3.3 ppc with xlC_r (IBM Visual Age C/C++ 6.0):

CC=xlc_r CFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
CXX=xlC_r CXXFLAGS ="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-libs=no
--disable-shared --with-innodb

• IBM AIX 5.1.0 ppc with gcc 3.3:

CFLAGS="-O2 -mcpu=powerpc -Wa,-many" CXX=gcc CXXFLAGS="-O2 -mcpu=powerpc
-Wa,-many -felide-constructors -fno-exceptions -fno-rtti" ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-libs=no
--disable-shared

• IBM AIX 5.2.0 ppc with xlC_r (IBM Visual Age C/C++ 6.0):

CC=xlc_r CFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
CXX=xlC_r CXXFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-libs=no
--disable-shared --with-embedded-server --with-innodb

• HP-UX 10.20 pa-risc1.1 with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc CXXFLAGS="-DHPUX
-I/opt/dce /include -felide-constructors -fno-exceptions -fno-rtti
-O3 -fPIC" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-pthread --with-named-thread-libs=-ldce
--with-lib-ccflags=-fPIC --disable-shared

• HP-UX 11.00 pa-risc with aCC (HP ANSI C++ B3910B A.03.50):

CC=cc CXX=aCC CFLAGS=+DAportable CXXFLAGS=+DAportable ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-embedded-server --with-innodb

• HP-UX 11.11 pa-risc2.0 64bit with aCC (HP ANSI C++ B3910B A.03.33):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared

• HP-UX 11.11 pa-risc2.0 32bit with aCC (HP ANSI C++ B3910B A.03.33):

CC=cc CXX=aCC CFLAGS="+DAportable" CXXFLAGS="+DAportable" ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-innodb

Installing and Upgrading MySQL

36



• HP-UX 11.22 ia64 64bit with aCC (HP aC++/ANSI C B3910B A.05.50):

CC=cc CXX=aCC CFLAGS="+DD64 +DSitanium2" CXXFLAGS="+DD64 +DSitanium2"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-embedded-server --with-innodb

• Apple Mac OS X 10.2 powerpc with gcc 3.1:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

• FreeBSD 4.7 i386 with gcc 2.95.4:

CFLAGS=-DHAVE_BROKEN_REALPATH ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --with-named-z-libs=not-used
--disable-shared

• FreeBSD 4.7 i386 using LinuxThreads with gcc 2.95.4:

CFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT
-D_THREAD_SAFE -I/usr/local/include/pthread/linuxthreads"
CXXFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT
-D_THREAD_SAFE -I/usr/local/include/pthread/linuxthreads" ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --enable-thread-safe-client
--enable-local-infile --enable-assembler
--with-named-thread-libs="-DHAVE_GLIBC2_STYLE_GETHOSTBYNAME_R
-D_THREAD_SAFE -I /usr/local/include/pthread/linuxthreads
-L/usr/local/lib -llthread -llgcc_r" --disable-shared
--with-embedded-server --with-innodb

• QNX Neutrino 6.2.1 i386 with gcc 2.95.3qnx-nto 20010315:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

The following binaries are built on third-party systems kindly provided to MySQL AB by other users. These are provided only as a
courtesy; MySQL AB does not have full control over these systems, so we can provide only limited support for the binaries built on
them.

• SCO Unix 3.2v5.0.7 i386 with gcc 2.95.3:

CFLAGS="-O3 -mpentium" LDFLAGS=-static CXX=gcc CXXFLAGS="-O3 -mpentium
-felide-constructors" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --enable-thread-safe-client
--disable-shared

• SCO UnixWare 7.1.4 i386 with CC 3.2:

CC=cc CFLAGS="-O" CXX=CC ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --enable-thread-safe-client
--disable-shared --with-readline

• SCO OpenServer 6.0.0 i386 with CC 3.2:

CC=cc CFLAGS="-O" CXX=CC ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --enable-thread-safe-client
--disable-shared --with-readline

Installing and Upgrading MySQL

37



• Compaq Tru64 OSF/1 V5.1 732 alpha with cc/cxx (Compaq C V6.3-029i / DIGITAL C++ V6.1-027):

CC="cc -pthread" CFLAGS="-O4 -ansi_alias -ansi_args -fast -inline
speed -speculate all" CXX="cxx -pthread" CXXFLAGS="-O4 -ansi_alias
-fast -inline speed -speculate all -noexceptions -nortti" ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile
--with-named-thread-libs="-lpthread -lmach -lexc -lc" --disable-shared
--with-mysqld-ldflags=-all-static

• SGI Irix 6.5 IP32 with gcc 3.0.1:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

• FreeBSD/sparc64 5.0 with gcc 3.2.1:

CFLAGS=-DHAVE_BROKEN_REALPATH ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared --with-innodb

The following compile options have been used for binary packages that MySQL AB provided in the past. These binaries no longer are
being updated, but the compile options are listed here for reference purposes.

• Linux 2.2.xx SPARC with egcs 1.1.2:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --disable-shared

• Linux 2.2.x with x686 with gcc 2.95.2:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro
-felide-constructors -fno-exceptions -fno-rtti" ./configure
--prefix=/usr/local/mysql --enable-assembler
--with-mysqld-ldflags=-all-static --disable-shared
--with-extra-charsets=complex

• SunOS 4.1.4 2 sun4c with gcc 2.7.2.1:

CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors" ./configure
--prefix=/usr/local/mysql --disable-shared --with-extra-charsets=complex
--enable-assembler

• SunOS 5.5.1 (and above) sun4u with egcs 1.0.3a or 2.90.27 or gcc 2.95.2 and newer:

CC=gcc CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-low-memory --with-extra-charsets=complex --enable-assembler

• SunOS 5.6 i86pc with gcc 2.8.1:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql
--with-low-memory --with-extra-charsets=complex

• BSDI BSD/OS 3.1 i386 with gcc 2.7.2.1:

CC=gcc CXX=gcc CXXFLAGS=-O ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

• BSDI BSD/OS 2.1 i386 with gcc 2.7.2:

Installing and Upgrading MySQL

38



CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

• AIX 4.2 with gcc 2.7.2.2:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

2.1.3. How to Get MySQL
Check our downloads page at http://dev.mysql.com/downloads/ for information about the current version of MySQL and for download-
ing instructions. For a complete up-to-date list of MySQL download mirror sites, see http://dev.mysql.com/downloads/mirrors.html.
You can also find information there about becoming a MySQL mirror site and how to report a bad or out-of-date mirror.

Our main mirror is located at http://mirrors.sunsite.dk/mysql/.

2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG
After you have downloaded the MySQL package that suits your needs and before you attempt to install it, you should make sure that it
is intact and has not been tampered with. MySQL AB offers three means of integrity checking:

• MD5 checksums

• Cryptographic signatures using GnuPG, the GNU Privacy Guard

• For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the respective package one more time, per-
haps from another mirror site. If you repeatedly cannot successfully verify the integrity of the package, please notify us about such in-
cidents, including the full package name and the download site you have been using, at <webmaster@mysql.com> or
<build@mysql.com>. Do not report downloading problems using the bug-reporting system.

2.1.4.1. Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches the one provided on the MySQL
download pages. Each package has an individual checksum that you can verify with the following command, where package_name
is the name of the package you downloaded:

shell> md5sum package_name

Example:

shell> md5sum mysql-standard-5.1.25-rc-linux-i686.tar.gz
aaab65abbec64d5e907dcd41b8699945 mysql-standard-5.1.25-rc-linux-i686.tar.gz

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one displayed on the download page im-
mediately below the respective package.

Note

Make sure to verify the checksum of the archive file (for example, the .zip or .tar.gz file) and not of the files that are
contained inside of the archive.

Note that not all operating systems support the md5sum command. On some, it is simply called md5, and others do not ship it at all. On
Linux, it is part of the GNU Text Utilities package, which is available for a wide range of platforms. You can download the source
code from http://www.gnu.org/software/textutils/ as well. If you have OpenSSL installed, you can use the command openssl md5
package_name instead. A Windows implementation of the md5 command line utility is available from ht-
tp://www.fourmilab.ch/md5/. winMd5Sum is a graphical MD5 checking tool that can be obtained from ht-

Installing and Upgrading MySQL

39

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/mirrors.html
http://mirrors.sunsite.dk/mysql/
http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.fourmilab.ch/md5/


tp://www.nullriver.com/index/products/winmd5sum.

2.1.4.2. Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic signatures. This is more reliable than us-
ing MD5 checksums, but requires more work.

At MySQL AB, we sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is an Open Source alternative to
the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See http://www.gnupg.org/ for more information about GnuPG and
how to obtain and install it on your system. Most Linux distributions ship with GnuPG installed by default. For more information about
GnuPG, see http://www.openpgp.org/.

To verify the signature for a specific package, you first need to obtain a copy of MySQL AB's public GPG build key, which you can
download from http://www.keyserver.net/. The key that you want to obtain is named build@mysql.com. Alternatively, you can cut
and paste the key directly from the following text:

Key ID:
pub 1024D/5072E1F5 2003-02-03

MySQL Package signing key (www.mysql.com) <build@mysql.com>
Fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1F5

Public Key (ASCII-armored):

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.0.6 (GNU/Linux)
Comment: For info see http://www.gnupg.org

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ
fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3
BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV
K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep
rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q7TXlTUUwgUGFj
a2FnZSBzaWduaW5nIGtleSAod3d3Lm15c3FsLmNvbSkgPGJ1aWxkQG15c3FsLmNv
bT6IXQQTEQIAHQUCPj6jDAUJCWYBgAULBwoDBAMVAwIDFgIBAheAAAoJEIxxjTtQ
cuH1cY4AnilUwTXn8MatQOiG0a/bPxrvK/gCAJ4oinSNZRYTnblChwFaazt7PF3q
zIhMBBMRAgAMBQI+PqPRBYMJZgC7AAoJEElQ4SqycpHyJOEAn1mxHijft00bKXvu
cSo/pECUmppiAJ41M9MRVj5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJ
YiKJAAoJELb1zU3GuiQ/lpEAoIhpp6BozKI8p6eaabzF5MlJH58pAKCu/ROofK8J
Eg2aLos+5zEYrB/LsrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWsEN/l
xaZoJYc3a6M02WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLmRDRi
Rjd1DTCHqeyX7CHhcghj/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hkAWzE
7zaD5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkbf4fm
Le11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8Ilbf5vSYHbuE5p
/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnlLzKUb/F5GwADBQf+Lwqq
a8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPDsDD9MZ1ZaSaf
anFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGoTbOW
I39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev42Lmu
QT5NdKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkKHt92
6s/ymfdf5HkdQ1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUOetdZ
Whe70YGNPw1yjWJT1IhMBBgRAgAMBQI+PqMdBQkJZgGAAAoJEIxxjTtQcuH17p4A
n3r1QpVC9yhnW2cSAjq+kr72GX0eAJ4295kl6NxYEuFApmr1+0uUq/SlsQ==
=YJkx
-----END PGP PUBLIC KEY BLOCK-----

To import the build key into your personal public GPG keyring, use gpg --import. For example, if you have saved the key in a file
named mysql_pubkey.asc, the import command looks like this:

shell> gpg --import mysql_pubkey.asc

After you have downloaded and imported the public build key, download your desired MySQL package and the corresponding signa-
ture, which also is available from the download page. The signature file has the same name as the distribution file with an .asc exten-
sion. For example:

Distribution file mysql-standard-5.1.25-rc-linux-i686.tar.gz

Signature file mysql-standard-5.1.25-rc-linux-i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following command to verify the signature for the distribution
file:

shell> gpg --verify package_name.asc

Installing and Upgrading MySQL

40

http://www.nullriver.com/index/products/winmd5sum
http://www.gnupg.org/
http://www.openpgp.org/
http://www.keyserver.net/


Example:

shell> gpg --verify mysql-standard-5.1.25-rc-linux-i686.tar.gz.asc
gpg: Signature made Tue 12 Jul 2005 23:35:41 EST using DSA key ID 5072E1F5
gpg: Good signature from "MySQL Package signing key (www.mysql.com) <build@mysql.com>"

The Good signature message indicates that everything is all right. You can ignore any insecure memory warning you might
obtain.

See the GPG documentation for more information on how to work with public keys.

2.1.4.3. Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and MD5 checksum. You can verify a
package by running the following command:

shell> rpm --checksig package_name.rpm

Example:

shell> rpm --checksig MySQL-server-5.1.25-rc-0.glibc23.i386.rpm
MySQL-server-5.1.25-rc-0.glibc23.i386.rpm: md5 gpg OK

Note

If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING KEYS: GPG#5072e1f5), even
though you have imported the MySQL public build key into your own GPG keyring, you need to import the key into the
RPM keyring first. RPM 4.1 no longer uses your personal GPG keyring (or GPG itself). Rather, it maintains its own
keyring because it is a system-wide application and a user's GPG public keyring is a user-specific file. To import the
MySQL public key into the RPM keyring, first obtain the key as described in Section 2.1.4.2, “Signature Checking Using
GnuPG”. Then use rpm --import to import the key. For example, if you have saved the public key in a file named
mysql_pubkey.asc, import it using this command:

shell> rpm --import mysql_pubkey.asc

If you need to obtain the MySQL public key, see Section 2.1.4.2, “Signature Checking Using GnuPG”.

2.1.5. Installation Layouts
This section describes the default layout of the directories created by installing binary or source distributions provided by MySQL AB.
A distribution provided by another vendor might use a layout different from those shown here.

For MySQL 5.1 on Windows, the default installation directory is C:\Program Files\MySQL\MySQL Server 5.1. (Some
Windows users prefer to install in C:\mysql, the directory that formerly was used as the default. However, the layout of the subdirect-
ories remains the same.) The installation directory has the following subdirectories:

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

Docs Manual in CHM format

examples Example programs and scripts

include Include (header) files

lib Libraries

scripts Utility scripts

share Error message files

Installations created from MySQL AB's Linux RPM distributions result in files under the following system directories:

Directory Contents of Directory

Installing and Upgrading MySQL

41



/usr/bin Client programs and scripts

/usr/sbin The mysqld server

/var/lib/mysql Log files, databases

/usr/share/info Manual in Info format

/usr/share/man Unix manual pages

/usr/include/mysql Include (header) files

/usr/lib/mysql Libraries

/usr/share/mysql Error message and character set files

/usr/share/sql-bench Benchmarks

On Unix, a tar file binary distribution is installed by unpacking it at the installation location you choose (typically /
usr/local/mysql) and creates the following directories in that location:

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

docs Manual in Info format

man Unix manual pages

include Include (header) files

lib Libraries

scripts mysql_install_db

share/mysql Error message files

sql-bench Benchmarks

A source distribution is installed after you configure and compile it. By default, the installation step installs files under /usr/local,
in the following subdirectories:

Directory Contents of Directory

bin Client programs and scripts

include/mysql Include (header) files

Docs Manual in Info, CHM formats

man Unix manual pages

lib/mysql Libraries

libexec The mysqld server

share/mysql Error message files

sql-bench Benchmarks and crash-me test

var Databases and log files

Within its installation directory, the layout of a source installation differs from that of a binary installation in the following ways:

• The mysqld server is installed in the libexec directory rather than in the bin directory.

• The data directory is var rather than data.

• mysql_install_db is installed in the bin directory rather than in the scripts directory.

• The header file and library directories are include/mysql and lib/mysql rather than include and lib.

Installing and Upgrading MySQL

42



You can create your own binary installation from a compiled source distribution by executing the scripts/
make_binary_distribution script from the top directory of the source distribution.

2.2. Standard MySQL Installation Using a Binary Distribution
The next several sections cover the installation of MySQL on platforms where we offer packages using the native packaging format of
the respective platform. (This is also known as performing a “binary install.”) However, binary distributions of MySQL are available for
many other platforms as well. See Section 2.8, “Installing MySQL from tar.gz Packages on Other Unix-Like Systems”, for generic
installation instructions for these packages that apply to all platforms.

See Section 2.1, “General Installation Issues”, for more information on what other binary distributions are available and how to obtain
them.

2.3. Installing MySQL on Windows
A native Windows distribution of MySQL has been available from MySQL AB since version 3.21 and represents a sizable percentage
of the daily downloads of MySQL. This section describes the process for installing MySQL on Windows.

Note

If you are upgrading MySQL from an existing installation older than MySQL 4.1.5, you must first perform the procedure
described in Section 2.3.14, “Upgrading MySQL on Windows”.

To run MySQL on Windows, you need the following:

• A 32-bit Windows operating system such as 2000, XP, Vista, or Windows Server 2003.

A Windows operating system permits you to run the MySQL server as a service. See Section 2.3.11, “Starting MySQL as a Win-
dows Service”.

Generally, you should install MySQL on Windows using an account that has administrator rights. Otherwise, you may encounter
problems with certain operations such as editing the PATH environment variable or accessing the Service Control Manager.

• TCP/IP protocol support.

• Enough space on the hard drive to unpack, install, and create the databases in accordance with your requirements (generally a min-
imum of 200 megabytes is recommended.)

For a list of limitations within the Windows version of MySQL, see Section D.7.3, “Windows Platform Limitations”.

There may also be other requirements, depending on how you plan to use MySQL:

• If you plan to connect to the MySQL server via ODBC, you need a Connector/ODBC driver. See Chapter 27, Connectors.

• If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer filesystem. Don't forget to use MAX_ROWS and
AVG_ROW_LENGTH when you create tables. See Section 12.1.10, “CREATE TABLE Syntax”.

MySQL for Windows is available in several distribution formats:

• Binary distributions are available that contain a setup program that installs everything you need so that you can start the server im-
mediately. Another binary distribution format contains an archive that you simply unpack in the installation location and then con-
figure yourself. For details, see Section 2.3.1, “Choosing An Installation Package”.

• The source distribution contains all the code and support files for building the executables using the Visual Studio compiler system.

Generally speaking, you should use a binary distribution that includes an installer. It is simpler to use than the others, and you need no
additional tools to get MySQL up and running. The installer for the Windows version of MySQL, combined with a GUI Configuration
Wizard, automatically installs MySQL, creates an option file, starts the server, and secures the default user accounts.

Installing and Upgrading MySQL

43



The following section describes how to install MySQL on Windows using a binary distribution. To use an installation package that does
not include an installer, follow the procedure described in Section 2.3.5, “Installing MySQL from a Noinstall Zip Archive”. To install
using a source distribution, see Section 2.9.6, “Installing MySQL from Source on Windows”.

MySQL distributions for Windows can be downloaded from http://dev.mysql.com/downloads/. See Section 2.1.3, “How to Get
MySQL”.

2.3.1. Choosing An Installation Package
For MySQL 5.1, there are three installation packages to choose from when installing MySQL on Windows:

• The Essentials Package: This package has a filename similar to mysql-essential-5.1.25-rc-win32.msi and contains
the minimum set of files needed to install MySQL on Windows, including the Configuration Wizard. This package does not include
optional components such as the embedded server and benchmark suite.

• The Complete Package: This package has a filename similar to mysql-5.1.25-rc-win32.zip and contains all files needed
for a complete Windows installation, including the Configuration Wizard. This package includes optional components such as the
embedded server and benchmark suite.

• The Noinstall Archive: This package has a filename similar to mysql-noinstall-5.1.25-rc-win32.zip and contains all
the files found in the Complete install package, with the exception of the Configuration Wizard. This package does not include an
automated installer, and must be manually installed and configured.

The Essentials package is recommended for most users. It is provided as an .msi file for use with the Windows Installer. The Com-
plete and Noinstall distributions are packaged as Zip archives. To use them, you must have a tool that can unpack .zip files.

Your choice of install package affects the installation process you must follow. If you choose to install either the Essentials or Complete
install packages, see Section 2.3.2, “Installing MySQL with the Automated Installer”. If you choose to install MySQL from the Noin-
stall archive, see Section 2.3.5, “Installing MySQL from a Noinstall Zip Archive”.

2.3.2. Installing MySQL with the Automated Installer
New MySQL users can use the MySQL Installation Wizard and MySQL Configuration Wizard to install MySQL on Windows. These
are designed to install and configure MySQL in such a way that new users can immediately get started using MySQL.

The MySQL Installation Wizard and MySQL Configuration Wizard are available in the Essentials and Complete install packages. They
are recommended for most standard MySQL installations. Exceptions include users who need to install multiple instances of MySQL on
a single server host and advanced users who want complete control of server configuration.

2.3.3. Using the MySQL Installation Wizard

2.3.3.1. Introduction to the Installation Wizard

MySQL Installation Wizard is an installer for the MySQL server that uses the latest installer technologies for Microsoft Windows. The
MySQL Installation Wizard, in combination with the MySQL Configuration Wizard, allows a user to install and configure a MySQL
server that is ready for use immediately after installation.

The MySQL Installation Wizard is the standard installer for all MySQL server distributions, version 4.1.5 and higher. Users of previous
versions of MySQL need to shut down and remove their existing MySQL installations manually before installing MySQL with the
MySQL Installation Wizard. See Section 2.3.3.7, “Upgrading MySQL with the Installation Wizard”, for more information on upgrading
from a previous version.

Microsoft has included an improved version of their Microsoft Windows Installer (MSI) in the recent versions of Windows. MSI has
become the de-facto standard for application installations on Windows 2000, Windows XP, and Windows Server 2003. The MySQL In-
stallation Wizard makes use of this technology to provide a smoother and more flexible installation process.

The Microsoft Windows Installer Engine was updated with the release of Windows XP; those using a previous version of Windows can
reference this Microsoft Knowledge Base article for information on upgrading to the latest version of the Windows Installer Engine.

In addition, Microsoft has introduced the WiX (Windows Installer XML) toolkit recently. This is the first highly acknowledged Open
Source project from Microsoft. We have switched to WiX because it is an Open Source project and it allows us to handle the complete
Windows installation process in a flexible manner using scripts.

Installing and Upgrading MySQL

44

http://dev.mysql.com/downloads/
http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539


Improving the MySQL Installation Wizard depends on the support and feedback of users like you. If you find that the MySQL Installa-
tion Wizard is lacking some feature important to you, or if you discover a bug, please report it in our bugs database using the instruc-
tions given in Section 1.7, “How to Report Bugs or Problems”.

2.3.3.2. Downloading and Starting the MySQL Installation Wizard

The MySQL installation packages can be downloaded from http://dev.mysql.com/downloads/. If the package you download is contained
within a Zip archive, you need to extract the archive first.

Note

If you are installing on Windows Vista it is best to open a port before beginning the installation. To do this first ensure that
you are logged in as an administrator, go to the Control Panel, and double click the Windows Firewall icon.
Choose the Allow a program through Windows Firewall option and click the ADD PORT button. Enter
MySQL into the NAME text box and 3306 (or the port of your choice) into the PORT NUMBER text box. Also ensure that
the TCP protocol radio button is selected. If you wish, you can also limit access to the MySQL server by choosing the
CHANGE SCOPE button. Confirm your choices by clicking the OK button. If you do not open a port prior to installation,
you cannot configure the MySQL server immediately after installation. Additionally, when running the MySQL Installa-
tion Wizard on Windows Vista, ensure that you are logged in as a user with administrative rights.

The process for starting the wizard depends on the contents of the installation package you download. If there is a setup.exe file
present, double-click it to start the installation process. If there is an .msi file present, double-click it to start the installation process.

2.3.3.3. Choosing an Install Type

There are three installation types available: Typical, Complete, and Custom.

The Typical installation type installs the MySQL server, the mysql command-line client, and the command-line utilities. The com-
mand-line clients and utilities include mysqldump, myisamchk, and several other tools to help you manage the MySQL server.

The Complete installation type installs all components included in the installation package. The full installation package includes com-
ponents such as the embedded server library, the benchmark suite, support scripts, and documentation.

The Custom installation type gives you complete control over which packages you wish to install and the installation path that is used.
See Section 2.3.3.4, “The Custom Install Dialog”, for more information on performing a custom install.

If you choose the Typical or Complete installation types and click the NEXT button, you advance to the confirmation screen to verify
your choices and begin the installation. If you choose the Custom installation type and click the NEXT button, you advance to the cus-
tom installation dialog, described in Section 2.3.3.4, “The Custom Install Dialog”.

2.3.3.4. The Custom Install Dialog

If you wish to change the installation path or the specific components that are installed by the MySQL Installation Wizard, choose the
Custom installation type.

A tree view on the left side of the custom install dialog lists all available components. Components that are not installed have a red X
icon; components that are installed have a gray icon. To change whether a component is installed, click on that component's icon and
choose a new option from the drop-down list that appears.

You can change the default installation path by clicking the CHANGE... button to the right of the displayed installation path.

After choosing your installation components and installation path, click the NEXT button to advance to the confirmation dialog.

2.3.3.5. The Confirmation Dialog

Once you choose an installation type and optionally choose your installation components, you advance to the confirmation dialog. Your
installation type and installation path are displayed for you to review.

To install MySQL if you are satisfied with your settings, click the INSTALL button. To change your settings, click the BACK button. To
exit the MySQL Installation Wizard without installing MySQL, click the CANCEL button.

After installation is complete, you have the option of registering with the MySQL web site. Registration gives you access to post in the
MySQL forums at forums.mysql.com, along with the ability to report bugs at bugs.mysql.com and to subscribe to our newsletter. The fi-
nal screen of the installer provides a summary of the installation and gives you the option to launch the MySQL Configuration Wizard,

Installing and Upgrading MySQL

45

http://dev.mysql.com/downloads/
http://forums.mysql.com
http://bugs.mysql.com


which you can use to create a configuration file, install the MySQL service, and configure security settings.

2.3.3.6. Changes Made by MySQL Installation Wizard

Once you click the INSTALL button, the MySQL Installation Wizard begins the installation process and makes certain changes to your
system which are described in the sections that follow.

Changes to the Registry

The MySQL Installation Wizard creates one Windows registry key in a typical install situation, located in
HKEY_LOCAL_MACHINE\SOFTWARE\MySQL AB.

The MySQL Installation Wizard creates a key named after the major version of the server that is being installed, such as MySQL
Server 5.1. It contains two string values, Location and Version. The Location string contains the path to the installation
directory. In a default installation it contains C:\Program Files\MySQL\MySQL Server 5.1\. The Version string contains
the release number. For example, for an installation of MySQL Server 5.1.25-rc, the key contains a value of 5.1.25-rc.

These registry keys are used to help external tools identify the installed location of the MySQL server, preventing a complete scan of
the hard-disk to determine the installation path of the MySQL server. The registry keys are not required to run the server, and if you in-
stall MySQL using the noinstall Zip archive, the registry keys are not created.

Changes to the Start Menu

The MySQL Installation Wizard creates a new entry in the Windows START menu under a common MySQL menu heading named after
the major version of MySQL that you have installed. For example, if you install MySQL 5.1, the MySQL Installation Wizard creates a
MySQL Server 5.1 section in the START menu.

The following entries are created within the new START menu section:

• MySQL Command Line Client: This is a shortcut to the mysql command-line client and is configured to connect as the root user.
The shortcut prompts for a root user password when you connect.

• MySQL Server Instance Config Wizard: This is a shortcut to the MySQL Configuration Wizard. Use this shortcut to configure a
newly installed server, or to reconfigure an existing server.

• MySQL Documentation: This is a link to the MySQL server documentation that is stored locally in the MySQL server installation
directory. This option is not available when the MySQL server is installed using the Essentials installation package.

Changes to the File System

The MySQL Installation Wizard by default installs the MySQL 5.1 server to C:\Program Files\MySQL\MySQL Server 5.1,
where Program Files is the default location for applications in your system, and 5.1 is the major version of your MySQL server.
This is the recommended location for the MySQL server, replacing the former default location C:\mysql.

By default, all MySQL applications are stored in a common directory at C:\Program Files\MySQL, where Program Files is
the default location for applications in your Windows installation. A typical MySQL installation on a developer machine might look like
this:

C:\Program Files\MySQL\MySQL Server 5.1
C:\Program Files\MySQL\MySQL Administrator 1.0
C:\Program Files\MySQL\MySQL Query Browser 1.0

This approach makes it easier to manage and maintain all MySQL applications installed on a particular system.

2.3.3.7. Upgrading MySQL with the Installation Wizard

The MySQL Installation Wizard can perform server upgrades automatically using the upgrade capabilities of MSI. That means you do
not need to remove a previous installation manually before installing a new release. The installer automatically shuts down and removes
the previous MySQL service before installing the new version.

Automatic upgrades are available only when upgrading between installations that have the same major and minor version numbers. For
example, you can upgrade automatically from MySQL 4.1.5 to MySQL 4.1.6, but not from MySQL 5.0 to MySQL 5.1.

See Section 2.3.14, “Upgrading MySQL on Windows”.

Installing and Upgrading MySQL

46



2.3.4. Using the Configuration Wizard

2.3.4.1. Introduction to the Configuration Wizard

The MySQL Configuration Wizard helps automate the process of configuring your server under Windows. The MySQL Configuration
Wizard creates a custom my.ini file by asking you a series of questions and then applying your responses to a template to generate a
my.ini file that is tuned to your installation.

The MySQL Configuration Wizard is included with the MySQL 5.1 server, and is currently available for Windows users only.

The MySQL Configuration Wizard is to a large extent the result of feedback that MySQL AB has received from many users over a peri-
od of several years. However, if you find that it lacks some feature important to you, please report it in our bugs database using the in-
structions given in Section 1.7, “How to Report Bugs or Problems”.

2.3.4.2. Starting the MySQL Configuration Wizard

The MySQL Configuration Wizard is typically launched from the MySQL Installation Wizard, as the MySQL Installation Wizard exits.
You can also launch the MySQL Configuration Wizard by clicking the MySQL Server Instance Config Wizard entry in the MySQL
section of the Windows START menu.

Alternatively, you can navigate to the bin directory of your MySQL installation and launch the MySQLInstanceConfig.exe file
directly.

Note

If you chose not to open a port prior to installing MySQL on Windows Vista, you can choose to use the MySQL Server
Configuration Wizard after installation. However, you must open a port in the Windows Firewall. To do this see the in-
structions given in Section 2.3.3.2, “Downloading and Starting the MySQL Installation Wizard”. Rather than opening a
port, you also have the option of adding MySQL as a program that bypasses the Windows Firewall. One or the other op-
tion is sufficient — you need not do both. Additionally, when running the MySQL Server Configuration Wizard on Win-
dows Vista ensure that you are logged in as a user with administrative rights.

2.3.4.3. Choosing a Maintenance Option

If the MySQL Configuration Wizard detects an existing my.ini file, you have the option of either reconfiguring your existing server,
or removing the server instance by deleting the my.ini file and stopping and removing the MySQL service.

To reconfigure an existing server, choose the Re-configure Instance option and click the NEXT button. Your existing my.ini file is re-
named to mytimestamp.ini.bak, where timestamp is the date and time at which the existing my.ini file was created. To re-
move the existing server instance, choose the Remove Instance option and click the NEXT button.

If you choose the Remove Instance option, you advance to a confirmation window. Click the EXECUTE button. The MySQL Configura-
tion Wizard stops and removes the MySQL service, and then deletes the my.ini file. The server installation and its data folder are
not removed.

If you choose the Re-configure Instance option, you advance to the CONFIGURATION TYPE dialog where you can choose the type of in-
stallation that you wish to configure.

2.3.4.4. Choosing a Configuration Type

When you start the MySQL Configuration Wizard for a new MySQL installation, or choose the Re-configure Instance option for an ex-
isting installation, you advance to the CONFIGURATION TYPE dialog.

There are two configuration types available: Detailed Configuration and Standard Configuration. The Standard Configuration option is
intended for new users who want to get started with MySQL quickly without having to make many decisions about server configura-
tion. The Detailed Configuration option is intended for advanced users who want more fine-grained control over server configuration.

If you are new to MySQL and need a server configured as a single-user developer machine, the Standard Configuration should suit your
needs. Choosing the Standard Configuration option causes the MySQL Configuration Wizard to set all configuration options automatic-
ally with the exception of Service Options and Security Options.

The Standard Configuration sets options that may be incompatible with systems where there are existing MySQL installations. If you
have an existing MySQL installation on your system in addition to the installation you wish to configure, the Detailed Configuration op-
tion is recommended.

Installing and Upgrading MySQL

47



To complete the Standard Configuration, please refer to the sections on Service Options and Security Options in Section 2.3.4.11, “The
Service Options Dialog”, and Section 2.3.4.12, “The Security Options Dialog”, respectively.

2.3.4.5. The Server Type Dialog

There are three different server types available to choose from. The server type that you choose affects the decisions that the MySQL
Configuration Wizard makes with regard to memory, disk, and processor usage.

• Developer Machine: Choose this option for a typical desktop workstation where MySQL is intended only for personal use. It is as-
sumed that many other desktop applications are running. The MySQL server is configured to use minimal system resources.

• Server Machine: Choose this option for a server machine where the MySQL server is running alongside other server applications
such as FTP, email, and Web servers. The MySQL server is configured to use a moderate portion of the system resources.

• Dedicated MySQL Server Machine: Choose this option for a server machine that is intended to run only the MySQL server. It is as-
sumed that no other applications are running. The MySQL server is configured to use all available system resources.

Note

By selecting one of the preconfigured configurations, the values and settings of various options in your my.cnf or
my.ini will be altered accordingly. The default values and options as described in the reference manual may therefore be
different to the options and values that were created during the execution of the configuration wizard.

2.3.4.6. The Database Usage Dialog

The DATABASE USAGE dialog allows you to indicate the storage engines that you expect to use when creating MySQL tables. The op-
tion you choose determines whether the InnoDB storage engine is available and what percentage of the server resources are available
to InnoDB.

• Multifunctional Database: This option enables both the InnoDB and MyISAM storage engines and divides resources evenly
between the two. This option is recommended for users who use both storage engines on a regular basis.

• Transactional Database Only: This option enables both the InnoDB and MyISAM storage engines, but dedicates most server re-
sources to the InnoDB storage engine. This option is recommended for users who use InnoDB almost exclusively and make only
minimal use of MyISAM.

• Non-Transactional Database Only: This option disables the InnoDB storage engine completely and dedicates all server resources to
the MyISAM storage engine. This option is recommended for users who do not use InnoDB.

2.3.4.7. The InnoDB Tablespace Dialog

Some users may want to locate the InnoDB tablespace files in a different location than the MySQL server data directory. Placing the
tablespace files in a separate location can be desirable if your system has a higher capacity or higher performance storage device avail-
able, such as a RAID storage system.

To change the default location for the InnoDB tablespace files, choose a new drive from the drop-down list of drive letters and choose
a new path from the drop-down list of paths. To create a custom path, click the ... button.

If you are modifying the configuration of an existing server, you must click the MODIFY button before you change the path. In this situ-
ation you must move the existing tablespace files to the new location manually before starting the server.

2.3.4.8. The Concurrent Connections Dialog

To prevent the server from running out of resources, it is important to limit the number of concurrent connections to the MySQL server
that can be established. The CONCURRENT CONNECTIONS dialog allows you to choose the expected usage of your server, and sets the
limit for concurrent connections accordingly. It is also possible to set the concurrent connection limit manually.

• Decision Support (DSS)/OLAP: Choose this option if your server does not require a large number of concurrent connections. The
maximum number of connections is set at 100, with an average of 20 concurrent connections assumed.

Installing and Upgrading MySQL

48



• Online Transaction Processing (OLTP): Choose this option if your server requires a large number of concurrent connections. The
maximum number of connections is set at 500.

• Manual Setting: Choose this option to set the maximum number of concurrent connections to the server manually. Choose the num-
ber of concurrent connections from the drop-down box provided, or enter the maximum number of connections into the drop-down
box if the number you desire is not listed.

2.3.4.9. The Networking and Strict Mode Options Dialog

Use the NETWORKING OPTIONS dialog to enable or disable TCP/IP networking and to configure the port number that is used to connect
to the MySQL server.

TCP/IP networking is enabled by default. To disable TCP/IP networking, uncheck the box next to the Enable TCP/IP Networking op-
tion.

Port 3306 is used by default. To change the port used to access MySQL, choose a new port number from the drop-down box or type a
new port number directly into the drop-down box. If the port number you choose is in use, you are prompted to confirm your choice of
port number.

Set the SERVER SQL MODE to either enable or disable strict mode. Enabling strict mode (default) makes MySQL behave more like oth-
er database management systems. If you run applications that rely on MySQL's old “forgiving” behavior, make sure to either adapt
those applications or to disable strict mode. For more information about strict mode, see Section 5.1.6, “SQL Modes”.

2.3.4.10. The Character Set Dialog

The MySQL server supports multiple character sets and it is possible to set a default server character set that is applied to all tables,
columns, and databases unless overridden. Use the CHARACTER SET dialog to change the default character set of the MySQL server.

• Standard Character Set: Choose this option if you want to use latin1 as the default server character set. latin1 is used for Eng-
lish and many Western European languages.

• Best Support For Multilingualism: Choose this option if you want to use utf8 as the default server character set. This is a Unicode
character set that can store characters from many different languages.

• Manual Selected Default Character Set / Collation: Choose this option if you want to pick the server's default character set manu-
ally. Choose the desired character set from the provided drop-down list.

2.3.4.11. The Service Options Dialog

On Windows platforms, the MySQL server can be installed as a Windows service. When installed this way, the MySQL server can be
started automatically during system startup, and even restarted automatically by Windows in the event of a service failure.

The MySQL Configuration Wizard installs the MySQL server as a service by default, using the service name MySQL. If you do not
wish to install the service, uncheck the box next to the Install As Windows Service option. You can change the service name by picking
a new service name from the drop-down box provided or by entering a new service name into the drop-down box.

To install the MySQL server as a service but not have it started automatically at startup, uncheck the box next to the Launch the
MySQL Server Automatically option.

2.3.4.12. The Security Options Dialog

It is strongly recommended that you set a root password for your MySQL server, and the MySQL Configuration Wizard requires by
default that you do so. If you do not wish to set a root password, uncheck the box next to the Modify Security Settings option.

To set the root password, enter the desired password into both the New root password and Confirm boxes. If you are reconfiguring an
existing server, you need to enter the existing root password into the Current root password box.

To prevent root logins from across the network, check the box next to the Root may only connect from localhost option. This in-
creases the security of your root account.

To create an anonymous user account, check the box next to the Create An Anonymous Account option. Creating an anonymous ac-
count can decrease server security and cause login and permission difficulties. For this reason, it is not recommended.

Installing and Upgrading MySQL

49



2.3.4.13. The Confirmation Dialog

The final dialog in the MySQL Configuration Wizard is the CONFIRMATION DIALOG. To start the configuration process, click the
EXECUTE button. To return to a previous dialog, click the BACK button. To exit the MySQL Configuration Wizard without configuring
the server, click the CANCEL button.

After you click the EXECUTE button, the MySQL Configuration Wizard performs a series of tasks and displays the progress onscreen as
the tasks are performed.

The MySQL Configuration Wizard first determines configuration file options based on your choices using a template prepared by
MySQL AB developers and engineers. This template is named my-template.ini and is located in your server installation direct-
ory.

The MySQL Configuration Wizard then writes these options to a my.ini file. The final location of the my.ini file is displayed next
to the WRITE CONFIGURATION FILE task.

If you chose to create a service for the MySQL server, the MySQL Configuration Wizard creates and starts the service. If you are recon-
figuring an existing service, the MySQL Configuration Wizard restarts the service to apply your configuration changes.

If you chose to set a root password, the MySQL Configuration Wizard connects to the server, sets your new root password and ap-
plies any other security settings you may have selected.

After the MySQL Configuration Wizard has completed its tasks, it displays a summary. Click the FINISH button to exit the MySQL
Configuration Wizard.

2.3.4.14. The Location of the my.ini File

The MySQL Configuration Wizard places the my.ini file in the installation directory for the MySQL server. This helps associate con-
figuration files with particular server instances.

To ensure that the MySQL server knows where to look for the my.ini file, an argument similar to this is passed to the MySQL server
as part of the service installation:

--defaults-file="C:\Program Files\MySQL\MySQL Server 5.1\my.ini"

Here, C:\Program Files\MySQL\MySQL Server 5.1 is replaced with the installation path to the MySQL Server. The -
-defaults-file option instructs the MySQL server to read the specified file for configuration options when it starts.

2.3.4.15. Editing the my.ini File

To modify the my.ini file, open it with a text editor and make any necessary changes. You can also modify the server configuration
with the MySQL Administrator utility.

MySQL clients and utilities such as the mysql and mysqldump command-line clients are not able to locate the my.ini file located
in the server installation directory. To configure the client and utility applications, create a new my.ini file in the C:\WINDOWS dir-
ectory (whichever is applicable to your Windows version).

2.3.5. Installing MySQL from a Noinstall Zip Archive
Users who are installing from the Noinstall package can use the instructions in this section to manually install MySQL. The process for
installing MySQL from a Zip archive is as follows:

1. Extract the archive to the desired install directory

2. Create an option file

3. Choose a MySQL server type

4. Start the MySQL server

5. Secure the default user accounts

Installing and Upgrading MySQL

50

http://www.mysql.com/products/administrator/


This process is described in the sections that follow.

2.3.6. Extracting the Install Archive
To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 2.3.14, “Upgrading MySQL on Windows”, before beginning
the upgrade process.

2. Make sure that you are logged in as a user with administrator privileges.

3. Choose an installation location. Traditionally, the MySQL server is installed in C:\mysql. The MySQL Installation Wizard in-
stalls MySQL under C:\Program Files\MySQL. If you do not install MySQL at C:\mysql, you must specify the path to
the install directory during startup or in an option file. See Section 2.3.7, “Creating an Option File”.

4. Extract the install archive to the chosen installation location using your preferred Zip archive tool. Some tools may extract the
archive to a folder within your chosen installation location. If this occurs, you can move the contents of the subfolder into the
chosen installation location.

2.3.7. Creating an Option File
If you need to specify startup options when you run the server, you can indicate them on the command line or place them in an option
file. For options that are used every time the server starts, you may find it most convenient to use an option file to specify your MySQL
configuration. This is particularly true under the following circumstances:

• The installation or data directory locations are different from the default locations (C:\Program Files\MySQL\MySQL
Server 5.1 and C:\Program Files\MySQL\MySQL Server 5.1\data).

• You need to tune the server settings.

When the MySQL server starts on Windows, it looks for options in two files: the my.ini file in the Windows directory, and the
C:\my.cnf file. The Windows directory typically is named something like C:\WINDOWS. You can determine its exact location from
the value of the WINDIR environment variable using the following command:

C:\> echo %WINDIR%

MySQL looks for options first in the my.ini file, and then in the my.cnf file. However, to avoid confusion, it's best if you use only
one file. If your PC uses a boot loader where C: is not the boot drive, your only option is to use the my.ini file. Whichever option file
you use, it must be a plain text file.

You can also make use of the example option files included with your MySQL distribution; see Section 4.2.2.2.2, “Preconfigured Op-
tion Files”.

An option file can be created and modified with any text editor, such as Notepad. For example, if MySQL is installed in E:\mysql
and the data directory is in E:\mydata\data, you can create an option file containing a [mysqld] section to specify values for the
basedir and datadir parameters:

[mysqld]
# set basedir to your installation path
basedir=E:/mysql
# set datadir to the location of your data directory
datadir=E:/mydata/data

Note that Windows pathnames are specified in option files using (forward) slashes rather than backslashes. If you do use backslashes,
you must double them:

[mysqld]
# set basedir to your installation path
basedir=E:\\mysql
# set datadir to the location of your data directory
datadir=E:\\mydata\\data

Installing and Upgrading MySQL

51



MySQL Enterprise
For expert advice on the start-up options appropriate to your circumstances, subscribe to the MySQL Enter-
prise Monitor. For more information see http://www.mysql.com/products/enterprise/advisors.html.

On Windows, the MySQL installer places the data directory directly under the directory where you install MySQL. If you would like to
use a data directory in a different location, you should copy the entire contents of the data directory to the new location. For example,
if MySQL is installed in C:\Program Files\MySQL\MySQL Server 5.1, the data directory is by default in C:\Program
Files\MySQL\MySQL Server 5.1\data. If you want to use E:\mydata as the data directory instead, you must do two
things:

1. Move the entire data directory and all of its contents from C:\Program Files\MySQL\MySQL Server 5.1\data to
E:\mydata.

2. Use a --datadir option to specify the new data directory location each time you start the server.

2.3.8. Selecting a MySQL Server Type
The following table shows the available servers for Windows in MySQL 5.1.20 and earlier.

Binary Description

mysqld-nt Optimized binary with named-pipe support

mysqld Optimized binary without named-pipe support

mysqld-debug Like mysqld-nt, but compiled with full debugging and automatic memory allocation checking

The following table shows the available servers for Windows in MySQL 5.1.21 and later.

Binary Description

mysqld Optimized binary with named-pipe support

mysqld-debug Like mysqld, but compiled with full debugging and automatic memory allocation checking

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel i386-class or higher processor.

Each of the servers in a distribution support the same set of storage engines. The SHOW ENGINES statement displays which engines a
given server supports.

All Windows MySQL 5.1 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. MySQL servers on Windows support named pipes as indicated in the following
list. However, the default is to use TCP/IP regardless of platform. (Named pipes are slower than TCP/IP in many Windows configura-
tions.)

Use of named pipes is subject to these conditions:

• Named pipes are enabled only if you start the server with the --enable-named-pipe option. It is necessary to use this option
explicitly because some users have experienced problems with shutting down the MySQL server when named pipes were used.

• For MySQL 5.1.20 and earlier, named-pipe connections are allowed only by the mysqld-nt and mysqld-debug servers. For
MySQL 5.1.21 and later, the mysqld and mysqld-debug servers both contain support for named-pipe connections.

Note

Most of the examples in this manual use mysqld as the server name. If you choose to use a different server, such as
mysqld-nt or mysqld-debug, make the appropriate substitutions in the commands that are shown in the examples.

2.3.9. Starting the Server for the First Time

Installing and Upgrading MySQL

52

http://www.mysql.com/products/enterprise/advisors.html


This section gives a general overview of starting the MySQL server. The following sections provide more specific information for start-
ing the MySQL server from the command line or as a Windows service.

The information here applies primarily if you installed MySQL using the Noinstall version, or if you wish to configure and test
MySQL manually rather than with the GUI tools.

The examples in these sections assume that MySQL is installed under the default location of C:\Program Files\MySQL\MySQL
Server 5.1. Adjust the pathnames shown in the examples if you have MySQL installed in a different location.

Clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports named-pipe connections.

MySQL for Windows also supports shared-memory connections if the server is started with the --shared-memory option. Clients
can connect through shared memory by using the --protocol=memory option.

For information about which server binary to run, see Section 2.3.8, “Selecting a MySQL Server Type”.

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you can have the server display
status messages in the window where they are easy to see. If something is wrong with your configuration, these messages make it easier
for you to identify and fix any problems.

To start the server, enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld" --console

For a server that includes InnoDB support, you should see the messages similar to those following as it starts (the pathnames and sizes
may differ):

InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25 InnoDB: Started

When the server finishes its startup sequence, you should see something like this, which indicates that the server is ready to service cli-
ent connections:

mysqld: ready for connections
Version: '5.1.25-rc' socket: '' port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open a new console window in which to
run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data directory (C:\Program
Files\MySQL\MySQL Server 5.1\data by default). The error log is the file with the .err extension.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should
set up passwords for them using the instructions in Section 2.10, “Post-Installation Setup and Testing”.

2.3.10. Starting MySQL from the Windows Command Line
The MySQL server can be started manually from the command line. This can be done on any version of Windows.

To start the mysqld server from the command line, you should start a console window (or “DOS window”) and enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld"

Installing and Upgrading MySQL

53



The path to mysqld may vary depending on the install location of MySQL on your system.

You can stop the MySQL server by executing this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin with the -p option and supply the
password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to shut down. The command
connects as the MySQL root user, which is the default administrative account in the MySQL grant system. Note that users in the
MySQL grant system are wholly independent from any login users under Windows.

If mysqld doesn't start, check the error log to see whether the server wrote any messages there to indicate the cause of the problem.
The error log is located in the C:\Program Files\MySQL\MySQL Server 5.1\data directory. It is the file with a suffix of
.err. You can also try to start the server as mysqld --console; in this case, you may get some useful information on the screen
that may help solve the problem.

The last option is to start mysqld with the --standalone and --debug options. In this case, mysqld writes a log file
C:\mysqld.trace that should contain the reason why mysqld doesn't start. See MySQL Internals: Porting.

Use mysqld --verbose --help to display all the options that mysqld understands.

2.3.11. Starting MySQL as a Windows Service
On Windows, the recommended way to run MySQL is to install it as a Windows service, whereby MySQL starts and stops automatic-
ally when Windows starts and stops. A MySQL server installed as a service can also be controlled from the command line using NET
commands, or with the graphical Services utility. Generally, to install MySQL as a Windows service you should be logged in using
an account that has administrator rights.

The Services utility (the Windows Service Control Manager) can be found in the Windows Control Panel (under Adminis-
trative Tools on Windows 2000, XP, Vista and Server 2003). To avoid conflicts, it is advisable to close the Services utility while
performing server installation or removal operations from the command line.

Before installing MySQL as a Windows service, you should first stop the current server if it is running by using the following com-
mand:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqladmin"
-u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin with the -p option and supply the
password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to shut down. The command
connects as the MySQL root user, which is the default administrative account in the MySQL grant system. Note that users in the
MySQL grant system are wholly independent from any login users under Windows.

Install the server as a service using this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld" --install

The service-installation command does not start the server. Instructions for that are given later in this section.

To make it easier to invoke MySQL programs, you can add the pathname of the MySQL bin directory to your Windows system PATH
environment variable:

• On the Windows desktop, right-click on the My Computer icon, and select Properties

• Next select the Advanced tab from the SYSTEM PROPERTIES menu that appears, and click the ENVIRONMENT VARIABLES button.

Installing and Upgrading MySQL

54

http://forge.mysql.com/wiki/MySQL_Internals_Porting


• Under SYSTEM VARIABLES, select Path, and then click the EDIT button. The EDIT SYSTEM VARIABLE dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked VARIABLE VALUE. (Use the End key to ensure that your
cursor is positioned at the very end of the text in this space.) Then enter the complete pathname of your MySQL bin directory (for
example, C:\Program Files\MySQL\MySQL Server 5.1\bin), Note that there should be a semicolon separating this
path from any values present in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues
that were opened have been dismissed. You should now be able to invoke any MySQL executable program by typing its name at the
DOS prompt from any directory on the system, without having to supply the path. This includes the servers, the mysql client, and
all MySQL command-line utilities such as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple MySQL servers on the same ma-
chine.

Warning

You must exercise great care when editing your system PATH by hand; accidental deletion or modification of any portion
of the existing PATH value can leave you with a malfunctioning or even unusable system.

The following additional arguments can be used in MySQL 5.1 when installing the service:

• You can specify a service name immediately following the --install option. The default service name is MySQL.

• If a service name is given, it can be followed by a single option. By convention, this should be --defaults-file=file_name
to specify the name of an option file from which the server should read options when it starts.

The use of a single option other than --defaults-file is possible but discouraged. --defaults-file is more flexible be-
cause it enables you to specify multiple startup options for the server by placing them in the named option file.

• You can also specify a --local-service option following the service name. This causes the server to run using the Loc-
alService Windows account that has limited system privileges. This account is available only for Windows XP or newer. If both
--defaults-file and --local-service are given following the service name, they can be in any order.

For a MySQL server that is installed as a Windows service, the following rules determine the service name and option files that the
server uses:

• If the service-installation command specifies no service name or the default service name (MySQL) following the --install op-
tion, the server uses the a service name of MySQL and reads options from the [mysqld] group in the standard option files.

• If the service-installation command specifies a service name other than MySQL following the --install option, the server uses
that service name. It reads options from the [mysqld] group and the group that has the same name as the service in the standard
option files. This allows you to use the [mysqld] group for options that should be used by all MySQL services, and an option
group with the service name for use by the server installed with that service name.

• If the service-installation command specifies a --defaults-file option after the service name, the server reads options only
from the [mysqld] group of the named file and ignores the standard option files.

As a more complex example, consider the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld"
--install MySQL --defaults-file=C:\my-opts.cnf

Here, the default service name (MySQL) is given after the --install option. If no --defaults-file option had been given, this
command would have the effect of causing the server to read the [mysqld] group from the standard option files. However, because
the --defaults-file option is present, the server reads options from the [mysqld] option group, and only from the named file.

You can also specify options as Start parameters in the Windows Services utility before you start the MySQL service.

Once a MySQL server has been installed as a service, Windows starts the service automatically whenever Windows starts. The service
also can be started immediately from the Services utility, or by using a NET START MySQL command. The NET command is not
case sensitive.

Installing and Upgrading MySQL

55



When run as a service, mysqld has no access to a console window, so no messages can be seen there. If mysqld does not start, check
the error log to see whether the server wrote any messages there to indicate the cause of the problem. The error log is located in the
MySQL data directory (for example, C:\Program Files\MySQL\MySQL Server 5.1\data). It is the file with a suffix of
.err.

When a MySQL server has been installed as a service, and the service is running, Windows stops the service automatically when Win-
dows shuts down. The server also can be stopped manually by using the Services utility, the NET STOP MySQL command, or the
mysqladmin shutdown command.

You also have the choice of installing the server as a manual service if you do not wish for the service to be started automatically during
the boot process. To do this, use the --install-manual option rather than the --install option:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld" --install-manual

To remove a server that is installed as a service, first stop it if it is running by executing NET STOP MySQL. Then use the --remove
option to remove it:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld" --remove

If mysqld is not running as a service, you can start it from the command line. For instructions, see Section 2.3.10, “Starting MySQL
from the Windows Command Line”.

Please see Section 2.3.13, “Troubleshooting a MySQL Installation Under Windows”, if you encounter difficulties during installation.

2.3.12. Testing The MySQL Installation
You can test whether the MySQL server is working by executing any of the following commands:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqlshow"
C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqlshow" -u root mysql
C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqladmin" version status proc
C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysql" test

If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem with your DNS. In this case,
start mysqld with the --skip-name-resolve option and use only localhost and IP numbers in the Host column of the
MySQL grant tables.

You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the --pipe or --protocol=PIPE
option, or by specifying . (period) as the host name. Use the --socket option to specify the name of the pipe if you do not want to
use the default pipe name.

Note that if you have set a password for the root account, deleted the anonymous account, or created a new user account, then you
must use the appropriate -u and -p options with the commands shown above in order to connect with the MySQL Server. See Sec-
tion 5.4.4, “Connecting to the MySQL Server”.

For more information about mysqlshow, see Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”.

2.3.13. Troubleshooting a MySQL Installation Under Windows
When installing and running MySQL for the first time, you may encounter certain errors that prevent the MySQL server from starting.
The purpose of this section is to help you diagnose and correct some of these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the error log to record information rel-
evant to the error that prevents the server from starting. The error log is located in the data directory specified in your my.ini file. The
default data directory location is C:\Program Files\MySQL\MySQL Server 5.1\data. See Section 5.2.2, “The Error Log”.

Another source of information regarding possible errors is the console messages displayed when the MySQL service is starting. Use the
NET START MySQL command from the command line after installing mysqld as a service to see any error messages regarding the
starting of the MySQL server as a service. See Section 2.3.11, “Starting MySQL as a Windows Service”.

The following examples show other common error messages you may encounter when installing MySQL and starting the server for the
first time:

Installing and Upgrading MySQL

56



• If the MySQL server cannot find the mysql privileges database or other critical files, you may see these messages:

System error 1067 has occurred.
Fatal error: Can't open privilege tables: Table 'mysql.host' doesn't exist

These messages often occur when the MySQL base or data directories are installed in different locations than the default locations
(C:\Program Files\MySQL\MySQL Server 5.1 and C:\Program Files\MySQL\MySQL Server 5.1\data,
respectively).

This situation may occur when MySQL is upgraded and installed to a new location, but the configuration file is not updated to re-
flect the new location. In addition, there may be old and new configuration files that conflict. Be sure to delete or rename any old
configuration files when upgrading MySQL.

If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL Server 5.1, you need to en-
sure that the MySQL server is aware of this through the use of a configuration (my.ini) file. The my.ini file needs to be located
in your Windows directory, typically C:\WINDOWS. You can determine its exact location from the value of the WINDIR environ-
ment variable by issuing the following command from the command prompt:

C:\> echo %WINDIR%

An option file can be created and modified with any text editor, such as Notepad. For example, if MySQL is installed in E:\mysql
and the data directory is D:\MySQLdata, you can create the option file and set up a [mysqld] section to specify values for the
basedir and datadir parameters:

[mysqld]
# set basedir to your installation path
basedir=E:/mysql
# set datadir to the location of your data directory
datadir=D:/MySQLdata

Note that Windows pathnames are specified in option files using (forward) slashes rather than backslashes. If you do use back-
slashes, you must double them:

[mysqld]
# set basedir to your installation path
basedir=C:\\Program Files\\MySQL\\MySQL Server 5.1
# set datadir to the location of your data directory
datadir=D:\\MySQLdata

If you change the datadir value in your MySQL configuration file, you must move the contents of the existing MySQL data dir-
ectory before restarting the MySQL server.

See Section 2.3.7, “Creating an Option File”.

• If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service and install MySQL using the
MySQL Configuration Wizard, you may see this error:

Error: Cannot create Windows service for MySql. Error: 0

This occurs when the Configuration Wizard tries to install the service and finds an existing service with the same name.

One solution to this problem is to choose a service name other than mysql when using the configuration wizard. This allows the
new service to be installed correctly, but leaves the outdated service in place. Although this is harmless, it is best to remove old ser-
vices that are no longer in use.

To permanently remove the old mysql service, execute the following command as a user with administrative privileges, on the
command-line:

C:\> sc delete mysql
[SC] DeleteService SUCCESS

If the sc utility is not available for your version of Windows, download the delsrv utility from ht-
tp://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the delsrv mysql syntax.

Installing and Upgrading MySQL

57

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp


2.3.14. Upgrading MySQL on Windows
This section lists some of the steps you should take when upgrading MySQL on Windows.

1. Review Section 2.11, “Upgrading MySQL”, for additional information on upgrading MySQL that is not specific to Windows.

2. You should always back up your current MySQL installation before performing an upgrade. See Section 6.1, “Database Backups”.

3. Download the latest Windows distribution of MySQL from http://dev.mysql.com/downloads/.

4. Before upgrading MySQL, you must stop the server. If the server is installed as a service, stop the service with the following com-
mand from the command prompt:

C:\> NET STOP MySQL

If you are not running the MySQL server as a service, use the following command to stop it:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin with the -p option and supply the
password when prompted.

5. When upgrading to MySQL 5.1 from a version previous to 4.1.5, or when upgrading from a version of MySQL installed from a
Zip archive to a version of MySQL installed with the MySQL Installation Wizard, you must manually remove the previous install-
ation and MySQL service (if the server is installed as a service).

To remove the MySQL service, use the following command:

C:\> C:\mysql\bin\mysqld --remove

If you do not remove the existing service, the MySQL Installation Wizard may fail to properly install the new MySQL ser-
vice.

6. If you are using the MySQL Installation Wizard, start the wizard as described in Section 2.3.3, “Using the MySQL Installation
Wizard”.

7. If you are installing MySQL from a Zip archive, extract the archive. You may either overwrite your existing MySQL installation
(usually located at C:\mysql), or install it into a different directory, such as C:\mysql5. Overwriting the existing installation is
recommended.

8. If you were running MySQL as a Windows service and you had to remove the service earlier in this procedure, reinstall the ser-
vice. (See Section 2.3.11, “Starting MySQL as a Windows Service”.)

9. Restart the server. For example, use NET START MySQL if you run MySQL as a service, or invoke mysqld directly otherwise.

10. If you encounter errors, see Section 2.3.13, “Troubleshooting a MySQL Installation Under Windows”.

2.3.15. MySQL on Windows Compared to MySQL on Unix
MySQL for Windows has proven itself to be very stable. The Windows version of MySQL has the same features as the corresponding
Unix version, with the following exceptions:

• Limited number of ports

Windows systems have about 4,000 ports available for client connections, and after a connection on a port closes, it takes two to
four minutes before the port can be reused. In situations where clients connect to and disconnect from the server at a high rate, it is
possible for all available ports to be used up before closed ports become available again. If this happens, the MySQL server appears
to be unresponsive even though it is running. Note that ports may be used by other applications running on the machine as well, in
which case the number of ports available to MySQL is lower.

Installing and Upgrading MySQL

58

http://dev.mysql.com/downloads/


For more information about this problem, see http://support.microsoft.com/default.aspx?scid=kb;en-us;196271.

• Concurrent reads

MySQL depends on the pread() and pwrite() system calls to be able to mix INSERT and SELECT. Currently, we use mu-
texes to emulate pread() and pwrite(). We intend to replace the file level interface with a virtual interface in the future so that
we can use the readfile()/writefile() interface to get more speed. The current implementation limits the number of open
files that MySQL 5.1 can use to 2,048, which means that you cannot run as many concurrent threads on Windows as on Unix.

• Blocking read

MySQL uses a blocking read for each connection. That has the following implications if named-pipe connections are enabled:

• A connection is not disconnected automatically after eight hours, as happens with the Unix version of MySQL.

• If a connection hangs, it is not possible to break it without killing MySQL.

• mysqladmin kill does not work on a sleeping connection.

• mysqladmin shutdown cannot abort as long as there are sleeping connections.

We plan to fix this problem in the future.

• ALTER TABLE

While you are executing an ALTER TABLE statement, the table is locked from being used by other threads. This has to do with the
fact that on Windows, you can't delete a file that is in use by another thread. In the future, we may find some way to work around
this problem.

• DROP TABLE

DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the MERGE handler does the table
mapping hidden from the upper layer of MySQL. Because Windows does not allow dropping files that are open, you first must flush
all MERGE tables (with FLUSH TABLES) or drop the MERGE table before dropping the table.

• DATA DIRECTORY and INDEX DIRECTORY

The DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are ignored on Windows, because Windows
doesn't support symbolic links. These options also are ignored on systems that have a non-functional realpath() call.

• DROP DATABASE

You cannot drop a database that is in use by some thread.

• Case-insensitive names

Filenames are not case sensitive on Windows, so MySQL database and table names are also not case sensitive on Windows. The
only restriction is that database and table names must be specified using the same case throughout a given statement. See Sec-
tion 8.2.2, “Identifier Case Sensitivity”.

• The “\” pathname separator character

Pathname components in Windows are separated by the “\” character, which is also the escape character in MySQL. If you are us-
ing LOAD DATA INFILE or SELECT ... INTO OUTFILE, use Unix-style filenames with “/” characters:

mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;

Alternatively, you must double the “\” character:

mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;

• Problems with pipes

Installing and Upgrading MySQL

59

http://support.microsoft.com/default.aspx?scid=kb;en-us;196271


Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character ^Z / CHAR(24), Windows
thinks that it has encountered end-of-file and aborts the program.

This is mainly a problem when you try to apply a binary log as follows:

C:\> mysqlbinlog binary_log_file | mysql --user=root

If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character, you can use the following
workaround:

C:\> mysqlbinlog binary_log_file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read in any SQL file that may contain binary data.

• Access denied for user error

If MySQL cannot resolve your hostname properly, you may get the following error when you attempt to run a MySQL client pro-
gram to connect to a server running on the same machine:

Access denied for user 'some_user'@'unknown'
to database 'mysql'

To fix this problem, you should create a file named \windows\hosts containing the following information:

127.0.0.1 localhost

Here are some open issues for anyone who might want to help us improve MySQL on Windows:

• Add macros to use the faster thread-safe increment/decrement methods provided by Windows.

2.4. Installing MySQL from RPM Packages on Linux
The recommended way to install MySQL on RPM-based Linux distributions is by using the RPM packages. The RPMs provided by
MySQL AB to the community should work on all versions of Linux that support RPM packages and use glibc 2.3. To obtain RPM
packages, see Section 2.1.3, “How to Get MySQL”.

For non-RPM Linux distributions, you can install MySQL using a .tar.gz package. See Section 2.8, “Installing MySQL from
tar.gz Packages on Other Unix-Like Systems”.

MySQL AB does provide some platform-specific RPMs; the difference between a platform-specific RPM and a generic RPM is that a
platform-specific RPM is built on the targeted platform and is linked dynamically whereas a generic RPM is linked statically with
LinuxThreads.

Note

RPM distributions of MySQL often are provided by other vendors. Be aware that they may differ in features and capabilit-
ies from those built by MySQL AB, and that the instructions in this manual do not necessarily apply to installing them.
The vendor's instructions should be consulted instead.

If you have problems with an RPM file (for example, if you receive the error Sorry, the host 'xxxx' could not be
looked up), see Section 2.13.1.2, “Linux Binary Distribution Notes”.

In most cases, you need to install only the MySQL-server and MySQL-client packages to get a functional MySQL installation.
The other packages are not required for a standard installation.

For upgrades, if your installation was originally produced by installing multiple RPM packages, it is best to upgrade all the packages,
not just some. For example, if you previously installed the server and client RPMs, do not upgrade just the server RPM.

If you get a dependency failure when trying to install MySQL packages (for example, error: removing these packages

Installing and Upgrading MySQL

60



would break dependencies: libmysqlclient.so.10 is needed by ...), you should also install the MySQL-
shared-compat package, which includes both the shared libraries for backward compatibility (libmysqlclient.so.12 for
MySQL 4.0 and libmysqlclient.so.10 for MySQL 3.23).

Some Linux distributions still ship with MySQL 3.23 and they usually link applications dynamically to save disk space. If these shared
libraries are in a separate package (for example, MySQL-shared), it is sufficient to simply leave this package installed and just up-
grade the MySQL server and client packages (which are statically linked and do not depend on the shared libraries). For distributions
that include the shared libraries in the same package as the MySQL server (for example, Red Hat Linux), you could either install our
3.23 MySQL-shared RPM, or use the MySQL-shared-compat package instead. (Do not install both.)

The RPM packages shown in the following list are available. The names shown here use a suffix of .glibc23.i386.rpm, but par-
ticular packages can have different suffixes, as described later.

• MySQL-server-VERSION.glibc23.i386.rpm

The MySQL server. You need this unless you only want to connect to a MySQL server running on another machine.

• MySQL-client-VERSION.glibc23.i386.rpm

The standard MySQL client programs. You probably always want to install this package.

• MySQL-devel-VERSION.glibc23.i386.rpm

The libraries and include files that are needed if you want to compile other MySQL clients, such as the Perl modules.

• MySQL-debuginfo-VERSION.glibc23.i386.rpm

This package contains debugging information. debuginfo RPMs are never needed to use MySQL software; this is true both for
the server and for client programs. However, they contain additional information that might be needed by a debugger to analyze a
crash.

• MySQL-shared-VERSION.glibc23.i386.rpm

This package contains the shared libraries (libmysqlclient.so*) that certain languages and applications need to dynamically
load and use MySQL. It contains single-threaded and thread-safe libraries. If you install this package, do not install the MySQL-
shared-compat package.

• MySQL-shared-compat-VERSION.glibc23.i386.rpm

This package includes the shared libraries for MySQL 3.23, 4.0, 4.1, and 5.1. It contains single-threaded and thread-safe libraries.
Install this package instead of MySQL-shared if you have applications installed that are dynamically linked against older versions
of MySQL but you want to upgrade to the current version without breaking the library dependencies.

• MySQL-embedded-VERSION.glibc23.i386.rpm

The embedded MySQL server library.

• MySQL-ndb-management-VERSION.glibc23.i386.rpm, MySQL-ndb-storage-VERSION.glibc23.i386.rpm,
MySQL-ndb-tools-VERSION.glibc23.i386.rpm, MySQL-ndb-extra-VERSION.glibc23.i386.rpm

Packages that contain additional files for MySQL Cluster installations.

Note

The MySQL-ndb-tools RPM requires a working installation of perl. Prior to MySQL 5.1.18, the DBI and
HTML::Template packages were also required. See Section 2.15, “Perl Installation Notes”, and Section 17.11.15,
“ndb_size.pl — NDBCluster Size Requirement Estimator”, for more information.

• MySQL-test-VERSION.glibc23.i386.rpm

This package includes the MySQL test suite.

• MySQL-VERSION.src.rpm

This contains the source code for all of the previous packages. It can also be used to rebuild the RPMs on other architectures (for ex-
ample, Alpha or SPARC).

Installing and Upgrading MySQL

61



The suffix of RPM package names (following the VERSION value) has the following syntax:

.PLATFORM.CPU.rpm

The PLATFORM and CPU values indicate the type of system for which the package is built. PLATFORM indicates the platform and CPU
indicates the processor type or family.

All packages are dynamically linked against glibc 2.3. The PLATFORM value indicates whether the package is platform independent
or intended for a specific platform:

glibc23 Platform independent, should run on any Linux distribution that supports glibc 2.3

rhel3, rhel4 Red Hat Enterprise Linux 3 or 4

sles9, sles10 SuSE Linux Enterprise Server 9 or 10

In MySQL 5.1, only glibc23 packages are available currently.

The CPU value indicates the processor type or family for which the package is built:

i386 x86 processor, 386 and up

i586 x86 processor, Pentium and up

x86_64 64-bit x86 processor

ia64 Itanium (IA-64) processor

To see all files in an RPM package (for example, a MySQL-server RPM), run a commnd like this:

shell> rpm -qpl MySQL-server-VERSION.glibc23.i386.rpm

To perform a standard minimal installation, install the server and client RPMs:

shell> rpm -i MySQL-server-VERSION.glibc23.i386.rpm
shell> rpm -i MySQL-client-VERSION.glibc23.i386.rpm

To install only the client programs, install just the client RPM:

shell> rpm -i MySQL-client-VERSION.glibc23.i386.rpm

RPM provides a feature to verify the integrity and authenticity of packages before installing them. If you would like to learn more about
this feature, see Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums or GnuPG”.

The server RPM places data under the /var/lib/mysql directory. The RPM also creates a login account for a user named mysql
(if one does not exist) to use for running the MySQL server, and creates the appropriate entries in /etc/init.d/ to start the server
automatically at boot time. (This means that if you have performed a previous installation and have made changes to its startup script,
you may want to make a copy of the script so that you don't lose it when you install a newer RPM.) See Section 2.10.2.2, “Starting and
Stopping MySQL Automatically”, for more information on how MySQL can be started automatically on system startup.

If you want to install the MySQL RPM on older Linux distributions that do not support initialization scripts in /etc/init.d (directly
or via a symlink), you should create a symbolic link that points to the location where your initialization scripts actually are installed. For
example, if that location is /etc/rc.d/init.d, use these commands before installing the RPM to create /etc/init.d as a sym-
bolic link that points there:

shell> cd /etc
shell> ln -s rc.d/init.d .

However, all current major Linux distributions should support the new directory layout that uses /etc/init.d, because it is required
for LSB (Linux Standard Base) compliance.

If the RPM files that you install include MySQL-server, the mysqld server should be up and running after installation. You should
be able to start using MySQL.

Installing and Upgrading MySQL

62



If something goes wrong, you can find more information in the binary installation section. See Section 2.8, “Installing MySQL from
tar.gz Packages on Other Unix-Like Systems”.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should
set up passwords for them using the instructions in Section 2.10, “Post-Installation Setup and Testing”.

2.5. Installing MySQL on Mac OS X
You can install MySQL on Mac OS X 10.3.x (“Panther”) or newer using a Mac OS X binary package in PKG format instead of the bin-
ary tarball distribution. Please note that older versions of Mac OS X (for example, 10.1.x or 10.2.x) are not supported by this package.

The package is located inside a disk image (.dmg) file that you first need to mount by double-clicking its icon in the Finder. It should
then mount the image and display its contents.

To obtain MySQL, see Section 2.1.3, “How to Get MySQL”.

Note

Before proceeding with the installation, be sure to shut down all running MySQL server instances by either using the
MySQL Manager Application (on Mac OS X Server) or via mysqladmin shutdown on the command line.

To actually install the MySQL PKG file, double-click on the package icon. This launches the Mac OS X Package Installer, which
guides you through the installation of MySQL.

Due to a bug in the Mac OS X package installer, you may see this error message in the destination disk selection dialog:

You cannot install this software on this disk. (null)

If this error occurs, simply click the Go Back button once to return to the previous screen. Then click Continue to advance to the
destination disk selection again, and you should be able to choose the destination disk correctly. We have reported this bug to Apple and
it is investigating this problem.

The Mac OS X PKG of MySQL installs itself into /usr/local/mysql-VERSION and also installs a symbolic link, /
usr/local/mysql, that points to the new location. If a directory named /usr/local/mysql exists, it is renamed to /
usr/local/mysql.bak first. Additionally, the installer creates the grant tables in the mysql database by executing
mysql_install_db.

The installation layout is similar to that of a tar file binary distribution; all MySQL binaries are located in the directory /
usr/local/mysql/bin. The MySQL socket file is created as /tmp/mysql.sock by default. See Section 2.1.5, “Installation
Layouts”.

MySQL installation requires a Mac OS X user account named mysql. A user account with this name should exist by default on Mac
OS X 10.2 and up.

If you are running Mac OS X Server, a version of MySQL should already be installed. The following table shows the versions of
MySQL that ship with Mac OS X Server versions.

Mac OS X Server Version MySQL Version

10.2-10.2.2 3.23.51

10.2.3-10.2.6 3.23.53

10.3 4.0.14

10.3.2 4.0.16

10.4.0 4.1.10a

This manual section covers the installation of the official MySQL Mac OS X PKG only. Make sure to read Apple's help information
about installing MySQL: Run the “Help View” application, select “Mac OS X Server” help, do a search for “MySQL,” and read the
item entitled “Installing MySQL.”

If you previously used Marc Liyanage's MySQL packages for Mac OS X from http://www.entropy.ch, you can simply follow the update

Installing and Upgrading MySQL

63

http://www.entropy.ch


instructions for packages using the binary installation layout as given on his pages.

If you are upgrading from Marc's 3.23.x versions or from the Mac OS X Server version of MySQL to the official MySQL PKG, you
also need to convert the existing MySQL privilege tables to the current format, because some new security privileges have been added.
See Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

If you want MySQL to start automatically during system startup, you also need to install the MySQL Startup Item. It is part of the Mac
OS X installation disk images as a separate installation package. Simply double-click the MySQLStartupItem.pkg icon and follow the
instructions to install it. The Startup Item need be installed only once. There is no need to install it each time you upgrade the MySQL
package later.

The Startup Item for MySQL is installed into /Library/StartupItems/MySQLCOM. (Before MySQL 4.1.2, the location was /
Library/StartupItems/MySQL, but that collided with the MySQL Startup Item installed by Mac OS X Server.) Startup Item in-
stallation adds a variable MYSQLCOM=-YES- to the system configuration file /etc/hostconfig. If you want to disable the auto-
matic startup of MySQL, simply change this variable to MYSQLCOM=-NO-.

On Mac OS X Server, the default MySQL installation uses the variable MYSQL in the /etc/hostconfig file. The MySQL AB Star-
tup Item installer disables this variable by setting it to MYSQL=-NO-. This avoids boot time conflicts with the MYSQLCOM variable
used by the MySQL AB Startup Item. However, it does not shut down a running MySQL server. You should do that yourself.

After the installation, you can start up MySQL by running the following commands in a terminal window. You must have administrator
privileges to perform this task.

If you have installed the Startup Item, use this command:

shell> sudo /Library/StartupItems/MySQLCOM/MySQLCOM start
(Enter your password, if necessary)
(Press Control-D or enter "exit" to exit the shell)

If you don't use the Startup Item, enter the following command sequence:

shell> cd /usr/local/mysql
shell> sudo ./bin/mysqld_safe
(Enter your password, if necessary)
(Press Control-Z)
shell> bg
(Press Control-D or enter "exit" to exit the shell)

You should be able to connect to the MySQL server, for example, by running /usr/local/mysql/bin/mysql.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should
set up passwords for them using the instructions in Section 2.10, “Post-Installation Setup and Testing”.

You might want to add aliases to your shell's resource file to make it easier to access commonly used programs such as mysql and
mysqladmin from the command line. The syntax for bash is:

alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

For tcsh, use:

alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. You can do this by modifying the appropriate star-
tup file for your shell. For more information, see Section 4.2.1, “Invoking MySQL Programs”.

If you are upgrading an existing installation, note that installing a new MySQL PKG does not remove the directory of an older installa-
tion. Unfortunately, the Mac OS X Installer does not yet offer the functionality required to properly upgrade previously installed pack-
ages.

To use your existing databases with the new installation, you'll need to copy the contents of the old data directory to the new data direct-
ory. Make sure that neither the old server nor the new one is running when you do this. After you have copied over the MySQL data-
base files from the previous installation and have successfully started the new server, you should consider removing the old installation
files to save disk space. Additionally, you should also remove older versions of the Package Receipt directories located in /

Installing and Upgrading MySQL

64



Library/Receipts/mysql-VERSION.pkg.

2.6. Installing MySQL on Solaris
If you install MySQL using a binary tarball distribution on Solaris, you may run into trouble even before you get the MySQL distribu-
tion unpacked, as the Solaris tar cannot handle long filenames. This means that you may see errors when you try to unpack MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution. You can find a precompiled copy for Solaris at ht-
tp://dev.mysql.com/downloads/os-solaris.html.

You can install MySQL on Solaris using a binary package in PKG format instead of the binary tarball distribution. Before installing us-
ing the binary PKG format, you should create the mysql user and group, for example:

groupadd mysql
useradd -g mysql mysql

Some basic PKG-handling commands follow:

• To add a package:

pkgadd -d package_name.pkg

• To remove a package:

pkgrm package_name

• To get a full list of installed packages:

pkginfo

• To get detailed information for a package:

pkginfo -l package_name

• To list the files belonging to a package:

pkgchk -v package_name

• To get packaging information for an arbitrary file:

pkgchk -l -p file_name

For additional information about installing MySQL on Solaris, see Section 2.13.3, “Solaris Notes”.

2.7. Installing MySQL on NetWare
Porting MySQL to NetWare was an effort spearheaded by Novell. Novell customers should be pleased to note that NetWare 6.5 ships
with bundled MySQL binaries, complete with an automatic commercial use license for all servers running that version of NetWare.

MySQL for NetWare is compiled using a combination of Metrowerks CodeWarrior for NetWare and special cross-compilation versions
of the GNU autotools.

The latest binary packages for NetWare can be obtained at http://dev.mysql.com/downloads/. See Section 2.1.3, “How to Get MySQL”.

To host MySQL, the NetWare server must meet these requirements:

• The latest Support Pack of NetWare 6.5 must be installed.

• The system must meet Novell's minimum requirements to run the respective version of NetWare.

Installing and Upgrading MySQL

65

http://dev.mysql.com/downloads/os-solaris.html
http://dev.mysql.com/downloads/os-solaris.html
http://dev.mysql.com/downloads/
http://support.novell.com/filefinder/18197/index.html


• MySQL data and the program binaries must be installed on an NSS volume; traditional volumes are not supported.

To install MySQL for NetWare, use the following procedure:

1. If you are upgrading from a prior installation, stop the MySQL server. This is done from the server console, using the following
command:

SERVER: mysqladmin -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin with the -p option and supply the
password when prompted.

2. Log on to the target server from a client machine with access to the location where you are installing MySQL.

3. Extract the binary package Zip file onto the server. Be sure to allow the paths in the Zip file to be used. It is safe to simply extract
the file to SYS:\.

If you are upgrading from a prior installation, you may need to copy the data directory (for example, SYS:MYSQL\DATA), as well
as my.cnf, if you have customized it. You can then delete the old copy of MySQL.

4. You might want to rename the directory to something more consistent and easy to use. The examples in this manual use
SYS:MYSQL to refer to the installation directory.

Note that MySQL installation on NetWare does not detect if a version of MySQL is already installed outside the NetWare release.
Therefore, if you have installed the latest MySQL version from the Web (for example, MySQL 4.1 or later) in SYS:\MYSQL, you
must rename the folder before upgrading the NetWare server; otherwise, files in SYS:\MySQL are overwritten by the MySQL
version present in NetWare Support Pack.

5. At the server console, add a search path for the directory containing the MySQL NLMs. For example:

SERVER: SEARCH ADD SYS:MYSQL\BIN

6. Initialize the data directory and the grant tables, if necessary, by executing mysql_install_db at the server console.

7. Start the MySQL server using mysqld_safe at the server console.

8. To finish the installation, you should also add the following commands to autoexec.ncf. For example, if your MySQL install-
ation is in SYS:MYSQL and you want MySQL to start automatically, you could add these lines:

#Starts the MySQL 5.1.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE

If you are running MySQL on NetWare 6.0, we strongly suggest that you use the --skip-external-locking option on the
command line:

#Starts the MySQL 5.1.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --skip-external-locking

It is also necessary to use CHECK TABLE and REPAIR TABLE instead of myisamchk, because myisamchk makes use of ex-
ternal locking. External locking is known to have problems on NetWare 6.0; the problem has been eliminated in NetWare 6.5. Note
that the use of MySQL on Netware 6.0 is not officially supported.

mysqld_safe on NetWare provides a screen presence. When you unload (shut down) the mysqld_safe NLM, the screen
does not go away by default. Instead, it prompts for user input:

*<NLM has terminated; Press any key to close the screen>*

If you want NetWare to close the screen automatically instead, use the --autoclose option to mysqld_safe. For example:

Installing and Upgrading MySQL

66



#Starts the MySQL 5.1.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --autoclose

The behavior of mysqld_safe on NetWare is described further in Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”.

9. When installing MySQL, either for the first time or upgrading from a previous version, download and install the latest and appro-
priate Perl module and PHP extensions for NetWare:

• Perl: http://forge.novell.com/modules/xfcontent/downloads.php/perl/Modules/

• PHP: http://forge.novell.com/modules/xfcontent/downloads.php/php/Modules/

If there was an existing installation of MySQL on the NetWare server, be sure to check for existing MySQL startup commands in au-
toexec.ncf, and edit or delete them as necessary.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should
set up passwords for them using the instructions in Section 2.10, “Post-Installation Setup and Testing”.

2.8. Installing MySQL from tar.gz Packages on Other Unix-Like Sys-
tems

This section covers the installation of MySQL binary distributions that are provided for various platforms in the form of compressed
tar files (files with a .tar.gz extension). See Section 2.1.2.4, “MySQL Binaries Compiled by MySQL AB”, for a detailed list.

To obtain MySQL, see Section 2.1.3, “How to Get MySQL”.

MySQL tar file binary distributions have names of the form mysql-VERSION-OS.tar.gz, where VERSION is a number (for ex-
ample, 5.1.25-rc), and OS indicates the type of operating system for which the distribution is intended (for example, pc-
linux-i686).

In addition to these generic packages, we also offer binaries in platform-specific package formats for selected platforms. See Sec-
tion 2.2, “Standard MySQL Installation Using a Binary Distribution”, for more information on how to install these.

You need the following tools to install a MySQL tar file binary distribution:

• GNU gunzip to uncompress the distribution.

• A reasonable tar to unpack the distribution. GNU tar is known to work. Some operating systems come with a preinstalled ver-
sion of tar that is known to have problems. For example, the tar provided with early versions of Mac OS X, SunOS 4.x and Sol-
aris 8 and earlier are known to have problems with long filenames. On Mac OS X, you can use the preinstalled gnutar program.
On other systems with a deficient tar, you should install GNU tar first.

If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How to Report Bugs or Problems”.

The basic commands that you must execute to install and use a MySQL binary distribution are:

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> cd /usr/local
shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql data
shell> bin/mysqld_safe --user=mysql &

Installing and Upgrading MySQL

67

http://forge.novell.com/modules/xfcontent/downloads.php/perl/Modules/
http://forge.novell.com/modules/xfcontent/downloads.php/php/Modules/


Note

This procedure does not set up any passwords for MySQL accounts. After following the procedure, proceed to Sec-
tion 2.10, “Post-Installation Setup and Testing”.

A more detailed version of the preceding description for installing a binary distribution follows:

1. Add a login user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd and groupadd may differ slightly on dif-
ferent versions of Unix, or they may have different names such as adduser and addgroup.

You might want to call the user and group something else instead of mysql. If so, substitute the appropriate name in the following
steps.

2. Pick the directory under which you want to unpack the distribution and change location into it. In the following example, we un-
pack the distribution under /usr/local. (The instructions, therefore, assume that you have permission to create files and direct-
ories in /usr/local. If that directory is protected, you must perform the installation as root.)

shell> cd /usr/local

3. Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”. For a given release, binary distributions for
all platforms are built from the same MySQL source distribution.

4. Unpack the distribution, which creates the installation directory. Then create a symbolic link to that directory:

shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql

The tar command creates a directory named mysql-VERSION-OS. The ln command makes a symbolic link to that directory.
This lets you refer more easily to the installation directory as /usr/local/mysql.

With GNU tar, no separate invocation of gunzip is necessary. You can replace the first line with the following alternative com-
mand to uncompress and extract the distribution:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

5. Change location into the installation directory:

shell> cd mysql

You will find several files and subdirectories in the mysql directory. The most important for installation purposes are the bin and
scripts subdirectories:

• The bin directory contains client programs and the server. You should add the full pathname of this directory to your PATH
environment variable so that your shell finds the MySQL programs properly. See Section 2.14, “Environment Variables”.

• The scripts directory contains the mysql_install_db script used to initialize the mysql database containing the grant
tables that store the server access permissions.

6. Ensure that the distribution contents are accessible to mysql. If you unpacked the distribution as mysql, no further action is re-
quired. If you unpacked the distribution as root, its contents will be owned by root. Change its ownership to mysql by execut-
ing the following commands as root in the installation directory:

shell> chown -R mysql .
shell> chgrp -R mysql .

The first command changes the owner attribute of the files to the mysql user. The second changes the group attribute to the
mysql group.

Installing and Upgrading MySQL

68



7. If you have not installed MySQL before, you must create the MySQL data directory and initialize the grant tables:

shell> scripts/mysql_install_db --user=mysql

If you run the command as root, include the --user option as shown. If you run the command while logged in as that user, you
can omit the --user option.

The command should create the data directory and its contents with mysql as the owner.

After creating or updating the grant tables, you need to restart the server manually.

8. Most of the MySQL installation can be owned by root if you like. The exception is that the data directory must be owned by
mysql. To accomplish this, run the following commands as root in the installation directory:

shell> chown -R root .
shell> chown -R mysql data

9. If you want MySQL to start automatically when you boot your machine, you can copy support-files/mysql.server to
the location where your system has its startup files. More information can be found in the support-files/mysql.server
script itself and in Section 2.10.2.2, “Starting and Stopping MySQL Automatically”.

10. You can set up new accounts using the bin/mysql_setpermission script if you install the DBI and DBD::mysql Perl
modules. See Section 4.6.13, “mysql_setpermission — Interactively Set Permissions in Grant Tables”. For Perl module in-
stallation instructions, see Section 2.15, “Perl Installation Notes”.

11. If you would like to use mysqlaccess and have the MySQL distribution in some non-standard location, you must change the
location where mysqlaccess expects to find the mysql client. Edit the bin/mysqlaccess script at approximately line 18.
Search for a line that looks like this:

$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you do not do this, a Broken pipe er-
ror will occur when you run mysqlaccess.

After everything has been unpacked and installed, you should test your distribution. To start the MySQL server, use the following com-
mand:

shell> bin/mysqld_safe --user=mysql &

If you run the command as root, you must use the --user option as shown. The value of the option is the name of the login account
that you created in the first step to use for running the server. If you run the command while logged in as mysql, you can omit the -
-user option.

If the command fails immediately and prints mysqld ended, you can find some information in the host_name.err file in the data
directory.

More information about mysqld_safe is given in Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should
set up passwords for them using the instructions in Section 2.10, “Post-Installation Setup and Testing”.

2.9. MySQL Installation Using a Source Distribution
Before you proceed with an installation from source, first check whether our binary is available for your platform and whether it works
for you. We put a great deal of effort into ensuring that our binaries are built with the best possible options.

To obtain a source distribution for MySQL, Section 2.1.3, “How to Get MySQL”. If you want to build MySQL from source on Win-
dows, see Section 2.9.6, “Installing MySQL from Source on Windows”.

MySQL source distributions are provided as compressed tar archives and have names of the form mysql-VERSION.tar.gz,
where VERSION is a number like 5.1.25-rc.

Installing and Upgrading MySQL

69



You need the following tools to build and install MySQL from source:

• GNU gunzip to uncompress the distribution.

• A reasonable tar to unpack the distribution. GNU tar is known to work. Some operating systems come with a preinstalled ver-
sion of tar that is known to have problems. For example, the tar provided with early versions of Mac OS X, SunOS 4.x and Sol-
aris 8 and earlier are known to have problems with long filenames. On Mac OS X, you can use the preinstalled gnutar program.
On other systems with a deficient tar, you should install GNU tar first.

• A working ANSI C++ compiler. gcc 2.95.2 or later, SGI C++, and SunPro C++ are some of the compilers that are known to work.
libg++ is not needed when using gcc. gcc 2.7.x has a bug that makes it impossible to compile some perfectly legal C++ files,
such as sql/sql_base.cc. If you have only gcc 2.7.x, you must upgrade your gcc to be able to compile MySQL. gcc 2.8.1 is
also known to have problems on some platforms, so it should be avoided if a newer compiler exists for the platform. gcc 2.95.2 or
later is recommended.

• A good make program. GNU make is always recommended and is sometimes required. (BSD make fails, and vendor-provided
make implementations may fail as well.) If you have problems, we recommend GNU make 3.75 or newer.

• libtool 1.5.24 or later is also recommended.

If you are using a version of gcc recent enough to understand the -fno-exceptions option, it is very important that you use this
option. Otherwise, you may compile a binary that crashes randomly. We also recommend that you use -felide-constructors
and -fno-rtti along with -fno-exceptions. When in doubt, do the following:

CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors \
-fno-exceptions -fno-rtti" ./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

On most systems, this gives you a fast and stable binary.

If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How to Report Bugs or Problems”.

2.9.1. Source Installation Overview
The basic commands that you must execute to install a MySQL source distribution are:

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> gunzip < mysql-VERSION.tar.gz | tar -xvf -
shell> cd mysql-VERSION
shell> ./configure --prefix=/usr/local/mysql
shell> make
shell> make install
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> cd /usr/local/mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> bin/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql var
shell> bin/mysqld_safe --user=mysql &

If you start from a source RPM, do the following:

shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

This makes a binary RPM that you can install. For older versions of RPM, you may have to replace the command rpmbuild with rpm
instead.

Note

This procedure does not set up any passwords for MySQL accounts. After following the procedure, proceed to Sec-
tion 2.10, “Post-Installation Setup and Testing”, for post-installation setup and testing.

A more detailed version of the preceding description for installing MySQL from a source distribution follows:

Installing and Upgrading MySQL

70



1. Add a login user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd and groupadd may differ slightly on dif-
ferent versions of Unix, or they may have different names such as adduser and addgroup.

You might want to call the user and group something else instead of mysql. If so, substitute the appropriate name in the following
steps.

2. Perform the following steps as the mysql user, except as noted.

3. Pick the directory under which you want to unpack the distribution and change location into it.

4. Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.

5. Unpack the distribution into the current directory:

shell> gunzip < /path/to/mysql-VERSION.tar.gz | tar xvf -

This command creates a directory named mysql-VERSION.

With GNU tar, no separate invocation of gunzip is necessary. You can use the following alternative command to uncompress
and extract the distribution:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

6. Change location into the top-level directory of the unpacked distribution:

shell> cd mysql-VERSION

Note that currently you must configure and build MySQL from this top-level directory. You cannot build it in a different directory.

7. Configure the release and compile everything:

shell> ./configure --prefix=/usr/local/mysql
shell> make

When you run configure, you might want to specify other options. Run ./configure --help for a list of options. Sec-
tion 2.9.2, “Typical configure Options”, discusses some of the more useful options.

If configure fails and you are going to send mail to a MySQL mailing list to ask for assistance, please include any lines from
config.log that you think can help solve the problem. Also include the last couple of lines of output from configure. To file
a bug report, please use the instructions in Section 1.7, “How to Report Bugs or Problems”.

If the compile fails, see Section 2.9.4, “Dealing with Problems Compiling MySQL”, for help.

8. Install the distribution:

shell> make install

You might need to run this command as root.

If you want to set up an option file, use one of those present in the support-files directory as a template. For example:

shell> cp support-files/my-medium.cnf /etc/my.cnf

You might need to run this command as root.

If you want to configure support for InnoDB tables, you should edit the /etc/my.cnf file, remove the # character before the
option lines that start with innodb_..., and modify the option values to be what you want. See Section 4.2.2.2, “Using Option
Files”, and Section 13.5.3, “InnoDB Configuration”.

Installing and Upgrading MySQL

71



9. Change location into the installation directory:

shell> cd /usr/local/mysql

10. If you ran the make install command as root, the installed files will be owned by root. Ensure that the installation is ac-
cessible to mysql by executing the following commands as root in the installation directory:

shell> chown -R mysql .
shell> chgrp -R mysql .

The first command changes the owner attribute of the files to the mysql user. The second changes the group attribute to the
mysql group.

11. If you have not installed MySQL before, you must create the MySQL data directory and initialize the grant tables:

shell> bin/mysql_install_db --user=mysql

If you run the command as root, include the --user option as shown. If you run the command while logged in as mysql, you
can omit the --user option.

The command should create the data directory and its contents with mysql as the owner.

After using mysql_install_db to create the grant tables for MySQL, you must restart the server manually. The
mysqld_safe command to do this is shown in a later step.

12. Most of the MySQL installation can be owned by root if you like. The exception is that the data directory must be owned by
mysql. To accomplish this, run the following commands as root in the installation directory:

shell> chown -R root .
shell> chown -R mysql var

13. If you want MySQL to start automatically when you boot your machine, you can copy support-files/mysql.server to
the location where your system has its startup files. More information can be found in the support-files/mysql.server
script itself; see also Section 2.10.2.2, “Starting and Stopping MySQL Automatically”.

14. You can set up new accounts using the bin/mysql_setpermission script if you install the DBI and DBD::mysql Perl
modules. See Section 4.6.13, “mysql_setpermission — Interactively Set Permissions in Grant Tables”. For Perl module in-
stallation instructions, see Section 2.15, “Perl Installation Notes”.

After everything has been installed, you should test your distribution. To start the MySQL server, use the following command:

shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &

If you run the command as root, you should use the --user option as shown. The value of the option is the name of the login ac-
count that you created in the first step to use for running the server. If you run the command while logged in as that user, you can omit
the --user option.

If the command fails immediately and prints mysqld ended, you can find some information in the host_name.err file in the data
directory.

More information about mysqld_safe is given in Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should
set up passwords for them using the instructions in Section 2.10, “Post-Installation Setup and Testing”.

2.9.2. Typical configure Options
The configure script gives you a great deal of control over how you configure a MySQL source distribution. Typically you do this
using options on the configure command line. You can also affect configure using certain environment variables. See Sec-
tion 2.14, “Environment Variables”. For a full list of options supported by configure, run this command:

Installing and Upgrading MySQL

72



shell> ./configure --help

A list of the available configure options is provided in the table below.

Table 2.1. Build (configure) Reference

Formats Description Default Introduced Removed

--bindir=DIR User executables EPREFIX/bin

--build=BUILD Configure for building on BUILD guessed

--cache-file=FILE Cache test results in FILE disabled

-C Alias for `--cache-file=config.cache'

--config-cache

--datadir=DIR Read-only architecture-independent
data

PREFIX/share

--disable-FEATURE Do not include FEATURE

--disable-dependency-tracking Disable dependency tracking

--disable-grant-options Disable GRANT options

--disable-largefile Omit support for large files

--disable-libtool-lock Disable libtool lock

--disable-thread-safe-client Compile the client without threads 5.1.7

--enable-FEATURE Enable FEATURE

--enable-assembler Use assembler versions of some string
functions if available

--enable-dependency-tracking Do not reject slow dependency extract-
ors

--enable-fast-install Optimize for fast installation yes

--enable-local-infile Enable LOAD DATA LOCAL INFILE disabled

--enable-shared Build shared libraries yes

--enable-static Build static libraries yes

--enable-thread-safe-client Compile the client with threads

--exec-prefix=EPREFIX Install architecture-dependent files in
EPREFIX

-h Display this help and exit

--help

--help=short Display options specific to this package

--help=recursive Display the short help of all the in-
cluded packages

--host=HOST Cross-compile to build programs to run
on HOST

--includedir=DIR C header files PREFIX/include

--infodir=DIR Info documentation PREFIX/info

--libdir=DIR Object code libraries EPREFIX/lib

--libexecdir=DIR Program executables EPREFIX/libexec

--localstatedir=DIR Modifiable single-machine data PREFIX/var

--mandir=DIR man documentation PREFIX/man

-n Do not create output files

--no-create

--oldincludedir=DIR C header files for non-gcc /usr/include

Installing and Upgrading MySQL

73



Formats Description Default Introduced Removed

--prefix=PREFIX Install architecture-independent files in
PREFIX

--program-prefix=PREFIX Prepend PREFIX to installed program
names

--program-suffix=SUFFIX Append SUFFIX to installed program
names

-
-pro-
gram-transform-name=PROGRAM

run sed PROGRAM on installed pro-
gram names

-q Do not print `checking...' messages

--quiet

--sbindir=DIR System admin executables EPREFIX/sbin

--sharedstatedir=DIR Modifiable architecture-independent
data

PREFIX/com

--srcdir=DIR Find the sources in DIR configure directory or ..

--sysconfdir=DIR Read-only single-machine data PREFIX/etc

--target=TARGET Configure for building compilers for
TARGET

-V Display version information and exit

--version

--with-PACKAGE Use PACKAGE

--with-archive-storage-engine Enable the Archive Storage Engine no

--with-atomic-ops Implement atomic operations using
pthread rwlocks or atomic CPU in-
structions for multi-processor

5.1.12

--with-berkeley-db Use BerkeleyDB located in DIR no

--with-berkeley-db-includes Find Berkeley DB headers in DIR

--with-berkeley-db-libs Find Berkeley DB libraries in DIR

--with-big-tables Support tables with more than 4 G
rows even on 32 bit platforms

--with-blackhole-storage-engine Enable the Blackhole Storage Engine no

--with-charset Default character set

--with-client-ldflags Extra linking arguments for clients

--with-collation Default collation

--with-comment Comment about compilation environ-
ment

--with-csv-storage-engine Enable the CSV Storage Engine yes

--with-darwin-mwcc Use Metrowerks CodeWarrior wrap-
pers on OS X/Darwin

--with-debug Add debug code 5.1.7

--with-debug=full Add debug code (adds memory check-
er, very slow)

--with-embedded-privilege-control Build parts to check user's privileges
(only affects embedded library)

--with-embedded-server Build the embedded server

--with-error-inject Enable error injection in MySQL Serv-
er

5.1.11

--with-example-storage-engine Enable the Example Storage Engine no

--with-extra-charsets Use charsets in addition to default

Installing and Upgrading MySQL

74



Formats Description Default Introduced Removed

--with-fast-mutexes Compile with fast mutexes enabled 5.1.5

--with-federated-storage-engine Enable federated storage engine no 5.1.3 5.1.9

--with-gnu-ld Assume the C compiler uses GNU ld no

--with-innodb Enable innobase storage engine no 5.1.3 5.1.9

--with-lib-ccflags Extra CC options for libraries

--with-libwrap=DIR Compile in libwrap (tcp_wrappers)
support

--with-low-memory Try to use less memory to compile to
avoid memory limitations

--with-machine-type Set the machine type, like "powerpc"

--with-max-indexes=N Sets the maximum number of indexes
per table

64 5.1.11 5.1.9

--with-mysqld-ldflags Extra linking arguments for mysqld

--with-mysqld-libs Extra libraries to link with for mysqld

--with-mysqld-user What user the mysqld daemon shall be
run as

--with-mysqlmanager Build the mysqlmanager binary Build if server is built

--with-named-curses-libs Use specified curses libraries

--with-named-thread-libs Use specified thread libraries

--with-ndb-ccflags Extra CC options for ndb compile

--with-ndb-docs Include the NDB Cluster ndbapi and
mgmapi documentation

--with-ndb-port Port for NDB Cluster management
server

--with-ndb-port-base Port for NDB Cluster management
server

--with-ndb-sci=DIR Provide MySQL with a custom loca-
tion of sci library

--with-ndb-test Include the NDB Cluster ndbapi test
programs

--with-ndbcluster Include the NDB Cluster table handler no

--with-openssl=DIR Include the OpenSSL support

--with-openssl-includes Find OpenSSL headers in DIR

--with-openssl-libs Find OpenSSL libraries in DIR

--with-other-libc=DIR Link against libc and other standard
libraries installed in the specified non-
standard location

--with-pic Try to use only PIC/non-PIC objects Use both

--with-plugin-PLUGIN Forces the named plugin to be linked
into mysqld statically

5.1.11

--with-plugins Plugins to include in mysqld none 5.1.11

--with-pstack Use the pstack backtrace library

--with-pthread Force use of pthread library

--with-row-based-replication Include row-based replication 5.1.5 5.1.6

--with-server-suffix Append value to the version string

--with-ssl=DIR Include SSL support 5.1.11

--with-system-type Set the system type, like "sun-solar-
is10"

Installing and Upgrading MySQL

75



Formats Description Default Introduced Removed

--with-tags Include additional configurations automatic

--with-tcp-port Which port to use for MySQL services 3306

--with-unix-socket-path Where to put the unix-domain socket

--with-yassl Include the yaSSL support

--with-zlib-dir Provide MySQL with a custom loca-
tion of compression library

5.1.11 5.1.9

--with-zlib-dir=DIR

--without-PACKAGE Do not use PACKAGE

--without-bench Skip building of the benchmark suite

--without-debug Build a production version without de-
bugging code

--without-docs Skip building of the documentation

--without-extra-tools Skip building utilites in the tools dir-
ectory

--without-geometry Do not build geometry-related parts

--without-libedit Use system libedit instead of bundled
copy

--without-man Skip building of the man pages

--without-ndb-binlog Disable ndb binlog 5.1.6

--without-ndb-debug Disable special ndb debug features

--without-plugin-PLUGIN Exclude PLUGIN 5.1.11

--without-query-cache Do not build query cache

--without-readline Use system readline instead of bundled
copy

--without-row-based-replication Don't include row-based replication 5.1.7 5.1.14

--without-server Only build the client

--without-uca Skip building of the national Unicode
collations

Some of the configure options available are described here:

• To compile just the MySQL client libraries and client programs and not the server, use the --without-server option:

shell> ./configure --without-server

If you have no C++ compiler, some client programs such as mysql cannot be compiled because they require C++.. In this case, you
can remove the code in configure that tests for the C++ compiler and then run ./configure with the --without-server
option. The compile step should still try to build all clients, but you can ignore any warnings about files such as mysql.cc. (If
make stops, try make -k to tell it to continue with the rest of the build even if errors occur.)

• If you want to build the embedded MySQL library (libmysqld.a), use the --with-embedded-server option.

• If you don't want your log files and database directories located under /usr/local/var, use a configure command
something like one of these:

shell> ./configure --prefix=/usr/local/mysql
shell> ./configure --prefix=/usr/local \

--localstatedir=/usr/local/mysql/data

The first command changes the installation prefix so that everything is installed under /usr/local/mysql rather than the de-
fault of /usr/local. The second command preserves the default installation prefix, but overrides the default location for database
directories (normally /usr/local/var) and changes it to /usr/local/mysql/data.

Installing and Upgrading MySQL

76



You can also specify the installation directory and data directory locations at server startup time by using the --basedir and -
-datadir options. These can be given on the command line or in an MySQL option file, although it is more common to use an
option file. See Section 4.2.2.2, “Using Option Files”.

• If you are using Unix and you want the MySQL socket file location to be somewhere other than the default location (normally in the
directory /tmp or /var/run), use a configure command like this:

shell> ./configure \
--with-unix-socket-path=/usr/local/mysql/tmp/mysql.sock

The socket filename must be an absolute pathname. You can also change the location of mysql.sock at server startup by using a
MySQL option file. See Section B.1.4.5, “How to Protect or Change the MySQL Unix Socket File”.

• If you want to compile statically linked programs (for example, to make a binary distribution, to get better performance, or to work
around problems with some Red Hat Linux distributions), run configure like this:

shell> ./configure --with-client-ldflags=-all-static \
--with-mysqld-ldflags=-all-static

• If you are using gcc and don't have libg++ or libstdc++ installed, you can tell configure to use gcc as your C++ com-
piler:

shell> CC=gcc CXX=gcc ./configure

When you use gcc as your C++ compiler, it does not attempt to link in libg++ or libstdc++. This may be a good thing to do
even if you have those libraries installed. Some versions of them have caused strange problems for MySQL users in the past.

The following list indicates some compilers and environment variable settings that are commonly used with each one.

• gcc 2.7.2:

CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors"

• gcc 2.95.2:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti"

• pgcc 2.90.29 or newer:

CFLAGS="-O3 -mpentiumpro -mstack-align-double" CXX=gcc \
CXXFLAGS="-O3 -mpentiumpro -mstack-align-double \
-felide-constructors -fno-exceptions -fno-rtti"

In most cases, you can get a reasonably optimized MySQL binary by using the options from the preceding list and adding the fol-
lowing options to the configure line:

--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

The full configure line would, in other words, be something like the following for all recent gcc versions:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti" ./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

The binaries we provide on the MySQL Web site at http://dev.mysql.com/downloads/ are all compiled with full optimization and
should be perfect for most users. See Section 2.1.2.4, “MySQL Binaries Compiled by MySQL AB”. There are some configuration
settings you can tweak to build an even faster binary, but these are only for advanced users. See Section 7.5.6, “How Compiling and
Linking Affects the Speed of MySQL”.

If the build fails and produces errors about your compiler or linker not being able to create the shared library libmysqlcli-
ent.so.N (where N is a version number), you can work around this problem by giving the --disable-shared option to

Installing and Upgrading MySQL

77

http://dev.mysql.com/downloads/


configure. In this case, configure does not build a shared libmysqlclient.so.N library.

• By default, MySQL uses the latin1 (cp1252 West European) character set. To change the default set, use the -
-with-charset option:

shell> ./configure --with-charset=CHARSET

CHARSET may be one of binary, armscii8, ascii, big5, cp1250, cp1251, cp1256, cp1257, cp850, cp852, cp866,
cp932, dec8, eucjpms, euckr, gb2312, gbk, geostd8, greek, hebrew, hp8, keybcs2, koi8r, koi8u, latin1,
latin2, latin5, latin7, macce, macroman, sjis, swe7, tis620, ucs2, ujis, utf8. See Section 9.2, “The Character
Set Used for Data and Sorting”. (Additional character sets might be available. Check the output from ./configure --help for
the current list.)

The default collation may also be specified. MySQL uses the latin1_swedish_ci collation by default. To change this, use the
--with-collation option:

shell> ./configure --with-collation=COLLATION

To change both the character set and the collation, use both the --with-charset and --with-collation options. The col-
lation must be a legal collation for the character set. (Use the SHOW COLLATION statement to determine which collations are
available for each character set.)

Warning

If you change character sets after having created any tables, you must run myisamchk -r -q
--set-collation=collation_name on every MyISAM table. Your indexes may be sorted incorrectly otherwise.
This can happen if you install MySQL, create some tables, and then reconfigure MySQL to use a different character set
and reinstall it.

With the configure option --with-extra-charsets=LIST, you can define which additional character sets should be
compiled into the server. LIST is one of the following:

• A list of character set names separated by spaces

• complex to include all character sets that can't be dynamically loaded

• all to include all character sets into the binaries

Clients that want to convert characters between the server and the client should use the SET NAMES statement. See Section 12.5.3,
“SET Syntax”, and Section 9.1.4, “Connection Character Sets and Collations”.

• To configure MySQL with debugging code, use the --with-debug option:

shell> ./configure --with-debug

This causes a safe memory allocator to be included that can find some errors and that provides output about what is happening. See
MySQL Internals: Porting.

As of MySQL 5.1.12, using --with-debug to configure MySQL with debugging support enables you to use the -
-debug="d,parser_debug" option when you start the server. This causes the Bison parser that is used to process SQL state-
ments to dump a parser trace to the server's standard error output. Typically, this output is written to the error log.

• If your client programs are using threads, you must compile a thread-safe version of the MySQL client library with the -
-enable-thread-safe-client configure option. This creates a libmysqlclient_r library with which you should link
your threaded applications. See Section 26.2.16, “How to Make a Threaded Client”.

• It is possible to build MySQL with large table support using the --with-big-tables option.

This option causes the variables that store table row counts to be declared as unsigned long long rather than unsigned
long. This enables tables to hold up to approximately 1.844E+19 ((232)2) rows rather than 232 (~4.295E+09) rows. Previously it
was necessary to pass -DBIG_TABLES to the compiler manually in order to enable this feature.

• Run configure with the --disable-grant-options option to cause the --bootstrap, --skip-grant-tables,
and --init-file options for mysqld to be disabled. For Windows, the configure.js script recognizes the DIS-

Installing and Upgrading MySQL

78

http://forge.mysql.com/wiki/MySQL_Internals_Porting


ABLE_GRANT_OPTIONS flag, which has the same effect. The capability is available as of MySQL 5.1.15.

• See Section 2.13, “Operating System-Specific Notes”, for options that pertain to particular operating systems.

• See Section 5.5.7.2, “Using SSL Connections”, for options that pertain to configuring MySQL to support secure (encrypted) connec-
tions.

• Several configure options apply to plugin selection and building. You can build a plugin as static (compiled into the server) or
dynamic (built as a dynamic library that must be installed using the INSTALL PLUGIN statement before it can be used). Some plu-
gins might not support static or dynamic build.

configure --help shows the following information pertaining to plugins:

• The plugin-related options

• The names of all available plugins

• For each plugin, a description of its purpose, which build types it supports (static or dynamic), and which plugin groups it is a
part of.

The following configure options are used to select or disable plugins:

--with-plugins=PLUGIN[,PLUGIN]...
--with-plugins=GROUP
--with-plugin-PLUGIN
--without-plugin-PLUGIN

PLUGIN is an individual plugin name such as csv or archive.

As shorthand, GROUP is a configuration group name such as none (select no plugins) or all (select all plugins).

--with-plugins can take a list of one or more plugin names separated by commas, or a plugin group name. The named plugins
are configured to be built as static plugins.

--with-plugin-PLUGIN configures the given plugin to be built as a static plugin.

--without-plugin-PLUGIN disables the given plugin from being built.

If a plugin is named both with a --with and --without option, the result is undefined.

For any plugin that is not explicitly selected or disabled, it is selected to be built dynamically if it supports dynamic build, and not
built if it does not support dynamic build. (Thus, in the case that no plugin options are given, all plugins that support dynamic build
are selected to be built as dynamic plugins. Plugins that do not support dynamic build are not built.)

2.9.3. Installing from the Development Source Tree

Caution

You should read this section only if you are interested in helping us test our new code. If you just want to get MySQL up
and running on your system, you should use a standard release distribution (either a binary or source distribution).

To obtain our most recent development source tree, first download and install the BitKeeper free client if you do not have it. The client
can be obtained from http://www.bitmover.com/bk-client2.0.shar. Note that you will need gcc and make to build the BitKeeper free
client, and patch and tar to use the BitKeeper free client. Note that old 1.1 versions of the BitKeeper free client will not work!

To install the BitKeeper client on Unix, use these commands:

shell> /bin/sh bk-client2.0.shar
shell> cd bk-client2.0
shell> make

If you get a cc: command not found error, invoke this command before running make:

shell> make CC=gcc

Installing and Upgrading MySQL

79

http://www.bitmover.com/bk-client2.0.shar


The step above will create the utility bkf, which is the BitKeeper free client. You may use the BitKeeper free client in the same way as
the main client. For more information on bkf, use:

shell> bkf --help

To install the BitKeeper client on Windows, use these instructions:

1. Download and install Cygwin from http://cygwin.com.

2. Make sure patch, tar, gcc and make have been installed under Cygwin. You can test this by issuing which gcc for each
command. If a required tool is not installed, run Cygwin's package manager, select the required tools and install them.

3. For the installation of the BitKeeper free client, use the same installations as given for Unix-like systems above.

The BitKeeper free client is shipped with its source code. The only documentation available for the free client is the source code itself.

After you have installed the BitKeeper client, you can access the MySQL development source tree:

1. Change location to the directory you want to work from, and then use the following command to make a local copy of the MySQL
5.1 branch:

shell> bkf clone bk://mysql.bkbits.net/mysql-5.1 mysql-5.1

In the preceding example, the source tree is set up in the mysql-5.1/ subdirectory of your current directory.

The initial download of the source tree may take a while, depending on the speed of your connection. Please be patient.

2. You need GNU make, autoconf 2.58 (or newer), automake 1.8.1, libtool 1.5, and m4 to run the next set of commands.
Even though many operating systems come with their own implementation of make, chances are high that the compilation fails
with strange error messages. Therefore, it is highly recommended that you use GNU make (sometimes named gmake) instead.

Fortunately, a large number of operating systems ship with the GNU toolchain preinstalled or supply installable packages of these.
In any case, they can also be downloaded from the following locations:

• http://www.gnu.org/software/autoconf/

• http://www.gnu.org/software/automake/

• http://www.gnu.org/software/libtool/

• http://www.gnu.org/software/m4/

• http://www.gnu.org/software/make/

To configure MySQL 5.1, you also need GNU bison. You should use the latest version of bison where possible. Version 1.75
and version 2.1 are known to work. There have been reported problems with bison 1.875. If you experience problems, upgrade to
a later, rather than earlier, version. Versions of bison older than 1.75 may report this error:

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

Note: The maximum table size is not actually exceeded; the error is caused by bugs in older versions of bison.

The following example shows the typical commands required to configure a source tree. The first cd command changes location
into the top-level directory of the tree; replace mysql-5.1 with the appropriate directory name. The second line (for storage/
innobase) is needed only before MySQL 5.1.12.

shell> cd mysql-5.1
shell> (cd storage/innobase; autoreconf --force --install)
shell> autoreconf --force --install
shell> ./configure # Add your favorite options here
shell> make

Or you can use BUILD/autorun.sh as a shortcut for the following sequence of commands:

Installing and Upgrading MySQL

80

http://cygwin.com/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/m4/
http://www.gnu.org/software/make/


shell> aclocal; autoheader
shell> libtoolize --automake --force
shell> automake --force --add-missing; autoconf
shell> (cd storage/innobase; aclocal; autoheader; autoconf; automake)

The command line that changes directory into the storage/innobase directory is used to configure the InnoDB storage en-
gine. You can omit this lines if you do not require InnoDB support.

Note

Beginning with MySQL 5.1, code specific to storage engines has been moved under a storage directory. For example,
InnoDB code is now found in storage/innobase and NDBCluster code is in storage/ndb.

If you get some strange errors during this stage, verify that you really have libtool installed.

A collection of our standard configuration scripts is located in the BUILD/ subdirectory. You may find it more convenient to use
the BUILD/compile-pentium-debug script than the preceding set of shell commands. To compile on a different architec-
ture, modify the script by removing flags that are Pentium-specific.

3. When the build is done, run make install. Be careful with this on a production machine; the command may overwrite your
live release installation. If you have another installation of MySQL, we recommend that you run ./configure with different
values for the --prefix, --with-tcp-port, and --unix-socket-path options than those used for your production
server.

4. Play hard with your new installation and try to make the new features crash. Start by running make test. See Section 29.1.2,
“MySQL Test Suite”.

5. If you have gotten to the make stage, but the distribution does not compile, please enter the problem into our bugs database using
the instructions given in Section 1.7, “How to Report Bugs or Problems”. If you have installed the latest versions of the required
GNU tools, and they crash trying to process our configuration files, please report that also. However, if you execute aclocal and
get a command not found error or a similar problem, do not report it. Instead, make sure that all the necessary tools are in-
stalled and that your PATH variable is set correctly so that your shell can find them.

6. After initially copying the repository with bkf to obtain the source tree, you should use pull option to periodically update your
local copy. To do this any time after you have set up the repository, use this command:

shell> bkf pull

7. You can examine the changeset comments for the tree by using the changes option to bkf:

shell> bkf changes

To get a list of the changes that would be applied with the next bkf pull:

shell> bkf changes -R

To obtain a patch file for a specific changeset (CSETID), use:

shell> bkf changes -vvrCSETID

If you see diffs or code that you have a question about, do not hesitate to send email to the MySQL internals mailing list. See
Section 1.6.1, “MySQL Mailing Lists”. Also, if you think you have a better idea on how to do something, send an email message
to the list with a patch.

You can also browse changesets, comments, and source code online. To browse this information for MySQL 5.1, go to ht-
tp://mysql.bkbits.net:8080/mysql-5.1.

2.9.4. Dealing with Problems Compiling MySQL
All MySQL programs compile cleanly for us with no warnings on Solaris or Linux using gcc. On other systems, warnings may occur
due to differences in system include files. See Section 2.9.5, “MIT-pthreads Notes”, for warnings that may occur when using MIT-
pthreads. For other problems, check the following list.

Installing and Upgrading MySQL

81

http://mysql.bkbits.net:8080/mysql-5.1
http://mysql.bkbits.net:8080/mysql-5.1


The solution to many problems involves reconfiguring. If you do need to reconfigure, take note of the following:

• If configure is run after it has previously been run, it may use information that was gathered during its previous invocation. This
information is stored in config.cache. When configure starts up, it looks for that file and reads its contents if it exists, on
the assumption that the information is still correct. That assumption is invalid when you reconfigure.

• Each time you run configure, you must run make again to recompile. However, you may want to remove old object files from
previous builds first because they were compiled using different configuration options.

To prevent old configuration information or object files from being used, run these commands before re-running configure:

shell> rm config.cache
shell> make clean

Alternatively, you can run make distclean.

The following list describes some of the problems when compiling MySQL that have been found to occur most often:

• If you get errors such as the ones shown here when compiling sql_yacc.cc, you probably have run out of memory or swap
space:

Internal compiler error: program cc1plus got fatal signal 11
Out of virtual memory
Virtual memory exhausted

The problem is that gcc requires a huge amount of memory to compile sql_yacc.cc with inline functions. Try running con-
figure with the --with-low-memory option:

shell> ./configure --with-low-memory

This option causes -fno-inline to be added to the compile line if you are using gcc and -O0 if you are using something else.
You should try the --with-low-memory option even if you have so much memory and swap space that you think you can't pos-
sibly have run out. This problem has been observed to occur even on systems with generous hardware configurations, and the -
-with-low-memory option usually fixes it.

• By default, configure picks c++ as the compiler name and GNU c++ links with -lg++. If you are using gcc, that behavior can
cause problems during configuration such as this:

configure: error: installation or configuration problem:
C++ compiler cannot create executables.

You might also observe problems during compilation related to g++, libg++, or libstdc++.

One cause of these problems is that you may not have g++, or you may have g++ but not libg++, or libstdc++. Take a look at
the config.log file. It should contain the exact reason why your C++ compiler didn't work. To work around these problems, you
can use gcc as your C++ compiler. Try setting the environment variable CXX to "gcc -O3". For example:

shell> CXX="gcc -O3" ./configure

This works because gcc compiles C++ source files as well as g++ does, but does not link in libg++ or libstdc++ by default.

Another way to fix these problems is to install g++, libg++, and libstdc++. However, we recommend that you not use
libg++ or libstdc++ with MySQL because this only increases the binary size of mysqld without providing any benefits.
Some versions of these libraries have also caused strange problems for MySQL users in the past.

• If your compile fails with errors such as any of the following, you must upgrade your version of make to GNU make:

making all in mit-pthreads
make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

Or:

Installing and Upgrading MySQL

82



make: file `Makefile' line 18: Must be a separator (:

Or:

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.

GNU make 3.75 is known to work.

• If you want to define flags to be used by your C or C++ compilers, do so by adding the flags to the CFLAGS and CXXFLAGS envir-
onment variables. You can also specify the compiler names this way using CC and CXX. For example:

shell> CC=gcc
shell> CFLAGS=-O3
shell> CXX=gcc
shell> CXXFLAGS=-O3
shell> export CC CFLAGS CXX CXXFLAGS

See Section 2.1.2.4, “MySQL Binaries Compiled by MySQL AB”, for a list of flag definitions that have been found to be useful on
various systems.

• If you get errors such as those shown here when compiling mysqld, configure did not correctly detect the type of the last argu-
ment to accept(), getsockname(), or getpeername():

cxx: Error: mysqld.cc, line 645: In this statement, the referenced
type of the pointer value ''length'' is ''unsigned long'',
which is not compatible with ''int''.

new_sock = accept(sock, (struct sockaddr *)&cAddr, &length);

To fix this, edit the config.h file (which is generated by configure). Look for these lines:

/* Define as the base type of the last arg to accept */
#define SOCKET_SIZE_TYPE XXX

Change XXX to size_t or int, depending on your operating system. (You must do this each time you run configure because
configure regenerates config.h.)

• The sql_yacc.cc file is generated from sql_yacc.yy. Normally, the build process does not need to create sql_yacc.cc
because MySQL comes with a pre-generated copy. However, if you do need to re-create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install bison (the GNU version of yacc) and use that
instead.

• On Debian Linux 3.0, you need to install gawk instead of the default mawk.

• If you need to debug mysqld or a MySQL client, run configure with the --with-debug option, and then recompile and link
your clients with the new client library. See MySQL Internals: Porting.

• If you get a compilation error on Linux (for example, SuSE Linux 8.1 or Red Hat Linux 7.3) similar to the following one, you prob-
ably do not have g++ installed:

libmysql.c:1329: warning: passing arg 5 of `gethostbyname_r' from
incompatible pointer type
libmysql.c:1329: too few arguments to function `gethostbyname_r'
libmysql.c:1329: warning: assignment makes pointer from integer
without a cast
make[2]: *** [libmysql.lo] Error 1

By default, the configure script attempts to determine the correct number of arguments by using g++ (the GNU C++ compiler).
This test yields incorrect results if g++ is not installed. There are two ways to work around this problem:

• Make sure that the GNU C++ g++ is installed. On some Linux distributions, the required package is called gpp; on others, it is

Installing and Upgrading MySQL

83

http://forge.mysql.com/wiki/MySQL_Internals_Porting


named gcc-c++.

• Use gcc as your C++ compiler by setting the CXX environment variable to gcc:

export CXX="gcc"

You must run configure again after making either of those changes.

2.9.5. MIT-pthreads Notes
This section describes some of the issues involved in using MIT-pthreads.

On Linux, you should not use MIT-pthreads. Use the installed LinuxThreads implementation instead. See Section 2.13.1, “Linux
Notes”.

If your system does not provide native thread support, you should build MySQL using the MIT-pthreads package. This includes older
FreeBSD systems, SunOS 4.x, Solaris 2.4 and earlier, and some others. See Section 2.1.1, “Operating Systems Supported by MySQL
Community Server”.

MIT-pthreads is not part of the MySQL 5.1 source distribution. If you require this package, you need to download it separately from ht-
tp://dev.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

After downloading, extract this source archive into the top level of the MySQL source directory. It creates a new subdirectory named
mit-pthreads.

• On most systems, you can force MIT-pthreads to be used by running configure with the --with-mit-threads option:

shell> ./configure --with-mit-threads

Building in a non-source directory is not supported when using MIT-pthreads because we want to minimize our changes to this
code.

• The checks that determine whether to use MIT-pthreads occur only during the part of the configuration process that deals with the
server code. If you have configured the distribution using --without-server to build only the client code, clients do not know
whether MIT-pthreads is being used and use Unix socket file connections by default. Because Unix socket files do not work under
MIT-pthreads on some platforms, this means you need to use -h or --host with a value other than localhost when you run
client programs.

• When MySQL is compiled using MIT-pthreads, system locking is disabled by default for performance reasons. You can tell the
server to use system locking with the --external-locking option. This is needed only if you want to be able to run two
MySQL servers against the same data files, but that is not recommended, anyway.

• Sometimes the pthread bind() command fails to bind to a socket without any error message (at least on Solaris). The result is that
all connections to the server fail. For example:

shell> mysqladmin version
mysqladmin: connect to server at '' failed;
error: 'Can't connect to mysql server on localhost (146)'

The solution to this problem is to kill the mysqld server and restart it. This has happened to us only when we have forcibly stopped
the server and restarted it immediately.

• With MIT-pthreads, the sleep() system call isn't interruptible with SIGINT (break). This is noticeable only when you run
mysqladmin --sleep. You must wait for the sleep() call to terminate before the interrupt is served and the process stops.

• When linking, you might receive warning messages like these (at least on Solaris); they can be ignored:

ld: warning: symbol `_iob' has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;

file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken

ld: warning: symbol `__iob' has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;

file /usr/lib/libc.so value=0x140);

Installing and Upgrading MySQL

84

http://dev.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz
http://dev.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz


/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken

• Some other warnings also can be ignored:

implicit declaration of function `int strtoll(...)'
implicit declaration of function `int strtoul(...)'

• We have not been able to make readline work with MIT-pthreads. (This is not necessary, but may be of interest to some.)

2.9.6. Installing MySQL from Source on Windows
These instructions describe how to build binaries from source for MySQL 5.1 on Windows. Instructions are provided for building binar-
ies from a standard source distribution or from the BitKeeper tree that contains the latest development source.

Note

The instructions here are strictly for users who want to test MySQL on Microsoft Windows from the latest source distribu-
tion or from the BitKeeper tree. For production use, MySQL AB does not advise using a MySQL server built by yourself
from source. Normally, it is best to use precompiled binary distributions of MySQL that are built specifically for optimal
performance on Windows by MySQL AB. Instructions for installing binary distributions are available in Section 2.3,
“Installing MySQL on Windows”.

To build MySQL on Windows from source, you must satisfy the following system, compiler, and resource requirements:

• Windows 2000, Windows XP, or newer version. Windows Vista is not supported until Microsoft certifies Visual Studio 2005 on
Vista.

• CMake, which can be downloaded from http://www.cmake.org. After installing, modify your path to include the cmake binary.

• Microsoft Visual C++ 2005 Express Edition, Visual Studio .Net 2003 (7.1), or Visual Studio 2005 (8.0) compiler system.

• If you are using Visual C++ 2005 Express Edition, you must also install an appropriate Platform SDK. More information and links
to downloads for various Windows platforms is available from http://msdn.microsoft.com/platformsdk/.

• If you are compiling from a BitKeeper tree or making changes to the parser, you need bison for Windows, which can be down-
loaded from http://gnuwin32.sourceforge.net/packages/bison.htm. Download the package labeled “Complete package, excluding
sources”. After installing the package, modify your path to include the bison binary and ensure that this binary is accessible from
Visual Studio.

• Cygwin might be necessary if you want to run the test script or package the compiled binaries and support files into a Zip archive.
(Cygwin is needed only to test or package the distribution, not to build it.) Cygwin is available from http://cygwin.com.

• 3GB to 5GB of disk space.

The exact system requirements can be found here: http://msdn.microsoft.com/vstudio/Previous/2003/sysreqs/default.aspx and ht-
tp://msdn.microsoft.com/vstudio/products/sysreqs/default.aspx

You also need a MySQL source distribution for Windows, which can be obtained two ways:

• Obtain a source distribution packaged by MySQL AB. These are available from http://dev.mysql.com/downloads/.

• Package a source distribution yourself from the latest BitKeeper developer source tree. For instructions on pulling the latest source
files, see Section 2.9.3, “Installing from the Development Source Tree”.

If you find something not working as expected, or you have suggestions about ways to improve the current build process on Windows,
please send a message to the win32 mailing list. See Section 1.6.1, “MySQL Mailing Lists”.

2.9.6.1. Building MySQL from Source Using CMake and Visual Studio

Installing and Upgrading MySQL

85

http://www.cmake.org
http://msdn.microsoft.com/platformsdk/
http://gnuwin32.sourceforge.net/packages/bison.htm
http://cygwin.com
http://msdn.microsoft.com/vstudio/Previous/2003/sysreqs/default.aspx
http://msdn.microsoft.com/vstudio/products/sysreqs/default.aspx
http://msdn.microsoft.com/vstudio/products/sysreqs/default.aspx
http://dev.mysql.com/downloads/


You can build MySQL on Windows by using a combination of cmake and Microsoft Visual Studio .NET 2003 (7.1), Micrsofot Visual
Studio 2005 (8.0) or Microsoft Visual C++ 2005 Express Edition. You must have the appropriate Microsoft Platform SDK installed.

Note

To compile from the source code on Windows you must use the standard source distribution (for example,
mysql-5.0.45.tar.gz). You build from the same distribution as used to build MySQL on Unix, Linux and other
platforms. Do not use the Windows Source distributions as they do not contain the necessary configuration script and other
files.

Follow this procedure to build MySQL:

1. If you are installing from a packaged source distribution, create a work directory (for example, C:\workdir), and unpack the
source distribution there using WinZip or another Windows tool that can read .zip files. This directory is the work directory in
the following instructions.

2. If you are installing from a BitKeeper tree, the root directory of that tree is the work directory in the following instructions.

3. Using a command shell, navigate to the work directory and run the following command:

C:\workdir>win\configure options

These options are available:

• WITH_INNOBASE_STORAGE_ENGINE: Enable the InnoDB storage engine.

• WITH_PARTITION_STORAGE_ENGINE: Enable user-defined partitioning.

• WITH_ARCHIVE_STORAGE_ENGINE: Enable the ARCHIVE storage engine.

• WITH_BLACKHOLE_STORAGE_ENGINE: Enable the BLACKHOLE storage engine.

• WITH_EXAMPLE_STORAGE_ENGINE: Enable the EXAMPLE storage engine.

• WITH_FEDERATED_STORAGE_ENGINE: Enable the FEDERATED storage engine.

• __NT__: Enable support for named pipes.

• MYSQL_SERVER_SUFFIX=suffix: Server suffix, default none.

• COMPILATION_COMMENT=comment: Server comment, default "Source distribution".

• MYSQL_TCP_PORT=port: Server port, default 3306.

• DISABLE_GRANT_OPTIONS: Disables the --bootstrap, --skip-grant-tables, and --init-file options for
mysqld. This option is available as of MySQL 5.1.15.

For example (type the command on one line):

C:\workdir>win\configure WITH_INNOBASE_STORAGE_ENGINE
WITH_PARTITION_STORAGE_ENGINE MYSQL_SERVER_SUFFIX=-pro

4. From the work directory, execute the win\build-vs8.bat or win\build-vs71.bat file, depending on the version of
Visual Studio you have installed. The script invokes CMake, which generates the mysql.sln solution file.

You can also use win\build-vs8_x64.bat to build the 64-bit version of MySQL. However, you cannot build the 64-bit ver-
sion with Visual Studio Express Edition. You must use Visual Studio 2005 (8.0) or higher.

5. From the work directory, open the generated mysql.sln file with Visual Studio and select the proper configuration using the
CONFIGURATION menu. The menu provides Debug, Release, RelwithDebInfo, MinRelInfo options. Then select SOLUTION > Build
to build the solution.

Remember the configuration that you use in this step. It is important later when you run the test script because that script needs to
know which configuration you used.

Installing and Upgrading MySQL

86



6. Test the server. The server built using the preceding instructions expects that the MySQL base directory and data directory are
C:\mysql and C:\mysql\data by default. If you want to test your server using the source tree root directory and its data dir-
ectory as the base directory and data directory, you need to tell the server their pathnames. You can either do this on the command
line with the --basedir and --datadir options, or by placing appropriate options in an option file. (See Section 4.2.2.2,
“Using Option Files”.) If you have an existing data directory elsewhere that you want to use, you can specify its pathname instead.

When the server is running in standalone fashion or as a service based on your configuration, try to connect to it from the mysql
interactive command-line utility.

You can also run the standard test script, mysql-test-run.pl. This script is written in Perl, so you'll need either Cygwin or
ActiveState Perl to run it. You may also need to install the modules required by the script. To run the test script, change location
into the mysql-test directory under the work directory, set the MTR_VS_CONFIG environment variable to the configuration
you selected earlier (or use the --vs-config option), and invoke mysql-test-run.pl. For example (using Cygwin and the
bash shell):

shell> cd mysql-test
shell> export MTS_VS_CONFIG=debug
shell> ./mysqltest-run.pl --force --timer
shell> ./mysqltest-run.pl --force --timer --ps-protocol

When you are satisfied that the programs you have built are working correctly, stop the server. Now you can install the distribution. One
way to do this is to use the make_win_bin_dist script in the scripts directory of the MySQL source distribution (see Sec-
tion 4.4.2, “make_win_bin_dist — Package MySQL Distribution as ZIP Archive”). This is a shell script, so you must have Cyg-
win installed if you want to use it. It creates a Zip archive of the built executables and support files that you can unpack in the location
at which you want to install MySQL.

It is also possible to install MySQL by copying directories and files directly:

1. Create the directories where you want to install MySQL. For example, to install into C:\mysql, use these commands:

C:\> mkdir C:\mysql
C:\> mkdir C:\mysql\bin
C:\> mkdir C:\mysql\data
C:\> mkdir C:\mysql\share
C:\> mkdir C:\mysql\scripts

If you want to compile other clients and link them to MySQL, you should also create several additional directories:

C:\> mkdir C:\mysql\include
C:\> mkdir C:\mysql\lib
C:\> mkdir C:\mysql\lib\debug
C:\> mkdir C:\mysql\lib\opt

If you want to benchmark MySQL, create this directory:

C:\> mkdir C:\mysql\sql-bench

Benchmarking requires Perl support. See Section 2.15, “Perl Installation Notes”.

2. From the work directory, copy into the C:\mysql directory the following directories:

C:\> cd \workdir
C:\workdir> copy client_release\*.exe C:\mysql\bin
C:\workdir> copy client_debug\mysqld.exe C:\mysql\bin\mysqld-debug.exe
C:\workdir> xcopy scripts\*.* C:\mysql\scripts /E
C:\workdir> xcopy share\*.* C:\mysql\share /E

If you want to compile other clients and link them to MySQL, you should also copy several libraries and header files:

C:\workdir> copy lib_debug\mysqlclient.lib C:\mysql\lib\debug
C:\workdir> copy lib_debug\libmysql.* C:\mysql\lib\debug
C:\workdir> copy lib_debug\zlib.* C:\mysql\lib\debug
C:\workdir> copy lib_release\mysqlclient.lib C:\mysql\lib\opt
C:\workdir> copy lib_release\libmysql.* C:\mysql\lib\opt
C:\workdir> copy lib_release\zlib.* C:\mysql\lib\opt
C:\workdir> copy include\*.h C:\mysql\include
C:\workdir> copy libmysql\libmysql.def C:\mysql\include

Installing and Upgrading MySQL

87



If you want to benchmark MySQL, you should also do this:

C:\workdir> xcopy sql-bench\*.* C:\mysql\bench /E

After installation, set up and start the server in the same way as for binary Windows distributions. See Section 2.3, “Installing MySQL
on Windows”.

2.9.7. Compiling MySQL Clients on Windows
In your source files, you should include my_global.h before mysql.h:

#include <my_global.h>
#include <mysql.h>

my_global.h includes any other files needed for Windows compatibility (such as windows.h) if you compile your program on
Windows.

You can either link your code with the dynamic libmysql.lib library, which is just a wrapper to load in libmysql.dll on de-
mand, or link with the static mysqlclient.lib library.

The MySQL client libraries are compiled as threaded libraries, so you should also compile your code to be multi-threaded.

2.10. Post-Installation Setup and Testing
After installing MySQL, there are some issues that you should address. For example, on Unix, you should initialize the data directory
and create the MySQL grant tables. On all platforms, an important security concern is that the initial accounts in the grant tables have
no passwords. You should assign passwords to prevent unauthorized access to the MySQL server. Optionally, you can create time zone
tables to enable recognition of named time zones.

The following sections include post-installation procedures that are specific to Windows systems and to Unix systems. Another section,
Section 2.10.2.3, “Starting and Troubleshooting the MySQL Server”, applies to all platforms; it describes what to do if you have trouble
getting the server to start. Section 2.10.3, “Securing the Initial MySQL Accounts”, also applies to all platforms. You should follow its
instructions to make sure that you have properly protected your MySQL accounts by assigning passwords to them.

When you are ready to create additional user accounts, you can find information on the MySQL access control system and account man-
agement in Section 5.4, “The MySQL Access Privilege System”, and Section 5.5, “MySQL User Account Management”.

2.10.1. Windows Post-Installation Procedures
On Windows, the data directory and the grant tables do not have to be created. MySQL Windows distributions include the grant tables
with a set of preinitialized accounts in the mysql database under the data directory. It is unnecessary to run the mysql_install_db
script that is used on Unix. Regarding passwords, if you installed MySQL using the Windows Installation Wizard, you may have
already assigned passwords to the accounts. (See Section 2.3.3, “Using the MySQL Installation Wizard”.) Otherwise, use the password-
assignment procedure given in Section 2.10.3, “Securing the Initial MySQL Accounts”.

Before setting up passwords, you might want to try running some client programs to make sure that you can connect to the server and
that it is operating properly. Make sure that the server is running (see Section 2.3.9, “Starting the Server for the First Time”), and then
issue the following commands to verify that you can retrieve information from the server. The output should be similar to what is shown
here:

C:\> C:\mysql\bin\mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+

C:\> C:\mysql\bin\mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |

Installing and Upgrading MySQL

88



| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| plugin |
| proc |
| procs_priv |
| servers |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

C:\> C:\mysql\bin\mysql -e "SELECT Host,Db,User FROM db" mysql
+------+-------+------+
| host | db | user |
+------+-------+------+
| % | test% | |
+------+-------+------+

You may need to specify a different directory from the one shown; if you used the Windows Installation Wizard, then the default direct-
ory is C:\Program Files\MySQL\MySQL Server 5.1, and the mysql and mysqlshow client programs are in
C:\Program Files\MySQL\MySQL Server 5.1\bin. See Section 2.3.3, “Using the MySQL Installation Wizard”, for more
information.

If you have already secured the initial MySQL accounts, you may need to use the -u and -p options to supply a username and pass-
word to the mysqlshow and mysql client programs; otherwise the programs may fail with an error, or you may not be able to view
all databases. For example, if you have assigned the password “secretpass” to the MySQL root account, then you can invoke
mysqlshowand mysql as shown here:

C:\> C:\mysql\bin\mysqlshow -uroot -psecretpass
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+

C:\> C:\mysql\bin\mysqlshow -uroot -psecretpass mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| plugin |
| proc |
| procs_priv |
| servers |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

C:\> C:\mysql\bin\mysql -uroot -psecretpass -e "SELECT Host,Db,User FROM db" mysql
+------+-------+------+
| host | db | user |
+------+-------+------+
| % | test% | |
+------+-------+------+

Installing and Upgrading MySQL

89



For more information about these programs, see Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”,
and Section 4.5.1, “mysql — The MySQL Command-Line Tool”.

If you are running a version of Windows that supports services and you want the MySQL server to run automatically when Windows
starts, see Section 2.3.11, “Starting MySQL as a Windows Service”.

2.10.2. Unix Post-Installation Procedures
After installing MySQL on Unix, you need to initialize the grant tables, start the server, and make sure that the server works satisfactor-
ily. You may also wish to arrange for the server to be started and stopped automatically when your system starts and stops. You should
also assign passwords to the accounts in the grant tables.

On Unix, the grant tables are set up by the mysql_install_db program. For some installation methods, this program is run for you
automatically:

• If you install MySQL on Linux using RPM distributions, the server RPM runs mysql_install_db.

• If you install MySQL on Mac OS X using a PKG distribution, the installer runs mysql_install_db.

Otherwise, you'll need to run mysql_install_db yourself.

The following procedure describes how to initialize the grant tables (if that has not previously been done) and then start the server. It
also suggests some commands that you can use to test whether the server is accessible and working properly. For information about
starting and stopping the server automatically, see Section 2.10.2.2, “Starting and Stopping MySQL Automatically”.

After you complete the procedure and have the server running, you should assign passwords to the accounts created by
mysql_install_db. Instructions for doing so are given in Section 2.10.3, “Securing the Initial MySQL Accounts”.

In the examples shown here, the server runs under the user ID of the mysql login account. This assumes that such an account exists.
Either create the account if it does not exist, or substitute the name of a different existing login account that you plan to use for running
the server.

1. Change location into the top-level directory of your MySQL installation, represented here by BASEDIR:

shell> cd BASEDIR

BASEDIR is likely to be something like /usr/local/mysql or /usr/local. The following steps assume that you are loc-
ated in this directory.

2. If necessary, run the mysql_install_db program to set up the initial MySQL grant tables containing the privileges that de-
termine how users are allowed to connect to the server. You'll need to do this if you used a distribution type for which the installa-
tion procedure doesn't run the program for you.

Typically, mysql_install_db needs to be run only the first time you install MySQL, so you can skip this step if you are up-
grading an existing installation, However, mysql_install_db does not overwrite any existing privilege tables, so it should be
safe to run in any circumstances.

To initialize the grant tables, use one of the following commands, depending on whether mysql_install_db is located in the
bin or scripts directory:

shell> bin/mysql_install_db --user=mysql
shell> scripts/mysql_install_db --user=mysql

The mysql_install_db script creates the server's data directory. Under the data directory, it creates directories for the mysql
database that holds all database privileges and the test database that you can use to test MySQL. The script also creates privilege
table entries for root and anonymous-user accounts. The accounts have no passwords initially. A description of their initial priv-
ileges is given in Section 2.10.3, “Securing the Initial MySQL Accounts”. Briefly, these privileges allow the MySQL root user to
do anything, and allow anybody to create or use databases with a name of test or starting with test_.

It is important to make sure that the database directories and files are owned by the mysql login account so that the server has
read and write access to them when you run it later. To ensure this, the --user option should be used as shown if you run
mysql_install_db as root. Otherwise, you should execute the script while logged in as mysql, in which case you can omit
the --user option from the command.

Installing and Upgrading MySQL

90



mysql_install_db creates several tables in the mysql database, including user, db, host, tables_priv,
columns_priv, func, and others. See Section 5.4, “The MySQL Access Privilege System”, for a complete listing and descrip-
tion of these tables.

If you don't want to have the test database, you can remove it with mysqladmin -u root drop test after starting the
server.

If you have trouble with mysql_install_db at this point, see Section 2.10.2.1, “Problems Running mysql_install_db”.

3. Start the MySQL server:

shell> bin/mysqld_safe --user=mysql &

It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure this, the --user option
should be used as shown if you run mysqld_safe as system root. Otherwise, you should execute the script while logged in to
the system as mysql, in which case you can omit the --user option from the command.

Further instructions for running MySQL as an unprivileged user are given in Section 5.3.5, “How to Run MySQL as a Normal
User”.

If you neglected to create the grant tables before proceeding to this step, the following message appears in the error log file when
you start the server:

mysqld: Can't find file: 'host.frm'

If you have other problems starting the server, see Section 2.10.2.3, “Starting and Troubleshooting the MySQL Server”.

4. Use mysqladmin to verify that the server is running. The following commands provide simple tests to check whether the server
is up and responding to connections:

shell> bin/mysqladmin version
shell> bin/mysqladmin variables

The output from mysqladmin version varies slightly depending on your platform and version of MySQL, but should be sim-
ilar to that shown here:

shell> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 5.1.25-rc, for pc-linux-gnu on i686
Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL license

Server version 5.1.25-rc
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 14 days 5 hours 5 min 21 sec

Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

To see what else you can do with mysqladmin, invoke it with the --help option.

5. Verify that you can shut down the server:

shell> bin/mysqladmin -u root shutdown

6. Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld directly. For example:

shell> bin/mysqld_safe --user=mysql --log &

If mysqld_safe fails, see Section 2.10.2.3, “Starting and Troubleshooting the MySQL Server”.

7. Run some simple tests to verify that you can retrieve information from the server. The output should be similar to what is shown
here:

Installing and Upgrading MySQL

91



shell> bin/mysqlshow
+-----------+
| Databases |
+-----------+
| mysql |
| test |
+-----------+

shell> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

shell> bin/mysql -e "SELECT Host,Db,User FROM db" mysql
+------+--------+------+
| host | db | user |
+------+--------+------+
| % | test | |
| % | test_% | |
+------+--------+------+

8. There is a benchmark suite in the sql-bench directory (under the MySQL installation directory) that you can use to compare
how MySQL performs on different platforms. The benchmark suite is written in Perl. It requires the Perl DBI module that provides
a database-independent interface to the various databases, and some other additional Perl modules:

DBI
DBD::mysql
Data::Dumper
Data::ShowTable

These modules can be obtained from CPAN (http://www.cpan.org/). See also Section 2.15.1, “Installing Perl on Unix”.

The sql-bench/Results directory contains the results from many runs against different databases and platforms. To run all
tests, execute these commands:

shell> cd sql-bench
shell> perl run-all-tests

If you don't have the sql-bench directory, you probably installed MySQL using RPM files other than the source RPM. (The
source RPM includes the sql-bench benchmark directory.) In this case, you must first install the benchmark suite before you
can use it. There are separate benchmark RPM files named mysql-bench-VERSION.i386.rpm that contain benchmark code
and data.

If you have a source distribution, there are also tests in its tests subdirectory that you can run. For example, to run
auto_increment.tst, execute this command from the top-level directory of your source distribution:

shell> mysql -vvf test < ./tests/auto_increment.tst

The expected result of the test can be found in the ./tests/auto_increment.res file.

9. At this point, you should have the server running. However, none of the initial MySQL accounts have a password, so you should
assign passwords using the instructions found in Section 2.10.3, “Securing the Initial MySQL Accounts”.

The MySQL 5.1 installation procedure creates time zone tables in the mysql database. However, you must populate the tables manu-

Installing and Upgrading MySQL

92

http://www.cpan.org/


ally using the instructions in Section 9.6, “MySQL Server Time Zone Support”.

2.10.2.1. Problems Running mysql_install_db

The purpose of the mysql_install_db script is to generate new MySQL privilege tables. It does not overwrite existing MySQL
privilege tables, and it does not affect any other data.

If you want to re-create your privilege tables, first stop the mysqld server if it's running. Then rename the mysql directory under the
data directory to save it, and then run mysql_install_db. Suppose that your current directory is the MySQL installation directory
and that mysql_install_db is located in the bin directory and the data directory is named data. To rename the mysql database
and re-run mysql_install_db, use these commands.

shell> mv data/mysql data/mysql.old
shell> bin/mysql_install_db --user=mysql

When you run mysql_install_db, you might encounter the following problems:

• mysql_install_db fails to install the grant tables

You may find that mysql_install_db fails to install the grant tables and terminates after displaying the following messages:

Starting mysqld daemon with databases from XXXXXX
mysqld ended

In this case, you should examine the error log file very carefully. The log should be located in the directory XXXXXX named by the
error message and should indicate why mysqld didn't start. If you do not understand what happened, include the log when you post
a bug report. See Section 1.7, “How to Report Bugs or Problems”.

• There is a mysqld process running

This indicates that the server is running, in which case the grant tables have probably been created already. If so, there is no need to
run mysql_install_db at all because it needs to be run only once (when you install MySQL the first time).

• Installing a second mysqld server does not work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installation in a different location. For ex-
ample, you might have a production installation, but you want to create a second installation for testing purposes. Generally the
problem that occurs when you try to run a second server is that it tries to use a network interface that is in use by the first server. In
this case, you should see one of the following error messages:

Can't start server: Bind on TCP/IP port:
Address already in use
Can't start server: Bind on unix socket...

For instructions on setting up multiple servers, see Section 5.6, “Running Multiple MySQL Servers on the Same Machine”.

• You do not have write access to the /tmp directory

If you do not have write access to create temporary files or a Unix socket file in the default location (the /tmp directory), an error
occurs when you run mysql_install_db or the mysqld server.

You can specify different locations for the temporary directory and Unix socket file by executing these commands prior to starting
mysql_install_db or mysqld, where some_tmp_dir is the full pathname to some directory for which you have write per-
mission:

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
shell> export TMPDIR MYSQL_UNIX_PORT

Then you should be able to run mysql_install_db and start the server with these commands:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysqld_safe --user=mysql &

If mysql_install_db is located in the scripts directory, modify the first command to scripts/mysql_install_db.

Installing and Upgrading MySQL

93



See Section B.1.4.5, “How to Protect or Change the MySQL Unix Socket File”, and Section 2.14, “Environment Variables”.

There are some alternatives to running the mysql_install_db script provided in the MySQL distribution:

• If you want the initial privileges to be different from the standard defaults, you can modify mysql_install_db before you run
it. However, it is preferable to use GRANT and REVOKE to change the privileges after the grant tables have been set up. In other
words, you can run mysql_install_db, and then use mysql -u root mysql to connect to the server as the MySQL root
user so that you can issue the necessary GRANT and REVOKE statements.

If you want to install MySQL on several machines with the same privileges, you can put the GRANT and REVOKE statements in a
file and execute the file as a script using mysql after running mysql_install_db. For example:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysql -u root < your_script_file

By doing this, you can avoid having to issue the statements manually on each machine.

• It is possible to re-create the grant tables completely after they have previously been created. You might want to do this if you're just
learning how to use GRANT and REVOKE and have made so many modifications after running mysql_install_db that you
want to wipe out the tables and start over.

To re-create the grant tables, remove all the .frm, .MYI, and .MYD files in the mysql database directory. Then run the
mysql_install_db script again.

• You can start mysqld manually using the --skip-grant-tables option and add the privilege information yourself using
mysql:

shell> bin/mysqld_safe --user=mysql --skip-grant-tables &
shell> bin/mysql mysql

From mysql, manually execute the SQL commands contained in mysql_install_db. Make sure that you run mysqladmin
flush-privileges or mysqladmin reload afterward to tell the server to reload the grant tables.

Note that by not using mysql_install_db, you not only have to populate the grant tables manually, you also have to create
them first.

2.10.2.2. Starting and Stopping MySQL Automatically

Generally, you start the mysqld server in one of these ways:

• By invoking mysqld directly. This works on any platform.

• By running the MySQL server as a Windows service. The service can be set to start the server automatically when Windows starts,
or as a manual service that you start on request. For instructions, see Section 2.3.11, “Starting MySQL as a Windows Service”.

• By invoking mysqld_safe, which tries to determine the proper options for mysqld and then runs it with those options. This
script is used on Unix and Unix-like systems. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.

• By invoking mysql.server. This script is used primarily at system startup and shutdown on systems that use System V-style run
directories, where it usually is installed under the name mysql. The mysql.server script starts the server by invoking
mysqld_safe. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

• On Mac OS X, you can install a separate MySQL Startup Item package to enable the automatic startup of MySQL on system star-
tup. The Startup Item starts the server by invoking mysql.server. See Section 2.5, “Installing MySQL on Mac OS X”, for de-
tails.

The mysqld_safe and mysql.server scripts and the Mac OS X Startup Item can be used to start the server manually, or automat-
ically at system startup time. mysql.server and the Startup Item also can be used to stop the server.

To start or stop the server manually using the mysql.server script, invoke it with start or stop arguments:

Installing and Upgrading MySQL

94



shell> mysql.server start
shell> mysql.server stop

Before mysql.server starts the server, it changes location to the MySQL installation directory, and then invokes mysqld_safe. If
you want the server to run as some specific user, add an appropriate user option to the [mysqld] group of the /etc/my.cnf op-
tion file, as shown later in this section. (It is possible that you will need to edit mysql.server if you've installed a binary distribution
of MySQL in a non-standard location. Modify it to cd into the proper directory before it runs mysqld_safe. If you do this, your
modified version of mysql.server may be overwritten if you upgrade MySQL in the future, so you should make a copy of your ed-
ited version that you can reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server manually by executing mysqladmin
shutdown.

To start and stop MySQL automatically on your server, you need to add start and stop commands to the appropriate places in your /
etc/rc* files.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server script is installed in the /
etc/init.d directory with the name mysql. You need not install it manually. See Section 2.4, “Installing MySQL from RPM Pack-
ages on Linux”, for more information on the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name such as mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not install mysql.server automatic-
ally, you can install it manually. The script can be found in the support-files directory under the MySQL installation directory or
in a MySQL source tree.

To install mysql.server manually, copy it to the /etc/init.d directory with the name mysql, and then make it executable. Do
this by changing location into the appropriate directory where mysql.server is located and executing these commands:

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

Older Red Hat systems use the /etc/rc.d/init.d directory rather than /etc/init.d. Adjust the preceding commands accord-
ingly. Alternatively, first create /etc/init.d as a symbolic link that points to /etc/rc.d/init.d:

shell> cd /etc
shell> ln -s rc.d/init.d .

After installing the script, the commands needed to activate it to run at system startup depend on your operating system. On Linux, you
can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the mysql script:

shell> chkconfig --level 345 mysql on

On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. The rc(8) manual page states that scripts in this
directory are executed only if their basename matches the *.sh shell filename pattern. Any other files or directories present within the
directory are silently ignored. In other words, on FreeBSD, you should install the mysql.server script as /
usr/local/etc/rc.d/mysql.server.sh to enable automatic startup.

As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /etc/init.d/boot.local to
start additional services on startup. To start up MySQL using this method, you could append a command like the one following to the
appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

For other systems, consult your operating system documentation to see how to install startup scripts.

You can add options for mysql.server in a global /etc/my.cnf file. A typical /etc/my.cnf file might look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock

Installing and Upgrading MySQL

95



port=3306
user=mysql

[mysql.server]
basedir=/usr/local/mysql

The mysql.server script understands the following options: basedir, datadir, and pid-file. If specified, they must be
placed in an option file, not on the command line. mysql.server understands only start and stop as command-line arguments.

The following table shows which option groups the server and each startup script read from option files:

Script Option Groups

mysqld [mysqld], [server], [mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-5.0] and [mysqld-5.1] are read by servers having
versions 5.0.x, 5.1.x, and so forth. This feature can be used to specify options that can be read only by servers within a given release
series.

For backward compatibility, mysql.server also reads the [mysql_server] group and mysqld_safe also reads the
[safe_mysqld] group. However, you should update your option files to use the [mysql.server] and [mysqld_safe]
groups instead when using MySQL 5.1.

See Section 4.2.2.2, “Using Option Files”.

2.10.2.3. Starting and Troubleshooting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server on Unix. If you are using Windows, see Sec-
tion 2.3.13, “Troubleshooting a MySQL Installation Under Windows”.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start.

• Specify any special options needed by the storage engines you are using.

• Make sure that the server knows where to find the data directory.

• Make sure that the server can access the data directory. The ownership and permissions of the data directory and its contents must
be set such that the server can read and modify them.

• Verify that the network interfaces the server wants to use are available.

Some storage engines have options that control their behavior. You can create a my.cnf file and specify startup options for the engines
that you plan to use. If you are going to use storage engines that support transactional tables (InnoDB, NDB), be sure that you have
them configured the way you want before starting the server:

MySQL Enterprise
For expert advice on start-up options appropriate to your circumstances, subscribe to The MySQL Enterprise
Monitor. For more information see http://www.mysql.com/products/enterprise/advisors.html.

• If you are using InnoDB tables, see Section 13.5.3, “InnoDB Configuration”.

• If you are using MySQL Cluster, see Section 17.4, “MySQL Cluster Configuration”.

Storage engines will use default option values if you specify none, but it is recommended that you review the available options and spe-
cify explicit values for those for which the defaults are not appropriate for your installation.

When the mysqld server starts, it changes location to the data directory. This is where it expects to find databases and where it expects

Installing and Upgrading MySQL

96

http://www.mysql.com/products/enterprise/advisors.html


to write log files. The server also writes the pid (process ID) file in the data directory.

The data directory location is hardwired in when the server is compiled. This is where the server looks for the data directory by default.
If the data directory is located somewhere else on your system, the server will not work properly. You can determine what the default
path settings are by invoking mysqld with the --verbose and --help options.

If the default locations don't match the MySQL installation layout on your system, you can override them by specifying options to
mysqld or mysqld_safe on the command line or in an option file.

To specify the location of the data directory explicitly, use the --datadir option. However, normally you can tell mysqld the loca-
tion of the base directory under which MySQL is installed and it looks for the data directory there. You can do this with the -
-basedir option.

To check the effect of specifying path options, invoke mysqld with those options followed by the --verbose and --help options.
For example, if you change location into the directory where mysqld is installed and then run the following command, it shows the ef-
fect of starting the server with a base directory of /usr/local:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be the last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this command:

shell> mysqladmin variables

Or:

shell> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means that the privileges of the data dir-
ectory or its contents do not allow the server access. In this case, you change the permissions for the involved files and directories so
that the server has the right to use them. You can also start the server as root, but this raises security issues and should be avoided.

On Unix, change location into the data directory and check the ownership of the data directory and its contents to make sure the server
has access. For example, if the data directory is /usr/local/mysql/var, use this command:

shell> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use for running the server, change their
ownership to that account. If the account is named mysql, use these commands:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

If the server fails to start up correctly, check the error log. Log files are located in the data directory (typically C:\Program
Files\MySQL\MySQL Server 5.1\data on Windows, /usr/local/mysql/data for a Unix binary distribution, and /
usr/local/var for a Unix source distribution). Look in the data directory for files with names of the form host_name.err and
host_name.log, where host_name is the name of your server host. Then examine the last few lines of these files. On Unix, you
can use tail to display them:

shell> tail host_name.err
shell> tail host_name.log

The error log should contain information that indicates why the server couldn't start.

If either of the following errors occur, it means that some other program (perhaps another mysqld server) is using the TCP/IP port or
Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Installing and Upgrading MySQL

97



Use ps to determine whether you have another mysqld server running. If so, shut down the server before starting mysqld again. (If
another server is running, and you really want to run multiple servers, you can find information about how to do so in Section 5.6,
“Running Multiple MySQL Servers on the Same Machine”.)

If no other server is running, try to execute the command telnet your_host_name tcp_ip_port_number. (The default
MySQL port number is 3306.) Then press Enter a couple of times. If you don't get an error message like telnet: Unable to
connect to remote host: Connection refused, some other program is using the TCP/IP port that mysqld is trying to
use. You'll need to track down what program this is and disable it, or else tell mysqld to listen to a different port with the --port op-
tion. In this case, you'll also need to specify the port number for client programs when connecting to the server via TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks connections to it. If so, modify the firewall
settings to allow access to the port.

If the server starts but you can't connect to it, you should make sure that you have an entry in /etc/hosts that looks like this:

127.0.0.1 localhost

This problem occurs only on systems that do not have a working thread library and for which MySQL must be configured to use MIT-
pthreads.

If you cannot get mysqld to start, you can try to make a trace file to find the problem by using the --debug option. See MySQL In-
ternals: Porting.

2.10.3. Securing the Initial MySQL Accounts
Part of the MySQL installation process is to set up the mysql database that contains the grant tables:

• Windows distributions contain preinitialized grant tables that are installed automatically.

• On Unix, the grant tables are populated by the mysql_install_db program. Some installation methods run this program for
you. Others require that you execute it manually. For details, see Section 2.10.2, “Unix Post-Installation Procedures”.

The grant tables define the initial MySQL user accounts and their access privileges. These accounts are set up as follows:

• Accounts with the username root are created. These are superuser accounts that can do anything. The initial root account pass-
words are empty, so anyone can connect to the MySQL server as root — without a password — and be granted all privileges.

• On Windows, one root account is created; this account allows connecting from the local host only. The Windows installer will
optionally create an account allowing for connections from any host only if the user selects the ENABLE ROOT ACCESS FROM
REMOTE MACHINES option during installation.

• On Unix, both root accounts are for connections from the local host. Connections must be made from the local host by specify-
ing a hostname of localhost for one of the accounts, or the actual hostname or IP number for the other.

• Two anonymous-user accounts are created, each with an empty username. The anonymous accounts have no password, so anyone
can use them to connect to the MySQL server.

• On Windows, one anonymous account is for connections from the local host. It has no global privileges. (Before MySQL 5.1.16,
it has all global privileges, just like the root accounts.) The other is for connections from any host and has all privileges for the
test database and for other databases with names that start with test.

• On Unix, both anonymous accounts are for connections from the local host. Connections must be made from the local host by
specifying a hostname of localhost for one of the accounts, or the actual hostname or IP number for the other. These ac-
counts have all privileges for the test database and for other databases with names that start with test_.

As noted, none of the initial accounts have passwords. This means that your MySQL installation is unprotected until you do something
about it:

• If you want to prevent clients from connecting as anonymous users without a password, you should either assign a password to each
anonymous account or else remove the accounts.

Installing and Upgrading MySQL

98

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://forge.mysql.com/wiki/MySQL_Internals_Porting


• You should assign a password to each MySQL root account.

The following instructions describe how to set up passwords for the initial MySQL accounts, first for the anonymous accounts and then
for the root accounts. Replace “newpwd” in the examples with the actual password that you want to use. The instructions also cover
how to remove the anonymous accounts, should you prefer not to allow anonymous access at all.

You might want to defer setting the passwords until later, so that you don't need to specify them while you perform additional setup or
testing. However, be sure to set them before using your installation for production purposes.

Anonymous Account Password Assignment

To assign passwords to the anonymous accounts, connect to the server as root and then use either SET PASSWORD or UPDATE. In
either case, be sure to encrypt the password using the PASSWORD() function.

To use SET PASSWORD on Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'%' = PASSWORD('newpwd');

To use SET PASSWORD on Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host. This is the name that is specified in
the Host column of the non-localhost record for root in the user table. If you don't know what hostname this is, issue the fol-
lowing statement before using SET PASSWORD:

mysql> SELECT Host, User FROM mysql.user;

Look for the record that has root in the User column and something other than localhost in the Host column. Then use that
Host value in the second SET PASSWORD statement.

Anonymous Account Removal

If you prefer to remove the anonymous accounts instead, do so as follows:

shell> mysql -u root
mysql> DROP USER '';

The DROP statement applies both to Windows and to Unix. On Windows, if you want to remove only the anonymous account that has
the same privileges as root, do this instead:

shell> mysql -u root
mysql> DROP USER ''@'localhost';

That account allows anonymous access but has full privileges, so removing it improves security.

root Account Password Assignment

You can assign passwords to the root accounts in several ways. The following discussion demonstrates three methods:

• Use the SET PASSWORD statement

• Use the mysqladmin command-line client program

• Use the UPDATE statement

To assign passwords using SET PASSWORD, connect to the server as root and issue two SET PASSWORD statements. Be sure to en-
crypt the password using the PASSWORD() function.

Installing and Upgrading MySQL

99



For Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('newpwd');

For Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host. This is the same hostname that you
used when you assigned the anonymous account passwords.

To assign passwords to the root accounts using mysqladmin, execute the following commands:

shell> mysqladmin -u root password "newpwd"
shell> mysqladmin -u root -h host_name password "newpwd"

These commands apply both to Windows and to Unix. In the second command, replace host_name with the name of the server host.
The double quotes around the password are not always necessary, but you should use them if the password contains spaces or other
characters that are special to your command interpreter.

You can also use UPDATE to modify the user table directly. The following UPDATE statement assigns a password to both root ac-
counts at once:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')

-> WHERE User = 'root';
mysql> FLUSH PRIVILEGES;

The UPDATE statement applies both to Windows and to Unix.

After the passwords have been set, you must supply the appropriate password whenever you connect to the server. For example, if you
want to use mysqladmin to shut down the server, you can do so using this command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Note

If you forget your root password after setting it up, Section B.1.4.1, “How to Reset the Root Password”, covers the pro-
cedure for resetting it.

To set up additional accounts, you can use the GRANT statement. For instructions, see Section 5.5.2, “Adding New User Accounts to
MySQL”.

2.11. Upgrading MySQL
As a general rule, we recommend that when you upgrade from one release series to another, you should go to the next series rather than
skipping a series. For example, if you currently are running MySQL 4.0 and wish to upgrade to a newer series, upgrade to MySQL 4.1
rather than to 5.0 or 5.1.

The following items form a checklist of things that you should do whenever you perform an upgrade:

• Before upgrading from MySQL 5.0 to 5.1, read Section 2.11.1, “Upgrading from MySQL 5.0 to 5.1”, as well as Appendix C,
MySQL Change History. These provide information about features that are new in MySQL 5.1 or differ from those found in MySQL
5.0. If you wish to upgrade from a release series previous to MySQL 5.0, you should upgrade to each successive release series in
turn until you have reached MySQL 5.0, and then proceed with the upgrade to MySQL 5.1. For information on upgrading from
MySQL 5.0, see the MySQL 5.0 Reference Manual; for earlier releases, see the MySQL 3.23, 4.0, 4.1 Reference Manual.

• Before you perform an upgrade, back up your databases, including the mysql database that contains the grant tables.

Installing and Upgrading MySQL

100



• Some releases of MySQL introduce incompatible changes to tables. (Our aim is to avoid these changes, but occasionally they are
necessary to correct problems that would be worse than an incompatibility between releases.) Some releases of MySQL introduce
changes to the structure of the grant tables to add new privileges or features.

To avoid problems due to such changes, after you upgrade to a new version of MySQL, you should check your tables (and repair
them if necessary), and update your grant tables to make sure that they have the current structure so that you can take advantage of
any new capabilities. See Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

• If you are running MySQL Server on Windows, see Section 2.3.14, “Upgrading MySQL on Windows”.

• If you are using replication, see Section 16.3.3, “Upgrading a Replication Setup”, for information on upgrading your replication
setup.

• If you are upgrading an installation originally produced by installing multiple RPM packages, it is best to upgrade all the packages,
not just some. For example, if you previously installed the server and client RPMs, do not upgrade just the server RPM.

• As of MySQL 5.1.9, the mysqld-max server is included in binary distributions. There is no separate MySQL-Max distribution. As
of MySQL 5.1.12, binary distributions contain a server that includes the features previously included in mysqld-max.

• If you have created a user-defined function (UDF) with a given name and upgrade MySQL to a version that implements a new built-
in function with the same name, the UDF becomes inaccessible. To correct this, use DROP FUNCTION to drop the UDF, and then
use CREATE FUNCTION to re-create the UDF with a different non-conflicting name. The same is true if the new version of
MySQL implements a built-in function with the same name as an existing stored function. See Section 8.2.4, “Function Name Pars-
ing and Resolution”, for the rules describing how the server interprets references to different kinds of functions.

You can always move the MySQL format files and data files between different versions on the same architecture as long as you stay
within versions for the same release series of MySQL. If you change the character set when running MySQL, you must run myis-
amchk -r -q --set-collation=collation_name on all MyISAM tables. Otherwise, your indexes may not be ordered cor-
rectly, because changing the character set may also change the sort order.

If you are cautious about using new versions, you can always rename your old mysqld before installing a newer one. For example, if
you are using MySQL 5.0.13 and want to upgrade to 5.1.10, rename your current server from mysqld to mysqld-5.0.13. If your
new mysqld then does something unexpected, you can simply shut it down and restart with your old mysqld.

If, after an upgrade, you experience problems with recompiled client programs, such as Commands out of sync or unexpected
core dumps, you probably have used old header or library files when compiling your programs. In this case, you should check the date
for your mysql.h file and libmysqlclient.a library to verify that they are from the new MySQL distribution. If not, recompile
your programs with the new headers and libraries.

If problems occur, such as that the new mysqld server does not start or that you cannot connect without a password, verify that you do
not have an old my.cnf file from your previous installation. You can check this with the --print-defaults option (for example,
mysqld --print-defaults). If this command displays anything other than the program name, you have an active my.cnf file
that affects server or client operation.

It is a good idea to rebuild and reinstall the Perl DBD::mysql module whenever you install a new release of MySQL. The same ap-
plies to other MySQL interfaces as well, such as the PHP mysql extension and the Python MySQLdb module.

2.11.1. Upgrading from MySQL 5.0 to 5.1
When upgrading a 5.0 installation to 5.0.10 or above note that it is necessary to upgrade your grant tables. Otherwise, creating stored
procedures and functions might not work. The procedure for doing this is described in Section 4.4.8, “mysql_upgrade — Check
Tables for MySQL Upgrade”.

Note

It is good practice to back up your data before installing any new version of software. Although MySQL works very hard
to ensure a high level of quality, you should protect your data by making a backup. MySQL recommends that you dump
and reload your tables from any previous version to upgrade to 5.1.

In general, you should do the following when upgrading from MySQL 5.0 from 5.1:

• Check the items in Section 2.11, “Upgrading MySQL”, to see whether any of them might affect your applications.

Installing and Upgrading MySQL

101



• Check the items in the change lists found later in this section to see whether any of them might affect your applications. Note partic-
ularly any that are marked Incompatible change. These result in incompatibilities with earlier versions of MySQL, and may require
your attention before you upgrade.

• Some releases of MySQL introduce incompatible changes to tables. (Our aim is to avoid these changes, but occasionally they are
necessary to correct problems that would be worse than an incompatibility between releases.) Some releases of MySQL introduce
changes to the structure of the grant tables to add new privileges or features.

To avoid problems due to such changes, after you upgrade to a new version of MySQL, you should run mysql_upgrade to check
your tables (and repair them if necessary), and to update your grant tables to make sure that they have the current structure so that
you can take advantage of any new capabilities. See Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

• Read the MySQL 5.1 change history to see what significant new features you can use in 5.1. See Section C.1, “Changes in release
5.1.x (Development)”.

• If you are running MySQL Server on Windows, see Section 2.3.14, “Upgrading MySQL on Windows”.

• If you are using replication, see Section 16.3.3, “Upgrading a Replication Setup”, for information on upgrading your replication
setup.

The following lists describe changes that may affect applications and that you should watch out for when upgrading to MySQL 5.1.

Configuration Changes:

• Before MySQL 5.1.11, to build MySQL from source with SSL support enabled, you would invoke configure with either the -
-with-openssl or --with-yassl option. In MySQL 5.1.11, those options both have been replaced by the --with-ssl op-
tion. By default, --with-ssl causes the bundled yaSSL library to be used. To select OpenSSL instead, give the option as -
-with-ssl=path, where path is the directory where the OpenSSL header files and libraries are located.

Server Changes:

• Known issue: MySQL introduces encoding for table names that have non-ASCII characters (see Section 8.2.3, “Mapping of Identi-
fiers to Filenames”). After a live upgrade from MySQL 5.0 to 5.1, the server recognizes names that have non-ASCII characters and
adds a #mysql50# prefix to them. Running mysqlcheck later (or mysql_upgrade, which runs mysqlcheck) to upgrade
these names encodes them with the new format and removes the #mysql50# prefix. However, although this is done for tables, it is
not done for views. To work around this problem, drop each affected view and recreate it.

This problem is fixed as of MySQL 5.1.23.

• Known issue: When upgrading from MySQL 5.0 to 5.1, running mysqlcheck (or mysql_upgrade, which runs
mysqlcheck) to upgrade tables fails for names that must be written as quoted identifiers. To work around this problem, rename
each affected table to a name that does not require quoting:

RENAME TABLE `tab``le_a` TO table_a;
RENAME TABLE `table b` TO table_b;

After renaming the tables, run the mysql_upgrade program. Then rename the tables back to their original names:

RENAME TABLE table_a TO `tab``le_a`;
RENAME TABLE table_b TO `table b`;

This problem is fixed as of MySQL 5.1.23.

• Incompatible change: MySQL 5.1 implements support for a plugin API that allows the loading and unloading of components at
runtime, without restarting the server. Section 29.2, “The MySQL Plugin Interface”. The plugin API requires the mysql.plugin
table. When upgrading from an older version of MySQL, you should run the mysql_upgrade command to create this table. See
Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

Plugins are installed in the directory named by the plugin_dir system variable. This variable also controls the location from
which the server loads user-defined functions (UDFs), which is a change from earlier versions of MySQL. That is, all UDF library
files now must be installed in the plugin directory. When upgrading from an older version of MySQL, you must migrate your UDF
files to the plugin directory.

Installing and Upgrading MySQL

102



• Incompatible change: The table_cache system variable has been renamed to table_open_cache. Any scripts that refer to
table_cache should be updated to use the new name.

• Incompatible change: Several issues were identified for stored programs (stored functions and procedures, triggers, and events) and
views containing non-ASCII symbols. These issues involved conversion errors due to incomplete character set information when
translating these objects to and from stored format.

To address these problems, the representation for these objects was changed in MySQL 5.1.21. However, the fixes affect all stored
programs and views. (For example, you will see warnings about “no creation context.”) To avoid warnings from the server about the
use of old definitions from any release prior to 5.1.21, you should dump stored programs and views with mysqldump after upgrad-
ing to 5.1.21 or higher, and then reload them to recreate them with new definitions. Invoke mysqldump with a -
-default-character-set option that names the non-ASCII character set that was used for the definitions when the objects
were originally defined.

• Incompatible change: As of MySQL 5.1.20, mysqld_safe supports error logging to syslog on systems that support the log-
ger command. The new --syslog and --skip-syslog options can be used instead of the --log-error option to control
logging behavior, as described in Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.

In 5.1.21 and up, the default is --skip-syslog, which is compatible with the default behavior of writing an error log file for re-
leases prior to 5.1.20.

In 5.1.20 only, the following conditions apply: 1) The default is to use syslog, which is not compatible with releases prior to
5.1.20. 2) Logging to syslog may fail to operate correctly in some cases, so we recommend that you use --skip-syslog or -
-log-error. To maintain the older behavior if you were using no error-logging option, use --skip-syslog. If you were using
--log-error, continue to use it.

• Incompatible change: As of MySQL 5.1.15, InnoDB rolls back only the last statement on a transaction timeout. A new option, -
-innodb_rollback_on_timeout, causes InnoDB to abort and roll back the entire transaction if a transaction timeout occurs
(the same behavior as in MySQL 4.1).

• Incompatible change: As of MySQL 5.1.15, the following conditions apply to enabling the read_only system variable:

• If you attempt to enable read_only while you have any explicit locks (acquired with LOCK TABLES or have a pending
transaction, an error will occur.

• If other clients hold explicit table locks or have pending transactions, the attempt to enable read_only blocks until the locks
are released and the transactions end. While the attempt to enable read_only is pending, requests by other clients for table
locks or to begin transactions also block until read_only has been set.

• read_only can be enabled while you hold a global read lock (acquired with FLUSH TABLES WITH READ LOCK) because
that does not involve table locks.

Previously, the attempt to enable read_only would return immediately even if explicit locks or transactions were pending, so
some data changes could occur for statements executing in the server at the same time.

• Incompatible change: The number of function names affected by IGNORE_SPACE was reduced significantly in MySQL 5.1.13,
from about 200 to about 30. (For details about IGNORE_SPACE, see Section 8.2.4, “Function Name Parsing and Resolution”.) This
change improves the consistency of parser operation. However, it also introduces the possibility of incompatibility for old SQL code
that relies on the following conditions:

• IGNORE_SPACE is disabled.

• The presence or absence of whitespace following a function name is used to distinguish between a built-in function and stored
function that have the same name (for example, PI() versus PI ()).

For functions that are no longer affected by IGNORE_SPACE as of MySQL 5.1.13, that strategy no longer works. Either of the fol-
lowing approaches can be used if you have code that is subject to the preceding incompatibility:

• If a stored function has a name that conflicts with a built-in function, refer to the stored function with a schema name qualifier,
regardless of whether whitespace is present. For example, write schema_name.PI() or schema_name.PI ().

• Alternatively, rename the stored function to use a non-conflicting name and change invocations of the function to use the new
name.

• Incompatible change: For utf8 columns, the full-text parser incorrectly considered several non-word punctuation and whitespace
characters as word characters, causing some searches to return incorrect results. The fix involves a change to the full-text parser in

Installing and Upgrading MySQL

103



MySQL 5.1.12, so as of 5.1.12, any tables that have FULLTEXT indexes on utf8 columns must be repaired with REPAIR
TABLE:

REPAIR TABLE tbl_name QUICK;

• Incompatible change: Storage engines can be pluggable at runtime, so the distinction between disabled and invalid storage engines
no longer applies. As of MySQL 5.1.12, this affects the NO_ENGINE_SUBSTITUTION SQL mode, as described in Section 5.1.6,
“SQL Modes”.

• Incompatible change: The structure of FULLTEXT indexes has been changed in MySQL 5.1.6. After upgrading to MySQL 5.1.6 or
greater, call the REPAIR TABLE statement for each table that contains any FULLTEXT indexes.

• Incompatible change: In MySQL 5.1.6, when log tables were implemented, the default log destination for the general query and
slow query log was TABLE. As of MySQL 5.1.21, this default has been changed to FILE, which is compatible with MySQL 5.0,
but incompatible with earlier releases of MySQL 5.1 from 5.1.6 to 5.1.20. If you are upgrading from MySQL 5.0 to this release, no
logging option changes should be necessary. However, if you are upgrading from 5.1.6 through 5.1.20 to this release and were using
TABLE logging, use the --log-output=TABLE option explicitly to preserve your server's table-logging behavior.

• Incompatible change: For ENUM columns that had enumeration values containing commas, the commas were mapped to 0xff in-
ternally. However, this rendered the commas indistinguishable from true 0xff characters in the values. This no longer occurs.
However, the fix requires that you dump and reload any tables that have ENUM columns containing true 0xff in their values: Dump
the tables using mysqldump with the current server before upgrading from a version of MySQL 5.1 older than 5.1.15 to version
5.1.15 or newer.

• As of MySQL 5.1.12, the lc_time_names system variable specifies the locale that controls the language used to display day and
month names and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and MONTHNAME()
functions. See Section 9.7, “MySQL Server Locale Support”.

• As of MySQL 5.1.6, special characters in database and table identifiers are encoded when creating the corresponding directory
names and filenames. This relaxes the restrictions on the characters that can appear in identifiers. See Section 8.2.3, “Mapping of
Identifiers to Filenames”. To cause database and table names to be updated to the new format should they contain special characters,
re-encode them with mysqlcheck. The following command updates all names to the new encoding:

shell> mysqlcheck --check-upgrade --fix-db-names --fix-table-names --all-databases

mysqlcheck cannot fix names that contain literal instances of the @ character that is used for encoding special characters. If you
have databases or tables that contain this character, use mysqldump to dump them before upgrading to MySQL 5.1.6 or later, and
then reload the dump file after upgrading.

• As of MySQL 5.1.9, mysqld_safe no longer implicitly invokes mysqld-max if it exists. Instead, it invokes mysqld unless a -
-mysqld or --mysqld-version option is given to specify another server explicitly. If you previously relied on the implicit in-
vocation of mysqld-max, you should use an appropriate option now.

SQL Changes:

• Important note: Prior to MySQL 5.1.17, the parser accepted invalid code in SQL condition handlers, leading to server crashes or
unexpected execution behavior in stored programs. Specifically, the parser allowed a condition handler to refer to labels for blocks
that enclose the handler declaration. This was incorrect because block label scope does not include the code for handlers declared
within the labeled block.

As of 5.1.17, the parser rejects this invalid construct, but if you upgrade in place (without dumping and reloading your databases),
existing handlers that contain the construct still are invalid even if they appear to function as you expect and should be rewritten.

To find affected handlers, use mysqldump to dump all stored functions and procedures, triggers, and events. Then attempt to reload
them into an upgraded server. Handlers that contain illegal label references will be rejected.

For more information about condition handlers and writing them to avoid invalid jumps, see Section 20.2.8.2, “DECLARE
Handlers”.

• Incompatible change: The parser accepted statements that contained /* ... */ that were not properly closed with */, such as
SELECT 1 /* + 2. As of MySQL 5.1.23, statements that contain unclosed /*-comments now are rejected with a syntax error.

This fix has the potential to cause incompatibilities. Because of Bug#26302, which caused the trailing */ to be truncated from com-

Installing and Upgrading MySQL

104

http://bugs.mysql.com/26302


ments in views, stored routines, triggers, and events, it is possible that objects of those types may have been stored with definitions
that now will be rejected as syntactically invalid. Such objects should be dropped and re-created so that their definitions do not con-
tain truncated comments.

• Incompatible change: As of MySQL 5.1.8, TYPE = engine_name is still accepted as a synonym for the ENGINE = en-
gine_name table option but generates a warning. You should note that this option is not available in MySQL 5.1.7, and is to be
removed altogether in MySQL 5.2, where it will produce a syntax error.

TYPE has been deprecated since MySQL 4.0.

• Incompatible change: The namespace for triggers has changed in MySQL 5.0.10. Previously, trigger names had to be unique per
table. Now they must be unique within the schema (database). An implication of this change is that DROP TRIGGER syntax now
uses a schema name instead of a table name (schema name is optional and, if omitted, the current schema will be used).

When upgrading from a previous version of MySQL 5 to MySQL 5.0.10 or newer, you must drop all triggers and re-create them or
DROP TRIGGER will not work after the upgrade. Here is a suggested procedure for doing this:

1. Upgrade to MySQL 5.0.10 or later to be able to access trigger information in the INFORMATION_SCHEMA.TRIGGERS table.
(It should work even for pre-5.0.10 triggers.)

2. Dump all trigger definitions using the following SELECT statement:

SELECT CONCAT('CREATE TRIGGER ', t.TRIGGER_SCHEMA, '.', t.TRIGGER_NAME,
' ', t.ACTION_TIMING, ' ', t.EVENT_MANIPULATION, ' ON ',
t.EVENT_OBJECT_SCHEMA, '.', t.EVENT_OBJECT_TABLE,
' FOR EACH ROW ', t.ACTION_STATEMENT, '//' )

INTO OUTFILE '/tmp/triggers.sql'
FROM INFORMATION_SCHEMA.TRIGGERS AS t;

The statement uses INTO OUTFILE, so you must have the FILE privilege. The file will be created on the server host; use a
different filename if you like. To be 100% safe, inspect the trigger definitions in the triggers.sql file, and perhaps make a
backup of the file.

3. Stop the server and drop all triggers by removing all .TRG files in your database directories. Change location to your data dir-
ectory and issue this command:

shell> rm */*.TRG

4. Start the server and re-create all triggers using the triggers.sql file: For example in my case it was:

mysql> delimiter // ;
mysql> source /tmp/triggers.sql //

5. Check that all triggers were successfully created using the SHOW TRIGGERS statement.

• Incompatible change: MySQL 5.1.6 introduces the TRIGGER privilege. Previously, the SUPER privilege was needed to create or
drop triggers. Now those operations require the TRIGGER privilege. This is a security improvement because you no longer need to
grant users the SUPER privilege to enable them to create triggers. However, the requirement that the account named in a trigger's
DEFINER clause must have the SUPER privilege has changed to a requirement for the TRIGGER privilege. When upgrading from a
previous version of MySQL 5.0 or 5.1 to MySQL 5.1.6 or newer, be sure to update your grant tables as described in Section 4.4.8,
“mysql_upgrade — Check Tables for MySQL Upgrade”. This process assigns the TRIGGER privilege to all accounts that had
the SUPER privilege. If you fail to update the grant tables, triggers may fail when activated. (After updating the grant tables, you can
revoke the SUPER privilege from those accounts that no longer otherwise require it.)

• Some keywords are reserved in MySQL 5.1 that were not reserved in MySQL 5.0. See Section 8.3, “Reserved Words”.

• The LOAD DATA FROM MASTER and LOAD TABLE FROM MASTER statements are deprecated. See Section 12.6.2.2, “LOAD
DATA FROM MASTER Syntax”, for recommended alternatives.

• The INSTALL PLUGIN and UNINSTALL PLUGIN statements that are used for the plugin API are new. So is the WITH PARS-
ER clause for FULLTEXT index creation that associates a parser plugin with a full-text index. Section 29.2, “The MySQL Plugin In-
terface”.

C API Changes:

Installing and Upgrading MySQL

105



• Incompatible change: As of MySQL 5.1.7, the mysql_stmt_attr_get() C API function returns a boolean rather than an un-
signed int for STMT_ATTR_UPDATE_MAX_LENGTH. (Bug#16144)

2.11.2. Copying MySQL Databases to Another Machine
You can copy the .frm, .MYI, and .MYD files for MyISAM tables between different architectures that support the same floating-point
format. (MySQL takes care of any byte-swapping issues.) See Section 13.4, “The MyISAM Storage Engine”.

In cases where you need to transfer databases between different architectures, you can use mysqldump to create a file containing SQL
statements. You can then transfer the file to the other machine and feed it as input to the mysql client.

Use mysqldump --help to see what options are available. If you are moving the data to a newer version of MySQL, you should use
mysqldump --opt to take advantage of any optimizations that result in a dump file that is smaller and can be processed more
quickly.

The easiest (although not the fastest) way to move a database between two machines is to run the following commands on the machine
on which the database is located:

shell> mysqladmin -h 'other_hostname' create db_name
shell> mysqldump --opt db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use these commands:

shell> mysqladmin create db_name
shell> mysqldump -h 'other_hostname' --opt --compress db_name | mysql db_name

You can also store the dump in a file, transfer the file to the target machine, and then load the file into the database there. For example,
you can dump a database to a compressed file on the source machine like this:

shell> mysqldump --quick db_name | gzip > db_name.gz

Transfer the file containing the database contents to the target machine and run these commands there:

shell> mysqladmin create db_name
shell> gunzip < db_name.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is much faster than simply using
mysqldump. In the following commands, DUMPDIR represents the full pathname of the directory you use to store the output from
mysqldump.

First, create the directory for the output files and dump the database:

shell> mkdir DUMPDIR
shell> mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine and load the files into MySQL
there:

shell> mysqladmin create db_name # create database
shell> cat DUMPDIR/*.sql | mysql db_name # create tables in database
shell> mysqlimport db_name DUMPDIR/*.txt # load data into tables

Do not forget to copy the mysql database because that is where the grant tables are stored. You might have to run commands as the
MySQL root user on the new machine until you have the mysql database in place.

After you import the mysql database on the new machine, execute mysqladmin flush-privileges so that the server reloads
the grant table information.

2.12. Downgrading MySQL
This section describes what you should do to downgrade to an older MySQL version in the unlikely case that the previous version
worked better than the new one.

Installing and Upgrading MySQL

106

http://bugs.mysql.com/16144


If you are downgrading within the same release series (for example, from 5.0.13 to 5.0.12) the general rule is that you just have to in-
stall the new binaries on top of the old ones. There is no need to do anything with the databases. As always, however, it is always a
good idea to make a backup.

The following items form a checklist of things you should do whenever you perform a downgrade:

• Read the upgrading section for the release series from which you are downgrading to be sure that it does not have any features you
really need. Section 2.11, “Upgrading MySQL”.

• If there is a downgrading section for that version, you should read that as well.

In most cases, you can move the MySQL format files and data files between different versions on the same architecture as long as you
stay within versions for the same release series of MySQL.

If you downgrade from one release series to another, there may be incompatibilities in table storage formats. In this case, you can use
mysqldump to dump your tables before downgrading. After downgrading, reload the dump file using mysql or mysqlimport to re-
create your tables. For examples, see Section 2.11.2, “Copying MySQL Databases to Another Machine”.

The normal symptom of a downward-incompatible table format change when you downgrade is that you can't open tables. In that case,
use the following procedure:

1. Stop the older MySQL server that you are downgrading to.

2. Restart the newer MySQL server you are downgrading from.

3. Dump any tables that were inaccessible to the older server by using mysqldump to create a dump file.

4. Stop the newer MySQL server and restart the older one.

5. Reload the dump file into the older server. Your tables should be accessible.

2.12.1. Downgrading to MySQL 5.0
When downgrading to MySQL 5.0 from MySQL 5.1 or a later version, you should keep in mind the following issues relating to features
found in MySQL 5.1 and later, but not in MySQL 5.0:

• Event Scheduler. MySQL 5.0 does not support scheduled events. If your databases contain scheduled event definitions, you should
prevent them from being dumped when you use mysqldump by using the --skip-events option. (See Section 4.5.4, “mysql-
dump — A Database Backup Program”.)

• Partitioning. MySQL 5.0 does not support user-defined partitioning. If a table was created as a partitioned table in 5.1 (or if an ta-
ble created in a previous version of MySQL was altered to include partitions after an upgrade to 5.1), the table is accessible after
downgrade only if you do one of the following:

• Export the table using mysqldump and then drop it in MySQL 5.1; import the table again following the downgrade to MySQL
5.0.

• Prior to the downgrade, remove the table's partitioning using ALTER TABLE table_name REMOVE PARTITIONING.

• Stored routines. MySQL 5.1.21 added a number of new columns to the mysql.proc table in which stored routine definitions are
stored. If you are downgrading from MySQL 5.1.21 or later to MySQL 5.0, you cannot import the MySQL 5.1 routine definitions
into MySQL 5.0.46 or earlier using the dump of mysql.proc created by mysqldump (such as when using the -
-all-databases option). Instead, you should run mysqldump --routines prior to performing the downgrade and run the
stored routines DDL statements following the downgrade.

See Bug#11986, Bug#30029, and Bug#30660, for more information.

2.13. Operating System-Specific Notes

Installing and Upgrading MySQL

107

http://bugs.mysql.com/11986
http://bugs.mysql.com/30029
http://bugs.mysql.com/30660


2.13.1. Linux Notes
This section discusses issues that have been found to occur on Linux. The first few subsections describe general operating system-re-
lated issues, problems that can occur when using binary or source distributions, and post-installation issues. The remaining subsections
discuss problems that occur with Linux on specific platforms.

Note that most of these problems occur on older versions of Linux. If you are running a recent version, you may see none of them.

2.13.1.1. Linux Operating System Notes

MySQL needs at least Linux version 2.0.

Warning

We have seen some strange problems with Linux 2.2.14 and MySQL on SMP systems. We also have reports from some
MySQL users that they have encountered serious stability problems using MySQL with kernel 2.2.14. If you are using this
kernel, you should upgrade to 2.2.19 (or newer) or to a 2.4 kernel. If you have a multiple-CPU box, you should seriously
consider using 2.4 because it gives you a significant speed boost. Your system should be more stable.

When using LinuxThreads, you should see a minimum of three mysqld processes running. These are in fact threads. There is one
thread for the LinuxThreads manager, one thread to handle connections, and one thread to handle alarms and signals.

2.13.1.2. Linux Binary Distribution Notes

The Linux-Intel binary and RPM releases of MySQL are configured for the highest possible speed. We are always trying to use the fast-
est stable compiler available.

The binary release is linked with -static, which means you do not normally need to worry about which version of the system librar-
ies you have. You need not install LinuxThreads, either. A program linked with -static is slightly larger than a dynamically linked
program, but also slightly faster (3-5%). However, one problem with a statically linked program is that you can't use user-defined func-
tions (UDFs). If you are going to write or use UDFs (this is something for C or C++ programmers only), you must compile MySQL
yourself using dynamic linking.

A known issue with binary distributions is that on older Linux systems that use libc (such as Red Hat 4.x or Slackware), you get some
(non-fatal) issues with hostname resolution. If your system uses libc rather than glibc2, you probably will encounter some diffi-
culties with hostname resolution and getpwnam(). This happens because glibc (unfortunately) depends on some external libraries
to implement hostname resolution and getpwent(), even when compiled with -static. These problems manifest themselves in
two ways:

• You may see the following error message when you run mysql_install_db:

Sorry, the host 'xxxx' could not be looked up

You can deal with this by executing mysql_install_db --force, which does not execute the resolveip test in
mysql_install_db. The downside is that you cannot use hostnames in the grant tables: except for localhost, you must use
IP numbers instead. If you are using an old version of MySQL that does not support --force, you must manually remove the re-
solveip test in mysql_install_db using a text editor.

• You also may see the following error when you try to run mysqld with the --user option:

getpwnam: No such file or directory

To work around this problem, start mysqld by using the su command rather than by specifying the --user option. This causes
the system itself to change the user ID of the mysqld process so that mysqld need not do so.

Another solution, which solves both problems, is not to use a binary distribution. Obtain a MySQL source distribution (in RPM or
tar.gz format) and install that instead.

On some Linux 2.2 versions, you may get the error Resource temporarily unavailable when clients make a great many
new connections to a mysqld server over TCP/IP. The problem is that Linux has a delay between the time that you close a TCP/IP
socket and the time that the system actually frees it. There is room for only a finite number of TCP/IP slots, so you encounter the re-
source-unavailable error if clients attempt too many new TCP/IP connections over a short period of time. For example, you may see the

Installing and Upgrading MySQL

108



error when you run the MySQL test-connect benchmark over TCP/IP.

We have inquired about this problem a few times on different Linux mailing lists but have never been able to find a suitable resolution.
The only known “fix” is for clients to use persistent connections, or, if you are running the database server and clients on the same ma-
chine, to use Unix socket file connections rather than TCP/IP connections.

2.13.1.3. Linux Source Distribution Notes

The following notes regarding glibc apply only to the situation when you build MySQL yourself. If you are running Linux on an x86
machine, in most cases it is much better for you to use our binary. We link our binaries against the best patched version of glibc we
can find and with the best compiler options, in an attempt to make it suitable for a high-load server. For a typical user, even for setups
with a lot of concurrent connections or tables exceeding the 2GB limit, our binary is the best choice in most cases. After reading the fol-
lowing text, if you are in doubt about what to do, try our binary first to determine whether it meets your needs. If you discover that it is
not good enough, you may want to try your own build. In that case, we would appreciate a note about it so that we can build a better
binary next time.

MySQL uses LinuxThreads on Linux. If you are using an old Linux version that doesn't have glibc2, you must install LinuxThreads
before trying to compile MySQL. You can obtain LinuxThreads from http://dev.mysql.com/downloads/os-linux.html.

Note that glibc versions before and including version 2.1.1 have a fatal bug in pthread_mutex_timedwait() handling, which
is used when INSERT DELAYED statements are issued. We recommend that you not use INSERT DELAYED before upgrading
glibc.

Note that Linux kernel and the LinuxThread library can by default handle a maximum of 1,024 threads. If you plan to have more than
1,000 concurrent connections, you need to make some changes to LinuxThreads, as follows:

• Increase PTHREAD_THREADS_MAX in sysdeps/unix/sysv/linux/bits/local_lim.h to 4096 and decrease
STACK_SIZE in linuxthreads/internals.h to 256KB. The paths are relative to the root of glibc. (Note that MySQL is
not stable with 600-1000 connections if STACK_SIZE is the default of 2MB.)

• Recompile LinuxThreads to produce a new libpthread.a library, and relink MySQL against it.

There is another issue that greatly hurts MySQL performance, especially on SMP systems. The mutex implementation in LinuxThreads
in glibc 2.1 is very poor for programs with many threads that hold the mutex only for a short time. This produces a paradoxical result:
If you link MySQL against an unmodified LinuxThreads, removing processors from an SMP actually improves MySQL performance in
many cases. We have made a patch available for glibc 2.1.3 to correct this behavior (ht-
tp://dev.mysql.com/Downloads/Linux/linuxthreads-2.1-patch).

With glibc 2.2.2, MySQL uses the adaptive mutex, which is much better than even the patched one in glibc 2.1.3. Be warned,
however, that under some conditions, the current mutex code in glibc 2.2.2 overspins, which hurts MySQL performance. The likeli-
hood that this condition occurs can be reduced by re-nicing the mysqld process to the highest priority. We have also been able to cor-
rect the overspin behavior with a patch, available at http://dev.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch. It combines the
correction of overspin, maximum number of threads, and stack spacing all in one. You need to apply it in the linuxthreads direct-
ory with patch -p0 </tmp/linuxthreads-2.2.2.patch. We hope it is included in some form in future releases of glibc
2.2. In any case, if you link against glibc 2.2.2, you still need to correct STACK_SIZE and PTHREAD_THREADS_MAX. We hope
that the defaults is corrected to some more acceptable values for high-load MySQL setup in the future, so that the commands needed to
produce your own build can be reduced to ./configure; make; make install.

We recommend that you use these patches to build a special static version of libpthread.a and use it only for statically linking
against MySQL. We know that these patches are safe for MySQL and significantly improve its performance, but we cannot say any-
thing about their effects on other applications. If you link other applications that require LinuxThreads against the patched static version
of the library, or build a patched shared version and install it on your system, you do so at your own risk.

If you experience any strange problems during the installation of MySQL, or with some common utilities hanging, it is very likely that
they are either library or compiler related. If this is the case, using our binary resolves them.

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

Installing and Upgrading MySQL

109

http://dev.mysql.com/downloads/os-linux.html
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.1-patch
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.1-patch
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch


• Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with -Lpath).

• Copy libmysqclient.so to /usr/lib.

• Add the pathname of the directory where libmysqlclient.so is located to the LD_RUN_PATH environment variable before
running your client.

If you are using the Fujitsu compiler (fcc/FCC), you may have some problems compiling MySQL because the Linux header files are
very gcc oriented. The following configure line should work with fcc/FCC:

CC=fcc CFLAGS="-O -K fast -K lib -K omitfp -Kpreex -D_GNU_SOURCE \
-DCONST=const -DNO_STRTOLL_PROTO" \

CXX=FCC CXXFLAGS="-O -K fast -K lib \
-K omitfp -K preex --no_exceptions --no_rtti -D_GNU_SOURCE \
-DCONST=const -Dalloca=__builtin_alloca -DNO_STRTOLL_PROTO \
'-D_EXTERN_INLINE=static __inline'" \

./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static --disable-shared \
--with-low-memory

2.13.1.4. Linux Post-Installation Notes

mysql.server can be found in the support-files directory under the MySQL installation directory or in a MySQL source tree.
You can install it as /etc/init.d/mysql for automatic MySQL startup and shutdown. See Section 2.10.2.2, “Starting and Stop-
ping MySQL Automatically”.

If MySQL cannot open enough files or connections, it may be that you have not configured Linux to handle enough files.

In Linux 2.2 and onward, you can check the number of allocated file handles as follows:

shell> cat /proc/sys/fs/file-max
shell> cat /proc/sys/fs/dquot-max
shell> cat /proc/sys/fs/super-max

If you have more than 16MB of memory, you should add something like the following to your init scripts (for example, /
etc/init.d/boot.local on SuSE Linux):

echo 65536 > /proc/sys/fs/file-max
echo 8192 > /proc/sys/fs/dquot-max
echo 1024 > /proc/sys/fs/super-max

You can also run the echo commands from the command line as root, but these settings are lost the next time your computer restarts.

Alternatively, you can set these parameters on startup by using the sysctl tool, which is used by many Linux distributions (including
SuSE Linux 8.0 and later). Put the following values into a file named /etc/sysctl.conf:

# Increase some values for MySQL
fs.file-max = 65536
fs.dquot-max = 8192
fs.super-max = 1024

You should also add the following to /etc/my.cnf:

[mysqld_safe]
open-files-limit=8192

This should allow the server a limit of 8,192 for the combined number of connections and open files.

The STACK_SIZE constant in LinuxThreads controls the spacing of thread stacks in the address space. It needs to be large enough so
that there is plenty of room for each individual thread stack, but small enough to keep the stack of some threads from running into the
global mysqld data. Unfortunately, as we have experimentally discovered, the Linux implementation of mmap() successfully unmaps
a mapped region if you ask it to map out an address currently in use, zeroing out the data on the entire page instead of returning an error.
So, the safety of mysqld or any other threaded application depends on the “gentlemanly” behavior of the code that creates threads. The
user must take measures to make sure that the number of running threads at any given time is sufficiently low for thread stacks to stay
away from the global heap. With mysqld, you should enforce this behavior by setting a reasonable value for the max_connections
variable.

Installing and Upgrading MySQL

110



If you build MySQL yourself, you can patch LinuxThreads for better stack use. See Section 2.13.1.3, “Linux Source Distribution
Notes”. If you do not want to patch LinuxThreads, you should set max_connections to a value no higher than 500. It should be
even less if you have a large key buffer, large heap tables, or some other things that make mysqld allocate a lot of memory, or if you
are running a 2.2 kernel with a 2GB patch. If you are using our binary or RPM version, you can safely set max_connections at
1500, assuming no large key buffer or heap tables with lots of data. The more you reduce STACK_SIZE in LinuxThreads the more
threads you can safely create. We recommend values between 128KB and 256KB.

If you use a lot of concurrent connections, you may suffer from a “feature” in the 2.2 kernel that attempts to prevent fork bomb attacks
by penalizing a process for forking or cloning a child. This causes MySQL not to scale well as you increase the number of concurrent
clients. On single-CPU systems, we have seen this manifest as very slow thread creation; it may take a long time to connect to MySQL
(as long as one minute), and it may take just as long to shut it down. On multiple-CPU systems, we have observed a gradual drop in
query speed as the number of clients increases. In the process of trying to find a solution, we have received a kernel patch from one of
our users who claimed it helped for his site. This patch is available at http://dev.mysql.com/Downloads/Patches/linux-fork.patch. We
have done rather extensive testing of this patch on both development and production systems. It has significantly improved MySQL per-
formance without causing any problems and we recommend it to our users who still run high-load servers on 2.2 kernels.

This issue has been fixed in the 2.4 kernel, so if you are not satisfied with the current performance of your system, rather than patching
your 2.2 kernel, it might be easier to upgrade to 2.4. On SMP systems, upgrading also gives you a nice SMP boost in addition to fixing
the fairness bug.

We have tested MySQL on the 2.4 kernel on a two-CPU machine and found MySQL scales much better. There was virtually no slow-
down on query throughput all the way up to 1,000 clients, and the MySQL scaling factor (computed as the ratio of maximum through-
put to the throughput for one client) was 180%. We have observed similar results on a four-CPU system: Virtually no slowdown as the
number of clients was increased up to 1,000, and a 300% scaling factor. Based on these results, for a high-load SMP server using a 2.2
kernel, we definitely recommend upgrading to the 2.4 kernel at this point.

We have discovered that it is essential to run the mysqld process with the highest possible priority on the 2.4 kernel to achieve maxim-
um performance. This can be done by adding a renice -20 $$ command to mysqld_safe. In our testing on a four-CPU ma-
chine, increasing the priority resulted in a 60% throughput increase with 400 clients.

We are currently also trying to collect more information on how well MySQL performs with a 2.4 kernel on four-way and eight-way
systems. If you have access such a system and have done some benchmarks, please send an email message to
<benchmarks@mysql.com> with the results. We will review them for inclusion in the manual.

If you see a dead mysqld server process with ps, this usually means that you have found a bug in MySQL or you have a corrupted ta-
ble. See Section B.1.4.2, “What to Do If MySQL Keeps Crashing”.

To get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld with the --core-file option. Note
that you also probably need to raise the core file size by adding ulimit -c 1000000 to mysqld_safe or starting
mysqld_safe with --core-file-size=1000000. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.

2.13.1.5. Linux x86 Notes

MySQL requires libc 5.4.12 or newer. It is known to work with libc 5.4.46. glibc 2.0.6 and later should also work. There have
been some problems with the glibc RPMs from Red Hat, so if you have problems, check whether there are any updates. The glibc
2.0.7-19 and 2.0.7-29 RPMs are known to work.

If you are using Red Hat 8.0 or a new glibc 2.2.x library, you may see mysqld die in gethostbyaddr(). This happens because
the new glibc library requires a stack size greater than 128KB for this call. To fix the problem, start mysqld with the -
-thread-stack=192K option. (Use -O thread_stack=192K before MySQL 4.) This stack size is the default on MySQL
4.0.10 and above, so you should not see the problem.

If you are using gcc 3.0 and above to compile MySQL, you must install the libstdc++v3 library before compiling MySQL; if you
don't do this, you get an error about a missing __cxa_pure_virtual symbol during linking.

On some older Linux distributions, configure may produce an error like this:

Syntax error in sched.h. Change _P to __P in the
/usr/include/sched.h file.
See the Installation chapter in the Reference Manual.

Just do what the error message says. Add an extra underscore to the _P macro name that has only one underscore, and then try again.

You may get some warnings when compiling. Those shown here can be ignored:

mysqld.cc -o objs-thread/mysqld.o

Installing and Upgrading MySQL

111

http://dev.mysql.com/Downloads/Patches/linux-fork.patch


mysqld.cc: In function `void init_signals()':
mysqld.cc:315: warning: assignment of negative value `-1' to
`long unsigned int'
mysqld.cc: In function `void * signal_hand(void *)':
mysqld.cc:346: warning: assignment of negative value `-1' to
`long unsigned int'

If mysqld always dumps core when it starts, the problem may be that you have an old /lib/libc.a. Try renaming it, and then re-
move sql/mysqld and do a new make install and try again. This problem has been reported on some Slackware installations.

If you get the following error when linking mysqld, it means that your libg++.a is not installed correctly:

/usr/lib/libc.a(putc.o): In function `_IO_putc':
putc.o(.text+0x0): multiple definition of `_IO_putc'

You can avoid using libg++.a by running configure like this:

shell> CXX=gcc ./configure

2.13.1.6. Linux SPARC Notes

In some implementations, readdir_r() is broken. The symptom is that the SHOW DATABASES statement always returns an empty
set. This can be fixed by removing HAVE_READDIR_R from config.h after configuring and before compiling.

2.13.1.7. Linux Alpha Notes

We have tested MySQL 5.1 on Alpha with our benchmarks and test suite, and it appears to work well.

We currently build the MySQL binary packages on SuSE Linux 7.0 for AXP, kernel 2.4.4-SMP, Compaq C compiler (V6.2-505) and
Compaq C++ compiler (V6.3-006) on a Compaq DS20 machine with an Alpha EV6 processor.

You can find the preceding compilers at http://www.support.compaq.com/alpha-tools/. By using these compilers rather than gcc, we
get about 9-14% better MySQL performance.

For MySQL on Alpha, we use the -arch generic flag to our compile options, which ensures that the binary runs on all Alpha pro-
cessors. We also compile statically to avoid library problems. The configure command looks like this:

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx \
CXXFLAGS="-fast -arch generic -noexceptions -nortti" \
./configure --prefix=/usr/local/mysql --disable-shared \

--with-extra-charsets=complex --enable-thread-safe-client \
--with-mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared

Some known problems when running MySQL on Linux-Alpha:

• Debugging threaded applications like MySQL does not work with gdb 4.18. You should use gdb 5.1 instead.

• If you try linking mysqld statically when using gcc, the resulting image dumps core at startup time. In other words, do not use -
-with-mysqld-ldflags=-all-static with gcc.

2.13.1.8. Linux PowerPC Notes

MySQL should work on MkLinux with the newest glibc package (tested with glibc 2.0.7).

2.13.1.9. Linux MIPS Notes

To get MySQL to work on Qube2 (Linux Mips), you need the newest glibc libraries. glibc-2.0.7-29C2 is known to work. You
must also use gcc 2.95.2 or newer).

2.13.1.10. Linux IA-64 Notes

To get MySQL to compile on Linux IA-64, we use the following configure command for building with gcc 2.96:

CC=gcc \

Installing and Upgrading MySQL

112

http://www.support.compaq.com/alpha-tools/


CFLAGS="-O3 -fno-omit-frame-pointer" \
CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql \
"--with-comment=Official MySQL binary" \
--with-extra-charsets=complex

On IA-64, the MySQL client binaries use shared libraries. This means that if you install our binary distribution at a location other than /
usr/local/mysql, you need to add the path of the directory where you have libmysqlclient.so installed either to the /
etc/ld.so.conf file or to the value of your LD_LIBRARY_PATH environment variable.

See Section B.1.3.1, “Problems Linking to the MySQL Client Library”.

2.13.1.11. SELinux Notes

RHEL4 comes with SELinux, which supports tighter access control for processes. If SELinux is enabled (SELINUX in /
etc/selinux/config is set to enforcing, SELINUXTYPE is set to either targeted or strict), you might encounter prob-
lems installing MySQL AB RPM packages.

Red Hat has an update that solves this. It involves an update of the “security policy” specification to handle the install structure of the
RPMs provided by MySQL AB. For further information, see https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=167551 and ht-
tp://rhn.redhat.com/errata/RHBA-2006-0049.html.

The preceding discussion applies only to RHEL4. The patch is unnecessary for RHEL5.

2.13.2. Mac OS X Notes
On Mac OS X, tar cannot handle long filenames. If you need to unpack a .tar.gz distribution, use gnutar instead.

2.13.2.1. Mac OS X 10.x (Darwin)

MySQL should work without major problems on Mac OS X 10.x (Darwin).

Known issues:

• If you have problems with performance under heavy load, try using the --skip-thread-priority option to mysqld. This
runs all threads with the same priority. On Mac OS X, this gives better performance, at least until Apple fixes its thread scheduler.

• The connection times (wait_timeout, interactive_timeout and net_read_timeout) values are not honored.

This is probably a signal handling problem in the thread library where the signal doesn't break a pending read and we hope that a fu-
ture update to the thread libraries will fix this.

Our binary for Mac OS X is compiled on Darwin 6.3 with the following configure line:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql \
--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --disable-shared

See Section 2.5, “Installing MySQL on Mac OS X”.

2.13.2.2. Mac OS X Server 1.2 (Rhapsody)

For current versions of Mac OS X Server, no operating system changes are necessary before compiling MySQL. Compiling for the
Server platform is the same as for the client version of Mac OS X.

For older versions (Mac OS X Server 1.2, a.k.a. Rhapsody), you must first install a pthread package before trying to configure MySQL.

See Section 2.5, “Installing MySQL on Mac OS X”.

Installing and Upgrading MySQL

113

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=167551
http://rhn.redhat.com/errata/RHBA-2006-0049.html
http://rhn.redhat.com/errata/RHBA-2006-0049.html


2.13.3. Solaris Notes
For information about installing MySQL on Solaris using PKG distributions, see Section 2.6, “Installing MySQL on Solaris”.

On Solaris, you may run into trouble even before you get the MySQL distribution unpacked, as the Solaris tar cannot handle long file-
names. This means that you may see errors when you try to unpack MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution. You can find a precompiled copy for Solaris at ht-
tp://dev.mysql.com/downloads/os-solaris.html.

Sun native threads work only on Solaris 2.5 and higher. For Solaris 2.4 and earlier, MySQL automatically uses MIT-pthreads. See Sec-
tion 2.9.5, “MIT-pthreads Notes”.

If you get the following error from configure, it means that you have something wrong with your compiler installation:

checking for restartable system calls... configure: error can not
run test programs while cross compiling

In this case, you should upgrade your compiler to a newer version. You may also be able to solve this problem by inserting the follow-
ing row into the config.cache file:

ac_cv_sys_restartable_syscalls=${ac_cv_sys_restartable_syscalls='no'}

If you are using Solaris on a SPARC, the recommended compiler is gcc 2.95.2 or 3.2. You can find this at http://gcc.gnu.org/. Note that
gcc 2.8.1 does not work reliably on SPARC.

The recommended configure line when using gcc 2.95.2 is:

CC=gcc CFLAGS="-O3" \
CXX=gcc CXXFLAGS="-O3 -felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory \

--enable-assembler

If you have an UltraSPARC system, you can get 4% better performance by adding -mcpu=v8 -Wa,-xarch=v8plusa to the
CFLAGS and CXXFLAGS environment variables.

If you have Sun's Forte 5.0 (or newer) compiler, you can run configure like this:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt" \
CXX=CC CXXFLAGS="-noex -mt" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit binary with Sun's Forte compiler, use the following configuration options:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt -xarch=v9" \
CXX=CC CXXFLAGS="-noex -mt -xarch=v9" ASFLAGS="-xarch=v9" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit Solaris binary using gcc, add -m64 to CFLAGS and CXXFLAGS and remove --enable-assembler from the
configure line.

In the MySQL benchmarks, we obtained a 4% speed increase on UltraSPARC when using Forte 5.0 in 32-bit mode, as compared to us-
ing gcc 3.2 with the -mcpu flag.

If you create a 64-bit mysqld binary, it is 4% slower than the 32-bit binary, but can handle more threads and memory.

When using Solaris 10 for x86_64, you should mount any filesystems on which you intend to store InnoDB files with the forcedir-
ectio option. (By default mounting is done without this option.) Failing to do so will cause a significant drop in performance when us-
ing the InnoDB storage engine on this platform.

If you get a problem with fdatasync or sched_yield, you can fix this by adding LIBS=-lrt to the configure line

For compilers older than WorkShop 5.3, you might have to edit the configure script. Change this line:

#if !defined(__STDC__) || __STDC__ != 1

Installing and Upgrading MySQL

114

http://dev.mysql.com/downloads/os-solaris.html
http://dev.mysql.com/downloads/os-solaris.html
http://gcc.gnu.org/


To this:

#if !defined(__STDC__)

If you turn on __STDC__ with the -Xc option, the Sun compiler can't compile with the Solaris pthread.h header file. This is a Sun
bug (broken compiler or broken include file).

If mysqld issues the following error message when you run it, you have tried to compile MySQL with the Sun compiler without en-
abling the -mt multi-thread option:

libc internal error: _rmutex_unlock: rmutex not held

Add -mt to CFLAGS and CXXFLAGS and recompile.

If you are using the SFW version of gcc (which comes with Solaris 8), you must add /opt/sfw/lib to the environment variable
LD_LIBRARY_PATH before running configure.

If you are using the gcc available from sunfreeware.com, you may have many problems. To avoid this, you should recompile
gcc and GNU binutils on the machine where you are running them.

If you get the following error when compiling MySQL with gcc, it means that your gcc is not configured for your version of Solaris:

shell> gcc -O3 -g -O2 -DDBUG_OFF -o thr_alarm ...
./thr_alarm.c: In function `signal_hand':
./thr_alarm.c:556: too many arguments to function `sigwait'

The proper thing to do in this case is to get the newest version of gcc and compile it with your current gcc compiler. At least for Solar-
is 2.5, almost all binary versions of gcc have old, unusable include files that break all programs that use threads, and possibly other
programs as well.

Solaris does not provide static versions of all system libraries (libpthreads and libdl), so you cannot compile MySQL with -
-static. If you try to do so, you get one of the following errors:

ld: fatal: library -ldl: not found
undefined reference to `dlopen'
cannot find -lrt

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

• Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with -Lpath).

• Copy libmysqclient.so to /usr/lib.

• Add the pathname of the directory where libmysqlclient.so is located to the LD_RUN_PATH environment variable before
running your client.

If you have problems with configure trying to link with -lz when you don't have zlib installed, you have two options:

• If you want to be able to use the compressed communication protocol, you need to get and install zlib from ftp.gnu.org.

• Run configure with the --with-named-z-libs=no option when building MySQL.

If you are using gcc and have problems with loading user-defined functions (UDFs) into MySQL, try adding -lgcc to the link line for
the UDF.

If you would like MySQL to start automatically, you can copy support-files/mysql.server to /etc/init.d and create a
symbolic link to it named /etc/rc3.d/S99mysql.server.

Installing and Upgrading MySQL

115



If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this. (Use -O back_log=50 before
MySQL 4.)

Solaris doesn't support core files for setuid() applications, so you can't get a core file from mysqld if you are using the --user
option.

2.13.3.1. Solaris 2.7/2.8 Notes

Normally, you can use a Solaris 2.6 binary on Solaris 2.7 and 2.8. Most of the Solaris 2.6 issues also apply for Solaris 2.7 and 2.8.

MySQL should be able to detect new versions of Solaris automatically and enable workarounds for the following problems.

Solaris 2.7 / 2.8 has some bugs in the include files. You may see the following error when you use gcc:

/usr/include/widec.h:42: warning: `getwc' redefined
/usr/include/wchar.h:326: warning: this is the location of the previous
definition

If this occurs, you can fix the problem by copying /usr/include/widec.h to
.../lib/gcc-lib/os/gcc-version/include and changing line 41 from this:

#if !defined(lint) && !defined(__lint)

To this:

#if !defined(lint) && !defined(__lint) && !defined(getwc)

Alternatively, you can edit /usr/include/widec.h directly. Either way, after you make the fix, you should remove con-
fig.cache and run configure again.

If you get the following errors when you run make, it's because configure didn't detect the curses.h file (probably because of the
error in /usr/include/widec.h):

In file included from mysql.cc:50:
/usr/include/term.h:1060: syntax error before `,'
/usr/include/term.h:1081: syntax error before `;'

The solution to this problem is to do one of the following:

• Configure with CFLAGS=-DHAVE_CURSES_H CXXFLAGS=-DHAVE_CURSES_H ./configure.

• Edit /usr/include/widec.h as indicated in the preceding discussion and re-run configure.

• Remove the #define HAVE_TERM line from the config.h file and run make again.

If your linker cannot find -lz when linking client programs, the problem is probably that your libz.so file is installed in /
usr/local/lib. You can fix this problem by one of the following methods:

• Add /usr/local/lib to LD_LIBRARY_PATH.

• Add a link to libz.so from /lib.

• If you are using Solaris 8, you can install the optional zlib from your Solaris 8 CD distribution.

• Run configure with the --with-named-z-libs=no option when building MySQL.

2.13.3.2. Solaris x86 Notes

Installing and Upgrading MySQL

116



On Solaris 8 on x86, mysqld dumps core if you remove the debug symbols using strip.

If you are using gcc on Solaris x86 and you experience problems with core dumps under load, you should use the following config-
ure command:

CC=gcc CFLAGS="-O3 -fomit-frame-pointer -DHAVE_CURSES_H" \
CXX=gcc \
CXXFLAGS="-O3 -fomit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti -DHAVE_CURSES_H" \
./configure --prefix=/usr/local/mysql

This avoids problems with the libstdc++ library and with C++ exceptions.

If this doesn't help, you should compile a debug version and run it with a trace file or under gdb. See MySQL Internals: Porting.

2.13.4. BSD Notes
This section provides information about using MySQL on variants of BSD Unix.

2.13.4.1. FreeBSD Notes

FreeBSD 4.x or newer is recommended for running MySQL, because the thread package is much more integrated. To get a secure and
stable system, you should use only FreeBSD kernels that are marked -RELEASE.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client ports available at ht-
tp://www.freebsd.org/. Using these ports gives you the following benefits:

• A working MySQL with all optimizations enabled that are known to work on your version of FreeBSD.

• Automatic configuration and build.

• Startup scripts installed in /usr/local/etc/rc.d.

• The ability to use pkg_info -L to see which files are installed.

• The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.

It is recommended you use MIT-pthreads on FreeBSD 2.x, and native threads on FreeBSD 3 and up. It is possible to run with native
threads on some late 2.2.x versions, but you may encounter problems shutting down mysqld.

Unfortunately, certain function calls on FreeBSD are not yet fully thread-safe. Most notably, this includes the gethostbyname()
function, which is used by MySQL to convert hostnames into IP addresses. Under certain circumstances, the mysqld process suddenly
causes 100% CPU load and is unresponsive. If you encounter this problem, try to start MySQL using the --skip-name-resolve
option.

Alternatively, you can link MySQL on FreeBSD 4.x against the LinuxThreads library, which avoids a few of the problems that the nat-
ive FreeBSD thread implementation has. For a very good comparison of LinuxThreads versus native threads, see Jeremy Zawodny's art-
icle FreeBSD or Linux for your MySQL Server? at http://jeremy.zawodny.com/blog/archives/000697.html.

Known problem when using LinuxThreads on FreeBSD is:

• The connection times (wait_timeout, interactive_timeout and net_read_timeout) values are not honored. The
symptom is that persistent connections can hang for a very long time without getting closed down and that a 'kill' for a thread will
not take affect until the thread does it a new command

This is probably a signal handling problem in the thread library where the signal doesn't break a pending read. This is supposed to
be fixed in FreeBSD 5.0

The MySQL build process requires GNU make (gmake) to work. If GNU make is not available, you must install it first before compil-
ing MySQL.

The recommended way to compile and install MySQL on FreeBSD with gcc (2.95.2 and up) is:

Installing and Upgrading MySQL

117

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://www.freebsd.org/
http://www.freebsd.org/
http://jeremy.zawodny.com/blog/archives/000697.html


CC=gcc CFLAGS="-O2 -fno-strength-reduce" \
CXX=gcc CXXFLAGS="-O2 -fno-rtti -fno-exceptions \
-felide-constructors -fno-strength-reduce" \
./configure --prefix=/usr/local/mysql --enable-assembler

gmake
gmake install
cd /usr/local/mysql
bin/mysql_install_db --user=mysql
bin/mysqld_safe &

If you notice that configure uses MIT-pthreads, you should read the MIT-pthreads notes. See Section 2.9.5, “MIT-pthreads Notes”.

If you get an error from make install that it can't find /usr/include/pthreads, configure didn't detect that you need
MIT-pthreads. To fix this problem, remove config.cache, and then re-run configure with the --with-mit-threads option.

Be sure that your name resolver setup is correct. Otherwise, you may experience resolver delays or failures when connecting to
mysqld. Also make sure that the localhost entry in the /etc/hosts file is correct. The file should start with a line similar to
this:

127.0.0.1 localhost localhost.your.domain

FreeBSD is known to have a very low default file handle limit. See Section B.1.2.18, “'FILE' NOT FOUND and Similar Errors”. Start
the server by using the --open-files-limit option for mysqld_safe, or raise the limits for the mysqld user in /
etc/login.conf and rebuild it with cap_mkdb /etc/login.conf. Also be sure that you set the appropriate class for this user
in the password file if you are not using the default (use chpass mysqld-user-name). See Section 4.3.2, “mysqld_safe —
MySQL Server Startup Script”.

FreeBSD limits the size of a process to 512MB, even if you have much more RAM available on the system. So you may get an error
such as this:

Out of memory (Needed 16391 bytes)

In current versions of FreeBSD (at least 4.x and greater), you may increase this limit by adding the following entries to the /
boot/loader.conf file and rebooting the machine (these are not settings that can be changed at run time with the sysctl com-
mand):

kern.maxdsiz="1073741824" # 1GB
kern.dfldsiz="1073741824" # 1GB
kern.maxssiz="134217728" # 128MB

For older versions of FreeBSD, you must recompile your kernel to change the maximum data segment size for a process. In this case,
you should look at the MAXDSIZ option in the LINT config file for more information.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Section 2.14, “Environment Variables”.

2.13.4.2. NetBSD Notes

To compile on NetBSD, you need GNU make. Otherwise, the build process fails when make tries to run lint on C++ files.

2.13.4.3. OpenBSD 2.5 Notes

On OpenBSD 2.5, you can compile MySQL with native threads with the following options:

CFLAGS=-pthread CXXFLAGS=-pthread ./configure --with-mit-threads=no

2.13.4.4. BSD/OS Version 2.x Notes

If you get the following error when compiling MySQL, your ulimit value for virtual memory is too low:

item_func.h: In method
`Item_func_ge::Item_func_ge(const Item_func_ge &)':
item_func.h:28: virtual memory exhausted
make[2]: *** [item_func.o] Error 1

Try using ulimit -v 80000 and run make again. If this doesn't work and you are using bash, try switching to csh or sh; some
BSDI users have reported problems with bash and ulimit.

Installing and Upgrading MySQL

118



If you are using gcc, you may also use have to use the --with-low-memory flag for configure to be able to compile
sql_yacc.cc.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Section 2.14, “Environment Variables”.

2.13.4.5. BSD/OS Version 3.x Notes

Upgrade to BSD/OS 3.1. If that is not possible, install BSDIpatch M300-038.

Use the following command when configuring MySQL:

env CXX=shlicc++ CC=shlicc2 \
./configure \

--prefix=/usr/local/mysql \
--localstatedir=/var/mysql \
--without-perl \
--with-unix-socket-path=/var/mysql/mysql.sock

The following is also known to work:

env CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure \

--prefix=/usr/local/mysql \
--with-unix-socket-path=/var/mysql/mysql.sock

You can change the directory locations if you wish, or just use the defaults by not specifying any locations.

If you have problems with performance under heavy load, try using the --skip-thread-priority option to mysqld. This runs
all threads with the same priority. On BSDI 3.1, this gives better performance, at least until BSDI fixes its thread scheduler.

If you get the error virtual memory exhausted while compiling, you should try using ulimit -v 80000 and running make
again. If this doesn't work and you are using bash, try switching to csh or sh; some BSDI users have reported problems with bash
and ulimit.

2.13.4.6. BSD/OS Version 4.x Notes

BSDI 4.x has some thread-related bugs. If you want to use MySQL on this, you should install all thread-related patches. At least
M400-023 should be installed.

On some BSDI 4.x systems, you may get problems with shared libraries. The symptom is that you can't execute any client programs, for
example, mysqladmin. In this case, you need to reconfigure not to use shared libraries with the --disable-shared option to con-
figure.

Some customers have had problems on BSDI 4.0.1 that the mysqld binary after a while can't open tables. This occurs because some
library/system-related bug causes mysqld to change current directory without having asked for that to happen.

The fix is to either upgrade MySQL to at least version 3.23.34 or, after running configure, remove the line #define
HAVE_REALPATH from config.h before running make.

Note that this means that you can't symbolically link a database directories to another database directory or symbolic link a table to an-
other database on BSDI. (Making a symbolic link to another disk is okay).

2.13.5. Other Unix Notes

2.13.5.1. HP-UX Version 10.20 Notes

There are a couple of small problems when compiling MySQL on HP-UX. We recommend that you use gcc instead of the HP-UX nat-
ive compiler, because gcc produces better code.

We recommend using gcc 2.95 on HP-UX. Don't use high optimization flags (such as -O6) because they may not be safe on HP-UX.

The following configure line should work with gcc 2.95:

CFLAGS="-I/opt/dce/include -fpic" \
CXXFLAGS="-I/opt/dce/include -felide-constructors -fno-exceptions \
-fno-rtti" \
CXX=gcc \

Installing and Upgrading MySQL

119



./configure --with-pthread \
--with-named-thread-libs='-ldce' \
--prefix=/usr/local/mysql --disable-shared

The following configure line should work with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc \
CXXFLAGS="-DHPUX -I/opt/dce/include -felide-constructors \

-fno-exceptions -fno-rtti -O3 -fPIC" \
./configure --prefix=/usr/local/mysql \

--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --with-pthread \
--with-named-thread-libs=-ldce --with-lib-ccflags=-fPIC
--disable-shared

2.13.5.2. HP-UX Version 11.x Notes

Because of some critical bugs in the standard HP-UX libraries, you should install the following patches before trying to run MySQL on
HP-UX 11.0:

PHKL_22840 Streams cumulative
PHNE_22397 ARPA cumulative

This solves the problem of getting EWOULDBLOCK from recv() and EBADF from accept() in threaded applications.

If you are using gcc 2.95.1 on an unpatched HP-UX 11.x system, you may get the following error:

In file included from /usr/include/unistd.h:11,
from ../include/global.h:125,
from mysql_priv.h:15,
from item.cc:19:

/usr/include/sys/unistd.h:184: declaration of C function ...
/usr/include/sys/pthread.h:440: previous declaration ...
In file included from item.h:306,

from mysql_priv.h:158,
from item.cc:19:

The problem is that HP-UX does not define pthreads_atfork() consistently. It has conflicting prototypes in /
usr/include/sys/unistd.h:184 and /usr/include/sys/pthread.h:440.

One solution is to copy /usr/include/sys/unistd.h into mysql/include and edit unistd.h and change it to match the
definition in pthread.h. Look for this line:

extern int pthread_atfork(void (*prepare)(), void (*parent)(),
void (*child)());

Change it to look like this:

extern int pthread_atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));

After making the change, the following configure line should work:

CFLAGS="-fomit-frame-pointer -O3 -fpic" CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti -O3" \
./configure --prefix=/usr/local/mysql --disable-shared

If you are using HP-UX compiler, you can use the following command (which has been tested with cc B.11.11.04):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure \
--with-extra-character-set=complex

You can ignore any errors of the following type:

aCC: warning 901: unknown option: `-3': use +help for online
documentation

If you get the following error from configure, verify that you don't have the path to the K&R compiler before the path to the HP-UX

Installing and Upgrading MySQL

120



C and C++ compiler:

checking for cc option to accept ANSI C... no
configure: error: MySQL requires an ANSI C compiler (and a C++ compiler).
Try gcc. See the Installation chapter in the Reference Manual.

Another reason for not being able to compile is that you didn't define the +DD64 flags as just described.

Another possibility for HP-UX 11 is to use the MySQL binaries provided at http://dev.mysql.com/downloads/, which we have built and
tested ourselves. We have also received reports that the HP-UX 10.20 binaries supplied by MySQL can be run successfully on HP-UX
11. If you encounter problems, you should be sure to check your HP-UX patch level.

2.13.5.3. IBM-AIX notes

Automatic detection of xlC is missing from Autoconf, so a number of variables need to be set before running configure. The fol-
lowing example uses the IBM compiler:

export CC="xlc_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192 "
export CXX="xlC_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192"
export CFLAGS="-I /usr/local/include"
export LDFLAGS="-L /usr/local/lib"
export CPPFLAGS=$CFLAGS
export CXXFLAGS=$CFLAGS

./configure --prefix=/usr/local \
--localstatedir=/var/mysql \
--sbindir='/usr/local/bin' \
--libexecdir='/usr/local/bin' \
--enable-thread-safe-client \
--enable-large-files

The preceding options are used to compile the MySQL distribution that can be found at http://www-frec.bull.com/.

If you change the -O3 to -O2 in the preceding configure line, you must also remove the -qstrict option. This is a limitation in
the IBM C compiler.

If you are using gcc to compile MySQL, you must use the -fno-exceptions flag, because the exception handling in gcc is not
thread-safe! There are also some known problems with IBM's assembler that may cause it to generate bad code when used with gcc.

We recommend the following configure line with gcc 2.95 on AIX:

CC="gcc -pipe -mcpu=power -Wa,-many" \
CXX="gcc -pipe -mcpu=power -Wa,-many" \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory

The -Wa,-many option is necessary for the compile to be successful. IBM is aware of this problem but is in no hurry to fix it because
of the workaround that is available. We don't know if the -fno-exceptions is required with gcc 2.95, but because MySQL doesn't
use exceptions and the option generates faster code, we recommend that you should always use it with gcc.

If you get a problem with assembler code, try changing the -mcpu=xxx option to match your CPU. Typically power2, power, or
powerpc may need to be used. Alternatively, you might need to use 604 or 604e. We are not positive but suspect that power would
likely be safe most of the time, even on a power2 machine.

If you don't know what your CPU is, execute a uname -m command. It produces a string that looks like 000514676700, with a
format of xxyyyyyymmss where xx and ss are always 00, yyyyyy is a unique system ID and mm is the ID of the CPU Planar. A
chart of these values can be found at http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm.

This gives you a machine type and a machine model you can use to determine what type of CPU you have.

If you have problems with signals (MySQL dies unexpectedly under high load), you may have found an OS bug with threads and sig-
nals. In this case, you can tell MySQL not to use signals by configuring as follows:

CFLAGS=-DDONT_USE_THR_ALARM CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti \
-DDONT_USE_THR_ALARM" \
./configure --prefix=/usr/local/mysql --with-debug \

--with-low-memory

This doesn't affect the performance of MySQL, but has the side effect that you can't kill clients that are “sleeping” on a connection with

Installing and Upgrading MySQL

121

http://dev.mysql.com/downloads/
http://www-frec.bull.com/
http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm


mysqladmin kill or mysqladmin shutdown. Instead, the client dies when it issues its next command.

On some versions of AIX, linking with libbind.a makes getservbyname() dump core. This is an AIX bug and should be repor-
ted to IBM.

For AIX 4.2.1 and gcc, you have to make the following changes.

After configuring, edit config.h and include/my_config.h and change the line that says this:

#define HAVE_SNPRINTF 1

to this:

#undef HAVE_SNPRINTF

And finally, in mysqld.cc, you need to add a prototype for initgroups().

#ifdef _AIX41
extern "C" int initgroups(const char *,int);
#endif

If you need to allocate a lot of memory to the mysqld process, it's not enough to just use ulimit -d unlimited. You may also
have to modify mysqld_safe to add a line something like this:

export LDR_CNTRL='MAXDATA=0x80000000'

You can find more information about using a lot of memory at ht-
tp://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm.

Users of AIX 4.3 should use gmake instead of the make utility included with AIX.

As of AIX 4.1, the C compiler has been unbundled from AIX as a separate product. We recommend using gcc 3.3.2, which can be ob-
tained here: ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/gcc/

The steps for compiling MySQL on AIX with gcc 3.3.2 are similar to those for using gcc 2.95 (in particular, the need to edit con-
fig.h and my_config.h after running configure). However, before running configure, you should also patch the
curses.h file as follows:

/opt/freeware/lib/gcc-lib/powerpc-ibm-aix5.2.0.0/3.3.2/include/curses.h.ORIG
Mon Dec 26 02:17:28 2005

--- /opt/freeware/lib/gcc-lib/powerpc-ibm-aix5.2.0.0/3.3.2/include/curses.h
Mon Dec 26 02:40:13 2005
***************
*** 2023,2029 ****

#endif /* _AIX32_CURSES */
! #if defined(__USE_FIXED_PROTOTYPES__) || defined(__cplusplus) || defined
(__STRICT_ANSI__)
extern int delwin (WINDOW *);
extern int endwin (void);
extern int getcurx (WINDOW *);

--- 2023,2029 ----

#endif /* _AIX32_CURSES */
! #if 0 && (defined(__USE_FIXED_PROTOTYPES__) || defined(__cplusplus)
|| defined
(__STRICT_ANSI__))
extern int delwin (WINDOW *);
extern int endwin (void);
extern int getcurx (WINDOW *);

2.13.5.4. SunOS 4 Notes

On SunOS 4, MIT-pthreads is needed to compile MySQL. This in turn means you need GNU make.

Some SunOS 4 systems have problems with dynamic libraries and libtool. You can use the following configure line to avoid
this problem:

./configure --disable-shared --with-mysqld-ldflags=-all-static

Installing and Upgrading MySQL

122

http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm
http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm
ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/gcc/


When compiling readline, you may get warnings about duplicate defines. These can be ignored.

When compiling mysqld, there are some implicit declaration of function warnings. These can be ignored.

2.13.5.5. Alpha-DEC-UNIX Notes (Tru64)

If you are using egcs 1.1.2 on Digital Unix, you should upgrade to gcc 2.95.2, because egcs on DEC has some serious bugs!

When compiling threaded programs under Digital Unix, the documentation recommends using the -pthread option for cc and cxx
and the -lmach -lexc libraries (in addition to -lpthread). You should run configure something like this:

CC="cc -pthread" CXX="cxx -pthread -O" \
./configure --with-named-thread-libs="-lpthread -lmach -lexc -lc"

When compiling mysqld, you may see a couple of warnings like this:

mysqld.cc: In function void handle_connections()':
mysqld.cc:626: passing long unsigned int *' as argument 3 of
accept(int,sockadddr *, int *)'

You can safely ignore these warnings. They occur because configure can detect only errors, not warnings.

If you start the server directly from the command line, you may have problems with it dying when you log out. (When you log out, your
outstanding processes receive a SIGHUP signal.) If so, try starting the server like this:

nohup mysqld [options] &

nohup causes the command following it to ignore any SIGHUP signal sent from the terminal. Alternatively, start the server by running
mysqld_safe, which invokes mysqld using nohup for you. See Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”.

If you get a problem when compiling mysys/get_opt.c, just remove the #define _NO_PROTO line from the start of that file.

If you are using Compaq's CC compiler, the following configure line should work:

CC="cc -pthread"
CFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host"
CXX="cxx -pthread"
CXXFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host -noexceptions -nortti"
export CC CFLAGS CXX CXXFLAGS
./configure \

--prefix=/usr/local/mysql \
--with-low-memory \
--enable-large-files \
--enable-shared=yes \
--with-named-thread-libs="-lpthread -lmach -lexc -lc"

gnumake

If you get a problem with libtool when compiling with shared libraries as just shown, when linking mysql, you should be able to
get around this by issuing these commands:

cd mysql
/bin/sh ../libtool --mode=link cxx -pthread -O3 -DDBUG_OFF \

-O4 -ansi_alias -ansi_args -fast -inline speed \
-speculate all \ -arch host -DUNDEF_HAVE_GETHOSTBYNAME_R \
-o mysql mysql.o readline.o sql_string.o completion_hash.o \
../readline/libreadline.a -lcurses \
../libmysql/.libs/libmysqlclient.so -lm

cd ..
gnumake
gnumake install
scripts/mysql_install_db

2.13.5.6. Alpha-DEC-OSF/1 Notes

If you have problems compiling and have DEC CC and gcc installed, try running configure like this:

CC=cc CFLAGS=-O CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

Installing and Upgrading MySQL

123



If you get problems with the c_asm.h file, you can create and use a 'dummy' c_asm.h file with:

touch include/c_asm.h
CC=gcc CFLAGS=-I./include \
CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

Note that the following problems with the ld program can be fixed by downloading the latest DEC (Compaq) patch kit from: ht-
tp://ftp.support.compaq.com/public/unix/.

On OSF/1 V4.0D and compiler "DEC C V5.6-071 on Digital Unix V4.0 (Rev. 878)," the compiler had some strange behavior
(undefined asm symbols). /bin/ld also appears to be broken (problems with _exit undefined errors occurring while linking
mysqld). On this system, we have managed to compile MySQL with the following configure line, after replacing /bin/ld with
the version from OSF 4.0C:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql

With the Digital compiler "C++ V6.1-029," the following should work:

CC=cc -pthread
CFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host
CXX=cxx -pthread
CXXFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host -noexceptions -nortti
export CC CFLAGS CXX CXXFLAGS
./configure --prefix=/usr/mysql/mysql \

--with-mysqld-ldflags=-all-static --disable-shared \
--with-named-thread-libs="-lmach -lexc -lc"

In some versions of OSF/1, the alloca() function is broken. Fix this by removing the line in config.h that defines
'HAVE_ALLOCA'.

The alloca() function also may have an incorrect prototype in /usr/include/alloca.h. This warning resulting from this can
be ignored.

configure uses the following thread libraries automatically: --with-named-thread-libs="-lpthread -lmach -lexc
-lc".

When using gcc, you can also try running configure like this:

CFLAGS=-D_PTHREAD_USE_D4 CXX=gcc CXXFLAGS=-O3 ./configure ...

If you have problems with signals (MySQL dies unexpectedly under high load), you may have found an OS bug with threads and sig-
nals. In this case, you can tell MySQL not to use signals by configuring with:

CFLAGS=-DDONT_USE_THR_ALARM \
CXXFLAGS=-DDONT_USE_THR_ALARM \
./configure ...

This does not affect the performance of MySQL, but has the side effect that you can't kill clients that are “sleeping” on a connection
with mysqladmin kill or mysqladmin shutdown. Instead, the client dies when it issues its next command.

With gcc 2.95.2, you may encounter the following compile error:

sql_acl.cc:1456: Internal compiler error in `scan_region',
at except.c:2566
Please submit a full bug report.

To fix this, you should change to the sql directory and do a cut-and-paste of the last gcc line, but change -O3 to -O0 (or add -O0 im-
mediately after gcc if you don't have any -O option on your compile line). After this is done, you can just change back to the top-level
directory and run make again.

2.13.5.7. SGI Irix Notes

Installing and Upgrading MySQL

124

http://ftp.support.compaq.com/public/unix/
http://ftp.support.compaq.com/public/unix/


As of MySQL 5.0, we don't provide binaries for Irix any more.

If you are using Irix 6.5.3 or newer, mysqld is able to create threads only if you run it as a user that has CAP_SCHED_MGT privileges
(such as root) or give the mysqld server this privilege with the following shell command:

chcap "CAP_SCHED_MGT+epi" /opt/mysql/libexec/mysqld

You may have to undefine some symbols in config.h after running configure and before compiling.

In some Irix implementations, the alloca() function is broken. If the mysqld server dies on some SELECT statements, remove the
lines from config.h that define HAVE_ALLOC and HAVE_ALLOCA_H. If mysqladmin create doesn't work, remove the line
from config.h that defines HAVE_READDIR_R. You may have to remove the HAVE_TERM_H line as well.

SGI recommends that you install all the patches on this page as a set: ht-
tp://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html

At the very minimum, you should install the latest kernel rollup, the latest rld rollup, and the latest libc rollup.

You definitely need all the POSIX patches on this page, for pthreads support:

http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

If you get the something like the following error when compiling mysql.cc:

"/usr/include/curses.h", line 82: error(1084):
invalid combination of type

Type the following in the top-level directory of your MySQL source tree:

extra/replace bool curses_bool < /usr/include/curses.h > include/curses.h
make

There have also been reports of scheduling problems. If only one thread is running, performance is slow. Avoid this by starting another
client. This may lead to a two-to-tenfold increase in execution speed thereafter for the other thread. This is a poorly understood problem
with Irix threads; you may have to improvise to find solutions until this can be fixed.

If you are compiling with gcc, you can use the following configure command:

CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql --enable-thread-safe-client \

--with-named-thread-libs=-lpthread

On Irix 6.5.11 with native Irix C and C++ compilers ver. 7.3.1.2, the following is reported to work

CC=cc CXX=CC CFLAGS='-O3 -n32 -TARG:platform=IP22 -I/usr/local/include \
-L/usr/local/lib' CXXFLAGS='-O3 -n32 -TARG:platform=IP22 \
-I/usr/local/include -L/usr/local/lib' \
./configure --prefix=/usr/local/mysql --with-innodb \

--with-libwrap=/usr/local \
--with-named-curses-libs=/usr/local/lib/libncurses.a

2.13.5.8. SCO UNIX and OpenServer 5.0.x Notes

The current port is tested only on sco3.2v5.0.5, sco3.2v5.0.6, and sco3.2v5.0.7 systems. There has also been progress on
a port to sco3.2v4.2. Open Server 5.0.8 (Legend) has native threads and allows files greater than 2GB. The current maximum file
size is 2GB.

We have been able to compile MySQL with the following configure command on OpenServer with gcc 2.95.3.

CC=gcc CFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
CXX=gcc CXXFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
./configure --prefix=/usr/local/mysql \

--enable-thread-safe-client --with-innodb \
--with-openssl --with-vio --with-extra-charsets=complex

gcc is available at ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj.

Installing and Upgrading MySQL

125

http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html
http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html
http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html
ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj


This development system requires the OpenServer Execution Environment Supplement oss646B on OpenServer 5.0.6 and oss656B and
The OpenSource libraries found in gwxlibs. All OpenSource tools are in the opensrc directory. They are available at
ftp://ftp.sco.com/pub/openserver5/opensrc/.

We recommend using the latest production release of MySQL.

SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer 5.0.[0-6] and
ftp://ftp.sco.com/pub/openserverv5/507 for OpenServer 5.0.7.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer for OpenServer 5.0.x.

The maximum file size on an OpenSever 5.0.x system is 2GB.

The total memory which can be allocated for streams buffers, clists, and lock records cannot exceed 60MB on OpenServer 5.0.x.

Streams buffers are allocated in units of 4096 byte pages, clists are 70 bytes each, and lock records are 64 bytes each, so:

(NSTRPAGES × 4096) + (NCLIST × 70) + (MAX_FLCKREC × 64) <= 62914560

Follow this procedure to configure the Database Services option. If you are unsure whether an application requires this, see the docu-
mentation provided with the application.

1. Log in as root.

2. Enable the SUDS driver by editing the /etc/conf/sdevice.d/suds file. Change the N in the second field to a Y.

3. Use mkdev aio or the Hardware/Kernel Manager to enable support for asynchronous I/O and relink the kernel. To allow users to
lock down memory for use with this type of I/O, update the aiomemlock(F) file. This file should be updated to include the names
of users that can use AIO and the maximum amounts of memory they can lock down.

4. Many applications use setuid binaries so that you need to specify only a single user. See the documentation provided with the ap-
plication to determine whether this is the case for your application.

After you complete this process, reboot the system to create a new kernel incorporating these changes.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
NBUF 0 24 450000
NHBUF 0 32 524288
NMPBUF 0 12 512
MAX_INODE 0 100 64000
MAX_FILE 0 100 64000
CTBUFSIZE 128 0 256
MAX_PROC 0 50 16000
MAX_REGION 0 500 160000
NCLIST 170 120 16640
MAXUP 100 15 16000
NOFILES 110 60 11000
NHINODE 128 64 8192
NAUTOUP 10 0 60
NGROUPS 8 0 128
BDFLUSHR 30 1 300
MAX_FLCKREC 0 50 16000
PUTBUFSZ 8000 2000 20000
MAXSLICE 100 25 100
ULIMIT 4194303 2048 4194303
* Streams Parameters
NSTREAM 64 1 32768
NSTRPUSH 9 9 9
NMUXLINK 192 1 4096
STRMSGSZ 16384 4096 524288
STRCTLSZ 1024 1024 1024
STRMAXBLK 524288 4096 524288
NSTRPAGES 500 0 8000
STRSPLITFRAC 80 50 100
NLOG 3 3 3
NUMSP 64 1 256
NUMTIM 16 1 8192
NUMTRW 16 1 8192
* Semaphore Parameters
SEMMAP 10 10 8192
SEMMNI 10 10 8192

Installing and Upgrading MySQL

126

ftp://ftp.sco.com/pub/openserver5/opensrc/
ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/openserverv5/507
ftp://ftp.sco.com/pub/security/OpenServer


SEMMNS 60 60 8192
SEMMNU 30 10 8192
SEMMSL 25 25 150
SEMOPM 10 10 1024
SEMUME 10 10 25
SEMVMX 32767 32767 32767
SEMAEM 16384 16384 16384
* Shared Memory Parameters
SHMMAX 524288 131072 2147483647
SHMMIN 1 1 1
SHMMNI 100 100 2000
FILE 0 100 64000
NMOUNT 0 4 256
NPROC 0 50 16000
NREGION 0 500 160000

We recommend setting these values as follows:

• NOFILES should be 4096 or 2048.

• MAXUP should be 2048.

To make changes to the kernel, use the idtune name parameter command. idtune modifies the /etc/conf/cf.d/stune
file for you. For example, to change SEMMS to 200, execute this command as root:

# /etc/conf/bin/idtune SEMMNS 200

Then rebuild and reboot the kernel by issuing this command:

# /etc/conf/bin/idbuild -B && init 6

We recommend tuning the system, but the proper parameter values to use depend on the number of users accessing the application or
database and size the of the database (that is, the used buffer pool). The following kernel parameters can be set with idtune:

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters have an influence on the
MySQL database engine to create user buffer pools.

• NOFILES and MAXUP should be set to at least 2048.

• MAXPROC should be set to at least 3000/4000 (depends on number of users) or more.

• We also recommend using the following formulas to calculate values for SEMMSL, SEMMNS, and SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL × number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that you are running on the system
at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS, but this is a conservative
estimate.

You need to at least install the SCO OpenServer Linker and Application Development Libraries or the OpenServer Development Sys-
tem to use gcc. You cannot use the GCC Dev system without installing one of these.

You should get the FSU Pthreads package and install it first. This can be found at ht-
tp://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz. You can also get a precompiled package from
ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz.

Installing and Upgrading MySQL

127

http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz
http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz


FSU Pthreads can be compiled with SCO Unix 4.2 with tcpip, or using OpenServer 3.0 or Open Desktop 3.0 (OS 3.0 ODT 3.0) with the
SCO Development System installed using a good port of GCC 2.5.x. For ODT or OS 3.0, you need a good port of GCC 2.5.x. There are
a lot of problems without a good port. The port for this product requires the SCO Unix Development system. Without it, you are miss-
ing the libraries and the linker that is needed. You also need SCO-3.2v4.2-includes.tar.gz. This file contains the changes to
the SCO Development include files that are needed to get MySQL to build. You need to replace the existing system include files with
these modified header files. They can be obtained from ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

To build FSU Pthreads on your system, all you should need to do is run GNU make. The Makefile in FSU-threads-3.14.tar.gz is set
up to make FSU-threads.

You can run ./configure in the threads/src directory and select the SCO OpenServer option. This command copies Make-
file.SCO5 to Makefile. Then run make.

To install in the default /usr/include directory, log in as root, and then cd to the thread/src directory and run make in-
stall.

Remember that you must use GNU make to build MySQL.

Note

If you don't start mysqld_safe as root, you should get only the default 110 open files per process. mysqld writes a
note about this in the log file.

With SCO 3.2V4.2, you should use FSU Pthreads version 3.14 or newer. The following configure command should work:

CFLAGS="-D_XOPEN_XPG4" CXX=gcc CXXFLAGS="-D_XOPEN_XPG4" \
./configure \

--prefix=/usr/local/mysql \
--with-named-thread-libs="-lgthreads -lsocket -lgen -lgthreads" \
--with-named-curses-libs="-lcurses"

You may have problems with some include files. In this case, you can find new SCO-specific include files at
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

You should unpack this file in the include directory of your MySQL source tree.

SCO development notes:

• MySQL should automatically detect FSU Pthreads and link mysqld with -lgthreads -lsocket -lgthreads.

• The SCO development libraries are re-entrant in FSU Pthreads. SCO claims that its library functions are re-entrant, so they must be
re-entrant with FSU Pthreads. FSU Pthreads on OpenServer tries to use the SCO scheme to make re-entrant libraries.

• FSU Pthreads (at least the version at ftp://ftp.zenez.com) comes linked with GNU malloc. If you encounter problems with
memory usage, make sure that gmalloc.o is included in libgthreads.a and libgthreads.so.

• In FSU Pthreads, the following system calls are pthreads-aware: read(), write(), getmsg(), connect(), accept(),
select(), and wait().

• The CSSA-2001-SCO.35.2 (the patch is listed in custom as erg711905-dscr_remap security patch (version 2.0.0)) breaks FSU
threads and makes mysqld unstable. You have to remove this one if you want to run mysqld on an OpenServer 5.0.6 machine.

• If you use SCO OpenServer 5, you may need to recompile FSU pthreads with -DDRAFT7 in CFLAGS. Otherwise, InnoDB may
hang at a mysqld startup.

• SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer 5.0.x.

• SCO provides security fixes and libsocket.so.2 at ftp://ftp.sco.com/pub/security/OpenServer and
ftp://ftp.sco.com/pub/security/sse for OpenServer 5.0.x.

• Pre-OSR506 security fixes. Also, the telnetd fix at ftp://stage.caldera.com/pub/security/openserver/ or
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/ as both libsocket.so.2 and libresolv.so.1 with
instructions for installing on pre-OSR506 systems.

It's probably a good idea to install these patches before trying to compile/use MySQL.

Installing and Upgrading MySQL

128

ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz
ftp://ftp.zenez.com
ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/security/OpenServer
ftp://ftp.sco.com/pub/security/sse
ftp://stage.caldera.com/pub/security/openserver/
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/


Beginning with Legend/OpenServer 6.0.0, there are native threads and no 2GB file size limit.

2.13.5.9. SCO OpenServer 6.0.x Notes

OpenServer 6 includes these key improvements:

• Larger file support up to 1 TB

• Multiprocessor support increased from 4 to 32 processors

• Increased memory support up to 64GB

• Extending the power of UnixWare into OpenServer 6

• Dramatic performance improvement

OpenServer 6.0.0 commands are organized as follows:

• /bin is for commands that behave exactly the same as on OpenServer 5.0.x.

• /u95/bin is for commands that have better standards conformance, for example Large File System (LFS) support.

• /udk/bin is for commands that behave the same as on UnixWare 7.1.4. The default is for the LFS support.

The following is a guide to setting PATH on OpenServer 6. If the user wants the traditional OpenServer 5.0.x then PATH should be /
bin first. If the user wants LFS support, the path should be /u95/bin:/bin. If the user wants UnixWare 7 support first, the path
would be /udk/bin:/u95/bin:/bin:.

We recommend using the latest production release of MySQL. Should you choose to use an older release of MySQL on OpenServer
6.0.x, you must use a version of MySQL at least as recent as 3.22.13 to get fixes for some portability and OS problems.

MySQL distribution files with names of the following form are tar archives of media are tar archives of media images suitable for in-
stallation with the SCO Software Manager (/etc/custom) on SCO OpenServer 6:

mysql-PRODUCT-5.1.25-rc-sco-osr6-i686.VOLS.tar

A distribution where PRODUCT is pro-cert is the Commercially licensed MySQL Pro Certified server. A distribution where
PRODUCT is pro-gpl-cert is the MySQL Pro Certified server licensed under the terms of the General Public License (GPL).

Select whichever distribution you wish to install and, after download, extract the tar archive into an empty directory. For example:

shell> mkdir /tmp/mysql-pro
shell> cd /tmp/mysql-pro
shell> tar xf /tmp/mysql-pro-cert-5.1.25-rc-sco-osr6-i686.VOLS.tar

Prior to installation, back up your data in accordance with the procedures outlined in Section 2.11, “Upgrading MySQL”.

Remove any previously installed pkgadd version of MySQL:

shell> pkginfo mysql 2>&1 > /dev/null && pkgrm mysql

Install MySQL Pro from media images using the SCO Software Manager:

shell> /etc/custom -p SCO:MySQL -i -z /tmp/mysql-pro

Alternatively, the SCO Software Manager can be displayed graphically by clicking on the Software Manager icon on the desktop,
selecting Software -> Install New, selecting the host, selecting Media Images for the Media Device, and entering /
tmp/mysql-pro as the Image Directory.

After installation, run mkdev mysql as the root user to configure your newly installed MySQL Pro Certified server.

Installing and Upgrading MySQL

129



Note

The installation procedure for VOLS packages does not create the mysql user and group that the package uses by default.
You should either create the mysql user and group, or else select a different user and group using an option in mkdev
mysql.

If you wish to configure your MySQL Pro server to interface with the Apache Web server via PHP, download and install the PHP up-
date from SCO at ftp://ftp.sco.com/pub/updates/OpenServer/SCOSA-2006.17/.

We have been able to compile MySQL with the following configure command on OpenServer 6.0.x:

CC=cc CFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
CXX=CC CXXFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
./configure --prefix=/usr/local/mysql \

--enable-thread-safe-client \
--with-extra-charsets=complex \
--build=i686-unknown-sysv5SCO_SV6.0.0

If you use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++ ... ./configure ...

SCO provides OpenServer 6 operating system patches at ftp://ftp.sco.com/pub/openserver6.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer.

By default, the maximum file size on a OpenServer 6.0.0 system is 1TB. Some operating system utilities have a limitation of 2GB. The
maximum possible file size on UnixWare 7 is 1TB with VXFS or HTFS.

OpenServer 6 can be configured for large file support (file sizes greater than 2GB) by tuning the UNIX kernel.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
SVMMLIM 0x9000000 0x1000000 0x7FFFFFFF
HVMMLIM 0x9000000 0x1000000 0x7FFFFFFF

To make changes to the kernel, use the idtune name parameter command. idtune modifies the /etc/conf/cf.d/stune
file for you. We recommend setting the kernel values by executing the following commands as root:

# /etc/conf/bin/idtune SDATLIM 0x7FFFFFFF
# /etc/conf/bin/idtune HDATLIM 0x7FFFFFFF
# /etc/conf/bin/idtune SVMMLIM 0x7FFFFFFF
# /etc/conf/bin/idtune HVMMLIM 0x7FFFFFFF
# /etc/conf/bin/idtune SFNOLIM 2048
# /etc/conf/bin/idtune HFNOLIM 2048

Then rebuild and reboot the kernel by issuing this command:

# /etc/conf/bin/idbuild -B && init 6

We recommend tuning the system, but the proper parameter values to use depend on the number of users accessing the application or
database and size the of the database (that is, the used buffer pool). The following kernel parameters can be set with idtune:

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters have an influence on the
MySQL database engine to create user buffer pools.

• SFNOLIM and HFNOLIM should be at maximum 2048.

• NPROC should be set to at least 3000/4000 (depends on number of users).

• We also recommend using the following formulas to calculate values for SEMMSL, SEMMNS, and SEMMNU:

SEMMSL = 13

Installing and Upgrading MySQL

130

ftp://ftp.sco.com/pub/updates/OpenServer/SCOSA-2006.17/
ftp://ftp.sco.com/pub/openserver6
ftp://ftp.sco.com/pub/security/OpenServer


13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL × number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that you are running on the system
at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS, but this is a conservative
estimate.

2.13.5.10. SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes

We recommend using the latest production release of MySQL. Should you choose to use an older release of MySQL on UnixWare
7.1.x, you must use a version of MySQL at least as recent as 3.22.13 to get fixes for some portability and OS problems.

We have been able to compile MySQL with the following configure command on UnixWare 7.1.x:

CC="cc" CFLAGS="-I/usr/local/include" \
CXX="CC" CXXFLAGS="-I/usr/local/include" \
./configure --prefix=/usr/local/mysql \

--enable-thread-safe-client \
--with-innodb --with-openssl --with-extra-charsets=complex

If you want to use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++ ... ./configure ...

SCO provides operating system patches at ftp://ftp.sco.com/pub/unixware7 for UnixWare 7.1.1, ftp://ftp.sco.com/pub/unixware7/713/
for UnixWare 7.1.3, ftp://ftp.sco.com/pub/unixware7/714/ for UnixWare 7.1.4, and ftp://ftp.sco.com/pub/openunix8 for OpenUNIX
8.0.0.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenUNIX for OpenUNIX and
ftp://ftp.sco.com/pub/security/UnixWare for UnixWare.

The UnixWare 7 file size limit is 1 TB with VXFS. Some OS utilities have a limitation of 2GB.

On UnixWare 7.1.4 you do not need to do anything to get large file support, but to enable large file support on prior versions of Unix-
Ware 7.1.x, run fsadm.

# fsadm -Fvxfs -o largefiles /
# fsadm / * Note
# ulimit unlimited
# /etc/conf/bin/idtune SFSZLIM 0x7FFFFFFF ** Note
# /etc/conf/bin/idtune HFSZLIM 0x7FFFFFFF ** Note
# /etc/conf/bin/idbuild -B

* This should report "largefiles".
** 0x7FFFFFFF represents infinity for these values.

Reboot the system using shutdown.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
SVMMLIM 0x9000000 0x1000000 0x7FFFFFFF
HVMMLIM 0x9000000 0x1000000 0x7FFFFFFF

To make changes to the kernel, use the idtune name parameter command. idtune modifies the /etc/conf/cf.d/stune
file for you. We recommend setting the kernel values by executing the following commands as root:

# /etc/conf/bin/idtune SDATLIM 0x7FFFFFFF
# /etc/conf/bin/idtune HDATLIM 0x7FFFFFFF
# /etc/conf/bin/idtune SVMMLIM 0x7FFFFFFF

Installing and Upgrading MySQL

131

ftp://ftp.sco.com/pub/unixware7
ftp://ftp.sco.com/pub/unixware7/713/
ftp://ftp.sco.com/pub/unixware7/714/
ftp://ftp.sco.com/pub/openunix8
ftp://ftp.sco.com/pub/security/OpenUNIX
ftp://ftp.sco.com/pub/security/UnixWare


# /etc/conf/bin/idtune HVMMLIM 0x7FFFFFFF
# /etc/conf/bin/idtune SFNOLIM 2048
# /etc/conf/bin/idtune HFNOLIM 2048

Then rebuild and reboot the kernel by issuing this command:

# /etc/conf/bin/idbuild -B && init 6

We recommend tuning the system, but the proper parameter values to use depend on the number of users accessing the application or
database and size the of the database (that is, the used buffer pool). The following kernel parameters can be set with idtune:

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters have an influence on the
MySQL database engine to create user buffer pools.

• SFNOLIM and HFNOLIM should be at maximum 2048.

• NPROC should be set to at least 3000/4000 (depends on number of users).

• We also recommend using the following formulas to calculate values for SEMMSL, SEMMNS, and SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL × number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that you are running on the system
at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS, but this is a conservative
estimate.

2.14. Environment Variables
This section lists all the environment variables that are used directly or indirectly by MySQL. Most of these can also be found in other
places in this manual.

Note that any options on the command line take precedence over values specified in option files and environment variables, and values
in option files take precedence over values in environment variables.

In many cases, it is preferable to use an option file instead of environment variables to modify the behavior of MySQL. See Sec-
tion 4.2.2.2, “Using Option Files”.

Variable Description

CXX The name of your C++ compiler (for running configure).

CC The name of your C compiler (for running configure).

CFLAGS Flags for your C compiler (for running configure).

CXXFLAGS Flags for your C++ compiler (for running configure).

DBI_USER The default username for Perl DBI.

DBI_TRACE Trace options for Perl DBI.

HOME The default path for the mysql history file is $HOME/.mysql_history.

LD_RUN_PATH Used to specify the location of libmysqlclient.so.

MYSQL_DEBUG Debug trace options when debugging.

MYSQL_GROUP_SUFFIX Option group suffix value (like specifying --defaults-group-suffix).

MYSQL_HISTFILE The path to the mysql history file. If this variable is set, its value overrides the default for

Installing and Upgrading MySQL

132



$HOME/.mysql_history.

MYSQL_HOME The path to the directory in which the server-specific my.cnf file resides (as of MySQL 5.0.3).

MYSQL_HOST The default hostname used by the mysql command-line client.

MYSQL_PS1 The command prompt to use in the mysql command-line client.

MYSQL_PWD The default password when connecting to mysqld. Note that using this is insecure. See Sec-
tion 5.5.6, “Keeping Your Password Secure”.

MYSQL_TCP_PORT The default TCP/IP port number.

MYSQL_UNIX_PORT The default Unix socket filename; used for connections to localhost.

PATH Used by the shell to find MySQL programs.

TMPDIR The directory where temporary files are created.

TZ This should be set to your local time zone. See Section B.1.4.6, “Time Zone Problems”.

UMASK_DIR The user-directory creation mask when creating directories. Note that this is ANDed with UMASK.

UMASK The user-file creation mask when creating files.

USER The default username on Windows and NetWare used when connecting to mysqld.

2.15. Perl Installation Notes
Perl support for MySQL is provided by means of the DBI/DBD client interface. The interface requires Perl 5.6.0, and 5.6.1 or later is
preferred. DBI does not work if you have an older version of Perl.

If you want to use transactions with Perl DBI, you need to have DBD::mysql 2.0900. If you are using the MySQL 4.1 or newer client
library, you must use DBD::mysql 2.9003 or newer. Support for server-side prepared statements requires DBD::mysql 3.0009 or
newer.

Perl support is not included with MySQL distributions. You can obtain the necessary modules from http://search.cpan.org for Unix, or
by using the ActiveState ppm program on Windows. The following sections describe how to do this.

Perl support for MySQL must be installed if you want to run the MySQL benchmark scripts; see Section 7.1.4, “The MySQL Bench-
mark Suite”. It is also required for the MySQL Cluster ndb_size.pl utility; see Section 17.11.15, “ndb_size.pl — NDBCluster
Size Requirement Estimator”.

2.15.1. Installing Perl on Unix
MySQL Perl support requires that you have installed MySQL client programming support (libraries and header files). Most installation
methods install the necessary files. However, if you installed MySQL from RPM files on Linux, be sure that you've installed the de-
veloper RPM. The client programs are in the client RPM, but client programming support is in the developer RPM.

If you want to install Perl support, the files you need can be obtained from the CPAN (Comprehensive Perl Archive Network) at ht-
tp://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

shell> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local MySQL server using the default user-
name and password. (The default username is your login name on Unix, and ODBC on Windows. The default password is “no pass-
word.”) If you cannot connect to the server with those values (for example, if your account has a password), the tests fail. You can use
force install DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before installing DBI.

It is also possible to download the module distributions in the form of compressed tar archives and build the modules manually. For
example, to unpack and build a DBI distribution, use a procedure such as this:

Installing and Upgrading MySQL

133

http://search.cpan.org
http://search.cpan.org
http://search.cpan.org


1. Unpack the distribution into the current directory:

shell> gunzip < DBI-VERSION.tar.gz | tar xvf -

This command creates a directory named DBI-VERSION.

2. Change location into the top-level directory of the unpacked distribution:

shell> cd DBI-VERSION

3. Build the distribution and compile everything:

shell> perl Makefile.PL
shell> make
shell> make test
shell> make install

The make test command is important because it verifies that the module is working. Note that when you run that command during
the DBD::mysql installation to exercise the interface code, the MySQL server must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new release of MySQL, particularly if
you notice symptoms such as that all your DBI scripts fail after you upgrade MySQL.

If you do not have access rights to install Perl modules in the system directory or if you want to install local Perl modules, the following
reference may be useful: http://servers.digitaldaze.com/extensions/perl/modules.html#modules

Look under the heading “Installing New Modules that Require Locally Installed Modules.”

2.15.2. Installing ActiveState Perl on Windows
On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

2. Open a console window (a “DOS window”).

3. If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:

set HTTP_proxy=my.proxy.com:3128

4. Start the PPM program:

C:\> C:\perl\bin\ppm.pl

5. If you have not previously done so, install DBI:

ppm> install DBI

6. If this succeeds, run the following command:

ppm> install DBD-mysql

This procedure should work with ActiveState Perl 5.6 or newer.

If you cannot get the procedure to work, you should install the MyODBC driver instead and connect to the MySQL server through
ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
die "Got error $DBI::errstr when connecting to $dsn\n";

Installing and Upgrading MySQL

134

http://servers.digitaldaze.com/extensions/perl/modules.html#modules
http://www.activestate.com/Products/ActivePerl/


2.15.3. Problems Using the Perl DBI/DBD Interface
If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl cannot locate the libmysql-
client.so shared library. You should be able to fix this problem by one of the following methods:

• Compile the DBD::mysql distribution with perl Makefile.PL -static -config rather than perl Makefile.PL.

• Copy libmysqlclient.so to the directory where your other shared libraries are located (probably /usr/lib or /lib).

• Modify the -L options used to compile DBD::mysql to reflect the actual location of libmysqlclient.so.

• On Linux, you can add the pathname of the directory where libmysqlclient.so is located to the /etc/ld.so.conf file.

• Add the pathname of the directory where libmysqlclient.so is located to the LD_RUN_PATH environment variable. Some
systems use LD_LIBRARY_PATH instead.

Note that you may also need to modify the -L options if there are other libraries that the linker fails to find. For example, if the linker
cannot find libc because it is in /lib and the link command specifies -L/usr/lib, change the -L option to -L/lib or add -
L/lib to the existing link command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets built (check the output from
make for mysql.so when you compile the Perl client). The -L option should specify the pathname of the directory where
libgcc.a is located on your system.

Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this case, you can solve the mismatch
by compiling both with gcc.

You may see the following error from DBD::mysql when you run the tests:

t/00base............install_driver(mysql) failed:
Can't load '../blib/arch/auto/DBD/mysql/mysql.so' for module DBD::mysql:
../blib/arch/auto/DBD/mysql/mysql.so: undefined symbol:
uncompress at /usr/lib/perl5/5.00503/i586-linux/DynaLoader.pm line 169.

This means that you need to include the -lz compression library on the link line. That can be done by changing the following line in
the file lib/DBD/mysql/Install.pm:

$sysliblist .= " -lm";

Change that line to:

$sysliblist .= " -lm -lz";

After this, you must run make realclean and then proceed with the installation from the beginning.

If you want to install DBI on SCO, you have to edit the Makefile in DBI-xxx and each subdirectory. Note that the following as-
sumes gcc 2.95.2 or newer:

OLD: NEW:
CC = cc CC = gcc
CCCDLFLAGS = -KPIC -W1,-Bexport CCCDLFLAGS = -fpic
CCDLFLAGS = -wl,-Bexport CCDLFLAGS =

LD = ld LD = gcc -G -fpic
LDDLFLAGS = -G -L/usr/local/lib LDDLFLAGS = -L/usr/local/lib
LDFLAGS = -belf -L/usr/local/lib LDFLAGS = -L/usr/local/lib

LD = ld LD = gcc -G -fpic
OPTIMISE = -Od OPTIMISE = -O1

OLD:
CCCFLAGS = -belf -dy -w0 -U M_XENIX -DPERL_SCO5 -I/usr/local/include

Installing and Upgrading MySQL

135



NEW:
CCFLAGS = -U M_XENIX -DPERL_SCO5 -I/usr/local/include

These changes are necessary because the Perl dynaloader does not load the DBI modules if they were compiled with icc or cc.

If you want to use the Perl module on a system that does not support dynamic linking (such as SCO), you can generate a static version
of Perl that includes DBI and DBD::mysql. The way this works is that you generate a version of Perl with the DBI code linked in and
install it on top of your current Perl. Then you use that to build a version of Perl that additionally has the DBD code linked in, and install
that.

On SCO, you must have the following environment variables set:

LD_LIBRARY_PATH=/lib:/usr/lib:/usr/local/lib:/usr/progressive/lib

Or:

LD_LIBRARY_PATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
/usr/progressive/lib:/usr/skunk/lib

LIBPATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
/usr/progressive/lib:/usr/skunk/lib

MANPATH=scohelp:/usr/man:/usr/local1/man:/usr/local/man:\
/usr/skunk/man:

First, create a Perl that includes a statically linked DBI module by running these commands in the directory where your DBI distribu-
tion is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Then you must install the new Perl. The output of make perl indicates the exact make command you need to execute to perform the
installation. On SCO, this is make -f Makefile.aperl inst_perl MAP_TARGET=perl.

Next, use the just-created Perl to create another Perl that also includes a statically linked DBD::mysql by running these commands in
the directory where your DBD::mysql distribution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Finally, you should install this new Perl. Again, the output of make perl indicates the command to use.

Installing and Upgrading MySQL

136



Chapter 3. Tutorial
This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client program to create and use a simple
database. mysql (sometimes referred to as the “terminal monitor” or just “monitor”) is an interactive program that allows you to con-
nect to a MySQL server, run queries, and view the results. mysql may also be used in batch mode: you place your queries in a file be-
forehand, then tell mysql to execute the contents of the file. Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available to which you can connect. If this is
not true, contact your MySQL administrator. (If you are the administrator, you need to consult the relevant portions of this manual, such
as Chapter 5, MySQL Server Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only in accessing an existing database,
you may want to skip over the sections that describe how to create the database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant sections of the manual for more in-
formation on the topics covered here.

3.1. Connecting to and Disconnecting from the Server
To connect to the server, you will usually need to provide a MySQL user name when you invoke mysql and, most likely, a password.
If the server runs on a machine other than the one where you log in, you will also need to specify a host name. Contact your administrat-
or to find out what connection parameters you should use to connect (that is, what host, user name, and password to use). Once you
know the proper parameters, you should be able to connect like this:

shell> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of your MySQL account. Substitute
appropriate values for your setup. The ******** represents your password; enter it when mysql displays the Enter password:
prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 5.1.25-rc-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> prompt tells you that mysql is ready for you to enter commands.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply use the following:

shell< mysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): CAN'T CONNECT TO LOCAL MYSQL
SERVER THROUGH SOCKET '/TMP/MYSQL.SOCK' (2), it means that that MySQL server daemon (Unix) or service (Windows) is not
running. Consult the administrator or see the section of Chapter 2, Installing and Upgrading MySQL that is appropriate to your operat-
ing system.

For help with other problems often encountered when trying to log in, see Section B.1.2, “Common Errors When Using MySQL Pro-
grams”.

Some MySQL installations allow users to connect as the anonymous (unnamed) user to the server running on the local host. If this is the
case on your machine, you should be able to connect to that server by invoking mysql without any options:

shell> mysql

137



After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the mysql> prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control-D.

Most examples in the following sections assume that you are connected to the server. They indicate this by the mysql> prompt.

3.2. Entering Queries
Make sure that you are connected to the server, as discussed in the previous section. Doing so does not in itself select any database to
work with, but that's okay. At this point, it's more important to find out a little about how to issue queries than to jump right in creating
tables, loading data into them, and retrieving data from them. This section describes the basic principles of entering commands, using
several queries you can try out to familiarize yourself with how mysql works.

Here's a simple command that asks the server to tell you its version number and the current date. Type it in as shown here following the
mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+-----------------+--------------+
| VERSION() | CURRENT_DATE |
+-----------------+--------------+
| 5.1.2-alpha-log | 2005-10-11 |
+-----------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

• A command normally consists of an SQL statement followed by a semicolon. (There are some exceptions where a semicolon may
be omitted. QUIT, mentioned earlier, is one of them. We'll get to others later.)

• When you issue a command, mysql sends it to the server for execution and displays the results, then prints another mysql>
prompt to indicate that it is ready for another command.

• mysql displays query output in tabular form (rows and columns). The first row contains labels for the columns. The rows following
are the query results. Normally, column labels are the names of the columns you fetch from database tables. If you're retrieving the
value of an expression rather than a table column (as in the example just shown), mysql labels the column using the expression it-
self.

• mysql shows how many rows were returned and how long the query took to execute, which gives you a rough idea of server per-
formance. These values are imprecise because they represent wall clock time (not CPU or machine time), and because they are af-
fected by factors such as server load and network latency. (For brevity, the “rows in set” line is sometimes not shown in the remain-
ing examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here's another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 | 25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter multiple statements on a single line.
Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();

Tutorial

138



+-----------------+
| VERSION() |
+-----------------+
| 5.1.2-alpha-log |
+-----------------+
1 row in set (0.00 sec)

+---------------------+
| NOW() |
+---------------------+
| 2005-10-11 15:15:00 |
+---------------------+
1 row in set (0.00 sec)

A command need not be given all on a single line, so lengthy commands that require several lines are not a problem. mysql determines
where your statement ends by looking for the terminating semicolon, not by looking for the end of the input line. (In other words,
mysql accepts free-format input: it collects input lines but does not execute them until it sees the semicolon.)

Here's a simple multiple-line statement:

mysql> SELECT
-> USER()
-> ,
-> CURRENT_DATE;

+---------------+--------------+
| USER() | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2005-10-11 |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a multiple-line query. This is how
mysql indicates that it has not yet seen a complete statement and is waiting for the rest. The prompt is your friend, because it provides
valuable feedback. If you use that feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a command that you are in the process of entering, cancel it by typing \c:

mysql> SELECT
-> USER()
-> \c

mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to indicate that mysql is ready for a
new command.

The following table shows each of the prompts you may see and summarizes what they mean about the state that mysql is in:

Prompt Meaning

mysql> Ready for new command.

-> Waiting for next line of multiple-line command.

'> Waiting for next line, waiting for completion of a string that began with a single quote (“'”).

"> Waiting for next line, waiting for completion of a string that began with a double quote (“"”).

`> Waiting for next line, waiting for completion of an identifier that began with a backtick (“`”).

/*> Waiting for next line, waiting for completion of a comment that began with /*.

Multiple-line statements commonly occur by accident when you intend to issue a command on a single line, but forget the terminating
semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
->

If this happens to you (you think you've entered a statement but the only response is a -> prompt), most likely mysql is waiting for the
semicolon. If you don't notice what the prompt is telling you, you might sit there for a while before realizing what you need to do. Enter
a semicolon to complete the statement, and mysql executes it:

mysql> SELECT USER()
-> ;

+---------------+
| USER() |

Tutorial

139



+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting for completion of a string). In
MySQL, you can write strings surrounded by either “'” or “"” characters (for example, 'hello' or "goodbye"), and mysql lets
you enter strings that span multiple lines. When you see a '> or "> prompt, it means that you have entered a line containing a string
that begins with a “'” or “"” quote character, but have not yet entered the matching quote that terminates the string. This often indicates
that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
'>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead of wondering why this query
takes so long, notice the clue provided by the '> prompt. It tells you that mysql expects to see the rest of an unterminated string. (Do
you see the error in the statement? The string 'Smith is missing the second single quote mark.)

At this point, what do you do? The simplest thing is to cancel the command. However, you cannot just type \c in this case, because
mysql interprets it as part of the string that it is collecting. Instead, enter the closing quote character (so mysql knows you've finished
the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
'> '\c

mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new command.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not completed a backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter an unterminated string, any further
lines you type appear to be ignored by mysql — including a line containing QUIT. This can be quite confusing, especially if you do
not know that you need to supply the terminating quote before you can cancel the current command.

3.3. Creating and Using a Database
Once you know how to enter commands, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track of various types of information
about them. You can do so by creating tables to hold your data and loading them with the desired information. Then you can answer dif-
ferent sorts of questions about your animals by retrieving data from the tables. This section shows you how to:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations in which a similar type of data-
base might be used. For example, a database like this could be used by a farmer to keep track of livestock, or by a veterinarian to keep
track of patient records. A menagerie distribution containing some of the queries and sample data used in the following sections can be
obtained from the MySQL Web site. It is available in both compressed tar file and Zip formats at http://dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

Tutorial

140

http://dev.mysql.com/doc/


The mysql database describes user access privileges. The test database often is available as a workspace for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES does not show databases that
you have no privileges for if you do not have the SHOW DATABASES privilege. See Section 12.5.4.12, “SHOW DATABASES Syntax”.

If the test database exists, try to access it:

mysql> USE test
Database changed

Note that USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon if you like; it does no
harm.) The USE statement is special in another way, too: it must be given on a single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you create in that database can be
removed by anyone else with access to it. For this reason, you should probably ask your MySQL administrator for permission to use a
database of your own. Suppose that you want to call yours menagerie. The administrator needs to execute a command like this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is the host from which you connect
to the server.

3.3.1. Creating and Selecting a Database
If the administrator creates your database for you when setting up your permissions, you can begin using it. Otherwise, you need to cre-
ate it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer to your database as menagerie, not
as Menagerie, MENAGERIE, or some other variant. This is also true for table names. (Under Windows, this restriction does not ap-
ply, although you must refer to databases and tables using the same lettercase throughout a given query. However, for a variety of reas-
ons, our recommended best practice is always to use the same lettercase that was used when the database was created.)

Note

If you get an error such as ERROR 1044 (42000): ACCESS DENIED FOR USER 'MONTY'@'LOCALHOST' TO DATA-

BASE 'MENAGERIE' when attempting to create a database, this means that your user account does not have the necessary
privileges to do so. Discuss this with the administrator or see Section 5.4, “The MySQL Access Privilege System”.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the current database, use this com-
mand:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a mysql session. You can do this by is-
suing a USE statement as shown in the example. Alternatively, you can select the database on the command line when you invoke
mysql. Just specify its name after any connection parameters that you might need to provide. For example:

shell> mysql -h host -u user -p menagerie
Enter password: ********

Note that menagerie in the command just shown is not your password. If you want to supply your password on the command line
after the -p option, you must do so with no intervening space (for example, as -pmypassword, not as -p mypassword). However,
putting your password on the command line is not recommended, because doing so exposes it to snooping by other users logged in on
your machine.

3.3.2. Creating a Table
Creating the database is the easy part, but at this point it's empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;

Tutorial

141



Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and what columns should be in each of
them.

You want a table that contains a record for each of your pets. This can be called the pet table, and it should contain, as a bare minim-
um, each animal's name. Because the name by itself is not very interesting, the table should contain other information. For example, if
more than one person in your family keeps pets, you might want to list each animal's owner. You might also want to record some basic
descriptive information such as species and sex.

How about age? That might be of interest, but it's not a good thing to store in a database. Age changes as time passes, which means
you'd have to update your records often. Instead, it's better to store a fixed value such as date of birth. Then, whenever you need age,
you can calculate it as the difference between the current date and the birth date. MySQL provides functions for doing date arithmetic,
so this is not difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If you think this type of query is
somewhat silly, note that it is the same question you might ask in the context of a business database to identify clients to whom you
need to send out birthday greetings in the current week or month, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store death date in the database, you can
easily calculate how old a pet was when it died.

You can probably think of other types of information that would be useful in the pet table, but the ones identified so far are sufficient:
name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
-> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column values vary in length. The lengths in
those column definitions need not all be the same, and need not be 20. You can normally pick any length from 1 to 65535, whatever
seems most reasonable to you. If you make a poor choice and it turns out later that you need a longer field, MySQL provides an ALTER
TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or perhaps 'male' and 'female'. It
is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
| name | varchar(20) | YES | | NULL | |
| owner | varchar(20) | YES | | NULL | |
| species | varchar(20) | YES | | NULL | |
| sex | char(1) | YES | | NULL | |
| birth | date | YES | | NULL | |
| death | date | YES | | NULL | |
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or what types they have.

For more information about MySQL data types, see Chapter 10, Data Types.

Tutorial

142



3.3.3. Loading Data into a Table
After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates in 'YYYY-MM-DD' format; this
may be different from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file containing a row for each of your an-
imals, then load the contents of the file into the table with a single statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs, and given in the order in which the
columns were listed in the CREATE TABLE statement. For missing values (such as unknown sexes or death dates for animals that are
still living), you can use NULL values. To represent these in your text file, use \N (backslash, capital-N). For example, the record for
Whistler the bird would look like this (where the whitespace between values is a single tab character):

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this command:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

Note that if you created the file on Windows with an editor that uses \r\n as a line terminator, you should use:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
-> LINES TERMINATED BY '\r\n';

(On an Apple machine running OS X, you would likely want to use LINES TERMINATED BY '\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA statement if you wish, but the defaults
are tab and linefeed. These are sufficient for the statement to read the file pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled by default. See Section 5.3.4,
“Security Issues with LOAD DATA LOCAL”, for information on how to change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest form, you supply values for each
column, in the order in which the columns were listed in the CREATE TABLE statement. Suppose that Diane gets a new hamster named
“Puffball.” You could add a new record using an INSERT statement like this:

mysql> INSERT INTO pet
-> VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

Note that string and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL directly to represent a
missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load your records initially using several
INSERT statements rather than a single LOAD DATA statement.

3.3.4. Retrieving Information from a Table

Tutorial

143



The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all columns.” which_table in-
dicates the table from which you want to retrieve data. The WHERE clause is optional. If it is present, conditions_to_satisfy
specifies one or more conditions that rows must satisfy to qualify for retrieval.

3.3.4.1. Selecting All Data

The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Fang | Benny | dog | m | 1990-08-27 | NULL |
| Bowser | Diane | dog | m | 1979-08-31 | 1995-07-29 |
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Whistler | Gwen | bird | NULL | 1997-12-09 | NULL |
| Slim | Benny | snake | m | 1996-04-29 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+--------+---------+------+------------+------------+

This form of SELECT is useful if you want to review your entire table, for example, after you've just loaded it with your initial data set.
For example, you may happen to think that the birth date for Bowser doesn't seem quite right. Consulting your original pedigree papers,
you find that the correct birth year should be 1989, not 1979.

There are at least two ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE 'pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

3.3.4.2. Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause from the SELECT statement. But
typically you don't want to see the entire table, particularly when it becomes large. Instead, you're usually more interested in answering
a particular question, in which case you specify some constraints on the information you want. Let's look at some selection queries in
terms of questions about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that you made to Bowser's birth date,
select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

Tutorial

144



String comparisons normally are case-insensitive, so you can specify the name as 'bowser', 'BOWSER', and so forth. The query res-
ult is the same.

You can specify conditions on any column, not just name. For example, if you want to know which animals were born during or after
1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Whistler | Gwen | bird | NULL | 1997-12-09 | NULL |
| Slim | Benny | snake | m | 1996-04-29 | NULL |
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both operators, it is a good idea to use paren-
theses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
-> OR (species = 'dog' AND sex = 'f');

+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

3.3.4.3. Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are interested, separated by commas. For ex-
ample, if you want to know when your animals were born, select the name and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
| Fluffy | 1993-02-04 |
| Claws | 1994-03-17 |
| Buffy | 1989-05-13 |
| Fang | 1990-08-27 |
| Bowser | 1989-08-31 |
| Chirpy | 1998-09-11 |
| Whistler | 1997-12-09 |
| Slim | 1996-04-29 |
| Puffball | 1999-03-30 |
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |

Tutorial

145



| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear more than once. To minimize the
output, retrieve each unique output record just once by adding the keyword DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get birth dates for dogs and cats only,
use this query:

mysql> SELECT name, species, birth FROM pet
-> WHERE species = 'dog' OR species = 'cat';

+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
| Fluffy | cat | 1993-02-04 |
| Claws | cat | 1994-03-17 |
| Buffy | dog | 1989-05-13 |
| Fang | dog | 1990-08-27 |
| Bowser | dog | 1989-08-31 |
+--------+---------+------------+

3.3.4.4. Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular order. It's often easier to examine
query output when the rows are sorted in some meaningful way. To sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+
| name | birth |
+----------+------------+
| Buffy | 1989-05-13 |
| Bowser | 1989-08-31 |
| Fang | 1990-08-27 |
| Fluffy | 1993-02-04 |
| Claws | 1994-03-17 |
| Slim | 1996-04-29 |
| Whistler | 1997-12-09 |
| Chirpy | 1998-09-11 |
| Puffball | 1999-03-30 |
+----------+------------+

On character type columns, sorting — like all other comparison operations — is normally performed in a case-insensitive fashion. This
means that the order is undefined for columns that are identical except for their case. You can force a case-sensitive sort for a column by
using BINARY like so: ORDER BY BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order, add the DESC keyword to the name
of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
| Puffball | 1999-03-30 |
| Chirpy | 1998-09-11 |
| Whistler | 1997-12-09 |
| Slim | 1996-04-29 |
| Claws | 1994-03-17 |
| Fluffy | 1993-02-04 |
| Fang | 1990-08-27 |
| Bowser | 1989-08-31 |
| Buffy | 1989-05-13 |
+----------+------------+

Tutorial

146



You can sort on multiple columns, and you can sort different columns in different directions. For example, to sort by type of animal in
ascending order, then by birth date within animal type in descending order (youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
-> ORDER BY species, birth DESC;

+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
| Chirpy | bird | 1998-09-11 |
| Whistler | bird | 1997-12-09 |
| Claws | cat | 1994-03-17 |
| Fluffy | cat | 1993-02-04 |
| Fang | dog | 1990-08-27 |
| Bowser | dog | 1989-08-31 |
| Buffy | dog | 1989-05-13 |
| Puffball | hamster | 1999-03-30 |
| Slim | snake | 1996-04-29 |
+----------+---------+------------+

Note that the DESC keyword applies only to the column name immediately preceding it (birth); it does not affect the species
column sort order.

3.3.4.5. Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example, to calculate ages or extract parts of
dates.

To determine how many years old each of your pets is, compute the difference in the year part of the current date and the birth date,
then subtract one if the current date occurs earlier in the calendar year than the birth date. The following query shows, for each pet, the
birth date, the current date, and the age in years.

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
| Fluffy | 1993-02-04 | 2003-08-19 | 10 |
| Claws | 1994-03-17 | 2003-08-19 | 9 |
| Buffy | 1989-05-13 | 2003-08-19 | 14 |
| Fang | 1990-08-27 | 2003-08-19 | 12 |
| Bowser | 1989-08-31 | 2003-08-19 | 13 |
| Chirpy | 1998-09-11 | 2003-08-19 | 4 |
| Whistler | 1997-12-09 | 2003-08-19 | 5 |
| Slim | 1996-04-29 | 2003-08-19 | 7 |
| Puffball | 1999-03-30 | 2003-08-19 | 4 |
+----------+------------+------------+------+

Here, YEAR() pulls out the year part of a date and RIGHT() pulls off the rightmost five characters that represent the MM-DD (calendar
year) part of the date. The part of the expression that compares the MM-DD values evaluates to 1 or 0, which adjusts the year difference
down a year if CURDATE() occurs earlier in the year than birth. The full expression is somewhat ungainly, so an alias (age) is used
to make the output column label more meaningful.

The query works, but the result could be scanned more easily if the rows were presented in some order. This can be done by adding an
ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet ORDER BY name;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
| Bowser | 1989-08-31 | 2003-08-19 | 13 |
| Buffy | 1989-05-13 | 2003-08-19 | 14 |
| Chirpy | 1998-09-11 | 2003-08-19 | 4 |
| Claws | 1994-03-17 | 2003-08-19 | 9 |
| Fang | 1990-08-27 | 2003-08-19 | 12 |
| Fluffy | 1993-02-04 | 2003-08-19 | 10 |
| Puffball | 1999-03-30 | 2003-08-19 | 4 |
| Slim | 1996-04-29 | 2003-08-19 | 7 |
| Whistler | 1997-12-09 | 2003-08-19 | 5 |
+----------+------------+------------+------+

Tutorial

147



To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet ORDER BY age;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
| Chirpy | 1998-09-11 | 2003-08-19 | 4 |
| Puffball | 1999-03-30 | 2003-08-19 | 4 |
| Whistler | 1997-12-09 | 2003-08-19 | 5 |
| Slim | 1996-04-29 | 2003-08-19 | 7 |
| Claws | 1994-03-17 | 2003-08-19 | 9 |
| Fluffy | 1993-02-04 | 2003-08-19 | 10 |
| Fang | 1990-08-27 | 2003-08-19 | 12 |
| Bowser | 1989-08-31 | 2003-08-19 | 13 |
| Buffy | 1989-05-13 | 2003-08-19 | 14 |
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine which animals these are by checking
whether the death value is NULL. Then, for those with non-NULL values, compute the difference between the death and birth val-
ues:

mysql> SELECT name, birth, death,
-> (YEAR(death)-YEAR(birth)) - (RIGHT(death,5)<RIGHT(birth,5))
-> AS age
-> FROM pet WHERE death IS NOT NULL ORDER BY age;

+--------+------------+------------+------+
| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special value that cannot be compared us-
ing the usual comparison operators. This is discussed later. See Section 3.3.4.6, “Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation, year and day are irrelevant; you
simply want to extract the month part of the birth column. MySQL provides several functions for extracting parts of dates, such as
YEAR(), MONTH(), and DAYOFMONTH(). MONTH() is the appropriate function here. To see how it works, run a simple query that
displays the value of both birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
| Fluffy | 1993-02-04 | 2 |
| Claws | 1994-03-17 | 3 |
| Buffy | 1989-05-13 | 5 |
| Fang | 1990-08-27 | 8 |
| Bowser | 1989-08-31 | 8 |
| Chirpy | 1998-09-11 | 9 |
| Whistler | 1997-12-09 | 12 |
| Slim | 1996-04-29 | 4 |
| Puffball | 1999-03-30 | 3 |
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is April. Then the month value is
4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the month number (12) and look for an-
imals born in month 13, because there is no such month. Instead, you look for animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to use the number for a particular
month. DATE_ADD() allows you to add a time interval to a given date. If you add a month to the value of CURDATE(), then extract
the month part with MONTH(), the result produces the month in which to look for birthdays:

mysql> SELECT name, birth FROM pet

Tutorial

148



-> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after using the modulo function
(MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

Note that MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between 0 and 11. So the ad-
dition has to be after the MOD(), otherwise we would go from November (11) to January (1).

3.3.4.6. Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing unknown value” and it is treated
somewhat differently from other values. To test for NULL, you cannot use the arithmetic comparison operators such as =, <, or <>. To
demonstrate this for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Clearly you get no meaningful results from these comparisons. Use the IS NULL and IS NOT NULL operators instead:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

Note that in MySQL, 0 or NULL means false and anything else means true. The default truth value from a boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which animals are no longer alive using
death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if you do ORDER BY ...
DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an empty string into a column defined
as NOT NULL, but this is not the case. These are in fact values, whereas NULL means “not having a value.” You can test this easily
enough by using IS [NOT] NULL as shown:

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
| 0 | 1 | 0 | 1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact NOT NULL. See Sec-
tion B.1.5.3, “Problems with NULL Values”.

3.3.4.7. Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on extended regular expressions similar to
those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching allows you to use “_” to match any single character and “%” to match an arbitrary number of characters
(including zero characters). In MySQL, SQL patterns are case-insensitive by default. Some examples are shown here. Note that you do
not use = or <> when you use SQL patterns; use the LIKE or NOT LIKE comparison operators instead.

To find names beginning with “b”:

Tutorial

149



mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with “fy”:

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a “w”:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
| Whistler | Gwen | bird | NULL | 1997-12-09 | NULL |
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the “_” pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When you test for a match for this type of
pattern, use the REGEXP and NOT REGEXP operators (or RLIKE and NOT RLIKE, which are synonyms).

Some characteristics of extended regular expressions are:

• “.” matches any single character.

• A character class “[...]” matches any character within the brackets. For example, “[abc]” matches “a”, “b”, or “c”. To name a
range of characters, use a dash. “[a-z]” matches any letter, whereas “[0-9]” matches any digit.

• “*” matches zero or more instances of the thing preceding it. For example, “x*” matches any number of “x” characters, “[0-9]*”
matches any number of digits, and “.*” matches any number of anything.

• A REGEXP pattern match succeeds if the pattern matches anywhere in the value being tested. (This differs from a LIKE pattern
match, which succeeds only if the pattern matches the entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use “^” at the beginning or “$” at the end
of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are rewritten here to use REGEXP.

To find names beginning with “b”, use “^” to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP '^b';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

Tutorial

150



If you really want to force a REGEXP comparison to be case sensitive, use the BINARY keyword to make one of the strings a binary
string. This query matches only lowercase “b” at the beginning of a name:

mysql> SELECT * FROM pet WHERE name REGEXP BINARY '^b';

To find names ending with “fy”, use “$” to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a “w”, use this query:

mysql> SELECT * FROM pet WHERE name REGEXP 'w';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
| Whistler | Gwen | bird | NULL | 1997-12-09 | NULL |
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in the previous query to put a wild-
card on either side of the pattern to get it to match the entire value like it would be if you used an SQL pattern.

To find names containing exactly five characters, use “^” and “$” to match the beginning and end of the name, and five instances of
“.” in between:

mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

Section 11.4.2, “Regular Expressions”, provides more information about the syntax for regular expressions.

3.3.4.8. Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a table?” For example, you might want
to know how many pets you have, or how many pets each owner has, or you might want to perform various kinds of census operations
on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet table?” because there is one re-
cord per pet. COUNT(*) counts the number of rows, so the query to count your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to find out how many pets each
owner has:

Tutorial

151



mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
| Benny | 2 |
| Diane | 2 |
| Gwen | 3 |
| Harold | 2 |
+--------+----------+

Note the use of GROUP BY to group all records for each owner. Without it, all you get is an error message:

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...)
with no GROUP columns is illegal if there is no GROUP BY clause

COUNT() and GROUP BY are useful for characterizing your data in various ways. The following examples show different ways to per-
form animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
| bird | 2 |
| cat | 2 |
| dog | 3 |
| hamster | 1 |
| snake | 1 |
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
| NULL | 1 |
| f | 4 |
| m | 4 |
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
| bird | NULL | 1 |
| bird | f | 1 |
| cat | f | 1 |
| cat | m | 1 |
| dog | f | 1 |
| dog | m | 2 |
| hamster | f | 1 |
| snake | m | 1 |
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when performed just on dogs and cats,
looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
-> WHERE species = 'dog' OR species = 'cat'
-> GROUP BY species, sex;

+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
| cat | f | 1 |
| cat | m | 1 |
| dog | f | 1 |
| dog | m | 2 |
+---------+------+----------+

Tutorial

152



Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
-> WHERE sex IS NOT NULL
-> GROUP BY species, sex;

+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
| bird | f | 1 |
| cat | f | 1 |
| cat | m | 1 |
| dog | f | 1 |
| dog | m | 2 |
| hamster | f | 1 |
| snake | m | 1 |
+---------+------+----------+

3.3.4.9. Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about them, such as events in their lives like
visits to the vet or when litters are born, you need another table. What should this table look like? It needs:

• To contain the pet name so that you know which animal each event pertains to.

• A date so that you know when the event occurred.

• A field to describe the event.

• An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
-> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it's easiest to load the initial records by creating a tab-delimited text file containing the information:

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1 male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew toy

Claws 1998-03-17 birthday Gave him a new flea collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be able to perform retrievals on the re-
cords in the event table; the principles are the same. But when is the event table by itself insufficient to answer questions you might
ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to calculate ages from two dates. The
litter date of the mother is in the event table, but to calculate her age on that date you need her birth date, which is stored in the pet
table. This means the query requires both tables:

Tutorial

153



mysql> SELECT pet.name,
-> (YEAR(date)-YEAR(birth)) - (RIGHT(date,5)<RIGHT(birth,5)) AS age,
-> remark
-> FROM pet INNER JOIN event
-> ON pet.name = event.name
-> WHERE event.type = 'litter';

+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
| Fluffy | 2 | 4 kittens, 3 female, 1 male |
| Buffy | 4 | 5 puppies, 2 female, 3 male |
| Buffy | 5 | 3 puppies, 3 female |
+--------+------+-----------------------------+

There are several things to note about this query:

• The FROM clause joins two tables because the query needs to pull information from both of them.

• When combining (joining) information from multiple tables, you need to specify how records in one table can be matched to records
in the other. This is easy because they both have a name column. The query uses an ON clause to match up records in the two tables
based on the name values.

The query uses an INNER JOIN to combine the tables. An INNER JOIN allows for rows from either table to appear in the result
if and only if both tables meet the conditions specified in the ON clause. In this example, the ON clause specifies that the name
column in the pet table must match the name column in the event table. If a name appears in one table but not the other, the row
will not appear in the result because the condition in the ON clause fails.

• Because the name column occurs in both tables, you must be specific about which table you mean when referring to the column.
This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself, if you want to compare records
in a table to other records in that same table. For example, to find breeding pairs among your pets, you can join the pet table with itself
to produce candidate pairs of males and females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
-> FROM pet AS p1 INNER JOIN pet AS p2
-> ON p1.species = p2.species AND p1.sex = 'f' AND p2.sex = 'm';

+--------+------+--------+------+---------+
| name | sex | name | sex | species |
+--------+------+--------+------+---------+
| Fluffy | f | Claws | m | cat |
| Buffy | f | Fang | m | dog |
| Buffy | f | Bowser | m | dog |
+--------+------+--------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which instance of the table each column ref-
erence is associated with.

3.4. Getting Information About Databases and Tables
What if you forget the name of a database or table, or what the structure of a given table is (for example, what its columns are called)?
MySQL addresses this problem through several statements that provide information about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To find out which database is cur-
rently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the name of a table), use this command:

mysql> SHOW TABLES;
+---------------------+
| Tables_in_menagerie |

Tutorial

154



+---------------------+
| event |
| pet |
+---------------------+

The name of the column in the output produced by this statement is always Tables_in_db_name, where db_name is the name of
the database. See Section 12.5.4.29, “SHOW TABLES Syntax”, for more information.

If you want to find out about the structure of a table, the DESCRIBE command is useful; it displays information about each of a table's
columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
| name | varchar(20) | YES | | NULL | |
| owner | varchar(20) | YES | | NULL | |
| species | varchar(20) | YES | | NULL | |
| sex | char(1) | YES | | NULL | |
| birth | date | YES | | NULL | |
| death | date | YES | | NULL | |
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the column can contain NULL val-
ues, Key indicates whether the column is indexed, and Default specifies the column's default value. Extra displays special informa-
tion about columns; for example, if a column was created with the AUTO_INCREMENT option, this is shown here.

DESC is a short form of DESCRIBE. See Section 12.3.1, “DESCRIBE Syntax”, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW CREATE TABLE statement. See
Section 12.5.4.9, “SHOW CREATE TABLE Syntax”.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See Section 12.5.4.18, “SHOW
INDEX Syntax”, for more about this statement.

3.5. Using mysql in Batch Mode
In the previous sections, you used mysql interactively to enter queries and view the results. You can also run mysql in batch mode.
To do this, put the commands you want to run in a file, then tell mysql to read its input from the file:

shell> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

shell> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use the --force command-line op-
tion.

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script allows you to avoid retyping it each time you ex-
ecute it.

• You can generate new queries from existing ones that are similar by copying and editing script files.

• Batch mode can also be useful while you're developing a query, particularly for multiple-line commands or multiple-statement se-
quences of commands. If you make a mistake, you don't have to retype everything. Just edit your script to correct the error, then tell
mysql to execute it again.

Tutorial

155



• If you have a query that produces a lot of output, you can run the output through a pager rather than watching it scroll off the top of
your screen:

shell> mysql < batch-file | more

• You can catch the output in a file for further processing:

shell> mysql < batch-file > mysql.out

• You can distribute your script to other people so that they can also run the commands.

• Some situations do not allow for interactive use, for example, when you run a query from a cron job. In this case, you must use
batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when you use it interactively. For ex-
ample, the output of SELECT DISTINCT species FROM pet looks like this when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output the commands that are executed,
use mysql -vvv.

You can also use scripts from the mysql prompt by using the source command or \. command:

mysql> source filename;
mysql> \. filename

See Section 4.5.1.4, “Executing SQL Statements from a Text File”, for more information.

3.6. Examples of Common Queries
Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain traders (dealers). Supposing that
each trader has a single fixed price per article, then (article, dealer) is a primary key for the records.

Start the command-line tool mysql and select a database:

shell> mysql your-database-name

(In most MySQL installations, you can use the database named test).

You can create and populate the example table with these statements:

CREATE TABLE shop (
article INT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
dealer CHAR(20) DEFAULT '' NOT NULL,
price DOUBLE(16,2) DEFAULT '0.00' NOT NULL,
PRIMARY KEY(article, dealer));

INSERT INTO shop VALUES

Tutorial

156



(1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
(3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROM shop;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0001 | A | 3.45 |
| 0001 | B | 3.99 |
| 0002 | A | 10.99 |
| 0003 | B | 1.45 |
| 0003 | C | 1.69 |
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

3.6.1. The Maximum Value for a Column
“What's the highest item number?”

SELECT MAX(article) AS article FROM shop;

+---------+
| article |
+---------+
| 4 |
+---------+

3.6.2. The Row Holding the Maximum of a Certain Column
Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);

Another solution is to sort all rows descending by price and get only the first row using the MySQL-specific LIMIT clause:

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

Note

If there were several most expensive articles, each with a price of 19.95, the LIMIT solution would show only one of
them.

3.6.3. Maximum of Column per Group
Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article

+---------+-------+
| article | price |
+---------+-------+
| 0001 | 3.99 |
| 0002 | 10.99 |
| 0003 | 1.69 |
| 0004 | 19.95 |
+---------+-------+

Tutorial

157



3.6.4. The Rows Holding the Group-wise Maximum of a Certain Field
Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)

FROM shop s2
WHERE s1.article = s2.article);

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0001 | B | 3.99 |
| 0002 | A | 10.99 |
| 0003 | C | 1.69 |
| 0004 | D | 19.95 |
+---------+--------+-------+

The preceding example uses a correlated subquery, which can be inefficient (see Section 12.2.8.7, “Correlated Subqueries”). Other pos-
sibilities for solving the problem are to use a uncorrelated subquery in the FROM clause or a LEFT JOIN:

SELECT s1.article, dealer, s1.price
FROM shop s1
JOIN (
SELECT article, MAX(price) AS price
FROM shop
GROUP BY article) AS s2
ON s1.article = s2.article AND s1.price = s2.price;

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price
WHERE s2.article IS NULL;

The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no s2.price with a greater value and
the s2 rows values will be NULL. See Section 12.2.7.1, “JOIN Syntax”.

3.6.5. Using User-Defined Variables
You can employ MySQL user variables to remember results without having to store them in temporary variables in the client. (See Sec-
tion 8.4, “User-Defined Variables”.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

Note

It is also possible to store the name of a database object such as a table or a column in a user variable and then to use this
variable in an SQL statement; however, this requires the use of a prepared statement. See Section 12.7, “SQL Syntax for
Prepared Statements”, for more information.

3.6.6. Using Foreign Keys
In MySQL, InnoDB tables support checking of foreign key constraints. See Section 13.5, “The InnoDB Storage Engine”, and Sec-
tion 1.8.5.4, “Foreign Keys”.

A foreign key constraint is not required merely to join two tables. For storage engines other than InnoDB, it is possible when defining a
column to use a REFERENCES tbl_name(col_name) clause, which has no actual effect, and serves only as a memo or comment
to you that the column which you are currently defining is intended to refer to a column in another table. It is extremely important to
realize when using this syntax that:

Tutorial

158



• MySQL does not perform any sort of CHECK to make sure that col_name actually exists in tbl_name (or even that tbl_name
itself exists).

• MySQL does not perform any sort of action on tbl_name such as deleting rows in response to actions taken on rows in the table
which you are defining; in other words, this syntax induces no ON DELETE or ON UPDATE behavior whatsoever. (Although you
can write an ON DELETE or ON UPDATE clause as part of the REFERENCES clause, it is also ignored.)

• This syntax creates a column; it does not create any sort of index or key.

• This syntax will cause an error if used in trying to define an InnoDB table.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
name CHAR(60) NOT NULL,
PRIMARY KEY (id)

);

CREATE TABLE shirt (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
PRIMARY KEY (id)

);

INSERT INTO person VALUES (NULL, 'Antonio Paz');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);

INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);

SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+

SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | color | owner |
+----+---------+--------+-------+
| 1 | polo | blue | 1 |
| 2 | dress | white | 1 |
| 3 | t-shirt | blue | 1 |
| 4 | dress | orange | 2 |
| 5 | polo | red | 2 |
| 6 | dress | blue | 2 |
| 7 | t-shirt | white | 2 |
+----+---------+--------+-------+

SELECT s.* FROM person p INNER JOIN shirt s
ON s.owner = p.id

WHERE p.name LIKE 'Lilliana%'
AND s.color <> 'white';

+----+-------+--------+-------+
| id | style | color | owner |
+----+-------+--------+-------+
| 4 | dress | orange | 2 |
| 5 | polo | red | 2 |
| 6 | dress | blue | 2 |
+----+-------+--------+-------+

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE TABLE or DESCRIBE:

Tutorial

159



SHOW CREATE TABLE shirt\G
*************************** 1. row ***************************
Table: shirt
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,
`style` enum('t-shirt','polo','dress') NOT NULL,
`color` enum('red','blue','orange','white','black') NOT NULL,
`owner` smallint(5) unsigned NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1

The use of REFERENCES in this way as a comment or “reminder” in a column definition works with MyISAM tables.

3.6.7. Searching on Two Keys
An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized. See Section 7.2.6, “Index Merge Optimization”.

You can also solve the problem efficiently by using a UNION that combines the output of two separate SELECT statements. See Sec-
tion 12.2.7.3, “UNION Syntax”.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
FROM test_table WHERE field1_index = '1'

UNION
SELECT field1_index, field2_index

FROM test_table WHERE field2_index = '1';

3.6.8. Calculating Visits Per Day
The following example shows how you can use the bit group functions to calculate the number of days per month a user has visited a
Web page.

CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,
day INT(2) UNSIGNED ZEROFILL);

INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
(2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To determine how many different days in
each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
GROUP BY year,month;

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 01 | 3 |
| 2000 | 02 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination, with automatic removal of duplicate
entries.

3.6.9. Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (

Tutorial

160



id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (id)

);

INSERT INTO animals (name) VALUES
('dog'),('cat'),('penguin'),
('lax'),('whale'),('ostrich');

SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
| 1 | dog |
| 2 | cat |
| 3 | penguin |
| 4 | lax |
| 5 | whale |
| 6 | ostrich |
+----+---------+

You can retrieve the most recent AUTO_INCREMENT value with the LAST_INSERT_ID() SQL function or the
mysql_insert_id() C API function. These functions are connection-specific, so their return values are not affected by another
connection which is also performing inserts.

Note

For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id() actually return the AUTO_INCREMENT
key from the first of the inserted rows. This allows multiple-row inserts to be reproduced correctly on other servers in a
replication setup.

For MyISAM tables you can specify AUTO_INCREMENT on a secondary column in a multiple-column index. In this case, the generated
value for the AUTO_INCREMENT column is calculated as MAX(auto_increment_column) + 1 WHERE prefix=given-
prefix. This is useful when you want to put data into ordered groups.

CREATE TABLE animals (
grp ENUM('fish','mammal','bird') NOT NULL,
id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (grp,id)

);

INSERT INTO animals (grp,name) VALUES
('mammal','dog'),('mammal','cat'),
('bird','penguin'),('fish','lax'),('mammal','whale'),
('bird','ostrich');

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
| fish | 1 | lax |
| mammal | 1 | dog |
| mammal | 2 | cat |
| mammal | 3 | whale |
| bird | 1 | penguin |
| bird | 2 | ostrich |
+--------+----+---------+

Note that in this case (when the AUTO_INCREMENT column is part of a multiple-column index), AUTO_INCREMENT values are re-
used if you delete the row with the biggest AUTO_INCREMENT value in any group. This happens even for MyISAM tables, for which
AUTO_INCREMENT values normally are not reused.

If the AUTO_INCREMENT column is part of multiple indexes, MySQL will generate sequence values using the index that begins with
the AUTO_INCREMENT column, if there is one. For example, if the animals table contained indexes PRIMARY KEY (grp, id)
and INDEX (id), MySQL would ignore the PRIMARY KEY for generating sequence values. As a result, the table would contain a
single sequence, not a sequence per grp value.

Tutorial

161



To start with an AUTO_INCREMENT value other than 1, you can set that value with CREATE TABLE or ALTER TABLE, like this:

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

More information about AUTO_INCREMENT is available here:

• How to assign the AUTO_INCREMENT attribute to a column: Section 12.1.10, “CREATE TABLE Syntax”, and Section 12.1.4,
“ALTER TABLE Syntax”.

• How AUTO_INCREMENT behaves depending on the SQL mode: Section 5.1.6, “SQL Modes”.

• Find the row that contains the most recent AUTO_INCREMENT value: Section 11.2.3, “Comparison Functions and Operators”.

• Set the AUTO_INCREMENT value to be used: Section 12.5.3, “SET Syntax”.

• AUTO_INCREMENT and replication: Section 16.3.1, “Replication Features and Issues”.

• Server-system variables related to AUTO_INCREMENT (auto_increment_increment and auto_increment_offset)
that can be used for replication: Section 5.1.3, “System Variables”.

3.7. Queries from the Twin Project
At the places the early MySQL was developed (Analytikerna and Lentus), the founders did systems and field work for a big research
project. This project was a collaboration between the Institute of Environmental Medicine at Karolinska Institutet Stockholm and the
Section on Clinical Research in Aging and Psychology at the University of Southern California.

The project involved lots of data collection from all twins in Sweden older than 65 Years (see ht-
tp://ki.se/ki/jsp/polopoly.jsp?d=9610&l=en).

Large parts of the project were administered with a Web interface written using Perl and MySQL.

3.7.1. Find All Non-distributed Twins
The following query was used to determine what twins should be studied further after a initial screening. The time for this was around
MySQL 3.19 in 1997.

SELECT
CONCAT(p1.id, p1.tvab) + 0 AS tvid,
CONCAT(p1.christian_name, ' ', p1.surname) AS Name,
p1.postal_code AS Code,
p1.city AS City,
pg.abrev AS Area,
IF(td.participation = 'Aborted', 'A', ' ') AS A,
p1.dead AS dead1,
l.event AS event1,
td.suspect AS tsuspect1,
id.suspect AS isuspect1,
td.severe AS tsevere1,
id.severe AS isevere1,
p2.dead AS dead2,
l2.event AS event2,
h2.nurse AS nurse2,
h2.doctor AS doctor2,
td2.suspect AS tsuspect2,
id2.suspect AS isuspect2,
td2.severe AS tsevere2,
id2.severe AS isevere2,
l.finish_date

FROM
twin_project AS tp
/* For Twin 1 */
LEFT JOIN twin_data AS td ON tp.id = td.id

AND tp.tvab = td.tvab
LEFT JOIN informant_data AS id ON tp.id = id.id

AND tp.tvab = id.tvab
LEFT JOIN harmony AS h ON tp.id = h.id

AND tp.tvab = h.tvab
LEFT JOIN lentus AS l ON tp.id = l.id

AND tp.tvab = l.tvab
/* For Twin 2 */
LEFT JOIN twin_data AS td2 ON p2.id = td2.id

AND p2.tvab = td2.tvab

Tutorial

162

http://ki.se/ki/jsp/polopoly.jsp?d=9610&l=en
http://ki.se/ki/jsp/polopoly.jsp?d=9610&l=en


LEFT JOIN informant_data AS id2 ON p2.id = id2.id
AND p2.tvab = id2.tvab

LEFT JOIN harmony AS h2 ON p2.id = h2.id
AND p2.tvab = h2.tvab

LEFT JOIN lentus AS l2 ON p2.id = l2.id
AND p2.tvab = l2.tvab,

person_data AS p1,
person_data AS p2,
postal_groups AS pg

WHERE
/* p1 gets main twin and p2 gets his/her twin. */
/* ptvab is a field inverted from tvab */
p1.id = tp.id AND p1.tvab = tp.tvab AND
p2.id = p1.id AND p2.ptvab = p1.tvab AND
/* Just the screening survey */
tp.survey_no = 5 AND
/* Skip if partner died before 65 but allow emigration (dead=9) */
(p2.dead = 0 OR p2.dead = 9 OR
(p2.dead = 1 AND
(p2.death_date = 0 OR
(((TO_DAYS(p2.death_date) - TO_DAYS(p2.birthday)) / 365)
>= 65))))

AND
(
/* Twin is suspect */
(td.future_contact = 'Yes' AND td.suspect = 2) OR
/* Twin is suspect - Informant is Blessed */
(td.future_contact = 'Yes' AND td.suspect = 1

AND id.suspect = 1) OR
/* No twin - Informant is Blessed */
(ISNULL(td.suspect) AND id.suspect = 1

AND id.future_contact = 'Yes') OR
/* Twin broken off - Informant is Blessed */
(td.participation = 'Aborted'
AND id.suspect = 1 AND id.future_contact = 'Yes') OR
/* Twin broken off - No inform - Have partner */
(td.participation = 'Aborted' AND ISNULL(id.suspect)

AND p2.dead = 0))
AND
l.event = 'Finished'
/* Get at area code */
AND SUBSTRING(p1.postal_code, 1, 2) = pg.code
/* Not already distributed */
AND (h.nurse IS NULL OR h.nurse=00 OR h.doctor=00)
/* Has not refused or been aborted */
AND NOT (h.status = 'Refused' OR h.status = 'Aborted'
OR h.status = 'Died' OR h.status = 'Other')

ORDER BY
tvid;

Some explanations:

• CONCAT(p1.id, p1.tvab) + 0 AS tvid

We want to sort on the concatenated id and tvab in numerical order. Adding 0 to the result causes MySQL to treat the result as a
number.

• column id

This identifies a pair of twins. It is an index in all tables.

• column tvab

This identifies a twin in a pair. It has a value of 1 or 2.

• column ptvab

This is an inverse of tvab. When tvab is 1 this is 2, and vice versa. It exists to save typing and to make it easier for MySQL to
optimize the query.

This query demonstrates, among other things, how to do lookups on a table from the same table with a join (p1 and p2). In the ex-
ample, this is used to check whether a twin's partner died before the age of 65. If so, the row is not returned.

All of the above exist in all tables with twin-related information. We have an index on both id, tvab (all tables), and id, ptvab
(person_data) to make queries faster.

Tutorial

163



When we did this work, our production machine was a 200MHz UltraSPARC, and on that old hardware this query returned about
150-200 rows in less than one second. The main table had 70k Rows.

3.7.2. Show a Table of Twin Pair Status
Each twin has a status code called event. The query shown here is used to select all twin pairs combined by event. This indicates in
how many pairs both twins are finished, in how many pairs one twin is finished and the other refused, and so on.

SELECT
t1.event,
t2.event,
COUNT(*)

FROM
lentus AS t1,
lentus AS t2,
twin_project AS tp

WHERE
/* We are looking at one pair at a time */
t1.id = tp.id
AND t1.tvab=tp.tvab
AND t1.id = t2.id
/* Just the screening survey */
AND tp.survey_no = 5
/* This makes each pair only appear once */
AND t1.tvab='1' AND t2.tvab='2'

GROUP BY
t1.event, t2.event;

3.8. Using MySQL with Apache
There are programs that let you authenticate your users from a MySQL database and also let you write your log files into a MySQL ta-
ble.

You can change the Apache logging format to be easily readable by MySQL by putting the following into the Apache configuration
file:

LogFormat \
"\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
\"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat line writes to the log file.

Tutorial

164



Chapter 4. MySQL Programs
This chapter provides a brief overview of the command-line programs provided by MySQL AB. It also discusses the general syntax for
specifying options when you run these programs. Most programs have options that are specific to their own operation, but the option
syntax is similar for all of them. Finally, the chapter provides more detailed descriptions of individual programs, including which op-
tions they recognize.

4.1. Overview of MySQL Programs
There are many different programs in a MySQL installation. This section provides a brief overview of them. Later sections provide a
more detailed description of each one, with the exception of MySQL Cluster programs. Each program's description indicates its invoca-
tion syntax and the options that it understands. Chapter 17, MySQL Cluster, describes programs specific to MySQL Cluster.

Most MySQL distributions include all of these programs, except for those programs that are platform-specific. (For example, the server
startup scripts are not used on Windows.) The exception is that RPM distributions are more specialized. There is one RPM for the serv-
er, another for client programs, and so forth. If you appear to be missing one or more programs, see Chapter 2, Installing and Upgrading
MySQL, for information on types of distributions and what they contain. It may be that you have a distribution that does not include all
programs and you need to install an additional package.

Each MySQL program takes many different options. Most programs provide a --help option that you can use to get a description of
the program's different options. For example, try mysql --help.

You can override default option values for MySQL programs by specifying options on the command line or in an option file. See Sec-
tion 4.2, “Using MySQL Programs”, for general information on invoking programs and specifying program options.

The MySQL server, mysqld, is the main program that does most of the work in a MySQL installation. The server is accompanied by
several related scripts that assist you in starting and stopping the server:

• mysqld

The SQL daemon (that is, the MySQL server). To use client programs, mysqld must be running, because clients gain access to
databases by connecting to the server. See Section 5.1, “The MySQL Server”.

• mysqld_safe

A server startup script. mysqld_safe attempts to start mysqld. See Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”.

• mysql.server

A server startup script. This script is used on systems that use System V-style run directories containing scripts that start system ser-
vices for particular run levels. It invokes mysqld_safe to start the MySQL server. See Section 4.3.3, “mysql.server —
MySQL Server Startup Script”.

• mysqld_multi

A server startup script that can start or stop multiple servers installed on the system. See Section 4.3.4, “mysqld_multi — Man-
age Multiple MySQL Servers”. An alternative to mysqld_multi is mysqlmanager, the MySQL Instance Manager. See Sec-
tion 4.6.9, “mysqlmanager — The MySQL Instance Manager”.

There are several programs that perform setup operations during MySQL installation or upgrading:

• comp_err

This program is used during the MySQL build/installation process. It compiles error message files from the error source files. See
Section 4.4.1, “comp_err — Compile MySQL Error Message File”.

• make_binary_distribution

This program makes a binary release of a compiled MySQL. This could be sent by FTP to /pub/mysql/upload/ on
ftp.mysql.com for the convenience of other MySQL users.

165



• make_win_bin_dist

This program is used on Windows. It packages a MySQL distribution for installation after the source distribution has been built. See
Section 4.4.2, “make_win_bin_dist — Package MySQL Distribution as ZIP Archive”.

• mysql_fix_privilege_tables

This program is used after a MySQL upgrade operation. It updates the grant tables with any changes that have been made in newer
versions of MySQL. See Section 4.4.4, “mysql_fix_privilege_tables — Upgrade MySQL System Tables”.

Note: As of MySQL 5.1.7, this program has been superseded by mysql_upgrade.

• mysql_install_db

This script creates the MySQL database and initializes the grant tables with default privileges. It is usually executed only once,
when first installing MySQL on a system. See Section 2.10.2, “Unix Post-Installation Procedures”, and Section 4.4.5,
“mysql_install_db — Initialize MySQL Data Directory”.

• mysql_secure_installation

This program enables you to improve the security of your MySQL installation. SQL. See Section 4.4.6,
“mysql_secure_installation — Improve MySQL Installation Security”.

• mysql_tzinfo_to_sql

This program loads the time zone tables in the mysql database using the contents of the host system zoneinfo database (the set of
files describing time zones). SQL. See Section 4.4.7, “mysql_tzinfo_to_sql — Load the Time Zone Tables”.

• mysql_upgrade

This program is used after a MySQL upgrade operation. It checks tables for incompatibilities and repairs them if necessary, and up-
dates the grant tables with any changes that have been made in newer versions of MySQL. See Section 4.4.8, “mysql_upgrade
— Check Tables for MySQL Upgrade”.

MySQL client programs:

• mysql

The command-line tool for interactively entering SQL statements or executing them from a file in batch mode. See Section 4.5.1,
“mysql — The MySQL Command-Line Tool”.

• mysqladmin

A client that performs administrative operations, such as creating or dropping databases, reloading the grant tables, flushing tables to
disk, and reopening log files. mysqladmin can also be used to retrieve version, process, and status information from the server.
See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.

• mysqlcheck

A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 4.5.3, “mysqlcheck — A Table Main-
tenance and Repair Program”.

• mysqldump

A client that dumps a MySQL database into a file as SQL, text, or XML. See Section 4.5.4, “mysqldump — A Database Backup
Program”.

• mysqlimport

A client that imports text files into their respective tables using LOAD DATA INFILE. See Section 4.5.5, “mysqlimport — A
Data Import Program”.

• mysqlshow

MySQL Programs

166



A client that displays information about databases, tables, columns, and indexes. See Section 4.5.6, “mysqlshow — Display Data-
base, Table, and Column Information”.

• mysqlslap

A client that is designed to emulate client load for a MySQL server and report the timing of each stage. It works as if multiple cli-
ents are accessing the server. See Section 4.5.7, “mysqlslap — Load Emulation Client”.

MySQL administrative and utility programs:

• innochecksum

An offline InnoDB offline file checksum utility. See Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”.

• myisam_ftdump

A utility that displays information about full-text indexes in MyISAM tables. See Section 4.6.2, “myisam_ftdump — Display
Full-Text Index information”.

• myisamchk

A utility to describe, check, optimize, and repair MyISAM tables. See Section 4.6.3, “myisamchk — MyISAM Table-Maintenance
Utility”.

• myisamlog, isamlog

A utility that processes the contents of a MyISAM log file. See Section 4.6.4, “myisamlog — Display MyISAM Log File Con-
tents”.

• myisampack

A utility that compresses MyISAM tables to produce smaller read-only tables. See Section 4.6.5, “myisampack — Generate Com-
pressed, Read-Only MyISAM Tables”.

• mysqlaccess

A script that checks the access privileges for a hostname, username, and database combination. See Section 4.6.6, “mysqlaccess
— Client for Checking Access Privileges”.

• mysqlbinlog

A utility for reading statements from a binary log. The log of executed statements contained in the binary log files can be used to
help recover from a crash. See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”.

• mysqlhotcopy

A utility that quickly makes backups of MyISAM tables while the server is running. See Section 4.6.8, “mysqlhotcopy — A
Database Backup Program”.

• mysqlmanager

The MySQL Instance Manager, a program for monitoring and managing MySQL servers. See Section 4.6.9, “mysqlmanager —
The MySQL Instance Manager”.

Important

MySQL Instance Manager has been deprecated and will be removed in MySQL 6.0.

• mysql_convert_table_format

A utility that converts tables in a database to use a given storage engine. See Section 4.6.10, “mysql_convert_table_format
— Convert Tables to Use a Given Storage Engine”.

MySQL Programs

167



• mysql_find_rows

A utility that reads files containing SQL statements (such as update logs) and extracts statements that match a given regular expres-
sion. See Section 4.6.11, “mysql_find_rows — Extract SQL Statements from Files”.

• mysql_fix_extensions

A utility that converts the extensions for MyISAM table files to lowercase. This can be useful after transferring the files from a sys-
tem with case-insensitive filenames to a system with case-sensitive filenames. See Section 4.6.12, “mysql_fix_extensions —
Normalize Table Filename Extensions”.

• mysql_setpermission

A utility for interactively setting permissions in the MySQL grant tables. See Section 4.6.13, “mysql_setpermission — Inter-
actively Set Permissions in Grant Tables”.

• mysql_waitpid

A utility that kills the process with a given process ID. See Section 4.6.14, “mysql_waitpid — Kill Process and Wait for Its Ter-
mination”.

• mysql_zap

A utility that kills processes that match a pattern. See Section 4.6.15, “mysql_zap — Kill Processes That Match a Pattern”.

MySQL program-development utilities:

• msql2mysql

A shell script that converts mSQL programs to MySQL. It doesn't handle every case, but it gives a good start when converting.

• mysql_config

A shell script that produces the option values needed when compiling MySQL programs.

• my_print_defaults

A utility that shows which options are present in option groups of option files. See Section 4.7.3, “my_print_defaults — Dis-
play Options from Option Files”.

• resolve_stack_dump

A utility program that resolves a numeric stack trace dump to symbols. See Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”.

Miscellaneous utilities:

• perror

A utility that displays the meaning of system or MySQL error codes. See Section 4.8.1, “perror — Explain Error Codes”.

• replace

A utility program that performs string replacement in the input text. See Section 4.8.2, “replace — A String-Replacement Util-
ity”.

• resolveip

A utility program that resolves a hostname to an IP address or vice versa. See Section 4.8.3, “resolveip — Resolve Hostname to
IP Address or Vice Versa”.

MySQL AB also provides several GUI tools for administering and otherwise working with MySQL Server:

MySQL Programs

168



• MySQL Administrator: This tool is used for administering MySQL servers, databases, tables, and user accounts.

• MySQL Query Browser: This graphical tool is provided by MySQL AB for creating, executing, and optimizing queries on MySQL
databases.

• MySQL Migration Toolkit: This tool helps you migrate schemas and data from other relational database management systems for
use with MySQL.

These GUI programs are available at http://dev.mysql.com/downloads/. Each has its own manual that you can access at ht-
tp://dev.mysql.com/doc/.

MySQL client programs that communicate with the server using the MySQL client/server library use the following environment vari-
ables:

MYSQL_UNIX_PORT The default Unix socket file; used for connections to localhost

MYSQL_TCP_PORT The default port number; used for TCP/IP connections

MYSQL_PWD The default password

MYSQL_DEBUG Debug trace options when debugging

TMPDIR The directory where temporary tables and files are created

For a full list of environment variables used by MySQL programs, see Section 2.14, “Environment Variables”.

Use of MYSQL_PWD is insecure. See Section 5.5.6, “Keeping Your Password Secure”.

4.2. Using MySQL Programs

4.2.1. Invoking MySQL Programs
To invoke a MySQL program from the command line (that is, from your shell or command prompt), enter the program name followed
by any options or other arguments needed to instruct the program what you want it to do. The following commands show some sample
program invocations. “shell>” represents the prompt for your command interpreter; it is not part of what you type. The particular
prompt you see depends on your command interpreter. Typical prompts are $ for sh or bash, % for csh or tcsh, and C:\> for the
Windows command.com or cmd.exe command interpreters.

shell> mysql --user=root test
shell> mysqladmin extended-status variables
shell> mysqlshow --help
shell> mysqldump -u root personnel

Arguments that begin with a single or double dash (“-”, “--”) are option arguments. Options typically specify the type of connection a
program should make to the server or affect its operational mode. Option syntax is described in Section 4.2.2, “Specifying Program Op-
tions”.

Non-option arguments (arguments with no leading dash) provide additional information to the program. For example, the mysql pro-
gram interprets the first non-option argument as a database name, so the command mysql --user=root test indicates that you
want to use the test database.

Later sections that describe individual programs indicate which options a program understands and describe the meaning of any addi-
tional non-option arguments.

Some options are common to a number of programs. The most common of these are the --host (or -h), --user (or -u), and -
-password (or -p) options that specify connection parameters. They indicate the host where the MySQL server is running, and the
username and password of your MySQL account. All MySQL client programs understand these options; they allow you to specify
which server to connect to and the account to use on that server.

Other connection options are --port (or -P) to specify a TCP/IP port number and --socket (or -S) to specify a Unix socket file on
Unix (or named pipe name on Windows).

The default hostname is localhost. For client programs on Unix, the hostname localhost is special. It causes the client to con-
nect to the MySQL server through a Unix socket file. This occurs even if a --port or -P option is given to specify a port number. To

MySQL Programs

169

http://dev.mysql.com/downloads/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/


ensure that the client makes a TCP/IP connection to the local server, use --host or -h to specify a hostname value of 127.0.0.1,
or the IP address or name of the local server. You can also specify the connection protocol explicitly, even for localhost, by using
the --protocol=tcp option.

On Windows, the hostname . causes the client to connect to the local server using a named pipe, if the server has named-pipe connec-
tions enabled. If named-pipe connections are not enabled, an error occurs.

You may find it necessary to invoke MySQL programs using the pathname to the bin directory in which they are installed. This is
likely to be the case if you get a “program not found” error whenever you attempt to run a MySQL program from any directory other
than the bin directory. To make it more convenient to use MySQL, you can add the pathname of the bin directory to your PATH en-
vironment variable setting. That enables you to run a program by typing only its name, not its entire pathname. For example, if mysql
is installed in /usr/local/mysql/bin, you can run the program by invoking it as mysql, and it is not necessary to invoke it as /
usr/local/mysql/bin/mysql.

Consult the documentation for your command interpreter for instructions on setting your PATH variable. The syntax for setting environ-
ment variables is interpreter-specific. (Some information is given in Section 4.2.3, “Setting Environment Variables”.) After modifying
your PATH setting, open a new console window on Windows or log in again on Unix so that the setting goes into effect.

4.2.2. Specifying Program Options
There are several ways to specify options for MySQL programs:

• List the options on the command line following the program name. This is most common for options that apply to a specific invoca-
tion of the program.

• List the options in an option file that the program reads when it starts. This is common for options that you want the program to use
each time it runs.

• List the options in environment variables (see Section 4.2.3, “Setting Environment Variables”). This method is useful for options
that you want to apply each time the program runs. In practice, option files are used more commonly for this purpose, but Sec-
tion 5.6.2, “Running Multiple Servers on Unix”, discusses one situation in which environment variables can be very helpful. It de-
scribes a handy technique that uses such variables to specify the TCP/IP port number and Unix socket file for the server and for cli-
ent programs.

MySQL programs determine which options are given first by examining environment variables, then by reading option files, and then
by checking the command line. This means that environment variables have the lowest precedence and command-line options the
highest.

Because options are processed in order, if an option is specified multiple times, the last occurrence takes precedence. The following
command causes mysql to connect to the server running on localhost:

shell> mysql -h example.com -h localhost

If conflicting or related options are given, later options take precedence over earlier options. The following command runs mysql in
“no column names” mode:

shell> mysql --column-names --skip-column-names

An option can be specified by writing it in full or as any unambiguous prefix. For example, the --compress option can be given to
mysqldump as --compr, but not as --comp because the latter is ambiguous:

shell> mysqldump --comp
mysqldump: ambiguous option '--comp' (compatible, compress)

Be aware that the use of option prefixes can cause problems in the event that new options are implemented for a program. A prefix that
is unambigious now might become ambiguous in the future.

You can take advantage of the way that MySQL programs process options by specifying default values for a program's options in an op-
tion file. That enables you to avoid typing them each time you run the program, but also allows you to override the defaults if necessary
by using command-line options.

4.2.2.1. Using Options on the Command Line

MySQL Programs

170



Program options specified on the command line follow these rules:

• Options are given after the command name.

• An option argument begins with one dash or two dashes, depending on whether it is a short form or long form of the option name.
Many options have both short and long forms. For example, -? and --help are the short and long forms of the option that in-
structs a MySQL program to display its help message.

• Option names are case sensitive. -v and -V are both legal and have different meanings. (They are the corresponding short forms of
the --verbose and --version options.)

• Some options take a value following the option name. For example, -h localhost or --host=localhost indicate the
MySQL server host to a client program. The option value tells the program the name of the host where the MySQL server is run-
ning.

• For a long option that takes a value, separate the option name and the value by an “=” sign. For a short option that takes a value, the
option value can immediately follow the option letter, or there can be a space between: -hlocalhost and -h localhost are
equivalent. An exception to this rule is the option for specifying your MySQL password. This option can be given in long form as -
-password=pass_val or as --password. In the latter case (with no password value given), the program prompts you for the
password. The password option also may be given in short form as -ppass_val or as -p. However, for the short form, if the
password value is given, it must follow the option letter with no intervening space. The reason for this is that if a space follows the
option letter, the program has no way to tell whether a following argument is supposed to be the password value or some other kind
of argument. Consequently, the following two commands have two completely different meanings:

shell> mysql -ptest
shell> mysql -p test

The first command instructs mysql to use a password value of test, but specifies no default database. The second instructs
mysql to prompt for the password value and to use test as the default database.

Another option that may occasionally be useful with mysql is the --execute or -e option, which can be used to pass SQL state-
ments to the server. When this option is used, mysql executes the statements and exits. The statements must be enclosed by quotation
marks. For example, you can use the following command to obtain a list of user accounts:

shell> mysql -u root -p --execute="SELECT User, Host FROM user" mysql
Enter password: ******
+------+-----------+
| User | Host |
+------+-----------+
| | gigan |
| root | gigan |
| | localhost |
| jon | localhost |
| root | localhost |
+------+-----------+
shell>

Note that the long form (--execute) is followed by an equals sign (=).

If you wish to use quoted values within a statement, you will either need to escape the inner quotes, or use a different type of quotes
within the statement from those used to quote the statement itself. The capabilities of your command processor dictate your choices for
whether you can use single or double quotation marks and the syntax for escaping quote characters. For example, if your command pro-
cessor supports quoting with single or double quotes, you can double quotes around the statement, and single quotes for any quoted val-
ues within the statement.

In the preceding example, the name of the mysql database was passed as a separate argument. However, the same statement could
have been executed using this command, which specifies no default database:

mysql> mysql -u root -p --execute="SELECT User, Host FROM mysql.user"

Multiple SQL statements may be passed on the command line, separated by semicolons:

shell> mysql -u root -p -e "SELECT VERSION();SELECT NOW()"
Enter password: ******
+-----------------+
| VERSION() |
+-----------------+

MySQL Programs

171



| 5.1.5-alpha-log |
+-----------------+
+---------------------+
| NOW() |
+---------------------+
| 2006-01-05 21:19:04 |
+---------------------+

The --execute or -e option may also be used to pass commands in an analogous fashion to the ndb_mgm management client for
MySQL Cluster. See Section 17.3.6, “Safe Shutdown and Restart”, for an example.

4.2.2.1.1. Program Option Modifiers

Some options control behavior that can be turned on or off. For example, the mysql client supports a --column-names option that
determines whether or not to display a row of column names at the beginning of query results. By default, this option is enabled.
However, you may want to disable it in some instances, such as when sending the output of mysql into another program that expects to
see only data and not an initial header line.

To disable column names, you can specify the option using any of these forms:

--disable-column-names
--skip-column-names
--column-names=0

The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn the option off.

The “enabled” form of the option may be specified in any of these ways:

--column-names
--enable-column-names
--column-names=1

If an option is prefixed by --loose, a program does not exit with an error if it does not recognize the option, but instead issues only a
warning:

shell> mysql --loose-no-such-option
mysql: WARNING: unknown option '--no-such-option'

The --loose prefix can be useful when you run programs from multiple installations of MySQL on the same machine and list options
in an option file, An option that may not be recognized by all versions of a program can be given using the --loose prefix (or loose
in an option file). Versions of the program that recognize the option process it normally, and versions that do not recognize it issue a
warning and ignore it.

mysqld enables a limit to be placed on how large client programs can set dynamic system variables. To do this, use a --maximum
prefix with the variable name. For example, --maximum-query_cache_size=4M prevents any client from making the query
cache size larger than 4MB.

4.2.2.2. Using Option Files

Most MySQL programs can read startup options from option files (also sometimes called configuration files). Option files provide a
convenient way to specify commonly used options so that they need not be entered on the command line each time you run a program.
For the MySQL server, MySQL provides a number of preconfigured option files.

To determine whether a program reads option files, invoke it with the --help option. (For mysqld, use --verbose and --help.)
If the program reads option files, the help message indicates which files it looks for and which option groups it recognizes.

Note

Option files used with MySQL Cluster programs are covered in Section 17.4, “MySQL Cluster Configuration”.

On Windows, MySQL programs read startup options from the following files:

Filename Purpose

WINDIR\my.ini,
WINDIR\my.cnf

Global options

C:\my.ini, C:\my.cnf Global options

MySQL Programs

172



INSTALLDIR\my.ini, IN-
STALLDIR\my.cnf

Global options

defaults-extra-file The file specified with --defaults-extra-file=path, if any

WINDIR represents the location of your Windows directory. This is commonly C:\WINDOWS. You can determine its exact location
from the value of the WINDIR environment variable using the following command:

C:\> echo %WINDIR%

INSTALLDIR represents the MySQL installation directory. This is typically C:\PROGRAMDIR\MySQL\MySQL 5.1 Server
where PROGRAMDIR represents the programs directory (usually Program Files on English-language versions of Windows), when
MySQL 5.1 has been installed using the installation and configuration wizards. See Section 2.3.4.14, “The Location of the my.ini File”.

On Unix, MySQL programs read startup options from the following files:

Filename Purpose

/etc/my.cnf Global options

/etc/mysql/my.cnf Global options (as of MySQL 5.1.15)

SYSCONFDIR/my.cnf Global options

$MYSQL_HOME/my.cnf Server-specific options

defaults-extra-file The file specified with --defaults-extra-file=path, if any

~/.my.cnf User-specific options

SYSCONFDIR represents the directory specified with the --sysconfdir option to configure when MySQL was built. By de-
fault, this is the etc directory located under the compiled-in installation directory. This location is used as of MySQL 5.1.10. (From
5.1.10 to 5.1.22, it was read last, after ~/.my.cnf.)

MYSQL_HOME is an environment variable containing the path to the directory in which the server-specific my.cnf file resides.

If MYSQL_HOME is not set and you start the server using the mysqld_safe program, mysqld_safe attempts to set MYSQL_HOME
as follows:

• Let BASEDIR and DATADIR represent the pathnames of the MySQL base directory and data directory, respectively.

• If there is a my.cnf file in DATADIR but not in BASEDIR, mysqld_safe sets MYSQL_HOME to DATADIR.

• Otherwise, if MYSQL_HOME is not set and there is no my.cnf file in DATADIR, mysqld_safe sets MYSQL_HOME to BASEDIR.

In MySQL 5.1, use of DATADIR as the location for my.cnf is deprecated.

Typically, DATADIR is /usr/local/mysql/data for a binary installation or /usr/local/var for a source installation. Note
that this is the data directory location that was specified at configuration time, not the one specified with the --datadir option when
mysqld starts. Use of --datadir at runtime has no effect on where the server looks for option files, because it looks for them before
processing any options.

MySQL looks for option files in the order just described and reads any that exist. If an option file that you want to use does not exist,
create it with a plain text editor.

If multiple instances of a given option are found, the last instance takes precedence. There is one exception: For mysqld, the first in-
stance of the --user option is used as a security precaution, to prevent a user specified in an option file from being overridden on the
command line.

Note

On Unix platforms, MySQL ignores configuration files that are world-writable. This is intentional as a security measure.

Any long option that may be given on the command line when running a MySQL program can be given in an option file as well. To get

MySQL Programs

173



the list of available options for a program, run it with the --help option.

The syntax for specifying options in an option file is similar to command-line syntax, except that you omit the leading two dashes and
you specify only one option per line. For example, --quick and --host=localhost on the command line should be specified as
quick and host=localhost on separate lines in an option file. To specify an option of the form --loose-opt_name in an op-
tion file, write it as loose-opt_name.

Empty lines in option files are ignored. Non-empty lines can take any of the following forms:

• #comment, ;comment

Comment lines start with “#” or “;”. A “#” comment can start in the middle of a line as well.

• [group]

group is the name of the program or group for which you want to set options. After a group line, any option-setting lines apply to
the named group until the end of the option file or another group line is given.

• opt_name

This is equivalent to --opt_name on the command line.

• opt_name=value

This is equivalent to --opt_name=value on the command line. In an option file, you can have spaces around the “=” character,
something that is not true on the command line. You can enclose the value within single quotes or double quotes, which is useful if
the value contains a “#” comment character or whitespace.

For options that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase or lowercase) to indicate a
multiplier of 1024, 10242 or 10243. For example, the following command tells mysqladmin to ping the server 1024 times, sleeping 10
seconds between each ping:

mysql> mysqladmin --count=1K --sleep=10 ping

Leading and trailing blanks are automatically deleted from option names and values. You may use the escape sequences “\b”, “\t”,
“\n”, “\r”, “\\”, and “\s” in option values to represent the backspace, tab, newline, carriage return, backslash, and space characters.

Because the “\\” escape sequence represents a single backslash, you must write each “\” as “\\”. Alternatively, you can specify the
value using “/” rather than “\” as the pathname separator.

If an option group name is the same as a program name, options in the group apply specifically to that program. For example, the
[mysqld] and [mysql] groups apply to the mysqld server and the mysql client program, respectively.

The [client] option group is read by all client programs (but not by mysqld). This allows you to specify options that apply to all
clients. For example, [client] is the perfect group to use to specify the password that you use to connect to the server. (But make
sure that the option file is readable and writable only by yourself, so that other people cannot find out your password.) Be sure not to put
an option in the [client] group unless it is recognized by all client programs that you use. Programs that do not understand the op-
tion quit after displaying an error message if you try to run them.

Here is a typical global option file:

[client]
port=3306
socket=/tmp/mysql.sock

[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M

[mysqldump]
quick

The preceding option file uses var_name=value syntax for the lines that set the key_buffer_size and
max_allowed_packet variables.

MySQL Programs

174



Here is a typical user option file:

[client]
# The following password will be sent to all standard MySQL clients
password="my_password"

[mysql]
no-auto-rehash
connect_timeout=2

[mysqlhotcopy]
interactive-timeout

If you want to create option groups that should be read by mysqld servers from a specific MySQL release series only, you can do this
by using groups with names of [mysqld-5.0], [mysqld-5.1], and so forth. The following group indicates that the --new option
should be used only by MySQL servers with 5.1.x version numbers:

[mysqld-5.1]
new

It is possible to use !include directives in option files to include other option files and !includedir to search specific directories
for option files. For example, to include the /home/mydir/myopt.cnf file, use the following directive:

!include /home/mydir/myopt.cnf

To search the /home/mydir directory and read option files found there, use this directive:

!includedir /home/mydir

There is no guarantee about the order in which the option files in the directory will be read.

Note

Currently, any files to be found and included using the !includedir directive on Unix operating systems must have fi-
lenames ending in .cnf. On Windows, this directive checks for files with the .ini or .cnf extension.

Write the contents of an included option file like any other option file. That is, it should contain groups of options, each preceded by a
[group] line that indicates the program to which the options apply.

While an included file is being processed, only those options in groups that the current program is looking for are used. Other groups
are ignored. Suppose that a my.cnf file contains this line:

!include /home/mydir/myopt.cnf

And suppose that /home/mydir/myopt.cnf looks like this:

[mysqladmin]
force

[mysqld]
key_buffer_size=16M

If my.cnf is processed by mysqld, only the [mysqld] group in /home/mydir/myopt.cnf is used. If the file is processed by
mysqladmin, only the [mysqldamin] group is used. If the file is processed by any other program, no options in /
home/mydir/myopt.cnf are used.

The !includedir directive is processed similarly except that all option files in the named directory are read.

4.2.2.2.1. Command-Line Options that Affect Option-File Handling

Most MySQL programs that support option files handle the following options. They affect option-file handling, so they must be given
on the command line and not in an option file. To work properly, each of these options must immediately follow the command name,
with the exception that --print-defaults may be used immediately after --defaults-file or -
-defaults-extra-file. Also, when specifying filenames, you should avoid the use of the “~” shell metacharacter because it
might not be interpreted as you expect.

MySQL Programs

175



• --no-defaults

Don't read any option files.

• --print-defaults

Print the program name and all options that it gets from option files.

• --defaults-file=file_name

Use only the given option file. file_name is the full pathname to the file. If the file does not exist or is otherwise inaccessible, the
program will exit with an error.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. file_name is the full pathname to the
file. If the file does not exist or is otherwise inaccessible, the program will exit with an error.

• --defaults-group-suffix=str

If this option is given, the program reads not only its usual option groups, but also groups with the usual names and a suffix of str.
For example, the mysql client normally reads the [client] and [mysql] groups. If the -
-default-group-suffix=_other option is given, mysql also reads the [client_other] and [mysql_other]
groups.

4.2.2.2.2. Preconfigured Option Files

MySQL provides a number of preconfigured option files that can be used as a basis for tuning the MySQL server. Look for files such as
my-small.cnf, my-medium.cnf, my-large.cnf, and my-huge.cnf, which are sample option files for small, medium, large,
and very large systems. On Windows, the extension is .ini rather than .cnf extension.

Note

On Windows, the .cnf or .ini option file extension might not be displayed.

For a binary distribution, look for the files in or under your installation directory. If you have a source distribution, look in the sup-
port-files directory. You can rename a copy of a sample file and place it in the appropriate location for use as a base configuration
file. Regarding names and appropriate location, see the general information provided in Section 4.2.2.2, “Using Option Files”.

4.2.2.3. Using Options to Set Program Variables

Many MySQL programs have internal variables that can be set at runtime. Program variables are set the same way as any other long op-
tion that takes a value. For example, mysql has a max_allowed_packet variable that controls the maximum size of its communic-
ation buffer. To set the max_allowed_packet variable for mysql to a value of 16MB, use either of the following commands:

shell> mysql --max_allowed_packet=16777216
shell> mysql --max_allowed_packet=16M

The first command specifies the value in bytes. The second specifies the value in megabytes. For variables that take a numeric value,
the value can be given with a suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024, 10242 or 10243. (For
example, when used to set max_allowed_packet, the suffixes indicate units of kilobytes, megabytes, or gigabytes.)

In an option file, variable settings are given without the leading dashes:

[mysql]
max_allowed_packet=16777216

Or:

[mysql]
max_allowed_packet=16M

If you like, underscores in a variable name can be specified as dashes. The following option groups are equivalent. Both set the size of
the server's key buffer to 512MB:

MySQL Programs

176



[mysqld]
key_buffer_size=512M

[mysqld]
key-buffer-size=512M

A variable can be specified by writing it in full or as any unambiguous prefix. For example, the max_buffer_length variable can
be set for mysql as --max_a, but not as --max because the latter is ambiguous:

shell> mysql --max=1000000
mysql: ambiguous option '--max=1000000' (max_allowed_packet, max_join_size)

Be aware that the use of variable prefixes can cause problems in the event that new variables are implemented for a program. A prefix
that is unambigious now might become ambiguous in the future.

Note

Before MySQL 4.0.2, the only syntax for setting program variables was --set-variable=option=value (or set-
variable=option=value in option files). Underscores cannot be given as dashes, and the variable name must be
specified in full. This syntax still is recognized, but is now deprecated.

Many server system variables can also be set at runtime. For details, see Section 5.1.4.2, “Dynamic System Variables”.

4.2.2.4. Option Defaults, Options Expecting Values, and the = Sign

By convention, long forms of options that assign a value are written with an equals (=) sign, like this:

shell> mysql --host=tonfisk --user=jon

For options that require a value (that is, not having a default value), the equals sign is not required, and so the following is also valid:

shell> mysql --host tonfisk --user jon

In both cases, the mysql client attempts to connect to a MySQL server running on the host named “tonfisk” using an account with the
username “jon”.

Due to this behavior, problems can occasionally arise when no value is provided for an option that expects one. Consider the following
example, where a user connects to a MySQL server running on host tonfisk as user jon:

shell> mysql --host 85.224.35.45 --user jon
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.1.25-rc Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| jon@% |
+----------------+
1 row in set (0.00 sec)

Omitting the required value for one of these option yields an error, such as the one shown here:

shell> mysql --host 85.224.35.45 --user
MYSQL: OPTION '--USER' REQUIRES AN ARGUMENT

In this case, mysql was unable to find a value following the --user option because nothing came after it on the command line.
However, if you omit the value for an option that is not the last option to be used, you obtain a different error that you may not be ex-
pecting:

shell> mysql --host --user jon
ERROR 2005 (HY000): UNKNOWN MYSQL SERVER HOST '--USER' (1)

Because mysql assumes that any string following --host on the command line is a hostname, --host --user is interpreted as -
-host=--user, and the client attempts to connect to a MySQL server running on a host named “--user”.

Options having default values always require an equals sign when assigning a value; failing to do so causes an error. For example, the
MySQL server --log-error has the default value host_name.err, where host_name is the name of the host on which
MySQL is running. Assume that you are running MySQL on a computer whose hostname is “tonfisk”, and consider the following in-

MySQL Programs

177



vocation of mysqld_safe:

shell> mysqld_safe &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>

After shutting down the server, restart it as follows:

shell> mysqld_safe --log-errors &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>

The result is the same, since --log-errors is not followed by anything else on the command line, and it supplies its own default
value. (The & character tells the operating system to run MySQL in the background; it is ignored by MySQL itself.) Now suppose that
you wish to log errors to a file named my-errors.err. You might try starting the server with --log-error my-errors, but
this does not have the intended effect, as shown here:

shell> mysqld_safe --log-error my-errors &
[1] 31357
shell> 080111 22:53:31 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080111 22:53:32 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

[1]+ Done ./mysqld_safe --log-error my-errors

The server attempted to start using /usr/local/mysql/var/tonfisk.err as the error log, but then shut down. Examining the
last few lines of this file shows the reason:

shell> tail /usr/local/mysql/var/tonfisk.err
080111 22:53:32 InnoDB: Started; log sequence number 0 46409
/USR/LOCAL/MYSQL/LIBEXEC/MYSQLD: TOO MANY ARGUMENTS (FIRST EXTRA IS 'MY-ERRORS').
USE --VERBOSE --HELP TO GET A LIST OF AVAILABLE OPTIONS
080111 22:53:32 [ERROR] ABORTING

080111 22:53:32 InnoDB: Starting shutdown...
080111 22:53:34 InnoDB: Shutdown completed; log sequence number 0 46409
080111 22:53:34 [Note] /usr/local/mysql/libexec/mysqld: Shutdown complete

080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

Because the --log-error option supplies a default value, you must use an equals sign to assign a different value to it, as shown
here:

shell> mysqld_safe --log-error=my-errors &
[1] 31437
shell> 080111 22:54:15 mysqld_safe Logging to '/usr/local/mysql/var/my-errors.err'.
080111 22:54:15 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var

shell>

Now the server has been started successfully, and is logging errors to the file /usr/local/mysql/var/my-errors.err.

Similar issues can arise when specifying option values in option files. For example, consider a my.cnf file that contains the following:

[mysql]

host
user

When the mysql client reads this file, these entries are parsed as --host --user or --host=--user, with the result shown here:

shell> mysql
ERROR 2005 (HY000): UNKNOWN MYSQL SERVER HOST '--USER' (1)

Howver, in option files, an equals sign is not assumed. Suppose the my.cnf file is as shown here:

[mysql]

user jon

Trying to start mysql in this case causes a different error:

shell> mysql
MYSQL: UNKNOWN OPTION '--USER JON'

A similar error would occur if you were to write host tonfisk in the option file rather than host=tonfisk. Instead, you must
use the equals sign:

MySQL Programs

178



[mysql]

user=jon

shell> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5
Server version: 5.1.25-rc Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+
1 row in set (0.00 sec)

This is not the same behavior as with the command line, where the equals sign is not required:

shell> mysql --user jon --host tonfisk
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.1.25-rc Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@tonfisk |
+---------------+
1 row in set (0.00 sec)

4.2.3. Setting Environment Variables
Environment variables can be set at the command prompt to affect the current invocation of your command processor, or set perman-
ently to affect future invocations. To set a variable permanently, you can set it in a startup file or by using the interface provided by your
system for this purpose. Consult the documentation for your command interpreter for specific details. Section 2.14, “Environment Vari-
ables”, lists all environment variables that affect MySQL program operation.

To specify a value for an environment variable, use the syntax appropriate for your command processor. For example, on Windows or
NetWare, you can set the USER variable to specify your MySQL account name. To do so, use this syntax:

SET USER=your_name

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port number using the MYSQL_TCP_PORT
variable. Typical syntax (such as for sh, bash, zsh, and so on) is as follows:

MYSQL_TCP_PORT=3306
export MYSQL_TCP_PORT

The first command sets the variable, and the export command exports the variable to the shell environment so that its value becomes
accessible to MySQL and other processes.

For csh and tcsh, use setenv to make the shell variable available to the environment:

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt to take effect immediately, but the settings per-
sist only until you log out. To have the settings take effect each time you log in, use the interface provided by your system or place the
appropriate command or commands in a startup file that your command interpreter reads each time it starts.

On Windows, you can set environment variables using the System Control Panel (under Advanced).

On Unix, typical shell startup files are .bashrc or .bash_profile for bash, or .tcshrc for tcsh.

Suppose that your MySQL programs are installed in /usr/local/mysql/bin and that you want to make it easy to invoke these
programs. To do this, set the value of the PATH environment variable to include that directory. For example, if your shell is bash, add

MySQL Programs

179



the following line to your .bashrc file:

PATH=${PATH}:/usr/local/mysql/bin

bash uses different startup files for login and non-login shells, so you might want to add the setting to .bashrc for login shells and to
.bash_profile for non-login shells to make sure that PATH is set regardless.

If your shell is tcsh, add the following line to your .tcshrc file:

setenv PATH ${PATH}:/usr/local/mysql/bin

If the appropriate startup file does not exist in your home directory, create it with a text editor.

After modifying your PATH setting, open a new console window on Windows or log in again on Unix so that the setting goes into ef-
fect.

4.3. MySQL Server and Server-Startup Programs
This section describes mysqld, the MySQL server, and several programs that are used to start the server.

4.3.1. mysqld — The MySQL Server
mysqld, also known as MySQL Server, is the main program that does most of the work in a MySQL installation. MySQL Server man-
ages access to the MySQL data directory that contains databases and tables. The data directory is also the default location for other in-
formation such as log files and status files.

When MySQL server starts, it listens for network connections from client programs and manages access to databases on behalf of those
clients.

The mysqld program has many options that can be specified at startup. For a complete list of options, run this command:

shell> mysqld --verbose --help

MySQL Server also has a set of system variables that affect its operation as it runs. System variables can be set at server startup, and
many of them can be changed at runtime to effect dynamic server reconfiguration. MySQL Server also has a set of status variables that
provide information about its operation. You can monitor these status variables to access runtime performance characteristics.

For a full description of MySQL Server command options, system variables, and status variables, see Section 5.1, “The MySQL
Server”. For information about installing MySQL and setting up the initial configuration, see Chapter 2, Installing and Upgrading
MySQL.

4.3.2. mysqld_safe — MySQL Server Startup Script
mysqld_safe is the recommended way to start a mysqld server on Unix and NetWare. mysqld_safe adds some safety features
such as restarting the server when an error occurs and logging runtime information to an error log file. Descriptions of error logging and
NetWare-specific behaviors are given later in this section.

Note

In MySQL 5.1.20 (only), the default error logging behavior with mysqld_safe is to write errors to syslog on systems
that support the logger program. This differs from the default behavior of writing an error log file for other versions.

In 5.1.20, logging to syslog may fail to operate correctly in some cases, so we recommend that you use -
-skip-syslog to use the default log file or --log-error=file_name to specify a log filename explicitly.

mysqld_safe tries to start an executable named mysqld. To override the default behavior and specify explicitly the name of the
server you want to run, specify a --mysqld or --mysqld-version option to mysqld_safe. You can also use --ledir to in-
dicate the directory where mysqld_safe should look for the server.

Many of the options to mysqld_safe are the same as the options to mysqld. See Section 5.1.2, “Command Options”.

All options specified to mysqld_safe on the command line are passed to mysqld. If you want to use any options that are specific to
mysqld_safe and that mysqld doesn't support, do not specify them on the command line. Instead, list them in the

MySQL Programs

180



[mysqld_safe] group of an option file. See Section 4.2.2.2, “Using Option Files”.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections in option files. For example, if
you specify a [mysqld] section like this, mysqld_safe will find and use the --log-error option:

[mysqld]
log-error=error.log

For backward compatibility, mysqld_safe also reads [safe_mysqld] sections, although you should rename such sections to
[mysqld_safe] in MySQL 5.1 installations.

mysqld_safe supports the following options:

Table 4.1. mysqld_safe Option Reference

Format Config File Description Introduc-
tion

--autoclose autoclose On NetWare, mysqld_safe provides a screen presence

--basedir=path basedir The path to the MySQL installation directory

--core-file-size=size core-file-size The size of the core file that mysqld should be able to create

--datadir=path datadir The path to the data directory

--defaults-extra-file=path defaults-extra-file The name of an option file to be read in addition to the usual op-
tion files

--defaults-file=file_name defaults-file The name of an option file to be read instead of the usual option
files

--help Display a help message and exit

--ledir=path ledir Use this option to indicate the pathname to the directory where the
server is located

--log-error=file_name log-error Write the error log to the given file

--mysqld=prog_name mysqld The name of the server program (in the ledir directory) that you
want to start

--mysqld-version=suffix mysqld-version This option is similar to the --mysqld option, but you specify only
the suffix for the server program name

--nice=priority nice Use the nice program to set the server's scheduling priority to the
given value

--no-defaults no-defaults Do not read any option files

--open-files-limit=count open-files-limit The number of files that mysqld should be able to open

--pid-file pid-file The pathname of the process ID file

--port=number port The port number that the server should use when listening for
TCP/IP connections

--skip-kill-mysqld skip-kill-mysqld Do not try to kill stray mysqld processes

--skip-syslog skip-syslog Do not write error messages to syslog; use error log file 5.1.20

--socket=path socket The Unix socket file that the server should use when listening for
local connections

--syslog syslog Write error messages to syslog 5.1.20

--timezone=timezone timezone Set the TZ time zone environment variable to the given option
value

-
-
user={user_name|user_id
}

user Run the mysqld server as the user having the name user_name or
the numeric user ID user_id

• --help

MySQL Programs

181



Display a help message and exit.

• --autoclose

(NetWare only) On NetWare, mysqld_safe provides a screen presence. When you unload (shut down) the mysqld_safe
NLM, the screen does not by default go away. Instead, it prompts for user input:

*<NLM has terminated; Press any key to close the screen>*

If you want NetWare to close the screen automatically instead, use the --autoclose option to mysqld_safe.

• --basedir=path

The path to the MySQL installation directory.

• --core-file-size=size

The size of the core file that mysqld should be able to create. The option value is passed to ulimit -c.

• --datadir=path

The path to the data directory.

• --defaults-extra-file=path

The name of an option file to be read in addition to the usual option files. This must be the first option on the command line if it is
used. If the file does not exist or is otherwise inaccessible, the server will exit with an error.

• --defaults-file=file_name

The name of an option file to be read instead of the usual option files. This must be the first option on the command line if it is used.

• --ledir=path

If mysqld_safe cannot find the server, use this option to indicate the pathname to the directory where the server is located.

• --log-error=file_name

Write the error log to the given file. See Section 5.2.2, “The Error Log”.

• --mysqld=prog_name

The name of the server program (in the ledir directory) that you want to start. This option is needed if you use the MySQL binary
distribution but have the data directory outside of the binary distribution. If mysqld_safe cannot find the server, use the -
-ledir option to indicate the pathname to the directory where the server is located.

• --mysqld-version=suffix

This option is similar to the --mysqld option, but you specify only the suffix for the server program name. The basename is as-
sumed to be mysqld. For example, if you use --mysqld-version=debug, mysqld_safe starts the mysqld-debug pro-
gram in the ledir directory. If the argument to --mysqld-version is empty, mysqld_safe uses mysqld in the ledir
directory.

• --nice=priority

Use the nice program to set the server's scheduling priority to the given value.

• --no-defaults

Do not read any option files. This must be the first option on the command line if it is used.

• --open-files-limit=count

The number of files that mysqld should be able to open. The option value is passed to ulimit -n. Note that you need to start
mysqld_safe as root for this to work properly!

MySQL Programs

182



• --pid-file=file_name

The pathname of the process ID file.

• --port=port_num

The port number that the server should use when listening for TCP/IP connections. The port number must be 1024 or higher unless
the server is started by the root system user.

• --skip-kill-mysqld

Do not try to kill stray mysqld processes at startup. This option works only on Linux.

• --socket=path

The Unix socket file that the server should use when listening for local connections.

• --syslog, --skip-syslog

--syslog causes error messages to be sent to syslog on systems that support the logger program. --skip-syslog sup-
presses the use of syslog; messages are written to an error log file. These options were added in MySQL 5.1.20.

• --syslog-tag=tag

For logging to syslog, messages from mysqld_safe and mysqld are written with a tag of mysqld_safe and mysqld, re-
spectively. To specify a suffix for the tag, use --syslog-tag=tag, which modifies the tags to be mysqld_safe-tag and
mysqld-tag. This option was added in MySQL 5.1.21.

• --timezone=timezone

Set the TZ time zone environment variable to the given option value. Consult your operating system documentation for legal time
zone specification formats.

• --user={user_name|user_id}

Run the mysqld server as the user having the name user_name or the numeric user ID user_id. (“User” in this context refers
to a system login account, not a MySQL user listed in the grant tables.)

If you execute mysqld_safe with the --defaults-file or --defaults-extra-option option to name an option file, the
option must be the first one given on the command line or the option file will not be used. For example, this command will not use the
named option file:

mysql> mysqld_safe --port=port_num --defaults-file=file_name

Instead, use the following command:

mysql> mysqld_safe --defaults-file=file_name --port=port_num

The mysqld_safe script is written so that it normally can start a server that was installed from either a source or a binary distribution
of MySQL, even though these types of distributions typically install the server in slightly different locations. (See Section 2.1.5,
“Installation Layouts”.) mysqld_safe expects one of the following conditions to be true:

• The server and databases can be found relative to the working directory (the directory from which mysqld_safe is invoked). For
binary distributions, mysqld_safe looks under its working directory for bin and data directories. For source distributions, it
looks for libexec and var directories. This condition should be met if you execute mysqld_safe from your MySQL installa-
tion directory (for example, /usr/local/mysql for a binary distribution).

• If the server and databases cannot be found relative to the working directory, mysqld_safe attempts to locate them by absolute
pathnames. Typical locations are /usr/local/libexec and /usr/local/var. The actual locations are determined from the
values configured into the distribution at the time it was built. They should be correct if MySQL is installed in the location specified
at configuration time.

MySQL Programs

183



Because mysqld_safe tries to find the server and databases relative to its own working directory, you can install a binary distribution
of MySQL anywhere, as long as you run mysqld_safe from the MySQL installation directory:

shell> cd mysql_installation_directory
shell> bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, you can specify the --ledir and --datadir
options to indicate the directories in which the server and databases are located on your system.

When you use mysqld_safe to start mysqld, mysqld_safe arranges for error (and notice) messages from itself and from
mysqld to go to the same destination.

As of MySQL 5.1.20, there are several mysqld_safe options for controlling the destination of these messages:

• --syslog: Write error messages to syslog on systems that support the logger program.

• --skip-syslog: Do not write error messages to syslog. Messages are written to the default error log file (host_name.err
in the data directory), or to a named file if the --log-error option is given.

• --log-error=file_name: Write error messages to the named error file.

If none of these options is given, the default is --skip-syslog.

Note

In MySQL 5.1.20 only, the default is --syslog. This differs from logging behavior for other versions of MySQL, for
which the default is to write messages to the default error log file.

If --syslog and --log-error are both given, a warning is issued and --log-error takes precedence.

When mysqld_safe writes a message, notices go to the logging destination (syslog or the error log file) and stdout. Errors go to
the logging destination and stderr.

Before MySQL 5.1.20, error logging is controlled only with the --log-error option. If it is given, messages go to the named error
file. Otherwise, messages go to the default error file.

Normally, you should not edit the mysqld_safe script. Instead, configure mysqld_safe by using command-line options or options
in the [mysqld_safe] section of a my.cnf option file. In rare cases, it might be necessary to edit mysqld_safe to get it to start
the server properly. However, if you do this, your modified version of mysqld_safe might be overwritten if you upgrade MySQL in
the future, so you should make a copy of your edited version that you can reinstall.

On NetWare, mysqld_safe is a NetWare Loadable Module (NLM) that is ported from the original Unix shell script. It starts the
server as follows:

1. Runs a number of system and option checks.

2. Runs a check on MyISAM tables.

3. Provides a screen presence for the MySQL server.

4. Starts mysqld, monitors it, and restarts it if it terminates in error.

5. Sends error messages from mysqld to the host_name.err file in the data directory.

6. Sends mysqld_safe screen output to the host_name.safe file in the data directory.

4.3.3. mysql.server — MySQL Server Startup Script
MySQL distributions on Unix include a script named mysql.server. It can be used on systems such as Linux and Solaris that use
System V-style run directories to start and stop system services. It is also used by the Mac OS X Startup Item for MySQL.

mysql.server can be found in the support-files directory under your MySQL installation directory or in a MySQL source dis-

MySQL Programs

184



tribution.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server script will be installed in the /
etc/init.d directory with the name mysql. You need not install it manually. See Section 2.4, “Installing MySQL from RPM Pack-
ages on Linux”, for more information on the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name such as mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not install mysql.server automatic-
ally, you can install it manually. Instructions are provided in Section 2.10.2.2, “Starting and Stopping MySQL Automatically”.

mysql.server reads options from the [mysql.server] and [mysqld] sections of option files. For backward compatibility, it
also reads [mysql_server] sections, although you should rename such sections to [mysql.server] when using MySQL 5.1.

mysql.server understands the following options:

• --basedir=path

The path to the MySQL installation directory.

• --datadir=path

The path to the MySQL data directory.

• --pid-file=file_name

The pathname of the file in which the server should write its process ID.

• --service-startup-timeout=file_name

How long in seconds to wait for confirmation of server startup. If the server does not start within this time, mysql.server exits
with an error. The default value is 900. A value of 0 means not to wait at all for startup. Negative values mean to wait forever (no
timeout). This option was added in MySQL 5.1.17. Before that, a value of 900 is always used.

• --use-mysqld_safe

Use mysqld_safe to start the server. This is the default.

• --use-manager

Use Instance Manager to start the server.

• --user=user_name

The login username to use for running mysqld.

4.3.4. mysqld_multi — Manage Multiple MySQL Servers
mysqld_multi is designed to manage several mysqld processes that listen for connections on different Unix socket files and TCP/
IP ports. It can start or stop servers, or report their current status. The MySQL Instance Manager is an alternative means of managing
multiple servers (see Section 4.6.9, “mysqlmanager — The MySQL Instance Manager”).

mysqld_multi searches for groups named [mysqldN] in my.cnf (or in the file named by the --config-file option). N can
be any positive integer. This number is referred to in the following discussion as the option group number, or GNR. Group numbers dis-
tinguish option groups from one another and are used as arguments to mysqld_multi to specify which servers you want to start, stop,
or obtain a status report for. Options listed in these groups are the same that you would use in the [mysqld] group used for starting
mysqld. (See, for example, Section 2.10.2.2, “Starting and Stopping MySQL Automatically”.) However, when using multiple servers,
it is necessary that each one use its own value for options such as the Unix socket file and TCP/IP port number. For more information
on which options must be unique per server in a multiple-server environment, see Section 5.6, “Running Multiple MySQL Servers on
the Same Machine”.

To invoke mysqld_multi, use the following syntax:

shell> mysqld_multi [options] {start|stop|report} [GNR[,GNR] ...]

MySQL Programs

185



start, stop, and report indicate which operation to perform. You can perform the designated operation for a single server or mul-
tiple servers, depending on the GNR list that follows the option name. If there is no list, mysqld_multi performs the operation for all
servers in the option file.

Each GNR value represents an option group number or range of group numbers. The value should be the number at the end of the group
name in the option file. For example, the GNR for a group named [mysqld17] is 17. To specify a range of numbers, separate the first
and last numbers by a dash. The GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups or group
ranges can be specified on the command line, separated by commas. There must be no whitespace characters (spaces or tabs) in the GNR
list; anything after a whitespace character is ignored.

This command starts a single server using option group [mysqld17]:

shell> mysqld_multi start 17

This command stops several servers, using option groups [mysqld8] and [mysqld10] through [mysqld13]:

shell> mysqld_multi stop 8,10-13

For an example of how you might set up an option file, use this command:

shell> mysqld_multi --example

As of MySQL 5.1.18, mysqld_multi searches for option files as follows:

• With --no-defaults, no option files are read.

• With --defaults-file=file_name, only the named file is read.

• Otherwise, option files in the standard list of locations are read, including any file named by the
--defaults-extra-file=file_name option, if one is given. (If the option is given multiple times, the last value is used.)

Option files read are searched for [mysqld_multi] and [mysqldN] option groups.

Before MySQL 5.1.18, the preceding options are not recognized. Files in the standard locations are read, and any file named by the -
-config-file=file_name option, if one is given. A file named by --config-file is read only for [mysqldN] option
groups, not the [mysqld_multi] group.

mysqld_multi supports the following options:

• --help

Display a help message and exit.

• --config-file=file_name

As of MySQL 5.1.18, this option is deprecated. If given, it is treated the same way as --defaults-extra-file, described
earlier.

Before MySQL 5.1.18, this option specifies the name of an extra option file. It affects where mysqld_multi looks for
[mysqldN] option groups. Without this option, all options are read from the usual my.cnf file. The option does not affect where
mysqld_multi reads its own options, which are always taken from the [mysqld_multi] group in the usual my.cnf file.

• --example

Display a sample option file.

• --log=file_name

Specify the name of the log file. If the file exists, log output is appended to it.

• --mysqladmin=prog_name

MySQL Programs

186



The mysqladmin binary to be used to stop servers.

• --mysqld=prog_name

The mysqld binary to be used. Note that you can specify mysqld_safe as the value for this option also. If you use
mysqld_safe to start the server, you can include the mysqld or ledir options in the corresponding [mysqldN] option
group. These options indicate the name of the server that mysqld_safe should start and the pathname of the directory where the
server is located. (See the descriptions for these options in Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.) Ex-
ample:

[mysqld38]
mysqld = mysqld-debug
ledir = /opt/local/mysql/libexec

• --no-log

Print log information to stdout rather than to the log file. By default, output goes to the log file.

• --password=password

The password of the MySQL account to use when invoking mysqladmin. Note that the password value is not optional for this op-
tion, unlike for other MySQL programs.

• --silent

Silent mode; disable warnings.

• --tcp-ip

Connect to each MySQL server via the TCP/IP port instead of the Unix socket file. (If a socket file is missing, the server might still
be running, but accessible only via the TCP/IP port.) By default, connections are made using the Unix socket file. This option af-
fects stop and report operations.

• --user=user_name

The username of the MySQL account to use when invoking mysqladmin.

• --verbose

Be more verbose.

• --version

Display version information and exit.

Some notes about mysqld_multi:

• Most important: Before using mysqld_multi be sure that you understand the meanings of the options that are passed to the
mysqld servers and why you would want to have separate mysqld processes. Beware of the dangers of using multiple mysqld
servers with the same data directory. Use separate data directories, unless you know what you are doing. Starting multiple servers
with the same data directory does not give you extra performance in a threaded system. See Section 5.6, “Running Multiple MySQL
Servers on the Same Machine”.

•
Important

Make sure that the data directory for each server is fully accessible to the Unix account that the specific mysqld process
is started as. Do not use the Unix root account for this, unless you know what you are doing. See Section 5.3.5, “How to
Run MySQL as a Normal User”.

• Make sure that the MySQL account used for stopping the mysqld servers (with the mysqladmin program) has the same user-
name and password for each server. Also, make sure that the account has the SHUTDOWN privilege. If the servers that you want to
manage have different usernames or passwords for the administrative accounts, you might want to create an account on each server

MySQL Programs

187



that has the same username and password. For example, you might set up a common multi_admin account by executing the fol-
lowing commands for each server:

shell> mysql -u root -S /tmp/mysql.sock -p
Enter password:
mysql> GRANT SHUTDOWN ON *.*

-> TO 'multi_admin'@'localhost' IDENTIFIED BY 'multipass';

See Section 5.4.2, “How the Privilege System Works”. You have to do this for each mysqld server. Change the connection para-
meters appropriately when connecting to each one. Note that the hostname part of the account name must allow you to connect as
multi_admin from the host where you want to run mysqld_multi.

• The Unix socket file and the TCP/IP port number must be different for every mysqld. (Alternatively, if the host has multiple net-
work addresses, you can use --bind-adress to cause different servers to listen to different interfaces.)

• The --pid-file option is very important if you are using mysqld_safe to start mysqld (for example, -
-mysqld=mysqld_safe) Every mysqld should have its own process ID file. The advantage of using mysqld_safe instead
of mysqld is that mysqld_safe monitors its mysqld process and restarts it if the process terminates due to a signal sent using
kill -9 or for other reasons, such as a segmentation fault. Please note that the mysqld_safe script might require that you start
it from a certain place. This means that you might have to change location to a certain directory before running mysqld_multi. If
you have problems starting, please see the mysqld_safe script. Check especially the lines:

----------------------------------------------------------------
MY_PWD=`pwd`
# Check if we are starting this relative (for the binary release)
if test -d $MY_PWD/data/mysql -a \

-f ./share/mysql/english/errmsg.sys -a \
-x ./bin/mysqld

----------------------------------------------------------------

The test performed by these lines should be successful, or you might encounter problems. See Section 4.3.2, “mysqld_safe —
MySQL Server Startup Script”.

• You might want to use the --user option for mysqld, but to do this you need to run the mysqld_multi script as the Unix
root user. Having the option in the option file doesn't matter; you just get a warning if you are not the superuser and the mysqld
processes are started under your own Unix account.

The following example shows how you might set up an option file for use with mysqld_multi. The order in which the mysqld pro-
grams are started or stopped depends on the order in which they appear in the option file. Group numbers need not form an unbroken se-
quence. The first and fifth [mysqldN] groups were intentionally omitted from the example to illustrate that you can have “gaps” in
the option file. This gives you more flexibility.

# This file should probably be in your home dir (~/.my.cnf)
# or /etc/my.cnf
# Version 2.1 by Jani Tolonen

[mysqld_multi]
mysqld = /usr/local/bin/mysqld_safe
mysqladmin = /usr/local/bin/mysqladmin
user = multi_admin
password = multipass

[mysqld2]
socket = /tmp/mysql.sock2
port = 3307
pid-file = /usr/local/mysql/var2/hostname.pid2
datadir = /usr/local/mysql/var2
language = /usr/local/share/mysql/english
user = john

[mysqld3]
socket = /tmp/mysql.sock3
port = 3308
pid-file = /usr/local/mysql/var3/hostname.pid3
datadir = /usr/local/mysql/var3
language = /usr/local/share/mysql/swedish
user = monty

[mysqld4]
socket = /tmp/mysql.sock4
port = 3309
pid-file = /usr/local/mysql/var4/hostname.pid4
datadir = /usr/local/mysql/var4
language = /usr/local/share/mysql/estonia
user = tonu

MySQL Programs

188



[mysqld6]
socket = /tmp/mysql.sock6
port = 3311
pid-file = /usr/local/mysql/var6/hostname.pid6
datadir = /usr/local/mysql/var6
language = /usr/local/share/mysql/japanese
user = jani

See Section 4.2.2.2, “Using Option Files”.

4.4. MySQL Installation-Related Programs
The programs in this section are used when installing or upgrading MySQL.

4.4.1. comp_err — Compile MySQL Error Message File
comp_err creates the errmsg.sys file that is used by mysqld to determine the error messages to display for different error codes.
comp_err normally is run automatically when MySQL is built. It compiles the errmsg.sys file from the plaintext file located at
sql/share/errmsg.txt in MySQL source distributions.

comp_err also generates mysqld_error.h, mysqld_ername.h, and sql_state.h header files.

For more information about how error messages are defined, see the MySQL Internals Manual.

Invoke comp_err like this:

shell> comp_err [options]

comp_err understands the options described in the following list.

• --help, -?

Display a help message and exit.

• --charset=path, -C path

The character set directory. The default is ../sql/share/charsets.

• --debug=debug_options, -# debug_options

Write a debugging log. The debug_options string often is 'd:t:O,file_name'. The default is
'd:t:O,/tmp/comp_err.trace'.

• --debug-info, -T

Print some debugging information when the program exits.

• --header_file=file_name, -H file_name

The name of the error header file. The default is mysqld_error.h.

• --in_file=file_name, -F file_name

The name of the input file. The default is ../sql/share/errmsg.txt.

• --name_file=file_name, -N file_name

The name of the error name file. The default is mysqld_ername.h.

• --out_dir=path, -D path

The name of the output base directory. The default is ../sql/share/.

• --out_file=file_name, -O file_name

MySQL Programs

189



The name of the output file. The default is errmsg.sys.

• --statefile=file_name, -S file_name

The name for the SQLSTATE header file. The default is sql_state.h.

• --version, -V

Display version information and exit.

4.4.2. make_win_bin_dist — Package MySQL Distribution as ZIP Archive
This script is used on Windows after building a MySQL distribution from source to create executable programs. It packages the binaries
and support files into a ZIP archive that can be unpacked at the location where you want to install MySQL.

make_win_bin_dist is a shell script, so you must have Cygwin installed to use it.

This program's use is subject to change. Currently, you invoke it as follows from the root directory of your source distribution:

shell> make_win_bin_dist [options] package_basename [copy_def ...]

The package_basename argument provides the basename for the resulting ZIP archive. This name will be the name of the directory
that results from unpacking the archive.

Because you might want to include files of directories from other builds, you can instruct this script do copy them in for you, via
copy_def arguments, which of which is of the form relative_dest_name=source_name.

Example:

bin/mysqld-max.exe=../my-max-build/sql/release/mysqld.exe

If you specify a directory, the entire directory will be copied.

make_win_bin_dist understands the following options:

• --debug

Pack the debug binaries and produce an error if they were not built.

• --embedded

Pack the embedded server and produce an error if it was not built. The default is to pack it if it was built.

• --exe-suffix=suffix

Add a suffix to the basename of the mysql binary. For example, a suffix of -abc produces a binary named mysqld-abc.exe.

• --no-debug

Don't pack the debug binaries even if they were built.

• --no-embedded

Don't pack the embedded server even if it was built.

• --only-debug

Use this option when the target for this build was Debug, and you just want to replace the normal binaries with debug versions (that
is, do not use separate debug directories).

4.4.3. mysqlbug — Generate Bug Report

MySQL Programs

190



This program enables you to generate a bug report and send it to MySQL AB. It is a shell script and runs on Unix.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs database. This database is public and
can be browsed and searched by anyone. If you log in to the system, you can enter new reports. If you have no Web access, you can
generate a bug report by using the mysqlbug script.

mysqlbug helps you generate a report by determining much of the following information automatically, but if something important is
missing, please include it with your message. mysqlbug can be found in the scripts directory (source distribution) and in the bin
directory under your MySQL installation directory (binary distribution).

Invoke mysqlbug without arguments:

shell> mysqlbug

The script will place you in an editor with a copy of the report to be sent. Edit the lines near the beginning that indicate the nature of the
problem. Then write the file to save your changes, quit the editor, and mysqlbug will send the report by email. perform.

4.4.4. mysql_fix_privilege_tables — Upgrade MySQL System Tables
Some releases of MySQL introduce changes to the structure of the system tables in the mysql database to add new privileges or sup-
port new features. When you update to a new version of MySQL, you should update your system tables as well to make sure that their
structure is up to date. Otherwise, there might be capabilities that you cannot take advantage of. First, make a backup of your mysql
database, and then use the following procedure.

Note

As of MySQL 5.1.7, mysql_fix_privilege_tables is superseded by mysql_upgrade, which should be used
instead. See Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

On Unix or Unix-like systems, update the system tables by running the mysql_fix_privilege_tables script:

shell> mysql_fix_privilege_tables

You must run this script while the server is running. It attempts to connect to the server running on the local host as root. If your
root account requires a password, indicate the password on the command line like this:

shell> mysql_fix_privilege_tables --password=root_password

The mysql_fix_privilege_tables script performs any actions necessary to convert your system tables to the current format.
You might see some Duplicate column name warnings as it runs; you can ignore them.

After running the script, stop the server and restart it so that it uses any changes that were made to the system tables.

On Windows systems, MySQL distributions include a mysql_fix_privilege_tables.sql SQL script that you can run using
the mysql client. For example, if your MySQL installation is located at C:\Program Files\MySQL\MySQL Server 5.1, the
commands look like this:

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.1"
C:\> bin\mysql -u root -p mysql
mysql> SOURCE share/mysql_fix_privilege_tables.sql

Note

Prior to version 5.1.17, this script is found in the scripts directory.

The mysql command will prompt you for the root password; enter it when prompted.

If your installation is located in some other directory, adjust the pathnames appropriately.

As with the Unix procedure, you might see some Duplicate column name warnings as mysql processes the statements in the
mysql_fix_privilege_tables.sql script; you can ignore them.

After running the script, stop the server and restart it.

MySQL Programs

191

http://bugs.mysql.com/


4.4.5. mysql_install_db — Initialize MySQL Data Directory
mysql_install_db initializes the MySQL data directory and creates the system tables that it contains, if they do not exist. Because
the MySQL server, mysqld, needs to access the data directory when it runs later, you should either run mysql_install_db from
the same account that will be used for running mysqld or run it as root and use the --user option to indicate the username that
mysqld will run as.

To invoke mysql_install_db, use the following syntax:

shell> mysql_install_db [options]

mysql_install_db needs to invoke mysqld with the --bootstrap and --skip-grant-tables options (see Section 2.9.2,
“Typical configure Options”). If MySQL was configured with the --disable-grant-options option, --bootstrap and -
-skip-grant-tables will be disabled. To handle this, set the MYSQLD_BOOTSTRAP environment variable to the full pathname
of a server that has all options enabled. mysql_install_db will use that server.

mysql_install_db supports the following options:

• --basedir=path

The path to the MySQL installation directory.

• --force

Causes mysql_install_db to run even if DNS does not work. In that case, grant table entries that normally use hostnames will
use IP addresses.

• --datadir=path, --ldata=path

The path to the MySQL data directory.

• --rpm

For internal use. This option is used by RPM files during the MySQL installation process.

• --skip-name-resolve

Use IP addresses rather than hostnames when creating grant table entries. This option can be useful if your DNS does not work.

• --srcdir=path

For internal use. The directory under which mysql_install_db looks for support files such as the error message file and the file
for populating the help tables. This option was added in MySQL 5.1.14.

• --user=user_name

The login username to use for running mysqld. Files and directories created by mysqld will be owned by this user. You must be
root to use this option. By default, mysqld runs using your current login name and files and directories that it creates will be
owned by you.

• --verbose

Verbose mode. Print more information about what the program does.

• --windows

For internal use. This option is used for creating Windows distributions.

4.4.6. mysql_secure_installation — Improve MySQL Installation Security
This program enables you to improve the security of your MySQL installation in the following ways:

• You can set a password for root accounts.

MySQL Programs

192



• You can remove root accounts that are accessible from outside the local host.

• You can remove anonymous-user accounts.

• You can remove the test database, which by default can be accessed by anonymous users.

Invoke mysql_secure_installation without arguments:

shell> mysql_secure_installation

The script will prompt you to determine which actions to perform.

4.4.7. mysql_tzinfo_to_sql — Load the Time Zone Tables
The mysql_tzinfo_to_sql program loads the time zone tables in the mysql database. It is used on systems that have a zoneinfo
database (the set of files describing time zones). Examples of such systems are Linux, FreeBSD, Sun Solaris, and Mac OS X. One likely
location for these files is the /usr/share/zoneinfo directory. If your system does not have a zoneinfo database, you can use the
downloadable package described in Section 9.6, “MySQL Server Time Zone Support”.

mysql_tzinfo_to_sql can be invoked several ways:

shell> mysql_tzinfo_to_sql tz_dir
shell> mysql_tzinfo_to_sql tz_file tz_name
shell> mysql_tzinfo_to_sql --leap tz_file

For the first invocation syntax, pass the zoneinfo directory pathname to mysql_tzinfo_to_sql and send the output into the
mysql program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them. mysql processes those
statements to load the time zone tables.

The second syntax causes mysql_tzinfo_to_sql to load a single time zone file tz_file that corresponds to a time zone name
tz_name:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

If your time zone needs to account for leap seconds, invoke mysql_tzinfo_to_sql using the third syntax, which initializes the
leap second information. tz_file is the name of your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to use any previously cached time
zone data.

4.4.8. mysql_upgrade — Check Tables for MySQL Upgrade
mysql_upgrade should be executed each time you upgrade MySQL. It checks all tables in all databases for incompatibilities with
the current version of MySQL Server. If a table is found to have a possible incompatibility, it is checked. If any problems are found, the
table is repaired. mysql_upgrade also upgrades the system tables so that you can take advantage of new privileges or capabilities
that might have been added.

All checked and repaired tables are marked with the current MySQL version number. This ensures that next time you run
mysql_upgrade with the same version of the server, it can tell whether there is any need to check or repair the table again.

mysql_upgrade also saves the MySQL version number in a file named mysql_upgrade_info in the data directory. This is used
to quickly check if all tables have been checked for this release so that table-checking can be skipped. To ignore this file, use the -
-force option.

To check and repair tables and to upgrade the system tables, mysql_upgrade executes the following commands:

mysqlcheck --check-upgrade --all-databases --auto-repair

MySQL Programs

193



mysql_fix_privilege_tables

mysql_upgrade supersedes the older mysql_fix_privilege_tables script. In MySQL 5.1.7, mysql_upgrade was ad-
ded as a shell script and worked only for Unix systems. As of MySQL 5.1.10, mysql_upgrade is an executable binary and is avail-
able on all systems. On systems older than those supporting mysql_upgrade, you can execute the mysqlcheck command manu-
ally, and then upgrade your system tables as described in Section 4.4.4, “mysql_fix_privilege_tables — Upgrade MySQL
System Tables”.

If you install MySQL from RPM packages on Linux, you must install the server and client RPMs. mysql_upgrade is included in the
server RPM but requires the client RPM because the latter includes mysqlcheck. (See Section 2.4, “Installing MySQL from RPM
Packages on Linux”.)

For details about what is checked, see the description of the FOR UPGRADE option of the CHECK TABLE statement (see Sec-
tion 12.5.2.3, “CHECK TABLE Syntax”).

To use mysql_upgrade, make sure that the server is running, and then invoke it like this:

shell> mysql_upgrade [options]

After running mysql_upgrade, stop the server and restart it so that it uses any changes that were made to the system tables.

mysql_upgrade reads options from the command line and from the [mysql_upgrade] group in option files. It supports the fol-
lowing options:

• --help

Display a short help message and exit.

• --basedir=path

The path to the MySQL installation directory.

• --datadir=path

The path to the data directory.

• --debug-check

Print some debugging information when the program exits. This option was added in MySQL 5.1.21.

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits. This option was added in MySQL
5.1.21.

• --force

Force execution of mysqlcheck even if mysql_upgrade has already been executed for the current version of MySQL. (In oth-
er words, this option causes the mysql_upgrade_info file to be ignored.)

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server. The default username is root.

• --verbose

Verbose mode. Print more information about what the program does.

Other options are passed to mysqlcheck and to mysql_fix_privilege_tables. For example, it might be necessary to specify
the --password[=password] option.

4.5. MySQL Client Programs

MySQL Programs

194



4.5.1. mysql — The MySQL Command-Line Tool
mysql is a simple SQL shell (with GNU readline capabilities). It supports interactive and non-interactive use. When used interact-
ively, query results are presented in an ASCII-table format. When used non-interactively (for example, as a filter), the result is presented
in tab-separated format. The output format can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the --quick option. This forces mysql to retrieve results
from the server a row at a time rather than retrieving the entire result set and buffering it in memory before displaying it. This is done by
returning the result set using the mysql_use_result() C API function in the client/server library rather than
mysql_store_result().

Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:

shell> mysql db_name

Or:

shell> mysql --user=user_name --password=your_password db_name

Then type an SQL statement, end it with “;”, \g, or \G and press Enter.

As of MySQL 5.1.10, typing Control-C causes mysql to attempt to kill the current statement. If this cannot be done, or Control-C is
typed again before the statement is killed, mysql exits. Previously, Control-C caused mysql to exit in all cases.

You can execute SQL statements in a script file (batch file) like this:

shell> mysql db_name < script.sql > output.tab

4.5.1.1. mysql Options

mysql supports the following options:

Table 4.2. mysql Option Reference

Format Config File Description Introduc-
tion

--auto-rehash auto-rehash Enable automatic rehashing

--batch batch Don't use history file

-
-bind-address=host_name

Determine which client network interface (IP address or host-
name) to use when connecting to the MySQL Server

5.1.22-ndb-
6.3.4

--character-sets-dir=name character-sets-dir Set the default character set

--column-names column-names Write column names in results

--column-type-info column-type-info Display result set metadata 5.1.14

--comments comments Whether to retain or strip comments in statements sent to the serv-
er

5.1.23

--compress compress Compress all information sent between the client and the server

--connect_timeout=value connect_timeout The number of seconds before connection timeout

--database=dbname database The database to use

--debug[=debug_options] debug Write a debugging log

--debug-check debug-check Print debugging information when the program exits 5.1.21

--debug-info debug-info Print debugging information, memory and CPU statistics when the
program exits

-
-de-
fault-charac-
ter-set=charset_name

default-character-set Use charset_name as the default character set

--delimiter=str delimiter Set the statement delimiter

MySQL Programs

195



Format Config File Description Introduc-
tion

--execute=statement execute Execute the statement and quit

--force force Continue even if an SQL error occurs

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--html html Produce HTML output

--ignore-spaces ignore-spaces Ignore spaces after function names

--line-numbers line-numbers Write line numbers for errors

--local-infile[={0|1}] local-infile Enable or disable for LOCAL capability for LOAD DATA IN-
FILE

-
-
max_allowed_packet=val
ue

max_allowed_packet The maximum packet length to send to or receive from the server

--max_join_size=value max_join_size The automatic limit for rows in a join when using --safe-updates

--named-commands named-commands Enable named mysql commands

-
-net_buffer_length=value

net_buffer_length The buffer size for TCP/IP and socket communication

--no-auto-rehash Disable automatic rehashing

--no-beep no-beep Do not beep when errors occur

--no-named-commands no-named-commands Disable named mysql commands

--no-pager no-pager Deprecated form of --skip-pager

--no-tee no-tee Do not copy output to a file

--one-database one-database Ignore statements except those for the default database named on
the command line

--pager[=command] pager Use the given command for paging query output

--password[=password] password The password to use when connecting to the server

--port=port_num port The TCP/IP port number to use for the connection

--prompt=format_str prompt Set the prompt to the specified format

-
-pro-
tocol={TCP|SOCKET|PI
PE|MEMORY}

protocol The connection protocol to use

--quick quick Do not cache each query result

--raw raw Write column values without escape conversion

--reconnect reconnect If the connection to the server is lost, automatically try to recon-
nect

--safe-updates safe-updates Allow only UPDATE and DELETE statements that specify key
values

--secure-auth secure-auth Do not send passwords to the server in old (pre-4.1.1) format

--select_limit=value select_limit The automatic limit for SELECT statements when using -
-safe-updates

--show-warnings show-warnings Show warnings after each statement if there are any

--sigint-ignore sigint-ignore Ignore SIGINT signals (typically the result of typing Control-C)

--silent silent Silent mode

--skip-auto-rehash skip-auto-rehash Disable automatic rehashing

--skip-column-names skip-column-names Do not write column names in results

--skip-line-numbers skip-line-numbers Skip line numbers for errors

MySQL Programs

196



Format Config File Description Introduc-
tion

--skip-named-commands skip-named-commands Disable named mysql commands

--skip-pager skip-pager Disable paging

--skip-reconnect skip-reconnect Disable reconnecting

--socket=path socket For connections to localhost

--ssl-ca=file_name ssl-ca The path to a file that contains a list of trusted SSL CAs

-
-
ssl-
capath=directory_name

ssl-capath The path to a directory that contains trusted SSL CA certificates in
PEM format

--ssl-cert=file_name ssl-cert The name of the SSL certificate file to use for establishing a se-
cure connection

--ssl-cipher=cipher_list ssl-cipher A list of allowable ciphers to use for SSL encryption

--ssl-key=file_name ssl-key The name of the SSL key file to use for establishing a secure con-
nection

--ssl-verify-server-cert ssl-verify-server-cert The server's Common Name value in its certificate is verified
against the hostname used when connecting to the server

--table table Display output in tabular format

--tee=file_name tee Append a copy of output to the given file

--unbuffered unbuffered Flush the buffer after each query

--user=user_name user The MySQL username to use when connecting to the server

--verbose Verbose mode

--version Display version information and exit

--vertical vertical Print query output rows vertically (one line per column value)

--wait wait If the connection cannot be established, wait and retry instead of
aborting

--xml xml Produce XML output

• --help, -?

Display a help message and exit.

• --auto-rehash

Enable automatic rehashing. This option is on by default, which enables table and column name completion. Use -
-skip-auto-rehash to disable rehashing. That causes mysql to start faster, but you must issue the rehash command if you
want to use table and column name completion.

• --batch, -B

Print results using tab as the column separator, with each row on a new line. With this option, mysql does not use the history file.

• --character-sets-dir=path

The directory where character sets are installed. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --column-names

Write column names in results.

• --column-type-info, -m

Display result set metadata. This option was added in MySQL 5.1.14. (Before that, use --debug-info.) The -m short option was
added in MySQL 5.1.21.

MySQL Programs

197



• --comments, -c

Whether to preserve comments in statements sent to the server. The default is --skip-comments (discard comments), enable with -
-comments (preserve comments). This option was added in MySQL 5.1.23.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --database=db_name, -D db_name

The database to use. This is useful primarily in an option file.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'. The default is
'd:t:o,/tmp/mysql.trace'.

• --debug-check

Print some debugging information when the program exits. This option was added in MySQL 5.1.21.

• --debug-info, -T

Before MySQL 5.1.14, this option prints debugging information and memory and CPU usage statistics when the program exits, and
also causes display of result set metadata during execution. As of MySQL 5.1.14, use --column-type-info to display result
set metadata.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --delimiter=str

Set the statement delimiter. The default is the semicolon character (“;”).

• --execute=statement, -e statement

Execute the statement and quit. The default output format is like that produced with --batch. See Section 4.2.2.1, “Using Options
on the Command Line”, for some examples.

• --force, -f

Continue even if an SQL error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --html, -H

Produce HTML output.

• --ignore-spaces, -i

Ignore spaces after function names. The effect of this is described in the discussion for the IGNORE_SPACE SQL mode (see Sec-
tion 5.1.6, “SQL Modes”).

• --line-numbers

Write line numbers for errors. Disable this with --skip-line-numbers.

• --local-infile[={0|1}]

Enable or disable LOCAL capability for LOAD DATA INFILE. With no value, the option enables LOCAL. The option may be giv-
en as --local-infile=0 or --local-infile=1 to explicitly disable or enable LOCAL. Enabling LOCAL has no effect if
the server does not also support it.

MySQL Programs

198



MySQL Enterprise
For expert advice on the security implications of enabling LOCAL, subscribe to the MySQL Enterprise Monitor.
For more information see http://www.mysql.com/products/enterprise/advisors.html.

• --named-commands, -G

Enable named mysql commands. Long-format commands are allowed, not just short-format commands. For example, quit and
\q both are recognized. Use --skip-named-commands to disable named commands. See Section 4.5.1.2, “mysql Com-
mands”.

• --no-auto-rehash, -A

Deprecated form of -skip-auto-rehash. See the description for --auto-rehash.

• --no-beep, -b

Do not beep when errors occur.

• --no-named-commands, -g

Disable named commands. Use the \* form only, or use named commands only at the beginning of a line ending with a semicolon
(“;”). mysql starts with this option enabled by default. However, even with this option, long-format commands still work from the
first line. See Section 4.5.1.2, “mysql Commands”.

• --no-pager

Deprecated form of --skip-pager. See the --pager option.

• --no-tee

Do not copy output to a file. Section 4.5.1.2, “mysql Commands”, discusses tee files further.

• --one-database, -o

Ignore statements except those for the default database named on the command line. This is useful for skipping updates to other
databases in the binary log.

• --pager[=command]

Use the given command for paging query output. If the command is omitted, the default pager is the value of your PAGER environ-
ment variable. Valid pagers are less, more, cat [> filename], and so forth. This option works only on Unix. It does not
work in batch mode. To disable paging, use --skip-pager. Section 4.5.1.2, “mysql Commands”, discusses output paging fur-
ther.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the op-
tion and the password. If you omit the password value following the --password or -p option on the command line, you are
prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --prompt=format_str

Set the prompt to the specified format. The default is mysql>. The special sequences that the prompt can contain are described in
Section 4.5.1.2, “mysql Commands”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

MySQL Programs

199

http://www.mysql.com/products/enterprise/advisors.html


• --quick, -q

Do not cache each query result, print each row as it is received. This may slow down the server if the output is suspended. With this
option, mysql does not use the history file.

• --raw, -r

Write column values without escape conversion. Often used with the --batch option.

• --reconnect

If the connection to the server is lost, automatically try to reconnect. A single reconnect attempt is made each time the connection is
lost. To suppress reconnection behavior, use --skip-reconnect.

• --safe-updates, --i-am-a-dummy, -U

Allow only those UPDATE and DELETE statements that specify which rows to modify by using key values. If you have set this op-
tion in an option file, you can override it by using --safe-updates on the command line. See Section 4.5.1.5, “mysql Tips”,
for more information about this option.

• --secure-auth

Do not send passwords to the server in old (pre-4.1.1) format. This prevents connections except for servers that use the newer pass-
word format.

MySQL Enterprise
For expert advice on database security, subscribe to the MySQL Enterprise Monitor. For more information see
http://www.mysql.com/products/enterprise/advisors.html.

• --show-warnings

Cause warnings to be shown after each statement if there are any. This option applies to interactive and batch mode.

• --sigint-ignore

Ignore SIGINT signals (typically the result of typing Control-C).

• --silent, -s

Silent mode. Produce less output. This option can be given multiple times to produce less and less output.

• --skip-column-names, -N

Do not write column names in results.

• --skip-line-numbers, -L

Do not write line numbers for errors. Useful when you want to compare result files that include error messages.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where to find SSL keys and certific-
ates. See Section 5.5.7.3, “SSL Command Options”.

• --table, -t

Display output in table format. This is the default for interactive use, but can be used to produce table output in batch mode.

• --tee=file_name

Append a copy of output to the given file. This option does not work in batch mode. in Section 4.5.1.2, “mysql Commands”, dis-
cusses tee files further.

MySQL Programs

200

http://www.mysql.com/products/enterprise/advisors.html


• --unbuffered, -n

Flush the buffer after each query.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Produce more output about what the program does. This option can be given multiple times to produce more and
more output. (For example, -v -v -v produces table output format even in batch mode.)

• --version, -V

Display version information and exit.

• --vertical, -E

Print query output rows vertically (one line per column value). Without this option, you can specify vertical output for individual
statements by terminating them with \G.

• --wait, -w

If the connection cannot be established, wait and retry instead of aborting.

• --xml, -X

Produce XML output.

Note

Prior to MySQL 5.1.12, there was no differentiation in the output when using this option between columns containing the
NULL value and columns containing the string literal 'NULL'; both were represented as

<field name="column_name">NULL</field>

Beginning with MySQL 5.1.12, the output when --xml is used with mysql matches that of mysqldump --xml. See the section
of the Manual which discusses the --xml option for mysqldump for details.

Beginning with MySQL 5.1.18, the XML output also uses an XML namespace, as shown here:

shell> mysql --xml -uroot -e "SHOW VARIABLES LIKE 'version%'"
<?xml version="1.0"?>

<resultset statement="SHOW VARIABLES LIKE 'version%'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<row>
<field name="Variable_name">version</field>
<field name="Value">5.0.40-debug</field>
</row>

<row>
<field name="Variable_name">version_comment</field>
<field name="Value">Source distribution</field>
</row>

<row>
<field name="Variable_name">version_compile_machine</field>
<field name="Value">i686</field>
</row>

<row>
<field name="Variable_name">version_compile_os</field>
<field name="Value">suse-linux-gnu</field>
</row>
</resultset>

(See Bug#25946.)

You can also set the following variables by using --var_name=value syntax:

MySQL Programs

201

http://bugs.mysql.com/25946


• connect_timeout

The number of seconds before connection timeout. (Default value is 0.)

• max_allowed_packet

The maximum packet length to send to or receive from the server. (Default value is 16MB.)

• max_join_size

The automatic limit for rows in a join when using --safe-updates. (Default value is 1,000,000.)

• net_buffer_length

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

• select_limit

The automatic limit for SELECT statements when using --safe-updates. (Default value is 1,000.)

It is also possible to set variables by using --set-variable=var_name=value or -O var_name=value syntax. This syntax
is deprecated.

On Unix, the mysql client writes a record of executed statements to a history file. By default, the history file is named
.mysql_history and is created in your home directory. To specify a different file, set the value of the MYSQL_HISTFILE environ-
ment variable.

If you do not want to maintain a history file, first remove .mysql_history if it exists, and then use either of the following tech-
niques:

• Set the MYSQL_HISTFILE variable to /dev/null. To cause this setting to take effect each time you log in, put the setting in one
of your shell's startup files.

• Create .mysql_history as a symbolic link to /dev/null:

shell> ln -s /dev/null $HOME/.mysql_history

You need do this only once.

4.5.1.2. mysql Commands

mysql sends each SQL statement that you issue to the server to be executed. There is also a set of commands that mysql itself inter-
prets. For a list of these commands, type help or \h at the mysql> prompt:

mysql> help

List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
? (\?) Synonym for `help'.
charset (\C) Switch to another charset. Might be needed for processing

binlog with multi-byte charsets.
clear (\c) Clear command.
connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter. NOTE: Takes the rest of the line as

new delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result vertically.
exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file. Takes a file name as an argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command.

MySQL Programs

202



tee (\T) Set outfile [to_outfile]. Append everything into given
outfile.

use (\u) Use another database. Takes database name as argument.
warnings (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.

For server side help, type 'help contents'

Each command has both a long and short form. The long form is not case sensitive; the short form is. The long form can be followed by
an optional semicolon terminator, but the short form should not.

The use of short-form commands within multi-line /* ... */ comments is not supported.

If you provide an argument to the help command, mysql uses it as a search string to access server-side help from the contents of the
MySQL Reference Manual. For more information, see Section 4.5.1.3, “mysql Server-Side Help”.

The charset command changes the default character set and issues a SET NAMES statement. This enables the character set to remain
synchronized on the client and server if mysql is run with auto-reconnect enabled (which is not recommended), because the changed
character set is used for reconnects. This command was added in MySQL 5.1.12.

In the delimiter command, you should avoid the use of the backslash (“\”) character because that is the escape character for
MySQL.

The edit, nopager, pager, and system commands work only in Unix.

The status command provides some information about the connection and the server you are using. If you are running in -
-safe-updates mode, status also prints the values for the mysql variables that affect your queries.

To log queries and their output, use the tee command. All the data displayed on the screen is appended into a given file. This can be
very useful for debugging purposes also. You can enable this feature on the command line with the --tee option, or interactively with
the tee command. The tee file can be disabled interactively with the notee command. Executing tee again re-enables logging.
Without a parameter, the previous file is used. Note that tee flushes query results to the file after each statement, just before mysql
prints its next prompt.

By using the --pager option, it is possible to browse or search query results in interactive mode with Unix programs such as less,
more, or any other similar program. If you specify no value for the option, mysql checks the value of the PAGER environment vari-
able and sets the pager to that. Output paging can be enabled interactively with the pager command and disabled with nopager. The
command takes an optional argument; if given, the paging program is set to that. With no argument, the pager is set to the pager that
was set on the command line, or stdout if no pager was specified.

Output paging works only in Unix because it uses the popen() function, which does not exist on Windows. For Windows, the tee
option can be used instead to save query output, although this is not as convenient as pager for browsing output in some situations.

Here are a few tips about the pager command:

• You can use it to write to a file and the results go only to the file:

mysql> pager cat > /tmp/log.txt

You can also pass any options for the program that you want to use as your pager:

mysql> pager less -n -i -S

• In the preceding example, note the -S option. You may find it very useful for browsing wide query results. Sometimes a very wide
result set is difficult to read on the screen. The -S option to less can make the result set much more readable because you can
scroll it horizontally using the left-arrow and right-arrow keys. You can also use -S interactively within less to switch the hori-
zontal-browse mode on and off. For more information, read the less manual page:

shell> man less

• You can specify very complex pager commands for handling query output:

mysql> pager cat | tee /dr1/tmp/res.txt \
| tee /dr2/tmp/res2.txt | less -n -i -S

MySQL Programs

203



In this example, the command would send query results to two files in two different directories on two different filesystems moun-
ted on /dr1 and /dr2, yet still display the results onscreen via less.

You can also combine the tee and pager functions. Have a tee file enabled and pager set to less, and you are able to browse the
results using the less program and still have everything appended into a file the same time. The difference between the Unix tee used
with the pager command and the mysql built-in tee command is that the built-in tee works even if you do not have the Unix tee
available. The built-in tee also logs everything that is printed on the screen, whereas the Unix tee used with pager does not log
quite that much. Additionally, tee file logging can be turned on and off interactively from within mysql. This is useful when you
want to log some queries to a file, but not others.

The default mysql> prompt can be reconfigured. The string for defining the prompt can contain the following special sequences:

Option Description

\v The server version

\d The default database

\h The server host

\p The current TCP/IP port or socket file

\u Your username

\U Your full user_name@host_name account name

\\ A literal “\” backslash character

\n A newline character

\t A tab character

\ A space (a space follows the backslash)

\_ A space

\R The current time, in 24-hour military time (0-23)

\r The current time, standard 12-hour time (1-12)

\m Minutes of the current time

\y The current year, two digits

\Y The current year, four digits

\D The full current date

\s Seconds of the current time

\w The current day of the week in three-letter format (Mon, Tue, …)

\P am/pm

\o The current month in numeric format

\O The current month in three-letter format (Jan, Feb, …)

\c A counter that increments for each statement you issue

\l The current delimiter. (New in 5.1.12)

\S Semicolon

\' Single quote

\" Double quote

“\” followed by any other letter just becomes that letter.

If you specify the prompt command with no argument, mysql resets the prompt to the default of mysql>.

You can set the prompt in several ways:

• Use an environment variable. You can set the MYSQL_PS1 environment variable to a prompt string. For example:

MySQL Programs

204



shell> export MYSQL_PS1="(\u@\h) [\d]> "

• Use a command-line option. You can set the --prompt option on the command line to mysql. For example:

shell> mysql --prompt="(\u@\h) [\d]> "
(user@host) [database]>

• Use an option file. You can set the prompt option in the [mysql] group of any MySQL option file, such as /etc/my.cnf or
the .my.cnf file in your home directory. For example:

[mysql]
prompt=(\\u@\\h) [\\d]>\\_

In this example, note that the backslashes are doubled. If you set the prompt using the prompt option in an option file, it is advis-
able to double the backslashes when using the special prompt options. There is some overlap in the set of allowable prompt options
and the set of special escape sequences that are recognized in option files. (These sequences are listed in Section 4.2.2.2, “Using Op-
tion Files”.) The overlap may cause you problems if you use single backslashes. For example, \s is interpreted as a space rather
than as the current seconds value. The following example shows how to define a prompt within an option file to include the current
time in HH:MM:SS> format:

[mysql]
prompt="\\r:\\m:\\s> "

• Set the prompt interactively. You can change your prompt interactively by using the prompt (or \R) command. For example:

mysql> prompt (\u@\h) [\d]>\_
PROMPT set to '(\u@\h) [\d]>\_'
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>

•

4.5.1.3. mysql Server-Side Help
mysql> help search_string

If you provide an argument to the help command, mysql uses it as a search string to access server-side help from the contents of the
MySQL Reference Manual. The proper operation of this command requires that the help tables in the mysql database be initialized
with help topic information (see Section 5.1.7, “Server-Side Help”).

If there is no match for the search string, the search fails:

mysql> help me

Nothing found
Please try to run 'help contents' for a list of all accessible topics

Use help contents to see a list of the help categories:

mysql> help contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the
following categories:

Account Management
Administration
Data Definition
Data Manipulation
Data Types
Functions
Functions and Modifiers for Use with GROUP BY
Geographic Features
Language Structure
Plugins
Storage Engines
Stored Routines
Table Maintenance
Transactions
Triggers

MySQL Programs

205



If the search string matches multiple items, mysql shows a list of matching topics:

mysql> help logs
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:

SHOW
SHOW BINARY LOGS
SHOW ENGINE
SHOW LOGS

Use a topic as the search string to see the help entry for that topic:

mysql> help show binary logs
Name: 'SHOW BINARY LOGS'
Description:
Syntax:
SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as
part of the procedure described in [purge-master-logs], that shows how
to determine which logs can be purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

4.5.1.4. Executing SQL Statements from a Text File

The mysql client typically is used interactively, like this:

shell> mysql db_name

However, it is also possible to put your SQL statements in a file and then tell mysql to read its input from that file. To do so, create a
text file text_file that contains the statements you wish to execute. Then invoke mysql as shown here:

shell> mysql db_name < text_file

If you place a USE db_name statement as the first statement in the file, it is unnecessary to specify the database name on the com-
mand line:

shell> mysql < text_file

If you are already running mysql, you can execute an SQL script file using the source command or \. command:

mysql> source file_name
mysql> \. file_name

Sometimes you may want your script to display progress information to the user. For this you can insert statements like this:

SELECT '<info_to_display>' AS ' ';

The statement shown outputs <info_to_display>.

As of MySQL 5.1.23, mysql ignores Unicode byte order mark (BOM) characters at the beginning of input files. Previously, it read
them and sent them to the server, resulting in a syntax error. Presence of a BOM does not cause mysql to change its default character
set. To do that, invoke mysql with an option such as --default-character-set=utf8.

For more information about batch mode, see Section 3.5, “Using mysql in Batch Mode”.

4.5.1.5. mysql Tips

This section describes some techniques that can help you use mysql more effectively.

MySQL Programs

206



4.5.1.5.1. Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the usual horizontal table format. Queries can be
displayed vertically by terminating the query with \G instead of a semicolon. For example, longer text values that include newlines often
are much easier to read with vertical output:

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G
*************************** 1. row ***************************
msg_nro: 3068

date: 2000-03-01 23:29:50
time_zone: +0200
mail_from: Monty

reply: monty@no.spam.com
mail_to: "Thimble Smith" <tim@no.spam.com>

sbj: UTF-8
txt: >>>>> "Thimble" == Thimble Smith writes:

Thimble> Hi. I think this is a good idea. Is anyone familiar
Thimble> with UTF-8 or Unicode? Otherwise, I'll put this on my
Thimble> TODO list and see what happens.

Yes, please do that.

Regards,
Monty

file: inbox-jani-1
hash: 190402944

1 row in set (0.09 sec)

4.5.1.5.2. Using the --safe-updates Option

For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has the same effect). It is helpful for cases
when you might have issued a DELETE FROM tbl_name statement but forgotten the WHERE clause. Normally, such a statement de-
letes all rows from the table. With --safe-updates, you can delete rows only by specifying the key values that identify them. This
helps prevent accidents.

When you use the --safe-updates option, mysql issues the following statement when it connects to the MySQL server:

SET SQL_SAFE_UPDATES=1,SQL_SELECT_LIMIT=1000, SQL_MAX_JOIN_SIZE=1000000;

See Section 12.5.3, “SET Syntax”.

The SET statement has the following effects:

• You are not allowed to execute an UPDATE or DELETE statement unless you specify a key constraint in the WHERE clause or
provide a LIMIT clause (or both). For example:

UPDATE tbl_name SET not_key_column=val WHERE key_column=val;

UPDATE tbl_name SET not_key_column=val LIMIT 1;

• The server limits all large SELECT results to 1,000 rows unless the statement includes a LIMIT clause.

• The server aborts multiple-table SELECT statements that probably need to examine more than 1,000,000 row combinations.

To specify limits different from 1,000 and 1,000,000, you can override the defaults by using the --select_limit and -
-max_join_size options:

shell> mysql --safe-updates --select_limit=500 --max_join_size=10000

4.5.1.5.3. Disabling mysql Auto-Reconnect

If the mysql client loses its connection to the server while sending a statement, it immediately and automatically tries to reconnect
once to the server and send the statement again. However, even if mysql succeeds in reconnecting, your first connection has ended and
all your previous session objects and settings are lost: temporary tables, the autocommit mode, and user-defined and session variables.
Also, any current transaction rolls back. This behavior may be dangerous for you, as in the following example where the server was shut
down and restarted between the first and second statements without you knowing it:

MySQL Programs

207



mysql> SET @a=1;
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t VALUES(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 1
Current database: test

Query OK, 1 row affected (1.30 sec)

mysql> SELECT * FROM t;
+------+
| a |
+------+
| NULL |
+------+
1 row in set (0.05 sec)

The @a user variable has been lost with the connection, and after the reconnection it is undefined. If it is important to have mysql ter-
minate with an error if the connection has been lost, you can start the mysql client with the --skip-reconnect option.

For more information about auto-reconnect and its effect on state information when a reconnection occurs, see Section 26.2.13,
“Controlling Automatic Reconnect Behavior”.

4.5.2. mysqladmin — Client for Administering a MySQL Server
mysqladmin is a client for performing administrative operations. You can use it to check the server's configuration and current status,
to create and drop databases, and more.

Invoke mysqladmin like this:

shell> mysqladmin [options] command [command-arg] [command [command-arg]] ...

mysqladmin supports the commands described in the following list. Some of the commands take an argument following the com-
mand name.

• create db_name

Create a new database named db_name.

• debug

Tell the server to write debug information to the error log.

Beginning with MySQL 5.1.12, this includes information about the Event Scheduler. See Section 22.4, “Event Scheduler Status”.

• --debug-check

Print some debugging information when the program exits. This option was added in MySQL 5.1.21.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits. This option was added in MySQL
5.1.14.

• drop db_name

Delete the database named db_name and all its tables.

• extended-status

Display the server status variables and their values.

MySQL Enterprise
For expert advice on using server status variables, subscribe to the MySQL Enterprise Monitor. For more in-
formation see http://www.mysql.com/products/enterprise/advisors.html.

MySQL Programs

208

http://www.mysql.com/products/enterprise/advisors.html


• flush-hosts

Flush all information in the host cache.

• flush-logs

Flush all logs.

• flush-privileges

Reload the grant tables (same as reload).

• flush-status

Clear status variables.

• flush-tables

Flush all tables.

• flush-threads

Flush the thread cache.

• kill id,id,...

Kill server threads. If multiple thread ID values are given, there must be no spaces in the list.

• old-password new-password

This is like the password command but stores the password using the old (pre-4.1) password-hashing format. (See Section 5.4.9,
“Password Hashing as of MySQL 4.1”.)

MySQL Enterprise
For expert advice on the security implications of using the old-password command, subscribe to the MySQL
Enterprise Monitor. For more information see http://www.mysql.com/products/enterprise/advisors.html.

• password new-password

Set a new password. This changes the password to new-password for the account that you use with mysqladmin for connect-
ing to the server. Thus, the next time you invoke mysqladmin (or any other client program) using the same account, you will need
to specify the new password.

If the new-password value contains spaces or other characters that are special to your command interpreter, you need to enclose
it within quotes. On Windows, be sure to use double quotes rather than single quotes; single quotes are not stripped from the pass-
word, but rather are interpreted as part of the password. For example:

shell> mysqladmin password "my new password"

• ping

Check whether the server is alive. The return status from mysqladmin is 0 if the server is running, 1 if it is not. This is 0 even in
case of an error such as Access denied, because this means that the server is running but refused the connection, which is dif-
ferent from the server not running.

• processlist

Show a list of active server threads. This is like the output of the SHOW PROCESSLIST statement. If the --verbose option is
given, the output is like that of SHOW FULL PROCESSLIST. (See Section 12.5.4.25, “SHOW PROCESSLIST Syntax”.)

• reload

Reload the grant tables.

• refresh

MySQL Programs

209

http://www.mysql.com/products/enterprise/advisors.html


Flush all tables and close and open log files.

• shutdown

Stop the server.

• start-slave

Start replication on a slave server.

• status

Display a short server status message.

• stop-slave

Stop replication on a slave server.

• variables

Display the server system variables and their values.

MySQL Enterprise
For expert advice on using server system variables, subscribe to the MySQL Enterprise Monitor. For more in-
formation see http://www.mysql.com/products/enterprise/advisors.html.

• version

Display version information from the server.

All commands can be shortened to any unique prefix. For example:

shell> mysqladmin proc stat
+----+-------+-----------+----+---------+------+-------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+---------+------+-------+------------------+
| 51 | monty | localhost | | Query | 0 | | show processlist |
+----+-------+-----------+----+---------+------+-------+------------------+
Uptime: 1473624 Threads: 1 Questions: 39487
Slow queries: 0 Opens: 541 Flush tables: 1
Open tables: 19 Queries per second avg: 0.0268

The mysqladmin status command result displays the following values:

• Uptime

The number of seconds the MySQL server has been running.

• Threads

The number of active threads (clients).

• Questions

The number of questions (queries) from clients since the server was started.

• Slow queries

The number of queries that have taken more than long_query_time seconds. See Section 5.2.5, “The Slow Query Log”.

• Opens

The number of tables the server has opened.

• Flush tables

MySQL Programs

210

http://www.mysql.com/products/enterprise/advisors.html


The number of flush-*, refresh, and reload commands the server has executed.

• Open tables

The number of tables that currently are open.

• Memory in use

The amount of memory allocated directly by mysqld. This value is displayed only when MySQL has been compiled with -
-with-debug=full.

• Maximum memory used

The maximum amount of memory allocated directly by mysqld. This value is displayed only when MySQL has been compiled
with --with-debug=full.

If you execute mysqladmin shutdown when connecting to a local server using a Unix socket file, mysqladmin waits until the
server's process ID file has been removed, to ensure that the server has stopped properly.

mysqladmin supports the following options:

Table 4.3. mysqladmin Option Reference

Format Config File Description Introduc-
tion

--compress compress Compress all information sent between the client and the server

-
-con-
nect_timeout=seconds

connect_timeout The number of seconds before connection timeout

--count=# count The number of iterations to make for repeated command execution

--debug[=debug_options] debug Write a debugging log

--debug-check debug-check Print debugging information when the program exits 5.1.21

--debug-info debug-info Print debugging information, memory and CPU statistics when the
program exits

5.1.14

-
-de-
fault-charac-
ter-set=charset_name

default-character-set Use charset_name as the default character set

--force force Continue even if an SQL error occurs

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--no-beep no-beep Do not beep when errors occur 5.1.17

--password[=password] password The password to use when connecting to the server

--port=port_num port The TCP/IP port number to use for the connection

-
-pro-
tocol={TCP|SOCKET|PI
PE|MEMORY}

protocol The connection protocol to use

--relative relative Show the difference between the current and previous values when
used with the --sleep option

-
-shut-
down_timeout=seconds

shutdown_timeout The maximum number of seconds to wait for server shutdown

--silent silent Silent mode

--sleep=delay sleep Execute commands repeatedly, sleeping for delay seconds in

MySQL Programs

211



Format Config File Description Introduc-
tion

between

--socket=path socket For connections to localhost

--ssl-ca=file_name ssl-ca The path to a file that contains a list of trusted SSL CAs

-
-
ssl-
capath=directory_name

ssl-capath The path to a directory that contains trusted SSL CA certificates in
PEM format

--ssl-cert=file_name ssl-cert The name of the SSL certificate file to use for establishing a se-
cure connection

--ssl-cipher=cipher_list ssl-cipher A list of allowable ciphers to use for SSL encryption

--ssl-key=file_name ssl-key The name of the SSL key file to use for establishing a secure con-
nection

--ssl-verify-server-cert ssl-verify-server-cert The server's Common Name value in its certificate is verified
against the hostname used when connecting to the server

--user=user_name, user The MySQL username to use when connecting to the server

--verbose Verbose mode

--version Display version information and exit

--vertical vertical Print query output rows vertically (one line per column value)

--wait wait If the connection cannot be established, wait and retry instead of
aborting

• --help, -?

Display a help message and exit.

• --character-sets-dir=path

The directory where character sets are installed. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --count=N, -c N

The number of iterations to make for repeated command execution. This works only with the --sleep option.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'. The default is
'd:t:o,/tmp/mysqladmin.trace'.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --force, -f

Do not ask for confirmation for the drop db_name command. With multiple commands, continue even if an error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --no-beep, -b

Suppress the warning beep that is emitted by default for errors such as a failure to connect to the server. This option was added in

MySQL Programs

212



MySQL 5.1.17.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the op-
tion and the password. If you omit the password value following the --password or -p option on the command line, you are
prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --relative, -r

Show the difference between the current and previous values when used with the --sleep option. Currently, this option works
only with the extended-status command.

• --silent, -s

Exit silently if a connection to the server cannot be established.

• --sleep=delay, -i delay

Execute commands repeatedly, sleeping for delay seconds in between. The --count option determines the number of iterations.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where to find SSL keys and certific-
ates. See Section 5.5.7.3, “SSL Command Options”.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

• --vertical, -E

Print output vertically. This is similar to --relative, but prints output vertically.

• --wait[=count], -w[count]

If the connection cannot be established, wait and retry instead of aborting. If a count value is given, it indicates the number of
times to retry. The default is one time.

You can also set the following variables by using --var_name=value syntax:

• connect_timeout

MySQL Programs

213



The maximum number of seconds before connection timeout. The default value is 43200 (12 hours).

• shutdown_timeout

The maximum number of seconds to wait for server shutdown. The default value is 3600 (1 hour).

It is also possible to set variables by using --set-variable=var_name=value or -O var_name=value syntax. This syntax
is deprecated.

4.5.3. mysqlcheck — A Table Maintenance and Repair Program
The mysqlcheck client checks, repairs, optimizes, and analyzes tables.

mysqlcheck is similar in function to myisamchk, but works differently. The main operational difference is that mysqlcheck must
be used when the mysqld server is running, whereas myisamchk should be used when it is not. The benefit of using mysqlcheck
is that you do not have to stop the server to check or repair your tables.

mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and OPTIMIZE TABLE in a con-
venient way for the user. It determines which statements to use for the operation you want to perform, and then sends the statements to
the server to be executed. For details about which storage engines each statement works with, see the descriptions for those statements
in Chapter 12, SQL Statement Syntax.

The MyISAM storage engine supports all four statements, so mysqlcheck can be used to perform all four operations on MyISAM
tables. Other storage engines do not necessarily support all operations. In such cases, an error message is displayed. For example, if
test.t is a MEMORY table, an attempt to check it produces this result:

shell> mysqlcheck test t
test.t
note : The storage engine for the table doesn't support check

Caution

It is best to make a backup of a table before performing a table repair operation; under some circumstances the operation
might cause data loss. Possible causes include but are not limited to filesystem errors.

There are three general ways to invoke mysqlcheck:

shell> mysqlcheck [options] db_name [tables]
shell> mysqlcheck [options] --databases db_name1 [db_name2 db_name3...]
shell> mysqlcheck [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or --all-databases option, entire databases
are checked.

mysqlcheck has a special feature compared to other client programs. The default behavior of checking tables (--check) can be
changed by renaming the binary. If you want to have a tool that repairs tables by default, you should just make a copy of mysqlcheck
named mysqlrepair, or make a symbolic link to mysqlcheck named mysqlrepair. If you invoke mysqlrepair, it repairs
tables.

The following names can be used to change mysqlcheck default behavior:

mysqlrepair The default option is --repair

mysqlanalyze The default option is --analyze

mysqloptimize The default option is --optimize

mysqlcheck supports the following options:

Table 4.4. mysqlcheck Option Reference

MySQL Programs

214



Format Config File Description Introduc-
tion

--all-databases all-databases Check all tables in all databases

--all-in-1 all-in-1 Execute a single statement for each database that names all the
tables from that database

--analyze analyze Analyze the tables

--auto-repair auto-repair If a checked table is corrupted, automatically fix it

-
-bind-address=host_name

Determine which client network interface (IP address or host-
name) to use when connecting to the MySQL Server

5.1.22-ndb-
6.3.4

--character-sets-dir=path character-sets-dir The directory where character sets are installed

--check check Check the tables for errors

--check-only-changed check-only-changed Check only tables that have changed since the last check

--check-upgrade check-upgrade Invoke CHECK TABLE with the FOR UPGRADE option 5.1.7

--compress compress Compress all information sent between the client and the server

--databases databases Process all tables in the named databases

--debug[=debug_options] debug Write a debugging log

--debug-check debug-check Print debugging information when the program exits 5.1.21

--debug-info debug-info Print debugging information, memory and CPU statistics when the
program exits

5.1.14

-
-de-
fault-charac-
ter-set=charset_name

default-character-set Use charset_name as the default character set

--extended extended Check and repair tables

--fast fast Check only tables that have not been closed properly

--fix-db-names fix-db-names Convert database names to 5.1 format 5.1.7

--fix-table-names fix-table-names Convert table names to 5.1 format 5.1.7

--force force Continue even if an SQL error occurs

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--medium-check medium-check Do a check that is faster than an --extended operation

--optimize optimize Optimize the tables

--password[=password] password The password to use when connecting to the server

--port=port_num port The TCP/IP port number to use for the connection

-
-pro-
tocol={TCP|SOCKET|PI
PE|MEMORY}

protocol The connection protocol to use

--quick quick The fastest method of checking

--repair repair Perform a repair that can fix almost anything except unique keys
that are not unique

--silent silent Silent mode

--socket=path socket For connections to localhost

--ssl-ca=file_name ssl-ca The path to a file that contains a list of trusted SSL CAs

-
-
ssl-
capath=directory_name

ssl-capath The path to a directory that contains trusted SSL CA certificates in
PEM format

--ssl-cert=file_name ssl-cert The name of the SSL certificate file to use for establishing a se-
cure connection

MySQL Programs

215



Format Config File Description Introduc-
tion

--ssl-cipher=cipher_list ssl-cipher A list of allowable ciphers to use for SSL encryption

--ssl-key=file_name ssl-key The name of the SSL key file to use for establishing a secure con-
nection

--ssl-verify-server-cert ssl-verify-server-cert The server's Common Name value in its certificate is verified
against the hostname used when connecting to the server

--tables tables Overrides the --databases or -B option

--use-frm use-frm For repair operations on MyISAM tables

--user=user_name, user The MySQL username to use when connecting to the server

--verbose Verbose mode

--version Display version information and exit

--write-binlog write-binlog Log ANALYZE, OPTIMIZE, REPAIR statements to binary log. -
-skip-write-binlog adds NO_WRITE_TO_BINLOG to these state-
ments.

5.1.18

• --help, -?

Display a help message and exit.

• --all-databases, -A

Check all tables in all databases. This is the same as using the --databases option and naming all the databases on the command
line.

• --all-in-1, -1

Instead of issuing a statement for each table, execute a single statement for each database that names all the tables from that data-
base to be processed.

• --analyze, -a

Analyze the tables.

MySQL Enterprise
For expert advice on optimizing tables, subscribe to the MySQL Enterprise Monitor. For more information see
http://www.mysql.com/products/enterprise/advisors.html.

• --auto-repair

If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all tables have been checked.

• --character-sets-dir=path

The directory where character sets are installed. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --check, -c

Check the tables for errors. This is the default operation.

• --check-only-changed, -C

Check only tables that have changed since the last check or that have not been closed properly.

• --check-upgrade, -g

Invoke CHECK TABLE with the FOR UPGRADE option to check tables for incompatibilities with the current version of the server.
This option automatically enables the --fix-db-names and --fix-table-names options. --check-upgrade was added
in MySQL 5.1.7.

MySQL Programs

216

http://www.mysql.com/products/enterprise/advisors.html


• --compress

Compress all information sent between the client and the server if both support compression.

• --databases, -B

Process all tables in the named databases. Normally, mysqlcheck treats the first name argument on the command line as a data-
base name and following names as table names. With this option, it treats all name arguments as database names.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is often 'd:t:o,file_name'.

• --debug-check

Print some debugging information when the program exits. This option was added in MySQL 5.1.21.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits. This option was added in MySQL
5.1.14.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --extended, -e

If you are using this option to check tables, it ensures that they are 100% consistent but takes a long time.

If you are using this option to repair tables, it runs an extended repair that may not only take a long time to execute, but may produce
a lot of garbage rows also!

• --fast, -F

Check only tables that have not been closed properly.

• --fix-db-names

Convert database names to 5.1 format. Only database names that contain special characters are affected. This option was added in
MySQL 5.1.7.

• --fix-table-names

Convert table names to 5.1 format. Only table names that contain special characters are affected. This option was added in MySQL
5.1.7. As of MySQL 5.1.23, this option also applies to views.

• --force, -f

Continue even if an SQL error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --medium-check, -m

Do a check that is faster than an --extended operation. This finds only 99.99% of all errors, which should be good enough in
most cases.

• --optimize, -o

Optimize the tables.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the op-

MySQL Programs

217



tion and the password. If you omit the password value following the --password or -p option on the command line, you are
prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --quick, -q

If you are using this option to check tables, it prevents the check from scanning the rows to check for incorrect links. This is the fast-
est check method.

If you are using this option to repair tables, it tries to repair only the index tree. This is the fastest repair method.

• --repair, -r

Perform a repair that can fix almost anything except unique keys that are not unique.

• --silent, -s

Silent mode. Print only error messages.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where to find SSL keys and certific-
ates. See Section 5.5.7.3, “SSL Command Options”.

• --tables

Overrides the --databases or -B option. All name arguments following the option are regarded as table names.

• --use-frm

For repair operations on MyISAM tables, get the table structure from the .frm file so that the table can be repaired even if the .MYI
header is corrupted.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Print information about the various stages of program operation.

• --version, -V

Display version information and exit.

4.5.4. mysqldump — A Database Backup Program
The mysqldump client is a backup program originally written by Igor Romanenko. It can be used to dump a database or a collection of
databases for backup or transfer to another SQL server (not necessarily a MySQL server). The dump typically contains SQL statements
to create the table, populate it, or both. However, mysqldump can also be used to generate files in CSV, other delimited text, or XML
format.

MySQL Programs

218



If you are doing a backup on the server and your tables all are MyISAM tables, consider using the mysqlhotcopy instead because it
can accomplish faster backups and faster restores. See Section 4.6.8, “mysqlhotcopy — A Database Backup Program”.

There are three general ways to invoke mysqldump:

shell> mysqldump [options] db_name [tables]
shell> mysqldump [options] --databases db_name1 [db_name2 db_name3...]
shell> mysqldump [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or --all-databases option, entire databases
are dumped.

mysqldump does not dump the INFORMATION_SCHEMA database. If you name that database explicitly on the command line,
mysqldump silently ignores it.

To get a list of the options your version of mysqldump supports, execute mysqldump --help.

Some mysqldump options are shorthand for groups of other options. --opt and --compact fall into this category. For example,
use of --opt is the same as specifying --add-drop-table --add-locks --create-options --disable-keys -
-extended-insert --lock-tables --quick --set-charset. Note that as of MySQL 5.1, all of the options that -
-opt stands for also are on by default because --opt is on by default.

To reverse the effect of a group option, uses its --skip-xxx form (--skip-opt or --skip-compact). It is also possible to se-
lect only part of the effect of a group option by following it with options that enable or disable specific features. Here are some ex-
amples:

• To select the effect of --opt except for some features, use the --skip option for each feature. For example, to disable extended
inserts and memory buffering, use --opt --skip-extended-insert --skip-quick. (As of MySQL 5.1, -
-skip-extended-insert --skip-quick is sufficient because --opt is on by default.)

• To reverse --opt for all features except index disabling and table locking, use --skip-opt --disable-keys -
-lock-tables.

When you selectively enable or disable the effect of a group option, order is important because options are processed first to last. For
example, --disable-keys --lock-tables --skip-opt would not have the intended effect; it is the same as --skip-opt
by itself.

mysqldump can retrieve and dump table contents row by row, or it can retrieve the entire content from a table and buffer it in memory
before dumping it. Buffering in memory can be a problem if you are dumping large tables. To dump tables row by row, use the -
-quick option (or --opt, which enables --quick). The --opt option (and hence --quick) is enabled by default in MySQL 5.1;
to enable memory buffering, use --skip-quick.

If you are using a recent version of mysqldump to generate a dump to be reloaded into a very old MySQL server, you should not use
the --opt or --extended-insert option. Use --skip-opt instead.

Note

mysqldump from the MySQL 5.1.21 distribution cannot be used to create dumps from MySQL server versions 5.1.20
and older. This issue is fixed in MySQL 5.1.22. (Bug#30123)

mysqldump supports the following options:

Table 4.5. mysqldump Option Reference

Format Config File Description Introduc-
tion

--add-drop-database add-drop-database Add a DROP DATABASE statement before each CREATE
DATABASE statement

--add-drop-table add-drop-table Add a DROP TABLE statement before each CREATE TABLE
statement

--add-locks add-locks Surround each table dump with LOCK TABLES and UNLOCK
TABLES statements

MySQL Programs

219

http://bugs.mysql.com/30123


Format Config File Description Introduc-
tion

--all-databases all-databases Dump all tables in all databases

--allow-keywords allow-keywords Allow creation of column names that are keywords

--all-tablespaces all-tablespaces Adds to a table dump all SQL statements needed to create any ta-
blespaces used by an NDB Cluster table

5.1.6

--comments comments Add comments to the dump file

--compact compact Produce less verbose output

-
-compat-
ible=name[,name,...]

compatible Produce output that is more compatible with other database sys-
tems or with older MySQL servers

--complete-insert complete-insert Use complete INSERT statements that include column names

--create-options create-options Include all MySQL-specific table options in the CREATE TABLE
statements

--databases databases Dump several databases

--debug[=debug_options] debug Write a debugging log

--debug-check debug-check Print debugging information when the program exits 5.1.21

--debug-info debug-info Print debugging information, memory and CPU statistics when the
program exits

5.1.14

--delayed-insert delayed-insert Write INSERT DELAYED statements rather than INSERT state-
ments

--delete-master-logs delete-master-logs On a master replication server, delete the binary logs after per-
forming the dump operation

--disable-keys disable-keys For each table, surround the INSERT statements with disable and
enable keys statements

--dump-date dump-date Include dump date in "Dump completed on" comment if -
-comments is given

5.1.23

-E events Dump events from the dumped databases

--extended-insert extended-insert Use multiple-row INSERT syntax that include several VALUES
lists

-
-
fields-enclosed-by=string

fields-enclosed-by This option is used with the -T option and has the same meaning
as the corresponding clause for LOAD DATA INFILE

--fields-escaped-by fields-escaped-by This option is used with the -T option and has the same meaning
as the corresponding clause for LOAD DATA INFILE

-
-
fields-option-
ally-enclosed-by=string

fields-option-
ally-enclosed-by

This option is used with the -T option and has the same meaning
as the corresponding clause for LOAD DATA INFILE

-
-
fields-termin-
ated-by=string

fields-terminated-by This option is used with the -T option and has the same meaning
as the corresponding clause for LOAD DATA INFILE

--lock-all-tables first-slave Deprecated. Now renamed to --lock-all-tables

--flush-logs flush-logs Flush the MySQL server log files before starting the dump

--flush-privileges flush-privileges Emit a FLUSH PRIVILEGES statement after dumping the mysql
database

--help Display help message and exit

--hex-blob hex-blob Dump binary columns using hexadecimal notation (for example,
'abc' becomes 0x616263)

-
-ig-
nore-ta-

ignore-table Do not dump the given table

MySQL Programs

220



Format Config File Description Introduc-
tion

ble=db_name.tbl_name

--insert-ignore insert-ignore Write INSERT statements with the IGNORE option

-
-
lines-termin-
ated-by=string

lines-terminated-by This option is used with the -T option and has the same meaning
as the corresponding clause for LOAD DATA INFILE

--lock-all-tables lock-all-tables Lock all tables across all databases

--lock-tables lock-tables Lock all tables before dumping them

--log-error=file_name log-error Append warnings and errors to the named file 5.1.18

--master-data[=value] master-data Write the binary log filename and position to the output

-
-
max_allowed_packet=val
ue

max_allowed_packet The maximum packet length to send to or receive from the server

-
-net_buffer_length=value

net_buffer_length The buffer size for TCP/IP and socket communication

--no-autocommit no-autocommit Enclose the INSERT statements for each dumped table within SET
AUTOCOMMIT=0 and COMMIT statements

--no-create-db no-create-db This option suppresses the CREATE DATABASE statements

--no-create-info no-create-info Do not write CREATE TABLE statements that re-create each
dumped table

--no-data no-data Do not write any table row information (that is, do not dump table
contents)

--no-set-names no-set-names Turn off complete-insert

--opt opt This option is shorthand; it is the same as specifying -
-add-drop-table --add-locks --create-options --disable-keys -
-extended-insert --lock-tables --quick --set-charset.

--order-by-primary order-by-primary Sorts each table's rows by its primary key, or by its first unique in-
dex

--quick quick Retrieve rows for a table from the server a row at a time

--quote-names quote-names Quote database, table, and column names within backtick charac-
ters

--replace replace Write REPLACE statements rather than INSERT statements

--result-file=file result-file Direct output to a given file

-R routines Dump stored routines (functions and procedures) from the dumped
databases

--set-charset set-charset Add SET NAMES default_character_set to the output

--single-transaction single-transaction This option issues a BEGIN SQL statement before dumping data
from the server

--skip-add-drop-table skip-add-drop-table Do not add

--skip-add-locks skip-add-locks Do not add locks

--skip-comments skip-comments Do not add comments to the dump file

--skip-compact skip-compact Turn off compact

--skip-disable-keys skip-disable-keys Do not disable keys

--skip-extended-insert skip-extended-insert Turn off extended-insert

--skip-opt skip-opt Turn off the options set by opt

--skip-quick skip-quick Do not retrieve rows for a table from the server a row at a time

--skip-quote-names skip-quote-names Turn off quote names

-skip-charset skip-set-charset Suppress the SET NAMES statement

MySQL Programs

221



Format Config File Description Introduc-
tion

--skip-triggers skip-triggers Turn off triggers

--skip-tz-utc skip-tz-utc Turn off tz-utc

--ssl-ca=file_name ssl-ca The path to a file that contains a list of trusted SSL CAs

-
-
ssl-
capath=directory_name

ssl-capath The path to a directory that contains trusted SSL CA certificates in
PEM format

--ssl-cert=file_name ssl-cert The name of the SSL certificate file to use for establishing a se-
cure connection

--ssl-cipher=cipher_list ssl-cipher A list of allowable ciphers to use for SSL encryption

--ssl-key=file_name ssl-key The name of the SSL key file to use for establishing a secure con-
nection

--ssl-verify-server-cert ssl-verify-server-cert The server's Common Name value in its certificate is verified
against the hostname used when connecting to the server

--tab=path tab Produce tab-separated data files

--tables tables Override the --databases or -B option

--triggers triggers Dump triggers for each dumped table

--tz-utc tz-utc Add SET TIME_ZONE='+00:00' to the dump file

--verbose Verbose mode

--version Display version information and exit

-
-where='where_condition'

where Dump only rows selected by the given WHERE condition

--xml xml Produce XML output

• --help, -?

Display a help message and exit.

• --add-drop-database

Add a DROP DATABASE statement before each CREATE DATABASE statement.

• --add-drop-table

Add a DROP TABLE statement before each CREATE TABLE statement.

• --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results in faster inserts when the dump file
is reloaded. See Section 7.2.18, “Speed of INSERT Statements”.

• --all-databases, -A

Dump all tables in all databases. This is the same as using the --databases option and naming all the databases on the command
line.

• --all-tablespaces, -Y

Adds to a table dump all SQL statements needed to create any tablespaces used by an NDB Cluster table. This information is not
otherwise included in the output from mysqldump. This option is currently relevant only to MySQL Cluster tables.

This option was added in MySQL 5.1.6.

• --allow-keywords

MySQL Programs

222



Allow creation of column names that are keywords. This works by prefixing each column name with the table name.

• --character-sets-dir=path

The directory where character sets are installed. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --comments, -i

Write additional information in the dump file such as program version, server version, and host. This option is enabled by default.
To suppress this additional information, use --skip-comments.

• --compact

Produce less verbose output. This option enables the --skip-add-drop-table, --skip-add-locks, -
-skip-comments, --skip-disable-keys, and --skip-set-charset options.

Note

Prior to release 5.1.21, this option did not create valid SQL if the database dump contained views. The recreation of views
requires the creation and removal of temporary tables and this option suppressed the removal of those temporary tables. As
a workaround, use --compact with the --add-drop-table option and then manually adjust the dump file.

• --compatible=name

Produce output that is more compatible with other database systems or with older MySQL servers. The value of name can be ansi,
mysql323, mysql40, postgresql, oracle, mssql, db2, maxdb, no_key_options, no_table_options, or
no_field_options. To use several values, separate them by commas. These values have the same meaning as the correspond-
ing options for setting the server SQL mode. See Section 5.1.6, “SQL Modes”.

This option does not guarantee compatibility with other servers. It only enables those SQL mode values that are currently available
for making dump output more compatible. For example, --compatible=oracle does not map data types to Oracle types or use
Oracle comment syntax.

This option requires a server version of 4.1.0 or higher. With older servers, it does nothing.

• --complete-insert, -c

Use complete INSERT statements that include column names.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --create-options

Include all MySQL-specific table options in the CREATE TABLE statements.

• --databases, -B

Dump several databases. Normally, mysqldump treats the first name argument on the command line as a database name and fol-
lowing names as table names. With this option, it treats all name arguments as database names. CREATE DATABASE and USE
statements are included in the output before each new database.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string is often 'd:t:o,file_name'. The default value is
'd:t:o,/tmp/mysqldump.trace'.

• --debug-check

Print some debugging information when the program exits. This option was added in MySQL 5.1.21.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits. This option was added in MySQL

MySQL Programs

223



5.1.14.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 9.2, “The Character Set Used for Data and Sorting”. If no character
set is specified, mysqldump uses utf8, and earlier versions use latin1.

• --delayed-insert

Write INSERT DELAYED statements rather than INSERT statements.

• --delete-master-logs

On a master replication server, delete the binary logs after performing the dump operation. This option automatically enables -
-master-data.

• --disable-keys, -K

For each table, surround the INSERT statements with /*!40000 ALTER TABLE tbl_name DISABLE KEYS */; and /
*!40000 ALTER TABLE tbl_name ENABLE KEYS */; statements. This makes loading the dump file faster because the
indexes are created after all rows are inserted. This option is effective only for non-unique indexes of MyISAM tables.

• --dump-date

mysqldump produces a -- Dump completed on DATE comment at the end of the dump if the --comments option is giv-
en. However, the date causes dump files for identical data take at different times to appear to be different. --dump-date and -
-skip-dump-date control whether the date is added to the comment. The default is --dump-date (include the date in the
comment). --skip-dump-date suppresses date printing. This option was added in MySQL 5.1.23.

• --events, -E

Dump events from the dumped databases. This option was added in MySQL 5.1.8.

• --extended-insert, -e

Use multiple-row INSERT syntax that include several VALUES lists. This results in a smaller dump file and speeds up inserts when
the file is reloaded.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-enclosed-by=..., -
-fields-escaped-by=...

These options are used with the -T option and have the same meaning as the corresponding clauses for LOAD DATA INFILE. See
Section 12.2.5, “LOAD DATA INFILE Syntax”.

• --first-slave, -x

Deprecated. Now renamed to --lock-all-tables.

• --flush-logs, -F

Flush the MySQL server log files before starting the dump. This option requires the RELOAD privilege. Note that if you use this op-
tion in combination with the --all-databases (or -A) option, the logs are flushed for each database dumped. The exception is
when using --lock-all-tables or --master-data: In this case, the logs are flushed only once, corresponding to the mo-
ment that all tables are locked. If you want your dump and the log flush to happen at exactly the same moment, you should use -
-flush-logs together with either --lock-all-tables or --master-data.

• --flush-privileges

Emit a FLUSH PRIVILEGES statement after dumping the mysql database. This option should be used any time the dump con-
tains the mysql database and any other database that depends on the data in the mysql database for proper restoration. This option
was added in MySQL 5.1.12.

• --force, -f

Continue even if an SQL error occurs during a table dump.

MySQL Programs

224



One use for this option is to cause mysqldump to continue executing even when it encounters a view that has become invalid be-
cause the defintion refers to a table that has been dropped. Without --force, mysqldump exits with an error message. With -
-force, mysqldump prints the error message, but it also writes a SQL comment containing the view definition to the dump out-
put and continues executing.

• --host=host_name, -h host_name

Dump data from the MySQL server on the given host. The default host is localhost.

• --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The affected data types are BIN-
ARY, VARBINARY, BLOB, and BIT.

• --ignore-table=db_name.tbl_name

Do not dump the given table, which must be specified using both the database and table names. To ignore multiple tables, use this
option multiple times.

• --insert-ignore

Write INSERT statements with the IGNORE option.

• --lines-terminated-by=...

This option is used with the -T option and has the same meaning as the corresponding clause for LOAD DATA INFILE. See Sec-
tion 12.2.5, “LOAD DATA INFILE Syntax”.

• --lock-all-tables, -x

Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration of the whole dump. This option
automatically turns off --single-transaction and --lock-tables.

• --lock-tables, -l

Lock all tables before dumping them. The tables are locked with READ LOCAL to allow concurrent inserts in the case of MyISAM
tables. For transactional tables such as InnoDB and BDB, --single-transaction is a much better option, because it does not
need to lock the tables at all.

Please note that when dumping multiple databases, --lock-tables locks tables for each database separately. Therefore, this op-
tion does not guarantee that the tables in the dump file are logically consistent between databases. Tables in different databases may
be dumped in completely different states.

• --log-error=file_name

Append warnings and errors to the named file. This option was added in MySQL 5.1.18.

• --master-data[=value]

Write the binary log filename and position to the output. This option requires the RELOAD privilege and the binary log must be en-
abled. If the option value is equal to 1, the position and filename are written to the dump output in the form of a CHANGE MASTER
statement. If the dump is from a master server and you use it to set up a slave server, the CHANGE MASTER statement causes the
slave to start from the correct position in the master's binary logs. If the option value is equal to 2, the CHANGE MASTER statement
is written as an SQL comment. If the value is not specified, then the default value is 1.

The --master-data option automatically turns off --lock-tables. It also turns on --lock-all-tables, unless -
-single-transaction also is specified (in which case, a global read lock is acquired only for a short time at the beginning of
the dump. See also the description for --single-transaction. In all cases, any action on logs happens at the exact moment of
the dump.

• --no-autocommit

Enclose the INSERT statements for each dumped table within SET AUTOCOMMIT=0 and COMMIT statements.

• --no-create-db, -n

MySQL Programs

225



This option suppresses the CREATE DATABASE statements that are otherwise included in the output if the --databases or -
-all-databases option is given.

• --no-create-info, -t

Do not write CREATE TABLE statements that re-create each dumped table.

• --no-data, -d

Do not write any table row information (that is, do not dump table contents). This is very useful if you want to dump only the CRE-
ATE TABLE statement for the table.

• --opt

This option is shorthand; it is the same as specifying --add-drop-table --add-locks --create-options -
-disable-keys --extended-insert --lock-tables --quick --set-charset. It should give you a fast dump
operation and produce a dump file that can be reloaded into a MySQL server quickly.

The --opt option is enabled by default. Use --skip-opt to disable it. See the discussion at the beginning of this section for in-
formation about selectively enabling or disabling certain of the options affected by --opt.

• --order-by-primary

Sorts each table's rows by its primary key, or by its first unique index, if such an index exists. This is useful when dumping a My-
ISAM table to be loaded into an InnoDB table, but will make the dump itself take considerably longer.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the op-
tion and the password. If you omit the password value following the --password or -p option on the command line, you are
prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --quick, -q

This option is useful for dumping large tables. It forces mysqldump to retrieve rows for a table from the server a row at a time
rather than retrieving the entire row set and buffering it in memory before writing it out.

• --quote-names, -Q

Quote database, table, and column names within “`” characters. If the ANSI_QUOTES SQL mode is enabled, names are quoted
within “"” characters. This option is enabled by default. It can be disabled with --skip-quote-names, but this option should
be given after any option such as --compatible that may enable --quote-names.

• --replace

Write REPLACE statements rather than INSERT statements. Available as of MySQL 5.1.3.

• --result-file=file_name, -r file_name

Direct output to a given file. This option should be used on Windows to prevent newline “\n” characters from being converted to
“\r\n” carriage return/newline sequences. The result file is created and its contents overwritten, even if an error occurs while gen-
erating the dump. The previous contents are lost.

• --routines, -R

MySQL Programs

226



Dump stored routines (functions and procedures) from the dumped databases. Use of this option requires the SELECT privilege for
the mysql.proc table. The output generated by using --routines contains CREATE PROCEDURE and CREATE FUNCTION
statements to re-create the routines. However, these statements do not include attributes such as the routine creation and modifica-
tion timestamps. This means that when the routines are reloaded, they will be created with the timestamps equal to the reload time.

If you require routines to be re-created with their original timestamp attributes, do not use --routines. Instead, dump and reload
the contents of the mysql.proc table directly, using a MySQL account that has appropriate privileges for the mysql database.

This option was added in MySQL 5.1.2. Before that, stored routines are not dumped. Routine DEFINER values are not dumped un-
til MySQL 5.1.8. This means that before 5.1.8, when routines are reloaded, they will be created with the definer set to the reloading
user. If you require routines to be re-created with their original definer, dump and load the contents of the mysql.proc table dir-
ectly as described earlier.

• --set-charset

Add SET NAMES default_character_set to the output. This option is enabled by default. To suppress the SET NAMES
statement, use --skip-set-charset.

• --single-transaction

This option issues a BEGIN SQL statement before dumping data from the server. It is useful only with transactional tables such as
InnoDB, because then it dumps the consistent state of the database at the time when BEGIN was issued without blocking any ap-
plications.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent state. For example, any My-
ISAM or MEMORY tables dumped while using this option may still change state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table contents and binary log posi-
tion), no other connection should use the following statements: ALTER TABLE, DROP TABLE, RENAME TABLE, TRUNCATE
TABLE. A consistent read is not isolated from those statements, so use of them on a table to be dumped can cause the SELECT per-
formed by mysqldump to retrieve the table contents to obtain incorrect contents or fail.

This option is not supported for MySQL Cluster tables; the results cannot be guaranteed to be consistent due to the fact that the ND-
BCluster storage engine supports only the READ_COMMITTED transaction isolation level. You should always use NDB backup
and restore instead.

The --single-transaction option and the --lock-tables option are mutually exclusive, because LOCK TABLES
causes any pending transactions to be committed implicitly.

To dump large tables, you should combine this option with --quick.

• --skip-comments

See the description for the --comments option.

• --skip-opt

See the description for the --opt option.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where to find SSL keys and certific-
ates. See Section 5.5.7.3, “SSL Command Options”.

• --tab=path, -T path

Produce tab-separated data files. For each dumped table, mysqldump creates a tbl_name.sql file that contains the CREATE
TABLE statement that creates the table, and a tbl_name.txt file that contains its data. The option value is the directory in which
to write the files.

By default, the .txt data files are formatted using tab characters between column values and a newline at the end of each line. The

MySQL Programs

227



format can be specified explicitly using the --fields-xxx and --lines-terminated-by options.

Note

This option should be used only when mysqldump is run on the same machine as the mysqld server. You must have the
FILE privilege, and the server must have permission to write files in the directory that you specify.

• --tables

Override the --databases or -B option. mysqldump regards all name arguments following the option as table names.

• --triggers

Dump triggers for each dumped table. This option is enabled by default; disable it with --skip-triggers.

• --tz-utc

This option enables TIMESTAMP columns to be dumped and reloaded between servers in different time zones. mysqldump sets its
connection time zone to UTC and adds SET TIME_ZONE='+00:00' to the dump file. Without this option, TIMESTAMP
columns are dumped and reloaded in the time zones local to the source and destination servers, which can cause the values to
change. --tz-utc also protects against changes due to daylight saving time. --tz-utc is enabled by default. To disable it, use -
-skip-tz-utc. This option was added in MySQL 5.1.2.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

• --where='where_condition', -w 'where_condition'

Dump only rows selected by the given WHERE condition. Quotes around the condition are mandatory if it contains spaces or other
characters that are special to your command interpreter.

Examples:

--where="user='jimf'"
-w"userid>1"
-w"userid<1"

• --xml, -X

Write dump output as well-formed XML.

NULL, 'NULL', and Empty Values: For some column named column_name, the NULL value, an empty string, and the string
value 'NULL' are distinguished from one another in the output generated by this option as follows:

Value: XML Representation:

NULL (unknown value) <field name="column_name" xsi:nil="true" />

'' (empty string) <field name="column_name"></field>

'NULL' (string value) <field name="column_name">NULL</field>

Beginning with MySQL 5.1.12, the output from the mysql client when run using the --xml option also follows these rules. (See
Section 4.5.1.1, “mysql Options”.)

Beginning with MySQL 5.1.18, XML output from mysqldump includes the XML namespace, as shown here:

shell> mysqldump --xml -u root world City

MySQL Programs

228



<?xml version="1.0"?>
<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<database name="world">
<table_structure name="City">
<field Field="ID" Type="int(11)" Null="NO" Key="PRI" Extra="auto_increment" />
<field Field="Name" Type="char(35)" Null="NO" Key="" Default="" Extra="" />
<field Field="CountryCode" Type="char(3)" Null="NO" Key="" Default="" Extra="" />
<field Field="District" Type="char(20)" Null="NO" Key="" Default="" Extra="" />
<field Field="Population" Type="int(11)" Null="NO" Key="" Default="0" Extra="" />
<key Table="City" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="ID" Collation="A" Cardinality="4079"
Null="" Index_type="BTREE" Comment="" />
<options Name="City" Engine="MyISAM" Version="10" Row_format="Fixed" Rows="4079" Avg_row_length="67" Data_length="27329
3" Max_data_length="18858823439613951" Index_length="43008" Data_free="0" Auto_increment="4080" Create_time="2007-03-31 01:47:01" Updat
e_time="2007-03-31 01:47:02" Collation="latin1_swedish_ci" Create_options="" Comment="" />
</table_structure>
<table_data name="City">
<row>
<field name="ID">1</field>
<field name="Name">Kabul</field>
<field name="CountryCode">AFG</field>
<field name="District">Kabol</field>
<field name="Population">1780000</field>
</row>

...

<row>
<field name="ID">4079</field>
<field name="Name">Rafah</field>
<field name="CountryCode">PSE</field>
<field name="District">Rafah</field>
<field name="Population">92020</field>
</row>
</table_data>
</database>
</mysqldump>

You can also set the following variables by using --var_name=value syntax:

• max_allowed_packet

The maximum size of the buffer for client/server communication. The maximum is 1GB.

• net_buffer_length

The initial size of the buffer for client/server communication. When creating multiple-row-insert statements (as with option -
-extended-insert or --opt), mysqldump creates rows up to net_buffer_length length. If you increase this variable,
you should also ensure that the net_buffer_length variable in the MySQL server is at least this large.

It is also possible to set variables by using --set-variable=var_name=value or -O var_name=value syntax. This syntax
is deprecated.

The most common use of mysqldump is probably for making a backup of an entire database:

shell> mysqldump db_name > backup-file.sql

You can read the dump file back into the server like this:

shell> mysql db_name < backup-file.sql

Or like this:

shell> mysql -e "source /path-to-backup/backup-file.sql" db_name

mysqldump is also very useful for populating databases by copying data from one MySQL server to another:

shell> mysqldump --opt db_name | mysql --host=remote_host -C db_name

It is possible to dump several databases with one command:

MySQL Programs

229



shell> mysqldump --databases db_name1 [db_name2 ...] > my_databases.sql

To dump all databases, use the --all-databases option:

shell> mysqldump --all-databases > all_databases.sql

For InnoDB tables, mysqldump provides a way of making an online backup:

shell> mysqldump --all-databases --single-transaction > all_databases.sql

This backup just needs to acquire a global read lock on all tables (using FLUSH TABLES WITH READ LOCK) at the beginning of the
dump. As soon as this lock has been acquired, the binary log coordinates are read and the lock is released. If and only if one long updat-
ing statement is running when the FLUSH statement is issued, the MySQL server may get stalled until that long statement finishes, and
then the dump becomes lock-free. If the update statements that the MySQL server receives are short (in terms of execution time), the
initial lock period should not be noticeable, even with many updates.

For point-in-time recovery (also known as “roll-forward,” when you need to restore an old backup and replay the changes that happened
since that backup), it is often useful to rotate the binary log (see Section 5.2.4, “The Binary Log”) or at least know the binary log co-
ordinates to which the dump corresponds:

shell> mysqldump --all-databases --master-data=2 > all_databases.sql

Or:

shell> mysqldump --all-databases --flush-logs --master-data=2
> all_databases.sql

The --master-data and --single-transaction options can be used simultaneously, which provides a convenient way to
make an online backup suitable for point-in-time recovery if tables are stored using the InnoDB storage engine.

For more information on making backups, see Section 6.1, “Database Backups”, and Section 6.2, “Example Backup and Recovery
Strategy”.

If you encounter problems backing up views, please read the section that covers restrictions on views which describes a workaround for
backing up views when this fails due to insufficient privileges. See Section D.4, “Restrictions on Views”.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about mysqldump in the Knowledge Base article,
How Can I Avoid Inserting Duplicate Rows From a Dump File?. Access to the MySQL Knowledge Base collec-
tion of articles is one of the advantages of subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

4.5.5. mysqlimport — A Data Import Program
The mysqlimport client provides a command-line interface to the LOAD DATA INFILE SQL statement. Most options to
mysqlimport correspond directly to clauses of LOAD DATA INFILE syntax. See Section 12.2.5, “LOAD DATA INFILE
Syntax”.

Invoke mysqlimport like this:

shell> mysqlimport [options] db_name textfile1 [textfile2 ...]

For each text file named on the command line, mysqlimport strips any extension from the filename and uses the result to determine
the name of the table into which to import the file's contents. For example, files named patient.txt, patient.text, and pa-
tient all would be imported into a table named patient.

mysqlimport supports the following options:

Table 4.6. mysqlimport Option Reference

MySQL Programs

230

https://kb.mysql.com/view.php?id=5285
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


Format Config File Description Introduc-
tion

--columns=column_list columns This option takes a comma-separated list of column names as its
value

--compress compress Compress all information sent between the client and the server

--debug[=debug_options] debug Write a debugging log

--debug-check debug-check Print debugging information when the program exits 5.1.21

--debug-info debug-info Print debugging information, memory and CPU statistics when the
program exits

5.1.14

-
-de-
fault-charac-
ter-set=charset_name

default-character-set Use charset_name as the default character set

--delete delete Empty the table before importing the text file

-
-
fields-enclosed-by=string

fields-enclosed-by This option has the same meaning as the corresponding clause for
LOAD DATA INFILE

--fields-escaped-by fields-escaped-by This option has the same meaning as the corresponding clause for
LOAD DATA INFILE

-
-
fields-option-
ally-enclosed-by=string

fields-option-
ally-enclosed-by

This option has the same meaning as the corresponding clause for
LOAD DATA INFILE

-
-
fields-termin-
ated-by=string

fields-terminated-by -- This option has the same meaning as the corresponding clause
for LOAD DATA INFILE

--force force Continue even if an SQL error occurs

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--ignore ignore See the description for the --replace option

--ignore-lines=# ignore-lines Ignore the first N lines of the data file

-
-
lines-termin-
ated-by=string

lines-terminated-by This option has the same meaning as the corresponding clause for
LOAD DATA INFILE

--local local Read input files locally from the client host

--lock-tables lock-tables Lock all tables for writing before processing any text files

--low-priority low-priority Use LOW_PRIORITY when loading the table.

--password[=password] password The password to use when connecting to the server

--port=port_num port The TCP/IP port number to use for the connection

-
-pro-
tocol={TCP|SOCKET|PI
PE|MEMORY}

protocol The connection protocol to use

--replace replace The --replace and --ignore options control handling of input rows
that duplicate existing rows on unique key values

--silent silent Produce output only when errors occur

--socket=path socket For connections to localhost

--ssl-ca=file_name ssl-ca The path to a file that contains a list of trusted SSL CAs

-
-
ssl-

ssl-capath The path to a directory that contains trusted SSL CA certificates in
PEM format

MySQL Programs

231



Format Config File Description Introduc-
tion

capath=directory_name

--ssl-cert=file_name ssl-cert The name of the SSL certificate file to use for establishing a se-
cure connection

--ssl-cipher=cipher_list ssl-cipher A list of allowable ciphers to use for SSL encryption

--ssl-key=file_name ssl-key The name of the SSL key file to use for establishing a secure con-
nection

--ssl-verify-server-cert ssl-verify-server-cert The server's Common Name value in its certificate is verified
against the hostname used when connecting to the server

--user=user_name, user The MySQL username to use when connecting to the server

--use-threads=# use-threads The number of threads for parallel file-loading 5.1.7

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --character-sets-dir=path

The directory where character sets are installed. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --columns=column_list, -c column_list

This option takes a comma-separated list of column names as its value. The order of the column names indicates how to match data
file columns with table columns.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --debug-check

Print some debugging information when the program exits. This option was added in MySQL 5.1.21.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits. This option was added in MySQL
5.1.14.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --delete, -D

Empty the table before importing the text file.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-enclosed-by=..., -
-fields-escaped-by=...

These options have the same meaning as the corresponding clauses for LOAD DATA INFILE. See Section 12.2.5, “LOAD DATA
INFILE Syntax”.

• --force, -f

MySQL Programs

232



Ignore errors. For example, if a table for a text file does not exist, continue processing any remaining files. Without --force,
mysqlimport exits if a table does not exist.

• --host=host_name, -h host_name

Import data to the MySQL server on the given host. The default host is localhost.

• --ignore, -i

See the description for the --replace option.

• --ignore-lines=N

Ignore the first N lines of the data file.

• --lines-terminated-by=...

This option has the same meaning as the corresponding clause for LOAD DATA INFILE. For example, to import Windows files
that have lines terminated with carriage return/linefeed pairs, use --lines-terminated-by="\r\n". (You might have to
double the backslashes, depending on the escaping conventions of your command interpreter.) See Section 12.2.5, “LOAD DATA
INFILE Syntax”.

• --local, -L

Read input files locally from the client host.

MySQL Enterprise
For expert advice on the security implications of enabling LOCAL, subscribe to the MySQL Enterprise Monitor.
For more information see http://www.mysql.com/products/enterprise/advisors.html.

• --lock-tables, -l

Lock all tables for writing before processing any text files. This ensures that all tables are synchronized on the server.

• --low-priority

Use LOW_PRIORITY when loading the table. This affects only storage engines that use only table-level locking (MyISAM,
MEMORY, MERGE).

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the op-
tion and the password. If you omit the password value following the --password or -p option on the command line, you are
prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --replace, -r

The --replace and --ignore options control handling of input rows that duplicate existing rows on unique key values. If you
specify --replace, new rows replace existing rows that have the same unique key value. If you specify --ignore, input rows
that duplicate an existing row on a unique key value are skipped. If you do not specify either option, an error occurs when a duplic-
ate key value is found, and the rest of the text file is ignored.

• --silent, -s

Silent mode. Produce output only when errors occur.

MySQL Programs

233

http://www.mysql.com/products/enterprise/advisors.html


• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where to find SSL keys and certific-
ates. See Section 5.5.7.3, “SSL Command Options”.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --use-threads=N

Load files in parallel using N threads. This option was added in MySQL 5.1.7.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

Here is a sample session that demonstrates use of mysqlimport:

shell> mysql -e 'CREATE TABLE imptest(id INT, n VARCHAR(30))' test
shell> ed
a
100 Max Sydow
101 Count Dracula
.
w imptest.txt
32
q
shell> od -c imptest.txt
0000000 1 0 0 \t M a x S y d o w \n 1 0
0000020 1 \t C o u n t D r a c u l a \n
0000040
shell> mysqlimport --local test imptest.txt
test.imptest: Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
shell> mysql -e 'SELECT * FROM imptest' test
+------+---------------+
| id | n |
+------+---------------+
| 100 | Max Sydow |
| 101 | Count Dracula |
+------+---------------+

4.5.6. mysqlshow — Display Database, Table, and Column Information
The mysqlshow client can be used to quickly see which databases exist, their tables, or a table's columns or indexes.

mysqlshow provides a command-line interface to several SQL SHOW statements. See Section 12.5.4, “SHOW Syntax”. The same in-
formation can be obtained by using those statements directly. For example, you can issue them from the mysql client program.

Invoke mysqlshow like this:

shell> mysqlshow [options] [db_name [tbl_name [col_name]]]

• If no database is given, a list of database names is shown.

• If no table is given, all matching tables in the database are shown.

• If no column is given, all matching columns and column types in the table are shown.

The output displays only the names of those databases, tables, or columns for which you have some privileges.

MySQL Programs

234



If the last argument contains shell or SQL wildcard characters (“*”, “?”, “%”, or “_”), only those names that are matched by the wild-
card are shown. If a database name contains any underscores, those should be escaped with a backslash (some Unix shells require two)
to get a list of the proper tables or columns. “*” and “?” characters are converted into SQL “%” and “_” wildcard characters. This might
cause some confusion when you try to display the columns for a table with a “_” in the name, because in this case, mysqlshow shows
you only the table names that match the pattern. This is easily fixed by adding an extra “%” last on the command line as a separate argu-
ment.

mysqlshow supports the following options:

Table 4.7. mysqlimport Option Reference

Format Config File Description Introduc-
tion

--columns=column_list columns This option takes a comma-separated list of column names as its
value

--compress compress Compress all information sent between the client and the server

--debug[=debug_options] debug Write a debugging log

--debug-check debug-check Print debugging information when the program exits 5.1.21

--debug-info debug-info Print debugging information, memory and CPU statistics when the
program exits

5.1.14

-
-de-
fault-charac-
ter-set=charset_name

default-character-set Use charset_name as the default character set

--delete delete Empty the table before importing the text file

-
-
fields-enclosed-by=string

fields-enclosed-by This option has the same meaning as the corresponding clause for
LOAD DATA INFILE

--fields-escaped-by fields-escaped-by This option has the same meaning as the corresponding clause for
LOAD DATA INFILE

-
-
fields-option-
ally-enclosed-by=string

fields-option-
ally-enclosed-by

This option has the same meaning as the corresponding clause for
LOAD DATA INFILE

-
-
fields-termin-
ated-by=string

fields-terminated-by -- This option has the same meaning as the corresponding clause
for LOAD DATA INFILE

--force force Continue even if an SQL error occurs

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--ignore ignore See the description for the --replace option

--ignore-lines=# ignore-lines Ignore the first N lines of the data file

-
-
lines-termin-
ated-by=string

lines-terminated-by This option has the same meaning as the corresponding clause for
LOAD DATA INFILE

--local local Read input files locally from the client host

--lock-tables lock-tables Lock all tables for writing before processing any text files

--low-priority low-priority Use LOW_PRIORITY when loading the table.

--password[=password] password The password to use when connecting to the server

--port=port_num port The TCP/IP port number to use for the connection

-
-pro-

protocol The connection protocol to use

MySQL Programs

235



Format Config File Description Introduc-
tion

tocol={TCP|SOCKET|PI
PE|MEMORY}

--replace replace The --replace and --ignore options control handling of input rows
that duplicate existing rows on unique key values

--silent silent Produce output only when errors occur

--socket=path socket For connections to localhost

--ssl-ca=file_name ssl-ca The path to a file that contains a list of trusted SSL CAs

-
-
ssl-
capath=directory_name

ssl-capath The path to a directory that contains trusted SSL CA certificates in
PEM format

--ssl-cert=file_name ssl-cert The name of the SSL certificate file to use for establishing a se-
cure connection

--ssl-cipher=cipher_list ssl-cipher A list of allowable ciphers to use for SSL encryption

--ssl-key=file_name ssl-key The name of the SSL key file to use for establishing a secure con-
nection

--ssl-verify-server-cert ssl-verify-server-cert The server's Common Name value in its certificate is verified
against the hostname used when connecting to the server

--user=user_name, user The MySQL username to use when connecting to the server

--use-threads=# use-threads The number of threads for parallel file-loading 5.1.7

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --character-sets-dir=path

The directory where character sets are installed. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --count

Show the number of rows per table. This can be slow for non-MyISAM tables.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --debug-check

Print some debugging information when the program exits. This option was added in MySQL 5.1.21.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits. This option was added in MySQL
5.1.14.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 9.2, “The Character Set Used for Data and Sorting”.

MySQL Programs

236



• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --keys, -k

Show table indexes.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the op-
tion and the password. If you omit the password value following the --password or -p option on the command line, you are
prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --show-table-type, -t

Show a column indicating the table type, as in SHOW FULL TABLES. The type is BASE TABLE or VIEW.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where to find SSL keys and certific-
ates. See Section 5.5.7.3, “SSL Command Options”.

• --status, -i

Display extra information about each table.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used multiple times to increase the amount
of information.

• --version, -V

Display version information and exit.

4.5.7. mysqlslap — Load Emulation Client
mysqlslap is a diagnostic program designed to emulate client load for a MySQL server and to report the timing of each stage. It
works as if multiple clients are accessing the server. mysqlslap is available as of MySQL 5.1.4.

Invoke mysqlslap like this:

shell> mysqlslap [options]

MySQL Programs

237



Some options such as --create or --query enable you to specify a string containing an SQL statement or a file containing state-
ments. If you specify a file, by default it must contain one statement per line. (That is, the implicit statement delimiter is the newline
character.) Use the --delimiter option to specify a different delimiter, which enables you to specify statements that span multiple
lines or place multiple statements on a single line. You cannot include comments in a file; mysqlslap does not understand them.

mysqlslap supports the following options:

Table 4.8. mysqlslap Option Reference

Format Config File Description Introduc-
tion

--auto-generate-sql auto-generate-sql Generate SQL statements automatically when they are not sup-
plied in files or via command options

-
-
auto-gener-
ate-
sql-add-auto-increment

auto-gener-
ate-
sql-add-auto-increment

Add AUTO_INCREMENT column to automatically generated
tables

5.1.18

-
-
auto-gener-
ate-
sql-execute-number=#

auto-gener-
ate-sql-execute-number

Specify how many queries to generate automatically 5.1.18

-
-
auto-gener-
ate-sql-guid-primary

auto-gener-
ate-sql-guid-primary

Add a GUID-based primary key to automatically generated tables 5.1.18

-
-
auto-gener-
ate-sql-load-type=type

auto-gener-
ate-sql-load-type

Specify how many queries to generate automatically 5.1.16

-
-
auto-gener-
ate-
sql-secondary-indexes=#

auto-gener-
ate-sql-secondary-indexes

Specify how many secondary indexes to add to automatically gen-
erated tables

5.1.18

-
-
auto-gener-
ate-
sql-
unique-query-number=#

auto-gener-
ate-
sql-unique-query-number

How many different queries to generate for automatic tests. 5.1.18

-
-
auto-gener-
ate-
sql-
unique-write-number=#

auto-gener-
ate-
sql-unique-write-number

How many different queries to generate for -
-auto-generate-sql-write-number

5.1.18

-
-
auto-gener-
ate-sql-write-number=#

auto-gener-
ate-sql-write-number

How many row inserts to perform on each thread 5.1.16

--commit=# commit How many statements to execute before committing. 5.1.21

--compress compress Compress all information sent between the client and the server

--concurrency=# concurrency The number of clients to simulate when issuing the SELECT state-
ment

--create=value create The file or string containing the statement to use for creating the
table

MySQL Programs

238



Format Config File Description Introduc-
tion

--create-schema=value create-schema The schema in which to run the tests 5.1.5

--csv=[file] csv Generate output in comma-separated values format

--debug[=debug_options] debug Write a debugging log

--debug-check debug-check Print debugging information when the program exits 5.1.21

--debug-info debug-info Print debugging information, memory and CPU statistics when the
program exits

5.1.21

--delimiter=str delimiter The delimiter to use in SQL statements

--detach=# detach Detach (close and reopen) each connection after each N statements 5.1.21

--engine=engine_name engine The storage engine to use for creating the table

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--iterations=# iterations The number of times to run the tests

--lock-directory=path lock-directory The directory to use for storing locks 5.1.5

--number-char-cols=# number-char-cols The number of VARCHAR columns to use if --auto-generate-sql
is specified

--number-int-cols=# number-int-cols The number of INT columns to use if --auto-generate-sql is spe-
cified

--number-of-queries=# number-of-queries Limit each client to approximately this number of queries 5.1.5

--only-print only-print Do not connect to databases. mysqlslap only prints what it would
have done

5.1.5

--password[=password] password The password to use when connecting to the server

--port=port_num port The TCP/IP port number to use for the connection

--post-query=value post-query The file or string containing the statement to execute after the tests
have completed

5.1.18

--post-system=str post-system The string to execute via system() after the tests have completed 5.1.21

--pre-query=value pre-query The file or string containing the statement to execute before run-
ning the tests

5.1.18

--preserve-schema preserve-schema Preserve the schema from the mysqlslap run 5.1.5

--pre-system=str pre-system The string to execute via system()> before running the tests 5.1.21

-
-pro-
tocol={TCP|SOCKET|PI
PE|MEMORY}

protocol The connection protocol to use

--silent silent Silent mode

--slave slave Follow master locks for other mysqlslap clients 5.1.5

--socket=path socket For connections to localhost

--ssl-ca=file_name ssl-ca The path to a file that contains a list of trusted SSL CAs

-
-
ssl-
capath=directory_name

ssl-capath The path to a directory that contains trusted SSL CA certificates in
PEM format

--ssl-cert=file_name ssl-cert The name of the SSL certificate file to use for establishing a se-
cure connection

--ssl-cipher=cipher_list ssl-cipher A list of allowable ciphers to use for SSL encryption

--ssl-key=file_name ssl-key The name of the SSL key file to use for establishing a secure con-
nection

--ssl-verify-server-cert ssl-verify-server-cert The server's Common Name value in its certificate is verified
against the hostname used when connecting to the server

MySQL Programs

239



Format Config File Description Introduc-
tion

--user=user_name, user The MySQL username to use when connecting to the server

--use-threads use-threads On Unix, the default is to use fork() calls 5.1.6

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --auto-generate-sql, -a

Generate SQL statements automatically when they are not supplied in files or via command options.

• --auto-generate-sql-add-autoincrement

Add an AUTO_INCREMENT column to automatically generated tables. This option was added in MySQL 5.1.18.

• --auto-generate-sql-execute-number=N

Specify how many queries to generate automatically. This option was added in MySQL 5.1.18.

• --auto-generate-sql-guid-primary

Add a GUID-based primary key to automatically generated tables. This option was added in MySQL 5.1.18.

• --auto-generate-sql-load-type=type

Specify the test load type. The allowable values are read (scan tables), write (insert into tables), key (read primary keys), up-
date (update primary keys), or mixed (half inserts, half scanning selects). The default is mixed. This option was added in
MySQL 5.1.16.

• --auto-generate-sql-secondary-indexes=N

Specify how many secondary indexes to add to automatically generated tables. By default, none are added. This option was added in
MySQL 5.1.18.

• --auto-generate-sql-unique-query-number=N

How many different queries to generate for automatic tests. For example, if you run a key test that performs 1000 selects, you can
use this option with a value of 1000 to run 1000 unique queries, or with a value of 50 to perform 50 different selects. The default is
10. This option was added in MySQL 5.1.18.

• --auto-generate-sql-unique-write-number=N

How many different queries to generate for --auto-generate-sql-write-number. The default is 10. This option was ad-
ded in MySQL 5.1.18.

• --auto-generate-sql-write-number=N

How many row inserts to perform on each thread. The default is 100. This option was added in MySQL 5.1.16.

• --commit=N

How many statements to execute before committing. The default is 0 (no commits are done). This option was added in MySQL
5.1.21.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --concurrency=N, -c N

MySQL Programs

240



The number of clients to simulate when issuing the SELECT statement.

• --create=value

The file or string containing the statement to use for creating the table.

• --create-schema=value

The schema in which to run the tests. This option was added in MySQL 5.1.5.

• --csv[=file_name]

Generate output in comma-separated values format. The output goes to the named file, or to the standard output if no file is given.
This option was added in MySQL 5.1.5.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --debug-check

Print some debugging information when the program exits. This option was added in MySQL 5.1.21.

• --debug-info, -T

Print debugging information and memory and CPU usage statistics when the program exits. This option was added in MySQL
5.1.21.

• --delimiter=str, -F str

The delimiter to use in SQL statements supplied in files or via command options.

• --detach=N

Detach (close and reopen) each connection after each N statements. The default is 0 (connections are not detached). This option was
added in MySQL 5.1.21.

• --engine=engine_name, -e engine_name

The storage engine to use for creating tables.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --iterations=N, -i N

The number of times to run the tests.

• --lock-directory=path

The directory to use for storing locks. This option was added in MySQL 5.1.5 and removed in 5.1.18.

• --number-char-cols=N, -x N

The number of VARCHAR columns to use if --auto-generate-sql is specified.

• --number-int-cols=N, -y N

The number of INT columns to use if --auto-generate-sql is specified.

• --number-of-queries=N

Limit each client to approximately this number of queries. This option was added in MySQL 5.1.5.

• --only-print

MySQL Programs

241



Do not connect to databases. mysqlslap only prints what it would have done. This option was added in MySQL 5.1.5.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the op-
tion and the password. If you omit the password value following the --password or -p option on the command line, you are
prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --post-query=value

The file or string containing the statement to execute after the tests have completed. This execution is not counted for timing pur-
poses. This option was added in MySQL 5.1.18.

• --post-system=str

The string to execute via system() after the tests have completed. This execution is not counted for timing purposes. This option
was added in MySQL 5.1.21.

• --pre-query=value

The file or string containing the statement to execute before running the tests. This execution is not counted for timing purposes.
This option was added in MySQL 5.1.18.

• --pre-system=str

The string to execute via system() before running the tests. This execution is not counted for timing purposes. This option was
added in MySQL 5.1.21.

• --preserve-schema

Preserve the schema from the mysqlslap run. The --auto-generate-sql and --create options disable this option. This
option was added in MySQL 5.1.5.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --query=value, -q value

The file or string containing the SELECT statement to use for retrieving data.

• --silent, -s

Silent mode. No output.

• --slave

Follow master locks for other mysqlslap clients. Use this option if you are trying to synchronize around one master server with -
-lock-directory plus NFS. This option was added in MySQL 5.1.5 and removed in 5.1.18.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where to find SSL keys and certific-
ates. See Section 5.5.7.3, “SSL Command Options”.

• --use-threads

MySQL Programs

242



On Unix, the default is to use fork() calls and this option causes pthread calls to be used instead. (On Windows, the default is
to use pthread calls and the option has no effect.) This option was added in MySQL 5.1.6 and removed in 5.1.18.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used multiple times to increase the amount
of information.

• --version, -V

Display version information and exit.

4.6. MySQL Administrative and Utility Programs

4.6.1. innochecksum — Offline InnoDB File Checksum Utility
innochecksum prints checksums for InnoDB files.

Invoke innochecksum like this:

shell> innochecksum [options] file_name

innochecksum understands the options described in the following list. For options that refer to page numbers, the numbers are zero-
based.

• -c

Print a count of the number of pages in the file.

• -d

Debug mode; prints checksums for each page.

• -e num

End at this page number.

• -p num

Check only this page number.

• -s num

Start at this page number.

• -v

Verbose mode; print a progress indicator every five seconds.

4.6.2. myisam_ftdump — Display Full-Text Index information
myisam_ftdump displays information about FULLTEXT indexes in MyISAM tables. It reads the MyISAM index file directly, so it
must be run on the server host where the table is located

Invoke myisam_ftdump like this:

shell> myisam_ftdump [options] tbl_name index_num

MySQL Programs

243



The tbl_name argument should be the name of a MyISAM table. You can also specify a table by naming its index file (the file with
the .MYI suffix). If you do not invoke myisam_ftdump in the directory where the table files are located, the table or index file name
must be preceded by the pathname to the table's database directory. Index numbers begin with 0.

Example: Suppose that the test database contains a table named mytexttablel that has the following definition:

CREATE TABLE mytexttable
(
id INT NOT NULL,
txt TEXT NOT NULL,
PRIMARY KEY (id),
FULLTEXT (txt)

);

The index on id is index 0 and the FULLTEXT index on txt is index 1. If your working directory is the test database directory, in-
voke myisam_ftdump as follows:

shell> myisam_ftdump mytexttable 1

If the pathname to the test database directory is /usr/local/mysql/data/test, you can also specify the table name argument
using that pathname. This is useful if you do not invoke myisam_ftdump in the database directory:

shell> myisam_ftdump /usr/local/mysql/data/test/mytexttable 1

myisam_ftdump understands the following options:

• --help, -h -?

Display a help message and exit.

• --count, -c

Calculate per-word statistics (counts and global weights).

• --dump, -d

Dump the index, including data offsets and word weights.

• --length, -l

Report the length distribution.

• --stats, -s

Report global index statistics. This is the default operation if no other operation is specified.

• --verbose, -v

Verbose mode. Print more output about what the program does.

4.6.3. myisamchk — MyISAM Table-Maintenance Utility
The myisamchk utility gets information about your database tables or checks, repairs, or optimizes them. myisamchk works with
MyISAM tables (tables that have .MYD and .MYI files for storing data and indexes).

Caution

It is best to make a backup of a table before performing a table repair operation; under some circumstances the operation
might cause data loss. Possible causes include but are not limited to filesystem errors.

Invoke myisamchk like this:

shell> myisamchk [options] tbl_name ...

MySQL Programs

244



The options specify what you want myisamchk to do. They are described in the following sections. You can also get a list of op-
tions by invoking myisamchk --help.

With no options, myisamchk simply checks your table as the default operation. To get more information or to tell myisamchk to
take corrective action, specify options as described in the following discussion.

tbl_name is the database table you want to check or repair. If you run myisamchk somewhere other than in the database directory,
you must specify the path to the database directory, because myisamchk has no idea where the database is located. In fact, myis-
amchk doesn't actually care whether the files you are working on are located in a database directory. You can copy the files that corres-
pond to a database table into some other location and perform recovery operations on them there.

You can name several tables on the myisamchk command line if you wish. You can also specify a table by naming its index file (the
file with the .MYI suffix). This allows you to specify all tables in a directory by using the pattern *.MYI. For example, if you are in a
database directory, you can check all the MyISAM tables in that directory like this:

shell> myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to the directory:

shell> myisamchk /path/to/database_dir/*.MYI

You can even check all tables in all databases by specifying a wildcard with the path to the MySQL data directory:

shell> myisamchk /path/to/datadir/*/*.MYI

The recommended way to quickly check all MyISAM tables is:

shell> myisamchk --silent --fast /path/to/datadir/*/*.MYI

If you want to check all MyISAM tables and repair any that are corrupted, you can use the following command:

shell> myisamchk --silent --force --fast --update-state \
--key_buffer_size=64M --sort_buffer_size=64M \
--read_buffer_size=1M --write_buffer_size=1M \
/path/to/datadir/*/*.MYI

This command assumes that you have more than 64MB free. For more information about memory allocation with myisamchk, see
Section 4.6.3.5, “myisamchk Memory Usage”.

MySQL Enterprise
For expert advice on checking and repairing tables, subscribe to the MySQL Enterprise Monitor. For more in-
formation see http://www.mysql.com/products/enterprise/advisors.html.

Important

You must ensure that no other program is using the tables while you are running myisamchk. The most effective means
of doing so is to shut down the MySQL server while running myisamchk, or to lock all tables that myisamchk is being
used on.

Otherwise, when you run myisamchk, it may display the following error message:

warning: clients are using or haven't closed the table properly

This means that you are trying to check a table that has been updated by another program (such as the mysqld server)
that hasn't yet closed the file or that has died without closing the file properly, which can sometimes lead to the corruption
of one or more MyISAM tables.

If mysqld is running, you must force it to flush any table modifications that are still buffered in memory by using FLUSH
TABLES. You should then ensure that no one is using the tables while you are running myisamchk

However, the easiest way to avoid this problem is to use CHECK TABLE instead of myisamchk to check tables. See
Section 12.5.2.3, “CHECK TABLE Syntax”.

A complete listing of all the myisamchk options follows.

MySQL Programs

245

http://www.mysql.com/products/enterprise/advisors.html


Table 4.9. myisamchk Option Reference

Format Config File Description Introduc-
tion

--analyze analyze Analyze the distribution of key values

--backup backup Make a backup of the .MYD file as file_name-time.BAK

--block-search=offset block-search Find the record that a block at the given offset belongs to

--check check Check the table for errors

--check-only-changed check-only-changed Check only tables that have changed since the last check

--correct-checksum correct-checksum Correct the checksum information for the table

--data-file-length=len data-file-length Maximum length of the data file (when re-creating data file when
it is full)

--debug[=debug_options] debug Write a debugging log

decode_bits=# decode_bits Decode_bits

-
-de-
fault-charac-
ter-set=charset_name

default-character-set Use charset_name as the default character set

--description description Print some descriptive information about the table

--extend-check extend-check Do a repair that tries to recover every possible row from the data
file

--extended-check extended-check Check the table very thoroughly

--fast fast Check only tables that haven't been closed properly

--force force Do a repair operation automatically if myisamchk finds any errors
in the table

--force force-recover Overwrite old temporary files. For use with the -r or -o option

ft_max_word_len=# ft_max_word_len Maximum word length for FULLTEXT indexes

ft_min_word_len=# ft_min_word_len Minimum word length for FULLTEXT indexes

ft_stopword_file=value ft_stopword_file Use stopwords from this file instead of built-in list

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--information information Print informational statistics about the table that is checked

key_buffer_size=# key_buffer_size The size of the buffer used for index blocks for MyISAM tables

--keys-used=val keys-used A bit-value that indicates which indexes to update

--max-record-length=len max-record-length Skip rows larger than the given length if myisamchk cannot alloc-
ate memory to hold them

--medium-check medium-check Do a check that is faster than an --extend-check operation

myisam_block_size=# myisam_block_size Block size to be used for MyISAM index pages

--parallel-recover parallel-recover Uses the same technique as -r and -n, but creates all the keys in
parallel, using different threads (beta)

--password[=password] password The password to use when connecting to the server

--port=port_num port The TCP/IP port number to use for the connection

-
-pro-
tocol={TCP|SOCKET|PI
PE|MEMORY}

protocol The connection protocol to use

--quick quick Achieve a faster repair by not modifying the data file.

read_buffer_size=# read_buffer_size Each thread that does a sequential scan allocates a buffer of this
size for each table it scans

MySQL Programs

246



Format Config File Description Introduc-
tion

--read-only read-only Don't mark the table as checked

--recover recover Do a repair that can fix almost any problem except unique keys
that aren't unique

--safe-recover safe-recover Do a repair using an old recovery method that reads through all
rows in order and updates all index trees based on the rows found

-
-
set-
auto-increment[=value]

set-auto-increment Force AUTO_INCREMENT numbering for new records to start at
the given value

--set-collation=name set-collation Specify the collation to use for sorting table indexes

--silent silent Silent mode

--socket=path socket For connections to localhost

sort_buffer_size=# sort_buffer_size The buffer that is allocated when sorting the index when doing a
REPAIR or when creating indexes with CREATE INDEX or AL-
TER TABLE

--sort-index sort-index Sort the index tree blocks in high-low order

sort_key_blocks=# sort_key_blocks sort_key_blocks

--sort-records=# sort-records Sort records according to a particular index

--sort-recover sort-recover Force myisamchk to use sorting to resolve the keys even if the
temporary files would be very large

stats_method=value stats_method Specifies how MyISAM index statistics collection code should
treat NULLs

--tmpdir=path tmpdir Path of the directory to be used for storing temporary files

--unpack unpack Unpack a table that was packed with myisampack

--update-state update-state Store information in the .MYI file to indicate when the table was
checked and whether the table crashed

--user=user_name, user The MySQL username to use when connecting to the server

--verbose Verbose mode

--version Display version information and exit

write_buffer_size=# write_buffer_size Write buffer size

4.6.3.1. myisamchk General Options

The options described in this section can be used for any type of table maintenance operation performed by myisamchk. The sections
following this one describe options that pertain only to specific operations, such as table checking or repairing.

• --help, -?

Display a help message and exit.

• --debug=debug_options, -# debug_options

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --silent, -s

Silent mode. Write output only when errors occur. You can use -s twice (-ss) to make myisamchk very silent.

• --verbose, -v

Verbose mode. Print more information about what the program does. This can be used with -d and -e. Use -v multiple times
(-vv, -vvv) for even more output.

MySQL Programs

247



• --version, -V

Display version information and exit.

• --wait, -w

Instead of terminating with an error if the table is locked, wait until the table is unlocked before continuing. If you are running
mysqld with external locking disabled, the table can be locked only by another myisamchk command.

You can also set the following variables by using --var_name=value syntax:

Variable Default Value

decode_bits 9

ft_max_word_len version-dependent

ft_min_word_len 4

ft_stopword_file built-in list

key_buffer_size 523264

myisam_block_size 1024

read_buffer_size 262136

sort_buffer_size 2097144

sort_key_blocks 16

stats_method nulls_unequal

write_buffer_size 262136

It is also possible to set variables by using --set-variable=var_name=value or -O var_name=value syntax. However,
this syntax is deprecated as of MySQL 4.0.

The possible myisamchk variables and their default values can be examined with myisamchk --help:

sort_buffer_size is used when the keys are repaired by sorting keys, which is the normal case when you use --recover.

key_buffer_size is used when you are checking the table with --extend-check or when the keys are repaired by inserting
keys row by row into the table (like when doing normal inserts). Repairing through the key buffer is used in the following cases:

• You use --safe-recover.

• The temporary files needed to sort the keys would be more than twice as big as when creating the key file directly. This is often the
case when you have large key values for CHAR, VARCHAR, or TEXT columns, because the sort operation needs to store the com-
plete key values as it proceeds. If you have lots of temporary space and you can force myisamchk to repair by sorting, you can use
the --sort-recover option.

Repairing through the key buffer takes much less disk space than using sorting, but is also much slower.

If you want a faster repair, set the key_buffer_size and sort_buffer_size variables to about 25% of your available memory.
You can set both variables to large values, because only one of them is used at a time.

myisam_block_size is the size used for index blocks.

stats_method influences how NULL values are treated for index statistics collection when the --analyze option is given. It acts
like the myisam_stats_method system variable. For more information, see the description of myisam_stats_method in Sec-
tion 5.1.3, “System Variables”, and Section 7.4.7, “MyISAM Index Statistics Collection”. For MySQL 5.1, stats_method was added
in MySQL 5.0.14. For older versions, the statistics collection method is equivalent to nulls_equal.

The ft_min_word_len and ft_max_word_len variables are available as of MySQL 4.0.0. ft_stopword_file is available
as of MySQL 4.0.19.

ft_min_word_len and ft_max_word_len indicate the minimum and maximum word length for FULLTEXT indexes.

MySQL Programs

248



ft_stopword_file names the stopword file. These need to be set under the following circumstances.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze), the FULLTEXT indexes are re-
built using the default full-text parameter values for minimum and maximum word length and the stopword file unless you specify oth-
erwise. This can result in queries failing.

The problem occurs because these parameters are known only by the server. They are not stored in MyISAM index files. To avoid the
problem if you have modified the minimum or maximum word length or the stopword file in the server, specify the same
ft_min_word_len, ft_max_word_len, and ft_stopword_file values to myisamchk that you use for mysqld. For ex-
ample, if you have set the minimum word length to 3, you can repair a table with myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, you can place each one in both the [mysqld]
and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE TABLE, or ALTER TABLE.
These statements are performed by the server, which knows the proper full-text parameter values to use.

4.6.3.2. myisamchk Check Options

myisamchk supports the following options for table checking operations:

• --check, -c

Check the table for errors. This is the default operation if you specify no option that selects an operation type explicitly.

• --check-only-changed, -C

Check only tables that have changed since the last check.

• --extend-check, -e

Check the table very thoroughly. This is quite slow if the table has many indexes. This option should only be used in extreme cases.
Normally, myisamchk or myisamchk --medium-check should be able to determine whether there are any errors in the ta-
ble.

If you are using --extend-check and have plenty of memory, setting the key_buffer_size variable to a large value helps
the repair operation run faster.

• --fast, -F

Check only tables that haven't been closed properly.

• --force, -f

Do a repair operation automatically if myisamchk finds any errors in the table. The repair type is the same as that specified with
the --recover or -r option.

• --information, -i

Print informational statistics about the table that is checked.

• --medium-check, -m

Do a check that is faster than an --extend-check operation. This finds only 99.99% of all errors, which should be good enough
in most cases.

• --read-only, -T

MySQL Programs

249



Don't mark the table as checked. This is useful if you use myisamchk to check a table that is in use by some other application that
doesn't use locking, such as mysqld when run with external locking disabled.

• --update-state, -U

Store information in the .MYI file to indicate when the table was checked and whether the table crashed. This should be used to get
full benefit of the --check-only-changed option, but you shouldn't use this option if the mysqld server is using the table and
you are running it with external locking disabled.

4.6.3.3. myisamchk Repair Options

myisamchk supports the following options for table repair operations:

• --backup, -B

Make a backup of the .MYD file as file_name-time.BAK

• --character-sets-dir=path

The directory where character sets are installed. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --correct-checksum

Correct the checksum information for the table.

• --data-file-length=len, -D len

Maximum length of the data file (when re-creating data file when it is “full”).

• --extend-check, -e

Do a repair that tries to recover every possible row from the data file. Normally, this also finds a lot of garbage rows. Don't use this
option unless you are desperate.

• --force, -f

Overwrite old intermediate files (files with names like tbl_name.TMD) instead of aborting.

• --keys-used=val, -k val

For myisamchk, the option value is a bit-value that indicates which indexes to update. Each binary bit of the option value corres-
ponds to a table index, where the first index is bit 0. An option value of 0 disables updates to all indexes, which can be used to get
faster inserts. Deactivated indexes can be reactivated by using myisamchk -r.

• --no-symlinks, -l

Do not follow symbolic links. Normally myisamchk repairs the table that a symlink points to. This option does not exist as of
MySQL 4.0 because versions from 4.0 on do not remove symlinks during repair operations.

• --max-record-length=len

Skip rows larger than the given length if myisamchk cannot allocate memory to hold them.

• --parallel-recover, -p

Uses the same technique as -r and -n, but creates all the keys in parallel, using different threads. This is beta-quality code. Use at
your own risk!

• --quick, -q

Achieve a faster repair by not modifying the data file. You can specify this option twice to force myisamchk to modify the original
data file in case of duplicate keys.

MySQL Programs

250



• --recover, -r

Do a repair that can fix almost any problem except unique keys that aren't unique (which is an extremely unlikely error with MyIS-
AM tables). If you want to recover a table, this is the option to try first. You should try --safe-recover only if myisamchk re-
ports that the table can't be recovered using --recover. (In the unlikely case that --recover fails, the data file remains intact.)

If you have lots of memory, you should increase the value of sort_buffer_size.

• --safe-recover, -o

Do a repair using an old recovery method that reads through all rows in order and updates all index trees based on the rows found.
This is an order of magnitude slower than --recover, but can handle a couple of very unlikely cases that --recover cannot.
This recovery method also uses much less disk space than --recover. Normally, you should repair first with --recover, and
then with --safe-recover only if --recover fails.

If you have lots of memory, you should increase the value of key_buffer_size.

• --set-character-set=name

Change the character set used by the table indexes. This option was replaced by --set-collation in MySQL 5.0.3.

• --set-collation=name

Specify the collation to use for sorting table indexes. The character set name is implied by the first part of the collation name.

• --sort-recover, -n

Force myisamchk to use sorting to resolve the keys even if the temporary files would be very large.

• --tmpdir=path, -t path

Path of the directory to be used for storing temporary files. If this is not set, myisamchk uses the value of the TMPDIR environ-
ment variable. tmpdir can be set to a list of directory paths that are used successively in round-robin fashion for creating tempor-
ary files. The separator character between directory names is the colon (“:”) on Unix and the semicolon (“;”) on Windows, Net-
Ware, and OS/2.

• --unpack, -u

Unpack a table that was packed with myisampack.

4.6.3.4. Other myisamchk Options

myisamchk supports the following options for actions other than table checks and repairs:

• --analyze, -a

Analyze the distribution of key values. This improves join performance by enabling the join optimizer to better choose the order in
which to join the tables and which indexes it should use. To obtain information about the key distribution, use a myisamchk -
-description --verbose tbl_name command or the SHOW INDEX FROM tbl_name statement.

MySQL Enterprise
For expert advice on optimizing tables, subscribe to the MySQL Enterprise Monitor. For more information see
http://www.mysql.com/products/enterprise/advisors.html.

• --block-search=offset, -b offset

Find the record that a block at the given offset belongs to.

• --description, -d

Print some descriptive information about the table.

• --set-auto-increment[=value], -A[value]

MySQL Programs

251

http://www.mysql.com/products/enterprise/advisors.html


Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if there are existing records with
AUTO_INCREMENT values this large). If value is not specified, AUTO_INCREMENT numbers for new records begin with the
largest value currently in the table, plus one.

• --sort-index, -S

Sort the index tree blocks in high-low order. This optimizes seeks and makes table scans that use indexes faster.

• --sort-records=N, -R N

Sort records according to a particular index. This makes your data much more localized and may speed up range-based SELECT and
ORDER BY operations that use this index. (The first time you use this option to sort a table, it may be very slow.) To determine a ta-
ble's index numbers, use SHOW INDEX, which displays a table's indexes in the same order that myisamchk sees them. Indexes are
numbered beginning with 1.

If keys are not packed (PACK_KEYS=0), they have the same length, so when myisamchk sorts and moves records, it just over-
writes record offsets in the index. If keys are packed (PACK_KEYS=1), myisamchk must unpack key blocks first, then re-create
indexes and pack the key blocks again. (In this case, re-creating indexes is faster than updating offsets for each index.)

4.6.3.5. myisamchk Memory Usage

Memory allocation is important when you run myisamchk. myisamchk uses no more memory than its memory-related variables are
set to. If you are going to use myisamchk on very large tables, you should first decide how much memory you want it to use. The de-
fault is to use only about 3MB to perform repairs. By using larger values, you can get myisamchk to operate faster. For example, if
you have more than 32MB RAM, you could use options such as these (in addition to any other options you might specify):

shell> myisamchk --sort_buffer_size=16M --key_buffer_size=16M \
--read_buffer_size=1M --write_buffer_size=1M ...

Using --sort_buffer_size=16M should probably be enough for most cases.

Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory filesystem, you may easily get out of
memory errors. If this happens, run myisamchk with the --tmpdir=path option to specify some directory located on a filesystem
that has more space.

When repairing, myisamchk also needs a lot of disk space:

• Double the size of the data file (the original file and a copy). This space is not needed if you do a repair with --quick; in this case,
only the index file is re-created. This space is needed on the same filesystem as the original data file! (The copy is created in the
same directory as the original.)

• Space for the new index file that replaces the old one. The old index file is truncated at the start of the repair operation, so you usu-
ally ignore this space. This space is needed on the same filesystem as the original index file!

• When using --recover or --sort-recover (but not when using --safe-recover), you need space for a sort buffer. The
following formula yields the amount of space required:

(largest_key + row_pointer_length) × number_of_rows × 2

You can check the length of the keys and the row_pointer_length with myisamchk -dv tbl_name. This space is alloc-
ated in the temporary directory (specified by TMPDIR or --tmpdir=path).

If you have a problem with disk space during repair, you can try --safe-recover instead of --recover.

4.6.4. myisamlog — Display MyISAM Log File Contents
myisamlog processes the contents of a MyISAM log file.

Invoke myisamlog like this:

shell> myisamlog [options] [log_file [tbl_name] ...]

MySQL Programs

252



shell> isamlog [options] [log_file [tbl_name] ...]

The default operation is update (-u). If a recovery is done (-r), all writes and possibly updates and deletes are done and errors are only
counted. The default log file name is myisam.log for myisamlog and isam.log for isamlog if no log_file argument is giv-
en, If tables are named on the command line, only those tables are updated.

myisamlog understands the following options:

• -?, -I

Display a help message and exit.

• -c N

Execute only N commands.

• -f N

Specify the maximum number of open files.

• -i

Display extra information before exiting.

• -o offset

Specify the starting offset.

• -p N

Remove N components from path.

• -r

Perform a recovery operation.

• -R record_pos_file record_pos

Specify record position file and record position.

• -u

Perform an update operation.

• -v

Verbose mode. Print more output about what the program does. This option can be given multiple times to produce more and more
output.

• -w write_file

Specify the write file.

• -V

Display version information.

4.6.5. myisampack — Generate Compressed, Read-Only MyISAM Tables
The myisampack utility compresses MyISAM tables. myisampack works by compressing each column in the table separately. Usu-
ally, myisampack packs the data file 40%-70%.

When the table is used later, the server reads into memory the information needed to decompress columns. This results in much better
performance when accessing individual rows, because you only have to uncompress exactly one row.

MySQL Programs

253



MySQL uses mmap() when possible to perform memory mapping on compressed tables. If mmap() does not work, MySQL falls back
to normal read/write file operations.

Please note the following:

• If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke myisampack if the table might
be updated by the server during the packing process. It is safest to compress tables with the server stopped.

• After packing a table, it becomes read only. This is generally intended (such as when accessing packed tables on a CD). Allowing
writes to a packed table is on our TODO list, but with low priority.

Invoke myisampack like this:

shell> myisampack [options] file_name ...

Each filename argument should be the name of an index (.MYI) file. If you are not in the database directory, you should specify the
pathname to the file. It is permissible to omit the .MYI extension.

After you compress a table with myisampack, you should use myisamchk -rq to rebuild its indexes. Section 4.6.3, “myisamchk
— MyISAM Table-Maintenance Utility”.

myisampack supports the following options:

• --help, -?

Display a help message and exit.

• --backup, -b

Make a backup of each table's data file using the name tbl_name.OLD.

• --character-sets-dir=path

The directory where character sets are installed. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --force, -f

Produce a packed table even if it becomes larger than the original or if the intermediate file from an earlier invocation of myisam-
pack exists. (myisampack creates an intermediate file named tbl_name.TMD in the database directory while it compresses the
table. If you kill myisampack, the .TMD file might not be deleted.) Normally, myisampack exits with an error if it finds that
tbl_name.TMD exists. With --force, myisampack packs the table anyway.

• --join=big_tbl_name, -j big_tbl_name

Join all tables named on the command line into a single table big_tbl_name. All tables that are to be combined must have
identical structure (same column names and types, same indexes, and so forth).

• --silent, -s

Silent mode. Write output only when errors occur.

• --test, -t

Do not actually pack the table, just test packing it.

• --tmpdir=path, -T path

Use the named directory as the location where myisampack creates temporary files.

MySQL Programs

254



• --verbose, -v

Verbose mode. Write information about the progress of the packing operation and its result.

• --version, -V

Display version information and exit.

• --wait, -w

Wait and retry if the table is in use. If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke
myisampack if the table might be updated by the server during the packing process.

The following sequence of commands illustrates a typical table compression session:

shell> ls -l station.*
-rw-rw-r-- 1 monty my 994128 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 53248 Apr 17 19:00 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-02-02 3:06:43
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 2
Max datafile length: 54657023 Max keyfile length: 33554431
Recordlength: 834
Record format: Fixed length

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 1024 1024 1
2 32 30 multip. text 10240 1024 1

Field Start Length Type
1 1 1
2 2 4
3 6 4
4 10 1
5 11 20
6 31 1
7 32 30
8 62 35
9 97 35
10 132 35
11 167 4
12 171 16
13 187 35
14 222 4
15 226 16
16 242 20
17 262 20
18 282 20
19 302 30
20 332 4
21 336 4
22 340 1
23 341 8
24 349 8
25 357 8
26 365 2
27 367 2
28 369 4
29 373 4
30 377 1
31 378 2
32 380 8
33 388 4
34 392 4
35 396 4
36 400 4
37 404 1
38 405 4
39 409 4
40 413 4
41 417 4
42 421 4
43 425 4
44 429 20

MySQL Programs

255



45 449 30
46 479 1
47 480 1
48 481 79
49 560 79
50 639 79
51 718 79
52 797 8
53 805 1
54 806 1
55 807 20
56 827 4
57 831 4

shell> myisampack station.MYI
Compressing station.MYI: (1192 records)
- Calculating statistics

normal: 20 empty-space: 16 empty-zero: 12 empty-fill: 11
pre-space: 0 end-space: 12 table-lookups: 5 zero: 7
Original trees: 57 After join: 17
- Compressing file
87.14%
Remember to run myisamchk -rq on compressed tables

shell> ls -l station.*
-rw-rw-r-- 1 monty my 127874 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 55296 Apr 17 19:04 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-04-17 19:04:26
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 1
Max datafile length: 16777215 Max keyfile length: 131071
Recordlength: 834
Record format: Compressed

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 10240 1024 1
2 32 30 multip. text 54272 1024 1

Field Start Length Type Huff tree Bits
1 1 1 constant 1 0
2 2 4 zerofill(1) 2 9
3 6 4 no zeros, zerofill(1) 2 9
4 10 1 3 9
5 11 20 table-lookup 4 0
6 31 1 3 9
7 32 30 no endspace, not_always 5 9
8 62 35 no endspace, not_always, no empty 6 9
9 97 35 no empty 7 9
10 132 35 no endspace, not_always, no empty 6 9
11 167 4 zerofill(1) 2 9
12 171 16 no endspace, not_always, no empty 5 9
13 187 35 no endspace, not_always, no empty 6 9
14 222 4 zerofill(1) 2 9
15 226 16 no endspace, not_always, no empty 5 9
16 242 20 no endspace, not_always 8 9
17 262 20 no endspace, no empty 8 9
18 282 20 no endspace, no empty 5 9
19 302 30 no endspace, no empty 6 9
20 332 4 always zero 2 9
21 336 4 always zero 2 9
22 340 1 3 9
23 341 8 table-lookup 9 0
24 349 8 table-lookup 10 0
25 357 8 always zero 2 9
26 365 2 2 9
27 367 2 no zeros, zerofill(1) 2 9
28 369 4 no zeros, zerofill(1) 2 9
29 373 4 table-lookup 11 0
30 377 1 3 9
31 378 2 no zeros, zerofill(1) 2 9
32 380 8 no zeros 2 9
33 388 4 always zero 2 9
34 392 4 table-lookup 12 0
35 396 4 no zeros, zerofill(1) 13 9
36 400 4 no zeros, zerofill(1) 2 9
37 404 1 2 9
38 405 4 no zeros 2 9
39 409 4 always zero 2 9
40 413 4 no zeros 2 9
41 417 4 always zero 2 9
42 421 4 no zeros 2 9

MySQL Programs

256



43 425 4 always zero 2 9
44 429 20 no empty 3 9
45 449 30 no empty 3 9
46 479 1 14 4
47 480 1 14 4
48 481 79 no endspace, no empty 15 9
49 560 79 no empty 2 9
50 639 79 no empty 2 9
51 718 79 no endspace 16 9
52 797 8 no empty 2 9
53 805 1 17 1
54 806 1 3 9
55 807 20 no empty 3 9
56 827 4 no zeros, zerofill(2) 2 9
57 831 4 no zeros, zerofill(1) 2 9

myisampack displays the following kinds of information:

• normal

The number of columns for which no extra packing is used.

• empty-space

The number of columns containing values that are only spaces. These occupy one bit.

• empty-zero

The number of columns containing values that are only binary zeros. These occupy one bit.

• empty-fill

The number of integer columns that do not occupy the full byte range of their type. These are changed to a smaller type. For ex-
ample, a BIGINT column (eight bytes) can be stored as a TINYINT column (one byte) if all its values are in the range from -128
to 127.

• pre-space

The number of decimal columns that are stored with leading spaces. In this case, each value contains a count for the number of lead-
ing spaces.

• end-space

The number of columns that have a lot of trailing spaces. In this case, each value contains a count for the number of trailing spaces.

• table-lookup

The column had only a small number of different values, which were converted to an ENUM before Huffman compression.

• zero

The number of columns for which all values are zero.

• Original trees

The initial number of Huffman trees.

• After join

The number of distinct Huffman trees left after joining trees to save some header space.

After a table has been compressed, myisamchk -dvv prints additional information about each column:

• Type

The data type. The value may contain any of the following descriptors:

• constant

MySQL Programs

257



All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

After you run myisampack, you must run myisamchk to re-create any indexes. At this time, you can also sort the index blocks and
create statistics needed for the MySQL optimizer to work more efficiently:

shell> myisamchk -rq --sort-index --analyze tbl_name.MYI

After you have installed the packed table into the MySQL database directory, you should execute mysqladmin flush-tables to
force mysqld to start using the new table.

To unpack a packed table, use the --unpack option to myisamchk.

4.6.6. mysqlaccess — Client for Checking Access Privileges
mysqlaccess is a diagnostic tool that Yves Carlier has provided for the MySQL distribution. It checks the access privileges for a
hostname, username, and database combination. Note that mysqlaccess checks access using only the user, db, and host tables. It
does not check table, column, or routine privileges specified in the tables_priv, columns_priv, or procs_priv tables.

Invoke mysqlaccess like this:

shell> mysqlaccess [host_name [user_name [db_name]]] [options]

mysqlaccess understands the following options:

Table 4.10. mysqlaccess Option Reference

MySQL Programs

258



Format Config File Description Introduc-
tion

--brief brief Generate reports in single-line tabular format

--commit commit Copy the new access privileges from the temporary tables to the
original grant tables

--copy copy Reload the temporary grant tables from original ones

--db=db_name db Specify the database name

--debug=# debug Specify the debug level

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--howto howto Display some examples that show how to use mysqlaccess

--old_server old_server Assume that the server is an old MySQL server (prior to MySQL
3.21)

--password[=password] password The password to use when connecting to the server

--plan plan Display suggestions and ideas for future releases

--preview preview Show the privilege differences after making changes to the tem-
porary grant tables

--relnotes relnotes Display the release notes

--rhost=host_name rhost Connect to the MySQL server on the given host

--rollback rollback Undo the most recent changes to the temporary grant tables.

--spassword[=password] spassword The password to use when connecting to the server as the super-
user

--superuser=user_name superuser Specify the username for connecting as the superuser

--table table Generate reports in table format

--user=user_name, user The MySQL username to use when connecting

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --brief, -b

Generate reports in single-line tabular format.

• --commit

Copy the new access privileges from the temporary tables to the original grant tables. The grant tables must be flushed for the new
privileges to take effect. (For example, execute a mysqladmin reload command.)

• --copy

Reload the temporary grant tables from original ones.

• --db=db_name, -d db_name

Specify the database name.

• --debug=N

Specify the debug level. N can be an integer from 0 to 3.

• --host=host_name, -h host_name

The hostname to use in the access privileges.

MySQL Programs

259



• --howto

Display some examples that show how to use mysqlaccess.

• --old_server

Assume that the server is an old MySQL server (before MySQL 3.21) that does not yet know how to handle full WHERE clauses.

• --password[=password], -p[password]

The password to use when connecting to the server. If you omit the password value following the --password or -p option on
the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --plan

Display suggestions and ideas for future releases.

• --preview

Show the privilege differences after making changes to the temporary grant tables.

• --relnotes

Display the release notes.

• --rhost=host_name, -H host_name

Connect to the MySQL server on the given host.

• --rollback

Undo the most recent changes to the temporary grant tables.

• --spassword[=password], -P[password]

The password to use when connecting to the server as the superuser. If you omit the password value following the --password
or -p option on the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --superuser=user_name, -U user_name

Specify the username for connecting as the superuser.

• --table, -t

Generate reports in table format.

• --user=user_name, -u user_name

The username to use in the access privileges.

• --version, -v

Display version information and exit.

If your MySQL distribution is installed in some non-standard location, you must change the location where mysqlaccess expects to
find the mysql client. Edit the mysqlaccess script at approximately line 18. Search for a line that looks like this:

$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you do not do this, a Broken pipe error
will occur when you run mysqlaccess.

MySQL Programs

260



4.6.7. mysqlbinlog — Utility for Processing Binary Log Files
The binary log files that the server generates are written in binary format. To examine these files in text format, use the mysqlbinlog
utility. You can also use mysqlbinlog to read relay log files written by a slave server in a replication setup. Relay logs have the same
format as binary log files.

Invoke mysqlbinlog like this:

shell> mysqlbinlog [options] log_file ...

For example, to display the contents of the binary log file named binlog.000003, use this command:

shell> mysqlbinlog binlog.0000003

The output includes all events contained in binlog.000003. Event information includes the statement executed, the time the state-
ment took, the thread ID of the client that issued it, the timestamp when it was executed, and so forth.

The output from mysqlbinlog can be re-executed (for example, by using it as input to mysql) to reapply the statements in the log.
This is useful for recovery operations after a server crash. For other usage examples, see the discussion later in this section.

Normally, you use mysqlbinlog to read binary log files directly and apply them to the local MySQL server. It is also possible to read
binary logs from a remote server by using the --read-from-remote-server option. When you read remote binary logs, the con-
nection parameter options can be given to indicate how to connect to the server. These options are --host, --password, --port,
--protocol, --socket, and --user; they are ignored except when you also use the --read-from-remote-server option.

Binary logs and relay logs are discussed further in Section 5.2.4, “The Binary Log”, and Section 16.4.2, “Replication Relay and Status
Files”.

mysqlbinlog supports the following options:

Table 4.11. mysqlbinlog Option Reference

Format Config File Description Introduc-
tion

--base64-output base64-output Print all binary log entries using base64 encoding 5.1.5

--character-sets-dir=path character-sets-dir The directory where character sets are installed

--database=db_name database List entries for just this database

--debug[=debug_options] debug Write a debugging log

--debug-check debug-check Print debugging information when the program exits 5.1.21

--debug-info debug-info Print debugging information, memory and CPU statistics when the
program exits

5.1.21

--disable-log-bin disable-log-bin Disable binary logging

--force-read force-read If mysqlbinlog reads a binary log event that it does not recognize,
it prints a warning

--help Display help message and exit

-H hexdump Display a hex dump of the log in comments 5.1.2

--host=host_name host Connect to the MySQL server on the given host

--local-load=path local-load Prepare local temporary files for LOAD DATA INFILE in the
specified directory

--offset=# offset Skip the first N entries in the log

--password[=password] password The password to use when connecting to the server

--port=port_num port The TCP/IP port number to use for the connection

-
-pro-
tocol={TCP|SOCKET|PI
PE|MEMORY}

protocol The connection protocol to use

- read-from-remote-server Read the binary log from a MySQL server rather than reading a

MySQL Programs

261



Format Config File Description Introduc-
tion

-read-from-remote-server local log file

--result-file=name result-file Direct output to the given file

--server-id=id server-id Extract only those events created by the server having the given
server ID

5.1.4

-
-
set-charset=charset_name

set-charset Add a SET NAMES charset_name statement to the output 5.1.12

--short-form short-form Display only the statements contained in the log

--socket=path socket For connections to localhost

--start-datetime=datetime start-datetime Start reading the binary log at the first event having a timestamp
equal to or later than the datetime argument

--start-position=# start-position Start reading the binary log at the first event having a position
equal to the N argument

--stop-datetime=datetime stop-datetime Stop reading the binary log at the first event having a timestamp
equal or posterior to the datetime argument

--stop-position=# stop-position Stop reading the binary log at the first event having a position
equal or greater than the N argument

--to-last-log to-last-log Do not stop at the end of the requested binary log from a MySQL
server, but rather continue printing until the end of the last binary
log

--user=user_name, user The MySQL username to use when connecting to the server

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --base64-output

Print all binary log entries using base64 encoding. This is for debugging only. Logs produced using this option should not be applied
on production systems. This option was added in MySQL 5.1.5.

• --character-sets-dir=path

The directory where character sets are installed. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --database=db_name, -d db_name

List entries for just this database (local log only). You can only specify one database with this option - if you specify multiple -
-database options, only the last one is used. This option forces mysqlbinlog to output entries from the binary log where the
default database (that is, the one selected by USE) is db_name. Note that this does not replicate cross-database statements such as
UPDATE some_db.some_table SET foo='bar' while having selected a different database or no database.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is often 'd:t:o,file_name'.

• --debug-check

Print some debugging information when the program exits. This option was added in MySQL 5.1.21.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits. This option was added in MySQL
5.1.21.

MySQL Programs

262



• --disable-log-bin, -D

Disable binary logging. This is useful for avoiding an endless loop if you use the --to-last-log option and are sending the out-
put to the same MySQL server. This option also is useful when restoring after a crash to avoid duplication of the statements you
have logged.

This option requires that you have the SUPER privilege. It causes mysqlbinlog to include a SET SQL_LOG_BIN=0 statement
in its output to disable binary logging of the remaining output. The SET statement is ineffective unless you have the SUPER priv-
ilege.

• --force-read, -f

With this option, if mysqlbinlog reads a binary log event that it does not recognize, it prints a warning, ignores the event, and
continues. Without this option, mysqlbinlog stops if it reads such an event.

• --hexdump, -H

Display a hex dump of the log in comments. This output can be helpful for replication debugging. Hex dump format is discussed
later in this section. This option was added in MySQL 5.1.2.

• --host=host_name, -h host_name

Get the binary log from the MySQL server on the given host.

• --local-load=path, -l path

Prepare local temporary files for LOAD DATA INFILE in the specified directory.

• --offset=N, -o N

Skip the first N entries in the log.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the op-
tion and the password. If you omit the password value following the --password or -p option on the command line, you are
prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for connecting to a remote server.

• --position=N, -j N

Deprecated. Use --start-position instead.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --read-from-remote-server, -R

Read the binary log from a MySQL server rather than reading a local log file. Any connection parameter options are ignored unless
this option is given as well. These options are --host, --password, --port, --protocol, --socket, and --user.

• --result-file=name, -r name

Direct output to the given file.

• --server-id=id

Extract only those events created by the server having the given server ID. This option is available as of MySQL 5.1.4.

• --set-charset=charset_name

MySQL Programs

263



Add a SET NAMES charset_name statement to the output to specify the character set to be used for processing log files. This
option was added in MySQL 5.1.12.

• --short-form, -s

Display only the statements contained in the log, without any extra information.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

• --start-datetime=datetime

Start reading the binary log at the first event having a timestamp equal to or later than the datetime argument. The datetime
value is relative to the local time zone on the machine where you run mysqlbinlog. The value should be in a format accepted for
the DATETIME or TIMESTAMP data types. For example:

shell> mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003

This option is useful for point-in-time recovery. See Section 6.2, “Example Backup and Recovery Strategy”.

• --stop-datetime=datetime

Stop reading the binary log at the first event having a timestamp equal or posterior to the datetime argument. This option is use-
ful for point-in-time recovery. See the description of the --start-datetime option for information about the datetime
value.

• --start-position=N

Start reading the binary log at the first event having a position equal to the N argument. This option applies to the first log file named
on the command line.

• --stop-position=N

Stop reading the binary log at the first event having a position equal or greater than the N argument. This option applies to the last
log file named on the command line.

• --to-last-log, -t

Do not stop at the end of the requested binary log from a MySQL server, but rather continue printing until the end of the last binary
log. If you send the output to the same MySQL server, this may lead to an endless loop. This option requires -
-read-from-remote-server.

• --user=user_name, -u user_name

The MySQL username to use when connecting to a remote server.

• --version, -V

Display version information and exit.

• --write-binlog

This option is enabled by default, so that ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements generated by
mysqlcheck are written to the binary log. Use --skip-write-binlog to cause NO_WRITE_TO_BINLOG to be added to the
statements so that they are not logged. Use the --skip-write-binlog when these statements should not be sent to replication
slaves or run when using the binary logs for recovery from backup. This option was added in MySQL 5.1.18.

You can also set the following variable by using --var_name=value syntax:

• open_files_limit

Specify the number of open file descriptors to reserve.

MySQL Programs

264



It is also possible to set variables by using --set-variable=var_name=value or -O var_name=value syntax. This syntax
is deprecated.

You can pipe the output of mysqlbinlog into the mysql client to execute the statements contained in the binary log. This is used to
recover from a crash when you have an old backup (see Section 6.1, “Database Backups”). For example:

shell> mysqlbinlog binlog.000001 | mysql

Or:

shell> mysqlbinlog binlog.[0-9]* | mysql

You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the statement log first (for example, to
remove statements that you do not want to execute for some reason). After editing the file, execute the statements that it contains by us-
ing it as input to the mysql program.

mysqlbinlog has the --start-position option, which prints only those statements with an offset in the binary log greater than
or equal to a given position (the given position must match the start of one event). It also has options to stop and start when it sees an
event with a given date and time. This enables you to perform point-in-time recovery using the --stop-datetime option (to be able
to say, for example, “roll forward my databases to how they were today at 10:30 a.m.”).

If you have more than one binary log to execute on the MySQL server, the safe method is to process them all using a single connection
to the server. Here is an example that demonstrates what may be unsafe:

shell> mysqlbinlog binlog.000001 | mysql # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql # DANGER!!

Processing binary logs this way using different connections to the server causes problems if the first log file contains a CREATE TEM-
PORARY TABLE statement and the second log contains a statement that uses the temporary table. When the first mysql process ter-
minates, the server drops the temporary table. When the second mysql process attempts to use the table, the server reports “unknown
table.”

To avoid problems like this, use a single connection to execute the contents of all binary logs that you want to process. Here is one way
to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 > /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -e "source /tmp/statements.sql"

mysqlbinlog can produce output that reproduces a LOAD DATA INFILE operation without the original data file. mysqlbinlog
copies the data to a temporary file and writes a LOAD DATA LOCAL INFILE statement that refers to the file. The default location of
the directory where these files are written is system-specific. To specify a directory explicitly, use the --local-load option.

Because mysqlbinlog converts LOAD DATA INFILE statements to LOAD DATA LOCAL INFILE statements (that is, it adds
LOCAL), both the client and the server that you use to process the statements must be configured to allow LOCAL capability. See Sec-
tion 5.3.4, “Security Issues with LOAD DATA LOCAL”.

MySQL Enterprise
For expert advice on the security implications of enabling LOCAL, subscribe to the MySQL Enterprise Monitor.
For more information see http://www.mysql.com/products/enterprise/advisors.html.

Warning

The temporary files created for LOAD DATA LOCAL statements are not automatically deleted because they are needed
until you actually execute those statements. You should delete the temporary files yourself after you no longer need the
statement log. The files can be found in the temporary file directory and have names like original_file_name-#-#.

The --hexdump option produces a hex dump of the log contents in comments:

shell> mysqlbinlog --hexdump master-bin.000001

MySQL Programs

265

http://www.mysql.com/products/enterprise/advisors.html


With the preceding command, the output might look like this:

/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
# at 4
#051024 17:24:13 server id 1 end_log_pos 98
# Position Timestamp Type Master ID Size Master Pos Flags
# 00000004 9d fc 5c 43 0f 01 00 00 00 5e 00 00 00 62 00 00 00 00 00
# 00000017 04 00 35 2e 30 2e 31 35 2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|
# 00000027 6f 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |og..............|
# 00000037 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
# 00000047 00 00 00 00 9d fc 5c 43 13 38 0d 00 08 00 12 00 |.......C.8......|
# 00000057 04 04 04 04 12 00 00 4b 00 04 1a |.......K...|
# Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13
# at startup
ROLLBACK;

Hex dump output currently contains the following elements. This format might change in the future.

• Position: The byte position within the log file.

• Timestamp: The event timestamp. In the example shown, '9d fc 5c 43' is the representation of '051024 17:24:13' in
hexadecimal.

• Type: The type of the log event. In the example shown, '0f' means that the example event is a
FORMAT_DESCRIPTION_EVENT. The following table lists the possible types.

Type Name Meaning

00 UNKNOWN_EVENT This event should never be present in the log.

01 START_EVENT_V3 This indicates the start of a log file written by MySQL 4 or earlier.

02 QUERY_EVENT The most common type of events. These contain statements executed on the master.

03 STOP_EVENT Indicates that master has stopped.

04 ROTATE_EVENT Written when the master switches to a new log file.

05 INTVAR_EVENT Used mainly for AUTO_INCREMENT values and when the LAST_INSERT_ID() function is used
in the statement.

06 LOAD_EVENT Used for LOAD DATA INFILE in MySQL 3.23.

07 SLAVE_EVENT Reserved for future use.

08 CREATE_FILE_EVENT Used for LOAD DATA INFILE statements. This indicates the start of execution of such a state-
ment. A temporary file is created on the slave. Used in MySQL 4 only.

09 AP-
PEND_BLOCK_EVENT

Contains data for use in a LOAD DATA INFILE statement. The data is stored in the temporary file
on the slave.

0a EXEC_LOAD_EVENT Used for LOAD DATA INFILE statements. The contents of the temporary file is stored in the table
on the slave. Used in MySQL 4 only.

0b DELETE_FILE_EVENT Rollback of a LOAD DATA INFILE statement. The temporary file should be deleted on slave.

0c NEW_LOAD_EVENT Used for LOAD DATA INFILE in MySQL 4 and earlier.

0d RAND_EVENT Used to send information about random values if the RAND() function is used in the statement.

0e USER_VAR_EVENT Used to replicate user variables.

0f FORMAT_DESCRIPTIO
N_EVENT

This indicates the start of a log file written by MySQL 5 or later.

10 XID_EVENT Event indicating commit of an XA transaction.

11 BE-
GIN_LOAD_QUERY_EV
ENT

Used for LOAD DATA INFILE statements in MySQL 5 and later.

12 EX-
ECUTE_LOAD_QUERY_
EVENT

Used for LOAD DATA INFILE statements in MySQL 5 and later.

13 TABLE_MAP_EVENT Information about a table definition. Used in MySQL 5.1 and later.

14 WRITE_ROWS_EVENT Row data for a single table that should be created. Used in MySQL 5.1 and later.

MySQL Programs

266



15 UPDATE_ROWS_EVENT Row data for a single table that needs to be updated. Used in MySQL 5.1 and later.

16 DELETE_ROWS_EVENT Row data for a single table that should be deleted. Used in MySQL 5.1 and later.

• Master ID: The server id of the master that created the event.

• Size: The size in bytes of the event.

• Master Pos: The position of the event in the original master log file.

• Flags: 16 flags. Currently, the following flags are used. The others are reserved for the future.

Flag Name Meaning

01 LOG_EVENT_BINLOG_
IN_USE_F

Log file correctly closed. (Used only in FORMAT_DESCRIPTION_EVENT.) If this flag is set (if the
flags are, for example, '01 00') in a FORMAT_DESCRIPTION_EVENT, the log file has not been
properly closed. Most probably this is because of a master crash (for example, due to power failure).

02 Reserved for future use.

04 LOG_EVENT_THREAD_
SPECIFIC_F

Set if the event is dependent on the connection it was executed in (for example, '04 00'), for ex-
ample, if the event uses temporary tables.

08 LOG_EVENT_SUPPRES
S_USE_F

Set in some circumstances when the event is not dependent on the default database.

The other flags are reserved for future use.

4.6.8. mysqlhotcopy — A Database Backup Program
mysqlhotcopy is a Perl script that was originally written and contributed by Tim Bunce. It uses LOCK TABLES, FLUSH TABLES,
and cp or scp to make a database backup quickly. It is the fastest way to make a backup of the database or single tables, but it can be
run only on the same machine where the database directories are located. mysqlhotcopy works only for backing up MyISAM and
ARCHIVE tables. It runs on Unix and NetWare.

shell> mysqlhotcopy db_name [/path/to/new_directory]

shell> mysqlhotcopy db_name_1 ... db_name_n /path/to/new_directory

Back up tables in the given database that match a regular expression:

shell> mysqlhotcopy db_name./regex/

The regular expression for the table name can be negated by prefixing it with a tilde (“~”):

shell> mysqlhotcopy db_name./~regex/

mysqlhotcopy supports the following options:

Table 4.12. mysqlhotcopy Option Reference

Format Config File Description Introduc-
tion

--addtodest addtodest Do not rename target directory (if it exists); merely add files to it

--allowold allowold Do not abort if a target exists; rename it by adding an _old suffix

-
-check-
point=db_name.tbl_name

checkpoint Insert checkpoint entries

--chroot=path chroot Base directory of the chroot jail in which mysqld operates

MySQL Programs

267



Format Config File Description Introduc-
tion

--debug debug Write a debugging log

--dryrun dryrun Report actions without performing them

--flushlogs flushlogs Flush logs after all tables are locked

--help Display help message and exit

--host=host_name host Connect to the MySQL server on the given host

--keepold keepold Do not delete previous (renamed) target when done

--noindices noindices Do not include full index files in the backup

--password[=password] password The password to use when connecting to the server

--port=port_num port The TCP/IP port number to use for the connection

--quiet quiet Be silent except for errors

--regexp regexp Copy all databases with names that match the given regular ex-
pression

--resetmaster resetmaster Reset the binary log after locking all the tables

--resetslave resetslave Reset the master.info file after locking all the tables

--socket=path socket For connections to localhost

--tmpdir=path tmpdir The temporary directory

--user=user_name, user The MySQL username to use when connecting to the server

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --addtodest

Do not rename target directory (if it exists); merely add files to it.

• --allowold

Do not abort if a target exists; rename it by adding an _old suffix.

• --checkpoint=db_name.tbl_name

Insert checkpoint entries into the specified database db_name and table tbl_name.

• --chroot=path

Base directory of the chroot jail in which mysqld operates. The path value should match that of the --chroot option given
to mysqld.

• --debug

Enable debug output.

• --dryrun, -n

Report actions without performing them.

• --flushlog

Flush logs after all tables are locked.

• --host=host_name, -h host_name

The hostname of the local host to use for making a TCP/IP connection to the local server. By default, the connection is made to

MySQL Programs

268



localhost using a Unix socket file.

• --keepold

Do not delete previous (renamed) target when done.

• --method=command

The method for copying files (cp or scp).

• --noindices

Do not include full index files in the backup. This makes the backup smaller and faster. The indexes for reloaded tables can be re-
constructed later with myisamchk -rq.

• --password=password, -ppassword

The password to use when connecting to the server. Note that the password value is not optional for this option, unlike for other
MySQL programs. You can use an option file to avoid giving the password on the command line.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use when connecting to the local server.

• --quiet, -q

Be silent except for errors.

• --record_log_pos=db_name.tbl_name

Record master and slave status in the specified database db_name and table tbl_name.

• --regexp=expr

Copy all databases with names that match the given regular expression.

• --resetmaster

Reset the binary log after locking all the tables.

• --resetslave

Reset the master.info file after locking all the tables.

• --socket=path, -S path

The Unix socket file to use for the connection.

• --suffix=str

The suffix for names of copied databases.

• --tmpdir=path

The temporary directory. The default is /tmp.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

mysqlhotcopy reads the [client] and [mysqlhotcopy] option groups from option files.

To execute mysqlhotcopy, you must have access to the files for the tables that you are backing up, the SELECT privilege for those
tables, the RELOAD privilege (to be able to execute FLUSH TABLES), and the LOCK TABLES privilege (to be able to lock the tables).

MySQL Programs

269



Use perldoc for additional mysqlhotcopy documentation, including information about the structure of the tables needed for the -
-checkpoint and --record_log_pos options:

shell> perldoc mysqlhotcopy

MySQL Enterprise
MySQL Enterprise subscribers will find more information about mysqlhotcopy in the Knowledge Base article,
How Does mysqlhotcopy Work?. Access to the MySQL Knowledge Base collection of articles is one of the ad-
vantages of subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

4.6.9. mysqlmanager — The MySQL Instance Manager

Important

MySQL Instance Manager has been deprecated and will be removed in MySQL 6.0.

mysqlmanager is the MySQL Instance Manager (IM). This program monitors and manages MySQL Database Server instances.
MySQL Instance Manager is available for Unix-like operating systems, as well as Windows. It runs as a daemon that listens on a TCP/
IP port. On Unix, it also listens on a Unix socket file.

MySQL Instance Manager can be used in place of the mysqld_safe script to start and stop one or more instances of MySQL Server.
Because Instance Manager can manage multiple server instances, it can also be used in place of the mysqld_multi script. Instance
Manager offers these capabilities:

• Instance Manager can start and stop instances, and report on the status of instances.

• Server instances can be treated as guarded or unguarded:

• When Instance Manager starts, it starts each guarded instance. If the instance crashes, Instance Manager detects this and restarts
it. When Instance Manager stops, it stops the instance.

• A nonguarded instance is not started when Instance Manager starts or monitored by it. If the instance crashes after being started,
Instance Manager does not restart it. When Instance Manager exits, it does not stop the instance if it is running.

Instances are guarded by default. An instance can be designated as nonguarded by including the nonguarded option in the config-
uration file.

• Instance Manager provides an interactive interface for configuring instances, so that the need to edit the configuration file manually
is reduced or eliminated.

• Instance Manager provides remote instance management. That is, it runs on the host where you want to control MySQL Server in-
stances, but you can connect to it from a remote host to perform instance-management operations.

The following sections describe MySQL Instance Manager operation in more detail.

4.6.9.1. MySQL Instance Manager Command Options

Important

MySQL Instance Manager has been deprecated and will be removed in MySQL 6.0.

The MySQL Instance Manager supports a number of command options. For a brief listing, invoke mysqlmanager with the --help
option. Options may be given on the command line or in the Instance Manager configuration file. On Windows, the standard configura-
tion file is my.ini in the directory where Instance Manager is installed. On Unix, the standard file is /etc/my.cnf. To specify a
different configuration file, start Instance Manager with the --defaults-file option.

mysqlmanager supports the options described in the following list. The options for managing entries in the password file are de-
scribed further in Section 4.6.9.4, “Instance Manager User and Password Management”.

• --help, -?

MySQL Programs

270

https://kb.mysql.com/view.php?id=5919
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


Display a help message and exit.

• --add-user

Add a new user (specified with the --username option) to the password file. This option was added in MySQL 5.1.12.

• --angel-pid-file=file_name

The file in which the angel process records its process ID when mysqlmanager runs in daemon mode (that is, when the -
-run-as-service option is given). The default filename is mysqlmanager.angel.pid.

If the --angel-pid-file option is not given, the default angel PID file has the same name as the PID file except that any PID
file extension is replaced with an extension of .angel.pid. (For example, mysqlmanager.pid becomes mysqlman-
ager.angel.pid.)

This option was added in MySQL 5.1.11.

• --bind-address=IP

The IP address to bind to.

• --check-password-file

Check the validity and consistency of the password file. This option was added in MySQL 5.1.12.

• --clean-password-file

Drop all users from the password file. This option was added in MySQL 5.1.12.

• --debug=debug_options, -# debug_options

Write a debugging log. The debug_options string often is 'd:t:o,file_name'. This option was added in MySQL 5.1.10.

• --default-mysqld-path=path

The pathname of the MySQL Server binary. This pathname is used for all server instance sections in the configuration file for which
no mysqld-path option is present. The default value of this option is the compiled-in pathname, which depends on how the
MySQL distribution was configured. Example: --default-mysqld-path=/usr/sbin/mysqld

• --defaults-file=file_name

Read Instance Manager and MySQL Server settings from the given file. All configuration changes made by the Instance Manager
will be written to this file. This must be the first option on the command line if it is used, and the file must exist.

If this option is not given, Instance Manager uses its standard configuration file. On Windows, the standard file is my.ini in the
directory where Instance Manager is installed. On Unix, the standard file is /etc/my.cnf.

• --drop-user

Drop a user (specified with the --username option) from the password file. This option was added in MySQL 5.1.12.

• --edit-user

Change an entry for an existing user (specified with the --username option) in the password file. This option was added in
MySQL 5.1.12.

• --install

On Windows, install Instance Manager as a Windows service. The service name is MySQL Manager.

• --list-users

List the users in the password file. This option was added in MySQL 5.1.12.

• --log=file_name

MySQL Programs

271



The path to the Instance Manager log file. This option has no effect unless the --run-as-service option is also given. If the fi-
lename specified for the option is a relative name, the log file is created under the directory from which Instance Manager is started.
To ensure that the file is created in a specific directory, specify it as a full pathname.

If --run-as-service is given without --log, the log file is mysqlmanager.log in the data directory.

If --run-as-service is not given, log messages go to the standard output. To capture log output, you can redirect Instance
Manager output to a file:

mysqlmanager > im.log

• --monitoring-interval=seconds

The interval in seconds for monitoring server instances. The default value is 20 seconds. Instance Manager tries to connect to each
monitored (guarded) instance using the non-existing MySQL_Instance_Manager user account to check whether it is alive/not
hanging. If the result of the connection attempt indicates that the instance is unavailable, Instance Manager performs several at-
tempts to restart the instance.

Normally, the MySQL_Instance_Manager account does not exist, so the connection attempts by Instance Manager cause the
monitored instance to produce messages in its general query log similar to the following:

Access denied for user 'MySQL_Instance_M'@'localhost' »
(using password: YES)

The nonguarded option in the appropriate server instance section disables monitoring for a particular instance. If the instance dies
after being started, Instance Manager will not restart it. Instance Manager tries to connect to a nonguarded instance only when you
request the instance's status (for example, with the SHOW INSTANCES status.

See Section 4.6.9.5, “MySQL Server Instance Status Monitoring”, for more information.

• --mysqld-safe-compatible

Run in a mysqld_safe-compatible manner. For details, see Section 4.6.9.3, “Starting the MySQL Server with MySQL Instance
Manager”. This option was added in MySQL 5.1.12.

• --password=password, -p password

Specify the password for an entry to be added to or modified in the password file. Unlike the --password/-P option for most
MySQL programs, the password value is required, not optional. This option was added in MySQL 5.1.12.

• --password-file=file_name

The name of the file where the Instance Manager looks for users and passwords. On Windows, the default is mysqlman-
ager.passwd in the directory where Instance Manager is installed. On Unix, the default file is /
etc/mysqlmanager.passwd.

• --pid-file=file_name

The process ID file to use. On Windows, the default file is mysqlmanager.pid in the directory where Instance Manager is in-
stalled. On Unix, the default is mysqlmanager.pid in the data directory.

• --port=port_num

The port number to use when listening for TCP/IP connections from clients. The default port number (assigned by IANA) is 2273.

• --print-defaults

Print the current defaults and exit. This must be the first option on the command line if it is used.

• --print-password-line

Prepare an entry for the password file, print it to the standard output, and exit. You can redirect the output from Instance Manager to
a file to save the entry in the file.

Prior to MySQL 5.1.12, this option was named --passwd.

MySQL Programs

272



• --remove

On Windows, removes Instance Manager as a Windows service. This assumes that Instance Manager has been run with -
-install previously.

• --run-as-service

On Unix, daemonize and start an angel process. The angel process monitors Instance Manager and restarts it if it crashes. (The angel
process itself is simple and unlikely to crash.)

• --socket=path

On Unix, the socket file to use for incoming connections. The default file is named /tmp/mysqlmanager.sock. This option
has no meaning on Windows.

• --standalone

This option is used on Windows to run Instance Manager in standalone mode. You should specify it when you start Instance Man-
ager from the command line.

• --user=user_name

On Unix, the username of the system account to use for starting and running mysqlmanager. This option generates a warning and
has no effect unless you start mysqlmanager as root (so that it can change its effective user ID), or as the named user. It is re-
commended that you configure mysqlmanager to run using the same account used to run the mysqld server. (“User” in this con-
text refers to a system login account, not a MySQL user listed in the grant tables.)

• --username=user_name, -u user_name

Specify the username for an entry to be added to or modified in the password file. This option was added in MySQL 5.1.12.

• --version, -V

Display version information and exit.

• --wait-timeout=N

The number of seconds to wait for activity on an incoming connection before closing it. The default is 28800 seconds (8 hours).

This option was added in MySQL 5.1.7. Before that, the timeout is 30 seconds and cannot be changed.

4.6.9.2. MySQL Instance Manager Configuration Files

Important

MySQL Instance Manager has been deprecated and will be removed in MySQL 6.0.

Instance Manager uses its standard configuration file unless it is started with a --defaults-file option that specifies a different
file. On Windows, the standard file is my.ini in the directory where Instance Manager is installed. On Unix, the standard file is /
etc/my.cnf.

Instance Manager reads options for itself from the [manager] section of the configuration file, and options for server instances from
[mysqld] or [mysqldN] sections. The [manager] section contains any of the options listed in Section 4.6.9.1, “MySQL Instance
Manager Command Options”, except for those specified as having to be given as the first option on the command line. Here is a sample
[manager] section:

# MySQL Instance Manager options section
[manager]
default-mysqld-path = /usr/local/mysql/libexec/mysqld
socket=/tmp/manager.sock
pid-file=/tmp/manager.pid
password-file = /home/cps/.mysqlmanager.passwd
monitoring-interval = 2
port = 1999
bind-address = 192.168.1.5

MySQL Programs

273



Each [mysqld] or [mysqldN] instance section specifies options given by Instance Manager to a server instance at startup. These
are mainly common MySQL Server options (see Section 5.1.2, “Command Options”). In addition, a [mysqldN] section can contain
the options in the following list, which are specific to Instance Manager. These options are interpreted by Instance Manager itself; it
does not pass them to the server when it attempts to start that server.

Warning

The Instance Manager-specific options must not be used in a [mysqld] section. If a server is started without using In-
stance Manager, it will not recognize these options and will fail to start properly.

• mysqld-path = path

The pathname of the mysqld server binary to use for the server instance.

• nonguarded

This option disables Instance Manager monitoring functionality for the server instance. By default, an instance is guarded: At In-
stance Manager start time, it starts the instance. It also monitors the instance status and attempts to restart it if it fails. At Instance
Manager exit time, it stops the instance. None of these things happen for nonguarded instances.

• shutdown-delay = seconds

The number of seconds Instance Manager should wait for the server instance to shut down. The default value is 35 seconds. After
the delay expires, Instance Manager assumes that the instance is hanging and attempts to terminate it. If you use InnoDB with large
tables, you should increase this value.

Here are some sample instance sections:

[mysqld1]
mysqld-path=/usr/local/mysql/libexec/mysqld
socket=/tmp/mysql.sock
port=3307
server_id=1
skip-stack-trace
core-file
log-bin
log-error
log=mylog
log-slow-queries

[mysqld2]
nonguarded
port=3308
server_id=2
mysqld-path= /home/cps/mysql/trees/mysql-5.1/sql/mysqld
socket = /tmp/mysql.sock5
pid-file = /tmp/hostname.pid5
datadir= /home/cps/mysql_data/data_dir1
language=/home/cps/mysql/trees/mysql-5.1/sql/share/english
log-bin
log=/tmp/fordel.log

4.6.9.3. Starting the MySQL Server with MySQL Instance Manager

Important

MySQL Instance Manager has been deprecated and will be removed in MySQL 6.0.

This section discusses how Instance Manager starts server instances when it starts. However, before you start Instance Manager, you
should set up a password file for it. Otherwise, you will not be able to connect to Instance Manager to control it after it starts. For details
about creating Instance Manager accounts, see Section 4.6.9.4, “Instance Manager User and Password Management”.

On Unix, the mysqld MySQL database server normally is started with the mysql.server script, which usually resides in the /
etc/init.d/ folder. That script invokes the mysqld_safe script by default. However, you can use Instance Manager instead if
you modify the /etc/my.cnf configuration file by adding use-manager to the [mysql.server] section:

[mysql.server]
use-manager

MySQL Programs

274



Before MySQL 5.1.12, Instance Manager always tries to start at least one server instance: When it starts, it reads its configuration file if
it exists to find server instance sections and prepare a list of instances. Instance sections have names of the form [mysqld] or
[mysqldN], where N is an unsigned integer (for example, [mysqld1], [mysqld2], and so forth).

After preparing the list of instances, Instance Manager starts the guarded instances in the list. If there are no instances, Instance Manager
creates an instance named mysqld and attempts to start it with default (compiled-in) configuration values. This means that the Instance
Manager cannot find the mysqld program if it is not installed in the default location. (Section 2.1.5, “Installation Layouts”, describes
default locations for components of MySQL distributions.) If you have installed the MySQL server in a non-standard location, you
should create the Instance Manager configuration file.

The startup behavior just described is similar to that of mysqld_safe, which always attempts to start a server. However, it lacks the
flexibility required for some operations because it is not possible to run Instance Manager in such a way that it refrains from starting any
server instances. For example, you cannot invoke Instance Manager for the purpose of configuring an instance without also starting it (a
task that a MySQL installer application might want to perform). Consequently, MySQL 5.1.12 introduces the following changes:

• A new option, --mysqld-safe-compatible, may be used to cause Instance Manager to run with startup behavior similar to
that used before MySQL 5.1.12: If Instance Manager finds a [mysqld] instance section in the configuration file, it will start it. If
Instance Manager finds no [mysqld] section, it creates one using default configuration values, writes a [mysqld] section to the
configuration file if it is accessible, and starts the mysqld instance. Instance Manager also starts any other guarded instances listed
in the configuration file.

• Without --mysqld-safe-compatible, Instance Manager reads its configuration file if it exists and starts instances for any
guarded instance sections that it finds. If there are none, it starts no instances.

Instance Manager also stops all guarded server instances when it shuts down.

The allowable options for [mysqldN] server instance sections are described in Section 4.6.9.2, “MySQL Instance Manager Configur-
ation Files”. In these sections, you can use a special mysqld-path=path-to-mysqld-binary option that is recognized only by
Instance Manager. Use this option to let Instance Manager know where the mysqld binary resides. If there are multiple instances, it
may also be necessary to set other options such as datadir and port, to ensure that each instance has a different data directory and
TCP/IP port number. Section 5.6, “Running Multiple MySQL Servers on the Same Machine”, discusses the configuration values that
must differ for each instance when you run multiple instance on the same machine.

Warning

The [mysqld] instance section, if it exists, must not contain any Instance Manager-specific options.

The typical Unix startup/shutdown cycle for a MySQL server with the MySQL Instance Manager enabled is as follows:

1. The /etc/init.d/mysql script starts MySQL Instance Manager.

2. Instance Manager starts the guarded server instances and monitors them.

3. If a server instance fails, Instance Manager restarts it.

4. If Instance Manager is shut down (for example, with the /etc/init.d/mysql stop command), it shuts down all server in-
stances.

4.6.9.4. Instance Manager User and Password Management

Important

MySQL Instance Manager has been deprecated and will be removed in MySQL 6.0.

The Instance Manager stores its user information in a password file. On Windows, the default is mysqlmanager.passwd in the dir-
ectory where Instance Manager is installed. On Unix, the default file is /etc/mysqlmanager.passwd. To specify a different loca-
tion for the password file, use the --password-file option.

If the password file does not exist or contains no password entries, you cannot connect to the Instance Manager.

Note

MySQL Programs

275



Any Instance Manager process that is running to monitor server instances does not notice changes to the password file.
You must stop it and restart it after making password entry changes.

Entries in the password file have the following format, where the two fields are the account username and encrypted password, separ-
ated by a colon:

petr:*35110DC9B4D8140F5DE667E28C72DD2597B5C848

Instance Manager password encryption is the same as that used by MySQL Server. It is a one-way operation; no means are provided for
decrypting encrypted passwords.

Instance Manager accounts differ somewhat from MySQL Server accounts:

• MySQL Server accounts are associated with a hostname, username, and password (see Section 5.5.1, “MySQL Usernames and Pass-
words”).

• Instance Manager accounts are associated with a username and password only.

This means that a client can connect to Instance Manager with a given username from any host. To limit connections so that clients can
connect only from the local host, start Instance Manager with the --bind-address=127.0.0.1 option so that it listens only to the
local network interface. Remote clients will not be able to connect. Local clients can connect like this:

shell> mysql -h 127.0.0.1 -P 2273

Before MySQL 5.1.12, the only option for creating password file entries is --passwd, which causes Instance Manager to prompt for
username and password values and display the resulting entry. You can save the output in the /etc/mysqlmanager.passwd pass-
word file to store it. Here is an example:

shell> mysqlmanager --passwd >> /etc/mysqlmanager.passwd
Creating record for new user.
Enter user name: mike
Enter password: mikepass
Re-type password: mikepass

At the prompts, enter the username and password for the new Instance Manager user. You must enter the password twice. It does not
echo to the screen, so double entry guards against entering a different password than you intend (if the two passwords do not match, no
entry is generated).

The preceding command causes the following line to be added to /etc/mysqlmanager.passwd:

mike:*BBF1F551DD9DD96A01E66EC7DDC073911BAD17BA

Beginning with MySQL 5.1.12, the --passwd option is renamed to --print-password-line and there are several other options
for managing user accounts from the command line. For example, the --username and --password options are available on the
command line for specifying the username and password for an account entry. You can use them to generate an entry with no prompting
like this (type the command on a single line):

shell> mysqlmanager --print-password-line
--username=mike --password=mikepass >> /etc/mysqlmanager.passwd

If you omit the --username or --password option, Instance Manager prompts for the required value.

--print-password-line causes Instance Manager to send the resulting account entry to its output, which you can append to the
password file. The following list describes other account-management options that cause Instance Manager to operate directly on the
password file. (These options make Instance Manager scriptable for account-management purposes.) For operations on the password
file to succeed, the file must exist and it must be accessible by Instance Manager. (The exception is --clean-password-file,
which creates the file if it does not exist. Alternatively, if there is no password file, manually create it as an empty file and ensure that its
ownership and access modes allow it to be read and written by Instance Manager.) The default password file is used unless you specify
a --password-file option.

To ensure consistent treatment of the password file, it should be owned by the system account that you use for running Instance Man-
ager to manage server instances, and you should invoke it from that account when you use it to manage accounts in the password file.

MySQL Programs

276



• Create a new user:

mysqlmanager --add-user --username=user_name [--password=password]

This command adds a new entry with the given username and password to the password file. The --username (or -u) option is
required. mysqlmanager prompts for the password if it is not given on the command line with the --password (or -p) option.
The command fails if the user already exists.

• Drop an existing user:

mysqlmanager --drop-user --username=user_name

This command removes the entry with the given username from the password file. The username is required. The command fails if
the user does not exist.

• Change the password for an existing user:

mysqlmanager --edit-user --username=user_name [--password=password]

This command changes the given user's password in the password file. The username is required. mysqlmanager prompts for the
password it is not given on the command line. The command fails if the user does not exist.

• List existing users:

mysqlmanager --list-users

This command lists the usernames of the accounts in the password file.

• Check the password file:

mysqlmanager --check-password-file

This command performs a consistency and validity check of the password file. The command fails if there is something wrong with
the file.

• Empty the password file:

mysqlmanager --clean-password-file

This command empties the password file, which has the effect of dropping all users listed in it. The option creates the password file
if it does not exist, so it can be used to initialize a new password file to be used for other account-management operations. Take care
not to use this option to reinitialize a file containing accounts that you do not want to drop.

4.6.9.5. MySQL Server Instance Status Monitoring

Important

MySQL Instance Manager has been deprecated and will be removed in MySQL 6.0.

To monitor the status of each guarded server instance, the MySQL Instance Manager attempts to connect to the instance at regular inter-
vals using the MySQL_Instance_Manager@localhost user account with a password of check_connection.

You are not required to create this account for MySQL Server; in fact, it is expected that it will not exist. Instance Manager can tell that
a server is operational if the server accepts the connection attempt but refuses access for the account by returning a login error.
However, these failed connection attempts are logged by the server to its general query log (see Section 5.2.3, “The General Query
Log”).

Instance Manager also attempts a connection to nonguarded server instances when you use the SHOW INSTANCES or SHOW IN-
STANCE STATUS command. This is the only status monitoring done for nonguarded instances.

Instance Manager knows if a server instance fails at startup because it receives a status from the attempt. For an instance that starts but
later crashes, Instance Manager receives a signal because it is the parent process of the instance.

MySQL Programs

277



Beginning with MySQL 5.1.12, Instance Manager tracks instance states so that it can determine which commands are allowed for each
instance. For example, commands that modify an instance's configuration are allowed only while the instance is offline.

Each instance is in one of the states described in the following table. Guarded instances can be in any of the states. Nonguarded in-
stances can only be offline or online. Instance state information is displayed in the status column of the SHOW INSTANCES and
SHOW INSTANCE STATUS commands.

State Meaning

offline The instance has not been started and is not running.

starting The instance is starting (initializing). Nonguarded instances cannot be in this state. A nonguarded instance goes
directly from offline to online.

stopping The instance is stopping. Nonguarded instances cannot be in this state. A nonguarded instance goes directly from
online to offline, or stays offline if startup fails.

online The instance has started and is running.

failed The instance was online but it crashed and is being restarted by Instance Manager, or else the instance failed to
start at all and Instance Manager is again attempting to start it. Nonguarded instances cannot be in this state.

crashed Instance Manager failed to start the instance after several attempts. (Instance Manager will try again later.)
Nonguarded instances cannot be in this state.

abandoned Instance Manager was not able to start the instance, has given up, and will make no further attempts until instruc-
ted otherwise. To tell Instance Manager to try again, you must first use STOP INSTANCE to put the instance in
offline state, and then use START INSTANCE to start the instance. If it is necessary to make configuration
changes for the instance, you must do so after putting the instance offline and before starting it. (Instance Manager
accepts configuration-changing commands only for offline instances.) Nonguarded instances cannot be in this
state.

4.6.9.6. Connecting to MySQL Instance Manager

Important

MySQL Instance Manager has been deprecated and will be removed in MySQL 6.0.

After you set up a password file for the MySQL Instance Manager and Instance Manager is running, you can connect to it. The MySQL
client-server protocol is used to communicate with the Instance Manager. For example, you can connect to it using the standard mysql
client program:

shell> mysql --port=2273 --host=im.example.org --user=mysql --password

Instance Manager supports the version of the MySQL client-server protocol used by the client tools and libraries distributed with
MySQL 4.1 or later, so other programs that use the MySQL C API also can connect to it.

4.6.9.7. MySQL Instance Manager Commands

Important

MySQL Instance Manager has been deprecated and will be removed in MySQL 6.0.

After you connect to MySQL Instance Manager, you can issue commands. The following general principles apply to Instance Manager
command execution:

• Commands that take an instance name fail if the name is not a valid instance name.

• Commands that take an instance name (other than CREATE INSTANCE) fail if the instance does not exist.

• As of MySQL 5.1.12, commands for an instance require that the instance be in an appropriate state. You cannot configure or start an
instance that is not offline. You cannot start an instance that is online.

• Instance Manager maintains information about instance configuration in an internal (in-memory) cache. Initially, this information
comes from the configuration file if it exists, but some commands change the configuration of an instance. Commands that modify
the configuration file fail if the file does not exist or is not accessible to Instance Manager.

MySQL Programs

278



As of MySQL 5.1.12, configuration-changing commands modify both the in-memory cache and the server instance section recorded
in the configuration file to maintain consistency between them. For this to occur, the instance must be offline and the configuration
file must be accessible and not malformed. If the configuration file cannot be updated, the command fails and the cache remains un-
changed.

• On Windows, the standard file is my.ini in the directory where Instance Manager is installed. On Unix, the standard configuration
file is /etc/my.cnf. To specify a different configuration file, start Instance Manager with the --defaults-file option.

• If a [mysqld] instance section exists in the configuration file, it must not contain any Instance Manager-specific options (see Sec-
tion 4.6.9.2, “MySQL Instance Manager Configuration Files”). Therefore, you must not add any of these options if you change the
configuration for an instance named mysqld.

The following list describes the commands that Instance Manager accepts, with examples.

• CREATE INSTANCE instance_name [option_name[=option_value], ...]

This command configures a new instance by creating an [instance_name] section in the configuration file. The command fails
if instance_name is not a valid instance name or the instance already exists.

The created section instance is empty if no options are given. Otherwise, the options are added to the section. Options should be giv-
en in the same format used when you write options in option files. (See Section 4.2.2.2, “Using Option Files” for a description of the
allowable syntax.) If you specify multiple options, separate them by commas.

For example, to create an instance section named [mysqld98], you might write something like this were you to modify the con-
figuration file directly:

[mysqld98]
basedir=/var/mysql98

To achieve the same effect via CREATE INSTANCE, issue this command to Instance Manager:

mysql> CREATE INSTANCE mysqld98 basedir="/var/mysql98";
Query OK, 0 rows affected (0,00 sec)

CREATE INSTANCE creates the instance but does not start it.

If the instance name is the (deprecated) name mysqld, the option list cannot include any options that are specific to Instance Man-
ager, such as nonguarded (see Section 4.6.9.2, “MySQL Instance Manager Configuration Files”).

This command was added in MySQL 5.1.12.

• DROP INSTANCE instance_name

This command removes the configuration for instance_name from the configuration file.

mysql> DROP INSTANCE mysqld98;
Query OK, 0 rows affected (0,00 sec)

The command fails if instance_name is not a valid instance name, the instance does not exist, or is not offline.

This command was added in MySQL 5.1.12.

• START INSTANCE instance_name

This command attempts to start an offline instance. The command is asynchronous; it does not wait for the instance to start.

mysql> START INSTANCE mysqld4;
Query OK, 0 rows affected (0,00 sec)

• STOP INSTANCE instance_name

This command attempts to stop an instance. The command is synchronous; it waits for the instance to stop.

MySQL Programs

279



mysql> STOP INSTANCE mysqld4;
Query OK, 0 rows affected (0,00 sec)

• SHOW INSTANCES

Shows the names and status of all loaded instances.

mysql> SHOW INSTANCES;
+---------------+---------+
| instance_name | status |
+---------------+---------+
| mysqld3 | offline |
| mysqld4 | online |
| mysqld2 | offline |
+---------------+---------+

• SHOW INSTANCE STATUS instance_name

Shows status and version information for an instance.

mysql> SHOW INSTANCE STATUS mysqld3;
+---------------+--------+---------+
| instance_name | status | version |
+---------------+--------+---------+
| mysqld3 | online | unknown |
+---------------+--------+---------+

• SHOW INSTANCE OPTIONS instance_name

Shows the options used by an instance.

mysql> SHOW INSTANCE OPTIONS mysqld3;
+---------------+---------------------------------------------------+
| option_name | value |
+---------------+---------------------------------------------------+
| instance_name | mysqld3 |
| mysqld-path | /home/cps/mysql/trees/mysql-4.1/sql/mysqld |
| port | 3309 |
| socket | /tmp/mysql.sock3 |
| pid-file | hostname.pid3 |
| datadir | /home/cps/mysql_data/data_dir1/ |
| language | /home/cps/mysql/trees/mysql-4.1/sql/share/english |
+---------------+---------------------------------------------------+

• SHOW instance_name LOG FILES

The command lists all log files used by the instance. The result set contains the path to the log file and the log file size. If no log file
path is specified in the instance section of the configuration file (for example, log=/var/mysql.log), the Instance Manager
tries to guess its placement. If Instance Manager is unable to guess the log file placement you should specify the log file location ex-
plicitly by using a log option in the appropriate instance section of the configuration file.

mysql> SHOW mysqld LOG FILES;
+-------------+------------------------------------+----------+
| Logfile | Path | Filesize |
+-------------+------------------------------------+----------+
| ERROR LOG | /home/cps/var/mysql/owlet.err | 9186 |
| GENERAL LOG | /home/cps/var/mysql/owlet.log | 471503 |
| SLOW LOG | /home/cps/var/mysql/owlet-slow.log | 4463 |
+-------------+------------------------------------+----------+

SHOW ... LOG FILES displays information only about log files. If a server instance uses log tables (see Section 5.2.1,
“Selecting General Query and Slow Query Log Output Destinations”), no information about those tables is shown.

Log options are described in Section 5.1.2, “Command Options”.

• SHOW instance_name LOG {ERROR | SLOW | GENERAL} size[,offset_from_end]

This command retrieves a portion of the specified log file. Because most users are interested in the latest log messages, the size
parameter defines the number of bytes to retrieve from the end of the log. To retrieve data from the middle of the log file, specify
the optional offset_from_end parameter. The following example retrieves 21 bytes of data, starting 23 bytes before the end of
the log file and ending 2 bytes before the end:

MySQL Programs

280



mysql> SHOW mysqld LOG GENERAL 21, 2;
+---------------------+
| Log |
+---------------------+
| using password: YES |
+---------------------+

• SET instance_name.option_name[=option_value]

This command edits the specified instance's configuration section to change or add instance options. The option is added to the sec-
tion is it is not already present. Otherwise, the new setting replaces the existing one.

mysql> SET mysqld2.port=3322;
Query OK, 0 rows affected (0.00 sec)

As of MySQL 5.1.12, you can specify multiple options (separated by commas), and SET can be used only for offline instances.
Each option must indicate the instance name:

mysql> SET mysqld2.port=3322, mysqld3.nonguarded;
Query OK, 0 rows affected (0.00 sec)

Before MySQL 5.1.12, only a single option can be specified. Also, changes made to the configuration file do not take effect until the
MySQL server is restarted. In addition, these changes are not stored in the instance manager's local cache of instance settings until a
FLUSH INSTANCES command is executed.

• UNSET instance_name.option_name

This command removes an option from an instance's configuration section.

mysql> UNSET mysqld2.port;
Query OK, 0 rows affected (0.00 sec)

As of MySQL 5.1.12, you can specify multiple options (separated by commas), and UNSET can be used only for offline instances.
Each option must indicate the instance name:

mysql> UNSET mysqld2.port, mysqld4.nonguarded;
Query OK, 0 rows affected (0.00 sec)

Before MySQL 5.1.12, only a single option can be specified. Also, changes made to the configuration file do not take effect until the
MySQL server is restarted. In addition, these changes are not stored in the instance manager's local cache of instance settings until a
FLUSH INSTANCES command is executed.

• FLUSH INSTANCES

As of MySQL 5.1.12, FLUSH INSTANCES cannot be used unless all instances are offline. The command causes Instance Manager
to reread the configuration file, update its in-memory configuration cache, and start any guarded instances.

Before MySQL 5.1.12, this command forces Instance Manager reread the configuration file and to refresh internal structures. This
command should be performed after editing the configuration file. The command does not restart instances.

mysql> FLUSH INSTANCES;
Query OK, 0 rows affected (0.04 sec)

FLUSH INSTANCES is deprecated and will be removed in MySQL 5.2.

4.6.10. mysql_convert_table_format — Convert Tables to Use a Given Stor-
age Engine

mysql_convert_table_format converts the tables in a database to use a particular storage engine (MyISAM by default).
mysql_convert_table_format is written in Perl and requires that the DBI and DBD::mysql Perl modules be installed (see
Section 2.15, “Perl Installation Notes”).

The results may assist you in determining which queries result in table scans and where it would be beneficial to add indexes to your

MySQL Programs

281



tables.

Invoke mysql_convert_table_format like this:

shell> mysql_convert_table_format [options]db_name

The db_name argument indicates the database containing the tables to be converted.

mysql_convert_table_format understands the options described in the following list.

• --help, -?

Display a help message and exit.

• --force

Continue even if errors occur.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --password=password, -p password

The password to use when connecting to the server. Note that the password value is not optional for this option, unlike for other
MySQL programs. You can use an option file to avoid giving the password on the command line.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --port=port_num

The TCP/IP port number to use for the connection.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use.

• --type=engine_name

Specify the storage engine that the tables should be converted to use. The default is MyISAM if this option is not given.

MySQL Enterprise
For expert advice on choosing the optimum storage engine, subscribe to the MySQL Enterprise Monitor. For
more information see http://www.mysql.com/products/enterprise/advisors.html.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose

Verbose mode. Print more information about what the program does.

• --version

Display version information and exit.

4.6.11. mysql_find_rows — Extract SQL Statements from Files
mysql_find_rows reads files containing SQL statements and extracts statements that match a given regular expression or that con-
tain USE db_name or SET statements. The utility was written for use with update log files, but it can be used with other files that con-
tain SQL statements.

Invoke mysql_find_rows like this:

MySQL Programs

282

http://www.mysql.com/products/enterprise/advisors.html


shell> mysql_find_rows [options] [file_name ...]

Each file_name argument should be the name of file containing SQL statements. If no filenames are given, mysql_find_rows
reads the standard input.

Examples:

mysql_find_rows --regexp=problem_table --rows=20 < update.log
mysql_find_rows --regexp=problem_table update-log.1 update-log.2

mysql_find_rows supports the following options:

• --help, --Information

Display a help message and exit.

• --regexp=pattern

Display queries that match the pattern.

• --rows=N

Quit after displaying N queries.

• --skip-use-db

Do not include USE db_name statements in the output.

• --start_row=N

Start output from this row.

4.6.12. mysql_fix_extensions — Normalize Table Filename Extensions
mysql_fix_extensions converts the extensions for MyISAM (or ISAM) table files to their canonical forms. It looks for files with
extensions matching any lettercase variant of .frm, .myd, .myi, .isd, and .ism and renames them to have extensions of .frm,
.MYD, .MYI, .ISD, and .ISM, respectively. This can be useful after transferring the files from a system with case-insensitive file-
names (such as Windows) to a system with case-sensitive filenames.

Invoke mysql_fix_extensions like this, where data_dir is the pathname to the MySQL data directory.

shell> mysql_fix_extensions data_dir

4.6.13. mysql_setpermission — Interactively Set Permissions in Grant Tables
mysql_setpermission is a Perl script that was originally written and contributed by Luuk de Boer. It interactively sets permis-
sions in the MySQL grant tables. mysql_setpermission is written in Perl and requires that the DBI and DBD::mysql Perl mod-
ules be installed (see Section 2.15, “Perl Installation Notes”).

Invoke mysql_setpermission like this:

shell> mysql_setpermission [options]

options should be either --help to display the help message, or options that indicate how to connect to the MySQL server. The ac-
count used when you connect determines which permissions you have when attempting to modify existing permissions in the grant
tables.

mysql_setpermissions also reads options from the [client] and [perl] groups in the .my.cnf file in your home direct-
ory, if the file exists.

mysql_setpermission understands the following options:

MySQL Programs

283



• --help

Display a help message and exit.

• --host=host_name

Connect to the MySQL server on the given host.

• --password=password

The password to use when connecting to the server. Note that the password value is not optional for this option, unlike for other
MySQL programs. You can use an option file to avoid giving the password on the command line.

Specifying a password on the command line should be considered insecure. See Section 5.5.6, “Keeping Your Password Secure”.

• --port=port_num

The TCP/IP port number to use for the connection.

• --socket=path

For connections to localhost, the Unix socket file to use.

• --user=user_name

The MySQL username to use when connecting to the server.

4.6.14. mysql_waitpid — Kill Process and Wait for Its Termination
mysql_waitpid signals a process to terminate and waits for the process to exit. It uses the kill() system call and Unix signals, so
it runs on Unix and Unix-like systems.

Invoke mysql_waitpid like this:

shell> mysql_waitpid [options] pid wait_time

mysql_waitpid sends signal 0 to the process identified by pid and waits up to wait_time seconds for the process to terminate.
pid and wait_time must be positive integers.

If process termination occurs within the wait time or the process does not exist, mysql_waitpid returns 0. Otherwise, it returns 1.

If the kill() system call cannot handle signal 0, mysql_waitpid() uses signal 1 instead.

mysql_waitpid understands the following options:

• --help, -?, -I

Display a help message and exit.

• --verbose, -v

Verbose mode. Display a warning if signal 0 could not be used and signal 1 is used instead.

• --version, -V

Display version information and exit.

4.6.15. mysql_zap — Kill Processes That Match a Pattern
mysql_zap kills processes that match a pattern. It uses the ps command and Unix signals, so it runs on Unix and Unix-like systems.

Invoke mysql_zap like this:

MySQL Programs

284



shell> mysql_zap [-signal] [-?Ift] pattern

A process matches if its output line from the ps command contains the pattern. By default, mysql_zap asks for confirmation for each
process. Respond y to kill the process, or q to exit mysql_zap. For any other response, mysql_zap does not attempt to kill the pro-
cess.

If the -signal option is given, it specifies the name or number of the signal to send to each process. Otherwise, mysql_zap tries
first with TERM (signal 15) and then with KILL (signal 9).

mysql_zap understands the following additional options:

• --help, -?, -I

Display a help message and exit.

• -f

Force mode. mysql_zap attempts to kill each process without confirmation.

• -t

Test mode. Display information about each process but do not kill it.

4.7. MySQL Program Development Utilities
This section describes some utilities that you may find useful when developing MySQL programs.

In shell scripts, you can use the my_print_defaults program to parse option files and see what options would be used by a given
program. The following example shows the output that my_print_defaults might produce when asked to show the options found
in the [client] and [mysql] groups:

shell> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash

Note for developers: Option file handling is implemented in the C client library simply by processing all options in the appropriate
group or groups before any command-line arguments. This works well for programs that use the last instance of an option that is spe-
cified multiple times. If you have a C or C++ program that handles multiply specified options this way but that doesn't read option files,
you need add only two lines to give it that capability. Check the source code of any of the standard MySQL clients to see how to do this.

Several other language interfaces to MySQL are based on the C client library, and some of them provide a way to access option file
contents. These include Perl and Python. For details, see the documentation for your preferred interface.

4.7.1. msql2mysql — Convert mSQL Programs for Use with MySQL
Initially, the MySQL C API was developed to be very similar to that for the mSQL database system. Because of this, mSQL programs
often can be converted relatively easily for use with MySQL by changing the names of the C API functions.

The msql2mysql utility performs the conversion of mSQL C API function calls to their MySQL equivalents. msql2mysql converts
the input file in place, so make a copy of the original before converting it. For example, use msql2mysql like this:

shell> cp client-prog.c client-prog.c.orig
shell> msql2mysql client-prog.c
client-prog.c converted

Then examine client-prog.c and make any post-conversion revisions that may be necessary.

msql2mysql uses the replace utility to make the function name substitutions. See Section 4.8.2, “replace — A String-
Replacement Utility”.

4.7.2. mysql_config — Get Compile Options for Compiling Clients

MySQL Programs

285



mysql_config provides you with useful information for compiling your MySQL client and connecting it to MySQL.

mysql_config supports the following options:

• --cflags

Compiler flags to find include files and critical compiler flags and defines used when compiling the libmysqlclient library.
The options returned are tied to the specific compiler that was used when the library was created and might clash with the settings
for your own compiler. Use --include for more portable options that contain only include paths.

• --include

Compiler options to find MySQL include files.

• --libmysqld-libs, --embedded

Libraries and options required to link with the MySQL embedded server.

• --libs

Libraries and options required to link with the MySQL client library.

• --libs_r

Libraries and options required to link with the thread-safe MySQL client library.

• --plugindir

The default plugin directory pathname, defined when configuring MySQL. This option was added in MySQL 5.1.24.

• --port

The default TCP/IP port number, defined when configuring MySQL.

• --socket

The default Unix socket file, defined when configuring MySQL.

• --version

Version number for the MySQL distribution.

If you invoke mysql_config with no options, it displays a list of all options that it supports, and their values:

shell> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [options]
Options:
--cflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
--include [-I/usr/local/mysql/include/mysql]
--libs [-L/usr/local/mysql/lib/mysql -lmysqlclient -lz

-lcrypt -lnsl -lm -L/usr/lib -lssl -lcrypto]
--libs_r [-L/usr/local/mysql/lib/mysql -lmysqlclient_r

-lpthread -lz -lcrypt -lnsl -lm -lpthread]
--socket [/tmp/mysql.sock]
--port [3306]
--version [4.0.16]
--libmysqld-libs [-L/usr/local/mysql/lib/mysql -lmysqld -lpthread -lz

-lcrypt -lnsl -lm -lpthread -lrt]

You can use mysql_config within a command line to include the value that it displays for a particular option. For example, to com-
pile a MySQL client program, use mysql_config as follows:

shell> CFG=/usr/local/mysql/bin/mysql_config
shell> sh -c "gcc -o progname `$CFG --include` progname.c `$CFG --libs`"

When you use mysql_config this way, be sure to invoke it within backtick (“`”) characters. That tells the shell to execute it and
substitute its output into the surrounding command.

MySQL Programs

286



4.7.3. my_print_defaults — Display Options from Option Files
my_print_defaults displays the options that are present in option groups of option files. The output indicates what options will be
used by programs that read the specified option groups. For example, the mysqlcheck program reads the [mysqlcheck] and
[client] option groups. To see what options are present in those groups in the standard option files, invoke my_print_defaults
like this:

shell> my_print_defaults mysqlcheck client
--user=myusername
--password=secret
--host=localhost

The output consists of options, one per line, in the form that they would be specified on the command line.

my_print_defaults understands the following options:

• --help, -?

Display a help message and exit.

• --config-file=file_name, --defaults-file=file_name, -c file_name

Read only the given option file.

• --debug=debug_options, -# debug_options

Write a debugging log. The debug_options string often is 'd:t:o,file_name'. The default is
'd:t:o,/tmp/my_print_defaults.trace'.

• --defaults-extra-file=file_name, --extra-file=file_name, -e file_name

Read this option file after the global option file but (on Unix) before the user option file.

• --defaults-group-suffix=suffix, -g suffix

In addition to the groups named on the command line, read groups that have the given suffix.

• --no-defaults, -n

Return an empty string.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

4.7.4. resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
resolve_stack_dump resolves a numeric stack dump to symbols.

Invoke resolve_stack_dump like this:

shell> resolve_stack_dump [options] symbols_file [numeric_dump_file]

The symbols file should include the output from the nm --numeric-sort mysqld command. The numeric dump file should con-
tain a numeric stack track from mysqld. If no numeric dump file is named on the command line, the stack trace is read from the stand-
ard input.

resolve_stack_dump understands the options described in the following list.

MySQL Programs

287



• --help, -h

Display a help message and exit.

• --numeric-dump-file=file_name, -n file_name

Read the stack trace from the given file.

• --symbols-file=file_name, -s file_name

Use the given symbols file.

• --version, -V

Display version information and exit.

4.8. Miscellaneous Programs

4.8.1. perror — Explain Error Codes
For most system errors, MySQL displays, in addition to an internal text message, the system error code in one of the following styles:

message ... (errno: #)
message ... (Errcode: #)

You can find out what the error code means by examining the documentation for your system or by using the perror utility.

perror prints a description for a system error code or for a storage engine (table handler) error code.

Invoke perror like this:

shell> perror [options] errorcode ...

Example:

shell> perror 13 64
OS error code 13: Permission denied
OS error code 64: Machine is not on the network

To obtain the error message for a MySQL Cluster error code, invoke perror with the --ndb option:

shell> perror --ndb errorcode

Note that the meaning of system error messages may be dependent on your operating system. A given error code may mean different
things on different operating systems.

perror supports the following options:

• --help, --info, -I, -?

Display a help message and exit.

• --ndb

Print the error message for a MySQL Cluster error code.

• --silent, -s

Silent mode. Print only the error message.

• --verbose, -v

MySQL Programs

288



Verbose mode. Print error code and message. This is the default behavior.

• --version, -V

Display version information and exit.

4.8.2. replace — A String-Replacement Utility
The replace utility program changes strings in place in files or on the standard input.

Invoke replace in one of the following ways:

shell> replace from to [from to] ... -- file_name [file_name] ...
shell> replace from to [from to] ... < file_name

from represents a string to look for and to represents its replacement. There can be one or more pairs of strings.

Use the -- option to indicate where the string-replacement list ends and the filenames begin. In this case, any file named on the com-
mand line is modified in place, so you may want to make a copy of the original before converting it. replace prints a message indic-
ating which of the input files it actually modifies.

If the -- option is not given, replace reads the standard input and writes to the standard output.

replace uses a finite state machine to match longer strings first. It can be used to swap strings. For example, the following command
swaps a and b in the given files, file1 and file2:

shell> replace a b b a -- file1 file2 ...

The replace program is used by msql2mysql. See Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with
MySQL”.

replace supports the following options:

• -?, -I

Display a help message and exit.

• -#debug_options

Enable debugging.

• -s

Silent mode. Print less information what the program does.

• -v

Verbose mode. Print more information about what the program does.

• -V

Display version information and exit.

4.8.3. resolveip — Resolve Hostname to IP Address or Vice Versa
The resolveip utility resolves hostnames to IP addresses and vice versa.

Invoke resolveip like this:

shell> resolveip [options] {host_name|ip-addr} ...

MySQL Programs

289



resolveip understands the options described in the following list.

• --help, -info, -?, -I

Display a help message and exit.

• --silent, -s

Silent mode. Produce less output.

• --version, -V

Display version information and exit.

MySQL Programs

290



Chapter 5. MySQL Server Administration
MySQL Server (mysqld) is the main program that does most of the work in a MySQL installation. This section provides an overview
of MySQL Server and covers topics that deal with administering a MySQL installation:

• Configuring the server

• The server log files

• Managing user accounts

5.1. The MySQL Server
mysqld is the MySQL server. The following discussion covers these MySQL server configuration topics:

• Startup options that the server supports

• Server system variables

• Server status variables

• How to set the server SQL mode

• The server shutdown process

Note

Not all storage engines are supported by all MySQL server binaries and configurations. To find out how to determine
which storage engines are supported by your MySQL server installation, see Section 12.5.4.14, “SHOW ENGINES Syn-
tax”.

5.1.1. Option and Variable Reference
The following table provides a list of all the command line options, server and status variables applicable within mysqld.

The table lists command line options (Cmd-line), options valid in configuration files (Option file), server system variables (System
Var), and status variables (Status var) in one unified list, with notification of where each option/variable is valid. If a server option set
on the command line or in an option file differs from the name of the corresponding server system or status variable, the variable name
is noted immediately below the corresponding option. For status variables, the scope of the variable is shown (Scope) as either global,
session, or both. Please see the corresponding sections for details on setting and using the options and variables. Where appropriate, a
direct link to further information on the item as available.

Note

This table is part of an ongoing process to expand and simplify the information provided on these elements. Further im-
provements to the table, and corresponding descriptions will be applied over the coming months.

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Aborted_clients Yes Both No

Aborted_connects Yes Both No

abort-slave-event-count Yes Yes

allow-suspicious-udfs Yes Yes

ansi Yes Yes

autocommit Yes Yes Yes Session Yes

auto-increment-increment Yes Yes Both Yes

- Variable: auto_increment_increment Yes Both Yes

291



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

auto-increment-offset Yes Yes Both Yes

- Variable: auto_increment_offset Yes Both Yes

automatic_sp_privileges Yes Global Yes

back_log Yes Yes Yes Global No

basedir Yes Yes Yes Global No

big-tables Yes Yes Session Yes

- Variable: big_tables Yes Session Yes

bind-address Yes Yes

Binlog_cache_disk_use Yes Both No

binlog_cache_size Yes Yes Yes Global Yes

Binlog_cache_use Yes Both No

binlog-do-db Yes Yes

binlog-format Yes Yes Both Yes

- Variable: binlog_format Yes Both Yes

binlog-ignore-db Yes Yes

binlog-row-event-max-size Yes Yes

bootstrap Yes Yes

bulk_insert_buffer_size Yes Yes Yes Both Yes

Bytes_received Yes Both No

Bytes_sent Yes Both No

character_set_client Yes Both Yes

character-set-client-handshake Yes

character_set_connection Yes Both Yes

character_set_database Yes Both Yes

character-set-filesystem Yes Yes Both Yes

- Variable: character_set_filesystem Yes Both Yes

character_set_results Yes Both Yes

character-sets-dir Yes Yes Global No

- Variable: character_sets_dir Yes Global No

character-set-server Yes Yes Both Yes

- Variable: character_set_server Yes Both Yes

character_set_system Yes Global No

chroot Yes Yes

collation_connection Yes Both Yes

collation_database Yes Both Yes

collation-server Yes Yes Both Yes

- Variable: collation_server Yes Both Yes

Com_admin_commands Yes Both No

Com_alter_db Yes Both No

Com_alter_event Yes Both No

Com_alter_table Yes Both No

Com_analyze Yes Both No

Com_backup_table Yes Both No

Com_begin Yes Both No

MySQL Server Administration

292



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Com_call_procedure Yes Both No

Com_change_db Yes Both No

Com_change_master Yes Both No

Com_check Yes Both No

Com_checksum Yes Both No

Com_commit Yes Both No

Com_create_db Yes Both No

Com_create_event Yes Both No

Com_create_function Yes Both No

Com_create_index Yes Both No

Com_create_table Yes Both No

Com_create_user Yes Both No

Com_dealloc_sql Yes Both No

Com_delete Yes Both No

Com_delete_multi Yes Both No

Com_do Yes Both No

Com_drop_db Yes Both No

Com_drop_event Yes Both No

Com_drop_function Yes Both No

Com_drop_index Yes Both No

Com_drop_table Yes Both No

Com_drop_user Yes Both No

Com_execute_sql Yes Both No

Com_flush Yes Both No

Com_grant Yes Both No

Com_ha_close Yes Both No

Com_ha_open Yes Both No

Com_ha_read Yes Both No

Com_help Yes Both No

Com_insert Yes Both No

Com_insert_select Yes Both No

Com_kill Yes Both No

Com_load Yes Both No

Com_lock_tables Yes Both No

Com_optimize Yes Both No

completion_type Yes Yes Yes Both Yes

Com_preload_keys Yes Both No

Com_prepare_sql Yes Both No

Compression Yes Both No

Com_purge Yes Both No

Com_purge_before_date Yes Both No

Com_rename_table Yes Both No

Com_repair Yes Both No

Com_replace Yes Both No

MySQL Server Administration

293



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Com_replace_select Yes Both No

Com_reset Yes Both No

Com_restore_table Yes Both No

Com_revoke Yes Both No

Com_revoke_all Yes Both No

Com_rollback Yes Both No

Com_savepoint Yes Both No

Com_select Yes Both No

Com_set_option Yes Both No

Com_show_binlog_events Yes Both No

Com_show_binlogs Yes Both No

Com_show_charsets Yes Both No

Com_show_collations Yes Both No

Com_show_column_types Yes Both No

Com_show_create_db Yes Both No

Com_show_create_event Yes Both No

Com_show_create_table Yes Both No

Com_show_databases Yes Both No

Com_show_engine_logs Yes Both No

Com_show_engine_mutex Yes Both No

Com_show_engine_status Yes Both No

Com_show_errors Yes Both No

Com_show_events Yes Both No

Com_show_fields Yes Both No

Com_show_grants Yes Both No

Com_show_innodb_status Yes Both No

Com_show_keys Yes Both No

Com_show_logs Yes Both No

Com_show_master_status Yes Both No

Com_show_ndb_status Yes Both No

Com_show_new_master Yes Both No

Com_show_open_tables Yes Both No

Com_show_plugins Yes Both No

Com_show_privileges Yes Both No

Com_show_processlist Yes Both No

Com_show_slave_hosts Yes Both No

Com_show_slave_status Yes Both No

Com_show_status Yes Both No

Com_show_storage_engines Yes Both No

Com_show_tables Yes Both No

Com_show_triggers Yes Both No

Com_show_variables Yes Both No

Com_show_warnings Yes Both No

Com_slave_start Yes Both No

MySQL Server Administration

294



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Com_slave_stop Yes Both No

Com_stmt_close Yes Both No

Com_stmt_execute Yes Both No

Com_stmt_fetch Yes Both No

Com_stmt_prepare Yes Both No

Com_stmt_reset Yes Both No

Com_stmt_send_long_data Yes Both No

Com_truncate Yes Both No

Com_unlock_tables Yes Both No

Com_update Yes Both No

Com_update_multi Yes Both No

Com_xa_commit Yes Both No

Com_xa_end Yes Both No

Com_xa_prepare Yes Both No

Com_xa_recover Yes Both No

Com_xa_rollback Yes Both No

Com_xa_start Yes Both No

concurrent_insert Yes Yes Yes Global Yes

Connections Yes Both No

connect_timeout Yes Yes Yes Global Yes

console Yes Yes

core-file Yes Yes

Created_tmp_disk_tables Yes Both No

Created_tmp_files Yes Both No

Created_tmp_tables Yes Both No

datadir Yes Yes Yes Global No

date_format Yes Yes Yes Both Yes

datetime_format Yes Yes Yes Both Yes

debug Yes Yes Yes Both Yes

defaults-extra-file Yes

defaults-file Yes

defaults-group-suffix Yes

default-storage-engine Yes Yes

default-table-type Yes Yes

default-time-zone Yes Yes

default_week_format Yes Yes Yes Both Yes

Delayed_errors Yes Both No

delayed_insert_limit Yes Yes Yes Global Yes

Delayed_insert_threads Yes Both No

delayed_insert_timeout Yes Yes Yes Global Yes

delayed_queue_size Yes Yes Yes Global Yes

Delayed_writes Yes Both No

delay-key-write Yes Yes Global Yes

- Variable: delay_key_write Yes Global Yes

MySQL Server Administration

295



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

des-key-file Yes Yes

disconnect-slave-event-count Yes Yes

div_precision_increment Yes Yes Yes Both Yes

enable-locking Yes

enable-named-pipe Yes Yes

enable-pstack Yes Yes

engine_condition_pushdown Yes Yes Yes Both Yes

error_count Yes Session No

event-scheduler Yes Yes Yes Global Yes

exit-info Yes Yes

expire_logs_days Yes Yes Yes Global Yes

external-locking Yes Yes

- Variable: external_locking

flush Yes Yes Yes Global Yes

Flush_commands Yes Both No

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Yes Session Yes

ft_boolean_syntax Yes Yes Yes Global Yes

ft_max_word_len Yes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limit Yes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

gdb Yes Yes

general-log Yes Yes Global Yes

- Variable: general_log Yes Global Yes

general_log_file Yes Global Yes

group_concat_max_len Yes Yes Yes Both Yes

Handler_commit Yes Both No

Handler_delete Yes Both No

Handler_discover Yes Both No

Handler_prepare Yes Both No

Handler_read_first Yes Both No

Handler_read_key Yes Both No

Handler_read_next Yes Both No

Handler_read_prev Yes Both No

Handler_read_rnd Yes Both No

Handler_read_rnd_next Yes Both No

Handler_rollback Yes Both No

Handler_savepoint Yes Both No

Handler_savepoint_rollback Yes Both No

Handler_update Yes Both No

Handler_write Yes Both No

have_archive Yes Global No

have_blackhole_engine Yes Global No

MySQL Server Administration

296



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

have_compress Yes Global No

have_crypt Yes Global No

have_csv Yes Global No

have_dynamic_loading Yes Global No

have_example_engine Yes Global No

have_federated_engine Yes Global No

have_geometry Yes Global No

have_innodb Yes Global No

have_isam Yes Global No

have_merge_engine Yes Global No

have_ndbcluster Yes Global No

have_openssl Yes Global No

have_partitioning Yes Global No

have_query_cache Yes Global No

have_raid Yes Global No

have_row_based_replication Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_symlink Yes Global No

help Yes

hostname Yes Global No

identity Yes Yes Yes Session Yes

init_connect Yes Yes Yes Global Yes

init-file Yes Yes Global No

- Variable: init_file Yes Global No

init_slave Yes Yes Yes Global Yes

innodb Yes Yes

innodb_adaptive_hash_index Yes Yes Yes Global No

innodb_additional_mem_pool_size Yes Yes Yes Global No

innodb_autoextend_increment Yes Yes Yes Global Yes

innodb_autoinc_lock_mode Yes Yes Yes Global No

innodb_buffer_pool_awe_mem_mb Yes Yes Yes Global No

Innodb_buffer_pool_pages_data Yes Both No

Innodb_buffer_pool_pages_dirty Yes Both No

Innodb_buffer_pool_pages_flushed Yes Both No

Innodb_buffer_pool_pages_free Yes Both No

Innodb_buffer_pool_pages_latched Yes Both No

Innodb_buffer_pool_pages_misc Yes Both No

Innodb_buffer_pool_pages_total Yes Both No

Innodb_buffer_pool_read_ahead_rnd Yes Both No

Innodb_buffer_pool_read_ahead_seq Yes Both No

Innodb_buffer_pool_read_requests Yes Both No

Innodb_buffer_pool_reads Yes Both No

innodb_buffer_pool_size Yes Yes Yes Global No

MySQL Server Administration

297



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Innodb_buffer_pool_wait_free Yes Both No

Innodb_buffer_pool_write_requests Yes Both No

innodb_checksums Yes Yes Yes Global No

innodb_commit_concurrency Yes Yes Yes Global Yes

innodb_concurrency_tickets Yes Yes Yes Global Yes

innodb_data_file_path Yes Yes Yes Global No

Innodb_data_fsyncs Yes Both No

innodb_data_home_dir Yes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Both No

Innodb_data_pending_reads Yes Both No

Innodb_data_pending_writes Yes Both No

Innodb_data_read Yes Both No

Innodb_data_reads Yes Both No

Innodb_data_writes Yes Both No

Innodb_data_written Yes Both No

Innodb_dblwr_pages_written Yes Both No

Innodb_dblwr_writes Yes Both No

innodb_doublewrite Yes Yes Yes Global No

innodb_fast_shutdown Yes Yes Yes Global Yes

innodb_file_io_threads Yes Yes Yes Global No

innodb_file_per_table Yes Yes Yes Global No

innodb_flush_log_at_trx_commit Yes Yes Yes Global Yes

innodb_flush_method Yes Yes Yes Global No

innodb_force_recovery Yes Yes Yes Global No

innodb_locks_unsafe_for_binlog Yes Yes Yes Global No

innodb_lock_wait_timeout Yes Yes Yes Global No

innodb_log_arch_dir Yes Yes Yes Global No

innodb_log_archive Yes Yes Yes Global No

innodb_log_buffer_size Yes Yes Yes Global No

innodb_log_files_in_group Yes Yes Yes Global No

innodb_log_file_size Yes Yes Yes Global No

innodb_log_group_home_dir Yes Yes Yes Global No

Innodb_log_waits Yes Both No

Innodb_log_write_requests Yes Both No

Innodb_log_writes Yes Both No

innodb_max_dirty_pages_pct Yes Yes Yes Global Yes

innodb_max_purge_lag Yes Yes Yes Global Yes

innodb_mirrored_log_groups Yes Yes Yes Global No

innodb_open_files Yes Yes Yes Global No

Innodb_os_log_fsyncs Yes Both No

Innodb_os_log_pending_fsyncs Yes Both No

Innodb_os_log_pending_writes Yes Both No

Innodb_os_log_written Yes Both No

Innodb_pages_created Yes Both No

MySQL Server Administration

298



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Innodb_page_size Yes Both No

Innodb_pages_read Yes Both No

Innodb_pages_written Yes Both No

innodb_rollback_on_timeout Yes Yes Yes Global No

Innodb_row_lock_current_waits Yes Both No

Innodb_row_lock_time Yes Both No

Innodb_row_lock_time_avg Yes Both No

Innodb_row_lock_time_max Yes Both No

Innodb_row_lock_waits Yes Both No

Innodb_rows_deleted Yes Both No

Innodb_rows_inserted Yes Both No

Innodb_rows_read Yes Both No

Innodb_rows_updated Yes Both No

innodb_stats_on_metadata Yes Yes Yes Global No

innodb_status_file Yes Yes Yes Global No

innodb_support_xa Yes Yes Yes Both Yes

innodb_sync_spin_loops Yes Yes Yes Global Yes

innodb_table_locks Yes Yes Yes Both Yes

innodb_thread_concurrency Yes Yes Yes Global Yes

innodb_thread_sleep_delay Yes Yes Yes Global Yes

insert_id Yes Yes Yes Session Yes

interactive_timeout Yes Yes Yes Both Yes

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_create Yes Yes Yes Both Yes

Key_blocks_not_flushed Yes Both No

Key_blocks_unused Yes Both No

Key_blocks_used Yes Both No

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_threshold Yes Yes Yes Global Yes

key_cache_block_size Yes Yes Yes Global Yes

key_cache_division_limit Yes Yes Yes Global Yes

Key_read_requests Yes Both No

Key_reads Yes Both No

Key_write_requests Yes Both No

Key_writes Yes Both No

language Yes Yes Yes Global No

large-pages Yes Yes Global No

- Variable: large_pages Yes Global No

large_page_size Yes Global No

last_insert_id Yes Yes Yes Session Yes

Last_query_cost Yes Both No

lc_time_names Yes Both Yes

license Yes Global No

local_infile Yes Global Yes

MySQL Server Administration

299



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

local-infile Yes Yes

locked_in_memory Yes Global No

log Yes Yes Yes Global Yes

log_bin Yes Global No

log-bin Yes Yes

log-bin-index Yes Yes

log-bin-trust-function-creators Yes Yes Global Yes

- Variable: log_bin_trust_function_creators Yes Global Yes

log-bin-trust-routine-creators Yes Yes Global Yes

- Variable: log_bin_trust_routine_creators Yes Global Yes

log-error Yes Yes Global No

- Variable: log_error Yes Global No

log-isam Yes Yes

log-output Yes Yes Global Yes

- Variable: log_output Yes Global Yes

log-queries-not-using-indexes Yes Yes Global No

- Variable: log_queries_not_using_indexes Yes Global No

log-short-format Yes Yes

log-slave-updates Yes Yes Global No

- Variable: log_slave_updates Yes Global No

log-slow-admin-statements Yes Yes

log-slow-queries Yes Yes Global Yes

- Variable: log_slow_queries Yes Global Yes

log-slow-slave-statements Yes Yes

log-tc Yes Yes

log-tc-size Yes Yes

log-warnings Yes Yes Both Yes

- Variable: log_warnings Yes Both Yes

long_query_time Yes Yes Yes Both Yes

lower_case_file_system Yes Yes Yes Global No

lower_case_table_names Yes Yes Yes Global No

low-priority-updates Yes Yes Both Yes

- Variable: low_priority_updates Yes Both Yes

master-bind Yes Yes Yes No

master-connect-retry Yes Yes

master-host Yes Yes

master-info-file Yes Yes

master-password Yes Yes

master-port Yes Yes

master-retry-count Yes Yes

master-ssl Yes Yes

master-ssl-ca Yes Yes

master-ssl-capath Yes Yes

master-ssl-cert Yes Yes

MySQL Server Administration

300



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

master-ssl-cipher Yes Yes

master-ssl-key Yes Yes

master-user Yes Yes

max_allowed_packet Yes Yes Yes Both Yes

max_binlog_cache_size Yes Yes Yes Global Yes

max-binlog-dump-events Yes Yes

max_binlog_size Yes Yes Yes Global Yes

max_connect_errors Yes Yes Yes Global Yes

max_connections Yes Yes Yes Global Yes

max_delayed_threads Yes Yes Yes Both Yes

max_error_count Yes Yes Yes Both Yes

max_heap_table_size Yes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_data Yes Yes Yes Both Yes

max_prepared_stmt_count Yes Yes Yes Global Yes

max_relay_log_size Yes Yes Yes Global Yes

max_seeks_for_key Yes Yes Yes Both Yes

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depth Yes Yes Yes Both Yes

max_tmp_tables Yes Yes Yes Both Yes

Max_used_connections Yes Both No

max_user_connections Yes Yes Yes Both Yes

max_write_lock_count Yes Yes Yes Global Yes

memlock Yes Yes Yes Global No

merge Yes Yes

min-examined-row-limit Yes Yes Yes Both Yes

multi_range_count Yes Yes Yes Both Yes

myisam_block_size Yes Yes Yes Both Yes

myisam_data_pointer_size Yes Yes Yes Global Yes

myisam_max_sort_file_size Yes Yes Yes Global Yes

myisam-recover Yes Yes

myisam_recover_options Yes Global No

myisam_repair_threads Yes Yes Yes Both Yes

myisam_sort_buffer_size Yes Yes Yes Both Yes

myisam_stats_method Yes Yes Yes Both Yes

myisam_use_mmap Yes Yes Yes Global No

named_pipe Yes Global No

ndb_autoincrement_prefetch_sz Yes Yes Yes Both Yes

ndb-batch-size Yes Yes

ndb_cache_check_time Yes Yes Yes Global Yes

ndbcluster Yes Yes Yes Both Yes

ndb-cluster-connection-pool Yes Yes Yes Global No

Ndb_cluster_node_id Yes Both No

MySQL Server Administration

301



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Ndb_config_from_host Yes Both No

Ndb_config_from_port Yes Both No

Ndb_conflict_fn_max Yes Both No

Ndb_conflict_fn_old Yes Both No

ndb-connectstring Yes Yes

ndb_execute_count Yes Global No

ndb_extra_logging Yes Yes Yes Global Yes

ndb_force_send Yes Yes Yes Both Yes

ndb_index_stat_cache_entries Yes Yes

ndb_index_stat_enable Yes Yes

ndb_index_stat_update_freq Yes Yes

ndb_log_orig Yes Global No

ndb_log_update_as_write Yes Yes Yes Global Yes

ndb_log_updated_only Yes Yes Yes Global Yes

Ndb_number_of_data_nodes Yes Both No

ndb_optimization_delay Yes Global Yes

ndb_optimized_node_selection Yes Yes

ndb_report_thresh_binlog_epoch_slip Yes Yes

ndb_report_thresh_binlog_mem_usage Yes Yes

ndb_table_no_logging Yes Session Yes

ndb_table_temporary Yes Session Yes

ndb_use_copying_alter_table Yes Both No

ndb_use_exact_count Yes Both Yes

ndb_use_transactions Yes Yes

ndb_wait_connected Yes Yes Yes No

net_buffer_length Yes Yes Yes Both Yes

net_read_timeout Yes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeout Yes Yes Yes Both Yes

new Yes Yes Yes Both Yes

no-defaults Yes

Not_flushed_delayed_rows Yes Both No

old Yes Yes Yes Global No

old-alter-table Yes Yes

old-passwords Yes Yes Both Yes

- Variable: old_passwords Yes Both Yes

old-style-user-limits Yes Yes

one-thread Yes Yes

Opened_files Yes Global No

Opened_tables Yes Both No

Open_files Yes Both No

open-files-limit Yes Yes Global No

- Variable: open_files_limit Yes Global No

Open_streams Yes Both No

MySQL Server Administration

302



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Open_table_definitions Yes Both No

Open_tables Yes Both No

optimizer_prune_level Yes Yes Yes Both Yes

optimizer_search_depth Yes Yes Yes Both Yes

pid-file Yes Yes Global No

- Variable: pid_file Yes Global No

plugin_dir Yes Yes Yes Global No

plugin-innodb Yes Yes

plugin_innodb_additional_mem_pool_size Yes Yes Yes Both No

plugin_innodb_autoextend_increment Yes Yes Yes Both Yes

plugin_innodb_buffer_pool_awe_mem_mb Yes Yes Both No

- Variable: innodb_buffer_pool_awe_mem_mb Yes Both No

plugin_innodb_buffer_pool_size Yes Yes Yes Both No

plugin_innodb_checksums Yes Yes Yes Both Yes

plugin_innodb_commit_concurrency Yes Yes Yes Global Yes

plugin_innodb_concurrency_tickets Yes Yes Yes Global Yes

plugin_innodb_data_file_path Yes Yes Yes Global No

plugin_innodb_data_home_dir Yes Yes Yes Global No

plugin-innodb-doublewrite Yes Yes Global No

- Variable: plugin_innodb_doublewrite Yes Global No

plugin_innodb_fast_shutdown Yes Yes Yes Global No

plugin_innodb_file_io_threads Yes Yes Yes Global No

plugin_innodb_file_per_table Yes Yes Yes Global No

plugin_innodb_flush_log_at_trx_commit Yes Yes Yes Global Yes

plugin_innodb_flush_method Yes Yes Yes Global No

plugin_innodb_force_recovery Yes Yes Yes Global No

plugin_innodb_locks_unsafe_for_binlog Yes Yes Yes Global No

plugin_innodb_lock_wait_timeout Yes Yes Yes Global No

plugin_innodb_log_archive Yes Yes Yes Global No

plugin_innodb_log_buffer_size Yes Yes Yes Global No

plugin_innodb_log_files_in_group Yes Yes Yes Global No

plugin_innodb_log_file_size Yes Yes Yes Global No

plugin_innodb_log_group_home_dir Yes Yes Yes Global No

plugin_innodb_max_dirty_pages_pct Yes Yes Yes Global Yes

plugin_innodb_max_purge_lag Yes Yes Yes Global Yes

plugin_innodb_mirrored_log_groups Yes Yes Yes Global No

plugin_innodb_open_files Yes Yes Yes Global No

plugin_innodb_rollback_on_timeout Yes Yes Yes No

plugin_innodb_stats_on_metadata Yes Yes Yes No

plugin_innodb_status_file Yes Yes Yes No

plugin_innodb_support_xa Yes Yes Yes Both Yes

plugin_innodb_sync_spin_loops Yes Yes Yes Global Yes

plugin_innodb_table_locks Yes Yes Yes Both Yes

plugin_innodb_thread_concurrency Yes Yes Yes Global Yes

MySQL Server Administration

303



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

plugin_innodb_thread_sleep_delay Yes Yes Yes Global Yes

port Yes Yes Yes Global No

port-open-timeout Yes Yes

preload_buffer_size Yes Yes Yes Both Yes

prepared_stmt_count Yes Yes Global No

print-defaults Yes

protocol_version Yes Global No

Qcache_free_blocks Yes Both No

Qcache_free_memory Yes Both No

Qcache_hits Yes Both No

Qcache_inserts Yes Both No

Qcache_lowmem_prunes Yes Both No

Qcache_not_cached Yes Both No

Qcache_queries_in_cache Yes Both No

Qcache_total_blocks Yes Both No

query_alloc_block_size Yes Yes Yes Both Yes

query_cache_limit Yes Yes Yes Global Yes

query_cache_min_res_unit Yes Yes Yes Global Yes

query_cache_size Yes Yes Yes Global Yes

query_cache_type Yes Yes Yes Both Yes

query_cache_wlock_invalidate Yes Yes Yes Both Yes

query_prealloc_size Yes Yes Yes Both Yes

Questions Yes Both No

range_alloc_block_size Yes Yes Yes Both Yes

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_size Yes Yes Yes Both Yes

relay-log Yes Yes

relay-log-index Yes Yes

relay-log-info-file Yes Yes

relay_log_purge Yes Yes Yes Global Yes

relay_log_space_limit Yes Yes Yes Global No

replicate-do-db Yes Yes

replicate-do-table Yes Yes

replicate-ignore-db Yes Yes

replicate-ignore-table Yes Yes

replicate-rewrite-db Yes Yes

replicate-same-server-id Yes Yes

replicate-wild-do-table Yes Yes

replicate-wild-ignore-table Yes Yes

report-host Yes Yes

report-password Yes Yes Global No

- Variable: report_password Yes Global No

report-port Yes Yes

MySQL Server Administration

304



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

report-user Yes Yes

rpl_recovery_rank Yes Global Yes

Rpl_status Yes Both No

safemalloc-mem-limit Yes Yes

safe-mode Yes Yes

safe-user-create Yes Yes

secure-auth Yes Yes Global Yes

- Variable: secure_auth Yes Global Yes

secure-file-priv Yes Yes Global No

- Variable: secure_file_priv Yes Global No

Select_full_join Yes Both No

Select_full_range_join Yes Both No

Select_range Yes Both No

Select_range_check Yes Both No

Select_scan Yes Both No

server-id Yes Yes Global Yes

- Variable: server_id Yes Global Yes

shared_memory Yes Global No

shared_memory_base_name Yes Global No

show-slave-auth-info Yes Yes

skip-automatic_sp_privileges Yes Yes

skip-character-set-client-handshake Yes Yes

skip-concurrent-insert Yes Yes

- Variable: skip-concurrent_insert

skip-external-locking Yes Yes Global No

- Variable: skip_external_locking Yes Global No

skip-grant-tables Yes Yes

skip-host-cache Yes Yes

skip-innodb Yes Yes

skip-innodb-checksums Yes Yes

skip-locking Yes Yes

skip-log-warnings Yes

skip-merge Yes Yes

- Variable:

skip-name-resolve Yes Yes

skip-ndbcluster Yes Yes

skip-networking Yes Yes Global No

- Variable: skip_networking Yes Global No

skip-new Yes Yes

skip-plugin-innodb Yes Yes

skip-plugin-innodb-checksums Yes Yes

skip-safemalloc Yes Yes

skip-show-database Yes Yes Global No

- Variable: skip_show_database Yes Global No

MySQL Server Administration

305



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

skip-slave-start Yes Yes

skip-ssl Yes Yes

skip-stack-trace Yes Yes

skip-symbolic-links Yes

skip-symlink Yes Yes

skip-thread-priority Yes Yes

slave-allow-batching Yes Global Yes

- Variable: slave_allow_batching Yes Global Yes

slave_compressed_protocol Yes Yes Yes Global Yes

slave_exec_mode Yes Global Yes

Slave_heartbeat_period Yes Global No

slave-load-tmpdir Yes Yes Global No

- Variable: slave_load_tmpdir Yes Global No

slave-net-timeout Yes Yes Global Yes

- Variable: slave_net_timeout Yes Global Yes

Slave_open_temp_tables Yes Both No

Slave_received_heartbeats Yes Global No

Slave_retried_transactions Yes Both No

Slave_running Yes Both No

slave-skip-errors Yes Yes Global No

- Variable: slave_skip_errors Yes Global No

slave_transaction_retries Yes Yes Yes Global Yes

Slow_launch_threads Yes Both No

slow_launch_time Yes Yes Yes Global Yes

Slow_queries Yes Both No

slow-query-log Yes Yes Global Yes

- Variable: slow_query_log Yes Global Yes

slow_query_log_file Yes Global Yes

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

Sort_merge_passes Yes Both No

Sort_range Yes Both No

Sort_rows Yes Both No

Sort_scan Yes Both No

sporadic-binlog-dump-fail Yes Yes

sql_auto_is_null Yes Yes Yes Session No

sql_big_selects Yes Yes Yes Session Yes

sql_big_tables Yes Session Yes

sql_buffer_result Yes Yes Yes Session Yes

sql_log_bin Yes Yes Yes Session Yes

sql_log_off Yes Yes Yes Session Yes

sql_log_update Yes Yes Yes Session Yes

sql_low_priority_updates Yes Both Yes

sql_max_join_size Yes Both Yes

MySQL Server Administration

306



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

sql-mode Yes Yes Both Yes

- Variable: sql_mode Yes Both Yes

sql_notes Yes Session Yes

sql_quote_show_create Yes Yes Yes Session Yes

sql_safe_updates Yes Yes Yes Session Yes

sql_select_limit Yes Yes Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Session Yes

ssl Yes Yes

ssl-ca Yes Yes Global No

- Variable: ssl_ca Yes Global No

ssl-capath Yes Yes Global No

- Variable: ssl_capath Yes Global No

ssl-cert Yes Yes Global No

- Variable: ssl_cert Yes Global No

ssl-cipher Yes Yes Global No

- Variable: ssl_cipher Yes Global No

ssl-key Yes Yes Global No

- Variable: ssl_key Yes Global No

standalone Yes Yes

storage_engine Yes Both Yes

symbolic-links Yes Yes

sync-binlog Yes Yes Global Yes

- Variable: sync_binlog Yes Global Yes

sync-frm Yes Yes Global Yes

- Variable: sync_frm Yes Global Yes

sysdate-is-now Yes Yes

system_time_zone Yes Global No

table_cache Yes Yes Yes Global Yes

table_definition_cache Yes Yes Yes Global Yes

Table_locks_immediate Yes Both No

Table_locks_waited Yes Both No

table_lock_wait_timeout Yes Yes Yes Global Yes

table_open_cache Yes Yes Global Yes

table_type Yes Both Yes

tc-heuristic-recover Yes Yes

Tc_log_max_pages_used Yes Both No

Tc_log_page_size Yes Both No

Tc_log_page_waits Yes Both No

temp-pool Yes Yes

thread_cache_size Yes Yes Yes Global Yes

thread_concurrency Yes Yes Yes Global No

thread_handling Yes Yes Yes Global No

Threads_cached Yes Both No

MySQL Server Administration

307



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Threads_connected Yes Both No

Threads_created Yes Both No

Threads_running Yes Both No

thread_stack Yes Yes Yes Global No

timed_mutexes Yes Yes Yes Global Yes

time_format Yes Yes Yes Both Yes

timestamp Yes Yes Yes Session Yes

time_zone Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

tmp_table_size Yes Yes Yes Both Yes

transaction_alloc_block_size Yes Yes Yes Both Yes

transaction_allow_batching Yes Session Yes

transaction-isolation Yes Yes

transaction_prealloc_size Yes Yes Yes Both Yes

tx_isolation Yes Both Yes

unique_checks Yes Yes Yes Session Yes

updatable_views_with_limit Yes Yes Yes Both Yes

Uptime Yes Both No

Uptime_since_flush_status Yes Both No

user Yes Yes

use-symbolic-links Yes Yes

verbose Yes

version Yes Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No

5.1.2. Command Options
When you start the mysqld server, you can specify program options using any of the methods described in Section 4.2.2, “Specifying
Program Options”. The most common methods are to provide options in an option file or on the command line. However, in most cases
it is desirable to make sure that the server uses the same options each time it runs. The best way to ensure this is to list them in an option
file. See Section 4.2.2.2, “Using Option Files”.

MySQL Enterprise
For expert advice on setting command options, subscribe to the MySQL Enterprise Monitor. For more informa-
tion see http://www.mysql.com/products/enterprise/advisors.html.

mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options from the [mysqld], [server],
[mysqld_safe], and [safe_mysqld] groups. mysql.server reads options from the [mysqld] and [mysql.server]
groups.

An embedded MySQL server usually reads options from the [server], [embedded], and [xxxxx_SERVER] groups, where
xxxxx is the name of the application into which the server is embedded.

mysqld accepts many command options. For a brief summary, execute mysqld --help. To see the full list, use mysqld -
-verbose --help.

MySQL Server Administration

308

http://www.mysql.com/products/enterprise/advisors.html


The following list shows some of the most common server options. Additional options are described in other sections:

• Options that affect security: See Section 5.3.3, “Security-Related mysqld Options”.

• SSL-related options: See Section 5.5.7.3, “SSL Command Options”.

• Binary log control options: See Section 5.2.4, “The Binary Log”.

• Replication-related options: See Section 16.1.3, “Replication Options and Variables”.

• Options specific to particular storage engines: See Section 13.4.1, “MyISAM Startup Options”, Section 13.5.4, “InnoDB Startup
Options and System Variables”, and Section 17.5.2, “MySQL Cluster-Related Command Options for mysqld”.

You can also set the values of server system variables by using variable names as options, as described at the end of this section.

• --help, -?

Display a short help message and exit. Use both the --verbose and --help options to see the full message.

• --abort-slave-event-count

Value Set Type numeric

Default 0

Min Value 0

When this option is set to some positive integer value other than 0 (the default) it affects replication behavior as follows: After the
slave SQL thread has started, value log events are allowed to be executed; after that, the slave SQL thread does not receive any
more events, just as if the network connection from the master were cut. The slave thread continues to run, and the output from
SHOW SLAVE STATUS displays Yes in both the Slave_IO_Running and the Slave_SQL_Running columns, but no fur-
ther events are read from the relay log.

This option is used internally by the MySQL test suite for replication testing and debugging. It is not intended for use in a produc-
tion setting.

• --allow-suspicious-udfs

Value Set Type boolean

Default FALSE

This option controls whether user-defined functions that have only an xxx symbol for the main function can be loaded. By default,
the option is off and only UDFs that have at least one auxiliary symbol can be loaded; this prevents attempts at loading functions
from shared object files other than those containing legitimate UDFs. See Section 29.3.4.6, “User-Defined Function Security Pre-
cautions”.

• --ansi

Use standard (ANSI) SQL syntax instead of MySQL syntax. For more precise control over the server SQL mode, use the -
-sql-mode option instead. See Section 1.8.3, “Running MySQL in ANSI Mode”, and Section 5.1.6, “SQL Modes”.

• --basedir=path, -b path

Option Sets Variable Yes, basedir

Variable Name basedir

Variable Scope Global

Dynamic Variable No

Value Set Type filename

MySQL Server Administration

309



The path to the MySQL installation directory. All paths are usually resolved relative to this directory.

• --big-tables

Option Sets Variable Yes, big_tables

Variable Name big-tables

Variable Scope Session

Dynamic Variable Yes

Value Set Type boolean

Allow large result sets by saving all temporary sets in files. This option prevents most “table full” errors, but also slows down quer-
ies for which in-memory tables would suffice. Since MySQL 3.23.2, the server is able to handle large result sets automatically by
using memory for small temporary tables and switching to disk tables where necessary.

• --bind-address=IP

Value Set Type string

The IP address to bind to. Only one address can be selected. If this option is specified multiple times, the last address given is used.

• --binlog-format={row|statement|mixed}

Version Introduced 5.1.5

Option Sets Variable Yes, binlog_format

Variable Name binlog_format

Variable Scope Both

Dynamic Variable Yes

Value Set Type enumeration

Default row

Valid Values row, statement, mixed

Specify whether to use row-based, statement-based, or mixed replication (statement-based is default). See Section 16.1.2,
“Replication Formats”. This option was added in MySQL 5.1.5.

• --binlog-row-event-max-size=N

Version Introduced 5.1.5

Value Set Type numeric

Default 1024

Min Value 256

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events smaller than this size if possible.
The value should be a multiple of 256. The default is 1024. See Section 16.1.2, “Replication Formats”. This option was added in
MySQL 5.1.5.

• --bootstrap

This option is used by the mysql_install_db script to create the MySQL privilege tables without having to start a full MySQL
server.

This option is unavailable if MySQL was configured with the --disable-grant-options option. See Section 2.9.2, “Typical

MySQL Server Administration

310



configure Options”.

• --character-sets-dir=path

Option Sets Variable Yes, character_sets_dir

Variable Name character-sets-dir

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The directory where character sets are installed. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --character-set-client-handshake

Value Set Type boolean

Default TRUE

Don't ignore character set information sent by the client. To ignore client information and use the default server character set, use -
-skip-character-set-client-handshake; this makes MySQL behave like MySQL 4.0.

• --character-set-filesystem=charset_name

Version Introduced 5.1.6

Option Sets Variable Yes, character_set_filesystem

Variable Name character_set_filesystem

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

The filesystem character set. This option sets the character_set_filesystem system variable. It was added in MySQL
5.1.6.

• --character-set-server=charset_name, -C charset_name

Option Sets Variable Yes, character_set_server

Variable Name character_set_server

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

Use charset_name as the default server character set. See Section 9.2, “The Character Set Used for Data and Sorting”. If you use
this option to specify a non-default character set, you should also use --collation-server to specify the collation.

• --chroot=path, -r path

Value Set Type filename

Put the mysqld server in a closed environment during startup by using the chroot() system call. This is a recommended security
measure. Note that use of this option somewhat limits LOAD DATA INFILE and SELECT ... INTO OUTFILE.

MySQL Server Administration

311



• --collation-server=collation_name

Option Sets Variable Yes, collation_server

Variable Name collation_server

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

Use collation_name as the default server collation. See Section 9.2, “The Character Set Used for Data and Sorting”.

• --console

Option Sets Variable Yes, console

Platform Specific windows

(Windows only.) Write error log messages to stderr and stdout even if --log-error is specified. mysqld does not close
the console window if this option is used.

• --core-file

Value Set Type boolean

Default TRUE

Write a core file if mysqld dies. For some systems, you must also specify the --core-file-size option to mysqld_safe.
See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”. Note that on some systems, such as Solaris, you do not get a
core file if you are also using the --user option.

• --datadir=path, -h path

Option Sets Variable Yes, datadir

Variable Name datadir

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The path to the data directory.

• --debug[=debug_options], -# [debug_options]

Variable Name debug

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

Default 'd:t:o,/tmp/mysqld.trace

If MySQL is configured with --with-debug, you can use this option to get a trace file of what mysqld is doing. The de-
bug_options string often is 'd:t:o,file_name'. The default is 'd:t:i:o,mysqld.trace'. See MySQL Internals:
Porting.

As of MySQL 5.1.12, using --with-debug to configure MySQL with debugging support enables you to use the -
-debug="d,parser_debug" option when you start the server. This causes the Bison parser that is used to process SQL state-

MySQL Server Administration

312

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://forge.mysql.com/wiki/MySQL_Internals_Porting


ments to dump a parser trace to the server's standard error output. Typically, this output is written to the error log.

This option may be given multiple times. Values that begin with + or - are added to or subtracted from the previous value. For ex-
ample, --debug=T --debug=+P sets the value to P:T.

• --default-character-set=charset_name (DEPRECATED)

Deprecated 5.0

Value Set Type string

Use charset_name as the default character set. This option is deprecated in favor of --character-set-server. See Sec-
tion 9.2, “The Character Set Used for Data and Sorting”.

• --default-collation=collation_name

Variable Name default-collation

Variable Scope

Dynamic Variable No

Deprecated 4.1.3

Value Set Type string

Use collation_name as the default collation. This option is deprecated in favor of --collation-server. See Section 9.2,
“The Character Set Used for Data and Sorting”.

• --default-storage-engine=type

Set the default storage engine (table type) for tables. See Chapter 13, Storage Engines.

• --default-table-type=type

Deprecated 5.0, by default-storage-engine

Value Set Type string

This option is a synonym for --default-storage-engine.

• --default-time-zone=timezone

Value Set Type string

Set the default server time zone. This option sets the global time_zone system variable. If this option is not given, the default
time zone is the same as the system time zone (given by the value of the system_time_zone system variable.

• --delay-key-write[={OFF|ON|ALL}]

Option Sets Variable Yes, delay_key_write

Variable Name delay-key-write

Variable Scope Global

Dynamic Variable Yes

Value Set Type enumeration

Default ON

Valid Values ON, OFF, ALL

MySQL Server Administration

313



Specify how to use delayed key writes. Delayed key writing causes key buffers not to be flushed between writes for MyISAM tables.
OFF disables delayed key writes. ON enables delayed key writes for those tables that were created with the DELAY_KEY_WRITE
option. ALL delays key writes for all MyISAM tables. See Section 7.5.2, “Tuning Server Parameters”, and Section 13.4.1, “MyISAM
Startup Options”.

Note

If you set this variable to ALL, you should not use MyISAM tables from within another program (such as another MySQL
server or myisamchk) when the tables are in use. Doing so leads to index corruption.

• --des-key-file=file_name

Read the default DES keys from this file. These keys are used by the DES_ENCRYPT() and DES_DECRYPT() functions.

• --disconnect-slave-event-count

Value Set Type numeric

Default 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --enable-named-pipe

Platform Specific windows

Enable support for named pipes. This option applies only on Windows NT, 2000, XP, and 2003 systems. For MySQL 5.1.20 and
earler, this option is available only when using the mysqld-nt and mysqld-debug servers that support named-pipe connec-
tions. For MySQL 5.1.21 and later, mysqld-nt is not available, but support is included in the standard mysqld and mysqld-de-
bug servers.

• --enable-pstack

Value Set Type boolean

Default FALSE

Print a symbolic stack trace on failure.

• --event-scheduler[=value]

Version Introduced 5.1.6

Option Sets Variable Yes, event-scheduler

Variable Name event_scheduler

Variable Scope Global

Dynamic Variable Yes

Value Set Type enumeration

Default OFF

Valid Values ON, OFF, DISABLED

Enable or disable, and start or stop, the event scheduler. This option was added in MySQL 5.1.6. Note that its permitted values and
behaviour changed in MySQL 5.1.11, and again in MySQL 5.1.12.

For detailed information, see The event-scheduler Option.

• --exit-info[=flags], -T [flags]

MySQL Server Administration

314



Value Set Type numeric

This is a bit mask of different flags that you can use for debugging the mysqld server. Do not use this option unless you know ex-
actly what it does!

• --external-locking

Option Sets Variable Yes, external_locking

Disabled by skip-external-locking

Value Set Type boolean

Default FALSE

Enable external locking (system locking), which is disabled by default as of MySQL 4.0. Note that if you use this option on a sys-
tem on which lockd does not fully work (such as Linux), it is easy for mysqld to deadlock. This option previously was named -
-enable-locking.

For more information about external locking, including conditions under which it can and cannot be used, see Section 7.3.4,
“External Locking”.

• --flush

Variable Name flush

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default OFF

Flush (synchronize) all changes to disk after each SQL statement. Normally, MySQL does a write of all changes to disk only after
each SQL statement and lets the operating system handle the synchronizing to disk. See Section B.1.4.2, “What to Do If MySQL
Keeps Crashing”.

• --gdb

Value Set Type boolean

Default FALSE

Install an interrupt handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and disable stack tracing and core file
handling. See MySQL Internals: Porting.

• --general-log[={0|1}]

Version Introduced 5.1.12

Option Sets Variable Yes, general_log

Variable Name general_log

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default OFF

MySQL Server Administration

315

http://forge.mysql.com/wiki/MySQL_Internals_Porting


Specify the initial general log state, if the --log or -l option is given. With no argument or an argument of 0, the -
-general-log option disables the log. If omitted or given with an argument of 1, the option enables the log. If --log or -l is
not specified, --general-log has no effect. This option was added in MySQL 5.1.12.

• --init-file=file_name

Option Sets Variable Yes, init_file

Variable Name init_file

Variable Scope Global

Dynamic Variable No

Value Set Type filename

Read SQL statements from this file at startup. Each statement must be on a single line and should not include comments.

This option is unavailable if MySQL was configured with the --disable-grant-options option. See Section 2.9.2, “Typical
configure Options”.

• --innodb-xxx

The InnoDB options are listed in Section 13.5.4, “InnoDB Startup Options and System Variables”.

• --language=lang_name, -L lang_name

Option Sets Variable Yes, language

Variable Name language

Variable Scope Global

Dynamic Variable No

Value Set Type filename

Default /
usr/loc-
al/mysql/share/mysql/english/

Return client error messages in the given language. lang_name can be given as the language name or as the full pathname to the
directory where the language files are installed. See Section 9.3, “Setting the Error Message Language”.

• --large-pages

Option Sets Variable Yes, large_pages

Variable Name large_pages

Variable Scope Global

Dynamic Variable No

Platform Specific linux

Value Set Type linux

Default FALSE

Some hardware/operating system architectures support memory pages greater than the default (usually 4KB). The actual implement-
ation of this support depends on the underlying hardware and OS. Applications that perform a lot of memory accesses may obtain
performance improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

Currently, MySQL supports only the Linux implementation of large pages support (which is called HugeTLB in Linux). We have
plans to extend this support to FreeBSD, Solaris and possibly other platforms.

MySQL Server Administration

316



Before large pages can be used on Linux, it is necessary to configure the HugeTLB memory pool. For reference, consult the
hugetlbpage.txt file in the Linux kernel source.

This option is disabled by default.

• --log[=file_name], -l [file_name]

Option Sets Variable Yes, log

Variable Name log

Variable Scope Global

Dynamic Variable Yes

Value Set Type string

Default OFF

This option enables logging to the general query log, which contains entries that record client connections and SQL statements re-
ceived from clients. The log output destination can be selected with the --log-output option as of MySQL 5.1.6. Before 5.1.6,
logging occurs to the general query log file. If you omit the filename, MySQL uses host_name.log as the filename. See Sec-
tion 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”, and Section 5.2.3, “The General Query Log”.

• --log-bin[=base_name]

Value Set Type filename

Enable binary logging. The server logs all statements that change data to the binary log, which is used for backup and replication.
See Section 5.2.4, “The Binary Log”.

The option value, if given, is the basename for the log sequence. The server creates binary log files in sequence by adding a numeric
suffix to the basename. It is recommended that you specify a basename (see Section B.1.8.1, “Open Issues in MySQL”, for the reas-
on). Otherwise, MySQL uses host_name-bin as the basename.

• --log-bin-index[=file_name]

Value Set Type filename

The index file for binary log filenames. See Section 5.2.4, “The Binary Log”. If you omit the filename, and if you didn't specify one
with --log-bin, MySQL uses host_name-bin.index as the filename.

• --log-bin-trust-function-creators[={0|1}]

Option Sets Variable Yes, log_bin_trust_function_creators

Variable Name log_bin_trust_function_creators

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default FALSE

With no argument or an argument of 1, this option sets the log_bin_trust_function_creators system variable to 1. With
an argument of 0, this option sets the system variable to 0. log_bin_trust_function_creators affects how MySQL en-
forces restrictions on stored function creation. See Section 20.4, “Binary Logging of Stored Routines and Triggers”.

• --log-error[=file_name]

Option Sets Variable Yes, log_error

MySQL Server Administration

317



Variable Name log_error

Variable Scope Global

Dynamic Variable No

Value Set Type filename

Log errors and startup messages to this file. See Section 5.2.2, “The Error Log”. If you omit the filename, MySQL uses
host_name.err. If the filename has no extension, the server adds an extension of .err.

• --log-isam[=file_name]

Value Set Type filename

Log all MyISAM changes to this file (used only when debugging MyISAM).

• --log-long-format (DEPRECATED)

Deprecated 4.1

Log extra information to the binary log and slow query log, if they have been activated. For example, the username and timestamp
are logged for all queries. This option is deprecated, as it now represents the default logging behavior. (See the description for -
-log-short-format.) The --log-queries-not-using-indexes option is available for the purpose of logging queries
that do not use indexes to the slow query log.

• --log-output[=value,...]

Version Introduced 5.1.6

Option Sets Variable Yes, log_output

Variable Name log_output

Variable Scope Global

Dynamic Variable Yes

Value Set Type enumeration

Default TABLE

Valid Values TABLE, FILE, NONE

This option determines the destination for general query log and slow query log output. The option value can be given as one or
more of the words TABLE, FILE, or NONE. If the option is given without a value, the default is FILE. (For MySQL 5.1.6 through
5.1.20, the default is TABLE.) TABLE select logging to the general_log and slow_log tables in the mysql database as a des-
tination. FILE selects logging to log files as a destination. (For FILE logging, the --log and -slow-log options determine the
log file location.) NONE disables logging. If NONE is present in the option value, it takes precedence over any other words that are
present. TABLE and FILE can both be given to select to both log output destinations.

This option selects log output destinations, but does not enable log output. To do that, use the --log and -
-log-slow-queries options. For more information, see Section 5.2.1, “Selecting General Query and Slow Query Log Output
Destinations”.

The --log-output option was added in MySQL 5.1.6.

• --log-queries-not-using-indexes

Version Introduced 5.1.11

Option Sets Variable Yes, log_queries_not_using_indexes

Variable Name log_queries_not_using_indexes

MySQL Server Administration

318



Variable Scope Global

Dynamic Variable No

Value Set Type boolean

If you are using this option with --log-slow-queries, queries that do not use indexes are logged to the slow query log. See
Section 5.2.5, “The Slow Query Log”.

• --log-short-format

Value Set Type boolean

Default FALSE

Log less information to the binary log and slow query log, if they have been activated. For example, the username and timestamp
are not logged for queries.

• --log-slow-admin-statements

Value Set Type boolean

Default FALSE

Log slow administrative statements such as OPTIMIZE TABLE, ANALYZE TABLE, and ALTER TABLE to the slow query log.

• --log-slow-queries[=file_name]

Option Sets Variable Yes, log_slow_queries

Variable Name log_slow_queries

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

This option enables logging to the slow query log, which contains entries for all queries that have taken more than
long_query_time seconds to execute. See the descriptions of the --log-long-format and --log-short-format op-
tions for details.

The log output destination can be selected with the --log-output option as of MySQL 5.1.6. Before 5.1.6, logging occurs to the
slow query log file. If you omit the filename, MySQL uses host_name-slow.log as the filename. See Section 5.2.1, “Selecting
General Query and Slow Query Log Output Destinations”, and Section 5.2.5, “The Slow Query Log”.

• --log-slow-slave-statements

Version Introduced 5.1.21

Value Set Type boolean

Default off

When the slow query log is enabled, this option enables logging for queries that have taken more than long_query_time
seconds to execute on the slave.

This option was added in MySQL 5.1.21.

• --log-tc=file_name

MySQL Server Administration

319



Value Set Type filename

Default tc.log

The name of the memory-mapped transaction coordinator log file (for XA transactions that affect multiple storage engines when the
binary log is disabled). The default name is tc.log. The file is created under the data directory if not given as a full pathname.
Currently, this option is unused.

• --log-tc-size=size

Value Set Type numeric

Default 24576

Max Value 4294967295

The size in bytes of the memory-mapped transaction coordinator log. The default size is 24KB.

• --log-warnings[=level], -W [level]

Option Sets Variable Yes, log-warnings

Variable Name log_warnings

Variable Scope Both

Dynamic Variable Yes

Disabled by skip-log-warnings

Value Set Type numeric

Default 1

Print out warnings such as Aborted connection... to the error log. Enabling this option is recommended, for example, if
you use replication (you get more information about what is happening, such as messages about network failures and reconnec-
tions). This option is enabled (1) by default, and the default level value if omitted is 1. To disable this option, use -
-log-warnings=0. If the value is greater than 1, aborted connections are written to the error log. See Section B.1.2.11,
“Communication Errors and Aborted Connections”.

• --low-priority-updates

Option Sets Variable Yes, low_priority_updates

Variable Name low_priority_updates

Variable Scope Both

Dynamic Variable Yes

Value Set Type boolean

Default FALSE

Give table-modifying operations (INSERT, REPLACE, DELETE, UPDATE) lower priority than selects. This can also be done via
{INSERT | REPLACE | DELETE | UPDATE} LOW_PRIORITY ... to lower the priority of only one query, or by SET
LOW_PRIORITY_UPDATES=1 to change the priority in one thread. This affects only storage engines that use only table-level
locking (MyISAM, MEMORY, MERGE). See Section 7.3.2, “Table Locking Issues”.

• --min-examined-row-limit=number

Version Introduced 5.1.21

Variable Name min_examined_row_limit

Variable Scope Both

MySQL Server Administration

320



Dynamic Variable Yes

Value Set Type numeric

Default 0

Range 0-4294967295

When this option is set, queries which examine fewer than number rows are not written to the slow query log. The default is 0.

This option was introduced in MySQL 5.1.21.

• --max-binlog-dump-events

Value Set Type numeric

Default 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --memlock

Variable Name locked_in_memory

Variable Scope Global

Dynamic Variable No

Value Set Type boolean

Default FALSE

Lock the mysqld process in memory. This option might help if you have a problem where the operating system is causing
mysqld to swap to disk.

--memlock works on systems that support the mlockall() system call; this includes Solaris as well as most Linux distributions
that use a 2.4 or newer kernel. On Linux systems, you can tell whether or not mlockall() (and thus this option) is supported by
checking to see whether or not it is defined in the system mman.h file, like this:

shell> grep mlockall /usr/include/sys/mman.h

If mlockall() is supported, you should see in the output of the previous command something like the following:

extern int mlockall (int __flags) __THROW;

Important

Using this option requires that you run the server as root, which, for reasons of security, is normally not a good idea. See
Section 5.3.5, “How to Run MySQL as a Normal User”.

You must not try to use this option on a system that does not support the mlockall() system call; if you do so,
mysqld will very likely crash as soon as you try to start it.

• --myisam-recover[=option[,option]...]]

Value Set Type enumeration

Default OFF

Valid Values DEFAULT, BACKUP, FORCE, QUICK

Set the MyISAM storage engine recovery mode. The option value is any combination of the values of DEFAULT, BACKUP, FORCE,

MySQL Server Administration

321



or QUICK. If you specify multiple values, separate them by commas. Specifying the option with no argument is the same as specify-
ing DEFAULT, and specifying with an explicit value of "" disables recovery (same as not giving the option). If recovery is enabled,
each time mysqld opens a MyISAM table, it checks whether the table is marked as crashed or wasn't closed properly. (The last op-
tion works only if you are running with external locking disabled.) If this is the case, mysqld runs a check on the table. If the table
was corrupted, mysqld attempts to repair it.

The following options affect how the repair works:

Option Description

DEFAULT Recovery without backup, forcing, or quick checking.

BACKUP If the data file was changed during recovery, save a backup of the tbl_name.MYD file as
tbl_name-datetime.BAK.

FORCE Run recovery even if we would lose more than one row from the .MYD file.

QUICK Don't check the rows in the table if there aren't any delete blocks.

Before the server automatically repairs a table, it writes a note about the repair to the error log. If you want to be able to recover
from most problems without user intervention, you should use the options BACKUP,FORCE. This forces a repair of a table even if
some rows would be deleted, but it keeps the old data file as a backup so that you can later examine what happened.

See Section 13.4.1, “MyISAM Startup Options”.

• --old-passwords

Option Sets Variable Yes, old_passwords

Variable Name old_passwords

Variable Scope Both

Dynamic Variable Yes

Value Set Type boolean

Default FALSE

Force the server to generate short (pre-4.1) password hashes for new passwords. This is useful for compatibility when the server
must support older client programs. See Section 5.4.9, “Password Hashing as of MySQL 4.1”.

• --old-style-user-limits

Value Set Type boolean

Default FALSE

Enable old-style user limits. (Before MySQL 5.0.3, account resource limits were counted separately for each host from which a user
connected rather than per account row in the user table.) See Section 5.5.4, “Limiting Account Resources”.

• --one-thread

Only use one thread (for debugging under Linux). This option is available only if the server is built with debugging enabled. See
MySQL Internals: Porting.

As of MySQL 5.1.17, this option is deprecated; use --thread_handling=one-thread instead.

• --open-files-limit=count

Option Sets Variable Yes, open_files_limit

Variable Name open_files_limit

Variable Scope Global

Dynamic Variable No

MySQL Server Administration

322

http://forge.mysql.com/wiki/MySQL_Internals_Porting


Value Set Type numeric

Default 0

Range 0-65535

Change the number of file descriptors available to mysqld. If this option is not set or is set to 0, mysqld uses the value to reserve
file descriptors with setrlimit(). If the value is 0, mysqld reserves max_connections×5 or max_connections +
table_open_cache×2 files (whichever is larger). You should try increasing this value if mysqld gives you the error Too
many open files.

• --pid-file=path

Option Sets Variable Yes, pid_file

Variable Name pid_file

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The pathname of the process ID file. This file is used by other programs such as mysqld_safe to determine the server's process
ID.

• --port=port_num, -P port_num

Option Sets Variable Yes, port

Variable Name port

Variable Scope Global

Dynamic Variable No

Value Set Type numeric

Default 3306

The port number to use when listening for TCP/IP connections. The port number must be 1024 or higher unless the server is started
by the root system user.

• --port-open-timeout=num

Version Introduced 5.1.5

Value Set Type numeric

Default 0

On some systems, when the server is stopped, the TCP/IP port might not become available immediately. If the server is restarted
quickly afterward, its attempt to reopen the port can fail. This option indicates how many seconds the server should wait for the
TCP/IP port to become free if it cannot be opened. The default is not to wait. This option was added in MySQL 5.1.5.

• --safe-mode

Deprecated 5.0

Skip some optimization stages.

• --safe-show-database (DEPRECATED)

MySQL Server Administration

323



Option Sets Variable Yes, safe_show_database

Variable Name safe_show_database

Variable Scope Global

Dynamic Variable Yes

Deprecated 4.0.2

Value Set Type boolean

See Section 5.4.3, “Privileges Provided by MySQL”.

• --safe-user-create

Option Sets Variable Yes, safe-user-create

Value Set Type boolean

Default FALSE

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement unless the user has the INSERT
privilege for the mysql.user table or any column in the table. If you want a user to have the ability to create new users that have
those privileges that the user has the right to grant, you should grant the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT statement to give privileges to
other users.

• --secure-auth

Option Sets Variable Yes, secure_auth

Variable Name secure_auth

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default FALSE

Disallow authentication by clients that attempt to use accounts that have old (pre-4.1) passwords.

• --secure-file-priv=path

Version Introduced 5.1.17

Option Sets Variable Yes, secure_file_priv

Variable Name secure_file_priv

Variable Scope Global

Dynamic Variable No

Value Set Type string

This option limits the effect of the LOAD_FILE() function and the LOAD DATA and SELECT ... INTO OUTFILE statements
to work only with files in the specified directory.

This option was added in MySQL 5.1.17.

MySQL Server Administration

324



• --shared-memory

Enable shared-memory connections by local clients. This option is available only on Windows.

• --shared-memory-base-name=name

The name of shared memory to use for shared-memory connections. This option is available only on Windows. The default name is
MYSQL. The name is case sensitive.

• --skip-concurrent-insert

Turn off the ability to select and insert at the same time on MyISAM tables. (This is to be used only if you think you have found a
bug in this feature.) See Section 7.3.3, “Concurrent Inserts”.

• --skip-external-locking

Do not use external locking (system locking). For more information about external locking, including conditions under which it can
and cannot be used, see Section 7.3.4, “External Locking”.

External locking has been disabled by default since MySQL 4.0.

• --skip-grant-tables

This option causes the server not to use the privilege system at all, which gives anyone with access to the server unrestricted access
to all databases. You can cause a running server to start using the grant tables again by executing mysqladmin flush-
privileges or mysqladmin reload command from a system shell, or by issuing a MySQL FLUSH PRIVILEGES state-
ment after connecting to the server. This option also suppresses loading of plugins and user-defined functions (UDFs). Beginning
with MySQL 5.1.17, it also suppresses loading of scheduled events (Bug#28607).

This option is unavailable if MySQL was configured with the --disable-grant-options option. See Section 2.9.2, “Typical
configure Options”.

• --skip-host-cache

Do not use the internal hostname cache for faster name-to-IP resolution. Instead, query the DNS server every time a client connects.
See Section 7.5.10, “How MySQL Uses DNS”.

• --skip-innodb

Disable the InnoDB storage engine. This saves memory and disk space and might speed up some operations. Do not use this option
if you require InnoDB tables.

• --skip-name-resolve

Do not resolve hostnames when checking client connections. Use only IP numbers. If you use this option, all Host column values
in the grant tables must be IP numbers or localhost. See Section 7.5.10, “How MySQL Uses DNS”.

• --skip-networking

Don't listen for TCP/IP connections at all. All interaction with mysqld must be made via named pipes or shared memory (on Win-
dows) or Unix socket files (on Unix). This option is highly recommended for systems where only local clients are allowed. See Sec-
tion 7.5.10, “How MySQL Uses DNS”.

• --sporadic-binlog-dump-fail

Value Set Type boolean

Default FALSE

This option is used internally by the MySQL test suite for replication testing and debugging.

• --ssl*

Options that begin with --ssl specify whether to allow clients to connect via SSL and indicate where to find SSL keys and certi-
ficates. See Section 5.5.7.3, “SSL Command Options”.

MySQL Server Administration

325

http://bugs.mysql.com/28607


• --standalone

Platform Specific windows

Available on Windows NT-based systems only; instructs the MySQL server not to run as a service.

• --symbolic-links, --skip-symbolic-links

Enable or disable symbolic link support. This option has different effects on Windows and Unix:

• On Windows, enabling symbolic links allows you to establish a symbolic link to a database directory by creating a
db_name.sym file that contains the path to the real directory. See Section 7.6.1.3, “Using Symbolic Links for Databases on
Windows”.

• On Unix, enabling symbolic links means that you can link a MyISAM index file or data file to another directory with the INDEX
DIRECTORY or DATA DIRECTORY options of the CREATE TABLE statement. If you delete or rename the table, the files that
its symbolic links point to also are deleted or renamed. See Section 7.6.1.2, “Using Symbolic Links for Tables on Unix”.

• --skip-safemalloc

If MySQL is configured with --with-debug=full, all MySQL programs check for memory overruns during each memory al-
location and memory freeing operation. This checking is very slow, so for the server you can avoid it when you don't need it by us-
ing the --skip-safemalloc option.

• --skip-show-database

Option Sets Variable Yes, skip_show_database

Variable Name skip_show_database

Variable Scope Global

Dynamic Variable No

With this option, the SHOW DATABASES statement is allowed only to users who have the SHOW DATABASES privilege, and the
statement displays all database names. Without this option, SHOW DATABASES is allowed to all users, but displays each database
name only if the user has the SHOW DATABASES privilege or some privilege for the database. Note that any global privilege is
considered a privilege for the database.

• --skip-stack-trace

Don't write stack traces. This option is useful when you are running mysqld under a debugger. On some systems, you also must
use this option to get a core file. See MySQL Internals: Porting.

• --skip-thread-priority

Disable using thread priorities for faster response time.

• --slow-query-log[={0|1}]

Version Introduced 5.1.12

Option Sets Variable Yes, slow_query_log

Variable Name slow_query_log

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default OFF

Specify the initial slow query log state, if the --log-slow-queries option is given. With no argument or an argument of 0, the
--slow-query-log option disables the log. If omitted or given with an argument of 1, the option enables the log. If --log or -

MySQL Server Administration

326

http://forge.mysql.com/wiki/MySQL_Internals_Porting


l is not specified, --slow-query-log has no effect. This option was added in MySQL 5.1.12.

• --socket=path

Option Sets Variable Yes, socket

Variable Name socket

Variable Scope Global

Dynamic Variable No

Value Set Type linux

Default /tmp/mysql.sock

Value Set Type hpux

Default /tmp/mysql.sock

Value Set Type solaris

Default /tmp/mysql.sock

Value Set Type macosx

Default /tmp/mysql.sock

On Unix, this option specifies the Unix socket file to use when listening for local connections. The default value is /
tmp/mysql.sock. On Windows, the option specifies the pipe name to use when listening for local connections that use a named
pipe. The default value is MySQL (not case sensitive).

• --sql-mode=value[,value[,value...]]

Option Sets Variable Yes, sql_mode

Variable Name sql_mode

Variable Scope Both

Dynamic Variable Yes

Value Set Type enumeration

Default ''

Valid Values ALLOW_INVALID_DATES, AN-
SI_QUOTES, ER-
ROR_FOR_DIVISION_BY_ZERO,
HIGH_NOT_PRECEDENCE, IG-
NORE_SPACE, NO_AUTO_CREATE_USER,
NO_AUTO_VALUE_ON_ZERO,
NO_BACKSLASH_ESCAPES,
NO_DIR_IN_CREATE,
NO_ENGINE_SUBSTITUTION,
NO_FIELD_OPTIONS,
NO_KEY_OPTIONS,
NO_TABLE_OPTIONS,
NO_UNSIGNED_SUBTRACTION,
NO_ZERO_DATE, NO_ZERO_IN_DATE,
ONLY_FULL_GROUP_BY,
PIPES_AS_CONCAT, REAL_AS_FLOAT,
STRICT_ALL_TABLES,
STRICT_TRANS_TABLES

Set the SQL mode. See Section 5.1.6, “SQL Modes”.

• --sysdate-is-now

Version Introduced 5.1.8

MySQL Server Administration

327



Value Set Type boolean

Default FALSE

SYSDATE() by default returns the time at which it executes, not the time at which the statement in which it occurs begins execut-
ing. This differs from the behavior of NOW(). This option causes SYSDATE() to be an alias for NOW(). For information about the
implications for binary logging and replication, see the description for SYSDATE() in Section 11.6, “Date and Time Functions”
and for SET TIMESTAMP in Section 12.5.3, “SET Syntax”.

This option was added in MySQL 5.1.8.

• --tc-heuristic-recover={COMMIT|ROLLBACK}

Value Set Type enumeration

Valid Values COMMIT, RECOVER

The type of decision to use in the heuristic recovery process. Currently, this option is unused.

• --temp-pool

Value Set Type boolean

Default TRUE

This option causes most temporary files created by the server to use a small set of names, rather than a unique name for each new
file. This works around a problem in the Linux kernel dealing with creating many new files with different names. With the old beha-
vior, Linux seems to “leak” memory, because it is being allocated to the directory entry cache rather than to the disk cache.

• --transaction-isolation=level

Value Set Type enumeration

Valid Values READ-UNCOMMTTED, READ-COMMITTED,
REPEATABLE-READ, SERIALIZABLE

Sets the default transaction isolation level. The level value can be READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-
READ, or SERIALIZABLE. See Section 12.4.6, “SET TRANSACTION Syntax”.

• --tmpdir=path, -t path

Option Sets Variable Yes, tmpdir

Variable Name tmpdir

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The path of the directory to use for creating temporary files. It might be useful if your default /tmp directory resides on a partition
that is too small to hold temporary tables. This option accepts several paths that are used in round-robin fashion. Paths should be
separated by colon characters (“:”) on Unix and semicolon characters (“;”) on Windows, NetWare, and OS/2. If the MySQL server
is acting as a replication slave, you should not set --tmpdir to point to a directory on a memory-based filesystem or to a directory
that is cleared when the server host restarts. For more information about the storage location of temporary files, see Section B.1.4.4,
“Where MySQL Stores Temporary Files”. A replication slave needs some of its temporary files to survive a machine restart so that
it can replicate temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost when the serv-
er restarts, replication fails.

MySQL Server Administration

328



• --user={user_name|user_id}, -u {user_name|user_id}

Value Set Type string

Run the mysqld server as the user having the name user_name or the numeric user ID user_id. (“User” in this context refers
to a system login account, not a MySQL user listed in the grant tables.)

This option is mandatory when starting mysqld as root. The server changes its user ID during its startup sequence, causing it to
run as that particular user rather than as root. See Section 5.3.1, “General Security Guidelines”.

To avoid a possible security hole where a user adds a --user=root option to a my.cnf file (thus causing the server to run as
root), mysqld uses only the first --user option specified and produces a warning if there are multiple --user options. Op-
tions in /etc/my.cnf and $MYSQL_HOME/my.cnf are processed before command-line options, so it is recommended that you
put a --user option in /etc/my.cnf and specify a value other than root. The option in /etc/my.cnf is found before any
other --user options, which ensures that the server runs as a user other than root, and that a warning results if any other -
-user option is found.

• --version, -V

Display version information and exit.

You can assign a value to a server system variable by using an option of the form --var_name=value. For example, -
-key_buffer_size=32M sets the key_buffer_size variable to a value of 32MB.

Note that when you assign a value to a variable, MySQL might automatically correct the value to stay within a given range, or adjust the
value to the closest allowable value if only certain values are allowed.

If you want to restrict the maximum value to which a variable can be set at runtime with SET, you can define this by using the -
-maximum-var_name=value command-line option.

It is also possible to set variables by using --set-variable=var_name=value or -O var_name=value syntax. This syntax
is deprecated.

You can change the values of most system variables for a running server with the SET statement. See Section 12.5.3, “SET Syntax”.

Section 5.1.3, “System Variables”, provides a full description for all variables, and additional information for setting them at server star-
tup and runtime. Section 7.5.2, “Tuning Server Parameters”, includes information on optimizing the server by tuning system variables.

5.1.3. System Variables
The MySQL server maintains many system variables that indicate how it is configured. Each system variable has a default value. Sys-
tem variables can be set at server startup using options on the command line or in an option file. Most of them can be changed dynamic-
ally while the server is running by means of the SET statement, which enables you to modify operation of the server without having to
stop and restart it. You can refer to system variable values in expressions.

There are several ways to see the names and values of system variables:

• To see the values that a server will use based on its compiled-in defaults and any option files that it reads, use this command:

mysqld --verbose --help

• To see the values that a server will use based on its compiled-in defaults, ignoring the settings in any option files, use this command:

mysqld --no-defaults --verbose --help

• To see the current values used by a running server, use the SHOW VARIABLES statement.

This section provides a description of each system variable. Variables with no version indicated are present in all MySQL 5.1 releases.
For historical information concerning their implementation, please see MySQL 5.0 Reference Manual and MySQL 3.23, 4.0, 4.1 Refer-
ence Manual.

MySQL Server Administration

329



The following table lists all available system variables:

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

autocommit Yes Yes Yes Session Yes

auto-increment-increment Yes Yes Both Yes

- Variable: auto_increment_increment Yes Both Yes

auto-increment-offset Yes Yes Both Yes

- Variable: auto_increment_offset Yes Both Yes

automatic_sp_privileges Yes Global Yes

back_log Yes Yes Yes Global No

basedir Yes Yes Yes Global No

big-tables Yes Yes Session Yes

- Variable: big_tables Yes Session Yes

binlog_cache_size Yes Yes Yes Global Yes

binlog-format Yes Yes Both Yes

- Variable: binlog_format Yes Both Yes

bulk_insert_buffer_size Yes Yes Yes Both Yes

character_set_client Yes Both Yes

character_set_connection Yes Both Yes

character_set_database Yes Both Yes

character-set-filesystem Yes Yes Both Yes

- Variable: character_set_filesystem Yes Both Yes

character_set_results Yes Both Yes

character-sets-dir Yes Yes Global No

- Variable: character_sets_dir Yes Global No

character-set-server Yes Yes Both Yes

- Variable: character_set_server Yes Both Yes

character_set_system Yes Global No

collation_connection Yes Both Yes

collation_database Yes Both Yes

collation-server Yes Yes Both Yes

- Variable: collation_server Yes Both Yes

completion_type Yes Yes Yes Both Yes

concurrent_insert Yes Yes Yes Global Yes

connect_timeout Yes Yes Yes Global Yes

datadir Yes Yes Yes Global No

date_format Yes Yes Yes Both Yes

datetime_format Yes Yes Yes Both Yes

debug Yes Yes Yes Both Yes

default_week_format Yes Yes Yes Both Yes

delayed_insert_limit Yes Yes Yes Global Yes

delayed_insert_timeout Yes Yes Yes Global Yes

delayed_queue_size Yes Yes Yes Global Yes

delay-key-write Yes Yes Global Yes

- Variable: delay_key_write Yes Global Yes

div_precision_increment Yes Yes Yes Both Yes

MySQL Server Administration

330



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

engine_condition_pushdown Yes Yes Yes Both Yes

error_count Yes Session No

event-scheduler Yes Yes Yes Global Yes

expire_logs_days Yes Yes Yes Global Yes

flush Yes Yes Yes Global Yes

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Yes Session Yes

ft_boolean_syntax Yes Yes Yes Global Yes

ft_max_word_len Yes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limit Yes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

general-log Yes Yes Global Yes

- Variable: general_log Yes Global Yes

general_log_file Yes Global Yes

group_concat_max_len Yes Yes Yes Both Yes

have_archive Yes Global No

have_blackhole_engine Yes Global No

have_compress Yes Global No

have_crypt Yes Global No

have_csv Yes Global No

have_dynamic_loading Yes Global No

have_example_engine Yes Global No

have_federated_engine Yes Global No

have_geometry Yes Global No

have_innodb Yes Global No

have_isam Yes Global No

have_merge_engine Yes Global No

have_ndbcluster Yes Global No

have_openssl Yes Global No

have_partitioning Yes Global No

have_query_cache Yes Global No

have_raid Yes Global No

have_row_based_replication Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_symlink Yes Global No

hostname Yes Global No

identity Yes Yes Yes Session Yes

init_connect Yes Yes Yes Global Yes

init-file Yes Yes Global No

- Variable: init_file Yes Global No

init_slave Yes Yes Yes Global Yes

innodb_adaptive_hash_index Yes Yes Yes Global No

MySQL Server Administration

331



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

innodb_additional_mem_pool_size Yes Yes Yes Global No

innodb_autoextend_increment Yes Yes Yes Global Yes

innodb_autoinc_lock_mode Yes Yes Yes Global No

innodb_buffer_pool_awe_mem_mb Yes Yes Yes Global No

innodb_buffer_pool_size Yes Yes Yes Global No

innodb_checksums Yes Yes Yes Global No

innodb_commit_concurrency Yes Yes Yes Global Yes

innodb_concurrency_tickets Yes Yes Yes Global Yes

innodb_data_file_path Yes Yes Yes Global No

innodb_data_home_dir Yes Yes Yes Global No

innodb_doublewrite Yes Yes Yes Global No

innodb_fast_shutdown Yes Yes Yes Global Yes

innodb_file_io_threads Yes Yes Yes Global No

innodb_file_per_table Yes Yes Yes Global No

innodb_flush_log_at_trx_commit Yes Yes Yes Global Yes

innodb_flush_method Yes Yes Yes Global No

innodb_force_recovery Yes Yes Yes Global No

innodb_locks_unsafe_for_binlog Yes Yes Yes Global No

innodb_lock_wait_timeout Yes Yes Yes Global No

innodb_log_arch_dir Yes Yes Yes Global No

innodb_log_archive Yes Yes Yes Global No

innodb_log_buffer_size Yes Yes Yes Global No

innodb_log_files_in_group Yes Yes Yes Global No

innodb_log_file_size Yes Yes Yes Global No

innodb_log_group_home_dir Yes Yes Yes Global No

innodb_max_dirty_pages_pct Yes Yes Yes Global Yes

innodb_max_purge_lag Yes Yes Yes Global Yes

innodb_mirrored_log_groups Yes Yes Yes Global No

innodb_open_files Yes Yes Yes Global No

innodb_rollback_on_timeout Yes Yes Yes Global No

innodb_stats_on_metadata Yes Yes Yes Global No

innodb_status_file Yes Yes Yes Global No

innodb_support_xa Yes Yes Yes Both Yes

innodb_sync_spin_loops Yes Yes Yes Global Yes

innodb_table_locks Yes Yes Yes Both Yes

innodb_thread_concurrency Yes Yes Yes Global Yes

innodb_thread_sleep_delay Yes Yes Yes Global Yes

insert_id Yes Yes Yes Session Yes

interactive_timeout Yes Yes Yes Both Yes

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_create Yes Yes Yes Both Yes

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_threshold Yes Yes Yes Global Yes

key_cache_block_size Yes Yes Yes Global Yes

MySQL Server Administration

332



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

key_cache_division_limit Yes Yes Yes Global Yes

language Yes Yes Yes Global No

large-pages Yes Yes Global No

- Variable: large_pages Yes Global No

large_page_size Yes Global No

last_insert_id Yes Yes Yes Session Yes

lc_time_names Yes Both Yes

license Yes Global No

local_infile Yes Global Yes

locked_in_memory Yes Global No

log Yes Yes Yes Global Yes

log_bin Yes Global No

log-bin-trust-function-creators Yes Yes Global Yes

- Variable: log_bin_trust_function_creators Yes Global Yes

log-bin-trust-routine-creators Yes Yes Global Yes

- Variable: log_bin_trust_routine_creators Yes Global Yes

log-error Yes Yes Global No

- Variable: log_error Yes Global No

log-output Yes Yes Global Yes

- Variable: log_output Yes Global Yes

log-queries-not-using-indexes Yes Yes Global No

- Variable: log_queries_not_using_indexes Yes Global No

log-slave-updates Yes Yes Global No

- Variable: log_slave_updates Yes Global No

log-slow-queries Yes Yes Global Yes

- Variable: log_slow_queries Yes Global Yes

log-warnings Yes Yes Both Yes

- Variable: log_warnings Yes Both Yes

long_query_time Yes Yes Yes Both Yes

lower_case_file_system Yes Yes Yes Global No

lower_case_table_names Yes Yes Yes Global No

low-priority-updates Yes Yes Both Yes

- Variable: low_priority_updates Yes Both Yes

master-bind Yes Yes Yes No

max_allowed_packet Yes Yes Yes Both Yes

max_binlog_cache_size Yes Yes Yes Global Yes

max_binlog_size Yes Yes Yes Global Yes

max_connect_errors Yes Yes Yes Global Yes

max_connections Yes Yes Yes Global Yes

max_delayed_threads Yes Yes Yes Both Yes

max_error_count Yes Yes Yes Both Yes

max_heap_table_size Yes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

MySQL Server Administration

333



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

max_length_for_sort_data Yes Yes Yes Both Yes

max_prepared_stmt_count Yes Yes Yes Global Yes

max_relay_log_size Yes Yes Yes Global Yes

max_seeks_for_key Yes Yes Yes Both Yes

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depth Yes Yes Yes Both Yes

max_tmp_tables Yes Yes Yes Both Yes

max_user_connections Yes Yes Yes Both Yes

max_write_lock_count Yes Yes Yes Global Yes

memlock Yes Yes Yes Global No

min-examined-row-limit Yes Yes Yes Both Yes

multi_range_count Yes Yes Yes Both Yes

myisam_block_size Yes Yes Yes Both Yes

myisam_data_pointer_size Yes Yes Yes Global Yes

myisam_max_sort_file_size Yes Yes Yes Global Yes

myisam_recover_options Yes Global No

myisam_repair_threads Yes Yes Yes Both Yes

myisam_sort_buffer_size Yes Yes Yes Both Yes

myisam_stats_method Yes Yes Yes Both Yes

myisam_use_mmap Yes Yes Yes Global No

named_pipe Yes Global No

ndb_autoincrement_prefetch_sz Yes Yes Yes Both Yes

ndb_cache_check_time Yes Yes Yes Global Yes

ndbcluster Yes Yes Yes Both Yes

ndb_extra_logging Yes Yes Yes Global Yes

ndb_force_send Yes Yes Yes Both Yes

ndb_log_orig Yes Global No

ndb_log_update_as_write Yes Yes Yes Global Yes

ndb_log_updated_only Yes Yes Yes Global Yes

ndb_optimization_delay Yes Global Yes

ndb_table_no_logging Yes Session Yes

ndb_table_temporary Yes Session Yes

ndb_use_copying_alter_table Yes Both No

ndb_use_exact_count Yes Both Yes

ndb_wait_connected Yes Yes Yes No

net_buffer_length Yes Yes Yes Both Yes

net_read_timeout Yes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeout Yes Yes Yes Both Yes

new Yes Yes Yes Both Yes

old Yes Yes Yes Global No

old-passwords Yes Yes Both Yes

- Variable: old_passwords Yes Both Yes

open-files-limit Yes Yes Global No

MySQL Server Administration

334



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

- Variable: open_files_limit Yes Global No

optimizer_prune_level Yes Yes Yes Both Yes

optimizer_search_depth Yes Yes Yes Both Yes

pid-file Yes Yes Global No

- Variable: pid_file Yes Global No

plugin_dir Yes Yes Yes Global No

plugin_innodb_additional_mem_pool_size Yes Yes Yes Both No

plugin_innodb_autoextend_increment Yes Yes Yes Both Yes

plugin_innodb_buffer_pool_awe_mem_mb Yes Yes Both No

- Variable: innodb_buffer_pool_awe_mem_mb Yes Both No

plugin_innodb_buffer_pool_size Yes Yes Yes Both No

plugin_innodb_checksums Yes Yes Yes Both Yes

plugin_innodb_commit_concurrency Yes Yes Yes Global Yes

plugin_innodb_concurrency_tickets Yes Yes Yes Global Yes

plugin_innodb_data_file_path Yes Yes Yes Global No

plugin_innodb_data_home_dir Yes Yes Yes Global No

plugin-innodb-doublewrite Yes Yes Global No

- Variable: plugin_innodb_doublewrite Yes Global No

plugin_innodb_fast_shutdown Yes Yes Yes Global No

plugin_innodb_file_io_threads Yes Yes Yes Global No

plugin_innodb_file_per_table Yes Yes Yes Global No

plugin_innodb_flush_log_at_trx_commit Yes Yes Yes Global Yes

plugin_innodb_flush_method Yes Yes Yes Global No

plugin_innodb_force_recovery Yes Yes Yes Global No

plugin_innodb_locks_unsafe_for_binlog Yes Yes Yes Global No

plugin_innodb_lock_wait_timeout Yes Yes Yes Global No

plugin_innodb_log_archive Yes Yes Yes Global No

plugin_innodb_log_buffer_size Yes Yes Yes Global No

plugin_innodb_log_files_in_group Yes Yes Yes Global No

plugin_innodb_log_file_size Yes Yes Yes Global No

plugin_innodb_log_group_home_dir Yes Yes Yes Global No

plugin_innodb_max_dirty_pages_pct Yes Yes Yes Global Yes

plugin_innodb_max_purge_lag Yes Yes Yes Global Yes

plugin_innodb_mirrored_log_groups Yes Yes Yes Global No

plugin_innodb_open_files Yes Yes Yes Global No

plugin_innodb_rollback_on_timeout Yes Yes Yes No

plugin_innodb_stats_on_metadata Yes Yes Yes No

plugin_innodb_status_file Yes Yes Yes No

plugin_innodb_support_xa Yes Yes Yes Both Yes

plugin_innodb_sync_spin_loops Yes Yes Yes Global Yes

plugin_innodb_table_locks Yes Yes Yes Both Yes

plugin_innodb_thread_concurrency Yes Yes Yes Global Yes

plugin_innodb_thread_sleep_delay Yes Yes Yes Global Yes

port Yes Yes Yes Global No

MySQL Server Administration

335



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

preload_buffer_size Yes Yes Yes Both Yes

prepared_stmt_count Yes Yes Global No

protocol_version Yes Global No

query_alloc_block_size Yes Yes Yes Both Yes

query_cache_limit Yes Yes Yes Global Yes

query_cache_min_res_unit Yes Yes Yes Global Yes

query_cache_size Yes Yes Yes Global Yes

query_cache_type Yes Yes Yes Both Yes

query_cache_wlock_invalidate Yes Yes Yes Both Yes

query_prealloc_size Yes Yes Yes Both Yes

range_alloc_block_size Yes Yes Yes Both Yes

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_size Yes Yes Yes Both Yes

relay_log_purge Yes Yes Yes Global Yes

relay_log_space_limit Yes Yes Yes Global No

report-password Yes Yes Global No

- Variable: report_password Yes Global No

rpl_recovery_rank Yes Global Yes

secure-auth Yes Yes Global Yes

- Variable: secure_auth Yes Global Yes

secure-file-priv Yes Yes Global No

- Variable: secure_file_priv Yes Global No

server-id Yes Yes Global Yes

- Variable: server_id Yes Global Yes

shared_memory Yes Global No

shared_memory_base_name Yes Global No

skip-external-locking Yes Yes Global No

- Variable: skip_external_locking Yes Global No

skip-networking Yes Yes Global No

- Variable: skip_networking Yes Global No

skip-show-database Yes Yes Global No

- Variable: skip_show_database Yes Global No

slave-allow-batching Yes Global Yes

- Variable: slave_allow_batching Yes Global Yes

slave_compressed_protocol Yes Yes Yes Global Yes

slave_exec_mode Yes Global Yes

slave-load-tmpdir Yes Yes Global No

- Variable: slave_load_tmpdir Yes Global No

slave-net-timeout Yes Yes Global Yes

- Variable: slave_net_timeout Yes Global Yes

slave-skip-errors Yes Yes Global No

- Variable: slave_skip_errors Yes Global No

slave_transaction_retries Yes Yes Yes Global Yes

MySQL Server Administration

336



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

slow_launch_time Yes Yes Yes Global Yes

slow-query-log Yes Yes Global Yes

- Variable: slow_query_log Yes Global Yes

slow_query_log_file Yes Global Yes

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

sql_auto_is_null Yes Yes Yes Session No

sql_big_selects Yes Yes Yes Session Yes

sql_big_tables Yes Session Yes

sql_buffer_result Yes Yes Yes Session Yes

sql_log_bin Yes Yes Yes Session Yes

sql_log_off Yes Yes Yes Session Yes

sql_log_update Yes Yes Yes Session Yes

sql_low_priority_updates Yes Both Yes

sql_max_join_size Yes Both Yes

sql-mode Yes Yes Both Yes

- Variable: sql_mode Yes Both Yes

sql_notes Yes Session Yes

sql_quote_show_create Yes Yes Yes Session Yes

sql_safe_updates Yes Yes Yes Session Yes

sql_select_limit Yes Yes Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Session Yes

ssl-ca Yes Yes Global No

- Variable: ssl_ca Yes Global No

ssl-capath Yes Yes Global No

- Variable: ssl_capath Yes Global No

ssl-cert Yes Yes Global No

- Variable: ssl_cert Yes Global No

ssl-cipher Yes Yes Global No

- Variable: ssl_cipher Yes Global No

ssl-key Yes Yes Global No

- Variable: ssl_key Yes Global No

storage_engine Yes Both Yes

sync-binlog Yes Yes Global Yes

- Variable: sync_binlog Yes Global Yes

sync-frm Yes Yes Global Yes

- Variable: sync_frm Yes Global Yes

system_time_zone Yes Global No

table_cache Yes Yes Yes Global Yes

table_definition_cache Yes Yes Yes Global Yes

table_lock_wait_timeout Yes Yes Yes Global Yes

table_open_cache Yes Yes Global Yes

table_type Yes Both Yes

MySQL Server Administration

337



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

thread_cache_size Yes Yes Yes Global Yes

thread_concurrency Yes Yes Yes Global No

thread_handling Yes Yes Yes Global No

thread_stack Yes Yes Yes Global No

timed_mutexes Yes Yes Yes Global Yes

time_format Yes Yes Yes Both Yes

timestamp Yes Yes Yes Session Yes

time_zone Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

tmp_table_size Yes Yes Yes Both Yes

transaction_alloc_block_size Yes Yes Yes Both Yes

transaction_allow_batching Yes Session Yes

transaction_prealloc_size Yes Yes Yes Both Yes

tx_isolation Yes Both Yes

unique_checks Yes Yes Yes Session Yes

updatable_views_with_limit Yes Yes Yes Both Yes

version Yes Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No

For additional system variable information, see these sections:

• Section 5.1.4, “Using System Variables”, discusses the syntax for setting and displaying system variable values.

• Section 5.1.4.2, “Dynamic System Variables”, lists the variables that can be set at runtime.

• Information on tuning system variables can be found in Section 7.5.2, “Tuning Server Parameters”.

• Section 13.5.4, “InnoDB Startup Options and System Variables”, lists InnoDB system variables.

Note

Some of the following variable descriptions refer to “enabling” or “disabling” a variable. These variables can be enabled
with the SET statement by setting them to ON or 1, or disabled by setting them to OFF or 0. However, to set such a vari-
able on the command line or in an option file, you must set it to 1 or 0; setting it to ON or OFF will not work. For example,
on the command line, --delay_key_write=1 works but --delay_key_write=ON does not.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

• auto_increment_increment

Option Sets Variable Yes, auto_increment_increment

Variable Name auto_increment_increment

Variable Scope Both

Dynamic Variable Yes

MySQL Server Administration

338



Value Set Type numeric

Default 1

Range 1-65535

auto_increment_increment and auto_increment_offset are intended for use with master-to-master replication, and
can be used to control the operation of AUTO_INCREMENT columns. Both variables can be set globally or locally, and each can as-
sume an integer value between 1 and 65,535 inclusive. Setting the value of either of these two variables to 0 causes its value to be
set to 1 instead. Attempting to set the value of either of these two variables to an integer greater than 65,535 or less than 0 causes its
value to be set to 65,535 instead. Attempting to set the value of auto_increment_increment or
auto_increment_offset to a non-integer value gives rise to an error, and the actual value of the variable remains unchanged.

Important

auto_increment_increment and auto_increment_offset are not intended for use with MySQL Cluster rep-
lication. Attempting to set them in a Cluster replication scenario may give rise to unpredictable (and unrecoverable) errors.
The use of these variables with Cluster replication is therefore not supported.

These two variables affect AUTO_INCREMENT column behavior as follows:

• auto_increment_increment controls the interval between successive column values. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc1
-> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);

Query OK, 0 rows affected (0.04 sec)

mysql> SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.01 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

(Note how SHOW VARIABLES is used here to obtain the current values for these variables.)

• auto_increment_offset determines the starting point for the AUTO_INCREMENT column value. Consider the following,
assuming that these statements are executed during the same session as the example given in the description for
auto_increment_increment:

mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |

MySQL Server Administration

339



+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc2
-> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);

Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
| 5 |
| 15 |
| 25 |
| 35 |
+-----+
4 rows in set (0.02 sec)

If the value of auto_increment_offset is greater than that of auto_increment_increment, the value of
auto_increment_offset is ignored.

Should one or both of these variables be changed and then new rows inserted into a table containing an AUTO_INCREMENT
column, the results may seem counterintuitive because the series of AUTO_INCREMENT values is calculated without regard to any
values already present in the column, and the next value inserted is the least value in the series that is greater than the maximum ex-
isting value in the AUTO_INCREMENT column. In other words, the series is calculated like so:

auto_increment_offset + N × auto_increment_increment

where N is a positive integer value in the series [1, 2, 3, ...]. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
| 35 |
| 45 |
| 55 |
| 65 |
+-----+
8 rows in set (0.00 sec)

The values shown for auto_increment_increment and auto_increment_offset generate the series 5 + N × 10, that is,
[5, 15, 25, 35, 45, ...]. The greatest value present in the col column prior to the INSERT is 31, and the next available value in the
AUTO_INCREMENT series is 35, so the inserted values for col begin at that point and the results are as shown for the SELECT

MySQL Server Administration

340



query.

It is important to remember that it is not possible to confine the effects of these two variables to a single table, and thus they do not
take the place of the sequences offered by some other database management systems; these variables control the behavior of all
AUTO_INCREMENT columns in all tables on the MySQL server. If one of these variables is set globally, its effects persist until the
global value is changed or overridden by setting them locally, or until mysqld is restarted. If set locally, the new value affects
AUTO_INCREMENT columns for all tables into which new rows are inserted by the current user for the duration of the session, un-
less the values are changed during that session.

The default value of auto_increment_increment is 1. See Auto-Increment in Multiple-Master Replication.

auto_increment_increment is supported for use with NDB tables beginning with MySQL 5.1.20. Previously, setting it when
using MySQL Cluster tables or MySQL Cluster Replication produced unpredictable results.

• auto_increment_offset

Option Sets Variable Yes, auto_increment_offset

Variable Name auto_increment_offset

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 1

Range 1-65535

This variable has a default value of 1. For particulars, see the description for auto_increment_increment.

auto_increment_offset is supported for use with NDB tables beginning with MySQL 5.1.20. Previously, setting it when us-
ing MySQL Cluster tables or MySQL Cluster Replication produced unpredictable results.

• automatic_sp_privileges

Variable Name automatic_sp_privileges

Variable Scope Global

Dynamic Variable Yes

Disabled by skip-automatic_sp_privileges

Value Set Type boolean

Default TRUE

When this variable has a value of 1 (the default), the server automatically grants the EXECUTE and ALTER ROUTINE privileges to
the creator of a stored routine, if the user cannot already execute and alter or drop the routine. (The ALTER ROUTINE privileges is
required to drop the routine.) The server also automatically drops those privileges when the creator drops the routine. If automat-
ic_sp_privileges is 0, the server does not automatically add and drop these privileges.

• back_log

Option Sets Variable Yes, back_log

Variable Name back_log

Variable Scope Global

Dynamic Variable No

Value Set Type numeric

Default 50

Range 1-65535

MySQL Server Administration

341

http://dev.mysql.com/doc/refman/5.1/en/replication-auto-increment.html


The number of outstanding connection requests MySQL can have. This comes into play when the main MySQL thread gets very
many connection requests in a very short time. It then takes some time (although very little) for the main thread to check the connec-
tion and start a new thread. The back_log value indicates how many requests can be stacked during this short time before MySQL
momentarily stops answering new requests. You need to increase this only if you expect a large number of connections in a short
period of time.

In other words, this value is the size of the listen queue for incoming TCP/IP connections. Your operating system has its own limit
on the size of this queue. The manual page for the Unix listen() system call should have more details. Check your OS docu-
mentation for the maximum value for this variable. back_log cannot be set higher than your operating system limit.

• basedir

Option Sets Variable Yes, basedir

Variable Name basedir

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The MySQL installation base directory. This variable can be set with the --basedir option.

• binlog_cache_size

Option Sets Variable Yes, binlog_cache_size

Variable Name binlog_cache_size

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 32768

Range 4096-4294967295

The size of the cache to hold the SQL statements for the binary log during a transaction. A binary log cache is allocated for each cli-
ent if the server supports any transactional storage engines and if the server has the binary log enabled (--log-bin option). If you
often use large, multiple-statement transactions, you can increase this cache size to get more performance. The Bin-
log_cache_use and Binlog_cache_disk_use status variables can be useful for tuning the size of this variable. See Sec-
tion 5.2.4, “The Binary Log”.

MySQL Enterprise
For recommendations on the optimum setting for binlog_cache_size subscribe to the MySQL Enterprise
Monitor. For more information see http://www.mysql.com/products/enterprise/advisors.html.

• binlog_format

Version Introduced 5.1.5

Option Sets Variable Yes, binlog_format

Variable Name binlog_format

Variable Scope Both

Dynamic Variable Yes

Value Set Type enumeration

Default row

Valid Values row, statement, mixed

MySQL Server Administration

342

http://www.mysql.com/products/enterprise/advisors.html


The binary logging format, either STATEMENT, ROW, or MIXED. binlog_format is set by the --binlog-format option at
startup, or by the binlog_format variable at runtime (you need the SUPER privilege to set this variable on a global scope). See
Section 16.1.2, “Replication Formats”. The startup variable was added in MySQL 5.1.5, and the runtime variable in MySQL 5.1.8.
MIXED was added in MySQL 5.1.8.

STATEMENT is used by default. If MIXED is specified, statement-based replication is used, too, except for cases where only row-
based replication is guaranteed to lead to proper results. For example, this is the case when statements contain user-defined func-
tions (UDF) or the UUID() function. An exception to this rule is that MIXED always uses statement-based replication for stored
functions and triggers.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger.

• If NDB is enabled.

• If the session is currently in row-based replication mode and has open temporary tables.
Trying to switch the format in those cases results in an error.

Before MySQL 5.1.8, switching to row-based replication format would implicitly set -
-log-bin-trust-function-creators=1 and --innodb_locks_unsafe_for_binlog. MySQL 5.1.8 and later no
longer implicitly set these options when row-based replication is used.

• bulk_insert_buffer_size

Option Sets Variable Yes, bulk_insert_buffer_size

Variable Name bulk_insert_buffer_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 8388608

Range 0-4294967295

MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT, INSERT ... VALUES (...),
(...), ..., and LOAD DATA INFILE when adding data to non-empty tables. This variable limits the size of the cache tree in
bytes per thread. Setting it to 0 disables this optimization. The default value is 8MB.

• character_set_client

Variable Name character_set_client

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

The character set for statements that arrive from the client.

• character_set_connection

Variable Name character_set_connection

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

The character set used for literals that do not have a character set introducer and for number-to-string conversion.

MySQL Server Administration

343



• character_set_database

Variable Name character_set_database

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

The character set used by the default database. The server sets this variable whenever the default database changes. If there is no de-
fault database, the variable has the same value as character_set_server.

• character_set_filesystem

Version Introduced 5.1.6

Option Sets Variable Yes, character_set_filesystem

Variable Name character_set_filesystem

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

The filesystem character set. This variable is used to interpret string literals that refer to filenames, such as in the LOAD DATA IN-
FILE and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function. Such filenames are converted from
character_set_client to character_set_filesystem before the file opening attempt occurs. The default value is
binary, which means that no conversion occurs. For systems on which multi-byte filenames are allowed, a different value may be
more appropriate. For example, if the system represents filenames using UTF-8, set character_set_filesystem to
'utf8'. This variable was added in MySQL 5.1.6.

• character_set_results

Variable Name character_set_results

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

The character set used for returning query results to the client.

• character_set_server

Option Sets Variable Yes, character_set_server

Variable Name character_set_server

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

The server's default character set.

• character_set_system

Variable Name character_set_system

Variable Scope Global

Dynamic Variable No

MySQL Server Administration

344



Value Set Type string

The character set used by the server for storing identifiers. The value is always utf8.

• character_sets_dir

Option Sets Variable Yes, character_sets_dir

Variable Name character-sets-dir

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The directory where character sets are installed.

• collation_connection

Variable Name collation_connection

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

The collation of the connection character set.

• collation_database

Variable Name collation_database

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

The collation used by the default database. The server sets this variable whenever the default database changes. If there is no default
database, the variable has the same value as collation_server.

• collation_server

Option Sets Variable Yes, collation_server

Variable Name collation_server

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

The server's default collation.

• completion_type

Option Sets Variable Yes, completion_type

Variable Name competion_type

Variable Scope Both

MySQL Server Administration

345



Dynamic Variable Yes

Value Set Type numeric

Default 0

Valid Values 0, 1, 2

The transaction completion type:

• If the value is 0 (the default), COMMIT and ROLLBACK are unaffected.

• If the value is 1, COMMIT and ROLLBACK are equivalent to COMMIT AND CHAIN and ROLLBACK AND CHAIN, respect-
ively. (A new transaction starts immediately with the same isolation level as the just-terminated transaction.)

• If the value is 2, COMMIT and ROLLBACK are equivalent to COMMIT RELEASE and ROLLBACK RELEASE, respectively.
(The server disconnects after terminating the transaction.)

• concurrent_insert

Option Sets Variable Yes, concurrent_insert

Variable Name concurrent_insert

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 1

Valid Values 0, 1, 2

If 1 (the default), MySQL allows INSERT and SELECT statements to run concurrently for MyISAM tables that have no free blocks
in the middle of the data file. You can turn this option off by starting mysqld with --safe or --skip-new.

This variable can take three integer values:

Value Description

0 Off

1 (Default) Enables concurrent insert for MyISAM tables that don't have holes

2 Enables concurrent inserts for all MyISAM tables, even those that have holes. For a table with a hole, new rows are in-
serted at the end of the table if it is in use by another thread. Otherwise, MySQL acquires a normal write lock and in-
serts the row into the hole.

See also Section 7.3.3, “Concurrent Inserts”.

• connect_timeout

Option Sets Variable Yes, connect_timeout

Variable Name connect_timeout

Variable Scope Global

Dynamic Variable Yes

Value Set (<= 5.1.23) Type numeric

Default 5

Value Set (>= 5.1.23) Type numeric

Default 10

MySQL Server Administration

346



The number of seconds that the mysqld server waits for a connect packet before responding with Bad handshake. The default
value is 10 seconds as of MySQL 5.1.23 and 5 seconds before that.

Increasing the connect_timeout value might help if clients frequently encounter errors of the form Lost connection to
MySQL server at 'XXX', system error: errno.

• datadir

Option Sets Variable Yes, datadir

Variable Name datadir

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The MySQL data directory. This variable can be set with the --datadir option.

• date_format

This variable is not implemented.

• datetime_format

Option Sets Variable Yes, datetime_format

Variable Name datetime_format

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

This variable is not implemented.

• debug

Variable Name debug

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

Default 'd:t:o,/tmp/mysqld.trace

This variable indicates the current debugging settings. It is available only for servers built with debugging support. The initial value
comes from the value of instances of the --debug option given at server startup. The global and session values may be set at
runtime; the SUPER privilege is required, even for the session value.

Assigning a value that begins with + or - cause the value to added to or subtracted from the current value:

mysql> SET debug = 'T';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |
+---------+

mysql> SET debug = '+P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| P:T |

MySQL Server Administration

347



+---------+

mysql> SET debug = '-P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |
+---------+

This variable was added in MySQL 5.1.7.

• default_week_format

Option Sets Variable Yes, default_week_format

Variable Name default_week_format

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 0

Range 0-7

The default mode value to use for the WEEK() function. See Section 11.6, “Date and Time Functions”.

• delay_key_write

Option Sets Variable Yes, delay_key_write

Variable Name delay-key-write

Variable Scope Global

Dynamic Variable Yes

Value Set Type enumeration

Default ON

Valid Values ON, OFF, ALL

This option applies only to MyISAM tables. It can have one of the following values to affect handling of the DELAY_KEY_WRITE
table option that can be used in CREATE TABLE statements.

Option Description

OFF DELAY_KEY_WRITE is ignored.

ON MySQL honors any DELAY_KEY_WRITE option specified in CREATE TABLE statements. This is the default value.

ALL All new opened tables are treated as if they were created with the DELAY_KEY_WRITE option enabled.

If DELAY_KEY_WRITE is enabled for a table, the key buffer is not flushed for the table on every index update, but only when the
table is closed. This speeds up writes on keys a lot, but if you use this feature, you should add automatic checking of all MyISAM
tables by starting the server with the --myisam-recover option (for example, --myisam-recover=BACKUP,FORCE). See
Section 5.1.2, “Command Options”, and Section 13.4.1, “MyISAM Startup Options”.

Note that if you enable external locking with --external-locking, there is no protection against index corruption for tables
that use delayed key writes.

• delayed_insert_limit

Option Sets Variable Yes, delayed_insert_limit

Variable Name delayed_insert_limit

MySQL Server Administration

348



Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 100

Range 1-4294967295

After inserting delayed_insert_limit delayed rows, the INSERT DELAYED handler thread checks whether there are any
SELECT statements pending. If so, it allows them to execute before continuing to insert delayed rows.

• delayed_insert_timeout

Option Sets Variable Yes, delayed_insert_timeout

Variable Name delayed_insert_timeout

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 300

How many seconds an INSERT DELAYED handler thread should wait for INSERT statements before terminating.

• delayed_queue_size

Option Sets Variable Yes, delayed_queue_size

Variable Name delayed_queue_size

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 1000

Range 1-4294967295

This is a per-table limit on the number of rows to queue when handling INSERT DELAYED statements. If the queue becomes full,
any client that issues an INSERT DELAYED statement waits until there is room in the queue again.

• div_precision_increment

Option Sets Variable Yes, div_precision_increment

Variable Name div_precision_increment

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 4

Range 0-30

This variable indicates the number of digits by which to increase the scale of the result of division operations performed with the /
operator. The default value is 4. The minimum and maximum values are 0 and 30, respectively. The following example illustrates
the effect of increasing the default value.

mysql> SELECT 1/7;

MySQL Server Administration

349



+--------+
| 1/7 |
+--------+
| 0.1429 |
+--------+
mysql> SET div_precision_increment = 12;
mysql> SELECT 1/7;
+----------------+
| 1/7 |
+----------------+
| 0.142857142857 |
+----------------+

• event_scheduler

Version Introduced 5.1.6

Option Sets Variable Yes, event-scheduler

Variable Name event_scheduler

Variable Scope Global

Dynamic Variable Yes

Value Set Type enumeration

Default OFF

Valid Values ON, OFF, DISABLED

This variable indicates the status of the Event Scheduler; as of MySQL 5.1.12, possible values are ON, OFF, and DISABLED, with
the default being OFF. This variable and its effects on the Event Scheduler's operation are discussed in greater detail in the Over-
view section of the Events chapter.

This variable was added in MySQL 5.1.6.

• expire_logs_days

Option Sets Variable Yes, expire_logs_days

Variable Name expire_logs_days

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 0

Range 0-99

The number of days for automatic binary log removal. The default is 0, which means “no automatic removal.” Possible removals
happen at startup and at binary log rotation.

• flush

Variable Name flush

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default OFF

If ON, the server flushes (synchronizes) all changes to disk after each SQL statement. Normally, MySQL does a write of all changes
to disk only after each SQL statement and lets the operating system handle the synchronizing to disk. See Section B.1.4.2, “What to
Do If MySQL Keeps Crashing”. This variable is set to ON if you start mysqld with the --flush option.

MySQL Server Administration

350



• flush_time

Option Sets Variable Yes, flush_time

Variable Name flush_time

Variable Scope Global

Dynamic Variable Yes

Value Set Type linux

Default 0

Min Value 0

Value Set Type macosx

Default 0

Min Value 0

Value Set Type hpux

Default 0

Min Value 0

Value Set Type solaris

Default 0

Min Value 0

Value Set Type netware

Default 0

Min Value 0

Value Set Type windows

Default 1800

Min Value 0

If this is set to a non-zero value, all tables are closed every flush_time seconds to free up resources and synchronize unflushed
data to disk. We recommend that this option be used only on Windows 9x or Me, or on systems with minimal resources.

• ft_boolean_syntax

Variable Name ft_boolean_syntax

Variable Scope Global

Dynamic Variable Yes

Value Set Type string

Default +-><()~*:""&

The list of operators supported by boolean full-text searches performed using IN BOOLEAN MODE. See Section 11.8.2, “Boolean
Full-Text Searches”.

The default variable value is '+ -><()~*:""&|'. The rules for changing the value are as follows:

• Operator function is determined by position within the string.

• The replacement value must be 14 characters.

• Each character must be an ASCII non-alphanumeric character.

• Either the first or second character must be a space.

MySQL Server Administration

351



• No duplicates are allowed except the phrase quoting operators in positions 11 and 12. These two characters are not required to
be the same, but they are the only two that may be.

• Positions 10, 13, and 14 (which by default are set to “:”, “&”, and “|”) are reserved for future extensions.

• ft_max_word_len

Option Sets Variable Yes, ft_max_word_len

Variable Name ft_max_word_len

Variable Scope Global

Dynamic Variable No

Value Set Type numeric

Min Value 10

The maximum length of the word to be included in a FULLTEXT index.

Note

FULLTEXT indexes must be rebuilt after changing this variable. Use REPAIR TABLE tbl_name QUICK.

• ft_min_word_len

Option Sets Variable Yes, ft_min_word_len

Variable Name ft_min_word_len

Variable Scope Global

Dynamic Variable No

Value Set Type numeric

Default 4

Min Value 1

The minimum length of the word to be included in a FULLTEXT index.

Note

FULLTEXT indexes must be rebuilt after changing this variable. Use REPAIR TABLE tbl_name QUICK.

• ft_query_expansion_limit

Option Sets Variable Yes, ft_query_expansion_limit

Variable Name ft_query_expansion_limit

Variable Scope Global

Dynamic Variable No

Value Set Type numeric

Default 20

Range 0-1000

The number of top matches to use for full-text searches performed using WITH QUERY EXPANSION.

• ft_stopword_file

Option Sets Variable Yes, ft_stopword_file

MySQL Server Administration

352



Variable Name ft_stopword_file

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The file from which to read the list of stopwords for full-text searches. All the words from the file are used; comments are not
honored. By default, a built-in list of stopwords is used (as defined in the storage/myisam/ft_static.c file). Setting this
variable to the empty string ('') disables stopword filtering.

Note

FULLTEXT indexes must be rebuilt after changing this variable or the contents of the stopword file. Use REPAIR TABLE
tbl_name QUICK.

• general_log

Version Introduced 5.1.12

Option Sets Variable Yes, general_log

Variable Name general_log

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default OFF

Whether the general query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON) to enable the log. The default
value depends on whether the --log option is given. The destination for log output is controlled by the log_output system vari-
able; if that value is NONE, no log entries are written even if the log is enabled. The general_log variable was added in MySQL
5.1.12.

• general_log_file

Version Introduced 5.1.12

Variable Name general_log_file

Variable Scope Global

Dynamic Variable Yes

Value Set Type filename

Default host_name.log

The name of the general query log file. The default value is host_name.log, but the initial value can be changed with the -
-log option. This variable was added in MySQL 5.1.12.

• group_concat_max_len

Option Sets Variable Yes, group_concat_max_len

Variable Name group_concat_max_len

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 1024

Min Value 4

MySQL Server Administration

353



The maximum allowed result length for the GROUP_CONCAT() function. The default is 1024.

• have_archive

YES if mysqld supports ARCHIVE tables, NO if not.

• have_blackhole_engine

YES if mysqld supports BLACKHOLE tables, NO if not.

• have_compress

YES if the zlib compression library is available to the server, NO if not. If not, the COMPRESS() and UNCOMPRESS() functions
cannot be used.

• have_crypt

YES if the crypt() system call is available to the server, NO if not. If not, the ENCRYPT() function cannot be used.

• have_csv

YES if mysqld supports ARCHIVE tables, NO if not.

• have_dynamic_loading

YES if mysqld supports dynamic loading of plugins, NO if not. This variable was added in MySQL 5.1.10.

• have_example_engine

YES if mysqld supports EXAMPLE tables, NO if not.

have_federated_engine

YES if mysqld supports FEDERATED tables, NO if not.

• have_geometry

YES if the server supports spatial data types, NO if not.

• have_innodb

YES if mysqld supports InnoDB tables. DISABLED if --skip-innodb is used.

• have_partitioning

YES if mysqld supports partitioning. Added in MySQL 5.1.1 as have_partition_engine and renamed to
have_partioning in 5.1.6.

• have_openssl

YES if mysqld supports SSL connections, NO if not. As of MySQL 5.1.17, this variable is an alias for have_ssl.

• have_query_cache

YES if mysqld supports the query cache, NO if not.

• have_row_based_replication

Version Introduced 5.1.5

Variable Name have_row_based_replication

Variable Scope Global

Dynamic Variable No

Deprecated 5.1.15

MySQL Server Administration

354



Value Set Type boolean

YES if the server can perform replication using row-based binary logging. If the value is NO, the server can use only statement-
based logging. See Section 16.1.2, “Replication Formats”. This variable was added in MySQL 5.1.5 and removed in 5.1.15.

• have_rtree_keys

YES if RTREE indexes are available, NO if not. (These are used for spatial indexes in MyISAM tables.)

• have_ssl

YES if mysqld supports SSL connections, NO if not. This variable was added in MySQL 5.1.17. Before that, use
have_openssl.

• have_symlink

YES if symbolic link support is enabled, NO if not. This is required on Unix for support of the DATA DIRECTORY and INDEX
DIRECTORY table options, and on Windows for support of data directory symlinks.

• hostname

Version Introduced 5.1.17

Variable Name hostname

Variable Scope Global

Dynamic Variable No

Value Set Type string

The server sets this variable to the server hostname at startup. This variable was added in MySQL 5.1.17.

• init_connect

Option Sets Variable Yes, init_connect

Variable Name init_connect

Variable Scope Global

Dynamic Variable Yes

Value Set Type string

A string to be executed by the server for each client that connects. The string consists of one or more SQL statements. To specify
multiple statements, separate them by semicolon characters. For example, each client begins by default with autocommit mode en-
abled. There is no global system variable to specify that autocommit should be disabled by default, but init_connect can be
used to achieve the same effect:

SET GLOBAL init_connect='SET AUTOCOMMIT=0';

This variable can also be set on the command line or in an option file. To set the variable as just shown using an option file, include
these lines:

[mysqld]
init_connect='SET AUTOCOMMIT=0'

Note that the content of init_connect is not executed for users that have the SUPER privilege. This is done so that an erroneous
value for init_connect does not prevent all clients from connecting. For example, the value might contain a statement that has a
syntax error, thus causing client connections to fail. Not executing init_connect for users that have the SUPER privilege en-
ables them to open a connection and fix the init_connect value.

MySQL Server Administration

355



• init_file

Option Sets Variable Yes, init_file

Variable Name init_file

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The name of the file specified with the --init-file option when you start the server. This should be a file containing SQL state-
ments that you want the server to execute when it starts. Each statement must be on a single line and should not include comments.

Note that the --init-file option is unavailable if MySQL was configured with the --disable-grant-options option.
See Section 2.9.2, “Typical configure Options”.

• init_slave

Option Sets Variable Yes, init_slave

Variable Name init_slave

Variable Scope Global

Dynamic Variable Yes

Value Set Type string

This variable is similar to init_connect, but is a string to be executed by a slave server each time the SQL thread starts. The
format of the string is the same as for the init_connect variable.

• innodb_xxx

InnoDB system variables are listed in Section 13.5.4, “InnoDB Startup Options and System Variables”.

• interactive_timeout

Option Sets Variable Yes, interactive_timeout

Variable Name interactive_timeout

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 28800

Min Value 1

The number of seconds the server waits for activity on an interactive connection before closing it. An interactive client is defined as
a client that uses the CLIENT_INTERACTIVE option to mysql_real_connect(). See also wait_timeout.

• join_buffer_size

Option Sets Variable Yes, join_buffer_size

Variable Name join_buffer_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 131072

Range 8200-4294967295

MySQL Server Administration

356



The size of the buffer that is used for joins that do not use indexes and thus perform full table scans. Normally, the best way to get
fast joins is to add indexes. Increase the value of join_buffer_size to get a faster full join when adding indexes is not pos-
sible. One join buffer is allocated for each full join between two tables. For a complex join between several tables for which indexes
are not used, multiple join buffers might be necessary.

The maximum allowable setting for join_buffer_size is 4GB. As of MySQL 5.1.23, values larger than 4GB are allowed for
64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB with a warning).

• keep_files_on_create

Version Introduced 5.1.21

Option Sets Variable Yes, keep_files_on_create

Variable Name keep_files_on_create

Variable Scope Both

Dynamic Variable Yes

Value Set Type boolean

Default OFF

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database directory. By default, if
MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies to .MYI files for tables created with no INDEX
DIRECTORY option. To suppress this behavior, set the keep_files_on_create variable to ON (1), in which case MyISAM
will not overwrite existing files and returns an error instead. The default value is OFF (0).

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing .MYD or .MYI file is
found, MyISAM always returns an error. It will not overwrite a file in the specified directory.

This variable was added in MySQL 5.1.23.

• key_buffer_size

Option Sets Variable Yes, key_buffer_size

Variable Name key_buffer_size

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 131072

Range 8-4294967295

Index blocks for MyISAM tables are buffered and are shared by all threads. key_buffer_size is the size of the buffer used for
index blocks. The key buffer is also known as the key cache.

The maximum allowable setting for key_buffer_size is 4GB on 32-bit platforms. As of MySQL 5.1.23, values larger than
4GB are allowed for 64-bit platforms. The effective maximum size might be less, depending on your available physical RAM and
per-process RAM limits imposed by your operating system or hardware platform. The value of this variable indicates the amount of
memory requested. Internally, the server allocates as much memory as possible up to this amount, but the actual allocation might be
less.

Increase the value to get better index handling (for all reads and multiple writes) to as much as you can afford. Using a value that is
25% of total memory on a machine that mainly runs MySQL is quite common. However, if you make the value too large (for ex-
ample, more than 50% of your total memory) your system might start to page and become extremely slow. MySQL relies on the op-
erating system to perform filesystem caching for data reads, so you must leave some room for the filesystem cache. Consider also
the memory requirements of other storage engines.

For even more speed when writing many rows at the same time, use LOCK TABLES. See Section 7.2.18, “Speed of INSERT State-
ments”.

MySQL Server Administration

357



You can check the performance of the key buffer by issuing a SHOW STATUS statement and examining the
Key_read_requests, Key_reads, Key_write_requests, and Key_writes status variables. (See Section 12.5.4,
“SHOW Syntax”.) The Key_reads/Key_read_requests ratio should normally be less than 0.01. The
Key_writes/Key_write_requests ratio is usually near 1 if you are using mostly updates and deletes, but might be much
smaller if you tend to do updates that affect many rows at the same time or if you are using the DELAY_KEY_WRITE table option.

The fraction of the key buffer in use can be determined using key_buffer_size in conjunction with the
Key_blocks_unused status variable and the buffer block size, which is available from the key_cache_block_size system
variable:

1 - ((Key_blocks_unused × key_cache_block_size) / key_buffer_size)

This value is an approximation because some space in the key buffer may be allocated internally for administrative structures.

It is possible to create multiple MyISAM key caches. The size limit of 4GB applies to each cache individually, not as a group. See
Section 7.4.6, “The MyISAM Key Cache”.

• key_cache_age_threshold

Option Sets Variable Yes, key_cache_age_threshold

Variable Name key_cache_age_threshold

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 300

Range 100-4294967295

This value controls the demotion of buffers from the hot sub-chain of a key cache to the warm sub-chain. Lower values cause demo-
tion to happen more quickly. The minimum value is 100. The default value is 300. See Section 7.4.6, “The MyISAM Key Cache”.

• key_cache_block_size

Option Sets Variable Yes, key_cache_block_size

Variable Name key_cache_block_size

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 1024

Range 512-16384

The size in bytes of blocks in the key cache. The default value is 1024. See Section 7.4.6, “The MyISAM Key Cache”.

• key_cache_division_limit

Option Sets Variable Yes, key_cache_division_limit

Variable Name key_cache_division_limit

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 100

Range 1-100

MySQL Server Administration

358



The division point between the hot and warm sub-chains of the key cache buffer chain. The value is the percentage of the buffer
chain to use for the warm sub-chain. Allowable values range from 1 to 100. The default value is 100. See Section 7.4.6, “The My-
ISAM Key Cache”.

• language

Option Sets Variable Yes, language

Variable Name language

Variable Scope Global

Dynamic Variable No

Value Set Type filename

Default /
usr/loc-
al/mysql/share/mysql/english/

The language used for error messages.

• large_files_support

Variable Name large_files_support

Variable Scope Global

Dynamic Variable No

Whether mysqld was compiled with options for large file support.

• large_pages

Option Sets Variable Yes, large_pages

Variable Name large_pages

Variable Scope Global

Dynamic Variable No

Platform Specific linux

Value Set Type linux

Default FALSE

Whether large page support is enabled.

For more information, see the entry for the --large-pages server option.

• large_page_size

Variable Name large_page_size

Variable Scope Global

Dynamic Variable No

Value Set Type linux

Default 0

If large page support is enabled, this shows the size of memory pages. Currently, large memory pages are supported only on Linux;
on other platforms, the value of this variable is always 0.

MySQL Server Administration

359



For more information, see the entry for the --large-pages server option.

• lc_time_names

Version Introduced 5.1.12

Variable Name lc_time_names

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

This variable specifies the locale that controls the language used to display day and month names and abbreviations. This variable
affects the output from the DATE_FORMAT(), DAYNAME() and MONTHNAME() functions. Locale names are POSIX-style values
such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of your system's locale setting. For further information,
see Section 9.7, “MySQL Server Locale Support”. This variable was added in MySQL 5.1.12.

• license

Variable Name license

Variable Scope Global

Dynamic Variable No

Value Set Type string

Default GPL

The type of license the server has.

• local_infile

Variable Name local_infile

Variable Scope Global

Dynamic Variable Yes

Whether LOCAL is supported for LOAD DATA INFILE statements. See Section 5.3.4, “Security Issues with LOAD DATA LOC-
AL”.

• locked_in_memory

Variable Name locked_in_memory

Variable Scope Global

Dynamic Variable No

Whether mysqld was locked in memory with --memlock.

• log

Whether logging of all statements to the general query log is enabled. See Section 5.2.3, “The General Query Log”.

• log_bin

Variable Name log_bin

Variable Scope Global

Dynamic Variable No

MySQL Server Administration

360



Whether the binary log is enabled. See Section 5.2.4, “The Binary Log”.

• log_bin_trust_function_creators

Option Sets Variable Yes, log_bin_trust_function_creators

Variable Name log_bin_trust_function_creators

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default FALSE

This variable applies when binary logging is enabled. It controls whether stored function creators can be trusted not to create stored
functions that will cause unsafe events to be written to the binary log. If set to 0 (the default), users are not allowed to create or alter
stored routines unless they have the SUPER privilege in addition to the CREATE ROUTINE or ALTER ROUTINE privilege. A set-
ting of 0 also enforces the restriction that a function must be declared with the DETERMINISTIC characteristic, or with the READS
SQL DATA or NO SQL characteristic. If the variable is set to 1, MySQL does not enforce these restrictions on stored function cre-
ation. See Section 20.4, “Binary Logging of Stored Routines and Triggers”.

• log_error

Option Sets Variable Yes, log_error

Variable Name log_error

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The location of the error log.

• log_output

Version Introduced 5.1.6

Option Sets Variable Yes, log_output

Variable Name log_output

Variable Scope Global

Dynamic Variable Yes

Value Set Type enumeration

Default TABLE

Valid Values TABLE, FILE, NONE

The destination for general query log and slow query log output. The value can be a comma-separated list of one or more of the
words TABLE (log to tables), FILE (log to files), or NONE (do not log to tables or files). The default value is TABLE. NONE, if
present, takes precedence over any other specifiers. If the value is NONE log entries are not written even if the logs are enabled. If
the logs are not enabled, no logging occurs even if the value of log_output is not NONE. For more information, see Sec-
tion 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”. This variable was added in MySQL 5.1.6.

• log_queries_not_using_indexes

Version Introduced 5.1.11

Option Sets Variable Yes, log_queries_not_using_indexes

Variable Name log_queries_not_using_indexes

MySQL Server Administration

361



Variable Scope Global

Dynamic Variable No

Value Set Type boolean

Whether queries that do not use indexes are logged to the slow query log. See Section 5.2.5, “The Slow Query Log”. This variable
was added in MySQL 5.1.11.

• log_slave_updates

Whether updates received by a slave server from a master server should be logged to the slave's own binary log. Binary logging
must be enabled on the slave for this variable to have any effect. See Section 16.1.3, “Replication Options and Variables”.

• log_slow_queries

Option Sets Variable Yes, log_slow_queries

Variable Name log_slow_queries

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Whether slow queries should be logged. “Slow” is determined by the value of the long_query_time variable. See Section 5.2.5,
“The Slow Query Log”.

• log_warnings

Option Sets Variable Yes, log-warnings

Variable Name log_warnings

Variable Scope Both

Dynamic Variable Yes

Disabled by skip-log-warnings

Value Set Type numeric

Default 1

Whether to produce additional warning messages. It is enabled (1) by default and can be disabled by setting it to 0. Aborted connec-
tions are not logged to the error log unless the value is greater than 1.

• long_query_time

Option Sets Variable Yes, long_query_time

Variable Name long_query_time

Variable Scope Both

Dynamic Variable Yes

Value Set (>= 5.1.21) Type numeric

Default 10

Min Value 0

If a query takes longer than this many seconds, the server increments the Slow_queries status variable. If you are using the -
-log-slow-queries option, the query is logged to the slow query log file. This value is measured in real time, not CPU time,
so a query that is under the threshold on a lightly loaded system might be above the threshold on a heavily loaded one. Prior to

MySQL Server Administration

362



MySQL 5.1.21, the minimum value is 1, and the value for this variable must be an integer. Beginning with MySQL 5.1.21, the min-
imum is 0, and a resolution of microseconds is supported when logging to a file. However, the microseconds part is ignored and
only integer values are written when logging to tables. The default value is 10. See Section 5.2.5, “The Slow Query Log”.

• low_priority_updates

Option Sets Variable Yes, low_priority_updates

Variable Name low_priority_updates

Variable Scope Both

Dynamic Variable Yes

Value Set Type boolean

Default FALSE

If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait until there is no pending SELECT or
LOCK TABLE READ on the affected table. This affects only storage engines that use only table-level locking (MyISAM, MEMORY,
MERGE). This variable previously was named sql_low_priority_updates.

• lower_case_file_system

Option Sets Variable Yes, lower_case_file_system

Variable Name lower_case_file_system

Variable Scope Global

Dynamic Variable No

Value Set Type boolean

This variable describes the case sensitivity of filenames on the filesystem where the data directory is located. OFF means filenames
are case sensitive, ON means they are not case sensitive.

• lower_case_table_names

Option Sets Variable Yes, lower_case_table_names

Variable Name lower_case_table_names

Variable Scope Global

Dynamic Variable No

Value Set Type numeric

Default 0

Range 0-2

If set to 1, table names are stored in lowercase on disk and table name comparisons are not case sensitive. If set to 2 table names are
stored as given but compared in lowercase. This option also applies to database names and table aliases. See Section 8.2.2,
“Identifier Case Sensitivity”.

If you are using InnoDB tables, you should set this variable to 1 on all platforms to force names to be converted to lowercase.

You should not set this variable to 0 if you are running MySQL on a system that does not have case-sensitive filenames (such as
Windows or Mac OS X). If this variable is not set at startup and the filesystem on which the data directory is located does not have
case-sensitive filenames, MySQL automatically sets lower_case_table_names to 2.

• max_allowed_packet

Option Sets Variable Yes, max_allowed_packet

Variable Name max_allowed_packet

MySQL Server Administration

363



Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 1048576

Range 1024-1073741824

The maximum size of one packet or any generated/intermediate string.

The packet message buffer is initialized to net_buffer_length bytes, but can grow up to max_allowed_packet bytes
when needed. This value by default is small, to catch large (possibly incorrect) packets.

You must increase this value if you are using large BLOB columns or long strings. It should be as big as the largest BLOB you want
to use. The protocol limit for max_allowed_packet is 1GB.

• max_binlog_cache_size

Option Sets Variable Yes, max_binlog_cache_size

Variable Name max_binlog_cache_size

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 4294967295

Range 4096-4294967295

If a multiple-statement transaction requires more than this many bytes of memory, the server generates a Multi-statement
transaction required more than 'max_binlog_cache_size' bytes of storage error. The minimum
value is 4096, the maximum and default values are 4GB.

• max_binlog_size

Option Sets Variable Yes, max_binlog_size

Variable Name max_binlog_size

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 1073741824

Min Value 4096

If a write to the binary log causes the current log file size to exceed the value of this variable, the server rotates the binary logs
(closes the current file and opens the next one). You cannot set this variable to more than 1GB or to less than 4096 bytes. The de-
fault value is 1GB.

A transaction is written in one chunk to the binary log, so it is never split between several binary logs. Therefore, if you have big
transactions, you might see binary logs larger than max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.

• max_connect_errors

Option Sets Variable Yes, max_connect_errors

Variable Name max_connect_errors

MySQL Server Administration

364



Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 10

Range 1-4294967295

If there are more than this number of interrupted connections from a host, that host is blocked from further connections. You can un-
block blocked hosts with the FLUSH HOSTS statement.

• max_connections

Option Sets Variable Yes, max_connections

Variable Name max_connections

Variable Scope Global

Dynamic Variable Yes

Value Set (<= 5.1.14) Type numeric

Default 100

Value Set (>= 5.1.15) Type numeric

Default 151

Range 1-16384

Value Set (>= 5.1.17) Type numeric

Default 151

Range 1-100000

The number of simultaneous client connections allowed. By default, this is 151, beginning with MySQL 5.1.15. (Previously, the de-
fault was 100.) See Section B.1.2.7, “Too many connections”, for more information.

MySQL Enterprise
For notification that the maximum number of connections is getting dangerously high and for advice on setting
the optimum value for max_connections subscribe to the MySQL Enterprise Monitor. For more information
see http://www.mysql.com/products/enterprise/advisors.html.

Increasing this value increases the number of file descriptors that mysqld requires. See Section 7.4.8, “How MySQL Opens and
Closes Tables”, for comments on file descriptor limits.

• max_delayed_threads

Option Sets Variable Yes, max_delayed_threads

Variable Name max_delayed_threads

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 20

Range 0-16384

Do not start more than this number of threads to handle INSERT DELAYED statements. If you try to insert data into a new table
after all INSERT DELAYED threads are in use, the row is inserted as if the DELAYED attribute wasn't specified. If you set this to 0,
MySQL never creates a thread to handle DELAYED rows; in effect, this disables DELAYED entirely.

MySQL Server Administration

365

http://www.mysql.com/products/enterprise/advisors.html


For the SESSION value of this variable, the only valid values are 0 or the GLOBAL value.

• max_error_count

Option Sets Variable Yes, max_error_count

Variable Name max_error_count

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 64

Range 0-65535

The maximum number of error, warning, and note messages to be stored for display by the SHOW ERRORS and SHOW WARNINGS
statements.

• max_heap_table_size

Option Sets Variable Yes, max_heap_table_size

Variable Name max_heap_table_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 16777216

Range 16384-4294967295

This variable sets the maximum size to which MEMORY tables are allowed to grow. The value of the variable is used to calculate
MEMORY table MAX_ROWS values. Setting this variable has no effect on any existing MEMORY table, unless the table is re-created
with a statement such as CREATE TABLE or altered with ALTER TABLE or TRUNCATE TABLE.

MySQL Enterprise
Subscribers to the MySQL Enterprise Monitor receive recommendations for the optimum setting for
max_heap_table_size. For more information see http://www.mysql.com/products/enterprise/advisors.html.

• max_insert_delayed_threads

Variable Name max_insert_delayed_threads

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

This variable is a synonym for max_delayed_threads.

• max_join_size

Option Sets Variable Yes, max_join_size

Variable Name max_join_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 4294967295

MySQL Server Administration

366

http://www.mysql.com/products/enterprise/advisors.html


Range 1-4294967295

Do not allow SELECT statements that probably need to examine more than max_join_size rows (for single-table statements) or
row combinations (for multiple-table statements) or that are likely to do more than max_join_size disk seeks. By setting this
value, you can catch SELECT statements where keys are not used properly and that would probably take a long time. Set it if your
users tend to perform joins that lack a WHERE clause, that take a long time, or that return millions of rows.

Setting this variable to a value other than DEFAULT resets the value of SQL_BIG_SELECTS to 0. If you set the
SQL_BIG_SELECTS value again, the max_join_size variable is ignored.

If a query result is in the query cache, no result size check is performed, because the result has previously been computed and it does
not burden the server to send it to the client.

This variable previously was named sql_max_join_size.

• max_length_for_sort_data

Option Sets Variable Yes, max_length_for_sort_data

Variable Name max_length_for_sort_data

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 1024

Range 4-8388608

The cutoff on the size of index values that determines which filesort algorithm to use. See Section 7.2.11, “ORDER BY Optim-
ization”.

• max_prepared_stmt_count

Version Introduced 5.1.10

Command Line Format --max_prepared_stmt_count=# 5.0.21

Config File Format max_prepared_stmt_count 5.0.21

Option Sets Variable Yes, max_prepared_stmt_count

Variable Name max_prepared_stmt_count

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 16382

Range 0-1048576

This variable limits the total number of prepared statements in the server. It can be used in environments where there is the potential
for denial-of-service attacks based on running the server out of memory by preparing huge numbers of statements. The default value
is 16,382. The allowable range of values is from 0 to 1 million. If the value is set lower than the current number of prepared state-
ments, existing statements are not affected and can be used, but no new statements can be prepared until the current number drops
below the limit. This variable was added in MySQL 5.1.10.

• max_relay_log_size

Option Sets Variable Yes, max_relay_log_size

Variable Name max_relay_log_size

MySQL Server Administration

367



Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 1024

Range 0-1073741824

If a write by a replication slave to its relay log causes the current log file size to exceed the value of this variable, the slave rotates
the relay logs (closes the current file and opens the next one). If max_relay_log_size is 0, the server uses
max_binlog_size for both the binary log and the relay log. If max_relay_log_size is greater than 0, it constrains the size
of the relay log, which enables you to have different sizes for the two logs. You must set max_relay_log_size to between
4096 bytes and 1GB (inclusive), or to 0. The default value is 0. See Section 16.4.1, “Replication Implementation Details”.

• max_seeks_for_key

Option Sets Variable Yes, max_seeks_for_key

Variable Name max_seeks_for_key

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 4294967295

Range 1-4294967295

Limit the assumed maximum number of seeks when looking up rows based on a key. The MySQL optimizer assumes that no more
than this number of key seeks are required when searching for matching rows in a table by scanning an index, regardless of the actu-
al cardinality of the index (see Section 12.5.4.18, “SHOW INDEX Syntax”). By setting this to a low value (say, 100), you can force
MySQL to prefer indexes instead of table scans.

• max_sort_length

Option Sets Variable Yes, max_sort_length

Variable Name max_sort_length

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 1024

Range 4-8388608

The number of bytes to use when sorting BLOB or TEXT values. Only the first max_sort_length bytes of each value are used;
the rest are ignored.

• max_sp_recursion_depth

Option Sets Variable Yes, max_sp_recursion_depth

Variable Name max_sp_recursion_depth

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 0

Max Value 255

MySQL Server Administration

368



The number of times that any given stored procedure may be called recursively. The default value for this option is 0, which com-
pletely disallows recursion in stored procedures. The maximum value is 255.

Stored procedure recursion increases the demand on thread stack space. If you increase the value of
max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the value of thread_stack at
server startup.

• max_tmp_tables

Option Sets Variable Yes, max_tmp_tables

Variable Name max_tmp_tables

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 32

Range 1-4294967295

The maximum number of temporary tables a client can keep open at the same time. (This option does not yet do anything.)

• max_user_connections

Option Sets Variable Yes, max_user_connections

Variable Name max_user_connections

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Range 1-4294967295

The maximum number of simultaneous connections allowed to any given MySQL account. A value of 0 means “no limit.”

This variable has both a global scope and a (read-only) session scope. The session variable has the same value as the global variable
unless the current account has a non-zero MAX_USER_CONNECTIONS resource limit. In that case, the session value reflects the ac-
count limit.

• max_write_lock_count

Option Sets Variable Yes, max_write_lock_count

Variable Name max_write_lock_count

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 4294967295

Range 1-4294967295

After this many write locks, allow some pending read lock requests to be processed in between.

• min_examined_row_limit

Version Introduced 5.1.21

Variable Name min_examined_row_limit

Variable Scope Both

MySQL Server Administration

369



Dynamic Variable Yes

Value Set Type numeric

Default 0

Range 0-4294967295

Queries that examine fewer than this number of rows are not logged to the slow query log. This variable was added in MySQL
5.1.21.

• myisam_block_size

Option Sets Variable Yes, myisam_block_size

Variable Name myisam_block_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 1024

Range 1024-16384

The block size to be used for MyISAM index pages.

• myisam_data_pointer_size

Option Sets Variable Yes, myisam_data_pointer_size

Variable Name myisam_data_pointer_size

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 6

Range 2-7

The default pointer size in bytes, to be used by CREATE TABLE for MyISAM tables when no MAX_ROWS option is specified. This
variable cannot be less than 2 or larger than 7. The default value is 6. See Section B.1.2.12, “The table is full”.

• myisam_max_sort_file_size

Option Sets Variable Yes, myisam_max_sort_file_size

Variable Name myisam_max_sort_file_size

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 2147483648

The maximum size of the temporary file that MySQL is allowed to use while re-creating a MyISAM index (during REPAIR
TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be larger than this value, the index is created using the
key cache instead, which is slower. The value is given in bytes.

The default value is 2GB. If MyISAM index files exceed this size and disk space is available, increasing the value may help perform-
ance.

MySQL Server Administration

370



• myisam_recover_options

Variable Name myisam_recover_options

Variable Scope Global

Dynamic Variable No

The value of the --myisam-recover option. See Section 5.1.2, “Command Options”.

• myisam_repair_threads

Option Sets Variable Yes, myisam_repair_threads

Variable Name myisam_repair_threads

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 1

Range 1-4294967295

If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its own thread) during the Repair by
sorting process. The default value is 1.

Note

Multi-threaded repair is still beta-quality code.

• myisam_sort_buffer_size

Option Sets Variable Yes, myisam_sort_buffer_size

Variable Name myisam_sort_buffer_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 8388608

Range 4-4294967295

The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or when creating indexes with
CREATE INDEX or ALTER TABLE.

The maximum allowable setting for myisam_sort_buffer_size is 4GB. As of MySQL 5.1.23, values larger than 4GB are al-
lowed for 64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB with a warning).

• myisam_stats_method

Option Sets Variable Yes, myisam_stats_method

Variable Name myisam_stats_method

Variable Scope Both

Dynamic Variable Yes

Value Set Type enumeration

Valid Values nulls_equal, nulls_unequal

MySQL Server Administration

371



How the server treats NULL values when collecting statistics about the distribution of index values for MyISAM tables. This variable
has two possible values, nulls_equal and nulls_unequal. For nulls_equal, all NULL index values are considered equal
and form a single value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values are con-
sidered unequal, and each NULL forms a distinct value group of size 1.

The method that is used for generating table statistics influences how the optimizer chooses indexes for query execution, as de-
scribed in Section 7.4.7, “MyISAM Index Statistics Collection”.

• myisam_use_mmap

Version Introduced 5.1.4

Option Sets Variable Yes, myisam_use_mmap

Variable Name myisam_use_mmap

Variable Scope Global

Dynamic Variable No

Value Set Type boolean

Default FALSE

Use memory mapping for reading and writing MyISAM tables. This variable was added in MySQL 5.1.4.

• named_pipe

Variable Name named_pipe

Variable Scope Global

Dynamic Variable No

Platform Specific windows

(Windows only.) Indicates whether the server supports connections over named pipes.

• net_buffer_length

Option Sets Variable Yes, net_buffer_length

Variable Name net_buffer_length

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 16384

Range 1024-1048576

Each client thread is associated with a connection buffer and result buffer. Both begin with a size given by net_buffer_length
but are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer shrinks to
net_buffer_length after each SQL statement.

This variable should not normally be changed, but if you have very little memory, you can set it to the expected length of statements
sent by clients. If statements exceed this length, the connection buffer is automatically enlarged. The maximum value to which
net_buffer_length can be set is 1MB.

• net_read_timeout

Option Sets Variable Yes, net_read_timeout

Variable Name net_read_timeout

Variable Scope Both

MySQL Server Administration

372



Dynamic Variable Yes

Value Set Type numeric

Default 30

Min Value 1

The number of seconds to wait for more data from a connection before aborting the read. This timeout applies only to TCP/IP con-
nections, not to connections made via Unix socket files, named pipes, or shared memory. When the server is reading from the client,
net_read_timeout is the timeout value controlling when to abort. When the server is writing to the client,
net_write_timeout is the timeout value controlling when to abort. See also slave_net_timeout.

• net_retry_count

Option Sets Variable Yes, net_retry_count

Variable Name net_retry_count

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 10

Range 1-4294967295

If a read on a communication port is interrupted, retry this many times before giving up. This value should be set quite high on
FreeBSD because internal interrupts are sent to all threads.

• net_write_timeout

Option Sets Variable Yes, net_write_timeout

Variable Name net_write_timeout

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 60

Min Value 1

The number of seconds to wait for a block to be written to a connection before aborting the write. This timeout applies only to TCP/
IP connections, not to connections made via Unix socket files, named pipes, or shared memory. See also net_read_timeout.

• new

Option Sets Variable Yes, new

Variable Name new

Variable Scope Both

Dynamic Variable Yes

Disabled by skip-new

Value Set Type boolean

Default FALSE

This variable was used in MySQL 4.0 to turn on some 4.1 behaviors, and is retained for backward compatibility. In MySQL 5.1, its
value is always OFF.

MySQL Server Administration

373



• old

Version Introduced 5.1.18

Variable Name old

Variable Scope Global

Dynamic Variable No

old is a compatibility variable. It is disabled by default, but can be enabled at startup to revert the server to behaviors present in
older versions.

Currently, when old is enabled, it changes the default scope of index hints to that used prior to MySQL 5.1.17. That is, index hints
with no FOR clause apply only to how indexes are used for row retrieval and not to resolution of ORDER BY or GROUP BY clauses.
(See Section 12.2.7.2, “Index Hint Syntax”.) Take care about enabling this in a replication setup. With statement-based binary log-
ging, having different modes for the master and slaves might lead to replication errors.

This variable was added as old_mode in MySQL 5.1.17 and renamed to old in MySQL 5.1.18.

• old_passwords

Option Sets Variable Yes, old_passwords

Variable Name old_passwords

Variable Scope Both

Dynamic Variable Yes

Value Set Type boolean

Default FALSE

Whether the server should use pre-4.1-style passwords for MySQL user accounts. See Section B.1.2.4, “Client does not
support authentication protocol”.

• one_shot

This is not a variable, but it can be used when setting some variables. It is described in Section 12.5.3, “SET Syntax”.

• open_files_limit

Option Sets Variable Yes, open_files_limit

Variable Name open_files_limit

Variable Scope Global

Dynamic Variable No

Value Set Type numeric

Default 0

Range 0-65535

The number of files that the operating system allows mysqld to open. This is the real value allowed by the system and might be
different from the value you gave using the --open-files-limit option to mysqld or mysqld_safe. The value is 0 on
systems where MySQL can't change the number of open files.

• optimizer_prune_level

Option Sets Variable Yes, optimizer_prune_level

Variable Name optimizer_prune_level

Variable Scope Both

Dynamic Variable Yes

MySQL Server Administration

374



Value Set Type boolean

Default 1

Controls the heuristics applied during query optimization to prune less-promising partial plans from the optimizer search space. A
value of 0 disables heuristics so that the optimizer performs an exhaustive search. A value of 1 causes the optimizer to prune plans
based on the number of rows retrieved by intermediate plans.

• optimizer_search_depth

Option Sets Variable Yes, optimizer_search_depth

Variable Name optimizer_search_depth

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 62

The maximum depth of search performed by the query optimizer. Values larger than the number of relations in a query result in bet-
ter query plans, but take longer to generate an execution plan for a query. Values smaller than the number of relations in a query re-
turn an execution plan quicker, but the resulting plan may be far from being optimal. If set to 0, the system automatically picks a
reasonable value. If set to the maximum number of tables used in a query plus 2, the optimizer switches to the algorithm used in
MySQL 5.0.0 (and previous versions) for performing searches.

• pid_file

Option Sets Variable Yes, pid_file

Variable Name pid_file

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The pathname of the process ID (PID) file. This variable can be set with the --pid-file option.

• plugin_dir

Version Introduced 5.1.2

Option Sets Variable Yes, plugin_dir

Variable Name plugin_dir

Variable Scope Global

Dynamic Variable No

Value Set Type filename

Default /usr/local/mysql/lib/mysql

The pathname of the plugins directory. This variable was added in MySQL 5.1.2.

• port

Option Sets Variable Yes, port

Variable Name port

Variable Scope Global

MySQL Server Administration

375



Dynamic Variable No

Value Set Type numeric

Default 3306

The number of the port on which the server listens for TCP/IP connections. This variable can be set with the --port option.

• preload_buffer_size

Option Sets Variable Yes, preload_buffer_size

Variable Name preload_buffer_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 32768

Range 1024-1073741824

The size of the buffer that is allocated when preloading indexes.

• prepared_stmt_count

The current number of prepared statements. (The maximum number of statements is given by the max_prepared_stmt_count
system variable.) This variable was added in MySQL 5.1.10. In MySQL 5.1.14, it was converted to the global Pre-
pared_stmt_count status variable.

• protocol_version

Variable Name protocol_version

Variable Scope Global

Dynamic Variable No

Value Set Type numeric

The version of the client/server protocol used by the MySQL server.

• query_alloc_block_size

Option Sets Variable Yes, query_alloc_block_size

Variable Name query_alloc_block_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 8192

Range 1024-4294967295

The allocation size of memory blocks that are allocated for objects created during statement parsing and execution. If you have
problems with memory fragmentation, it might help to increase this a bit.

• query_cache_limit

Option Sets Variable Yes, query_cache_limit

MySQL Server Administration

376



Variable Name query_cache_limit

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 1048576

Min Value 0

Don't cache results that are larger than this number of bytes. The default value is 1MB.

• query_cache_min_res_unit

Option Sets Variable Yes, query_cache_min_res_unit

Variable Name query_cache_min_res_unit

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 4096

Min Value 512

The minimum size (in bytes) for blocks allocated by the query cache. The default value is 4096 (4KB). Tuning information for this
variable is given in Section 7.5.4.3, “Query Cache Configuration”.

• query_cache_size

Option Sets Variable Yes, query_cache_size

Variable Name query_cache_size

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 0

The amount of memory allocated for caching query results. The default value is 0, which disables the query cache. The allowable
values are multiples of 1024; other values are rounded down to the nearest multiple. Note that query_cache_size bytes of
memory are allocated even if query_cache_type is set to 0. See Section 7.5.4.3, “Query Cache Configuration”, for more in-
formation.

• query_cache_type

Option Sets Variable Yes, query_cache_type

Variable Name query_cache_type

Variable Scope Both

Dynamic Variable Yes

Value Set Type enumeration

Default 1

Valid Values 0, 1, 2

Set the query cache type. Setting the GLOBAL value sets the type for all clients that connect thereafter. Individual clients can set the

MySQL Server Administration

377



SESSION value to affect their own use of the query cache. Possible values are shown in the following table:

Option Description

0 or OFF Don't cache results in or retrieve results from the query cache. Note that this does not deallocate the query
cache buffer. To do that, you should set query_cache_size to 0.

1 or ON Cache all query results except for those that begin with SELECT SQL_NO_CACHE.

2 or DEMAND Cache results only for queries that begin with SELECT SQL_CACHE.

This variable defaults to ON.

• query_cache_wlock_invalidate

Option Sets Variable Yes, query_cache_wlock_invalidate

Variable Name query_cache_wlock_invalidate

Variable Scope Both

Dynamic Variable Yes

Value Set Type boolean

Default FALSE

Normally, when one client acquires a WRITE lock on a MyISAM table, other clients are not blocked from issuing statements that
read from the table if the query results are present in the query cache. Setting this variable to 1 causes acquisition of a WRITE lock
for a table to invalidate any queries in the query cache that refer to the table. This forces other clients that attempt to access the table
to wait while the lock is in effect.

• query_prealloc_size

Option Sets Variable Yes, query_prealloc_size

Variable Name query_prealloc_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 8192

Range 8192-4294967295

The size of the persistent buffer used for statement parsing and execution. This buffer is not freed between statements. If you are
running complex queries, a larger query_prealloc_size value might be helpful in improving performance, because it can re-
duce the need for the server to perform memory allocation during query execution operations.

• range_alloc_block_size

Option Sets Variable Yes, range_alloc_block_size

Variable Name range_alloc_block_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 4096

Max Value 4294967295

The size of blocks that are allocated when doing range optimization.

MySQL Server Administration

378



• read_buffer_size

Option Sets Variable Yes, read_buffer_size

Variable Name read_buffer_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 131072

Range 8200-2147479552

Each thread that does a sequential scan allocates a buffer of this size (in bytes) for each table it scans. If you do many sequential
scans, you might want to increase this value, which defaults to 131072. The value of this variable should be a multiple of 4KB. If it
is set to a value that is not a multiple of 4KB, its value will be rounded down to the nearest multiple of 4KB.

The maximum allowable setting for read_buffer_size is 2GB.

read_buffer_size and read_rnd_buffer_size are not specific to any storage engine and apply in a general manner for
optimization. See Section 7.5.8, “How MySQL Uses Memory”, for example.

• read_only

Option Sets Variable Yes, read_only

Variable Name read_only

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 0

This variable is off by default. When it is enabled, the server allows no updates except from users that have the SUPER privilege or
(on a slave server) from updates performed by slave threads. On a slave server, this can be useful to ensure that the slave accepts up-
dates only from its master server and not from clients. This variable does not apply to TEMPORARY tables.

read_only exists only as a GLOBAL variable, so changes to its value require the SUPER privilege. Changes to read_only on a
master server are not replicated to slave servers. The value can be set on a slave server independent of the setting on the master.

As of MySQL 5.1.15, the following conditions apply:

• If you attempt to enable read_only while you have any explicit locks (acquired with LOCK TABLES) or have a pending
transaction, an error occurs.

• If you attempt to enable read_only while other clients hold explicit table locks or have pending transactions, the attempt
blocks until the locks are released and the transactions end. While the attempt to enable read_only is pending, requests by
other clients for table locks or to begin transactions also block until read_only has been set.

• read_only can be enabled while you hold a global read lock (acquired with FLUSH TABLES WITH READ LOCK) because
that does not involve table locks.

• read_rnd_buffer_size

Option Sets Variable Yes, read_rnd_buffer_size

Variable Name read_rnd_buffer_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 262144

MySQL Server Administration

379



Range 8200-4294967295

When reading rows in sorted order following a key-sorting operation, the rows are read through this buffer to avoid disk seeks. See
Section 7.2.11, “ORDER BY Optimization”. Setting the variable to a large value can improve ORDER BY performance by a lot.
However, this is a buffer allocated for each client, so you should not set the global variable to a large value. Instead, change the ses-
sion variable only from within those clients that need to run large queries.

The maximum allowable setting for read_rnd_buffer_size is 2GB.

read_buffer_size and read_rnd_buffer_size are not specific to any storage engine and apply in a general manner for
optimization. See Section 7.5.8, “How MySQL Uses Memory”, for example.

• relay_log_purge

Option Sets Variable Yes, relay_log_purge

Variable Name relay_log_purge

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default TRUE

Disables or enables automatic purging of relay log files as soon as they are not needed any more. The default value is 1 (ON).

• rpl_recovery_rank

This variable is unused.

• secure_auth

Option Sets Variable Yes, secure_auth

Variable Name secure_auth

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default FALSE

If the MySQL server has been started with the --secure-auth option, it blocks connections from all accounts that have pass-
words stored in the old (pre-4.1) format. In that case, the value of this variable is ON, otherwise it is OFF.

You should enable this option if you want to prevent all use of passwords employing the old format (and hence insecure communic-
ation over the network).

Server startup fails with an error if this option is enabled and the privilege tables are in pre-4.1 format. See Section B.1.2.4, “Cli-
ent does not support authentication protocol”.

• secure_file_priv

Version Introduced 5.1.17

Option Sets Variable Yes, secure_file_priv

Variable Name secure_file_priv

Variable Scope Global

Dynamic Variable No

Value Set Type string

MySQL Server Administration

380



By default, this variable is empty. If set to the name of a directory, it limits the effect of the LOAD_FILE() function and the LOAD
DATA and SELECT ... INTO OUTFILE statements to work only with files in that directory.

This variable was added in MySQL 5.1.17.

• server_id

Option Sets Variable Yes, server_id

Variable Name server_id

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 0

The server ID. This value is set by the --server-id option. It is used for replication to enable master and slave servers to identi-
fy themselves uniquely.

• shared_memory

Variable Name shared_memory

Variable Scope Global

Dynamic Variable No

Platform Specific windows

(Windows only.) Whether the server allows shared-memory connections.

• shared_memory_base_name

Variable Name shared_memory_base_name

Variable Scope Global

Dynamic Variable No

Platform Specific windows

(Windows only.) The name of shared memory to use for shared-memory connections. This is useful when running multiple MySQL
instances on a single physical machine. The default name is MYSQL. The name is case sensitive.

• skip_external_locking

This is OFF if mysqld uses external locking, ON if external locking is disabled.

• skip_networking

This is ON if the server allows only local (non-TCP/IP) connections. On Unix, local connections use a Unix socket file. On Win-
dows, local connections use a named pipe or shared memory. On NetWare, only TCP/IP connections are supported, so do not set
this variable to ON. This variable can be set to ON with the --skip-networking option.

• skip_show_database

This prevents people from using the SHOW DATABASES statement if they do not have the SHOW DATABASES privilege. This can
improve security if you have concerns about users being able to see databases belonging to other users. Its effect depends on the
SHOW DATABASES privilege: If the variable value is ON, the SHOW DATABASES statement is allowed only to users who have the
SHOW DATABASES privilege, and the statement displays all database names. If the value is OFF, SHOW DATABASES is allowed
to all users, but displays the names of only those databases for which the user has the SHOW DATABASES or other privilege.

• slave_compressed_protocol

MySQL Server Administration

381



Option Sets Variable Yes, slave_compressed_protocol

Variable Name slave_compressed_protocol

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default FALSE

Whether to use compression of the slave/master protocol if both the slave and the master support it.

• slave_exec_mode

Version Introduced 5.1.24

Variable Name slave_exec_mode

Variable Scope Global

Dynamic Variable Yes

Value Set Type enumeration

Default STRICT

Valid Values IDEMPOTENT, STRICT

Controls whether IDEMPOTENT or STRICT mode is used in replication conflict resolution and error checking. IDEMPOTENT
mode causes suppression of some errors, including duplicate-key and no-key-found errors. Beginning with MySQL
5.1.23-ndb-6.2.14 and MySQL 5.1.24, this mode should be employed in multi-master replication, circular replication, and some oth-
er special replication scenarios. STRICT mode is the default, and is suitable for most other cases.

• slave_load_tmpdir

Option Sets Variable Yes, slave_load_tmpdir

Variable Name slave_load_tmpdir

Variable Scope Global

Dynamic Variable No

Value Set Type filename

Default /tmp

The name of the directory where the slave creates temporary files for replicating LOAD DATA INFILE statements.

• slave_net_timeout

Option Sets Variable Yes, slave_net_timeout

Variable Name slave_net_timeout

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 3600

Min Value 1

The number of seconds to wait for more data from a master/slave connection before aborting the read. This timeout applies only to
TCP/IP connections, not to connections made via Unix socket files, named pipes, or shared memory.

MySQL Server Administration

382



• slave_skip_errors

Option Sets Variable Yes, slave_skip_errors

Variable Name slave_skip_errors

Variable Scope Global

Dynamic Variable No

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to resolve the inconsistency in the data
manually. This variable tells the slave SQL thread to continue replication when a statement returns any of the errors listed in the
variable value.

• slave_transaction_retries

Option Sets Variable Yes, slave_transaction_retries

Variable Name slave_transaction_retries

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 10

Min Value 0

If a replication slave SQL thread fails to execute a transaction because of an InnoDB deadlock or exceeded InnoDB's in-
nodb_lock_wait_timeout or NDBCluster's TransactionDeadlockDetectionTimeout or TransactionInact-
iveTimeout, it automatically retries slave_transaction_retries times before stopping with an error. The default value
is 10.

• slow_launch_time

Option Sets Variable Yes, slow_launch_time

Variable Name slow_launch_time

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 2

If creating a thread takes longer than this many seconds, the server increments the Slow_launch_threads status variable.

• slow_query_log

Whether the slow query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON) to enable the log. The default
value depends on whether the --log-slow-queries option is given. The destination for log output is controlled by the
log_output system variable; if that value is NONE, no log entries are written even if the log is enabled. The slow_query_log
variable was added in MySQL 5.1.12.

• slow_query_log_file

Version Introduced 5.1.12

Variable Name slow_query_log_file

Variable Scope Global

Dynamic Variable Yes

Value Set Type filename

MySQL Server Administration

383



The name of the slow query log file. The default value is host_name-slow.log, but the initial value can be changed with the -
-log-slow-queries option. This variable was added in MySQL 5.1.12.

• socket

Option Sets Variable Yes, socket

Variable Name socket

Variable Scope Global

Dynamic Variable No

Value Set Type linux

Default /tmp/mysql.sock

Value Set Type hpux

Default /tmp/mysql.sock

Value Set Type solaris

Default /tmp/mysql.sock

Value Set Type macosx

Default /tmp/mysql.sock

On Unix platforms, this variable is the name of the socket file that is used for local client connections. The default is /
tmp/mysql.sock. (For some distribution formats, the directory might be different, such as /var/lib/mysql for RPMs.)

On Windows, this variable is the name of the named pipe that is used for local client connections. The default value is MySQL (not
case sensitive).

• sort_buffer_size

Option Sets Variable Yes, sort_buffer_size

Variable Name sort_buffer_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 2097144

Max Value 4294967295

Each thread that needs to do a sort allocates a buffer of this size. Increase this value for faster ORDER BY or GROUP BY operations.
See Section B.1.4.4, “Where MySQL Stores Temporary Files”.

The maximum allowable setting for sort_buffer_size is 4GB. As of MySQL 5.1.23, values larger than 4GB are allowed for
64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB with a warning).

• sql_mode

Option Sets Variable Yes, sql_mode

Variable Name sql_mode

Variable Scope Both

Dynamic Variable Yes

Value Set Type enumeration

Default ''

Valid Values ALLOW_INVALID_DATES, AN-

MySQL Server Administration

384



SI_QUOTES, ER-
ROR_FOR_DIVISION_BY_ZERO,
HIGH_NOT_PRECEDENCE, IG-
NORE_SPACE, NO_AUTO_CREATE_USER,
NO_AUTO_VALUE_ON_ZERO,
NO_BACKSLASH_ESCAPES,
NO_DIR_IN_CREATE,
NO_ENGINE_SUBSTITUTION,
NO_FIELD_OPTIONS,
NO_KEY_OPTIONS,
NO_TABLE_OPTIONS,
NO_UNSIGNED_SUBTRACTION,
NO_ZERO_DATE, NO_ZERO_IN_DATE,
ONLY_FULL_GROUP_BY,
PIPES_AS_CONCAT, REAL_AS_FLOAT,
STRICT_ALL_TABLES,
STRICT_TRANS_TABLES

The current server SQL mode, which can be set dynamically. See Section 5.1.6, “SQL Modes”.

• sql_slave_skip_counter

Variable Name sql_slave_skip_counter

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

The number of events from the master that a slave server should skip. See Section 12.6.2.6, “SET GLOBAL
SQL_SLAVE_SKIP_COUNTER Syntax”.

• ssl_ca

Version Introduced 5.1.11

Option Sets Variable Yes, ssl_ca

Variable Name ssl_ca

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The path to a file with a list of trusted SSL CAs. This variable was added in MySQL 5.1.11.

• ssl_capath

Version Introduced 5.1.11

Option Sets Variable Yes, ssl_capath

Variable Name ssl_capath

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The path to a directory that contains trusted SSL CA certificates in PEM format. This variable was added in MySQL 5.1.11.

MySQL Server Administration

385



• ssl_cert

Version Introduced 5.1.11

Option Sets Variable Yes, ssl_cert

Variable Name ssl_cert

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The name of the SSL certificate file to use for establishing a secure connection. This variable was added in MySQL 5.1.11.

• ssl_cipher

Version Introduced 5.1.11

Option Sets Variable Yes, ssl_cipher

Variable Name ssl_cipher

Variable Scope Global

Dynamic Variable No

Value Set Type filename

A list of allowable ciphers to use for SSL encryption. This variable was added in MySQL 5.1.11.

• ssl_key

Option Sets Variable Yes, ssl_key

Variable Name ssl_key

Variable Scope Global

Dynamic Variable No

Value Set Type string

The name of the SSL key file to use for establishing a secure connection. This variable was added in MySQL 5.1.11.

• storage_engine

Variable Name storage_engine

Variable Scope Both

Dynamic Variable Yes

Value Set Type enumeration

The default storage engine (table type). To set the storage engine at server startup, use the --default-storage-engine op-
tion. See Section 5.1.2, “Command Options”.

• sync_binlog

Option Sets Variable Yes, sync_binlog

Variable Name sync_binlog

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

MySQL Server Administration

386



Default 0

Range 0-4294967295

If the value of this variable is positive, the MySQL server synchronizes its binary log to disk (using fdatasync()) after every
sync_binlog writes to the binary log. Note that there is one write to the binary log per statement if autocommit is enabled, and
one write per transaction otherwise. The default value is 0, which does no synchronizing to disk. A value of 1 is the safest choice,
because in the event of a crash you lose at most one statement or transaction from the binary log. However, it is also the slowest
choice (unless the disk has a battery-backed cache, which makes synchronization very fast).

If the value of sync_binlog is 0 (the default), no extra flushing is done. The server relies on the operating system to flush the file
contents occasionally as for any other file.

• sync_frm

Option Sets Variable Yes, sync_frm

Variable Name sync_frm

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default TRUE

If this variable is set to 1, when any non-temporary table is created its .frm file is synchronized to disk (using fdatasync()).
This is slower but safer in case of a crash. The default is 1.

• system_time_zone

Variable Name system_time_zone

Variable Scope Global

Dynamic Variable No

Value Set Type string

The server system time zone. When the server begins executing, it inherits a time zone setting from the machine defaults, possibly
modified by the environment of the account used for running the server or the startup script. The value is used to set sys-
tem_time_zone. Typically the time zone is specified by the TZ environment variable. It also can be specified using the -
-timezone option of the mysqld_safe script.

The system_time_zone variable differs from time_zone. Although they might have the same value, the latter variable is
used to initialize the time zone for each client that connects. See Section 9.6, “MySQL Server Time Zone Support”.

• table_cache

Option Sets Variable Yes, table_cache

Variable Name table_cache

Variable Scope Global

Dynamic Variable Yes

Deprecated 5.1.3, by table_open_cache

Value Set Type numeric

Default 64

Range 1-524288

MySQL Server Administration

387



This is the old name of table_open_cache before MySQL 5.1.3. From 5.1.3 on, use table_open_cache instead.

• table_definition_cache

Version Introduced 5.1.3

Option Sets Variable Yes, table_definition_cache

Variable Name table_definition_cache

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 128

Range 1-524288

The number of table definitions that can be stored in the definition cache. If you use a large number of tables, you can create a large
table definition cache to speed up opening of tables. The table definition cache takes less space and does not use file descriptors, un-
like the normal table cache. This variable was added in MySQL 5.1.3.

• table_lock_wait_timeout

Option Sets Variable Yes, table_lock_wait_timeout

Variable Name table_lock_wait_timeout

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 50

Range 1-1073741824

Specifies a wait timeout for table-level locks, in seconds. The default timeout is 50 seconds. The timeout is active only if the con-
nection has open cursors. This variable can also be set globally at runtime (you need the SUPER privilege to do this).

• table_open_cache

Version Introduced 5.1.3

Variable Name table_open_cache

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 64

Range 1-524288

The number of open tables for all threads. Increasing this value increases the number of file descriptors that mysqld requires. You
can check whether you need to increase the table cache by checking the Opened_tables status variable. See Section 5.1.5,
“Status Variables”. If the value of Opened_tables is large and you don't do FLUSH TABLES often (which just forces all tables
to be closed and reopened), then you should increase the value of the table_open_cache variable. For more information about
the table cache, see Section 7.4.8, “How MySQL Opens and Closes Tables”. Before MySQL 5.1.3, this variable is called ta-
ble_cache.

• table_type

Variable Name table_type

MySQL Server Administration

388



Variable Scope Both

Dynamic Variable Yes

Deprecated 5.2.5, by storage_engine

Value Set Type enumeration

This variable is a synonym for storage_engine. In MySQL 5.1, storage_engine is the preferred name. In MySQL 6.0,
table_type will be removed.

• thread_cache_size

Option Sets Variable Yes, thread_cache_size

Variable Name thread_cache_size

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 0

Range 0-16384

How many threads the server should cache for reuse. When a client disconnects, the client's threads are put in the cache if there are
fewer than thread_cache_size threads there. Requests for threads are satisfied by reusing threads taken from the cache if pos-
sible, and only when the cache is empty is a new thread created. This variable can be increased to improve performance if you have
a lot of new connections. (Normally, this doesn't provide a notable performance improvement if you have a good thread implement-
ation.) By examining the difference between the Connections and Threads_created status variables, you can see how effi-
cient the thread cache is. For details, see Section 5.1.5, “Status Variables”.

• thread_concurrency

Option Sets Variable Yes, thread_concurrency

Variable Name thread_concurrency

Variable Scope Global

Dynamic Variable No

Value Set Type numeric

Default 10

Range 1-512

On Solaris, mysqld calls thr_setconcurrency() with this value. This function enables applications to give the threads sys-
tem a hint about the desired number of threads that should be run at the same time.

• thread_handling

Version Introduced 5.1.17

Option Sets Variable Yes, thread_handling

Variable Name thread_handling

Variable Scope Global

Dynamic Variable No

Value Set Type enumeration

Valid Values no-threads, one-
thread-per-connection

MySQL Server Administration

389



The thread-handling model. The allowable values are one-thread (the server uses one thread) and one-
thread-per-connection (the server uses one thread to handle each client connection). one-thread is useful for debugging
under Linux; see see MySQL Internals: Porting. This variable was added in MySQL 5.1.17

• thread_stack

Option Sets Variable Yes, thread_stack

Variable Name thread_stack

Variable Scope Global

Dynamic Variable No

Value Set Type numeric

Default 196608

Range 131072-4294967295

The stack size for each thread. Many of the limits detected by the crash-me test are dependent on this value. See Section 7.1.4,
“The MySQL Benchmark Suite”. The default (192KB) is large enough for normal operation. If the thread stack size is too small, it
limits the complexity of the SQL statements that the server can handle, the recursion depth of stored procedures, and other memory-
consuming actions.

• time_format

This variable is not implemented.

• time_zone

Variable Name time_zone

Variable Scope Both

Dynamic Variable Yes

Value Set Type string

The current time zone. This variable is used to initialize the time zone for each client that connects. By default, the initial value of
this is 'SYSTEM' (which means, “use the value of system_time_zone”). The value can be specified explicitly at server startup
with the --default-time-zone option. See Section 9.6, “MySQL Server Time Zone Support”.

• timed_mutexes

Option Sets Variable Yes, timed_mutexes

Variable Name timed_mutexes

Variable Scope Global

Dynamic Variable Yes

Value Set Type boolean

Default OFF

This variable controls whether InnoDB mutexes are timed. If this variable is set to 0 or OFF (the default), mutex timing is disabled.
If the variable is set to 1 or ON, mutex timing is enabled. With timing enabled, the os_wait_times value in the output from
SHOW ENGINE INNODB MUTEX indicates the amount of time (in ms) spent in operating system waits. Otherwise, the value is 0.

• tmp_table_size

Option Sets Variable Yes, tmp_table_size

Variable Name tmp_table_size

Variable Scope Both

MySQL Server Administration

390

http://forge.mysql.com/wiki/MySQL_Internals_Porting


Dynamic Variable Yes

Value Set Type numeric

Default 33554432

Range 1024-4294967295

The maximum size of internal in-memory temporary tables. (The actual limit is determined as the smaller of
max_heap_table_size and tmp_table_size.) If an in-memory temporary table exceeds the limit, MySQL automatically
converts it to an on-disk MyISAM table. Increase the value of tmp_table_size (and max_heap_table_size if necessary) if
you do many advanced GROUP BY queries and you have lots of memory. This variable does not apply to user-created MEMORY
tables.

• tmpdir

Option Sets Variable Yes, tmpdir

Variable Name tmpdir

Variable Scope Global

Dynamic Variable No

Value Set Type filename

The directory used for temporary files and temporary tables. This variable can be set to a list of several paths that are used in round-
robin fashion. Paths should be separated by colon characters (“:”) on Unix and semicolon characters (“;”) on Windows, NetWare,
and OS/2.

The multiple-directory feature can be used to spread the load between several physical disks. If the MySQL server is acting as a rep-
lication slave, you should not set tmpdir to point to a directory on a memory-based filesystem or to a directory that is cleared
when the server host restarts. A replication slave needs some of its temporary files to survive a machine restart so that it can replic-
ate temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost when the server restarts,
replication fails. However, if you are using MySQL 4.0.0 or later, you can set the slave's temporary directory using the
slave_load_tmpdir variable. In that case, the slave won't use the general tmpdir value and you can set tmpdir to a non-
permanent location.

• transaction_alloc_block_size

Option Sets Variable Yes, transaction_alloc_block_size

Variable Name transaction_alloc_block_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 8192

Range 1024-4294967295

The amount in bytes by which to increase a per-transaction memory pool which needs memory. See the description of transac-
tion_prealloc_size.

• transaction_prealloc_size

Option Sets Variable Yes, transaction_prealloc_size

Variable Name transaction_prealloc_size

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

MySQL Server Administration

391



Default 4096

There is a per-transaction memory pool from which various transaction-related allocations take memory. The initial size of the pool
in bytes is transaction_prealloc_size. For every allocation that cannot be satisfied from the pool because it has insuffi-
cient memory available, the pool is increased by transaction_alloc_block_size bytes. When the transaction ends, the
pool is truncated to transaction_prealloc_size bytes.

By making transaction_prealloc_size sufficiently large to contain all statements within a single transaction, you can
avoid many malloc() calls.

• tx_isolation

Variable Name tx_isolation

Variable Scope Both

Dynamic Variable Yes

Value Set Type enumeration

Default REPEATABLE-READ

Valid Values READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, SERI-
ALIZABLE

The default transaction isolation level. Defaults to REPEATABLE-READ.

This variable is set by the SET TRANSACTION ISOLATION LEVEL statement. See Section 12.4.6, “SET TRANSACTION
Syntax”. If you set tx_isolation directly to an isolation level name that contains a space, the name should be enclosed within
quotes, with the space replaced by a dash. For example:

SET tx_isolation = 'READ-COMMITTED';

• updatable_views_with_limit

Option Sets Variable Yes, updatable_views_with_limit

Variable Name updatable_views_with_limit

Variable Scope Both

Dynamic Variable Yes

Value Set Type boolean

Default 1

This variable controls whether updates to a view can be made when the view does not contain all columns of the primary key
defined in the underlying table, if the update statement contains a LIMIT clause. (Such updates often are generated by GUI tools.)
An update is an UPDATE or DELETE statement. Primary key here means a PRIMARY KEY, or a UNIQUE index in which no
column can contain NULL.

The variable can have two values:

• 1 or YES: Issue a warning only (not an error message). This is the default value.

• 0 or NO: Prohibit the update.

• version

The version number for the server.

• version_comment

MySQL Server Administration

392



The configure script has a --with-comment option that allows a comment to be specified when building MySQL. This vari-
able contains the value of that comment.

• version_compile_machine

The type of machine or architecture on which MySQL was built.

• version_compile_os

Variable Name version_compile_os

Variable Scope Global

Dynamic Variable No

Value Set Type string

The type of operating system on which MySQL was built.

• wait_timeout

The number of seconds the server waits for activity on a non-interactive connection before closing it. This timeout applies only to
TCP/IP and Unix socket file connections, not to connections made via named pipes, or shared memory.

On thread startup, the session wait_timeout value is initialized from the global wait_timeout value or from the global in-
teractive_timeout value, depending on the type of client (as defined by the CLIENT_INTERACTIVE connect option to
mysql_real_connect()). See also interactive_timeout.

MySQL Enterprise
Expert use of server system variables is part of the service offered by the MySQL Enterprise Monitor. To sub-
scribe see http://www.mysql.com/products/enterprise/advisors.html.

5.1.4. Using System Variables
The MySQL server maintains many system variables that indicate how it is configured. Section 5.1.3, “System Variables”, describes the
meaning of these variables. Each system variable has a default value. System variables can be set at server startup using options on the
command line or in an option file. Most of them can be changed dynamically while the server is running by means of the SET state-
ment, which enables you to modify operation of the server without having to stop and restart it. You can refer to system variable values
in expressions.

The server maintains two kinds of system variables. Global variables affect the overall operation of the server. Session variables affect
its operation for individual client connections. A given system variable can have both a global and a session value. Global and session
system variables are related as follows:

• When the server starts, it initializes all global variables to their default values. These defaults can be changed by options specified
on the command line or in an option file. (See Section 4.2.2, “Specifying Program Options”.)

• The server also maintains a set of session variables for each client that connects. The client's session variables are initialized at con-
nect time using the current values of the corresponding global variables. For example, the client's SQL mode is controlled by the
session sql_mode value, which is initialized when the client connects to the value of the global sql_mode value.

System variable values can be set globally at server startup by using options on the command line or in an option file. When you use a
startup option to set a variable that takes a numeric value, the value can be given with a suffix of K, M, or G (either uppercase or lower-
case) to indicate a multiplier of 1024, 10242 or 10243; that is, units of kilobytes, megabytes, or gigabytes, respectively. Thus, the follow-
ing command starts the server with a query cache size of 16 megabytes and a maximum packet size of one gigabyte:

mysqld --query_cache_size=16M --max_allowed_packet=1G

Within an option file, those variables are set like this:

[mysqld]

MySQL Server Administration

393

http://www.mysql.com/products/enterprise/advisors.html


query_cache_size=16M
max_allowed_packet=1G

The lettercase of suffix letters does not matter; 16M and 16m are equivalent, as are 1G and 1g.

If you want to restrict the maximum value to which a system variable can be set at runtime with the SET statement, you can specify this
maximum by using an option of the form --maximum-var_name=value at server startup. For example, to prevent the value of
query_cache_size from being increased to more than 32MB at runtime, use the option -
-maximum-query_cache_size=32M.

Many system variables are dynamic and can be changed while the server runs by using the SET statement. For a list, see Sec-
tion 5.1.4.2, “Dynamic System Variables”. To change a system variable with SET, refer to it as var_name, optionally preceded by a
modifier:

• To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or @@global.. The SUPER privilege is re-
quired to set global variables.

• To indicate explicitly that a variable is a session variable, precede its name by SESSION, @@session., or @@. Setting a session
variable requires no special privilege, but a client can change only its own session variables, not those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.

A SET statement can contain multiple variable assignments, separated by commas. If you set several system variables, the most recent
GLOBAL or SESSION modifier in the statement is used for following variables that have no modifier specified.

Examples:

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

When you assign a value to a system variable with SET, you cannot use suffix letters in the value (as can be done with startup options).
However, the value can take the form of an expression:

SET sort_buffer_size = 10 * 1024 * 1024;

The @@var_name syntax for system variables is supported for compatibility with some other database systems.

If you change a session system variable, the value remains in effect until your session ends or until you change the variable to a differ-
ent value. The change is not visible to other clients.

If you change a global system variable, the value is remembered and used for new connections until the server restarts. (To make a
global system variable setting permanent, you should set it in an option file.) The change is visible to any client that accesses that global
variable. However, the change affects the corresponding session variable only for clients that connect after the change. The global vari-
able change does not affect the session variable for any client that is currently connected (not even that of the client that issues the SET
GLOBAL statement).

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that can only be used with SET SES-
SION or if you do not specify GLOBAL (or @@global.) when setting a global variable.

To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL default value, use the DEFAULT
keyword. For example, the following two statements are identical in setting the session value of max_join_size to the global value:

SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.

You can refer to the values of specific global or sesson system variables in expressions by using one of the @@-modifiers. For example,
you can retrieve values in a SELECT statement like this:

MySQL Server Administration

394



SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

When you refer to a system variable in an expression as @@var_name (that is, when you do not specify @@global. or
@@session.), MySQL returns the session value if it exists and the global value otherwise. (This differs from SET @@var_name =
value, which always refers to the session value.)

Note

Some system variables can be enabled with the SET statement by setting them to ON or 1, or disabled by setting them to
OFF or 0. However, to set such a variable on the command line or in an option file, you must set it to 1 or 0; setting it to
ON or OFF will not work. For example, on the command line, --delay_key_write=1 works but -
-delay_key_write=ON does not.

To display system variable names and values, use the SHOW VARIABLES statement:

mysql> SHOW VARIABLES;
+---------------------------------+-----------------------------------+
| Variable_name | Value |
+---------------------------------+-----------------------------------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
| automatic_sp_privileges | ON |
| back_log | 50 |
| basedir | /home/mysql/ |
| binlog_cache_size | 32768 |
| bulk_insert_buffer_size | 8388608 |
| character_set_client | latin1 |
| character_set_connection | latin1 |
| character_set_database | latin1 |
| character_set_results | latin1 |
| character_set_server | latin1 |
| character_set_system | utf8 |
| character_sets_dir | /home/mysql/share/mysql/charsets/ |
| collation_connection | latin1_swedish_ci |
| collation_database | latin1_swedish_ci |
| collation_server | latin1_swedish_ci |
...
| innodb_additional_mem_pool_size | 1048576 |
| innodb_autoextend_increment | 8 |
| innodb_buffer_pool_awe_mem_mb | 0 |
| innodb_buffer_pool_size | 8388608 |
| innodb_checksums | ON |
| innodb_commit_concurrency | 0 |
| innodb_concurrency_tickets | 500 |
| innodb_data_file_path | ibdata1:10M:autoextend |
| innodb_data_home_dir | |
...
| version | 5.1.6-alpha-log |
| version_comment | Source distribution |
| version_compile_machine | i686 |
| version_compile_os | suse-linux |
| wait_timeout | 28800 |
+---------------------------------+-----------------------------------+

With a LIKE clause, the statement displays only those variables that match the pattern. To obtain a specific variable name, use a LIKE
clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the “%” wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking, because “_” is a wildcard that
matches any single character, you should escape it as “\_” to match it literally. In practice, this is rarely necessary.

For SHOW VARIABLES, if you specify neither GLOBAL nor SESSION, MySQL returns SESSION values.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when retrieving them is to prevent prob-
lems in the future. If we were to remove a SESSION variable that has the same name as a GLOBAL variable, a client with the SUPER
privilege might accidentally change the GLOBAL variable rather than just the SESSION variable for its own connection. If we add a
SESSION variable with the same name as a GLOBAL variable, a client that intends to change the GLOBAL variable might find only its

MySQL Server Administration

395



own SESSION variable changed.

5.1.4.1. Structured System Variables

A structured variable differs from a regular system variable in two respects:

• Its value is a structure with components that specify server parameters considered to be closely related.

• There might be several instances of a given type of structured variable. Each one has a different name and refers to a different re-
source maintained by the server.

MySQL 5.1 supports one structured variable type, which specifies parameters governing the operation of key caches. A key cache struc-
tured variable has these components:

• key_buffer_size

• key_cache_block_size

• key_cache_division_limit

• key_cache_age_threshold

This section describes the syntax for referring to structured variables. Key cache variables are used for syntax examples, but specific de-
tails about how key caches operate are found elsewhere, in Section 7.4.6, “The MyISAM Key Cache”.

To refer to a component of a structured variable instance, you can use a compound name in instance_name.component_name
format. Examples:

hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always predefined. If you refer to a component of a
structured variable without any instance name, the default instance is used. Thus, default.key_buffer_size and
key_buffer_size both refer to the same system variable.

Structured variable instances and components follow these naming rules:

• For a given type of structured variable, each instance must have a name that is unique within variables of that type. However, in-
stance names need not be unique across structured variable types. For example, each structured variable has an instance named de-
fault, so default is not unique across variable types.

• The names of the components of each structured variable type must be unique across all system variable names. If this were not true
(that is, if two different types of structured variables could share component member names), it would not be clear which default
structured variable to use for references to member names that are not qualified by an instance name.

• If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted identifier using backticks. For ex-
ample, hot-cache is not legal, but `hot-cache` is.

• global, session, and local are not legal instance names. This avoids a conflict with notation such as
@@global.var_name for referring to non-structured system variables.

Currently, the first two rules have no possibility of being violated because the only structured variable type is the one for key caches.
These rules will assume greater significance if some other type of structured variable is created in the future.

With one exception, you can refer to structured variable components using compound names in any context where simple variable
names can occur. For example, you can assign a value to a structured variable using a command-line option:

shell> mysqld --hot_cache.key_buffer_size=64K

In an option file, use this syntax:

MySQL Server Administration

396



[mysqld]
hot_cache.key_buffer_size=64K

If you start the server with this option, it creates a key cache named hot_cache with a size of 64KB in addition to the default key
cache that has a default size of 8MB.

Suppose that you start the server as follows:

shell> mysqld --key_buffer_size=256K \
--extra_cache.key_buffer_size=128K \
--extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have written -
-default.key_buffer_size=256K.) In addition, the server creates a second key cache named extra_cache that has a size of
128KB, with the size of block buffers for caching table index blocks set to 2048 bytes.

The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:

shell> mysqld --key_buffer_size=6M \
--hot_cache.key_buffer_size=2M \
--cold_cache.key_buffer_size=2M

Structured variable values may be set and retrieved at runtime as well. For example, to set a key cache named hot_cache to a size of
10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;
mysql> SET @@global.hot_cache.key_buffer_size = 10*1024*1024;

To retrieve the cache size, do this:

mysql> SELECT @@global.hot_cache.key_buffer_size;

However, the following statement does not work. The variable is not interpreted as a compound name, but as a simple string for a LIKE
pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE 'hot_cache.key_buffer_size';

This is the exception to being able to use structured variable names anywhere a simple variable name may occur.

5.1.4.2. Dynamic System Variables

Many server system variables are dynamic and can be set at runtime using SET GLOBAL or SET SESSION. You can also obtain their
values using SELECT. See Section 5.1.4, “Using System Variables”.

The following table shows the full list of all dynamic system variables. The last column indicates for each variable whether GLOBAL or
SESSION (or both) apply. The table also lists session options that can be set with the SET statement. Section 12.5.3, “SET Syntax”,
discusses these options.

Variables that have a type of “string” take a string value. Variables that have a type of “numeric” take a numeric value. Variables that
have a type of “boolean” can be set to 0, 1, ON or OFF. (If you set them on the command line or in an option file, use the numeric val-
ues.) Variables that are marked as “enumeration” normally should be set to one of the available values for the variable, but can also be
set to the number that corresponds to the desired enumeration value. For enumerated system variables, the first enumeration value cor-
responds to 0. This differs from ENUM columns, for which the first enumeration value corresponds to 1.

Variable Name Variable Type Variable Scope

autocommit boolean SESSION

auto_increment_increment numeric GLOBAL | SESSION

auto_increment_offset numeric GLOBAL | SESSION

automatic_sp_privileges boolean GLOBAL

big_tables boolean SESSION

binlog_cache_size numeric GLOBAL

MySQL Server Administration

397



Variable Name Variable Type Variable Scope

binlog_format enumeration GLOBAL | SESSION

bulk_insert_buffer_size numeric GLOBAL | SESSION

character_set_client string GLOBAL | SESSION

character_set_connection string GLOBAL | SESSION

character_set_database string GLOBAL | SESSION

character_set_filesystem string GLOBAL | SESSION

character_set_results string GLOBAL | SESSION

character_set_server string GLOBAL | SESSION

collation_connection string GLOBAL | SESSION

collation_database string GLOBAL | SESSION

collation_server string GLOBAL | SESSION

completion_type numeric GLOBAL | SESSION

concurrent_insert boolean GLOBAL

connect_timeout numeric GLOBAL

date_format string GLOBAL | SESSION

datetime_format string GLOBAL | SESSION

debug string GLOBAL | SESSION

default_week_format numeric GLOBAL | SESSION

delayed_insert_limit numeric GLOBAL

delayed_insert_timeout numeric GLOBAL

delayed_queue_size numeric GLOBAL

delay_key_write enumeration GLOBAL

div_precision_increment numeric GLOBAL | SESSION

engine_condition_pushdown boolean GLOBAL | SESSION

event-scheduler enumeration GLOBAL

expire_logs_days numeric GLOBAL

flush boolean GLOBAL

flush_time numeric GLOBAL

foreign_key_checks boolean SESSION

ft_boolean_syntax string GLOBAL

general_log boolean GLOBAL

general_log_file filename GLOBAL

group_concat_max_len numeric GLOBAL | SESSION

identity numeric SESSION

init_connect string GLOBAL

init_slave string GLOBAL

innodb_autoextend_increment numeric GLOBAL

innodb_commit_concurrency numeric GLOBAL

innodb_concurrency_tickets numeric GLOBAL

innodb_fast_shutdown boolean GLOBAL

innodb_flush_log_at_trx_commit numeric GLOBAL

innodb_max_dirty_pages_pct numeric GLOBAL

innodb_max_purge_lag numeric GLOBAL

innodb_support_xa boolean GLOBAL | SESSION

MySQL Server Administration

398



Variable Name Variable Type Variable Scope

innodb_sync_spin_loops numeric GLOBAL

innodb_table_locks boolean GLOBAL | SESSION

innodb_thread_concurrency numeric GLOBAL

innodb_thread_sleep_delay numeric GLOBAL

insert_id numeric SESSION

interactive_timeout numeric GLOBAL | SESSION

join_buffer_size numeric GLOBAL | SESSION

keep_files_on_create boolean GLOBAL | SESSION

key_buffer_size numeric GLOBAL

key_cache_age_threshold numeric GLOBAL

key_cache_block_size numeric GLOBAL

key_cache_division_limit numeric GLOBAL

last_insert_id numeric SESSION

lc_time_names string GLOBAL | SESSION

local_infile GLOBAL

log string GLOBAL

log_bin_trust_function_creators boolean GLOBAL

log_bin_trust_routine_creators boolean GLOBAL

log_output enumeration GLOBAL

log_slow_queries boolean GLOBAL

log-warnings numeric GLOBAL | SESSION

long_query_time numeric GLOBAL | SESSION

low_priority_updates boolean GLOBAL | SESSION

max_allowed_packet numeric GLOBAL | SESSION

max_binlog_cache_size numeric GLOBAL

max_binlog_size numeric GLOBAL

max_connect_errors numeric GLOBAL

max_connections numeric GLOBAL

max_delayed_threads numeric GLOBAL | SESSION

max_error_count numeric GLOBAL | SESSION

max_heap_table_size numeric GLOBAL | SESSION

max_insert_delayed_threads numeric GLOBAL | SESSION

max_join_size numeric GLOBAL | SESSION

max_length_for_sort_data numeric GLOBAL | SESSION

max_prepared_stmt_count numeric GLOBAL

max_relay_log_size numeric GLOBAL

max_seeks_for_key numeric GLOBAL | SESSION

max_sort_length numeric GLOBAL | SESSION

max_sp_recursion_depth numeric GLOBAL | SESSION

max_tmp_tables numeric GLOBAL | SESSION

max_user_connections numeric GLOBAL | SESSION

max_write_lock_count numeric GLOBAL

min_examined_row_limit numeric GLOBAL | SESSION

multi_range_count numeric GLOBAL | SESSION

MySQL Server Administration

399



Variable Name Variable Type Variable Scope

myisam_block_size numeric GLOBAL | SESSION

myisam_data_pointer_size numeric GLOBAL

myisam_max_sort_file_size numeric GLOBAL

myisam_repair_threads numeric GLOBAL | SESSION

myisam_sort_buffer_size numeric GLOBAL | SESSION

myisam_stats_method enumeration GLOBAL | SESSION

ndb_autoincrement_prefetch_sz numeric GLOBAL | SESSION

ndb_cache_check_time numeric GLOBAL

ndbcluster boolean GLOBAL | SESSION

ndb_extra_logging numeric GLOBAL

ndb_force_send boolean GLOBAL | SESSION

ndb_log_update_as_write boolean GLOBAL

ndb_log_updated_only boolean GLOBAL

ndb_optimization_delay numeric GLOBAL

ndb_table_no_logging boolean SESSION

ndb_table_temporary boolean SESSION

ndb_use_exact_count boolean GLOBAL | SESSION

net_buffer_length numeric GLOBAL | SESSION

net_read_timeout numeric GLOBAL | SESSION

net_retry_count numeric GLOBAL | SESSION

net_write_timeout numeric GLOBAL | SESSION

new boolean GLOBAL | SESSION

old_passwords boolean GLOBAL | SESSION

optimizer_prune_level boolean GLOBAL | SESSION

optimizer_search_depth numeric GLOBAL | SESSION

plugin_innodb_autoextend_increment numeric GLOBAL | SESSION

plugin_innodb_checksums boolean GLOBAL | SESSION

plugin_innodb_commit_concurrency numeric GLOBAL

plugin_innodb_concurrency_tickets numeric GLOBAL

plugin_innodb_flush_log_at_trx_commit numeric GLOBAL

plugin_innodb_max_dirty_pages_pct numeric GLOBAL

plugin_innodb_max_purge_lag numeric GLOBAL

plugin_innodb_support_xa boolean GLOBAL | SESSION

plugin_innodb_sync_spin_loops numeric GLOBAL

plugin_innodb_table_locks boolean GLOBAL | SESSION

plugin_innodb_thread_concurrency numeric GLOBAL

plugin_innodb_thread_sleep_delay numeric GLOBAL

preload_buffer_size numeric GLOBAL | SESSION

query_alloc_block_size numeric GLOBAL | SESSION

query_cache_limit numeric GLOBAL

query_cache_min_res_unit numeric GLOBAL

query_cache_size numeric GLOBAL

query_cache_type enumeration GLOBAL | SESSION

query_cache_wlock_invalidate boolean GLOBAL | SESSION

MySQL Server Administration

400



Variable Name Variable Type Variable Scope

query_prealloc_size numeric GLOBAL | SESSION

range_alloc_block_size numeric GLOBAL | SESSION

read_buffer_size numeric GLOBAL | SESSION

read_only numeric GLOBAL

read_rnd_buffer_size numeric GLOBAL | SESSION

relay_log_purge boolean GLOBAL

rpl_recovery_rank numeric GLOBAL

secure_auth boolean GLOBAL

server_id numeric GLOBAL

slave_allow_batching boolean GLOBAL

slave_compressed_protocol boolean GLOBAL

slave_exec_mode enumeration GLOBAL

slave_net_timeout numeric GLOBAL

slave_transaction_retries numeric GLOBAL

slow_launch_time numeric GLOBAL

slow_query_log boolean GLOBAL

slow_query_log_file filename GLOBAL

sort_buffer_size numeric GLOBAL | SESSION

sql_big_selects boolean SESSION

sql_big_tables boolean SESSION

sql_buffer_result boolean SESSION

sql_log_bin boolean SESSION

sql_log_off boolean SESSION

sql_log_update boolean SESSION

sql_low_priority_updates boolean GLOBAL | SESSION

sql_max_join_size numeric GLOBAL | SESSION

sql_mode enumeration GLOBAL | SESSION

sql_notes boolean SESSION

sql_quote_show_create boolean SESSION

sql_safe_updates boolean SESSION

sql_select_limit numeric GLOBAL | SESSION

sql_slave_skip_counter numeric GLOBAL

sql_warnings boolean SESSION

storage_engine enumeration GLOBAL | SESSION

sync_binlog numeric GLOBAL

sync_frm boolean GLOBAL

table_cache numeric GLOBAL

table_definition_cache numeric GLOBAL

table_lock_wait_timeout numeric GLOBAL

table_open_cache numeric GLOBAL

table_type enumeration GLOBAL | SESSION

thread_cache_size numeric GLOBAL

timed_mutexes boolean GLOBAL

time_format string GLOBAL | SESSION

MySQL Server Administration

401



Variable Name Variable Type Variable Scope

timestamp string SESSION

time_zone string GLOBAL | SESSION

tmp_table_size numeric GLOBAL | SESSION

transaction_alloc_block_size numeric GLOBAL | SESSION

transaction_allow_batching boolean SESSION

transaction_prealloc_size numeric GLOBAL | SESSION

tx_isolation enumeration GLOBAL | SESSION

unique_checks boolean SESSION

updatable_views_with_limit boolean GLOBAL | SESSION

wait_timeout numeric GLOBAL | SESSION

MySQL Enterprise
Improper configuration of system variables can adversely affect performance and security. The MySQL Enter-
prise Monitor continually monitors system variables and provides expert advice about appropriate settings. For
more information see http://www.mysql.com/products/enterprise/advisors.html.

5.1.5. Status Variables
The server maintains many status variables that provide information about its operation. You can view these variables and their values
by using the SHOW [GLOBAL | SESSION] STATUS statement (see Section 12.5.4.27, “SHOW STATUS Syntax”). The optional
GLOBAL keyword aggregates the values over all connections, and SESSION shows the values for the current connection.

mysql> SHOW GLOBAL STATUS;
+-----------------------------------+------------+
| Variable_name | Value |
+-----------------------------------+------------+
| Aborted_clients | 0 |
| Aborted_connects | 0 |
| Bytes_received | 155372598 |
| Bytes_sent | 1176560426 |
...
| Connections | 30023 |
| Created_tmp_disk_tables | 0 |
| Created_tmp_files | 3 |
| Created_tmp_tables | 2 |
...
| Threads_created | 217 |
| Threads_running | 88 |
| Uptime | 1389872 |
+-----------------------------------+------------+

The following table lists all available server status variables:

Variable Name Variable Type Variable Scope

Aborted_clients numeric GLOBAL | SESSION

Aborted_connects numeric GLOBAL | SESSION

Binlog_cache_disk_use numeric GLOBAL | SESSION

Binlog_cache_use numeric GLOBAL | SESSION

Bytes_received numeric GLOBAL | SESSION

Bytes_sent numeric GLOBAL | SESSION

Com_admin_commands numeric GLOBAL | SESSION

Com_alter_db numeric GLOBAL | SESSION

Com_alter_event numeric GLOBAL | SESSION

Com_alter_table numeric GLOBAL | SESSION

Com_analyze numeric GLOBAL | SESSION

Com_backup_table numeric GLOBAL | SESSION

MySQL Server Administration

402

http://www.mysql.com/products/enterprise/advisors.html


Variable Name Variable Type Variable Scope

Com_begin numeric GLOBAL | SESSION

Com_call_procedure numeric GLOBAL | SESSION

Com_change_db numeric GLOBAL | SESSION

Com_change_master numeric GLOBAL | SESSION

Com_check numeric GLOBAL | SESSION

Com_checksum numeric GLOBAL | SESSION

Com_commit numeric GLOBAL | SESSION

Com_create_db numeric GLOBAL | SESSION

Com_create_event numeric GLOBAL | SESSION

Com_create_function numeric GLOBAL | SESSION

Com_create_index numeric GLOBAL | SESSION

Com_create_table numeric GLOBAL | SESSION

Com_create_user numeric GLOBAL | SESSION

Com_dealloc_sql numeric GLOBAL | SESSION

Com_delete numeric GLOBAL | SESSION

Com_delete_multi numeric GLOBAL | SESSION

Com_do numeric GLOBAL | SESSION

Com_drop_db numeric GLOBAL | SESSION

Com_drop_event numeric GLOBAL | SESSION

Com_drop_function numeric GLOBAL | SESSION

Com_drop_index numeric GLOBAL | SESSION

Com_drop_table numeric GLOBAL | SESSION

Com_drop_user numeric GLOBAL | SESSION

Com_execute_sql numeric GLOBAL | SESSION

Com_flush numeric GLOBAL | SESSION

Com_grant numeric GLOBAL | SESSION

Com_ha_close numeric GLOBAL | SESSION

Com_ha_open numeric GLOBAL | SESSION

Com_ha_read numeric GLOBAL | SESSION

Com_help numeric GLOBAL | SESSION

Com_insert numeric GLOBAL | SESSION

Com_insert_select numeric GLOBAL | SESSION

Com_kill numeric GLOBAL | SESSION

Com_load numeric GLOBAL | SESSION

Com_lock_tables numeric GLOBAL | SESSION

Com_optimize numeric GLOBAL | SESSION

Com_preload_keys numeric GLOBAL | SESSION

Com_prepare_sql numeric GLOBAL | SESSION

Compression numeric GLOBAL | SESSION

Com_purge numeric GLOBAL | SESSION

Com_purge_before_date numeric GLOBAL | SESSION

Com_rename_table numeric GLOBAL | SESSION

Com_repair numeric GLOBAL | SESSION

Com_replace numeric GLOBAL | SESSION

MySQL Server Administration

403



Variable Name Variable Type Variable Scope

Com_replace_select numeric GLOBAL | SESSION

Com_reset numeric GLOBAL | SESSION

Com_restore_table numeric GLOBAL | SESSION

Com_revoke numeric GLOBAL | SESSION

Com_revoke_all numeric GLOBAL | SESSION

Com_rollback numeric GLOBAL | SESSION

Com_savepoint numeric GLOBAL | SESSION

Com_select numeric GLOBAL | SESSION

Com_set_option numeric GLOBAL | SESSION

Com_show_binlog_events numeric GLOBAL | SESSION

Com_show_binlogs numeric GLOBAL | SESSION

Com_show_charsets numeric GLOBAL | SESSION

Com_show_collations numeric GLOBAL | SESSION

Com_show_column_types numeric GLOBAL | SESSION

Com_show_create_db numeric GLOBAL | SESSION

Com_show_create_event numeric GLOBAL | SESSION

Com_show_create_table numeric GLOBAL | SESSION

Com_show_databases numeric GLOBAL | SESSION

Com_show_engine_logs numeric GLOBAL | SESSION

Com_show_engine_mutex numeric GLOBAL | SESSION

Com_show_engine_status numeric GLOBAL | SESSION

Com_show_errors numeric GLOBAL | SESSION

Com_show_events numeric GLOBAL | SESSION

Com_show_fields numeric GLOBAL | SESSION

Com_show_grants numeric GLOBAL | SESSION

Com_show_innodb_status numeric GLOBAL | SESSION

Com_show_keys numeric GLOBAL | SESSION

Com_show_logs numeric GLOBAL | SESSION

Com_show_master_status numeric GLOBAL | SESSION

Com_show_ndb_status numeric GLOBAL | SESSION

Com_show_new_master numeric GLOBAL | SESSION

Com_show_open_tables numeric GLOBAL | SESSION

Com_show_plugins numeric GLOBAL | SESSION

Com_show_privileges numeric GLOBAL | SESSION

Com_show_processlist numeric GLOBAL | SESSION

Com_show_slave_hosts numeric GLOBAL | SESSION

Com_show_slave_status numeric GLOBAL | SESSION

Com_show_status numeric GLOBAL | SESSION

Com_show_storage_engines numeric GLOBAL | SESSION

Com_show_tables numeric GLOBAL | SESSION

Com_show_triggers numeric GLOBAL | SESSION

Com_show_variables numeric GLOBAL | SESSION

Com_show_warnings numeric GLOBAL | SESSION

Com_slave_start numeric GLOBAL | SESSION

MySQL Server Administration

404



Variable Name Variable Type Variable Scope

Com_slave_stop numeric GLOBAL | SESSION

Com_stmt_close numeric GLOBAL | SESSION

Com_stmt_execute numeric GLOBAL | SESSION

Com_stmt_fetch numeric GLOBAL | SESSION

Com_stmt_prepare numeric GLOBAL | SESSION

Com_stmt_reset numeric GLOBAL | SESSION

Com_stmt_send_long_data numeric GLOBAL | SESSION

Com_truncate numeric GLOBAL | SESSION

Com_unlock_tables numeric GLOBAL | SESSION

Com_update numeric GLOBAL | SESSION

Com_update_multi numeric GLOBAL | SESSION

Com_xa_commit numeric GLOBAL | SESSION

Com_xa_end numeric GLOBAL | SESSION

Com_xa_prepare numeric GLOBAL | SESSION

Com_xa_recover numeric GLOBAL | SESSION

Com_xa_rollback numeric GLOBAL | SESSION

Com_xa_start numeric GLOBAL | SESSION

Connections numeric GLOBAL | SESSION

Created_tmp_disk_tables numeric GLOBAL | SESSION

Created_tmp_files numeric GLOBAL | SESSION

Created_tmp_tables numeric GLOBAL | SESSION

Delayed_errors numeric GLOBAL | SESSION

Delayed_insert_threads numeric GLOBAL | SESSION

Delayed_writes numeric GLOBAL | SESSION

Flush_commands numeric GLOBAL | SESSION

Handler_commit numeric GLOBAL | SESSION

Handler_delete numeric GLOBAL | SESSION

Handler_discover numeric GLOBAL | SESSION

Handler_prepare numeric GLOBAL | SESSION

Handler_read_first numeric GLOBAL | SESSION

Handler_read_key numeric GLOBAL | SESSION

Handler_read_next numeric GLOBAL | SESSION

Handler_read_prev numeric GLOBAL | SESSION

Handler_read_rnd numeric GLOBAL | SESSION

Handler_read_rnd_next numeric GLOBAL | SESSION

Handler_rollback numeric GLOBAL | SESSION

Handler_savepoint numeric GLOBAL | SESSION

Handler_savepoint_rollback numeric GLOBAL | SESSION

Handler_update numeric GLOBAL | SESSION

Handler_write numeric GLOBAL | SESSION

Innodb_buffer_pool_pages_data numeric GLOBAL | SESSION

Innodb_buffer_pool_pages_dirty numeric GLOBAL | SESSION

Innodb_buffer_pool_pages_flushed numeric GLOBAL | SESSION

Innodb_buffer_pool_pages_free numeric GLOBAL | SESSION

MySQL Server Administration

405



Variable Name Variable Type Variable Scope

Innodb_buffer_pool_pages_latched numeric GLOBAL | SESSION

Innodb_buffer_pool_pages_misc numeric GLOBAL | SESSION

Innodb_buffer_pool_pages_total numeric GLOBAL | SESSION

Innodb_buffer_pool_read_ahead_rnd numeric GLOBAL | SESSION

Innodb_buffer_pool_read_ahead_seq numeric GLOBAL | SESSION

Innodb_buffer_pool_read_requests numeric GLOBAL | SESSION

Innodb_buffer_pool_reads numeric GLOBAL | SESSION

Innodb_buffer_pool_wait_free numeric GLOBAL | SESSION

Innodb_buffer_pool_write_requests numeric GLOBAL | SESSION

Innodb_data_fsyncs numeric GLOBAL | SESSION

Innodb_data_pending_fsyncs numeric GLOBAL | SESSION

Innodb_data_pending_reads numeric GLOBAL | SESSION

Innodb_data_pending_writes numeric GLOBAL | SESSION

Innodb_data_read numeric GLOBAL | SESSION

Innodb_data_reads numeric GLOBAL | SESSION

Innodb_data_writes numeric GLOBAL | SESSION

Innodb_data_written numeric GLOBAL | SESSION

Innodb_dblwr_pages_written numeric GLOBAL | SESSION

Innodb_dblwr_writes numeric GLOBAL | SESSION

Innodb_log_waits numeric GLOBAL | SESSION

Innodb_log_write_requests numeric GLOBAL | SESSION

Innodb_log_writes numeric GLOBAL | SESSION

Innodb_os_log_fsyncs numeric GLOBAL | SESSION

Innodb_os_log_pending_fsyncs numeric GLOBAL | SESSION

Innodb_os_log_pending_writes numeric GLOBAL | SESSION

Innodb_os_log_written numeric GLOBAL | SESSION

Innodb_pages_created numeric GLOBAL | SESSION

Innodb_page_size numeric GLOBAL | SESSION

Innodb_pages_read numeric GLOBAL | SESSION

Innodb_pages_written numeric GLOBAL | SESSION

Innodb_row_lock_current_waits numeric GLOBAL | SESSION

Innodb_row_lock_time numeric GLOBAL | SESSION

Innodb_row_lock_time_avg numeric GLOBAL | SESSION

Innodb_row_lock_time_max numeric GLOBAL | SESSION

Innodb_row_lock_waits numeric GLOBAL | SESSION

Innodb_rows_deleted numeric GLOBAL | SESSION

Innodb_rows_inserted numeric GLOBAL | SESSION

Innodb_rows_read numeric GLOBAL | SESSION

Innodb_rows_updated numeric GLOBAL | SESSION

Key_blocks_not_flushed numeric GLOBAL | SESSION

Key_blocks_unused numeric GLOBAL | SESSION

Key_blocks_used numeric GLOBAL | SESSION

Key_read_requests numeric GLOBAL | SESSION

Key_reads numeric GLOBAL | SESSION

MySQL Server Administration

406



Variable Name Variable Type Variable Scope

Key_write_requests numeric GLOBAL | SESSION

Key_writes numeric GLOBAL | SESSION

Last_query_cost numeric GLOBAL | SESSION

Max_used_connections numeric GLOBAL | SESSION

ndb-cluster-connection-pool numeric GLOBAL

Ndb_cluster_node_id numeric GLOBAL | SESSION

Ndb_config_from_host numeric GLOBAL | SESSION

Ndb_config_from_port numeric GLOBAL | SESSION

Ndb_conflict_fn_max numeric GLOBAL | SESSION

Ndb_conflict_fn_old numeric GLOBAL | SESSION

ndb_execute_count numeric GLOBAL

Ndb_number_of_data_nodes numeric GLOBAL | SESSION

Not_flushed_delayed_rows numeric GLOBAL | SESSION

Opened_files numeric GLOBAL

Opened_tables numeric GLOBAL | SESSION

Open_files numeric GLOBAL | SESSION

Open_streams numeric GLOBAL | SESSION

Open_table_definitions numeric GLOBAL | SESSION

Open_tables numeric GLOBAL | SESSION

prepared_stmt_count numeric GLOBAL

Qcache_free_blocks numeric GLOBAL | SESSION

Qcache_free_memory numeric GLOBAL | SESSION

Qcache_hits numeric GLOBAL | SESSION

Qcache_inserts numeric GLOBAL | SESSION

Qcache_lowmem_prunes numeric GLOBAL | SESSION

Qcache_not_cached numeric GLOBAL | SESSION

Qcache_queries_in_cache numeric GLOBAL | SESSION

Qcache_total_blocks numeric GLOBAL | SESSION

Questions numeric GLOBAL | SESSION

Rpl_status string GLOBAL | SESSION

Select_full_join numeric GLOBAL | SESSION

Select_full_range_join numeric GLOBAL | SESSION

Select_range numeric GLOBAL | SESSION

Select_range_check numeric GLOBAL | SESSION

Select_scan numeric GLOBAL | SESSION

Slave_heartbeat_period GLOBAL

Slave_open_temp_tables numeric GLOBAL | SESSION

Slave_received_heartbeats GLOBAL

Slave_retried_transactions numeric GLOBAL | SESSION

Slave_running boolean GLOBAL | SESSION

Slow_launch_threads numeric GLOBAL | SESSION

Slow_queries numeric GLOBAL | SESSION

Sort_merge_passes numeric GLOBAL | SESSION

Sort_range numeric GLOBAL | SESSION

MySQL Server Administration

407



Variable Name Variable Type Variable Scope

Sort_rows numeric GLOBAL | SESSION

Sort_scan numeric GLOBAL | SESSION

Table_locks_immediate numeric GLOBAL | SESSION

Table_locks_waited numeric GLOBAL | SESSION

Tc_log_max_pages_used numeric GLOBAL | SESSION

Tc_log_page_size numeric GLOBAL | SESSION

Tc_log_page_waits numeric GLOBAL | SESSION

Threads_cached numeric GLOBAL | SESSION

Threads_connected numeric GLOBAL | SESSION

Threads_created numeric GLOBAL | SESSION

Threads_running numeric GLOBAL | SESSION

Uptime numeric GLOBAL | SESSION

Uptime_since_flush_status numeric GLOBAL | SESSION

Many status variables are reset to 0 by the FLUSH STATUS statement.

MySQL Enterprise
For expert advice on using status variables, subscribe to the MySQL Enterprise Monitor. For more information
see http://www.mysql.com/products/enterprise/advisors.html.

The status variables have the following meanings. Variables with no version indicated were already present prior to MySQL 5.1. For in-
formation regarding their implementation history, see MySQL 5.0 Reference Manual.

• Aborted_clients

The number of connections that were aborted because the client died without closing the connection properly. See Section B.1.2.11,
“Communication Errors and Aborted Connections”.

• Aborted_connects

The number of failed attempts to connect to the MySQL server. See Section B.1.2.11, “Communication Errors and Aborted Connec-
tions”.

• Binlog_cache_disk_use

The number of transactions that used the temporary binary log cache but that exceeded the value of binlog_cache_size and
used a temporary file to store statements from the transaction.

• Binlog_cache_use

The number of transactions that used the temporary binary log cache.

• Bytes_received

The number of bytes received from all clients.

• Bytes_sent

The number of bytes sent to all clients.

• Com_xxx

The Com_xxx statement counter variables indicate the number of times each xxx statement has been executed. There is one status
variable for each type of statement. For example, Com_delete and Com_insert count DELETE and INSERT statements, re-
spectively. However, if a query result is returned from query cache, the server increments the Qcache_hits status variable, not
Com_select. See Section 7.5.4.4, “Query Cache Status and Maintenance”.

MySQL Server Administration

408

http://www.mysql.com/products/enterprise/advisors.html


All of the Com_stmt_xxx variables are increased even if a prepared statement argument is unknown or an error occurred during
execution. In other words, their values correspond to the number of requests issued, not to the number of requests successfully com-
pleted.

The Com_stmt_xxx status variables are as follows:

• Com_stmt_prepare

• Com_stmt_execute

• Com_stmt_fetch

• Com_stmt_send_long_data

• Com_stmt_reset

• Com_stmt_close

Those variables stand for prepared statement commands. Their names refer to the COM_xxx command set used in the network lay-
er. In other words, their values increase whenever prepared statement API calls such as mysql_stmt_prepare(),
mysql_stmt_execute(), and so forth are executed. However, Com_stmt_prepare, Com_stmt_execute and
Com_stmt_close also increase for PREPARE, EXECUTE, or DEALLOCATE PREPARE, respectively. Additionally, the values
of the older (available since MySQL 4.1.3) statement counter variables Com_prepare_sql, Com_execute_sql, and
Com_dealloc_sql increase for the PREPARE, EXECUTE, and DEALLOCATE PREPARE statements. Com_stmt_fetch
stands for the total number of network round-trips issued when fetching from cursors.

• Compression

Whether the client connection uses compression in the client/server protocol. Added in MySQL 5.1.2.

• Connections

The number of connection attempts (successful or not) to the MySQL server.

• Created_tmp_disk_tables

The number of temporary tables on disk created automatically by the server while executing statements.

• Created_tmp_files

How many temporary files mysqld has created.

• Created_tmp_tables

The number of in-memory temporary tables created automatically by the server while executing statements. If Cre-
ated_tmp_disk_tables is large, you may want to increase the tmp_table_size value to cause temporary tables to be
memory-based instead of disk-based.

• Delayed_errors

The number of rows written with INSERT DELAYED for which some error occurred (probably duplicate key).

• Delayed_insert_threads

The number of INSERT DELAYED handler threads in use.

• Delayed_writes

The number of INSERT DELAYED rows written.

• Flush_commands

The number of executed FLUSH statements.

• Handler_commit

MySQL Server Administration

409



The number of internal COMMIT statements.

• Handler_delete

The number of times that rows have been deleted from tables.

• Handler_prepare

A counter for the prepare phase of two-phase commit operations.

• Handler_read_first

The number of times the first entry was read from an index. If this value is high, it suggests that the server is doing a lot of full index
scans; for example, SELECT col1 FROM foo, assuming that col1 is indexed.

• Handler_read_key

The number of requests to read a row based on a key. If this value is high, it is a good indication that your tables are properly in-
dexed for your queries.

• Handler_read_next

The number of requests to read the next row in key order. This value is incremented if you are querying an index column with a
range constraint or if you are doing an index scan.

• Handler_read_prev

The number of requests to read the previous row in key order. This read method is mainly used to optimize ORDER BY ...
DESC.

• Handler_read_rnd

The number of requests to read a row based on a fixed position. This value is high if you are doing a lot of queries that require sort-
ing of the result. You probably have a lot of queries that require MySQL to scan entire tables or you have joins that don't use keys
properly.

• Handler_read_rnd_next

The number of requests to read the next row in the data file. This value is high if you are doing a lot of table scans. Generally this
suggests that your tables are not properly indexed or that your queries are not written to take advantage of the indexes you have.

• Handler_rollback

The number of requests for a storage engine to perform a rollback operation.

• Handler_savepoint

The number of requests for a storage engine to place a savepoint.

• Handler_savepoint_rollback

The number of requests for a storage engine to roll back to a savepoint.

• Handler_update

The number of requests to update a row in a table.

• Handler_write

The number of requests to insert a row in a table.

• Innodb_buffer_pool_pages_data

The number of pages containing data (dirty or clean).

• Innodb_buffer_pool_pages_dirty

MySQL Server Administration

410



The number of pages currently dirty.

• Innodb_buffer_pool_pages_flushed

The number of buffer pool page-flush requests.

• Innodb_buffer_pool_pages_free

The number of free pages.

• Innodb_buffer_pool_pages_latched

The number of latched pages in InnoDB buffer pool. These are pages currently being read or written or that cannot be flushed or re-
moved for some other reason.

• Innodb_buffer_pool_pages_misc

The number of pages that are busy because they have been allocated for administrative overhead such as row locks or the adaptive
hash index. This value can also be calculated as Innodb_buffer_pool_pages_total – In-
nodb_buffer_pool_pages_free – Innodb_buffer_pool_pages_data.

• Innodb_buffer_pool_pages_total

The total size of the buffer pool, in pages.

• Innodb_buffer_pool_read_ahead_rnd

The number of “random” read-aheads initiated by InnoDB. This happens when a query scans a large portion of a table but in ran-
dom order.

• Innodb_buffer_pool_read_ahead_seq

The number of sequential read-aheads initiated by InnoDB. This happens when InnoDB does a sequential full table scan.

• Innodb_buffer_pool_read_requests

The number of logical read requests InnoDB has done.

• Innodb_buffer_pool_reads

The number of logical reads that InnoDB could not satisfy from the buffer pool and had to do a single-page read.

• Innodb_buffer_pool_wait_free

Normally, writes to the InnoDB buffer pool happen in the background. However, if it is necessary to read or create a page and no
clean pages are available, it is also necessary to wait for pages to be flushed first. This counter counts instances of these waits. If the
buffer pool size has been set properly, this value should be small.

• Innodb_buffer_pool_write_requests

The number writes done to the InnoDB buffer pool.

• Innodb_data_fsyncs

The number of fsync() operations so far.

• Innodb_data_pending_fsyncs

The current number of pending fsync() operations.

• Innodb_data_pending_reads

The current number of pending reads.

• Innodb_data_pending_writes

MySQL Server Administration

411



The current number of pending writes.

• Innodb_data_read

The amount of data read so far, in bytes.

• Innodb_data_reads

The total number of data reads.

• Innodb_data_writes

The total number of data writes.

• Innodb_data_written

The amount of data written so far, in bytes.

• Innodb_dblwr_writes, Innodb_dblwr_pages_written

The number of doublewrite operations that have been performed and the number of pages that have been written for this purpose.
See Section 13.5.14.1, “InnoDB Disk I/O”.

• Innodb_log_waits

The number of times that the log buffer was too small and a wait was required for it to be flushed before continuing.

• Innodb_log_write_requests

The number of log write requests.

• Innodb_log_writes

The number of physical writes to the log file.

• Innodb_os_log_fsyncs

The number of fsync() writes done to the log file.

• Innodb_os_log_pending_fsyncs

The number of pending log file fsync() operations.

• Innodb_os_log_pending_writes

The number of pending log file writes.

• Innodb_os_log_written

The number of bytes written to the log file.

• Innodb_page_size

The compiled-in InnoDB page size (default 16KB). Many values are counted in pages; the page size allows them to be easily con-
verted to bytes.

• Innodb_pages_created

The number of pages created.

• Innodb_pages_read

The number of pages read.

• Innodb_pages_written

MySQL Server Administration

412



The number of pages written.

• Innodb_row_lock_current_waits

The number of row locks currently being waited for.

• Innodb_row_lock_time

The total time spent in acquiring row locks, in milliseconds.

• Innodb_row_lock_time_avg

The average time to acquire a row lock, in milliseconds.

• Innodb_row_lock_time_max

The maximum time to acquire a row lock, in milliseconds.

• Innodb_row_lock_waits

The number of times a row lock had to be waited for.

• Innodb_rows_deleted

The number of rows deleted from InnoDB tables.

• Innodb_rows_inserted

The number of rows inserted into InnoDB tables.

• Innodb_rows_read

The number of rows read from InnoDB tables.

• Innodb_rows_updated

The number of rows updated in InnoDB tables.

• Key_blocks_not_flushed

The number of key blocks in the key cache that have changed but have not yet been flushed to disk.

• Key_blocks_unused

The number of unused blocks in the key cache. You can use this value to determine how much of the key cache is in use; see the
discussion of key_buffer_size in Section 5.1.3, “System Variables”.

• Key_blocks_used

The number of used blocks in the key cache. This value is a high-water mark that indicates the maximum number of blocks that
have ever been in use at one time.

• Key_read_requests

The number of requests to read a key block from the cache.

• Key_reads

The number of physical reads of a key block from disk. If Key_reads is large, then your key_buffer_size value is probably
too small. The cache miss rate can be calculated as Key_reads/Key_read_requests.

• Key_write_requests

The number of requests to write a key block to the cache.

• Key_writes

MySQL Server Administration

413



The number of physical writes of a key block to disk.

• Last_query_cost

The total cost of the last compiled query as computed by the query optimizer. This is useful for comparing the cost of different
query plans for the same query. The default value of 0 means that no query has been compiled yet. The default value is 0.
Last_query_cost has session scope.

The Last_query_cost value can be computed accurately only for simple “flat” queries, not complex queries such as those with
subqueries or UNION. For the latter, the value is set to 0.

• Max_used_connections

The maximum number of connections that have been in use simultaneously since the server started.

• Not_flushed_delayed_rows

The number of rows waiting to be written in INSERT DELAY queues.

• Open_files

The number of files that are open.

• Open_streams

The number of streams that are open (used mainly for logging).

• Open_table_definitions

The number of cached .frm files. This variable was added in MySQL 5.1.3.

• Open_tables

The number of tables that are open.

• Opened_files

The number of files that have been opened with my_open() (a mysys library function). Parts of the server that open files without
using this function do not increment the count. This variable was added in MySQL 5.1.21.

• Opened_tables

The number of tables that have been opened. If Opened_tables is big, your table_open_cache value is probably too small.

• Prepared_stmt_count

The current number of prepared statements. (The maximum number of statements is given by the max_prepared_stmt_count
system variable.) This variable was added in MySQL 5.1.14.

• Qcache_free_blocks

The number of free memory blocks in the query cache.

• Qcache_free_memory

The amount of free memory for the query cache.

• Qcache_hits

The number of query cache hits.

• Qcache_inserts

The number of queries added to the query cache.

• Qcache_lowmem_prunes

MySQL Server Administration

414



The number of queries that were deleted from the query cache because of low memory.

• Qcache_not_cached

The number of non-cached queries (not cacheable, or not cached due to the query_cache_type setting).

• Qcache_queries_in_cache

The number of queries registered in the query cache.

• Qcache_total_blocks

The total number of blocks in the query cache.

• Questions

The number of statements that clients have sent to the server.

• Rpl_status

The status of fail-safe replication (not yet implemented).

• Select_full_join

The number of joins that perform table scans because they do not use indexes. If this value is not 0, you should carefully check the
indexes of your tables.

• Select_full_range_join

The number of joins that used a range search on a reference table.

• Select_range

The number of joins that used ranges on the first table. This is normally not a critical issue even if the value is quite large.

• Select_range_check

The number of joins without keys that check for key usage after each row. If this is not 0, you should carefully check the indexes of
your tables.

• Select_scan

The number of joins that did a full scan of the first table.

• Slave_open_temp_tables

The number of temporary tables that the slave SQL thread currently has open.

• Slave_retried_transactions

The total number of times since startup that the replication slave SQL thread has retried transactions.

• Slave_running

This is ON if this server is a slave that is connected to a master.

• Slow_launch_threads

The number of threads that have taken more than slow_launch_time seconds to create.

• Slow_queries

The number of queries that have taken more than long_query_time seconds. See Section 5.2.5, “The Slow Query Log”.

• Sort_merge_passes

MySQL Server Administration

415



The number of merge passes that the sort algorithm has had to do. If this value is large, you should consider increasing the value of
the sort_buffer_size system variable.

• Sort_range

The number of sorts that were done using ranges.

• Sort_rows

The number of sorted rows.

• Sort_scan

The number of sorts that were done by scanning the table.

• Ssl_xxx

Variables used for SSL connections.

• Table_locks_immediate

The number of times that a table lock was acquired immediately.

• Table_locks_waited

The number of times that a table lock could not be acquired immediately and a wait was needed. If this is high and you have per-
formance problems, you should first optimize your queries, and then either split your table or tables or use replication.

• Tc_log_max_pages_used

For the memory-mapped implementation of the log that is used by mysqld when it acts as the transaction coordinator for recovery
of internal XA transactions, this variable indicates the largest number of pages used for the log since the server started. If the
product of Tc_log_max_pages_used and Tc_log_page_size is always significantly less than the log size, the size is lar-
ger than necessary and can be reduced. (The size is set by the --log-tc-size option. Currently, this variable is unused: It is un-
needed for binary log-based recovery, and the memory-mapped recovery log method is not used unless the number of storage en-
gines capable of two-phase commit is greater than one. (InnoDB is the only applicable engine.)

• Tc_log_page_size

The page size used for the memory-mapped implementation of the XA recovery log. The default value is determined using get-
pagesize(). Currently, this variable is unused for the same reasons as described for Tc_log_max_pages_used.

• Tc_log_page_waits

For the memory-mapped implementation of the recovery log, this variable increments each time the server was not able to commit a
transaction and had to wait for a free page in the log. If this value is large, you might want to increase the log size (with the -
-log-tc-size option). For binary log-based recovery, this variable increments each time the binary log cannot be closed be-
cause there are two-phase commits in progress. (The close operation waits until all such transactions are finished.)

• Threads_cached

The number of threads in the thread cache.

• Threads_connected

The number of currently open connections.

• Threads_created

The number of threads created to handle connections. If Threads_created is big, you may want to increase the
thread_cache_size value. The cache miss rate can be calculated as Threads_created/Connections.

• Threads_running

The number of threads that are not sleeping.

MySQL Server Administration

416



• Uptime

The number of seconds that the server has been up.

5.1.6. SQL Modes
The MySQL server can operate in different SQL modes, and can apply these modes differently for different clients. This capability en-
ables each application to tailor the server's operating mode to its own requirements.

For answers to some questions that are often asked about server SQL modes in MySQL, see Section A.3, “MySQL 5.1 FAQ — Server
SQL Mode”.

Modes define what SQL syntax MySQL should support and what kind of data validation checks it should perform. This makes it easier
to use MySQL in different environments and to use MySQL together with other database servers.

You can set the default SQL mode by starting mysqld with the --sql-mode="modes" option, or by using sql-mode="modes"
in my.cnf (Unix operating systems) or my.ini (Windows). modes is a list of different modes separated by comma (“,”) characters.
The default value is empty (no modes set). The modes value also can be empty (--sql-mode="" on the command line, or sql-
mode="" in my.cnf on Unix systems or in my.ini on Windows) if you want to clear it explicitly.

You can change the SQL mode at runtime by using a SET [GLOBAL|SESSION] sql_mode='modes' statement to set the
sql_mode system value. Setting the GLOBAL variable requires the SUPER privilege and affects the operation of all clients that con-
nect from that time on. Setting the SESSION variable affects only the current client. Any client can change its own session sql_mode
value at any time.

Important

SQL mode and user-defined partitioning. Changing the server SQL mode after creating and inserting data into parti-
tioned tables can cause major changes in the behavior of such tables, and could lead to loss or corruption of data. It is
strongly recommended that you never change the SQL mode once you have created tables employing user-defined parti-
tioning.

See Section 18.5, “Restrictions and Limitations on Partitioning”, for more information.

You can retrieve the current global or session sql_mode value with the following statements:

SELECT @@global.sql_mode;
SELECT @@session.sql_mode;

The most important sql_mode values are probably these:

• ANSI

This mode changes syntax and behavior to conform more closely to standard SQL.

• STRICT_TRANS_TABLES

If a value could not be inserted as given into a transactional table, abort the statement. For a non-transactional table, abort the state-
ment if the value occurs in a single-row statement or the first row of a multiple-row statement. More detail is given later in this sec-
tion.

• TRADITIONAL

Make MySQL behave like a “traditional” SQL database system. A simple description of this mode is “give an error instead of a
warning” when inserting an incorrect value into a column.

Note

The INSERT/UPDATE aborts as soon as the error is noticed. This may not be what you want if you are using a non-
transactional storage engine, because data changes made prior to the error may not be rolled back, resulting in a “partially
done” update.

MySQL Server Administration

417



When this manual refers to “strict mode,” it means a mode where at least one of STRICT_TRANS_TABLES or
STRICT_ALL_TABLES is enabled.

The following list describes all supported modes:

• ALLOW_INVALID_DATES

Don't do full checking of dates. Check only that the month is in the range from 1 to 12 and the day is in the range from 1 to 31. This
is very convenient for Web applications where you obtain year, month, and day in three different fields and you want to store ex-
actly what the user inserted (without date validation). This mode applies to DATE and DATETIME columns. It does not apply
TIMESTAMP columns, which always require a valid date.

The server requires that month and day values be legal, and not merely in the range 1 to 12 and 1 to 31, respectively. With strict
mode disabled, invalid dates such as '2004-04-31' are converted to '0000-00-00' and a warning is generated. With strict
mode enabled, invalid dates generate an error. To allow such dates, enable ALLOW_INVALID_DATES.

• ANSI_QUOTES

Treat “"” as an identifier quote character (like the “`” quote character) and not as a string quote character. You can still use “`” to
quote identifiers with this mode enabled. With ANSI_QUOTES enabled, you cannot use double quotes to quote literal strings, be-
cause it is interpreted as an identifier.

• ERROR_FOR_DIVISION_BY_ZERO

Produce an error in strict mode (otherwise a warning) when a division by zero (or MOD(X,0)) occurs during an INSERT or UP-
DATE. If this mode is not enabled, MySQL instead returns NULL for divisions by zero. For INSERT IGNORE or UPDATE IG-
NORE, MySQL generates a warning for divisions by zero, but the result of the operation is NULL.

• HIGH_NOT_PRECEDENCE

The precedence of the NOT operator is such that expressions such as NOT a BETWEEN b AND c are parsed as NOT (a
BETWEEN b AND c). In some older versions of MySQL, the expression was parsed as (NOT a) BETWEEN b AND c. The
old higher-precedence behavior can be obtained by enabling the HIGH_NOT_PRECEDENCE SQL mode.

mysql> SET sql_mode = '';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;

-> 0
mysql> SET sql_mode = 'HIGH_NOT_PRECEDENCE';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;

-> 1

• IGNORE_SPACE

Allow spaces between a function name and the “(” character. This causes built-in function names to be treated as reserved words.
As a result, identifiers that are the same as function names must be quoted as described in Section 8.2, “Schema Object Names”. For
example, because there is a COUNT() function, the use of count as a table name in the following statement causes an error:

mysql> CREATE TABLE count (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax

The table name should be quoted:

mysql> CREATE TABLE `count` (i INT);
Query OK, 0 rows affected (0.00 sec)

The IGNORE_SPACE SQL mode applies to built-in functions, not to user-defined functions or stored functions. It is always allow-
able to have spaces after a UDF or stored function name, regardless of whether IGNORE_SPACE is enabled.

For further discussion of IGNORE_SPACE, see Section 8.2.4, “Function Name Parsing and Resolution”.

• NO_AUTO_CREATE_USER

Prevent the GRANT statement from automatically creating new users if it would otherwise do so, unless a non-empty password also
is specified.

• NO_AUTO_VALUE_ON_ZERO

MySQL Server Administration

418



NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Normally, you generate the next sequence num-
ber for the column by inserting either NULL or 0 into it. NO_AUTO_VALUE_ON_ZERO suppresses this behavior for 0 so that only
NULL generates the next sequence number.

This mode can be useful if 0 has been stored in a table's AUTO_INCREMENT column. (Storing 0 is not a recommended practice, by
the way.) For example, if you dump the table with mysqldump and then reload it, MySQL normally generates new sequence num-
bers when it encounters the 0 values, resulting in a table with contents different from the one that was dumped. Enabling
NO_AUTO_VALUE_ON_ZERO before reloading the dump file solves this problem. mysqldump now automatically includes in its
output a statement that enables NO_AUTO_VALUE_ON_ZERO, to avoid this problem.

• NO_BACKSLASH_ESCAPES

Disable the use of the backslash character (“\”) as an escape character within strings. With this mode enabled, backslash becomes
an ordinary character like any other.

• NO_DIR_IN_CREATE

When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives. This option is useful on slave replica-
tion servers.

• NO_ENGINE_SUBSTITUTION

Control automatic substitution of the default storage engine when a statement such as CREATE TABLE or ALTER TABLE spe-
cifies a storage engine that is disabled or not compiled in.

Up through MySQL 5.1.11, with NO_ENGINE_SUBSTITUTION disabled, the default engine is used and a warning occurs if the
desired engine is known but disabled or not compiled in. If the desired engine is invalid (not a known engine name), an error occurs
and the table is not created or altered.

With NO_ENGINE_SUBSTITUTION enabled, an error occurs and the table is not created or altered if the desired engine is unavail-
able for any reason (whether disabled or invalid).

As of MySQL 5.1.12, storage engines can be pluggable at runtime, so the distinction between disabled and invalid no longer applies.
All unavailable engines are treated the same way:

With NO_ENGINE_SUBSTITUTION disabled, for CREATE TABLE the default engine is used and a warning occurs if the desired
engine is unavailable. For ALTER TABLE, a warning occurs and the table is not altered.

With NO_ENGINE_SUBSTITUTION enabled, an error occurs and the table is not created or altered if the desired engine is unavail-
able.

• NO_FIELD_OPTIONS

Do not print MySQL-specific column options in the output of SHOW CREATE TABLE. This mode is used by mysqldump in port-
ability mode.

• NO_KEY_OPTIONS

Do not print MySQL-specific index options in the output of SHOW CREATE TABLE. This mode is used by mysqldump in port-
ability mode.

• NO_TABLE_OPTIONS

Do not print MySQL-specific table options (such as ENGINE) in the output of SHOW CREATE TABLE. This mode is used by
mysqldump in portability mode.

• NO_UNSIGNED_SUBTRACTION

In integer subtraction operations, do not mark the result as UNSIGNED if one of the operands is unsigned. In other words, the result
of a subtraction is always signed whenever this mode is in effect, even if one of the operands is unsigned. For example, compare the
type of column c2 in table t1 with that of column c2 in table t2:

mysql> SET SQL_MODE='';
mysql> CREATE TABLE test (c1 BIGINT UNSIGNED NOT NULL);
mysql> CREATE TABLE t1 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t1;

MySQL Server Administration

419



+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
| c2 | bigint(21) unsigned | | | 0 | |
+-------+---------------------+------+-----+---------+-------+

mysql> SET SQL_MODE='NO_UNSIGNED_SUBTRACTION';
mysql> CREATE TABLE t2 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t2;
+-------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
| c2 | bigint(21) | | | 0 | |
+-------+------------+------+-----+---------+-------+

Note that this means that BIGINT UNSIGNED is not 100% usable in all contexts. See Section 11.9, “Cast Functions and Operat-
ors”.

mysql> SET SQL_MODE = '';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| 18446744073709551615 |
+-------------------------+

mysql> SET SQL_MODE = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

• NO_ZERO_DATE

In strict mode, don't allow '0000-00-00' as a valid date. You can still insert zero dates with the IGNORE option. When not in
strict mode, the date is accepted but a warning is generated.

• NO_ZERO_IN_DATE

In strict mode, do not accept dates where the year part is non-zero but the the month or day part is 0 (for example, '0000-00-00'
is legal but '2010-00-01' and '2010-01-00' are not). If used with the IGNORE option, MySQL inserts a '0000-00-00'
date for any such date. When not in strict mode, the date is accepted but a warning is generated.

• ONLY_FULL_GROUP_BY

Do not allow queries for which the SELECT list refers to non-aggregated columns that are not named in the GROUP BY clause. The
following query is invalid with this mode enabled because address is not named in the GROUP BY clause:

SELECT name, address, MAX(age) FROM t GROUP BY name;

As of MySQL 5.1.11, this mode also restricts references to non-aggregated columns in the HAVING clause that are not named in the
GROUP BY clause.

• PAD_CHAR_TO_FULL_LENGTH

By default, trailing spaces are trimmed from CHAR column values on retrieval. If PAD_CHAR_TO_FULL_LENGTH is enabled,
trimming does not occur and retrieved CHAR values are padded to their full length. This mode does not apply to VARCHAR columns,
for which trailing spaces are retained on retrieval. This mode was added in MySQL 5.1.20.

mysql> CREATE TABLE t1 (c1 CHAR(10));
Query OK, 0 rows affected (0.37 sec)

mysql> INSERT INTO t1 (c1) VALUES('xy');
Query OK, 1 row affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------+-----------------+
| xy | 2 |
+------+-----------------+

MySQL Server Administration

420



1 row in set (0.00 sec)

mysql> SET sql_mode = 'PAD_CHAR_TO_FULL_LENGTH';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------------+-----------------+
| xy | 10 |
+------------+-----------------+
1 row in set (0.00 sec)

• PIPES_AS_CONCAT

Treat || as a string concatenation operator (same as CONCAT()) rather than as a synonym for OR.

• REAL_AS_FLOAT

Treat REAL as a synonym for FLOAT. By default, MySQL treats REAL as a synonym for DOUBLE.

• STRICT_ALL_TABLES

Enable strict mode for all storage engines. Invalid data values are rejected. Additional detail follows.

• STRICT_TRANS_TABLES

Enable strict mode for transactional storage engines, and when possible for non-transactional storage engines. Additional details fol-
low.

Strict mode controls how MySQL handles input values that are invalid or missing. A value can be invalid for several reasons. For ex-
ample, it might have the wrong data type for the column, or it might be out of range. A value is missing when a new row to be inserted
does not contain a value for a non-NULL column that has no explicit DEFAULT clause in its definition. (For a NULL column, NULL is
inserted if the value is missing.)

For transactional tables, an error occurs for invalid or missing values in a statement when either of the STRICT_ALL_TABLES or
STRICT_TRANS_TABLES modes are enabled. The statement is aborted and rolled back.

For non-transactional tables, the behavior is the same for either mode, if the bad value occurs in the first row to be inserted or updated.
The statement is aborted and the table remains unchanged. If the statement inserts or modifies multiple rows and the bad value occurs in
the second or later row, the result depends on which strict option is enabled:

• For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows. However, in this case, the earlier rows still
have been inserted or updated. This means that you might get a partial update, which might not be what you want. To avoid this, it's
best to use single-row statements because these can be aborted without changing the table.

• For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for the column and insert the adjusted
value. If a value is missing, MySQL inserts the implicit default value for the column data type. In either case, MySQL generates a
warning rather than an error and continues processing the statement. Implicit defaults are described in Section 10.1.4, “Data Type
Default Values”.

Strict mode disallows invalid date values such as '2004-04-31'. It does not disallow dates with zero month or day parts such as
'2004-04-00' or “zero” dates. To disallow these as well, enable the NO_ZERO_IN_DATE and NO_ZERO_DATE SQL modes in ad-
dition to strict mode.

If you are not using strict mode (that is, neither STRICT_TRANS_TABLES nor STRICT_ALL_TABLES is enabled), MySQL inserts
adjusted values for invalid or missing values and produces warnings. In strict mode, you can produce this behavior by using INSERT
IGNORE or UPDATE IGNORE. See Section 12.5.4.32, “SHOW WARNINGS Syntax”.

The following special modes are provided as shorthand for combinations of mode values from the preceding list.

The descriptions include all mode values that are available in the most recent version of MySQL. For older versions, a combination
mode does not include individual mode values that are not available except in newer versions.

MySQL Server Administration

421



• ANSI

Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE.

As of MySQL 5.1.18, ANSI mode also causes the server to return an error for queries where a set function S with an outer reference
S(outer_ref) cannot be aggregated in the outer query against which the outer reference has been resolved. This is such a query:

SELECT * FROM t1 WHERE t1.a IN (SELECT MAX(t1.b) FROM t2 WHERE ...);

Here, MAX(t1.b) cannot aggregated in the outer query because it appears in the WHERE clause of that query. Standard SQL re-
quires an error in this situation. If ANSI mode is not enabled, the server treats S(outer_ref) in such queries the same way that it
would interpret S(const), as was always done prior to 5.1.18.

See Section 1.8.3, “Running MySQL in ANSI Mode”.

• DB2

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS.

• MAXDB

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• MSSQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS.

• MYSQL323

Equivalent to NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.

• MYSQL40

Equivalent to NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.

• ORACLE

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• POSTGRESQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS.

• TRADITIONAL

Equivalent to STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE, ER-
ROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER.

5.1.7. Server-Side Help
MySQL Server supports a HELP statement that returns online information from the MySQL Reference manual (see Section 12.3.3,
“HELP Syntax”). The proper operation of this statement requires that the help tables in the mysql database be initialized with help top-
ic information, which is done by processing the contents of the fill_help_tables.sql script.

For a MySQL binary distribution on Unix, help table setup occurs when you run mysql_install_db. For an RPM distribution on
Linux or binary distribution on Windows, help table setup occurs as part of the MySQL installation process.

For a MySQL source distribution, you can find the fill_help_tables.sql file in the scripts directory. To load the file manu-
ally, make sure that you have initialized the mysql database by running mysql_install_db, and then process the file with the

MySQL Server Administration

422



mysql client as follows:

shell> mysql -u root mysql < fill_help_tables.sql

If you are working with BitKeeper and a MySQL development source tree, the tree doesn't contain fill_help_tables.sql. You
can download the proper file for your version of MySQL from http://dev.mysql.com/doc/. After downloading and uncompressing the
file, process it with mysql as just described.

5.1.8. Server Response to Signals
On Unix, signals can be sent to processes. mysqld responds to signals sent to it as follows:

• SIGTERM causes the server to shut down.

• SIGHUP causes the server to reload the grant tables and flush the logs (like FLUSH PRIVILEGES and FLUSH LOGS). It also
writes a status report to the error log that has this format:

Status information:

Current dir: /var/mysql/data/
Running threads: 0 Stack size: 196608
Current locks:

Key caches:
default
Buffer_size: 8388600
Block_size: 1024
Division_limit: 100
Age_limit: 300
blocks used: 0
not flushed: 0
w_requests: 0
writes: 0
r_requests: 0
reads: 0

handler status:
read_key: 0
read_next: 0
read_rnd 0
read_first: 1
write: 0
delete 0
update: 0

Table status:
Opened tables: 5
Open tables: 0
Open files: 7
Open streams: 0

Alarm status:
Active alarms: 1
Max used alarms: 2
Next alarm time: 67

On some Mac OS X 10.3 versions, mysqld ignores SIGHUP and SIGQUIT.

5.1.9. The Shutdown Process
The server shutdown process takes place as follows:

1. The shutdown process is initiated.

Server shutdown can be initiated several ways. For example, a user with the SHUTDOWN privilege can execute a mysqladmin
shutdown command. mysqladmin can be used on any platform supported by MySQL. Other operating system-specific shut-
down initiation methods are possible as well: The server shuts down on Unix when it receives a SIGTERM signal. A server running
as a service on Windows shuts down when the services manager tells it to.

2. The server creates a shutdown thread if necessary.

Depending on how shutdown was initiated, the server might create a thread to handle the shutdown process. If shutdown was re-

MySQL Server Administration

423

http://dev.mysql.com/doc/


quested by a client, a shutdown thread is created. If shutdown is the result of receiving a SIGTERM signal, the signal thread might
handle shutdown itself, or it might create a separate thread to do so. If the server tries to create a shutdown thread and cannot (for
example, if memory is exhausted), it issues a diagnostic message that appears in the error log:

Error: Can't create thread to kill server

3. The server stops accepting new connections.

To prevent new activity from being initiated during shutdown, the server stops accepting new client connections. It does this by
closing the network connections to which it normally listens for connections: the TCP/IP port, the Unix socket file, the Windows
named pipe, and shared memory on Windows.

4. The server terminates current activity.

For each thread that is associated with a client connection, the connection to the client is broken and the thread is marked as killed.
Threads die when they notice that they are so marked. Threads for idle connections die quickly. Threads that currently are pro-
cessing statements check their state periodically and take longer to die. For additional information about thread termination, see
Section 12.5.5.3, “KILL Syntax”, in particular for the instructions about killed REPAIR TABLE or OPTIMIZE TABLE opera-
tions on MyISAM tables.

For threads that have an open transaction, the transaction is rolled back. Note that if a thread is updating a non-transactional table,
an operation such as a multiple-row UPDATE or INSERT may leave the table partially updated, because the operation can termin-
ate before completion.

If the server is a master replication server, threads associated with currently connected slaves are treated like other client threads.
That is, each one is marked as killed and exits when it next checks its state.

If the server is a slave replication server, the I/O and SQL threads, if active, are stopped before client threads are marked as killed.
The SQL thread is allowed to finish its current statement (to avoid causing replication problems), and then stops. If the SQL thread
was in the middle of a transaction at this point, the transaction is rolled back.

5. Storage engines are shut down or closed.

At this stage, the table cache is flushed and all open tables are closed.

Each storage engine performs any actions necessary for tables that it manages. For example, MyISAM flushes any pending index
writes for a table. InnoDB flushes its buffer pool to disk, unless innodb_fast_shutdown is 2, writes the current LSN to the
tablespace, and terminates its own internal threads.

6. The server exits.

5.2. MySQL Server Logs
MySQL has several different logs that can help you find out what is going on inside mysqld:

Log Type Information Written to Log

The error log Problems encountered starting, running, or stopping mysqld

The general query log Established client connections and statements received from clients

The binary log All statements that change data (also used for replication)

The slow query log All queries that took more than long_query_time seconds to execute or didn't use in-
dexes

By default, all log files are created in the mysqld data directory. You can force mysqld to close and reopen the log files (or in some
cases switch to a new log) by flushing the logs. Log flushing occurs when you issue a FLUSH LOGS statement or execute mysqlad-
min flush-logs or mysqladmin refresh. See Section 12.5.5.2, “FLUSH Syntax”, and Section 4.5.2, “mysqladmin — Cli-
ent for Administering a MySQL Server”.

If you are using MySQL replication capabilities, slave replication servers maintain additional log files called relay logs. Chapter 16,
Replication, discusses relay log contents and configuration.

MySQL Server Administration

424



MySQL Enterprise
The MySQL Enterprise Monitor provides a number of advisors specifically related to the various log files. For
more information see http://www.mysql.com/products/enterprise/advisors.html.

As of MySQL 5.1.6, the server can write general query and slow query entries to log tables, log files, or both. For details, see Sec-
tion 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”.

As of MySQL 5.1.12, additional runtime control of the general query and slow query logs is available: You can enable or disable log-
ging, or change the name of the log file. See Section 5.2.3, “The General Query Log”, and Section 5.2.5, “The Slow Query Log”.

5.2.1. Selecting General Query and Slow Query Log Output Destinations
As of MySQL 5.1.6, the server provides flexible control over the destination for log output. Log entries can be written to log files to the
general_log and slow_log tables in the mysql database. If logging is enabled, either or both destinations can be selected.
(Before MySQL 5.1.6, the server uses only log files as the destination for general query log and slow query log entries, if those logs are
enabled.)

Note

For new installations of MySQL 5.1.6 or higher, the log tables are created during the installation procedure along with the
other system tables. If you upgrade MySQL from a release older than 5.1.6 to MySQL 5.1.6 or higher, you must upgrade
the system tables after upgrading to make sure that the log tables exist. See Section 4.4.8, “mysql_upgrade — Check
Tables for MySQL Upgrade”.

Currently, logging to tables incurs significantly more server overhead than logging to files. If you enable the general log or slow query
log and require highest performance, you should log to files and not to tables.

The --log-output option specifies the destination for log output, if logging is enabled, but the option does not in itself enable the
logs. The syntax for this option is --log-output[=value,...]:

• If --log-output is given with a value, the value can be a comma-separated list of one or more of the words TABLE (log to
tables), FILE (log to files), or NONE (do not log to tables or files). NONE, if present, takes precedence over any other specifiers.

• If --log-output is omitted or given without a value, the effect is the same as --log-output=FILE. That is, the file destina-
tion is selected. (For MySQL 5.1.6 through 5.1.20, the default is the table destination.)

• If --log-output option also sets the value of the global log_output system variable, which can be modified at runtime to
change the logging destination for the server while it executes.

The --log[=file_name] option, if given, enables logging to the general query log for the selected log destinations. Similarly, the -
-log-slow-queries[=file_name] option, if given, enables logging to the slow query log for the selected destinations. If you
specify either option, the server opens the corresponding log file and writes startup messages to it. However, logging of queries to the
file does not occur unless the FILE log destination is selected.

Examples:

• To write general query log entries to the log table and the log file, use --log-output=TABLE,FILE to select both log destina-
tions and the --log option to enable the general query log.

• To write general and slow query log entries only to the log tables, use --log-output=TABLE to select tables as the log destina-
tion and the --log and --log-slow-queries options to enable both logs.

• To write slow query log entries only to the log file, use --log-output=FILE to select files as the log destination and the -
-log-slow-queries option to enable the slow query log. (In this case, because the default log destination is FILE, you could
omit the --log-output option.)

Several system variables are associated with log tables and files:

• The global general_log and slow_query_log variables indicate whether the general query log and slow query log are en-
abled (ON) or disabled (OFF). You can set these variables at runtime to control whether the logs are enabled.

MySQL Server Administration

425

http://www.mysql.com/products/enterprise/advisors.html


• The global general_log_file and slow_query_log_file variables indicate the names of the general query log and slow
query log files. You can set these variables at runtime to change the names of the log files. (If the --log and -
-log-slow-queries options were not given, the initial variable values are the default log filenames.)

• The session sql_log_off variable can be set to ON or OFF to disable or enable general query logging for the current connection.

The use of tables for log output offers the following benefits:

• Log entries have a standard format. To display the current structure of the log tables, use these statements:

SHOW CREATE TABLE mysql.general_log;
SHOW CREATE TABLE mysql.slow_log;

• Log contents are accessible via SQL statements. This enables the use of queries that select only those log entries that satisfy specific
criteria. For example, to select log contents associated with a particular client (which can be useful for identifying problematic quer-
ies from that client), it is easier to do this using a log table than a log file.

• Logs are accessible remotely through any client that can connect to the server and issue queries (if the client has the appropriate log
table privileges). It's not necessary to log in to the server host and directly access the filesystem.

The log table implementation has the following characteristics:

• In general, the primary purpose of log tables is to provide an interface for users to observe the runtime execution of the server, not to
interfere with its runtime execution.

• CREATE TABLE, ALTER TABLE, and DROP TABLE are valid operations on a log table. For ALTER TABLE and DROP
TABLE, the log table cannot be in use and must be disabled, as described later.

• By default, the log tables use the CSV storage engine that writes data in comma-separated values format. For users who have access
to the .CSV files that contain log table data, the files are easy to import into other programs such as spreadsheets that can process
CSV input.

Beginning with MySQL 5.1.12, the log tables can be altered to use the MyISAM storage engine. You cannot use ALTER TABLE to
alter a log table that is in use. The log must be disabled first. No engines other than CSV or MyISAM are legal for the log tables.

• To disable logging so that you can alter (or drop) a log table, you can use the following strategy. The example uses the general query
log; the procedure for the slow query log is similar but uses the slow_log table and slow_query_log system variable.

SET @old_log_state = @@global.general_log;
SET GLOBAL general_log = 'OFF';
ALTER TABLE mysql.general_log ENGINE = MyISAM;
SET GLOBAL general_log = @old_log_state;

• TRUNCATE TABLE is a valid operation on a log table. It can be used to expire log entries.

• As of MySQL 5.1.13, RENAME TABLE is a valid operation on a log table. You can atomically rename a log table (to perform log
rotation, for example) using the following strategy:

USE mysql;
CREATE TABLE IF NOT EXISTS general_log2 LIKE general_log;
RENAME TABLE general_log TO general_log_backup, general_log2 TO general_log;

• LOCK TABLES cannot be used on a log table.

• INSERT, DELETE, and UPDATE cannot be used on a log table. These operations are allowed only internally to the server itself.

• The global read lock and the state of the global read_only system variable have no effect on log tables. The server can always
write to the log tables.

• Entries written to the log tables are not written to the binary log and thus are not replicated to slave servers.

• To flush the log tables or log files, use FLUSH TABLES or FLUSH LOGS, respectively. (From MySQL 5.1.12 to 5.1.20, FLUSH
TABLES ignores log tables and FLUSH LOGS flushes both the log tables and files.)

MySQL Server Administration

426



• It is not recommended to partition log tables, and doing so is not allowed beginning with MySQL 5.1.20.

5.2.2. The Error Log
The error log contains information indicating when mysqld was started and stopped and also any critical errors that occur while the
server is running. If mysqld notices a table that needs to be automatically checked or repaired, it writes a message to the error log.

On some operating systems, the error log contains a stack trace if mysqld dies. The trace can be used to determine where mysqld
died. See MySQL Internals: Porting.

You can specify where mysqld writes the error log with the --log-error[=file_name] option. If no file_name value is giv-
en, mysqld uses the name host_name.err by default and writes the file in the data directory. If you execute FLUSH LOGS, the er-
ror log is renamed with the suffix -old and mysqld creates a new empty log file. (No renaming occurs if the --log-error option
was not given to mysqld.)

If you do not specify --log-error, or (on Windows) if you use the --console option, errors are written to stderr, the standard
error output. Usually this is your terminal.

On Windows, error output is always written to the .err file if --console is not given.

The --log-warnings option or log_warnings system variable can be used to control warning logging to the error log. The de-
fault value is enabled (1). Warning logging can be disabled using a value of 0. If the value is greater than 1, aborted connections are
written to the error log. See Section B.1.2.11, “Communication Errors and Aborted Connections”.

If you use mysqld_safe to start mysqld, mysqld_safe arranges for mysqld to write error messages to a log file or (as of
MySQL 5.1.20) to syslog:

• Before 5.1.20, mysqld_safe behavior is to log to a file, using the default error log file if the --log-error option is not given
to mysqld_safe. Otherwise, mysqld_safe uses the filename specified via --log-error=file_name.

• From 5.1.20 on, mysqld_safe has two additional error-logging options, --syslog and --skip-syslog.

In 5.1.21 and up, the default with no logging options is --skip-syslog, which is compatible with the default behavior of writing
an error log file for releases prior to 5.1.20. To explicitly specify use of an error log file, specify --log-error=file_name to
mysqld_safe, and mysqld_safe will arrange for mysqld to write messages to a log file. To use syslog instead, specify the
--syslog option.

In 5.1.20 only, the following conditions apply: 1) The default is to use syslog, which is not compatible with releases prior to
5.1.20. 2) Logging to syslog may fail to operate correctly in some cases, so we recommend that you use --skip-syslog or -
-log-error.

For logging to syslog, messages from mysqld_safe and mysqld are written with a tag of mysqld_safe and mysqld, re-
spectively. As of MySQL 5.1.21, to specify a suffix for the tag, use --syslog-tag=tag, which modifies the tags to be
mysqld_safe-tag and mysqld-tag.

If you specify --log-error in an option file in a section that mysqld reads, mysqld_safe also will find and use the option.

If mysqld_safe is used to start mysqld and mysqld dies unexpectedly, mysqld_safe notices that it needs to restart mysqld
and writes a restarted mysqld message to the error log.

5.2.3. The General Query Log
The general query log is a general record of what mysqld is doing. The server writes information to this log when clients connect or
disconnect, and it logs each SQL statement received from clients. The general query log can be very useful when you suspect an error in
a client and want to know exactly what the client sent to mysqld.

mysqld writes statements to the query log in the order that it receives them, which might differ from the order in which they are ex-
ecuted. This logging order contrasts to the binary log, for which statements are written after they are executed but before any locks are
released. (Also, the query log contains all statements, whereas the binary log does not contain statements that only select data.)

To enable the general query log as of MySQL 5.1.6, start mysqld with the --log[=file_name] or -l [file_name] option,
and optionally use --log-output to specify the log destination (as described in Section 5.2.1, “Selecting General Query and Slow

MySQL Server Administration

427

http://forge.mysql.com/wiki/MySQL_Internals_Porting


Query Log Output Destinations”). Before 5.1.6, the general query log destination is always a file. To enable the general query log file,
use the --log[=file_name] or -l [file_name] option.

If no file_name value is given for --log or -l, the default name is host_name.log in the data directory. If a filename is given,
but not as an absolute pathname, the server writes the file in the data directory.

When --log or -l is specified, the --general-log option also may be given as of MySQL 5.1.12 to specify the initial general
query log state. With no argument or an argument of 0, the option disables the log. If omitted or given with an argument of 1, the option
enables the log. If --log or -l is not specified, --general-log has no effect.

The global general_log and general_log_file system variables provide runtime control over the general query log. Set gen-
eral_log to 0 (or OFF) to disable the log or to 1 (or ON) to enable it. Set general_log_file to specify the name of the log file.
If a log file already is open, it is closed and the new file is opened.

When the general query log is enabled, output is written to any destinations specified by the --log-output option or log_output
system variable. Note that if the destination is NONE, no output is written even if the general log is enabled. Setting the log filename has
no effect on logging if the log destination value does not contain FILE.

Server restarts and log flushing do not cause a new general query log file to be generated (although flushing closes and reopens it). On
Unix, you can rename the file and create a new one by using the following commands:

shell> mv host_name.log host_name-old.log
shell> mysqladmin flush-logs
shell> cp host_name-old.log backup-directory
shell> rm host_name-old.log

Before 5.1.3, you cannot rename a log file on Windows while the server has it open. You must stop the server and rename the file, and
then restart the server to create a new log file. As of 5.1.3, this applies only to the error log. However, a stop and restart can be avoided
by using FLUSH LOGS, which causes the server to rename the error log with an -old suffix and open a new error log.

As of MySQL 5.1.12, you can disable the general query log at runtime:

SET GLOBAL general_log = 'OFF';

With the log disabled, rename the log file externally; for example, from the command line. Then enable the log again:

SET GLOBAL general_log = 'ON';

This method works on any platform and does not require a server restart.

The session sql_log_off variable can be set to ON or OFF to disable or enable general query logging for the current connection.

5.2.4. The Binary Log
The binary log contains all statements that update data or potentially could have updated it (for example, a DELETE which matched no
rows). Statements are stored in the form of “events” that describe the modifications. The binary log also contains information about how
long each statement took that updated data.

The binary log is not used for statements such as SELECT or SHOW that do not modify data. If you want to log all statements (for ex-
ample, to identify a problem query), use the general query log. See Section 5.2.3, “The General Query Log”.

The format of the events recorded in the binary log is dependent on the binary logging format. Three format types are supported, row-
based logging, statement-based logging and mixed-base logging. The binary logging format used depends on the MySQL version. For
more information on logging formats, see Section 5.2.4.1, “Binary Logging Formats”.

The primary purpose of the binary log is to be able to update databases during a restore operation as fully as possible, because the bin-
ary log contains all updates done after a backup was made. The binary log is also used on master replication servers as a record of the
statements to be sent to slave servers. See Chapter 16, Replication.

MySQL Enterprise
The binary log can also be used to track significant DDL events. Analyzing the binary log in this way is an integ-
ral part of the MySQL Enterprise Monitor. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

Running the server with the binary log enabled makes performance about 1% slower. However, the benefits of the binary log for restore

MySQL Server Administration

428

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


operations and in allowing you to set up replication generally outweigh this minor performance decrement.

When started with the --log-bin[=base_name] option, mysqld writes a log file containing all SQL statements that update data
(both DDL and DML statements). If no base_name value is given, the default name is the value of the pid-file option (which by
default is the name of host machine) followed by -bin. If the basename is given, but not as an absolute pathname, the server writes the
file in the data directory. It is recommended that you specify a basename; see Section B.1.8.1, “Open Issues in MySQL”, for the reason.

Note

From MySQL 5.1.18 through 5.1.22, “mysql” was used when no base_name was specified. Also in these versions, a
path given as part of the --log-bin options was treated as absolute rather than relative. The previous behaviors were re-
stored in MySQL 5.1.23. (See Bug#28603 and Bug#28597.)

If you supply an extension in the log name (for example, --log-bin=base_name.extension), the extension is silently removed
and ignored.

mysqld appends a numeric extension to the binary log basename. The number increases each time the server creates a new log file,
thus creating an ordered series of files. The server creates a new binary log file each time it starts or flushes the logs. The server also
creates a new binary log file automatically when the current log's size reaches max_binlog_size. A binary log file may become lar-
ger than max_binlog_size if you are using large transactions because a transaction is written to the file in one piece, never split
between files.

To keep track of which binary log files have been used, mysqld also creates a binary log index file that contains the names of all used
binary log files. By default this has the same basename as the binary log file, with the extension '.index'. You can change the name
of the binary log index file with the --log-bin-index[=file_name] option. You should not manually edit this file while
mysqld is running; doing so would confuse mysqld.

Replication slave servers by default do not write to their own binary log any statements that are received from the replication master. To
cause these statements to be logged, start the slave with the --log-slave-updates option.

Writes to the binary log file and binary log index file are handled in the same way as writes to MyISAM tables. See Section B.1.4.3,
“How MySQL Handles a Full Disk”.

You can delete all binary log files with the RESET MASTER statement, or a subset of them with PURGE MASTER LOGS. See Sec-
tion 12.5.5.5, “RESET Syntax”, and Section 12.6.1.1, “PURGE MASTER LOGS Syntax”.

The binary log format has some known limitations that can affect recovery from backups. See Section 16.3.1, “Replication Features and
Issues”.

Binary logging for stored routines and triggers is done as described in Section 20.4, “Binary Logging of Stored Routines and Triggers”.

You can use the following options to mysqld to affect what is logged to the binary log. See also the discussion that follows this option
list.

If you are using replication, the options described here affect which statements are sent by a master server to its slaves. There are also
options for slave servers that control which statements received from the master to execute or ignore. For details, see Section 16.1.3,
“Replication Options and Variables”.

• --binlog-do-db=db_name

Tell the server to restrict binary logging to updates for which the default database is db_name (that is, the database selected by
USE). All other databases that are not explicitly mentioned are ignored. If you use this option, you should ensure that you do updates
only in the default database.

There is an exception to this for CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements. The server uses
the database named in the statement (not the default database) to decide whether it should log the statement.

An example of what does not work as you might expect: If the server is started with binlog-do-db=sales, and you run USE
prices; UPDATE sales.january SET amount=amount+1000;, this statement is not written into the binary log.

To log multiple databases, use multiple options, specifying the option once for each database.

• --binlog-ignore-db=db_name

Tell the server to suppress binary logging of updates for which the default database is db_name (that is, the database selected by

MySQL Server Administration

429

http://bugs.mysql.com/28603
http://bugs.mysql.com/28597


USE). If you use this option, you should ensure that you do updates only in the default database.

As with the --binlog-do-db option, there is an exception for the CREATE DATABASE, ALTER DATABASE, and DROP
DATABASE statements. The server uses the database named in the statement (not the default database) to decide whether it should
log the statement.

An example of what does not work as you might expect: If the server is started with binlog-ignore-db=sales, and you run
USE prices; UPDATE sales.january SET amount=amount+1000;, this statement is written into the binary log.

To ignore multiple databases, use multiple options, specifying the option once for each database.

The server evaluates the options for logging or ignoring updates to the binary log according to the following rules. As described previ-
ously, there is an exception for the CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements. In those cases, the
database being created, altered, or dropped replaces the default database in the following rules:

1. Are there --binlog-do-db or --binlog-ignore-db rules?

• No: Write the statement to the binary log and exit.

• Yes: Go to the next step.

2. There are some rules (--binlog-do-db, --binlog-ignore-db, or both). Is there a default database (has any database been
selected by USE?)?

• No: Do not write the statement, and exit.

• Yes: Go to the next step.

3. There is a default database. Are there some --binlog-do-db rules?

• Yes: Does the default database match any of the --binlog-do-db rules?

• Yes: Write the statement and exit.

• No: Do not write the statement, and exit.

• No: Go to the next step.

4. There are some --binlog-ignore-db rules. Does the default database match any of the --binlog-ignore-db rules?

• Yes: Do not write the statement, and exit.

• No: Write the query and exit.

For example, a slave running with only --binlog-do-db=sales does not write to the binary log any statement for which the de-
fault database is different from sales (in other words, --binlog-do-db can sometimes mean “ignore other databases”).

If you are using replication, you should not delete old binary log files until you are sure that no slave still needs to use them. For ex-
ample, if your slaves never run more than three days behind, once a day you can execute mysqladmin flush-logs on the master
and then remove any logs that are more than three days old. You can remove the files manually, but it is preferable to use PURGE
MASTER LOGS, which also safely updates the binary log index file for you (and which can take a date argument). See Section 12.6.1.1,
“PURGE MASTER LOGS Syntax”.

A client that has the SUPER privilege can disable binary logging of its own statements by using a SET SQL_LOG_BIN=0 statement.
See Section 12.5.3, “SET Syntax”.

You can display the contents of binary log files with the mysqlbinlog utility. This can be useful when you want to reprocess state-
ments in the log. For example, you can update a MySQL server from the binary log as follows:

shell> mysqlbinlog log_file | mysql -h server_name

See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”, for more information on the mysqlbinlog utility
and how to use it. mysqlbinlog also can be used with relay log files because they are written using the same format as binary log

MySQL Server Administration

430



files.

Binary logging is done immediately after a statement completes but before any locks are released or any commit is done. This ensures
that the log is logged in execution order.

Updates to non-transactional tables are stored in the binary log immediately after execution. Within an uncommitted transaction, all up-
dates (UPDATE, DELETE, or INSERT) that change transactional tables such as InnoDB tables are cached until a COMMIT statement is
received by the server. At that point, mysqld writes the entire transaction to the binary log before the COMMIT is executed. When the
thread that handles the transaction starts, it allocates a buffer of binlog_cache_size to buffer statements. If a statement is bigger
than this, the thread opens a temporary file to store the transaction. The temporary file is deleted when the thread ends.

Modifications to non-transactional tables cannot be rolled back. If a transaction that is rolled back includes modifications to non-
transactional tables, the entire transaction is logged with a ROLLBACK statement at the end to ensure that the modifications to those
tables are replicated.

The Binlog_cache_use status variable shows the number of transactions that used this buffer (and possibly a temporary file) for
storing statements. The Binlog_cache_disk_use status variable shows how many of those transactions actually had to use a tem-
porary file. These two variables can be used for tuning binlog_cache_size to a large enough value that avoids the use of tempor-
ary files.

The max_binlog_cache_size system variable (default 4GB, which is also the maximum) can be used to restrict the total size used
to cache a multiple-statement transaction. If a transaction is larger than this many bytes, it fails and rolls back. The minimum value is
4096.

If you are using the binary log and row based logging, concurrent inserts are converted to normal inserts for CREATE ... SELECT or
INSERT ... SELECT statement. This is done to ensure that you can re-create an exact copy of your tables by applying the log dur-
ing a backup operation. If you are using statement based logging then the original statement is written to the log.

Note that the binary log format is different in MySQL 5.1 from previous versions of MySQL, due to enhancements in replication. See
Section 16.3.2, “Replication Compatibility Between MySQL Versions”.

By default, the binary log is not synchronized to disk at each write. So if the operating system or machine (not only the MySQL server)
crashes, there is a chance that the last statements of the binary log are lost. To prevent this, you can make the binary log be synchronized
to disk after every N writes to the binary log, with the sync_binlog system variable. See Section 5.1.3, “System Variables”. 1 is the
safest value for sync_binlog, but also the slowest. Even with sync_binlog set to 1, there is still the chance of an inconsistency
between the table content and binary log content in case of a crash. For example, if you are using InnoDB tables and the MySQL server
processes a COMMIT statement, it writes the whole transaction to the binary log and then commits this transaction into InnoDB. If the
server crashes between those two operations, the transaction is rolled back by InnoDB at restart but still exists in the binary log. To re-
solve this, you should set --innodb_support_xa to 1. Although this option is related to the support of XA transactions in InnoDB,
it also ensures that the binary log and InnoDB data files are synchronized.

For this option to provide a greater degree of safety, the MySQL server should also be configured to synchronize the binary log and the
InnoDB logs to disk at every transaction. The InnoDB logs are synchronized by default, and sync_binlog=1 can be used to syn-
chronize the binary log. The effect of this option is that at restart after a crash, after doing a rollback of transactions, the MySQL server
cuts rolled back InnoDB transactions from the binary log. This ensures that the binary log reflects the exact data of InnoDB tables,
and so, that the slave remains in synchrony with the master (not receiving a statement which has been rolled back).

If the MySQL server discovers at crash recovery that the binary log is shorter than it should have been, it lacks at least one successfully
committed InnoDB transaction. This should not happen if sync_binlog=1 and the disk/filesystem do an actual sync when they are
requested to (some don't), so the server prints an error message The binary log <name> is shorter than its expec-
ted size. In this case, this binary log is not correct and replication should be restarted from a fresh snapshot of the master's data.

For MySQL 5.1.20 and later (and MySQL 5.0.46 and later for backwards compatibility), the following session variables are written to
the binary log and honored by the replication slave when parsing the binary log:

• SQL_MODE

• FOREIGN_KEY_CHECKS

• UNIQUE_CHECKS

• CHARACTER_SET_CLIENT

• COLLATION_CONNECTION

• COLLATION_DATABASE

MySQL Server Administration

431



• COLLATION_SERVER

• SQL_AUTO_IS_NULL

5.2.4.1. Binary Logging Formats

A number of different logging formats are used to record information in the binary log. The exact format employed depends on the ver-
sion of MySQL being used. There are three logging formats:

• Replication capabilities in MySQL originally were based on propagation of SQL statements from master to slave. This is called
statement-based logging. You can cause this format to be used by starting the server with --binlog-format=STATEMENT.

• In row-based logging, the master writes events to the binary log that indicate how individual table rows are affected. You can cause
the server to use row-based logging by starting it with --binlog-format=ROW.

Support for row-based logging was added in MySQL 5.1.5.

• A third option is also available: mixed logging. With mixed logging, statement-based logging is used by default, but the logging
mode switches automatically to row-based in certain cases as described below. You can cause MySQL to use mixed logging expli-
citly by starting mysqld with the option --binlog-format=MIXED.

Mixed logging is available beginning with MySQL 5.1.8. Beginning with MySQL 5.1.12, it is the default logging mode.

Starting with MySQL 5.1.20, the logging format can also be set or limited by the storage engine being used. This helps to eliminate
issues when logging, and more specifically replicating, certain statements between a master and slave which are using different stor-
age engines.

5.2.4.2. Setting The Binary Log Format

The default binary logging format depends on the version of MySQL you are using:

• For MySQL 5.1.11 and earlier, statement-based logging is used by default.

• For MySQL 5.1.12 and later, mixed logging is used by default.

You can force the replication format by starting the MySQL server with --binlog-format=type. When set, all replication slaves
connecting to the server will read the events according to this setting. The supported values for type are:

• ROW causes replication to be row-based.

• STATEMENT causes replication to be statement-based. This is the default for MySQL 5.1.11 and earlier.

• MIXED causes replication to use mixed format. This is the default for MySQL 5.1.12 and later.

The logging format also can be switched at runtime. To specify the format globally for all clients, set the global value of the bin-
log_format system variable. (To change a global variable you need the SUPER privilege.)

To switch to statement-based format, use either of these statements:

mysql> SET GLOBAL binlog_format = 'STATEMENT';
mysql> SET GLOBAL binlog_format = 1;

To switch to row-based format, use either of these statements:

mysql> SET GLOBAL binlog_format = 'ROW';
mysql> SET GLOBAL binlog_format = 2;

To switch to mixed format, use either of these statements:

MySQL Server Administration

432



mysql> SET GLOBAL binlog_format = 'MIXED';
mysql> SET GLOBAL binlog_format = 3;

An individual client can control the logging format for its own statements by setting the session value of binlog_format. For ex-
ample:

mysql> SET SESSION binlog_format = 'STATEMENT';
mysql> SET SESSION binlog_format = 'ROW';
mysql> SET SESSION binlog_format = 'MIXED';

In addition to switching the logging format manually, a slave server may switch the format automatically. This happens when the server
is running in either STATEMENT or MIXED format and encounters a row in the binary log that is written in ROW logging format. In that
case, the slave switches to row-based replication temporarily for that event, and switches back to the previous format afterwards.

There are two reasons why you might want to set replication logging on a per-connection basis:

• A thread that makes many small changes to the database might want to use row-based logging. A thread that performs updates that
match many rows in the WHERE clause might want to use statement-based logging because it will be more efficient to log a few
statements than many rows.

• Some statements require a lot of execution time on the master, but result in just a few rows being modified. It might therefore be be-
neficial to replicate them using row-based logging.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger.

• If NDB is enabled.

• If the session is currently in row-based replication mode and has open temporary tables.

Trying to switch the format in any of these cases results in an error.

Switching the replication format at runtime is not recommended when any temporary tables exist, because temporary tables are logged
only when using statement-based replication, whereas with row-based replication they are not logged. With mixed replication, tempor-
ary tables are usually logged; exceptions happen with user-defined functions (UDFs) and with the UUID() function.

With the binlog format set to ROW, many changes are written to the binary log using the row-based format. Some changes, however, still
use the statement-based format. Examples include all DDL (data definition language) statements such as CREATE TABLE, ALTER
TABLE, or DROP TABLE.

The --binlog-row-event-max-size option is available for servers that are capable of row-based replication. Rows are stored
into the binary log in chunks having a size in bytes not exceeding the value of this option. The value must be a multiple of 256. The de-
fault value is 1024.

Warning

When using statement-based logging in a replication scenario, it is possible for the data on the master and slave to become
different if a statement is designed in such a way that the data modification is non-deterministic; that is, it is left to the will
of the query optimizer. In general, this is not a good practice even outside of replication. For a detailed explanation of this
issue, see Section B.1.8.1, “Open Issues in MySQL”.

5.2.4.3. Mixed Binary Logging Format

When running in MIXED mode, automatic switching from statement-based to row-based replication takes place under the following
conditions:

• When a DML statement updates an NDB table

• When a function contains UUID()

• When 2 or more tables with AUTO_INCREMENT columns are updated

MySQL Server Administration

433



• When any INSERT DELAYED is executed

• When the body of a view requires row-based replication, the statement creating the view also uses it — for example, this occurs
when the statement creating a view uses the UUID() function

• When a call to a UDF is involved

• If a statement is logged by row and the client that executed the statement has any temporary tables, then logging by row is used for
all subsequent statements (except for those accessing temporary tables) until all temporary tables in use by that client are dropped

This is true whether or not any temporary tables are actually logged

Temporary tables cannot be logged using the row-based format; thus, once row-based logging is used, all subsequent statements us-
ing that table are unsafe, and we approximate this condition by treating all statements made by that client as unsafe until the client
no longer holds any temporary tables

• Beginning with MySQL 5.1.23:

• When FOUND_ROWS() or ROW_COUNT() is used (Bug#12092, Bug#30244)

• When USER(), CURRENT_USER(), or CURRENT_USER is used (Bug#28086)

• Beginning with MySQL MySQL 5.1.24, when a statement refers to one or more system variables. (Bug#31168)

Note

Starting with MySQL 5.1.20 a warning is generated if you try to log execute a statement in statement-logging mode that
should be logged in row-logging mode. The warning is shown both in the client (in the output of SHOW WARNINGS) and
through the mysqld error log. A warning is added to the SHOW WARNINGS table each time a statement is executed.
However, only the first statement that generated the warning for each client session is logged to the mysqld error log to
prevent flooding the error log.

Starting with MySQL 5.1.20, in addition to the decisions above, individual engines can also determine the logging format used when in-
formation in a table is updated. The following table lists the logging formats supported by each storage engine:

Storage Engine Row Logging Supported Statement Logging Supported

ARCHIVE Yes Yes

BLACKHOLE No Yes

CSV Yes Yes

EXAMPLE Yes No

FEDERATED Yes Yes

HEAP Yes Yes

InnoDB Yes Yes

MyISAM Yes Yes

MERGE Yes Yes

NDB Yes No

A given storage engine can support either or both logging formats; the logging capabilities of an individual engine can be further
defined as follows:

• If an engine supports row-based logging, then the engine is said to be row-logging capable.

• If an engine supports statement-based logging, then the engine is said to be statement-logging capable.

When determining the logging mode to be used, the capabilities of all the tables affected by the event are combined. The set of affected
tables is then marked according to these rules:

MySQL Server Administration

434

http://bugs.mysql.com/12092
http://bugs.mysql.com/30244
http://bugs.mysql.com/28086
http://bugs.mysql.com/31168


• A set of tables is defined as row logging restricted if the tables are row logging capable but not statement logging capable.

• A set of tables is defined as statement logging restricted if the tables are statement logging capable but not row logging capable.

Once the determination of the possible logging formats required by the statement is complete it is compared to the current BIN-
LOG_FORMAT setting. The following table is used to decide how the information is recorded in the binary log or, if appropriate, wheth-
er an error is raised. In the table, a safe operation is defined as one that is deterministic. A number of rules decide whether the statement
is deterministic or not, as shown in the following table (where RLC stands for “row-logging capable” and SLC stands for
“statement-logging capable”):

Condition Action

Safe/unsafe BINLOG_FORMAT RLC SLC Error/Warning Logged as

Safe STATEMENT N N Error: not loggable

Safe STATEMENT N Y STATEMENT

Safe STATEMENT Y N Error: not loggable

Safe STATEMENT Y Y STATEMENT

Safe MIXED N N Error: not loggable

Safe MIXED N Y STATEMENT

Safe MIXED Y N ROW

Safe MIXED Y Y STATEMENT

Safe ROW N N Error: not loggable

Safe ROW N Y Error: not loggable

Safe ROW Y N ROW

Safe ROW Y Y ROW

Unsafe STATEMENT N N Error: not loggable

Unsafe STATEMENT N Y Warning: unsafe STATEMENT

Unsafe STATEMENT Y N Error: not loggable

Unsafe STATEMENT Y Y Warning: unsafe STATEMENT

Unsafe MIXED N N Error: not loggable

Unsafe MIXED N Y Error: not loggable

Unsafe MIXED Y N ROW

Unsafe MIXED Y Y ROW

Unsafe ROW N N Error: not loggable

Unsafe ROW N Y Error: not loggable

Unsafe ROW Y N ROW

Unsafe ROW Y Y ROW

When a warning is produced by the determination, a standard MySQL warning is produced (and is available using SHOW WARNINGS).
The information is also written to the mysqld error log. Only one error for each error instance per client connection is logged. The log
message will include the SQL statement that was attempted.

5.2.4.4. Logging Format for Changes to mysql Database Tables

The contents of the grant tables in the mysql database can be modified directly (for example, with INSERT or DELETE) or indirectly
(for example, with GRANT or CREATE USER). As of MySQL 5.1.17, statements that affect mysql database tables are written to the
binary log using the following rules:

• Data manipulation statements that change data in mysql database tables directly are logged according to the setting of the bin-
log_format system variable. This pertains to statements such as INSERT, UPDATE, DELETE, REPLACE, DO, LOAD DATA
INFILE, SELECT, and TRUNCATE.

MySQL Server Administration

435



• Statements that change the mysql database indirectly are logged as statements regardless of the value of binlog_format. This
pertains to statements such as GRANT, REVOKE, SET PASSWORD, RENAME USER, CREATE (all forms except CREATE TABLE
... SELECT), ALTER (all forms), and DROP (all forms).

CREATE TABLE ... SELECT is a combination of data definition and data manipulation. The CREATE TABLE part is logged using
statement format and the SELECT part is logged according to the value of binlog_format.

5.2.5. The Slow Query Log
The slow query log consists of all SQL statements that took more than long_query_time seconds to execute and (as of MySQL
5.1.21) required fewer than min_examined_row_limit rows to be examined. The time to acquire the initial table locks is not
counted as execution time. mysqld writes a statement to the slow query log after it has been executed and after all locks have been re-
leased, so log order might be different from execution order. The minimum and default values of long_query_time are 1 and 10,
respectively. Prior to MySQL 5.1.21, the minimum value is 1, and the value for this variable must be an integer. Beginning with
MySQL 5.1.21, the minimum is 0, and a resolution of microseconds is supported when logging to a file. However, the microseconds
part is ignored and only integer values are written when logging to tables.

To enable the slow query log as of MySQL 5.1.6, start mysqld with the --log-slow-queries[=file_name] option, and op-
tionally use --log-output to specify the log destination (as described in Section 5.2.1, “Selecting General Query and Slow Query
Log Output Destinations”). Before 5.1.6, the slow query log destination is always a file. To enable the slow query log file, use the -
-log-slow-queries[=file_name] option.

If no file_name value is given for --log-slow-queries, the default name is host_name-slow.log. If a filename is given,
but not as an absolute pathname, the server writes the file in the data directory.

When --log-slow-queries is specified, the --slow-query-log option also may be given as of MySQL 5.1.12 to specify the
initial slow query log state. With no argument or an argument of 0, the option disables the log. If omitted or given with an argument of
1, the option enables the log. If --log--slow-queries is not given, --slow-query-log has no effect.

The global slow_query_log and slow_query_log_file system variables provide runtime control over the slow query log. Set
slow_query_log to 0 (or OFF) to disable the log or to 1 (or ON) to enable it. Set general_log_file to specify the name of the
log file. If a log file already is open, it is closed and the new file is opened.

When the slow query log is enabled, output is written to any destinations specified by the --log-output option or log_output
system variable. Note that if the destination is NONE, no output is written even if the slow query log is enabled. Setting the log filename
has no effect on logging if the log destination value does not contain FILE.

The slow query log can be used to find queries that take a long time to execute and are therefore candidates for optimization. However,
examining a long slow query log can become a difficult task. To make this easier, you can process the slow query log using the
mysqldumpslow command to summarize the queries that appear in the log. Use mysqldumpslow --help to see the options that
this command supports.

In MySQL 5.1, queries that do not use indexes are logged in the slow query log if the --log-queries-not-using-indexes op-
tion is specified. See Section 5.1.2, “Command Options”.

MySQL Enterprise
Excessive table scans are indicative of missing or poorly optimized indexes. Using an advisor specifically de-
signed for the task, the MySQL Enterprise Monitor can identify such problems and offer advice on resolution.
For more information see http://www.mysql.com/products/enterprise/advisors.html.

In MySQL 5.1, the --log-slow-admin-statements server option enables you to request logging of slow administrative state-
ments such as OPTIMIZE TABLE, ANALYZE TABLE, and ALTER TABLE to the slow query log.

Queries handled by the query cache are not added to the slow query log, nor are queries that would not benefit from the presence of an
index because the table has zero rows or one row.

5.2.6. Server Log Maintenance
MySQL Server can create a number of different log files that make it easy to see what is going on. See Section 5.2, “MySQL Server
Logs”. However, you must clean up these files regularly to ensure that the logs do not take up too much disk space.

When using MySQL with logging enabled, you may want to back up and remove old log files from time to time and tell MySQL to start
logging to new files. See Section 6.1, “Database Backups”.

MySQL Server Administration

436

http://www.mysql.com/products/enterprise/advisors.html


On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for this. If you installed MySQL from an RPM distri-
bution, this script should have been installed automatically. You should be careful with this script if you are using the binary log for rep-
lication. You should not remove binary logs until you are certain that their contents have been processed by all slaves.

On other systems, you must install a short script yourself that you start from cron (or its equivalent) for handling log files.

For the binary log, you can set the expire_logs_days system variable to expire binary log files automatically after a given number
of days (see Section 5.1.3, “System Variables”). If you are using replication, you should set the variable no lower than the maximum
number of days your slaves might lag behind the master.

You can force MySQL to start using new log files by issuing a FLUSH LOGS statement or executing mysqladmin flush-logs or
mysqladmin refresh. See Section 12.5.5.2, “FLUSH Syntax”, and Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”.

A log flushing operation does the following:

• If general query logging (--log) or slow query logging (--log-slow-queries) to a log file is enabled, the server closes and
reopens the general query log file or slow query log file.

• If binary logging (--log-bin) is used, the server closes the current log file and opens a new log file with the next sequence num-
ber.

• If the server was given an error log filename with the --log-error option, it renames the error log with the suffix -old and cre-
ates a new empty error log file.

The server creates a new binary log file when you flush the logs. However, it just closes and reopens the general and slow query log
files. To cause new files to be created on Unix, rename the current logs before flushing them. At flush time, the server will open new
logs with the original names. For example, if the general and slow query logs are named mysql.log and mysql-slow.log, you
can use a series of commands like this:

shell> cd mysql-data-directory
shell> mv mysql.log mysql.old
shell> mv mysql-slow.log mysql-slow.old
shell> mysqladmin flush-logs

At this point, you can make a backup of mysql.old and mysql-slow.log and then remove them from disk.

Before 5.1.3, you cannot rename a log file on Windows while the server has it open. You must stop the server and rename the file, and
then restart the server to create a new log file. As of 5.1.3, this applies only to the error log. However, a stop and restart can be avoided
by using FLUSH LOGS, which causes the server to rename the error log with an -old suffix and open a new error log.

As of MySQL 5.1.2, you can disable the general query log or slow query log at runtime:

SET GLOBAL general_log = 'OFF';
SET GLOBAL slow_query_log = 'OFF';

With the logs disabled, rename the log files externally; for example, from the command line. Then enable the logs again:

SET GLOBAL general_log = 'ON';
SET GLOBAL slow_query_log = 'ON';

This method works on any platform and does not require a server restart.

5.3. General Security Issues
This section describes some general security issues to be aware of and what you can do to make your MySQL installation more secure
against attack or misuse. For information specifically about the access control system that MySQL uses for setting up user accounts and
checking database access, see Section 5.4, “The MySQL Access Privilege System”.

For answers to some questions that are often asked about MySQL Server security issues, see Section A.9, “MySQL 5.1 FAQ — Secur-
ity”.

5.3.1. General Security Guidelines

MySQL Server Administration

437



Anyone using MySQL on a computer connected to the Internet should read this section to avoid the most common security mistakes.

In discussing security, we emphasize the necessity of fully protecting the entire server host (not just the MySQL server) against all types
of applicable attacks: eavesdropping, altering, playback, and denial of service. We do not cover all aspects of availability and fault toler-
ance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other operations that users can attempt to
perform. There is also support for SSL-encrypted connections between MySQL clients and servers. Many of the concepts discussed
here are not specific to MySQL at all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines whenever possible:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the mysql database! This is critical.

• Learn the MySQL access privilege system. The GRANT and REVOKE statements are used for controlling access to MySQL. Do not
grant more privileges than necessary. Never grant privileges to all hosts.

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being asked for a password, anyone can
connect to your MySQL server as the MySQL root user with full privileges! Review the MySQL installation instructions, pay-
ing particular attention to the information about setting a root password. See Section 2.10.3, “Securing the Initial MySQL Ac-
counts”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the REVOKE statement to remove
those privileges that are not necessary.

• Do not store any plain-text passwords in your database. If your computer becomes compromised, the intruder can take the full list of
passwords and use them. Instead, use MD5(), SHA1(), or some other one-way hashing function and store the hash value.

• Do not choose passwords from dictionaries. Special programs exist to break passwords. Even passwords like “xfish98” are very bad.
Much better is “duag98” which contains the same word “fish” but typed one key to the left on a standard QWERTY keyboard. An-
other method is to use a password that is taken from the first characters of each word in a sentence (for example, “Mary had a little
lamb” results in a password of “Mhall”). The password is easy to remember and type, but difficult to guess for someone who does
not know the sentence.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put MySQL behind the firewall or
in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306 by default. This port should not be
accessible from untrusted hosts. Another simple way to check whether or not your MySQL port is open is to try the following
command from some remote machine, where server_host is the hostname or IP number of the host on which your MySQL
server runs:

shell> telnet server_host 3306

If you get a connection and some garbage characters, the port is open, and should be closed on your firewall or router, unless
you really have a good reason to keep it open. If telnet hangs or the connection is refused, the port is blocked, which is how
you want it to be.

• Do not trust any data entered by users of your applications. They can try to trick your code by entering special or escaped character
sequences in Web forms, URLs, or whatever application you have built. Be sure that your application remains secure if a user enters
something like “; DROP DATABASE mysql;”. This is an extreme example, but large security leaks and data loss might occur as
a result of hackers using similar techniques, if you do not prepare for them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If an application generates a
query such as SELECT * FROM table WHERE ID=234 when a user enters the value 234, the user can enter the value 234
OR 1=1 to cause the application to generate the query SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the
server retrieves every row in the table. This exposes every row and causes excessive server load. The simplest way to protect from
this type of attack is to use single quotes around the numeric constants: SELECT * FROM table WHERE ID='234'. If the
user enters extra information, it all becomes part of the string. In a numeric context, MySQL automatically converts this string to a
number and strips any trailing non-numeric characters from it.

MySQL Server Administration

438



Sometimes people think that if a database contains only publicly available data, it need not be protected. This is incorrect. Even if it
is allowable to display any row in the database, you should still protect against denial of service attacks (for example, those that are
based on the technique in the preceding paragraph that causes the server to waste resources). Otherwise, your server becomes unre-
sponsive to legitimate users.

Checklist:

• Try to enter single and double quote marks (“'” and “"”) in all of your Web forms. If you get any kind of MySQL error, invest-
igate the problem right away.

• Try to modify dynamic URLs by adding %22 (“"”), %23 (“#”), and %27 (“'”) to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters shown in the previous ex-
amples. Your application should be safe against these and similar attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your application should remove them
before passing them to MySQL or else generate an error. Passing unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a username different from the one you use for administrative purposes. Do
not give your applications any access privileges they do not need.

• Many application programming interfaces provide a means of escaping special characters in data values. Properly used, this pre-
vents application users from entering values that cause the application to generate statements that have a different effect than you in-
tend:

• MySQL C API: Use the mysql_real_escape_string() API call.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use the mysql_real_escape_string() function (available as of PHP 4.3.0, prior to that PHP version use
mysql_escape_string(), and prior to PHP 4.0.3, use addslashes() ). Note that only
mysql_real_escape_string() is character set-aware; the other functions can be “bypassed” when using (invalid) multi-
byte character sets. In PHP 5, you can use the mysqli extension, which supports the improved MySQL authentication protocol
and passwords, as well as prepared statements with placeholders.

• Perl DBI: Use placeholders or the quote() method.

• Ruby DBI: Use placeholders or the quote() method.

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone who has the time and ability to
intercept it and use it for their own purposes. Instead, use an encrypted protocol such as SSL or SSH. MySQL supports internal SSL
connections as of version 4.0. Another technique is to use SSH port-forwarding to create an encrypted (and compressed) tunnel for
the communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL data streams are unencrypted by
issuing a command like the following:

shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

This works under Linux and should work with small modifications under other systems.

Warning

If you do not see plaintext data, this does not always mean that the information actually is encrypted. If you need high se-
curity, you should consult with a security expert.

5.3.2. Making MySQL Secure Against Attackers

MySQL Server Administration

439



When you connect to a MySQL server, you should use a password. The password is not transmitted in clear text over the connection.
Password handling during the client connection sequence was upgraded in MySQL 4.1.1 to be very secure. If you are still using pre-
4.1.1-style passwords, the encryption algorithm is not as strong as the newer algorithm. With some effort, a clever attacker who can
sniff the traffic between the client and the server can crack the password. (See Section 5.4.9, “Password Hashing as of MySQL 4.1”, for
a discussion of the different password handling methods.)

MySQL Enterprise
The MySQL Enterprise Monitor enforces best practices for maximizing the security of your servers. For more
information see http://www.mysql.com/products/enterprise/advisors.html.

All other information is transferred as text, and can be read by anyone who is able to watch the connection. If the connection between
the client and the server goes through an untrusted network, and you are concerned about this, you can use the compressed protocol to
make traffic much more difficult to decipher. You can also use MySQL's internal SSL support to make the connection even more se-
cure. See Section 5.5.7, “Using Secure Connections”. Alternatively, use SSH to get an encrypted TCP/IP connection between a MySQL
server and a MySQL client. You can find an Open Source SSH client at http://www.openssh.org/, and a commercial SSH client at ht-
tp://www.ssh.com/.

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know the identity of the person running it.
It is common for client/server applications that the user can specify any username to the client program. For example, anyone can
use the mysql program to connect as any other person simply by invoking it as mysql -u other_user db_name if oth-
er_user has no password. If all accounts have a password, connecting using another user's account becomes much more difficult.

For a discussion of methods for setting passwords, see Section 5.5.5, “Assigning Account Passwords”.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any user with the FILE privilege is able
to cause the server to create files as root (for example, ~root/.bashrc). To prevent this, mysqld refuses to run as root un-
less that is specified explicitly using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a separate Unix account named mysql
to make everything even more secure. Use this account only for administering MySQL. To start mysqld as a different Unix user,
add a user option that specifies the username in the [mysqld] group of the my.cnf option file where you specify server op-
tions. For example:

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using mysqld_safe or mysql.server.
For more details, see Section 5.3.5, “How to Run MySQL as a Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the root username in the user table.
Usernames for MySQL accounts have nothing to do with usernames for Unix accounts.

• Do not allow the use of symlinks to tables. (This capability can be disabled with the --skip-symbolic-links option.) This is
especially important if you run mysqld as root, because anyone that has write access to the server's data directory then could de-
lete any file in the system! See Section 7.6.1.2, “Using Symbolic Links for Tables on Unix”.

• Make sure that the only Unix user with read or write privileges in the database directories is the user that mysqld runs as.

• Do not grant the PROCESS or SUPER privilege to non-administrative users. The output of mysqladmin processlist and
SHOW PROCESSLIST shows the text of any statements currently being executed, so any user who is allowed to see the server pro-
cess list might be able to see statements issued by other users such as UPDATE user SET pass-
word=PASSWORD('not_secure').

mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL root user can log in and check
server activity even if all normal connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by changing the value of system vari-
ables, and control replication servers.

• Do not grant the FILE privilege to non-administrative users. Any user that has this privilege can write a file anywhere in the filesys-
tem with the privileges of the mysqld daemon. To make this a bit safer, files generated with SELECT ... INTO OUTFILE do
not overwrite existing files and are writable by everyone.

MySQL Server Administration

440

http://www.mysql.com/products/enterprise/advisors.html
http://www.openssh.org/
http://www.ssh.com/
http://www.ssh.com/


The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix user that the server runs as.
With this privilege, you can read any file into a database table. This could be abused, for example, by using LOAD DATA to load /
etc/passwd into a table, which then can be displayed with SELECT.

• If you do not trust your DNS, you should use IP numbers rather than hostnames in the grant tables. In any case, you should be very
careful about creating grant table entries using hostname values that contain wildcards.

• If you want to restrict the number of connections allowed to a single account, you can do so by setting the
max_user_connections variable in mysqld. The GRANT statement also supports resource control options for limiting the ex-
tent of server use allowed to an account. See Section 12.5.1.3, “GRANT Syntax”.

5.3.3. Security-Related mysqld Options
The following mysqld options affect security:

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

allow-suspicious-udfs Yes Yes

automatic_sp_privileges Yes Global Yes

chroot Yes Yes

des-key-file Yes Yes

local_infile Yes Global Yes

local-infile Yes Yes

old-passwords Yes Yes Both Yes

- Variable: old_passwords Yes Both Yes

safe-user-create Yes Yes

secure-auth Yes Yes Global Yes

- Variable: secure_auth Yes Global Yes

secure-file-priv Yes Yes Global No

- Variable: secure_file_priv Yes Global No

skip-grant-tables Yes Yes

skip-name-resolve Yes Yes

skip-networking Yes Yes Global No

- Variable: skip_networking Yes Global No

skip-show-database Yes Yes Global No

- Variable: skip_show_database Yes Global No

• --allow-suspicious-udfs

This option controls whether user-defined functions that have only an xxx symbol for the main function can be loaded. By default,
the option is off and only UDFs that have at least one auxiliary symbol can be loaded; this prevents attempts at loading functions
from shared object files other than those containing legitimate UDFs. See Section 29.3.4.6, “User-Defined Function Security Pre-
cautions”.

• --local-infile[={0|1}]

If you start the server with --local-infile=0, clients cannot use LOCAL in LOAD DATA statements. See Section 5.3.4,
“Security Issues with LOAD DATA LOCAL”.

• --old-passwords

Force the server to generate short (pre-4.1) password hashes for new passwords. This is useful for compatibility when the server
must support older client programs. See Section 5.4.9, “Password Hashing as of MySQL 4.1”.

MySQL Server Administration

441



MySQL Enterprise
The MySQL Enterprise Monitor offers advice on the security implications of using this option. For subscription
information see http://www.mysql.com/products/enterprise/advisors.html.

• --safe-show-database (OBSOLETE)

In previous versions of MySQL, this option caused the SHOW DATABASES statement to display the names of only those databases
for which the user had some kind of privilege. In MySQL 5.1, this option is no longer available as this is now the default behavior,
and there is a SHOW DATABASES privilege that can be used to control access to database names on a per-account basis. See Sec-
tion 12.5.1.3, “GRANT Syntax”.

• --safe-user-create

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement unless the user has the INSERT
privilege for the mysql.user table or any column in the table. If you want a user to have the ability to create new users that have
those privileges that the user has the right to grant, you should grant the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT statement to give privileges to
other users.

• --secure-auth

Disallow authentication for accounts that have old (pre-4.1) passwords.

The mysql client also has a --secure-auth option, which prevents connections to a server if the server requires a password in
old format for the client account.

• --secure-file-priv=path

This option limits the effect of the LOAD_FILE() function and the LOAD DATA and SELECT ... INTO OUTFILE statements
to work only with files in the specified directory.

This option was added in MySQL 5.1.17.

• --skip-grant-tables

This option causes the server not to use the privilege system at all. This gives anyone with access to the server unrestricted access to
all databases. You can cause a running server to start using the grant tables again by executing mysqladmin flush-
privileges or mysqladmin reload command from a system shell, or by issuing a MySQL FLUSH PRIVILEGES state-
ment. This option also suppresses loading of plugins and user-defined functions (UDFs).

• --skip-merge

Disable the MERGE storage engine. This option was added in MySQL 5.1.12. It can be used if the following behavior is undesirable:
If a user has access to MyISAM table t, that user can create a MERGE table m that accesses t. However, if the user's privileges on t
are subsequently revoked, the user can continue to access t by doing so through m.

• --skip-name-resolve

Hostnames are not resolved. All Host column values in the grant tables must be IP numbers or localhost.

• --skip-networking

Do not allow TCP/IP connections over the network. All connections to mysqld must be made via Unix socket files.

• --skip-show-database

With this option, the SHOW DATABASES statement is allowed only to users who have the SHOW DATABASES privilege, and the
statement displays all database names. Without this option, SHOW DATABASES is allowed to all users, but displays each database
name only if the user has the SHOW DATABASES privilege or some privilege for the database. Note that any global privilege is a
privilege for the database.

• --ssl*

MySQL Server Administration

442

http://www.mysql.com/products/enterprise/advisors.html


Options that begin with --ssl specify whether to allow clients to connect via SSL and indicate where to find SSL keys and certi-
ficates. See Section 5.5.7.3, “SSL Command Options”.

5.3.4. Security Issues with LOAD DATA LOCAL

The LOAD DATA statement can load a file that is located on the server host, or it can load a file that is located on the client host when
the LOCAL keyword is specified.

There are two potential security issues with supporting the LOCAL version of LOAD DATA statements:

• The transfer of the file from the client host to the server host is initiated by the MySQL server. In theory, a patched server could be
built that would tell the client program to transfer a file of the server's choosing rather than the file named by the client in the LOAD
DATA statement. Such a server could access any file on the client host to which the client user has read access.

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD DATA LOCAL to read any files
that the Web server process has read access to (assuming that a user could run any command against the SQL server). In this envir-
onment, the client with respect to the MySQL server actually is the Web server, not the remote program being run by the user who
connects to the Web server.

To deal with these problems, we changed how LOAD DATA LOCAL is handled as of MySQL 3.23.49 and MySQL 4.0.2 (4.0.13 on
Windows):

• By default, all MySQL clients and libraries in binary distributions are compiled with the --enable-local-infile option, to
be compatible with MySQL 3.23.48 and before.

• If you build MySQL from source but do not invoke configure with the --enable-local-infile option, LOAD DATA
LOCAL cannot be used by any client unless it is written explicitly to invoke mysql_options(...
MYSQL_OPT_LOCAL_INFILE, 0). See Section 26.2.3.49, “mysql_options()”.

• You can disable all LOAD DATA LOCAL commands from the server side by starting mysqld with the --local-infile=0 op-
tion.

• For the mysql command-line client, LOAD DATA LOCAL can be enabled by specifying the --local-infile[=1] option, or
disabled with the --local-infile=0 option. Similarly, for mysqlimport, the --local or -L option enables local data file
loading. In any case, successful use of a local loading operation requires that the server is enabled to allow it.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group from option files, you can add the
local-infile=1 option to that group. However, to keep this from causing problems for programs that do not understand loc-
al-infile, specify it using the loose- prefix:

[client]
loose-local-infile=1

• If LOAD DATA LOCAL INFILE is disabled, either in the server or the client, a client that attempts to issue such a statement re-
ceives the following error message:

ERROR 1148: The used command is not allowed with this MySQL version

MySQL Enterprise
Security advisors notify subscribers to the MySQL Enterprise Monitor whenever a server is started with the -
-local-infile option enabled. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

5.3.5. How to Run MySQL as a Normal User
On Windows, you can run the server as a Windows service using a normal user account.

On Unix, the MySQL server mysqld can be started and run by any user. However, you should avoid running the server as the Unix

MySQL Server Administration

443

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


root user for security reasons. To change mysqld to run as a normal unprivileged Unix user user_name, you must do the follow-
ing:

1. Stop the server if it's running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files in them (you might need to do
this as the Unix root user):

shell> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server will not be able to access databases or tables when it runs as user_name.

If directories or files within the MySQL data directory are symbolic links, you'll also need to follow those links and change the dir-
ectories and files they point to. chown -R might not follow symbolic links for you.

3. Start the server as user user_name. If you are using MySQL 3.22 or later, another alternative is to start mysqld as the Unix
root user and use the --user=user_name option. mysqld starts up, then switches to run as the Unix user user_name be-
fore accepting any connections.

4. To start the server as the given user automatically at system startup time, specify the username by adding a user option to the
[mysqld] group of the /etc/my.cnf option file or the my.cnf option file in the server's data directory. For example:

[mysqld]
user=user_name

If your Unix machine itself isn't secured, you should assign passwords to the MySQL root accounts in the grant tables. Otherwise, any
user with a login account on that machine can run the mysql client with a --user=root option and perform any operation. (It is a
good idea to assign passwords to MySQL accounts in any case, but especially so when other login accounts exist on the server host.)
See Section 2.10, “Post-Installation Setup and Testing”.

5.4. The MySQL Access Privilege System
MySQL has an advanced but non-standard security and privilege system. The following discussion describes how it works.

5.4.1. What the Privilege System Does
The primary function of the MySQL privilege system is to authenticate a user who connects from a given host and to associate that user
with privileges on a database such as SELECT, INSERT, UPDATE, and DELETE.

Additional functionality includes the ability to have anonymous users and to grant privileges for MySQL-specific functions such as
LOAD DATA INFILE and administrative operations.

5.4.2. How the Privilege System Works
The MySQL privilege system ensures that all users may perform only the operations allowed to them. As a user, when you connect to a
MySQL server, your identity is determined by the host from which you connect and the username you specify. When you issue requests
after connecting, the system grants privileges according to your identity and what you want to do.

MySQL considers both your hostname and username in identifying you because there is little reason to assume that a given username
belongs to the same person everywhere on the Internet. For example, the user joe who connects from office.example.com need
not be the same person as the user joe who connects from home.example.com. MySQL handles this by allowing you to distinguish
users on different hosts that happen to have the same name: You can grant one set of privileges for connections by joe from of-
fice.example.com, and a different set of privileges for connections by joe from home.example.com.

MySQL access control involves two stages when you run a client program that connects to the server:

• Stage 1: The server checks whether it should allow you to connect.

• Stage 2: Assuming that you can connect, the server checks each statement you issue to determine whether you have sufficient priv-
ileges to perform it. For example, if you try to select rows from a table in a database or drop a table from the database, the server
verifies that you have the SELECT privilege for the table or the DROP privilege for the database.

MySQL Server Administration

444



If your privileges are changed (either by yourself or someone else) while you are connected, those changes do not necessarily take effect
immediately for the next statement that you issue. See Section 5.4.7, “When Privilege Changes Take Effect”, for details.

The server stores privilege information in the grant tables of the mysql database (that is, in the database named mysql). The MySQL
server reads the contents of these tables into memory when it starts and re-reads them under the circumstances indicated in Sec-
tion 5.4.7, “When Privilege Changes Take Effect”. Access-control decisions are based on the in-memory copies of the grant tables.

Normally, you manipulate the contents of the grant tables indirectly by using statements such as GRANT and REVOKE to set up accounts
and control the privileges available to each one. See Section 12.5.1, “Account Management Statements”. The discussion here describes
the underlying structure of the grant tables and how the server uses their contents when interacting with clients.

The server uses the user, db, and host tables in the mysql database at both stages of access control. The columns in the user and
db tables are shown here. The host table is similar to the db table but has a specialized use as described in Section 5.4.6, “Access
Control, Stage 2: Request Verification”.

Table Name user db

Scope columns Host Host

User Db

Password User

Privilege columns Select_priv Select_priv

Insert_priv Insert_priv

Update_priv Update_priv

Delete_priv Delete_priv

Index_priv Index_priv

Alter_priv Alter_priv

Create_priv Create_priv

Drop_priv Drop_priv

Grant_priv Grant_priv

Create_view_priv Create_view_priv

Show_view_priv Show_view_priv

Create_routine_priv Create_routine_priv

Alter_routine_priv Alter_routine_priv

Execute_priv Execute_priv

Trigger_priv Trigger_priv

Event_priv Event_priv

Create_tmp_table_priv Create_tmp_table_priv

Lock_tables_priv Lock_tables_priv

References_priv References_priv

Reload_priv

Shutdown_priv

Process_priv

File_priv

Show_db_priv

Super_priv

Repl_slave_priv

Repl_client_priv

Create_user_priv

Security columns ssl_type

ssl_cipher

x509_issuer

MySQL Server Administration

445



x509_subject

Resource control columns max_questions

max_updates

max_connections

max_user_connections

The Event_priv and Trigger_priv columns were added in MySQL 5.1.6.

During the second stage of access control, the server performs request verification to make sure that each client has sufficient privileges
for each request that it issues. In addition to the user, db, and host grant tables, the server may also consult the tables_priv and
columns_priv tables for requests that involve tables. The tables_priv and columns_priv tables provide finer privilege con-
trol at the table and column levels. They have the following columns:

Table Name tables_priv columns_priv

Scope columns Host Host

Db Db

User User

Table_name Table_name

Column_name

Privilege columns Table_priv Column_priv

Column_priv

Other columns Timestamp Timestamp

Grantor

The Timestamp and Grantor columns currently are unused and are discussed no further here.

For verification of requests that involve stored routines, the server may consult the procs_priv table. This table has the following
columns:

Table Name procs_priv

Scope columns Host

Db

User

Routine_name

Routine_type

Privilege columns Proc_priv

Other columns Timestamp

Grantor

The Routine_type column is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to indicate the type of routine the
row refers to. This column allows privileges to be granted separately for a function and a procedure with the same name.

The Timestamp and Grantor columns currently are unused and are discussed no further here.

Each grant table contains scope columns and privilege columns:

• Scope columns determine the scope of each row (entry) in the tables; that is, the context in which the row applies. For example, a
user table row with Host and User values of 'thomas.loc.gov' and 'bob' would be used for authenticating connections
made to the server from the host thomas.loc.gov by a client that specifies a username of bob. Similarly, a db table row with
Host, User, and Db column values of 'thomas.loc.gov', 'bob' and 'reports' would be used when bob connects from
the host thomas.loc.gov to access the reports database. The tables_priv and columns_priv tables contain scope

MySQL Server Administration

446



columns indicating tables or table/column combinations to which each row applies. The procs_priv scope columns indicate the
stored routine to which each row applies.

• Privilege columns indicate which privileges are granted by a table row; that is, what operations can be performed. The server com-
bines the information in the various grant tables to form a complete description of a user's privileges. Section 5.4.6, “Access Con-
trol, Stage 2: Request Verification”, describes the rules that are used to do this.

Scope columns contain strings. They are declared as shown here; the default value for each is the empty string:

Column Name Type

Host CHAR(60)

User CHAR(16)

Password CHAR(16)

Db CHAR(64)

Table_name CHAR(64)

Column_name CHAR(64)

Routine_name CHAR(64)

For access-checking purposes, comparisons of Host values are case insensitive. User, Password, Db, and Table_name values are
case sensitive. Column_name and Routine_name values are case insensitive.

In the user, db, and host tables, each privilege is listed in a separate column that is declared as ENUM('N','Y') DEFAULT
'N'. In other words, each privilege can be disabled or enabled, with the default being disabled.

In the tables_priv, columns_priv, and procs_priv tables, the privilege columns are declared as SET columns. Values in
these columns can contain any combination of the privileges controlled by the table:

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert', 'Update', 'Delete', 'Create',
'Drop', 'Grant', 'References', 'Index', 'Alter', 'Cre-
ate View', 'Show view', 'Trigger'

tables_priv Column_priv 'Select', 'Insert', 'Update', 'References'

columns_priv Column_priv 'Select', 'Insert', 'Update', 'References'

procs_priv Proc_priv 'Execute', 'Alter Routine', 'Grant'

Briefly, the server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or allow incoming connections. For allowed connections, any privileges
granted in the user table indicate the user's global (superuser) privileges. Any privilege granted in this table applies to all databases
on the server.

Note

Because any global privilege is considered a privilege for all databases, any global privilege enables a user to see all data-
base names with SHOW DATABASES or by examining the SCHEMATA table of INFORMATION_SCHEMA.

• The db table scope columns determine which users can access which databases from which hosts. The privilege columns determine
which operations are allowed. A privilege granted at the database level applies to the database and to all its tables.

• The host table is used in conjunction with the db table when you want a given db table row to apply to several hosts. For ex-
ample, if you want a user to be able to use a database from several hosts in your network, leave the Host value empty in the user's
db table row, then populate the host table with a row for each of those hosts. This mechanism is described more detail in Sec-
tion 5.4.6, “Access Control, Stage 2: Request Verification”.

Note

MySQL Server Administration

447



The host table must be modified directly with statements such as INSERT, UPDATE, and DELETE. It is not affected by
statements such as GRANT and REVOKE that modify the grant tables indirectly. Most MySQL installations need not use
this table at all.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained: They apply at the table and
column levels rather than at the database level. A privilege granted at the table level applies to the table and to all its columns. A
privilege granted at the column level applies only to a specific column.

• The procs_priv table applies to stored routines. A privilege granted at the routine level applies only to a single routine.

Administrative privileges (such as RELOAD or SHUTDOWN) are specified only in the user table. The reason for this is that administrat-
ive operations are operations on the server itself and are not database-specific, so there is no reason to list these privileges in the other
grant tables. In fact, to determine whether you can perform an administrative operation, the server need consult only the user table.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as such, but your ability to read or
write files on the server host is independent of the database you are accessing.

The mysqld server reads the contents of the grant tables into memory when it starts. You can tell it to re-read the tables by issuing a
FLUSH PRIVILEGES statement or executing a mysqladmin flush-privileges or mysqladmin reload command.
Changes to the grant tables take effect as indicated in Section 5.4.7, “When Privilege Changes Take Effect”.

When you modify the contents of the grant tables, it is a good idea to make sure that your changes set up privileges the way you want.
To check the privileges for a given account, use the SHOW GRANTS statement. (See Section 12.5.4.17, “SHOW GRANTS Syntax”.) For
example, to determine the privileges that are granted to an account with Host and User values of pc84.example.com and bob, is-
sue this statement:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

For additional help in diagnosing privilege-related problems, see Section 5.4.8, “Causes of Access denied Errors”. For general ad-
vice on security issues, see Section 5.3, “General Security Issues”.

5.4.3. Privileges Provided by MySQL
Information about account privileges is stored in the user, db, host, tables_priv, columns_priv, and procs_priv tables
in the mysql database. The MySQL server reads the contents of these tables into memory when it starts and re-reads them under the
circumstances indicated in Section 5.4.7, “When Privilege Changes Take Effect”. Access-control decisions are based on the in-memory
copies of the grant tables.

The names used in the GRANT and REVOKE statements to refer to privileges are shown in the following table, along with the column
name associated with each privilege in the grant tables and the context in which the privilege applies. Further information about the
meaning of each privilege may be found at Section 12.5.1.3, “GRANT Syntax”.

Privilege Column Context

CREATE Create_priv databases, tables, or indexes

DROP Drop_priv databases or tables

GRANT OPTION Grant_priv databases, tables, or stored routines

REFERENCES References_priv databases or tables (unused)

EVENT Event_priv databases

ALTER Alter_priv tables

DELETE Delete_priv tables

INDEX Index_priv tables

INSERT Insert_priv tables

SELECT Select_priv tables

UPDATE Update_priv tables

TRIGGER Trigger_priv tables

CREATE VIEW Create_view_priv views

MySQL Server Administration

448



SHOW VIEW Show_view_priv views

ALTER ROUTINE Alter_routine_priv stored routines

CREATE ROUTINE Create_routine_priv stored routines

EXECUTE Execute_priv stored routines

FILE File_priv file access on server host

CREATE TEMPORARY TABLES Create_tmp_table_priv server administration

LOCK TABLES Lock_tables_priv server administration

CREATE USER Create_user_priv server administration

PROCESS Process_priv server administration

RELOAD Reload_priv server administration

REPLICATION CLIENT Repl_client_priv server administration

REPLICATION SLAVE Repl_slave_priv server administration

SHOW DATABASES Show_db_priv server administration

SHUTDOWN Shutdown_priv server administration

SUPER Super_priv server administration

Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or features. Whenever you update
to a new version of MySQL, you should update your grant tables to make sure that they have the current structure so that you can take
advantage of any new capabilities. See Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

The EVENT and TRIGGER privileges were added in MySQL 5.1.6.

To create or alter stored functions if binary logging is enabled, you may also need the SUPER privilege, as described in Section 20.4,
“Binary Logging of Stored Routines and Triggers”.

The CREATE and DROP privileges allow you to create new databases and tables, or to drop (remove) existing databases and tables. Be-
ginning with MySQL 5.1.10, the DROP privilege is also required in order to use the statement ALTER TABLE ... DROP PARTI-
TION on a partitioned table. Beginning with MySQL 5.1.16, the DROP privilege is required for TRUNCATE TABLE (before that,
TRUNCATE TABLE requires the DELETE privilege). If you grant the DROP privilege for the mysql database to a user, that user can
drop the database in which the MySQL access privileges are stored.

The SELECT, INSERT, UPDATE, and DELETE privileges allow you to perform operations on rows in existing tables in a database.
INSERT is also required for the ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.

SELECT statements require the SELECT privilege only if they actually retrieve rows from a table. Some SELECT statements do not ac-
cess tables and can be executed without permission for any database. For example, you can use the mysql client as a simple calculator
to evaluate expressions that make no reference to tables:

SELECT 1+1;
SELECT PI()*2;

The INDEX privilege enables you to create or drop (remove) indexes. INDEX applies to existing tables. If you have the CREATE priv-
ilege for a table, you can include index definitions in the CREATE TABLE statement.

The ALTER privilege enables you to use ALTER TABLE to change the structure of or rename tables.

The CREATE ROUTINE privilege is needed for creating stored routines (functions and procedures). ALTER ROUTINE privilege is
needed for altering or dropping stored routines, and EXECUTE is needed for executing stored routines.

The TRIGGER privilege enables you to create and drop triggers. You must have this privilege for a table to create or drop triggers for
that table. (Prior to MySQL 5.1.6, these operations required the SUPER privilege.)

The EVENT privilege enables you to set up events for the event scheduler.

The GRANT privilege enables you to give to other users those privileges that you yourself possess. It can be used for databases, tables,
and stored routines.

The FILE privilege gives you permission to read and write files on the server host using the LOAD DATA INFILE and SELECT

MySQL Server Administration

449



... INTO OUTFILE statements. A user who has the FILE privilege can read any file on the server host that is either world-readable
or readable by the MySQL server. (This implies the user can read any file in any database directory, because the server can access any
of those files.) The FILE privilege also enables the user to create new files in any directory where the MySQL server has write access.
As a security measure, the server will not overwrite existing files.

The REFERENCES privilege currently is unused.

The remaining privileges are used for administrative operations. Many of them can be performed by using the mysqladmin program
or by issuing SQL statements. The following table shows which mysqladmin commands each administrative privilege enables you to
execute:

Privilege Commands Permitted to Privilege Holders

RELOAD flush-hosts, flush-logs, flush-privileges, flush-status, flush-tables, flush-
threads, refresh, reload

SHUTDOWN shutdown

PROCESS processlist

SUPER kill

The reload command tells the server to re-read the grant tables into memory. flush-privileges is a synonym for reload. The
refresh command closes and reopens the log files and flushes all tables. The other flush-xxx commands perform functions simil-
ar to refresh, but are more specific and may be preferable in some instances. For example, if you want to flush just the log files,
flush-logs is a better choice than refresh.

The shutdown command shuts down the server. There is no corresponding SQL statement.

The processlist command displays information about the threads executing within the server (that is, information about the state-
ments being executed by clients). The kill command terminates server threads. You can always display or kill your own threads, but
you need the PROCESS privilege to display threads initiated by other users and the SUPER privilege to kill them. See Section 12.5.5.3,
“KILL Syntax”.

The CREATE TEMPORARY TABLES privilege enables the use of the keyword TEMPORARY in CREATE TABLE statements.

The LOCK TABLES privilege enables the use of explicit LOCK TABLES statements to lock tables for which you have the SELECT
privilege. This includes the use of write locks, which prevents anyone else from reading the locked table.

The REPLICATION CLIENT privilege enables the use of SHOW MASTER STATUS and SHOW SLAVE STATUS.

The REPLICATION SLAVE privilege should be granted to accounts that are used by slave servers to connect to the current server as
their master. Without this privilege, the slave cannot request updates that have been made to databases on the master server.

The SHOW DATABASES privilege allows the account to see database names by issuing the SHOW DATABASE statement. Accounts
that do not have this privilege see only databases for which they have some privileges, and cannot use the statement at all if the server
was started with the --skip-show-database option. Note that any global privilege is a privilege for the database.

It is a good idea to grant to an account only those privileges that it needs. You should exercise particular caution in granting the FILE
and administrative privileges:

• The FILE privilege can be abused to read into a database table any files that the MySQL server can read on the server host. This in-
cludes all world-readable files and files in the server's data directory. The table can then be accessed using SELECT to transfer its
contents to the client host.

• The GRANT privilege enables users to give their privileges to other users. Two users that have different privileges and with the
GRANT privilege are able to combine privileges.

• The ALTER privilege may be used to subvert the privilege system by renaming tables.

• The SHUTDOWN privilege can be abused to deny service to other users entirely by terminating the server.

• The PROCESS privilege can be used to view the plain text of currently executing statements, including statements that set or change
passwords.

• The SUPER privilege can be used to terminate other clients or change how the server operates.

MySQL Server Administration

450



• Privileges granted for the mysql database itself can be used to change passwords and other access privilege information. Passwords
are stored encrypted, so a malicious user cannot simply read them to know the plain text password. However, a user with write ac-
cess to the user table Password column can change an account's password, and then connect to the MySQL server using that ac-
count.

MySQL Enterprise
Accounts with unnecessary global privileges constitute a security risk. Subscribers to the MySQL Enterprise
Monitor are automatically alerted to the existence of such accounts. For detailed information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly match a user and then refuse
the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create or drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object such as a database, table, or
routine.

5.4.4. Connecting to the MySQL Server
MySQL client programs generally expect you to specify certain connection parameters when you want to access a MySQL server:

• The name of the host where the MySQL server is running

• Your username

• Your password

For example, the mysql client can be started as follows from a command-line prompt (indicated here by shell>):

shell> mysql -h host_name -u user_name -pyour_pass

Alternative forms of the -h, -u, and -p options are --host=host_name, --user=user_name, and
--password=your_pass. Note that there is no space between -p or --password= and the password following it.

If you use a -p or --password option but do not specify the password value, the client program prompts you to enter the password.
The password is not displayed as you enter it. This is more secure than giving the password on the command line. Any user on your sys-
tem may be able to see a password specified on the command line by executing a command such as ps auxw. See Section 5.5.6,
“Keeping Your Password Secure”.

MySQL client programs use default values for any connection parameter option that you do not specify:

• The default hostname is localhost.

• The default username is ODBC on Windows and your Unix login name on Unix.

• No password is supplied if neither -p nor --passwordis given.

Thus, for a Unix user with a login name of joe, all of the following commands are equivalent:

shell> mysql -h localhost -u joe
shell> mysql -h localhost
shell> mysql -u joe
shell> mysql

Other MySQL clients behave similarly.

MySQL Server Administration

451

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


You can specify different default values to be used when you make a connection so that you need not enter them on the command line
each time you invoke a client program. This can be done in a couple of ways:

• You can specify connection parameters in the [client] section of an option file. The relevant section of the file might look like
this:

[client]
host=host_name
user=user_name
password=your_pass

Section 4.2.2.2, “Using Option Files”, discusses option files further.

• You can specify some connection parameters using environment variables. The host can be specified for mysql using
MYSQL_HOST. The MySQL username can be specified using USER (this is for Windows and NetWare only). The password can be
specified using MYSQL_PWD, although this is insecure; see Section 5.5.6, “Keeping Your Password Secure”. For a list of variables,
see Section 2.14, “Environment Variables”.

5.4.5. Access Control, Stage 1: Connection Verification
When you attempt to connect to a MySQL server, the server accepts or rejects the connection based on your identity and whether you
can verify your identity by supplying the correct password. If not, the server denies access to you completely. Otherwise, the server ac-
cepts the connection, and then enters Stage 2 and waits for requests.

Your identity is based on two pieces of information:

• The client host from which you connect

• Your MySQL username

Identity checking is performed using the three user table scope columns (Host, User, and Password). The server accepts the con-
nection only if the Host and User columns in some user table row match the client hostname and username and the client supplies
the password specified in that row.

Host values in the user table may be specified as follows:

• A Host value may be a hostname or an IP number, or 'localhost' to indicate the local host.

• You can use the wildcard characters “%” and “_” in Host column values. These have the same meaning as for pattern-matching op-
erations performed with the LIKE operator. For example, a Host value of '%' matches any hostname, whereas a value of
'%.mysql.com' matches any host in the mysql.com domain.

MySQL Enterprise
An overly broad host specifier such as “%” constitutes a security risk. The MySQL Enterprise Monitor provides
safeguards against this kind of vulnerability. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

• For Host values specified as IP numbers, you can specify a netmask indicating how many address bits to use for the network num-
ber. For example:

GRANT ALL PRIVILEGES ON db.* TO david@'192.58.197.0/255.255.255.0';

This allows david to connect from any client host having an IP number client_ip for which the following condition is true:

client_ip & netmask = host_ip

That is, for the GRANT statement just shown:

client_ip & 255.255.255.0 = 192.58.197.0

MySQL Server Administration

452

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


IP numbers that satisfy this condition and can connect to the MySQL server are those in the range from 192.58.197.0 to
192.58.197.255.

Note: The netmask can only be used to tell the server to use 8, 16, 24, or 32 bits of the address. Examples:

• 192.0.0.0/255.0.0.0: anything on the 192 class A network

• 192.168.0.0/255.255.0.0: anything on the 192.168 class B network

• 192.168.1.0/255.255.255.0: anything on the 192.168.1 class C network

• 192.168.1.1: only this specific IP

The following netmask (28 bits) will not work:

192.168.0.1/255.255.255.240

• A blank Host value in a db table row means that its privileges should be combined with those in the row in the host table that
matches the client hostname. The privileges are combined using an AND (intersection) operation, not OR (union). Section 5.4.6,
“Access Control, Stage 2: Request Verification”, discusses use of the host table further.

A blank Host value in the other grant tables is the same as '%'.

Because you can use IP wildcard values in the Host column (for example, '144.155.166.%' to match every host on a subnet),
someone could try to exploit this capability by naming a host 144.155.166.somewhere.com. To foil such attempts, MySQL dis-
allows matching on hostnames that start with digits and a dot. Thus, if you have a host named something like 1.2.foo.com, its name
never matches the Host column of the grant tables. An IP wildcard value can match only IP numbers, not hostnames.

In the User column, wildcard characters are not allowed, but you can specify a blank value, which matches any name. If the user ta-
ble row that matches an incoming connection has a blank username, the user is considered to be an anonymous user with no name, not a
user with the name that the client actually specified. This means that a blank username is used for all further access checking for the
duration of the connection (that is, during Stage 2).

The Password column can be blank. This is not a wildcard and does not mean that any password matches. It means that the user must
connect without specifying a password.

Non-blank Password values in the user table represent encrypted passwords. MySQL does not store passwords in plaintext form for
anyone to see. Rather, the password supplied by a user who is attempting to connect is encrypted (using the PASSWORD() function).
The encrypted password then is used during the connection process when checking whether the password is correct. (This is done
without the encrypted password ever traveling over the connection.) From MySQL's point of view, the encrypted password is the real
password, so you should never give anyone access to it. In particular, do not give non-administrative users read access to tables in the
mysql database.

MySQL 5.1 employs the stronger authentication method (first implemented in MySQL 4.1) that has better password protection during
the connection process than in earlier versions. It is secure even if TCP/IP packets are sniffed or the mysql database is captured. Sec-
tion 5.4.9, “Password Hashing as of MySQL 4.1”, discusses password encryption further.

The following table shows how various combinations of Host and User values in the user table apply to incoming connections.

Host Value User Value Allowable Connections

'thomas.loc.gov' 'fred' fred, connecting from thomas.loc.gov

'thomas.loc.gov' '' Any user, connecting from thomas.loc.gov

'%' 'fred' fred, connecting from any host

'%' '' Any user, connecting from any host

'%.loc.gov' 'fred' fred, connecting from any host in the loc.gov domain

'x.y.%' 'fred' fred, connecting from x.y.net, x.y.com, x.y.edu, and so
on (this is probably not useful)

'144.155.166.177' 'fred' fred, connecting from the host with IP address
144.155.166.177

'144.155.166.%' 'fred' fred, connecting from any host in the 144.155.166 class C

MySQL Server Administration

453



subnet

'144.155.166.0/255.255.255.0' 'fred' Same as previous example

It is possible for the client hostname and username of an incoming connection to match more than one row in the user table. The pre-
ceding set of examples demonstrates this: Several of the entries shown match a connection from thomas.loc.gov by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this issue as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client hostname and username.

To see how this works, suppose that the user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads the table into memory, it orders the rows with the most-specific Host values first. Literal hostnames and IP
numbers are the most specific. (The specificity if a literal IP number is not affected by whether it has a netmask, so 192.168.1.13
and 192.168.1.0/255.255.255.0 are considered equally specific.) The pattern '%' means “any host” and is least specific.
Rows with the same Host value are ordered with the most-specific User values first (a blank User value means “any user” and is
least specific). For the user table just shown, the result after sorting looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match found. For a connection from loc-
alhost by jeffrey, two of the rows from the table match: the one with Host and User values of 'localhost' and '', and the
one with values of '%' and 'jeffrey'. The 'localhost' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| thomas.loc.gov | | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| thomas.loc.gov | | ...
| % | jeffrey | ...
+----------------+----------+-

A connection by jeffrey from thomas.loc.gov is matched by the first row, whereas a connection by jeffrey from white-
house.gov is matched by the second.

It is a common misconception to think that, for a given username, all rows that explicitly name that user are used first when the server
attempts to find a match for the connection. This is simply not true. The previous example illustrates this, where a connection from

MySQL Server Administration

454



thomas.loc.gov by jeffrey is first matched not by the row containing 'jeffrey' as the User column value, but by the row
with no username. As a result, jeffrey is authenticated as an anonymous user, even though he specified a username when connect-
ing.

If you are able to connect to the server, but your privileges are not what you expect, you probably are being authenticated as some other
account. To find out what account the server used to authenticate you, use the CURRENT_USER() function. (See Section 11.11.3,
“Information Functions”.) It returns a value in user_name@host_name format that indicates the User and Host values from the
matching user table row. Suppose that jeffrey connects and issues the following query:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+

The result shown here indicates that the matching user table row had a blank User column value. In other words, the server is treating
jeffrey as an anonymous user.

Another thing you can do to diagnose authentication problems is to print out the user table and sort it by hand to see where the first
match is being made.

5.4.6. Access Control, Stage 2: Request Verification
After you establish a connection, the server enters Stage 2 of access control. For each request that you issue via that connection, the
server determines what operation you want to perform, then checks whether you have sufficient privileges to do so. This is where the
privilege columns in the grant tables come into play. These privileges can come from any of the user, db, host, tables_priv,
columns_priv, or procs_priv tables. (You may find it helpful to refer to Section 5.4.2, “How the Privilege System Works”,
which lists the columns present in each of the grant tables.)

The user table grants privileges that are assigned to you on a global basis and that apply no matter what the default database is. For ex-
ample, if the user table grants you the DELETE privilege, you can delete rows from any table in any database on the server host! In
other words, user table privileges are superuser privileges. It is wise to grant privileges in the user table only to superusers such as
database administrators. For other users, you should leave all privileges in the user table set to 'N' and grant privileges at more spe-
cific levels only. You can grant privileges for particular databases, tables, columns, or routines.

The db and host tables grant database-specific privileges. Values in the scope columns of these tables can take the following forms:

• The wildcard characters “%” and “_” can be used in the Host and Db columns of either table. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. If you want to use either character literally when granting priv-
ileges, you must escape it with a backslash. For example, to include the underscore character (“_”) as part of a database name, spe-
cify it as “\_” in the GRANT statement.

• A '%' Host value in the db table means “any host.” A blank Host value in the db table means “consult the host table for fur-
ther information” (a process that is described later in this section).

• A '%' or blank Host value in the host table means “any host.”

• A '%' or blank Db value in either table means “any database.”

• A blank User value in the db table matches the anonymous user.

The server reads the db and host tables into memory and sorts them at the same time that it reads the user table. The server sorts the
db table based on the Host, Db, and User scope columns, and sorts the host table based on the Host and Db scope columns. As
with the user table, sorting puts the most-specific values first and least-specific values last, and when the server looks for matching
entries, it uses the first match that it finds.

The tables_priv columns_priv, and procs_priv tables grant table-specific, column-specific, and routine-specific privileges.
Values in the scope columns of these tables can take the following forms:

• The wildcard characters “%” and “_” can be used in the Host column. These have the same meaning as for pattern-matching opera-
tions performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

MySQL Server Administration

455



• The Db, Table_name, and Column_name columns cannot contain wildcards or be blank.

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host, Db, and User columns. This is
similar to db table sorting, but simpler because only the Host column can contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require administrative privileges such as
SHUTDOWN or RELOAD, the server checks only the user table row because that is the only table that specifies administrative priv-
ileges. The server grants access if the row allows the requested operation and denies access otherwise. For example, if you want to ex-
ecute mysqladmin shutdown but your user table row doesn't grant the SHUTDOWN privilege to you, the server denies access
without even checking the db or host tables. (They contain no Shutdown_priv column, so there is no need to do so.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global (superuser) privileges by looking
in the user table row. If the row allows the requested operation, access is granted. If the global privileges in the user table are insuffi-
cient, the server determines the user's database-specific privileges by checking the db and host tables:

1. The server looks in the db table for a match on the Host, Db, and User columns. The Host and User columns are matched to
the connecting user's hostname and MySQL username. The Db column is matched to the database that the user wants to access. If
there is no row for the Host and User, access is denied.

2. If there is a matching db table row and its Host column is not blank, that row defines the user's database-specific privileges.

3. If the matching db table row's Host column is blank, it signifies that the host table enumerates which hosts should be allowed
access to the database. In this case, a further lookup is done in the host table to find a match on the Host and Db columns. If no
host table row matches, access is denied. If there is a match, the user's database-specific privileges are computed as the intersec-
tion (not the union!) of the privileges in the db and host table entries; that is, the privileges that are 'Y' in both entries. (This
way you can grant general privileges in the db table row and then selectively restrict them on a host-by-host basis using the host
table entries.)

After determining the database-specific privileges granted by the db and host table entries, the server adds them to the global priv-
ileges granted by the user table. If the result allows the requested operation, access is granted. Otherwise, the server successively
checks the user's table and column privileges in the tables_priv and columns_priv tables, adds those to the user's privileges,
and allows or denies access based on the result. For stored routine operations, the server uses the procs_priv table rather than
tables_priv and columns_priv.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be summarized like this:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges
OR routine privileges

It may not be apparent why, if the global user row privileges are initially found to be insufficient for the requested operation, the serv-
er adds those privileges to the database, table, and column privileges later. The reason is that a request might require more than one type
of privilege. For example, if you execute an INSERT INTO ... SELECT statement, you need both the INSERT and the SELECT
privileges. Your privileges might be such that the user table row grants one privilege and the db table row grants the other. In this
case, you have the necessary privileges to perform the request, but the server cannot tell that from either table by itself; the privileges
granted by the entries in both tables must be combined.

The host table is not affected by the GRANT or REVOKE statements, so it is unused in most MySQL installations. If you modify it dir-
ectly, you can use it for some specialized purposes, such as to maintain a list of secure servers. For example, at TcX, the host table
contains a list of all machines on the local network. These are granted all privileges.

You can also use the host table to indicate hosts that are not secure. Suppose that you have a machine public.your.domain that
is located in a public area that you do not consider secure. You can allow access to all hosts on your network except that machine by us-
ing host table entries like this:

+--------------------+----+-
| Host | Db | ...
+--------------------+----+-
| public.your.domain | % | ... (all privileges set to 'N')
| %.your.domain | % | ... (all privileges set to 'Y')
+--------------------+----+-

MySQL Server Administration

456



Naturally, you should always test your changes to the grant tables (for example, by using SHOW GRANTS) to make sure that your ac-
cess privileges are actually set up the way you think they are.

5.4.7. When Privilege Changes Take Effect
When mysqld starts, it reads all grant table contents into memory. The in-memory tables become effective for access control at that
point.

When the server reloads the grant tables, privileges for existing client connections are affected as follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect at the next USE db_name statement.

Note

Client applications may cache the database name; thus, this effect may not be visible to them without actually changing to
a different database or executing a FLUSH PRIVILEGES statement.

• Changes to global privileges and passwords take effect the next time the client connects.

If you modify the grant tables indirectly using statements such as GRANT, REVOKE, or SET PASSWORD, the server notices these
changes and loads the grant tables into memory again immediately.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE, your changes have no effect on priv-
ilege checking until you either restart the server or tell it to reload the tables. To reload the grant tables manually, issue a FLUSH
PRIVILEGES statement or execute a mysqladmin flush-privileges or mysqladmin reload command.

If you change the grant tables directly but forget to reload them, your changes have no effect until you restart the server. This may leave
you wondering why your changes do not seem to make any difference!

5.4.8. Causes of Access denied Errors
If you encounter problems when you try to connect to the MySQL server, the following items describe some courses of action you can
take to correct the problem.

• Make sure that the server is running. If it is not running, you cannot connect to it. For example, if you attempt to connect to the serv-
er and see a message such as one of those following, one cause might be that the server is not running:

shell> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
shell> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

It might also be that the server is running, but you are trying to connect using a TCP/IP port, named pipe, or Unix socket file differ-
ent from the one on which the server is listening. To correct this when you invoke a client program, specify a --port option to in-
dicate the proper port number, or a --socket option to indicate the proper named pipe or Unix socket file. To find out where the
socket file is, you can use this command:

shell> netstat -ln | grep mysql

• The grant tables must be properly set up so that the server can use them for access control. For some distribution types (such as bin-
ary distributions on Windows, or RPM distributions on Linux), the installation process initializes the mysql database containing
the grant tables. For distributions that do not do this, you must initialize the grant tables manually by running the
mysql_install_db script. For details, see Section 2.10.2, “Unix Post-Installation Procedures”.

One way to determine whether you need to initialize the grant tables is to look for a mysql directory under the data directory. (The
data directory normally is named data or var and is located under your MySQL installation directory.) Make sure that you have a
file named user.MYD in the mysql database directory. If you do not, execute the mysql_install_db script. After running
this script and starting the server, test the initial privileges by executing this command:

MySQL Server Administration

457



shell> mysql -u root test

The server should let you connect without error.

• After a fresh installation, you should connect to the server and set up your users and their access permissions:

shell> mysql -u root mysql

The server should let you connect because the MySQL root user has no password initially. That is also a security risk, so setting
the password for the root accounts is something you should do while you're setting up your other MySQL accounts. For instruc-
tions on setting the initial passwords, see Section 2.10.3, “Securing the Initial MySQL Accounts”.

MySQL Enterprise
The MySQL Enterprise Monitor enforces security-related best practices. For example, subscribers are alerted
whenever there is any account without a password. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

• If you have updated an existing MySQL installation to a newer version, did you run the mysql_upgrade script? If not, do so. The
structure of the grant tables changes occasionally when new capabilities are added, so after an upgrade you should always make sure
that your tables have the current structure. For instructions, see Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Up-
grade”.

• If a client program receives the following error message when it tries to connect, it means that the server expects passwords in a
newer format than the client is capable of generating:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

For information on how to deal with this, see Section 5.4.9, “Password Hashing as of MySQL 4.1”, and Section B.1.2.4, “Client
does not support authentication protocol”.

• If you try to connect as root and get the following error, it means that you do not have a row in the user table with a User
column value of 'root' and that mysqld cannot resolve the hostname for your client:

Access denied for user ''@'unknown' to database mysql

In this case, you must restart the server with the --skip-grant-tables option and edit your /etc/hosts file or
\windows\hosts file to add an entry for your host.

• Remember that client programs use connection parameters specified in option files or environment variables. If a client program
seems to be sending incorrect default connection parameters when you have not specified them on the command line, check your
environment and any applicable option files. For example, if you get Access denied when you run a client without any options,
make sure that you have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the --no-defaults option. For example:

shell> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Section 4.2.2.2, “Using Option Files”. Environment variables are listed in Section 2.14,
“Environment Variables”.

• If you get the following error, it means that you are using an incorrect root password:

shell> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have an incorrect password listed in
some option file. Try the --no-defaults option as described in the previous item.

For information on changing passwords, see Section 5.5.5, “Assigning Account Passwords”.

If you have lost or forgotten the root password, you can restart mysqld with --skip-grant-tables to change the pass-

MySQL Server Administration

458

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


word. See Section B.1.4.1, “How to Reset the Root Password”.

• If you change a password by using SET PASSWORD, INSERT, or UPDATE, you must encrypt the password using the PASS-
WORD() function. If you do not use PASSWORD() for these statements, the password will not work. For example, the following
statement sets a password, but fails to encrypt it, so the user is not able to connect afterward:

SET PASSWORD FOR 'abe'@'host_name' = 'eagle';

Instead, set the password like this:

SET PASSWORD FOR 'abe'@'host_name' = PASSWORD('eagle');

The PASSWORD() function is unnecessary when you specify a password using the GRANT or CREATE USER statements, or the
mysqladmin password command. Each of those automatically uses PASSWORD() to encrypt the password. See Section 5.5.5,
“Assigning Account Passwords”, and Section 12.5.1.1, “CREATE USER Syntax”.

• localhost is a synonym for your local hostname, and is also the default host to which clients try to connect if you specify no host
explicitly.

To avoid this problem on such systems, you can use a --host=127.0.0.1 option to name the server host explicitly. This will
make a TCP/IP connection to the local mysqld server. You can also use TCP/IP by specifying a --host option that uses the actu-
al hostname of the local host. In this case, the hostname must be specified in a user table row on the server host, even though you
are running the client program on the same host as the server.

• If you get an Access denied error when trying to connect to the database with mysql -u user_name, you may have a
problem with the user table. Check this by executing mysql -u root mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your computer's hostname and your MySQL username.

• The Access denied error message tells you who you are trying to log in as, the client host from which you are trying to connect,
and whether you were using a password. Normally, you should have one row in the user table that exactly matches the hostname
and username that were given in the error message. For example, if you get an error message that contains using password:
NO, it means that you tried to log in without a password.

• If the following error occurs when you try to connect from a host other than the one on which the MySQL server is running, it
means that there is no row in the user table with a Host value that matches the client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client hostname and username that you are using when trying to
connect.

If you do not know the IP number or hostname of the machine from which you are connecting, you should put a row with '%' as
the Host column value in the user table. After trying to connect from the client machine, use a SELECT USER() query to see
how you really did connect. (Then change the '%' in the user table row to the actual hostname that shows up in the log. Other-
wise, your system is left insecure because it allows connections from any host for the given username.)

On Linux, another reason that this error might occur is that you are using a binary MySQL version that is compiled with a different
version of the glibc library than the one you are using. In this case, you should either upgrade your operating system or glibc, or
download a source distribution of MySQL version and compile it yourself. A source RPM is normally trivial to compile and install,
so this is not a big problem.

• If you specify a hostname when trying to connect, but get an error message where the hostname is not shown or is an IP number, it
means that the MySQL server got an error when trying to resolve the IP number of the client host to a name:

shell> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

This indicates a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the internal DNS hostname cache. See
Section 7.5.10, “How MySQL Uses DNS”.

Some permanent solutions are:

MySQL Server Administration

459



• Determine what is wrong with your DNS server and fix it.

• Specify IP numbers rather than hostnames in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts or \windows\hosts.

• Start mysqld with the --skip-name-resolve option.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to localhost. Unix connections to loc-
alhost use a Unix socket file rather than TCP/IP.

• On Windows, if you are running the server and the client on the same machine and the server supports named pipe connections,
connect to the hostname . (period). Connections to . use a named pipe rather than TCP/IP.

• If mysql -u root test works but mysql -h your_hostname -u root test results in Access denied (where
your_hostname is the actual hostname of the local host), you may not have the correct name for your host in the user table. A
common problem here is that the Host value in the user table row specifies an unqualified hostname, but your system's name res-
olution routines return a fully qualified domain name (or vice versa). For example, if you have an entry with host 'tcx' in the
user table, but your DNS tells MySQL that your hostname is 'tcx.subnet.se', the entry does not work. Try adding an entry
to the user table that contains the IP number of your host as the Host column value. (Alternatively, you could add an entry to the
user table with a Host value that contains a wildcard; for example, 'tcx.%'. However, use of hostnames ending with “%” is in-
secure and is not recommended!)

• If mysql -u user_name test works but mysql -u user_name other_db_name does not, you have not granted data-
base access for other_db_name to the given user.

• If mysql -u user_name works when executed on the server host, but mysql -h host_name -u user_name does not
work when executed on a remote client host, you have not enabled access to the server for the given username from the remote host.

• If you cannot figure out why you get Access denied, remove from the user table all entries that have Host values containing
wildcards (entries that contain “%” or “_”). A very common error is to insert a new entry with Host='%' and
User='some_user', thinking that this allows you to specify localhost to connect from the same machine. The reason that
this does not work is that the default privileges include an entry with Host='localhost' and User=''. Because that entry has
a Host value 'localhost' that is more specific than '%', it is used in preference to the new entry when connecting from loc-
alhost! The correct procedure is to insert a second entry with Host='localhost' and User='some_user', or to delete
the entry with Host='localhost' and User=''. After deleting the entry, remember to issue a FLUSH PRIVILEGES state-
ment to reload the grant tables.

• If you get the following error, you may have a problem with the db or host table:

Access to database denied

If the entry selected from the db table has an empty value in the Host column, make sure that there are one or more corresponding
entries in the host table specifying which hosts the db table entry applies to.

• If you are able to connect to the MySQL server, but get an Access denied message whenever you issue a SELECT ... INTO
OUTFILE or LOAD DATA INFILE statement, your entry in the user table does not have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE statements) and your changes seem to
be ignored, remember that you must execute a FLUSH PRIVILEGES statement or a mysqladmin flush-privileges com-
mand to cause the server to re-read the privilege tables. Otherwise, your changes have no effect until the next time the server is re-
started. Remember that after you change the root password with an UPDATE command, you won't need to specify the new pass-
word until after you flush the privileges, because the server won't know you've changed the password yet!

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL administrator has changed them. Re-
loading the grant tables affects new client connections, but it also affects existing connections as indicated in Section 5.4.7, “When
Privilege Changes Take Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the server with mysql -u
user_name db_name or mysql -u user_name -pyour_pass db_name. If you are able to connect using the mysql
client, the problem lies with your program, not with the access privileges. (There is no space between -p and the password; you can
also use the --password=your_pass syntax to specify the password. If you use the -p --passwordoption with no password

MySQL Server Administration

460



value, MySQL prompts you for the password.)

• For testing, start the mysqld server with the --skip-grant-tables option. Then you can change the MySQL grant tables and
use the mysqlaccess script to check whether your modifications have the desired effect. When you are satisfied with your
changes, execute mysqladmin flush-privileges to tell the mysqld server to start using the new grant tables. (Reloading
the grant tables overrides the --skip-grant-tables option. This enables you to tell the server to begin using the grant tables
again without stopping and restarting it.)

• If everything else fails, start the mysqld server with a debugging option (for example, --debug=d,general,query). This
prints host and user information about attempted connections, as well as information about each command issued. See MySQL In-
ternals: Porting.

• If you have any other problems with the MySQL grant tables and feel you must post the problem to the mailing list, always provide
a dump of the MySQL grant tables. You can dump the tables with the mysqldump mysql command. To file a bug report, see the
instructions at Section 1.7, “How to Report Bugs or Problems”. In some cases, you may need to restart mysqld with -
-skip-grant-tables to run mysqldump.

5.4.9. Password Hashing as of MySQL 4.1
MySQL user accounts are listed in the user table of the mysql database. Each MySQL account is assigned a password, although what
is stored in the Password column of the user table is not the plaintext version of the password, but a hash value computed from it.
Password hash values are computed by the PASSWORD() function.

MySQL uses passwords in two phases of client/server communication:

• When a client attempts to connect to the server, there is an initial authentication step in which the client must present a password
that has a hash value matching the hash value stored in the user table for the account that the client wants to use.

• After the client connects, it can (if it has sufficient privileges) set or change the password hashes for accounts listed in the user ta-
ble. The client can do this by using the PASSWORD() function to generate a password hash, or by using the GRANT or SET
PASSWORD statements.

In other words, the server uses hash values during authentication when a client first attempts to connect. The server generates hash val-
ues if a connected client invokes the PASSWORD() function or uses a GRANT or SET PASSWORD statement to set or change a pass-
word.

The password hashing mechanism was updated in MySQL 4.1 to provide better security and to reduce the risk of passwords being inter-
cepted. However, this new mechanism is understood only by MySQL 4.1 (and newer) servers and clients, which can result in some
compatibility problems. A 4.1 or newer client can connect to a pre-4.1 server, because the client understands both the old and new pass-
word hashing mechanisms. However, a pre-4.1 client that attempts to connect to a 4.1 or newer server may run into difficulties. For ex-
ample, a 3.23 mysql client that attempts to connect to a 5.1 server may fail with the following error message:

shell> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

Another common example of this phenomenon occurs for attempts to use the older PHP mysql extension after upgrading to MySQL
4.1 or newer. (See Section 26.3.1, “Common Problems with MySQL and PHP”.)

The following discussion describes the differences between the old and new password mechanisms, and what you should do if you up-
grade your server but need to maintain backward compatibility with pre-4.1 clients. Additional information can be found in Sec-
tion B.1.2.4, “Client does not support authentication protocol”. This information is of particular importance to
PHP programmers migrating MySQL databases from version 4.0 or lower to version 4.1 or higher.

Note

This discussion contrasts 4.1 behavior with pre-4.1 behavior, but the 4.1 behavior described here actually begins with
4.1.1. MySQL 4.1.0 is an “odd” release because it has a slightly different mechanism than that implemented in 4.1.1 and
up. Differences between 4.1.0 and more recent versions are described further in MySQL 5.0 Reference Manual.

Prior to MySQL 4.1, password hashes computed by the PASSWORD() function are 16 bytes long. Such hashes look like this:

mysql> SELECT PASSWORD('mypass');

MySQL Server Administration

461

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://forge.mysql.com/wiki/MySQL_Internals_Porting


+--------------------+
| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+

The Password column of the user table (in which these hashes are stored) also is 16 bytes long before MySQL 4.1.

As of MySQL 4.1, the PASSWORD() function has been modified to produce a longer 41-byte hash value:

mysql> SELECT PASSWORD('mypass');
+-------------------------------------------+
| PASSWORD('mypass') |
+-------------------------------------------+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+-------------------------------------------+

Accordingly, the Password column in the user table also must be 41 bytes long to store these values:

• If you perform a new installation of MySQL 5.1, the Password column is made 41 bytes long automatically.

• Upgrading from MySQL 4.1 (4.1.1 or later in the 4.1 series) to MySQL 5.1 should not give rise to any issues in this regard because
both versions use the same password hashing mechanism. If you wish to upgrade an older release of MySQL to version 5.1, you
should upgrade to version 4.1 first, then upgrade the 4.1 installation to 5.1.

A widened Password column can store password hashes in both the old and new formats. The format of any given password hash
value can be determined two ways:

• The obvious difference is the length (16 bytes versus 41 bytes).

• A second difference is that password hashes in the new format always begin with a “*” character, whereas passwords in the old
format never do.

The longer password hash format has better cryptographic properties, and client authentication based on long hashes is more secure than
that based on the older short hashes.

The differences between short and long password hashes are relevant both for how the server uses passwords during authentication and
for how it generates password hashes for connected clients that perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the Password column:

• If the column is short, only short-hash authentication is used.

• If the column is long, it can hold either short or long hashes, and the server can use either format:

• Pre-4.1 clients can connect, although because they know only about the old hashing mechanism, they can authenticate only us-
ing accounts that have short hashes.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later clients than for older clients. In
terms of security, the gradient from least to most secure is:

• Pre-4.1 client authenticating with short password hash

• 4.1 or later client authenticating with short password hash

• 4.1 or later client authenticating with long password hash

The way in which the server generates password hashes for connected clients is affected by the width of the Password column and by
the --old-passwords option. A 4.1 or later server generates long hashes only if certain conditions are met: The Password column

MySQL Server Administration

462



must be wide enough to hold long values and the --old-passwords option must not be given. These conditions apply as follows:

• The Password column must be wide enough to hold long hashes (41 bytes). If the column has not been updated and still has the
pre-4.1 width of 16 bytes, the server notices that long hashes cannot fit into it and generates only short hashes when a client per-
forms password-changing operations using PASSWORD(), GRANT, or SET PASSWORD. This is the behavior that occurs if you
have upgraded to 4.1 but have not yet run the mysql_fix_privilege_tables script to widen the Password column.

• If the Password column is wide, it can store either short or long password hashes. In this case, PASSWORD(), GRANT, and SET
PASSWORD generate long hashes unless the server was started with the --old-passwords option. That option forces the server
to generate short password hashes instead.

The purpose of the --old-passwords option is to enable you to maintain backward compatibility with pre-4.1 clients under circum-
stances where the server would otherwise generate long password hashes. The option doesn't affect authentication (4.1 and later clients
can still use accounts that have long password hashes), but it does prevent creation of a long password hash in the user table as the res-
ult of a password-changing operation. Were that to occur, the account no longer could be used by pre-4.1 clients. Without the -
-old-passwords option, the following undesirable scenario is possible:

• An old client connects to an account that has a short password hash.

• The client changes its own password. Without --old-passwords, this results in the account having a long password hash.

• The next time the old client attempts to connect to the account, it cannot, because the account has a long password hash that requires
the new hashing mechanism during authentication. (Once an account has a long password hash in the user table, only 4.1 and later
clients can authenticate for it, because pre-4.1 clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is dangerous to run a 4.1 or newer server without using the -
-old-passwords option. By running the server with --old-passwords, password-changing operations do not generate long
password hashes and thus do not cause accounts to become inaccessible to older clients. (Those clients cannot inadvertently lock them-
selves out by changing their password and ending up with a long password hash.)

The downside of the --old-passwords option is that any passwords you create or change use short hashes, even for 4.1 clients.
Thus, you lose the additional security provided by long password hashes. If you want to create an account that has a long hash (for ex-
ample, for use by 4.1 clients), you must do so while running the server without --old-passwords.

MySQL Enterprise
Subscribers to the MySQL Enterprise Monitor are automatically alerted whenever a server is running with the -
-old-passwords option. For more information see http://www.mysql.com/products/enterprise/advisors.html.

The following scenarios are possible for running a 4.1 or later server:

Scenario 1: Short Password column in user table:

• Only short hashes can be stored in the Password column.

• The server uses only short hashes during client authentication.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or SET PASSWORD use short
hashes exclusively. Any change to an account's password results in that account having a short password hash.

• The --old-passwords option can be used but is superfluous because with a short Password column, the server generates only
short password hashes anyway.

Scenario 2: Long Password column; server not started with --old-passwords option:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only using accounts that have short hashes.

MySQL Server Administration

463

http://www.mysql.com/products/enterprise/advisors.html


• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or SET PASSWORD use long hashes
exclusively. A change to an account's password results in that account having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short password hash to become inaccessible to
pre-4.1 clients. A change to such an account's password made via GRANT, PASSWORD(), or SET PASSWORD results in the account
being given a long password hash. From that point on, no pre-4.1 client can authenticate to that account until the client upgrades to 4.1.

To deal with this problem, you can change a password in a special way. For example, normally you use SET PASSWORD as follows to
change an account password:

SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('mypass');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('mypass');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

Scenario 3: Long Password column; 4.1 or newer server started with --old-passwords option:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate for accounts that have short or long hashes (but note that it is possible to create long hashes
only when the server is started without --old-passwords).

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or SET PASSWORD use short
hashes exclusively. Any change to an account's password results in that account having a short password hash.

In this scenario, you cannot create accounts that have long password hashes, because the --old-passwords option prevents genera-
tion of long hashes. Also, if you create an account with a long hash before using the --old-passwords option, changing the ac-
count's password while --old-passwords is in effect results in the account being given a short password, causing it to lose the se-
curity benefits of a longer hash.

The disadvantages for these scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, accounts with short hashes become inaccessible to pre-4.1 clients if you change their passwords without explicitly using
OLD_PASSWORD().

In scenario 3, --old-passwords prevents accounts with short hashes from becoming inaccessible, but password-changing opera-
tions cause accounts with long hashes to revert to short hashes, and you cannot change them back to long hashes while -
-old-passwords is in effect.

5.4.9.1. Implications of Password Hashing Changes for Application Programs

An upgrade to MySQL version 4.1 or later can cause compatibility issues for applications that use PASSWORD() to generate passwords
for their own purposes. Applications really should not do this, because PASSWORD() should be used only to manage passwords for
MySQL accounts. But some applications use PASSWORD() for their own purposes anyway.

If you upgrade to 4.1 or later from a pre-4.1 version of MySQL and run the server under conditions where it generates long password
hashes, an application using PASSWORD() for its own passwords breaks. The recommended course of action in such cases is to modify
the application to use another function, such as SHA1() or MD5(), to produce hashed values. If that is not possible, you can use the
OLD_PASSWORD() function, which is provided for generate short hashes in the old format. However, you should note that
OLD_PASSWORD() may one day no longer be supported.

If the server is running under circumstances where it generates short hashes, OLD_PASSWORD() is available but is equivalent to
PASSWORD().

PHP programmers migrating their MySQL databases from version 4.0 or lower to version 4.1 or higher should see Section 26.3,

MySQL Server Administration

464



“MySQL PHP API”.

5.5. MySQL User Account Management
This section describes how to set up accounts for clients of your MySQL server. It discusses the following topics:

• The meaning of account names and passwords as used in MySQL and how that compares to names and passwords used by your op-
erating system

• How to set up new accounts and remove existing accounts

• How to change passwords

• Guidelines for using passwords securely

• How to use secure connections with SSL

5.5.1. MySQL Usernames and Passwords
A MySQL account is defined in terms of a username and the client host or hosts from which the user can connect to the server. The ac-
count also has a password. There are several distinctions between the way usernames and passwords are used by MySQL and the way
they are used by your operating system:

• Usernames, as used by MySQL for authentication purposes, have nothing to do with usernames (login names) as used by Windows
or Unix. On Unix, most MySQL clients by default try to log in using the current Unix username as the MySQL username, but that is
for convenience only. The default can be overridden easily, because client programs allow any username to be specified with a -u
or --user option. Because this means that anyone can attempt to connect to the server using any username, you cannot make a
database secure in any way unless all MySQL accounts have passwords. Anyone who specifies a username for an account that has
no password is able to connect successfully to the server.

• MySQL usernames can be up to 16 characters long. This limit is hard-coded in the MySQL servers and clients, and trying to circum-
vent it by modifying the definitions of the tables in the mysql database does not work.

Note

You should never alter any of the tables in the mysql database in any manner whatsoever except by means of the proced-
ure prescribed by MySQL AB that is described in Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Up-
grade”. Attempting to redefine MySQL's system tables in any other fashion results in undefined (and unsupported!) beha-
vior.

Operating system usernames are completely unrelated to MySQL usernames and may even be of a different maximum length. For
example, Unix usernames typically are limited to eight characters.

• MySQL passwords have nothing to do with passwords for logging in to your operating system. There is no necessary connection
between the password you use to log in to a Windows or Unix machine and the password you use to access the MySQL server on
that machine.

• MySQL encrypts passwords using its own algorithm. This encryption is different from that used during the Unix login process.
MySQL password encryption is the same as that implemented by the PASSWORD() SQL function. Unix password encryption is the
same as that implemented by the ENCRYPT() SQL function. See the descriptions of the PASSWORD() and ENCRYPT() functions
in Section 11.11.2, “Encryption and Compression Functions”. From version 4.1 on, MySQL employs a stronger authentication
method that has better password protection during the connection process than in earlier versions. It is secure even if TCP/IP packets
are sniffed or the mysql database is captured. (In earlier versions, even though passwords are stored in encrypted form in the user
table, knowledge of the encrypted password value could be used to connect to the MySQL server.)

When you install MySQL, the grant tables are populated with an initial set of accounts. These accounts have names and access priv-
ileges that are described in Section 2.10.3, “Securing the Initial MySQL Accounts”, which also discusses how to assign passwords to
them. Thereafter, you normally set up, modify, and remove MySQL accounts using statements such as GRANT and REVOKE. See Sec-
tion 12.5.1, “Account Management Statements”.

When you connect to a MySQL server with a command-line client, you should specify the username and password for the account that

MySQL Server Administration

465



you want to use:

shell> mysql --user=monty --password=guess db_name

If you prefer short options, the command looks like this:

shell> mysql -u monty -pguess db_name

There must be no space between the -p option and the following password value. See Section 5.4.4, “Connecting to the MySQL Serv-
er”.

The preceding commands include the password value on the command line, which can be a security risk. See Section 5.5.6, “Keeping
Your Password Secure”. To avoid this problem, specify the --password or -p option without any following password value:

shell> mysql --user=monty --password db_name
shell> mysql -u monty -p db_name

When the password option has no password value, the client program prints a prompt and waits for you to enter the password. (In these
examples, db_name is not interpreted as a password because it is separated from the preceding password option by a space.)

On some systems, the library routine that MySQL uses to prompt for a password automatically limits the password to eight characters.
That is a problem with the system library, not with MySQL. Internally, MySQL doesn't have any limit for the length of the password.
To work around the problem, change your MySQL password to a value that is eight or fewer characters long, or put your password in an
option file.

5.5.2. Adding New User Accounts to MySQL
You can create MySQL accounts in two ways:

• By using statements intended for creating accounts, such as CREATE USER or GRANT

• By manipulating the MySQL grant tables directly with statements such as INSERT, UPDATE, or DELETE

The preferred method is to use account-creation statements because they are more concise and less error-prone. CREATE USER and
GRANT are described in Section 12.5.1.1, “CREATE USER Syntax”, and Section 12.5.1.3, “GRANT Syntax”.

Another option for creating accounts is to use one of several available third-party programs that offer capabilities for MySQL account
administration. phpMyAdmin is one such program.

The following examples show how to use the mysql client program to set up new users. These examples assume that privileges are set
up according to the defaults described in Section 2.10.3, “Securing the Initial MySQL Accounts”. This means that to make changes, you
must connect to the MySQL server as the MySQL root user, and the root account must have the INSERT privilege for the mysql
database and the RELOAD administrative privilege.

As noted in the examples where appropriate, some of the statements will fail if you have the server's SQL mode has been set to enable
certain restrictions. In particular, strict mode (STRICT_TRANS_TABLES, STRICT_ALL_TABLES) and NO_AUTO_CREATE_USER
will prevent the server from accepting some of the statements. Workarounds are indicated for these cases. For more information about
SQL modes and their effect on grant table manipulation, see Section 5.1.6, “SQL Modes”, and Section 12.5.1.3, “GRANT Syntax”.

First, use the mysql program to connect to the server as the MySQL root user:

shell> mysql --user=root mysql

If you have assigned a password to the root account, you'll also need to supply a --password or -p option for this mysql com-
mand and also for those later in this section.

After connecting to the server as root, you can add new accounts. The following statements use GRANT to set up four new accounts:

mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'localhost'
-> IDENTIFIED BY 'some_pass' WITH GRANT OPTION;

mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'%'
-> IDENTIFIED BY 'some_pass' WITH GRANT OPTION;

mysql> GRANT RELOAD,PROCESS ON *.* TO 'admin'@'localhost';
mysql> GRANT USAGE ON *.* TO 'dummy'@'localhost';

MySQL Server Administration

466



The accounts created by these GRANT statements have the following properties:

• Two of the accounts have a username of monty and a password of some_pass. Both accounts are superuser accounts with full
privileges to do anything. One account ('monty'@'localhost') can be used only when connecting from the local host. The
other ('monty'@'%') can be used to connect from any other host. Note that it is necessary to have both accounts for monty to be
able to connect from anywhere as monty. Without the localhost account, the anonymous-user account for localhost that is
created by mysql_install_db would take precedence when monty connects from the local host. As a result, monty would be
treated as an anonymous user. The reason for this is that the anonymous-user account has a more specific Host column value than
the 'monty'@'%' account and thus comes earlier in the user table sort order. (user table sorting is discussed in Section 5.4.5,
“Access Control, Stage 1: Connection Verification”.)

• One account has a username of admin and no password. This account can be used only by connecting from the local host. It is
granted the RELOAD and PROCESS administrative privileges. These privileges allow the admin user to execute the mysqladmin
reload, mysqladmin refresh, and mysqladmin flush-xxx commands, as well as mysqladmin processlist .
No privileges are granted for accessing any databases. You could add such privileges later by issuing additional GRANT statements.

• One account has a username of dummy and no password. This account can be used only by connecting from the local host. No priv-
ileges are granted. The USAGE privilege in the GRANT statement enables you to create an account without giving it any privileges. It
has the effect of setting all the global privileges to 'N'. It is assumed that you will grant specific privileges to the account later.

• The statements that create accounts with no password will fail if the NO_AUTO_CREATE_USER SQL mode is enabled. To deal
with this, use an IDENTIFIED BY clause that specifies a non-empty password.

As an alternative to GRANT, you can create the same accounts directly by issuing INSERT statements and then telling the server to re-
load the grant tables using FLUSH PRIVILEGES:

shell> mysql --user=root mysql
mysql> INSERT INTO user

-> VALUES('localhost','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO user
-> VALUES('%','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
-> '','','','',0,0,0,0);

mysql> INSERT INTO user SET Host='localhost',User='admin',
-> Reload_priv='Y', Process_priv='Y';

mysql> INSERT INTO user (Host,User,Password)
-> VALUES('localhost','dummy','');

mysql> FLUSH PRIVILEGES;

The reason for using FLUSH PRIVILEGES when you create accounts with INSERT is to tell the server to re-read the grant tables.
Otherwise, the changes go unnoticed until you restart the server. With GRANT, FLUSH PRIVILEGES is unnecessary.

The reason for using the PASSWORD() function with INSERT is to encrypt the password. The GRANT statement encrypts the password
for you, so PASSWORD() is unnecessary.

The 'Y' values enable privileges for the accounts. Depending on your MySQL version, you may have to use a different number of 'Y'
values in the first two INSERT statements. For the admin account, you may also employ the more readable extended INSERT syntax
using SET.

In the INSERT statement for the dummy account, only the Host, User, and Password columns in the user table row are assigned
values. None of the privilege columns are set explicitly, so MySQL assigns them all the default value of 'N'. This is equivalent to what
GRANT USAGE does.

If strict SQL mode is enabled, all columns that have no default value must have a value specified. In this case, INSERT statements must
explicitly specify values for the ssl_cipher, x509_issuer, and x509_subject columns.

Note that to set up a superuser account, it is necessary only to create a user table entry with the privilege columns set to 'Y'. user
table privileges are global, so no entries in any of the other grant tables are needed.

The next examples create three accounts and give them access to specific databases. Each of them has a username of custom and pass-
word of obscure.

To create the accounts with GRANT, use the following statements:

MySQL Server Administration

467



shell> mysql --user=root mysql
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

-> ON bankaccount.*
-> TO 'custom'@'localhost'
-> IDENTIFIED BY 'obscure';

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON expenses.*
-> TO 'custom'@'whitehouse.gov'
-> IDENTIFIED BY 'obscure';

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON customer.*
-> TO 'custom'@'server.domain'
-> IDENTIFIED BY 'obscure';

The three accounts can be used as follows:

• The first account can access the bankaccount database, but only from the local host.

• The second account can access the expenses database, but only from the host whitehouse.gov.

• The third account can access the customer database, but only from the host server.domain.

To set up the custom accounts without GRANT, use INSERT statements as follows to modify the grant tables directly:

shell> mysql --user=root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('localhost','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('whitehouse.gov','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('server.domain','custom',PASSWORD('obscure'));
mysql> INSERT INTO db

-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('localhost','bankaccount','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('whitehouse.gov','expenses','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('server.domain','customer','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> FLUSH PRIVILEGES;

The first three INSERT statements add user table entries that allow the user custom to connect from the various hosts with the given
password, but grant no global privileges (all privileges are set to the default value of 'N'). The next three INSERT statements add db
table entries that grant privileges to custom for the bankaccount, expenses, and customer databases, but only when accessed
from the proper hosts. As usual when you modify the grant tables directly, you must tell the server to reload them with FLUSH PRIV-
ILEGES so that the privilege changes take effect.

If you want to give a specific user access from all machines in a given domain (for example, mydomain.com), you can issue a GRANT
statement that uses the “%” wildcard character in the host part of the account name:

mysql> GRANT ...
-> ON *.*
-> TO 'myname'@'%.mydomain.com'
-> IDENTIFIED BY 'mypass';

To do the same thing by modifying the grant tables directly, do this:

mysql> INSERT INTO user (Host,User,Password,...)
-> VALUES('%.mydomain.com','myname',PASSWORD('mypass'),...);

mysql> FLUSH PRIVILEGES;

5.5.3. Removing User Accounts from MySQL
To remove an account, use the DROP USER statement, which is described in Section 12.5.1.2, “DROP USER Syntax”.

MySQL Server Administration

468



5.5.4. Limiting Account Resources
One means of limiting use of MySQL server resources is to set the max_user_connections system variable to a non-zero value.
However, this method is strictly global, and does not allow for management of individual accounts. In addition, it limits only the num-
ber of simultaneous connections made using a single account, and not what a client can do once connected. Both types of control are of
interest to many MySQL administrators, particularly those working for Internet Service Providers.

In MySQL 5.1, you can limit the following server resources for individual accounts:

• The number of queries that an account can issue per hour

• The number of updates that an account can issue per hour

• The number of times an account can connect to the server per hour

Any statement that a client can issue counts against the query limit. Only statements that modify databases or tables count against the
update limit.

It is also possible to limit the number of simultaneous connections to the server on a per-account basis.

An “account” in this context is assessed as a single row in the user table. That is, connections are assessed against the Host value in
the user table row that applies to the connection. Suppose that there is a row in the user table that has User and Host values of
usera and %.example.com, to allow usera to connect from any host in the example.com domain. In this case, the server ap-
plies resource limits collectively to all connections by usera from any host in the example.com domain.

Before MySQL 5.0.3, an “account” was assessed against the actual host from which a user connects. This older method accounting may
be selected by starting the server with the --old-style-user-limits option. In this case, if usera connects simultaneously
from host1.example.com and host2.example.com, the server applies the account resource limits separately to each connec-
tion. If usera connects again from host1.example.com, the server applies the limits for that connection together with the existing
connection from that host.

As a prerequisite for using this feature, the user table in the mysql database must contain the resource-related columns. Resource
limits are stored in the max_questions, max_updates, max_connections, and max_user_connections columns. If
your user table doesn't have these columns, it must be upgraded; see Section 4.4.8, “mysql_upgrade — Check Tables for MySQL
Upgrade”.

To set resource limits with a GRANT statement, use a WITH clause that names each resource to be limited and a per-hour count indicat-
ing the limit value. For example, to create a new account that can access the customer database, but only in a limited fashion, issue
this statement:

mysql> GRANT ALL ON customer.* TO 'francis'@'localhost'
-> IDENTIFIED BY 'frank'
-> WITH MAX_QUERIES_PER_HOUR 20
-> MAX_UPDATES_PER_HOUR 10
-> MAX_CONNECTIONS_PER_HOUR 5
-> MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any order. The value for each per-hour
limit should be an integer representing a count per hour. If the GRANT statement has no WITH clause, the limits are each set to the de-
fault value of zero (that is, no limit). For MAX_USER_CONNECTIONS, the limit is an integer indicating the maximum number of simul-
taneous connections the account can make at any one time. If the limit is set to the default value of zero, the
max_user_connections system variable determines the number of simultaneous connections for the account.

To set or change limits for an existing account, use a GRANT USAGE statement at the global level (ON *.*). The following statement
changes the query limit for francis to 100:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_QUERIES_PER_HOUR 100;

This statement leaves the account's existing privileges unchanged and modifies only the limit values specified.

To remove an existing limit, set its value to zero. For example, to remove the limit on how many times per hour francis can connect,
use this statement:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_CONNECTIONS_PER_HOUR 0;

MySQL Server Administration

469



Resource-use counting takes place when any account has a non-zero limit placed on its use of any of the resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches its limit on number of connections
within the last hour, further connections for the account are rejected until that hour is up. Similarly, if the account reaches its limit on
the number of queries or updates, further queries or updates are rejected until the hour is up. In all such cases, an appropriate error mes-
sage is issued.

Resource counting is done per account, not per client. For example, if your account has a query limit of 50, you cannot increase your
limit to 100 by making two simultaneous client connections to the server. Queries issued on both connections are counted together.

Queries for which results are served from the query cache do not count against the MAX_QUERIES_PER_HOUR limit.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a given account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement. The counts also can be reset by
reloading the grant tables (for example, with a FLUSH PRIVILEGES statement or a mysqladmin reload command).

• The counts for an individual account can be set to zero by re-granting it any of its limits. To do this, use GRANT USAGE as de-
scribed earlier and specify a limit value equal to the value that the account currently has.

Counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts; counts are not carried over through a restart.

5.5.5. Assigning Account Passwords
Passwords may be assigned from the command line by using the mysqladmin command:

shell> mysqladmin -u user_name -h host_name password "newpwd"

The account for which this command resets the password is the one with a user table row that matches user_name in the User
column and the client host from which you connect in the Host column.

Another way to assign a password to an account is to issue a SET PASSWORD statement:

mysql> SET PASSWORD FOR 'jeffrey'@'%' = PASSWORD('biscuit');

Only users such as root that have update access to the mysql database can change the password for other users. If you are not con-
nected as an anonymous user, you can change your own password by omitting the FOR clause:

mysql> SET PASSWORD = PASSWORD('biscuit');

You can also use a GRANT USAGE statement at the global level (ON *.*) to assign a password to an account without affecting the ac-
count's current privileges:

mysql> GRANT USAGE ON *.* TO 'jeffrey'@'%' IDENTIFIED BY 'biscuit';

Although it is generally preferable to assign passwords using one of the preceding methods, you can also do so by modifying the user
table directly:

• To establish a password when creating a new account, provide a value for the Password column:

shell> mysql -u root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('%','jeffrey',PASSWORD('biscuit'));
mysql> FLUSH PRIVILEGES;

• To change the password for an existing account, use UPDATE to set the Password column value:

shell> mysql -u root mysql
mysql> UPDATE user SET Password = PASSWORD('bagel')

MySQL Server Administration

470



-> WHERE Host = '%' AND User = 'francis';
mysql> FLUSH PRIVILEGES;

When you assign an account a non-empty password using SET PASSWORD, INSERT, or UPDATE, you must use the PASSWORD()
function to encrypt it. PASSWORD() is necessary because the user table stores passwords in encrypted form, not as plaintext. If you
forget that fact, you are likely to set passwords like this:

shell> mysql -u root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('%','jeffrey','biscuit');
mysql> FLUSH PRIVILEGES;

The result is that the literal value 'biscuit' is stored as the password in the user table, not the encrypted value. When jeffrey
attempts to connect to the server using this password, the value is encrypted and compared to the value stored in the user table.
However, the stored value is the literal string 'biscuit', so the comparison fails and the server rejects the connection:

shell> mysql -u jeffrey -pbiscuit test
Access denied

If you assign passwords using the GRANT ... IDENTIFIED BY statement or the mysqladmin password command, they both
take care of encrypting the password for you. In these cases, using PASSWORD() function is unnecessary.

Note

PASSWORD() encryption is different from Unix password encryption. See Section 5.5.1, “MySQL Usernames and Pass-
words”.

5.5.6. Keeping Your Password Secure
On an administrative level, you should never grant access to the user grant table to any non-administrative accounts.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your password in a way that exposes it to
discovery by other users. The methods you can use to specify your password when you run client programs are listed here, along with
an assessment of the risks of each method:

• Use a -pyour_pass or --password=your_pass option on the command line. For example:

shell> mysql -u francis -pfrank db_name

This is convenient but insecure, because your password becomes visible to system status programs such as ps that may be invoked
by other users to display command lines. MySQL clients typically overwrite the command-line password argument with zeros dur-
ing their initialization sequence. However, there is still a brief interval during which the value is visible. On some systems this
strategy is ineffective, anyway, and the password remains visible to ps. (SystemV Unix systems and perhaps others are subject to
this problem.)

• Use the -p or --password option with no password value specified. In this case, the client program solicits the password from
the terminal:

shell> mysql -u francis -p db_name
Enter password: ********

The “*” characters indicate where you enter your password. The password is not displayed as you enter it.

It is more secure to enter your password this way than to specify it on the command line because it is not visible to other users.
However, this method of entering a password is suitable only for programs that you run interactively. If you want to invoke a client
from a script that runs non-interactively, there is no opportunity to enter the password from the terminal. On some systems, you may
even find that the first line of your script is read and interpreted (incorrectly) as your password.

• Store your password in an option file. For example, on Unix you can list your password in the [client] section of the .my.cnf
file in your home directory:

[client]
password=your_pass

MySQL Server Administration

471



If you store your password in .my.cnf, the file should not be accessible to anyone but yourself. To ensure this, set the file access
mode to 400 or 600. For example:

shell> chmod 600 .my.cnf

Section 4.2.2.2, “Using Option Files”, discusses option files in more detail.

• Store your password in the MYSQL_PWD environment variable. This method of specifying your MySQL password must be con-
sidered extremely insecure and should not be used. Some versions of ps include an option to display the environment of running
processes. If you set MYSQL_PWD, your password is exposed to any other user who runs ps. Even on systems without such a ver-
sion of ps, it is unwise to assume that there are no other methods by which users can examine process environments. See Sec-
tion 2.14, “Environment Variables”.

All in all, the safest methods are to have the client program prompt for the password or to specify the password in a properly protected
option file.

5.5.7. Using Secure Connections
MySQL supports secure (encrypted) connections between MySQL clients and the server using the Secure Sockets Layer (SSL) pro-
tocol. This section discusses how to use SSL connections. It also describes a way to set up SSH on Windows. For information on how to
require users to use SSL connections, see the discussion of the REQUIRE clause of the GRANT statement in Section 12.5.1.3, “GRANT
Syntax”.

The standard configuration of MySQL is intended to be as fast as possible, so encrypted connections are not used by default. Doing so
would make the client/server protocol much slower. Encrypting data is a CPU-intensive operation that requires the computer to do addi-
tional work and can delay other MySQL tasks. For applications that require the security provided by encrypted connections, the extra
computation is warranted.

MySQL allows encryption to be enabled on a per-connection basis. You can choose a normal unencrypted connection or a secure en-
crypted SSL connection according the requirements of individual applications.

Secure connections are based on the OpenSSL API and are available through the MySQL C API. Replication uses the C API, so secure
connections can be used between master and slave servers.

5.5.7.1. Basic SSL Concepts

To understand how MySQL uses SSL, it is necessary to explain some basic SSL and X509 concepts. People who are familiar with these
can skip this part of the discussion.

By default, MySQL uses unencrypted connections between the client and the server. This means that someone with access to the net-
work could watch all your traffic and look at the data being sent or received. They could even change the data while it is in transit
between client and server. To improve security a little, you can compress client/server traffic by using the --compress option when
invoking client programs. However, this does not foil a determined attacker.

When you need to move information over a network in a secure fashion, an unencrypted connection is unacceptable. Encryption is the
way to make any kind of data unreadable. In fact, today's practice requires many additional security elements from encryption al-
gorithms. They should resist many kind of known attacks such as changing the order of encrypted messages or replaying data twice.

SSL is a protocol that uses different encryption algorithms to ensure that data received over a public network can be trusted. It has
mechanisms to detect any data change, loss, or replay. SSL also incorporates algorithms that provide identity verification using the
X509 standard.

X509 makes it possible to identify someone on the Internet. It is most commonly used in e-commerce applications. In basic terms, there
should be some company called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs them. Certi-
ficates rely on asymmetric encryption algorithms that have two encryption keys (a public key and a secret key). A certificate owner can
show the certificate to another party as proof of identity. A certificate consists of its owner's public key. Any data encrypted with this
public key can be decrypted only using the corresponding secret key, which is held by the owner of the certificate.

If you need more information about SSL, X509, or encryption, use your favorite Internet search engine to search for the keywords in
which you are interested.

MySQL Server Administration

472



5.5.7.2. Using SSL Connections

To use SSL connections between the MySQL server and client programs, your system must support either OpenSSL or yaSSL and your
version of MySQL must be built with SSL support.

To make it easier to use secure connections, MySQL is bundled with yaSSL. (MySQL and yaSSL employ the same licensing model,
whereas OpenSSL uses an Apache-style license.) yaSSL support initially was available only for a few platforms, but now it is available
on all platforms supported by MySQL AB.

To get secure connections to work with MySQL and SSL, you must do the following:

1. If you are not using a binary (precompiled) version of MySQL that has been built with SSL support, and you are going to use
OpenSSL rather than the bundled yaSSL library, install OpenSSL if it has not already been installed. We have tested MySQL with
OpenSSL 0.9.6. To obtain OpenSSL, visit http://www.openssl.org.

2. If you are not using a binary (precompiled) version of MySQL that has been built with SSL support, configure a MySQL source
distribution to use SSL. When you configure MySQL, invoke the configure script like this:

shell> ./configure --with-ssl

That configures the distribution to use the bundled yaSSL library. To use OpenSSL instead, specify the --with-ssl option with
the path to the directory where the OpenSSL header files and libraries are located:

shell> ./configure --with-ssl=path

Before MySQL 5.1.11, you must use the appropriate option to select the SSL library that you want to use.

For yaSSL:

shell> ./configure --with-yassl

For OpenSSL:

shell> ./configure --with-openssl

Note that yaSSL support on Unix platforms requires that either /dev/urandom or /dev/random be available to retrieve true
random numbers. For additional information (especially regarding yaSSL on Solaris versions prior to 2.8 and HP-UX), see
Bug#13164.

3. Make sure that you have upgraded your grant tables to include the SSL-related columns in the mysql.user table. This is neces-
sary if your grant tables date from a version of MySQL older than 4.0. The upgrade procedure is described in Section 4.4.8,
“mysql_upgrade — Check Tables for MySQL Upgrade”.

4. To check whether a server binary is compiled with SSL support, invoke it with the --ssl option. An error will occur if the server
does not support SSL:

shell> mysqld --ssl --help
060525 14:18:52 [ERROR] mysqld: unknown option '--ssl'

To check whether a running mysqld server supports SSL, examine the value of the have_ssl system variable:

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+

If the value is YES, the server supports SSL connections. If the value is DISABLED, the server supports SSL connections but was
not started with the appropriate --ssl-xxx options (described later in this section). If the value is YES, the server supports SSL
connections.

To enable SSL connections, the proper SSL-related command options must be used (see Section 5.5.7.3, “SSL Command Options”).

MySQL Server Administration

473

http://www.openssl.org
http://bugs.mysql.com/13164


To start the MySQL server so that it allows clients to connect via SSL, use the options that identify the key and certificate files the serv-
er needs when establishing a secure connection:

shell> mysqld --ssl-ca=cacert.pem \
--ssl-cert=server-cert.pem \
--ssl-key=server-key.pem

• --ssl-ca identifies the Certificate Authority (CA) certificate.

• --ssl-cert identifies the server public key. This can be sent to the client and authenticated against the CA certificate that it has.

• --ssl-key identifies the server private key.

To establish a secure connection to a MySQL server with SSL support, the options that a client must specify depend on the SSL require-
ments of the user account that the client uses. (See the discussion of the REQUIRE clause in Section 12.5.1.3, “GRANT Syntax”.)

If the account has no special SSL requirements or was created using a GRANT statement that includes the REQUIRE SSL option, a cli-
ent can connect securely by using just the --ssl-ca option:

shell> mysql --ssl-ca=cacert.pem

To require that a client certificate also be specified, create the account using the REQUIRE X509 option. Then the client must also spe-
cify the proper client key and certificate files or the server will reject the connection:

shell> mysql --ssl-ca=cacert.pem \
--ssl-cert=client-cert.pem \
--ssl-key=client-key.pem

In other words, the options are similar to those used for the server. Note that the Certificate Authority certificate has to be the same.

A client can determine whether the current connection with the server uses SSL by checking the value of the Ssl_cipher status vari-
able. The value of Ssl_cipher is non-empty if SSL is used, and empty otherwise. For example:

mysql> SHOW STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

For the mysql client, you can use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Not in use
...

Or:

mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES256-SHA
...

To establish a secure connection from within an application program, use the mysql_ssl_set() C API function to set the appropri-
ate certificate options before calling mysql_real_connect(). See Section 26.2.3.67, “mysql_ssl_set()”. After the connec-
tion is established, you can use mysql_get_ssl_cipher() to determine whether SSL is in use. A non-NULL return value indicates
a secure connection and names the SSL cipher used for encryption. A NULL return value indicates that SSL is not being used. See Sec-
tion 26.2.3.33, “mysql_get_ssl_cipher()”.

5.5.7.3. SSL Command Options

The following list describes options that are used for specifying the use of SSL, certificate files, and key files. They can be given on the
command line or in an option file. These options are not available unless MySQL has been built with SSL support. See Section 5.5.7.2,
“Using SSL Connections”. (There are also --master-ssl* options that can be used for setting up a secure connection from a slave

MySQL Server Administration

474



replication server to a master server; see Section 16.1.3, “Replication Options and Variables”.)

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

have_openssl Yes Global No

have_ssl Yes Global No

skip-ssl Yes Yes

ssl Yes Yes

ssl-ca Yes Yes Global No

- Variable: ssl_ca Yes Global No

ssl-capath Yes Yes Global No

- Variable: ssl_capath Yes Global No

ssl-cert Yes Yes Global No

- Variable: ssl_cert Yes Global No

ssl-cipher Yes Yes Global No

- Variable: ssl_cipher Yes Global No

ssl-key Yes Yes Global No

- Variable: ssl_key Yes Global No

• --ssl

For the server, this option specifies that the server allows SSL connections. For a client program, it allows the client to connect to
the server using SSL. This option is not sufficient in itself to cause an SSL connection to be used. You must also specify the -
-ssl-ca option, and possibly the --ssl-cert and --ssl-key options.

This option is more often used in its opposite form to override any other SSL options and indicate that SSL should not be used. To
do this, specify the option as --skip-ssl or --ssl=0.

Note that use of --ssl does not require an SSL connection. For example, if the server or client is compiled without SSL support, a
normal unencrypted connection is used.

The secure way to require use of an SSL connection is to create an account on the server that includes a REQUIRE SSL clause in
the GRANT statement. Then use that account to connect to the server, where both the server and the client have SSL support enabled.

The REQUIRE clause allows other SSL-related restrictions as well. The description of REQUIRE in Section 12.5.1.3, “GRANT Syn-
tax”, provides additional detail about which SSL command options may or must be specified by clients that connect using accounts
that are created using the various REQUIRE options.

• --ssl-ca=file_name

The path to a file that contains a list of trusted SSL CAs.

• --ssl-capath=directory_name

The path to a directory that contains trusted SSL CA certificates in PEM format.

• --ssl-cert=file_name

The name of the SSL certificate file to use for establishing a secure connection.

• --ssl-cipher=cipher_list

A list of allowable ciphers to use for SSL encryption. For greatest portability, cipher_list should be a list of one or more cipher
names, separated by colons. Examples:

--ssl-cipher=AES128-SHA
--ssl-cipher=DHE-RSA-AES256-SHA:AES128-SHA

This format is understood both by OpenSSL and yaSSL. OpenSSL supports a more flexible syntax for specifying ciphers, as de-

MySQL Server Administration

475



scribed in the OpenSSL documentation at http://www.openssl.org/docs/apps/ciphers.html. However, this extended syntax will fail if
used with a MySQL installation compiled against yaSSL.

If no cipher in the list is supported, SSL connections will not work.

• --ssl-key=file_name

The name of the SSL key file to use for establishing a secure connection.

• --ssl-verify-server-cert

This option is available for client programs. It causes the server's Common Name value in the certificate that the server sends to the
client to be verified against the hostname that the client uses for connecting to the server, and the connection is rejected if there is a
mismatch. This feature can be used to prevent man-in-the-middle attacks. Verification is disabled by default. This option was added
in MySQL 5.1.11.

As of MySQL 5.1.18, if you use SSL when establishing a client connection, you can tell the client not to authenticate the server certific-
ate by specifying neither --ssl-ca nor --ssl-capath. The server still verifies the client according to any applicable requirements
established via GRANT statements for the client, and it still uses any --ssl-ca/--ssl-capath values that were passed to server at
startup time.

5.5.7.4. Setting Up SSL Certificates for MySQL

This section demonstrates how to set up SSL certificate and key files for use by MySQL servers and clients. The first example shows a
simplified procedure such as you might use from the command line. The second shows a script that contains more detail. Both examples
use the openssl command that is part of OpenSSL.

The following example shows a set of commands to create MySQL server and client certificate and key files. You will need to respond
to several prompts by the openssl commands. For testing, you can press Enter to all prompts. For production use, you should provide
non-empty responses.

# Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

# Create CA certificate
shell> openssl genrsa 2048 > ca-key.pem
shell> openssl req -new -x509 -nodes -days 1000 \

-key ca-key.pem > ca-cert.pem

# Create server certificate
shell> openssl req -newkey rsa:2048 -days 1000 \

-nodes -keyout server-key.pem > server-req.pem
shell> openssl x509 -req -in server-req.pem -days 1000 \

-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 > server-cert.pem

# Create client certificate
shell> openssl req -newkey rsa:2048 -days 1000 \

-nodes -keyout client-key.pem > client-req.pem
shell> openssl x509 -req -in client-req.pem -days 1000 \

-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 > client-cert.pem

Here is an example script that shows how to set up SSL certificates for MySQL:

DIR=`pwd`/openssl
PRIV=$DIR/private

mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf

# Create necessary files: $database, $serial and $new_certs_dir
# directory (optional)

touch $DIR/index.txt
echo "01" > $DIR/serial

#
# Generation of Certificate Authority(CA)
#

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/cacert.pem \
-config $DIR/openssl.cnf

MySQL Server Administration

476

http://www.openssl.org/docs/apps/ciphers.html


# Sample output:
# Using configuration from /home/monty/openssl/openssl.cnf
# Generating a 1024 bit RSA private key
# ................++++++
# .........++++++
# writing new private key to '/home/monty/openssl/private/cakey.pem'
# Enter PEM pass phrase:
# Verifying password - Enter PEM pass phrase:
# -----
# You are about to be asked to enter information that will be
# incorporated into your certificate request.
# What you are about to enter is what is called a Distinguished Name
# or a DN.
# There are quite a few fields but you can leave some blank
# For some fields there will be a default value,
# If you enter '.', the field will be left blank.
# -----
# Country Name (2 letter code) [AU]:FI
# State or Province Name (full name) [Some-State]:.
# Locality Name (eg, city) []:
# Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
# Organizational Unit Name (eg, section) []:
# Common Name (eg, YOUR name) []:MySQL admin
# Email Address []:

#
# Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \

$DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf

# Sample output:
# Using configuration from /home/monty/openssl/openssl.cnf
# Generating a 1024 bit RSA private key
# ..++++++
# ..........++++++
# writing new private key to '/home/monty/openssl/server-key.pem'
# Enter PEM pass phrase:
# Verifying password - Enter PEM pass phrase:
# -----
# You are about to be asked to enter information that will be
# incorporated into your certificate request.
# What you are about to enter is what is called a Distinguished Name
# or a DN.
# There are quite a few fields but you can leave some blank
# For some fields there will be a default value,
# If you enter '.', the field will be left blank.
# -----
# Country Name (2 letter code) [AU]:FI
# State or Province Name (full name) [Some-State]:.
# Locality Name (eg, city) []:
# Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
# Organizational Unit Name (eg, section) []:
# Common Name (eg, YOUR name) []:MySQL server
# Email Address []:
#
# Please enter the following 'extra' attributes
# to be sent with your certificate request
# A challenge password []:
# An optional company name []:

#
# Remove the passphrase from the key
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem

#
# Sign server cert
#
openssl ca -policy policy_anything -out $DIR/server-cert.pem \

-config $DIR/openssl.cnf -infiles $DIR/server-req.pem

# Sample output:
# Using configuration from /home/monty/openssl/openssl.cnf
# Enter PEM pass phrase:
# Check that the request matches the signature
# Signature ok
# The Subjects Distinguished Name is as follows
# countryName :PRINTABLE:'FI'
# organizationName :PRINTABLE:'MySQL AB'
# commonName :PRINTABLE:'MySQL admin'
# Certificate is to be certified until Sep 13 14:22:46 2003 GMT
# (365 days)
# Sign the certificate? [y/n]:y
#
#
# 1 out of 1 certificate requests certified, commit? [y/n]y
# Write out database with 1 new entries
# Data Base Updated

MySQL Server Administration

477



#
# Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \

$DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf

# Sample output:
# Using configuration from /home/monty/openssl/openssl.cnf
# Generating a 1024 bit RSA private key
# .....................................++++++
# .............................................++++++
# writing new private key to '/home/monty/openssl/client-key.pem'
# Enter PEM pass phrase:
# Verifying password - Enter PEM pass phrase:
# -----
# You are about to be asked to enter information that will be
# incorporated into your certificate request.
# What you are about to enter is what is called a Distinguished Name
# or a DN.
# There are quite a few fields but you can leave some blank
# For some fields there will be a default value,
# If you enter '.', the field will be left blank.
# -----
# Country Name (2 letter code) [AU]:FI
# State or Province Name (full name) [Some-State]:.
# Locality Name (eg, city) []:
# Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
# Organizational Unit Name (eg, section) []:
# Common Name (eg, YOUR name) []:MySQL user
# Email Address []:
#
# Please enter the following 'extra' attributes
# to be sent with your certificate request
# A challenge password []:
# An optional company name []:

#
# Remove the passphrase from the key
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem

#
# Sign client cert
#

openssl ca -policy policy_anything -out $DIR/client-cert.pem \
-config $DIR/openssl.cnf -infiles $DIR/client-req.pem

# Sample output:
# Using configuration from /home/monty/openssl/openssl.cnf
# Enter PEM pass phrase:
# Check that the request matches the signature
# Signature ok
# The Subjects Distinguished Name is as follows
# countryName :PRINTABLE:'FI'
# organizationName :PRINTABLE:'MySQL AB'
# commonName :PRINTABLE:'MySQL user'
# Certificate is to be certified until Sep 13 16:45:17 2003 GMT
# (365 days)
# Sign the certificate? [y/n]:y
#
#
# 1 out of 1 certificate requests certified, commit? [y/n]y
# Write out database with 1 new entries
# Data Base Updated

#
# Create a my.cnf file that you can use to test the certificates
#

cnf=""
cnf="$cnf [client]"
cnf="$cnf ssl-ca=$DIR/cacert.pem"
cnf="$cnf ssl-cert=$DIR/client-cert.pem"
cnf="$cnf ssl-key=$DIR/client-key.pem"
cnf="$cnf [mysqld]"
cnf="$cnf ssl-ca=$DIR/cacert.pem"
cnf="$cnf ssl-cert=$DIR/server-cert.pem"
cnf="$cnf ssl-key=$DIR/server-key.pem"
echo $cnf | replace " " '
' > $DIR/my.cnf

To test SSL connections, start the server as follows, where $DIR is the pathname to the directory where the sample my.cnf option file
is located:

shell> mysqld --defaults-file=$DIR/my.cnf &

MySQL Server Administration

478



Then invoke a client program using the same option file:

shell> mysql --defaults-file=$DIR/my.cnf

If you have a MySQL source distribution, you can also test your setup by modifying the preceding my.cnf file to refer to the demon-
stration certificate and key files in the mysql-test/std_data directory of the distribution.

5.5.7.5. Connecting to MySQL Remotely from Windows with SSH

Here is a note that describes how to get a secure connection to a remote MySQL server with SSH (by David Carlson
<dcarlson@mplcomm.com>):

1. Install an SSH client on your Windows machine. As a user, the best non-free one I have found is from SecureCRT from ht-
tp://www.vandyke.com/. Another option is f-secure from http://www.f-secure.com/. You can also find some free ones on
Google at http://directory.google.com/Top/Computers/Internet/Protocols/SSH/Clients/Windows/.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set userid=your_userid to log
in to your server. This userid value might not be the same as the username of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host: yourmysqlserver-
name_or_ip, remote_port: 3306 ) or a local forward (Set port: 3306, host: localhost, remote port:
3306).

4. Save everything, otherwise you will have to redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally do, except type in local-
host for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

5.6. Running Multiple MySQL Servers on the Same Machine
In some cases, you might want to run multiple mysqld servers on the same machine. You might want to test a new MySQL release
while leaving your existing production setup undisturbed. Or you might want to give different users access to different mysqld servers
that they manage themselves. (For example, you might be an Internet Service Provider that wants to provide independent MySQL in-
stallations for different customers.)

To run multiple servers on a single machine, each server must have unique values for several operating parameters. These can be set on
the command line or in option files. See Section 4.2.2, “Specifying Program Options”.

At least the following options must be different for each server:

• --port=port_num

--port controls the port number for TCP/IP connections. (Alternatively, if the host has multiple network addresses, you can use -
-bind-adress to cause different servers to listen to different interfaces.)

• --socket=path

--socket controls the Unix socket file path on Unix and the name of the named pipe on Windows. On Windows, it is necessary to
specify distinct pipe names only for those servers that support named-pipe connections.

• --shared-memory-base-name=name

This option currently is used only on Windows. It designates the shared-memory name used by a Windows server to allow clients to
connect via shared memory. It is necessary to specify distinct shared-memory names only for those servers that support shared-
memory connections.

MySQL Server Administration

479

http://www.vandyke.com/
http://www.vandyke.com/
http://www.f-secure.com/
http://directory.google.com/Top/Computers/Internet/Protocols/SSH/Clients/Windows/


• --pid-file=file_name

This option is used only on Unix. It indicates the pathname of the file in which the server writes its process ID.

If you use the following log file options, they must be different for each server:

• --log=file_name

• --log-bin=file_name

• --log-update=file_name

• --log-error=file_name

Section 5.2.6, “Server Log Maintenance”, discusses the log file options further.

For better performance, you can specify the following options differently for each server, to spread the load between several physical
disks:

• --tmpdir=path

Having different temporary directories is also recommended to make it easier to determine which MySQL server created any given tem-
porary file.

With very limited exceptions, each server should use a different data directory, which is specified using the --datadir=path option.

Warning

Normally, you should never have two servers that update data in the same databases. This may lead to unpleasant surprises
if your operating system does not support fault-free system locking. If (despite this warning) you run multiple servers us-
ing the same data directory and they have logging enabled, you must use the appropriate options to specify log filenames
that are unique to each server. Otherwise, the servers try to log to the same files. Please note that this kind of setup only
works with MyISAM and MERGE tables, and not with any of the other storage engines.

The warning against sharing a data directory among servers also applies in an NFS environment. Allowing multiple MySQL servers to
access a common data directory over NFS is a very bad idea.

• The primary problem is that NFS is the speed bottleneck. It is not meant for such use.

• Another risk with NFS is that you must devise a way to ensure that two or more servers do not interfere with each other. Usually
NFS file locking is handled by the lockd daemon, but at the moment there is no platform that performs locking 100% reliably in
every situation.

Make it easy for yourself: Forget about sharing a data directory among servers over NFS. A better solution is to have one computer that
contains several CPUs and use an operating system that handles threads efficiently.

If you have multiple MySQL installations in different locations, you can specify the base installation directory for each server with the
--basedir=path option to cause each server to use a different data directory, log files, and PID file. (The defaults for all these val-
ues are determined relative to the base directory). In that case, the only other options you need to specify are the --socket and -
-port options. For example, suppose that you install different versions of MySQL using tar file binary distributions. These install in
different locations, so you can start the server for each installation using the command bin/mysqld_safe under its corresponding
base directory. mysqld_safe determines the proper --basedir option to pass to mysqld, and you need specify only the -
-socket and --port options to mysqld_safe.

As discussed in the following sections, it is possible to start additional servers by setting environment variables or by specifying appro-
priate command-line options. However, if you need to run multiple servers on a more permanent basis, it is more convenient to use op-
tion files to specify for each server those option values that must be unique to it. The --defaults-file option is useful for this pur-
pose.

MySQL Server Administration

480



5.6.1. Running Multiple Servers on Windows
You can run multiple servers on Windows by starting them manually from the command line, each with appropriate operating paramet-
ers. On Windows NT-based systems, you also have the option of installing several servers as Windows services and running them that
way. General instructions for running MySQL servers from the command line or as services are given in Section 2.3, “Installing
MySQL on Windows”. This section describes how to make sure that you start each server with different values for those startup options
that must be unique per server, such as the data directory. These options are described in Section 5.6, “Running Multiple MySQL Serv-
ers on the Same Machine”.

5.6.1.1. Starting Multiple Windows Servers at the Command Line

To start multiple servers manually from the command line, you can specify the appropriate options on the command line or in an option
file. It is more convenient to place the options in an option file, but it is necessary to make sure that each server gets its own set of op-
tions. To do this, create an option file for each server and tell the server the filename with a --defaults-file option when you run
it.

Suppose that you want to run mysqld on port 3307 with a data directory of C:\mydata1, and mysqld-debug on port 3308 with a
data directory of C:\mydata2. (To do this, make sure that before you start the servers, each data directory exists and has its own copy
of the mysql database that contains the grant tables.) Then create two option files. For example, create one file named
C:\my-opts1.cnf that looks like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Create a second file named C:\my-opts2.cnf that looks like this:

[mysqld]
datadir = C:/mydata2
port = 3308

Then start each server with its own option file:

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql\bin\mysqld-debug --defaults-file=C:\my-opts2.cnf

On NT, each server starts in the foreground (no new prompt appears until the server exits later), so you will need to issue those two
commands in separate console windows.

To shut down the servers, you must connect to each using the appropriate port number:

C:\> C:\mysql\bin\mysqladmin --port=3307 shutdown
C:\> C:\mysql\bin\mysqladmin --port=3308 shutdown

Servers configured as just described allow clients to connect over TCP/IP. If your version of Windows supports named pipes and you
also want to allow named-pipe connections, use the mysqld-nt (MySQL 5.1.20 and earlier), mysqld (MySQL 5.1.21 and later) or
mysqld-debug server and specify options that enable the named pipe and specify its name. Each server that supports named-pipe
connections must use a unique pipe name. For example, the C:\my-opts1.cnf file might be written like this:

[mysqld]
datadir = C:/mydata1
port = 3307
enable-named-pipe
socket = mypipe1

Then start the server this way:

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf

Modify C:\my-opts2.cnf similarly for use by the second server.

A similar procedure applies for servers that you want to support shared-memory connections. Enable such connections with the -
-shared-memory option and specify a unique shared-memory name for each server with the --shared-memory-base-name
option.

MySQL Server Administration

481



5.6.1.2. Starting Multiple Windows Servers as Services

On NT-based systems, a MySQL server can run as a Windows service. The procedures for installing, controlling, and removing a single
MySQL service are described in Section 2.3.11, “Starting MySQL as a Windows Service”.

You can also install multiple MySQL servers as services. In this case, you must make sure that each server uses a different service name
in addition to all the other parameters that must be unique for each server.

For the following instructions, assume that you want to run the mysqld server from two different versions of MySQL that are installed
at C:\mysql-5.0.19 and C:\mysql-5.1.25-rc, respectively. (This might be the case if you're running 5.0.19 as your produc-
tion server, but also want to conduct tests using 5.1.25-rc.)

The following principles apply when installing a MySQL service with the --install or --install-manual option:

• If you specify no service name, the server uses the default service name of MySQL and the server reads options from the [mysqld]
group in the standard option files.

• If you specify a service name after the --install option, the server ignores the [mysqld] option group and instead reads op-
tions from the group that has the same name as the service. The server reads options from the standard option files.

• If you specify a --defaults-file option after the service name, the server ignores the standard option files and reads options
only from the [mysqld] group of the named file.

Note

Before MySQL 4.0.17, only a server installed using the default service name (MySQL) or one installed explicitly with a
service name of mysqld will read the [mysqld] group in the standard option files. As of 4.0.17, all servers read the
[mysqld] group if they read the standard option files, even if they are installed using another service name. This allows
you to use the [mysqld] group for options that should be used by all MySQL services, and an option group named after
each service for use by the server installed with that service name.

Based on the preceding information, you have several ways to set up multiple services. The following instructions describe some ex-
amples. Before trying any of them, be sure that you shut down and remove any existing MySQL services first.

• Approach 1: Specify the options for all services in one of the standard option files. To do this, use a different service name for each
server. Suppose that you want to run the 5.0.19 mysqld using the service name of mysqld1 and the 5.1.25-rc mysqld using the
service name mysqld2. In this case, you can use the [mysqld1] group for 5.0.19 and the [mysqld2] group for 5.1.25-rc. For
example, you can set up C:\my.cnf like this:

# options for mysqld1 service
[mysqld1]
basedir = C:/mysql-5.0.19
port = 3307
enable-named-pipe
socket = mypipe1

# options for mysqld2 service
[mysqld2]
basedir = C:/mysql-5.1.25-rc
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows, using the full server pathnames to ensure that Windows registers the correct executable program for
each service:

C:\> C:\mysql-5.0.19\bin\mysqld --install mysqld1
C:\> C:\mysql-5.1.25-rc\bin\mysqld --install mysqld2

To start the services, use the services manager, or use NET START with the appropriate service names:

C:\> NET START mysqld1
C:\> NET START mysqld2

To stop the services, use the services manager, or use NET STOP with the appropriate service names:

MySQL Server Administration

482



C:\> NET STOP mysqld1
C:\> NET STOP mysqld2

• Approach 2: Specify options for each server in separate files and use --defaults-file when you install the services to tell
each server what file to use. In this case, each file should list options using a [mysqld] group.

With this approach, to specify options for the 5.0.19 mysqld-nt, create a file C:\my-opts1.cnf that looks like this:

[mysqld]
basedir = C:/mysql-5.0.19
port = 3307
enable-named-pipe
socket = mypipe1

For the 5.1.25-rc mysqld, create a file C:\my-opts2.cnf that looks like this:

[mysqld]
basedir = C:/mysql-5.1.25-rc
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows (enter each command on a single line):

C:\> C:\mysql-5.0.19\bin\mysqld --install mysqld1
--defaults-file=C:\my-opts1.cnf

C:\> C:\mysql-5.1.25-rc\bin\mysqld --install mysqld2
--defaults-file=C:\my-opts2.cnf

To use a --defaults-file option when you install a MySQL server as a service, you must precede the option with the service
name.

After installing the services, start and stop them the same way as in the preceding example.

To remove multiple services, use mysqld --remove for each one, specifying a service name following the --remove option. If the
service name is the default (MySQL), you can omit it.

5.6.2. Running Multiple Servers on Unix
The easiest way is to run multiple servers on Unix is to compile them with different TCP/IP ports and Unix socket files so that each one
is listening on different network interfaces. Compiling in different base directories for each installation also results automatically in a
separate, compiled-in data directory, log file, and PID file location for each server.

Assume that an existing 5.0.19 server is configured for the default TCP/IP port number (3306) and Unix socket file (/
tmp/mysql.sock). To configure a new 5.1.25-rc server to have different operating parameters, use a configure command
something like this:

shell> ./configure --with-tcp-port=port_number \
--with-unix-socket-path=file_name \
--prefix=/usr/local/mysql-5.1.25-rc

Here, port_number and file_name must be different from the default TCP/IP port number and Unix socket file pathname, and the
--prefix value should specify an installation directory different from the one under which the existing MySQL installation is loc-
ated.

If you have a MySQL server listening on a given port number, you can use the following command to find out what operating paramet-
ers it is using for several important configurable variables, including the base directory and Unix socket filename:

shell> mysqladmin --host=host_name --port=port_number variables

With the information displayed by that command, you can tell what option values not to use when configuring an additional server.

Note that if you specify localhost as a hostname, mysqladmin defaults to using a Unix socket file connection rather than TCP/IP.
From MySQL 4.1 onward, you can explicitly specify the connection protocol to use by using the -

MySQL Server Administration

483



-protocol={TCP|SOCKET|PIPE|MEMORY} option.

You don't have to compile a new MySQL server just to start with a different Unix socket file and TCP/IP port number. It is also pos-
sible to use the same server binary and start each invocation of it with different parameter values at runtime. One way to do so is by us-
ing command-line options:

shell> mysqld_safe --socket=file_name --port=port_number

To start a second server, provide different --socket and --port option values, and pass a --datadir=path option to
mysqld_safe so that the server uses a different data directory.

Another way to achieve a similar effect is to use environment variables to set the Unix socket filename and TCP/IP port number:

shell> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
shell> MYSQL_TCP_PORT=3307
shell> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
shell> mysql_install_db --user=mysql
shell> mysqld_safe --datadir=/path/to/datadir &

This is a quick way of starting a second server to use for testing. The nice thing about this method is that the environment variable set-
tings apply to any client programs that you invoke from the same shell. Thus, connections for those clients are automatically directed to
the second server.

Section 2.14, “Environment Variables”, includes a list of other environment variables you can use to affect mysqld.

For automatic server execution, the startup script that is executed at boot time should execute the following command once for each
server with an appropriate option file path for each command:

shell> mysqld_safe --defaults-file=file_name

Each option file should contain option values specific to a given server.

On Unix, the mysqld_multi script is another way to start multiple servers. See Section 4.3.4, “mysqld_multi — Manage Mul-
tiple MySQL Servers”.

5.6.3. Using Client Programs in a Multiple-Server Environment
To connect with a client program to a MySQL server that is listening to different network interfaces from those compiled into your cli-
ent, you can use one of the following methods:

• Start the client with --host=host_name --port=port_number to connect via TCP/IP to a remote server, with -
-host=127.0.0.1 --port=port_number to connect via TCP/IP to a local server, or with --host=localhost -
-socket=file_name to connect to a local server via a Unix socket file or a Windows named pipe.

• As of MySQL 4.1, start the client with --protocol=tcp to connect via TCP/IP, --protocol=socket to connect via a Unix
socket file, --protocol=pipe to connect via a named pipe, or --protocol=memory to connect via shared memory. For
TCP/IP connections, you may also need to specify --host and --port options. For the other types of connections, you may need
to specify a --socket option to specify a Unix socket file or Windows named-pipe name, or a -
-shared-memory-base-name option to specify the shared-memory name. Shared-memory connections are supported only on
Windows.

• On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to point to the Unix socket file and TCP/IP
port number before you start your clients. If you normally use a specific socket file or port number, you can place commands to set
these environment variables in your .login file so that they apply each time you log in. See Section 2.14, “Environment Vari-
ables”.

• Specify the default Unix socket file and TCP/IP port number in the [client] group of an option file. For example, you can use
C:\my.cnf on Windows, or the .my.cnf file in your home directory on Unix. See Section 4.2.2.2, “Using Option Files”.

• In a C program, you can specify the socket file or port number arguments in the mysql_real_connect() call. You can also
have the program read option files by calling mysql_options(). See Section 26.2.3, “C API Function Descriptions”.

• If you are using the Perl DBD::mysql module, you can read options from MySQL option files. For example:

$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
. "mysql_read_default_file=/usr/local/mysql/data/my.cnf";

MySQL Server Administration

484



$dbh = DBI->connect($dsn, $user, $password);

See Section 26.4, “MySQL Perl API”.

Other programming interfaces may provide similar capabilities for reading option files.

MySQL Server Administration

485



Chapter 6. Backup and Recovery
It is important to back up your databases in case problems occur so that you can recover your data and be up and running again. MySQL
offers a variety of backup strategies from which you can choose to select whatever methods best suit the requirements for your installa-
tion.

Briefly summarized, backup concepts with which you should be familiar include the following:

• Logical versus physical backups

• Online versus offline backups

• Local versus remote backups

• Snapshot backups

• Full versus incremental backups

• Point-in-time recovery

• Backup scheduling, compression, and encryption

• Table maintenance

More generally, the following discussion amplifies on the properties of different backup methods.

• Logical versus physical (raw) backups. Logical backups save information represented as logical database structure (CREATE
DATABASE, CREATE TABLE statements) and content (INSERT statements or delimited-text files). Physical backups consist of
raw copies of the directories and files that store database contents.

Logical backup methods have these characteristics:

• The backup is done by going through the MySQL server to obtain database structure and content information.

• Backup is slower than physical methods because the server must access database information, convert it to logical format, and
send it to the backup program.

• Output is larger than for physical backup, paticularly when saved in text format.

• Backup and restore granularity is available at the server level (all databases), database level (all tables in a particular database),
or table level. This is true regardless of storage engine.

• The backup does not include log or configuration files, or other database-related files that are not part of databases.

• Backups stored in logical format are machine independent and highly portable.

• Logical backups are performed with the MySQL server running (the server is not taken offline).

• Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE statement. These work for
any storage engine, even MEMORY.

For restore, SQL-format dump files can be processed using the mysql client. To load delimited-text files, use the LOAD DATA
INFILE statement or the mysqlimport client.

Physical backup methods have these characteristics:

• The backup consists of exact copies of database directories and files. Typically this is a copy of all or part of the MySQL data
directory. Data from MEMORY tables cannot be backed up this way because their contents are not stored on disk.

• Physical backup methods are faster than logical because they involve only file copying without conversion.

• Output is more compact than for logical backup.

486



• Backup and restore granularity extends from the level of the entire data directory down to the level of individual files. This may
or may not provide for table-level granularity, depending on storage engine. (Each MyISAM table corresponds uniquely to a set
of files, but an InnoDB table shares file storage with other InnoDB tables.)

• In addition to databases, the backup can include any related files such as log or configuration files.

• Backups are portable only to other machines that have identical or similar hardware characteristics.

• Backups can be performed while the MySQL server is not running. If the server is running, it is necessary to perform appropri-
ate locking so that the server does not change database contents during the backup.

• Physical backup tools include filesystem-level commands (such as cp, scp, tar, rsync), mysqlhotcopy for MyISAM
tables, ibbackup for InnoDB tables, or START BACKUP for NDB tables.

For restore, files copied at the filesystem level or with mysqlhotcopy can be copied back to their original locations with
filesystem commands; ibback restores InnoDB tables, and ndb_restore restores NDB tables.

• Online versus offline backups. Online backups take place while the MySQL server is running so that the database information can
be obtained from the server. Offline backups take place while the server is stopped. (This distinction can also be described as “hot”
versus “cold” backups; a “warm” backup is one where the server remains running but locked against modifying data while you ac-
cess database files externally.)

Online backup methods have these characteristics:

• Less intrusive to other clients, which can connect to the MySQL server during the backup and may be able to access data de-
pending on what operations they need to perform.

• Care must be taken to impose appropriate locking so that data modifications do not take place that compromise backup integrity.

Offline backup methods have these characteristics:

• Affects clients adversely because the server is unavailable during backup.

• Simpler backup procedure because there is no possibility of interference from client activity.

• Local versus remote backups. A local backup is performed on the same host where the MySQL server runs, whereas a remote
backup is initiated from a different host.

• mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT statements), local or remote dumps
can be done and generate output on the client. For delimited-text output (with the --tab option), data files are created on the
server host.

• mysqlhotcopy performs only local backups: It connects to the server to lock it against data modifications and then copies
local table files.

• SELECT ... INTO OUTFILE can be initiated from a remote client host, but the output file is created on the server host.

• Physical backup methods typically are initiated locally on the MySQL server host so that the server can be taken offline, al-
though the destination for file copies might be remote.

• Snapshot backups. Some filesystem implementations enable “snapshots” to be taken. These provide logical copies of the filesys-
tem at a given point in time, without having to physically copy the entire filesystem. (For example, the implementation may use
copy-on-write techniques so that only parts of the filesystem modified after the snapshot time need be copied.) MySQL itself does
not provide the capability for taking filesystem snapshots. It is available through third-party solutions such as Veritas or LVM.

• Full versus incremental backups. A full backup includes all data managed by a MySQL server at a given point in time. An incre-
mental backup consists of the changes made to the data since the full backup. MySQL has different ways to perform full backups,
such as those described in previous items. Incremental backups are made possible by enabling the server's binary log, which the
server uses to record data changes.

• Point-in-time recovery. One use for the binary log is to achieve point-in-time recovery. This is done by recovering first from the
backup files to restore the server to its state when the backup was made, and then by re-executing changes in subsequently written
binary log files to redo data modifications up to the desired point in time.

• Backup scheduling, compression, and encryption. Backup scheduling is valuable for automating backup procedures. Compres-

Backup and Recovery

487



sion of backup output reduces space requirements, and encryption of the output provides better security against unauthorized access
of backed-up data. MySQL itself does not provide these capabilities. ibbackup can compress InnoDB backups, and compression
or encryption of backup output can be achieved using filesystem utilities. Other third-party solutions may be available.

• Table maintenance. Data integrity can be compromised if tables become corrupt. MySQL provides programs for checking tables
and repairing them should problems be found. These programs apply primarily to MyISAM tables. See Section 6.4, “Table Mainten-
ance and Crash Recovery”.

Additional resources

Resources related to backup or to maintaining data availability include the following:

• A forum dedicated to backup issues is available at http://forums.mysql.com/list.php?93.

• The syntax of the SQL statements described here is given in Chapter 12, SQL Statement Syntax.

• Details for mysqldump, mysqlhotcopy, and other MySQL backup programs can be found in Chapter 4, MySQL Programs.

• For additional information about InnoDB backup procedures, see Section 13.5.8, “Backing Up and Recovering an InnoDB Data-
base”.

• Replication enables you to maintain identical data on multiple servers. This has several benefits, such as allowing client load to be
distributed over servers, availability of data even if a given server is taken offline or fails, and the ability to make backups using a
slave server without affecting the master. See Chapter 16, Replication.

• MySQL Cluster provides a high-availability, high-redundancy version of MySQL adapted for the distributed computing environ-
ment. See Chapter 17, MySQL Cluster. For information specifically about MySQL Cluster backup, see Section 17.10, “On-line
Backup of MySQL Cluster”.

• Distributed Replicated Block Device (DRBD) is another high-availability solution. It works by replicating a block device from a
primary server to a secondary server at the block level. See Chapter 14, High Availability and Scalability

6.1. Database Backups
This section summarizes some general methods for making backups.

Making Backups by Copying Files

MyISAM tables are stored as files, so it is easy to do a backup by copying files. To get a consistent backup, do a LOCK TABLES on the
relevant tables, followed by FLUSH TABLES for the tables. See Section 12.4.5, “LOCK TABLES and UNLOCK TABLES Syntax”,
and Section 12.5.5.2, “FLUSH Syntax”. You need only a read lock; this allows other clients to continue to query the tables while you are
making a copy of the files in the database directory. The FLUSH TABLES statement is needed to ensure that the all active index pages
are written to disk before you start the backup.

Making Delimited-Text File Backups

To create a text file containing a table's data, you can use SELECT * INTO OUTFILE 'file_name' FROM tbl_name. The
file is created on the MySQL server host, not the client host. For this statement, the output file cannot already exist because allowing
files to be overwritten would constitute a security risk. See Section 12.2.7, “SELECT Syntax”. This method works for any kind of data
file, but saves only table data, not the table structure.

To reload the output file, use LOAD DATA INFILE or mysqlimport.

Making Backups with mysqldump or mysqlhotcopy

Another technique for backing up a database is to use the mysqldump program or the mysqlhotcopy script. mysqldump is more
general because it can back up all kinds of tables. mysqlhotcopy works only with some storage engines. (See Section 4.5.4,
“mysqldump — A Database Backup Program”, and Section 4.6.8, “mysqlhotcopy — A Database Backup Program”.)

Create a full backup of your database:

shell> mysqldump --tab=/path/to/some/dir --opt db_name

Backup and Recovery

488

http://forums.mysql.com/list.php?93


Or:

shell> mysqlhotcopy db_name /path/to/some/dir

You can also create a binary backup simply by copying all table files (*.frm, *.MYD, and *.MYI files), as long as the server isn't up-
dating anything. The mysqlhotcopy script uses this method. (But note that these methods do not work if your database contains In-
noDB tables. InnoDB does not necessarily store table contents in database directories, and mysqlhotcopy works only for MyISAM
and ISAM tables.)

For InnoDB tables, it is possible to perform an online backup that takes no locks on tables; see Section 4.5.4, “mysqldump — A
Database Backup Program”.

Using the Binary Log to Enable Incremental Backups

MySQL supports incremental backups: You must start the server with the --log-bin option to enable binary logging; see Sec-
tion 5.2.4, “The Binary Log”. The binary log files provide you with the information you need to replicate changes to the database that
are made subsequent to the point at which you performed a backup. At the moment you want to make an incremental backup
(containing all changes that happened since the last full or incremental backup), you should rotate the binary log by using FLUSH
LOGS. This done, you need to copy to the backup location all binary logs which range from the one of the moment of the last full or in-
cremental backup to the last but one. These binary logs are the incremental backup; at restore time, you apply them as explained in Sec-
tion 6.3, “Point-in-Time Recovery”. The next time you do a full backup, you should also rotate the binary log using FLUSH LOGS,
mysqldump --flush-logs, or mysqlhotcopy --flushlog. See Section 4.5.4, “mysqldump — A Database Backup Pro-
gram”, and Section 4.6.8, “mysqlhotcopy — A Database Backup Program”.

Backing Up Replication Slaves

If your MySQL server is a slave replication server, then regardless of the backup method you choose, you should also back up the mas-
ter.info and relay-log.info files when you back up your slave's data. These files are always needed to resume replication
after you restore the slave's data. If your slave is subject to replicating LOAD DATA INFILE commands, you should also back up any
SQL_LOAD-* files that may exist in the directory specified by the --slave-load-tmpdir option. (This location defaults to the
value of the tmpdir system variable if not specified.) The slave needs these files to resume replication of any interrupted LOAD DATA
INFILE operations.

MySQL Enterprise
The MySQL Enterprise Monitor provides numerous advisors that issue immediate warnings should replication
issues arise. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

If you have performance problems with your master server while making backups, one strategy that can help is to set up replication and
perform backups on the slave rather than on the master. See Chapter 16, Replication.

Recovering Corrupt Tables

If you have to restore MyISAM tables that have become corrupt, try to recover them using REPAIR TABLE or myisamchk -r first.
That should work in 99.9% of all cases. If myisamchk fails, try the following procedure. It is assumed that you have enabled binary
logging by starting MySQL with the --log-bin option.

1. Restore the original mysqldump backup, or binary backup.

2. Execute the following command to re-run the updates in the binary logs:

shell> mysqlbinlog binlog.[0-9]* | mysql

In some cases, you may want to re-run only certain binary logs, from certain positions (usually you want to re-run all binary logs
from the date of the restored backup, excepting possibly some incorrect statements). See Section 6.3, “Point-in-Time Recovery”.

Making Backups Using a Filesystem Snapshot

If you are using a Veritas filesystem, you can make a backup like this:

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

2. From another shell, execute mount vxfs snapshot.

Backup and Recovery

489

http://www.mysql.com/products/enterprise/advisors.html


3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

6.2. Example Backup and Recovery Strategy
This section discusses a procedure for performing backups that allows you to recover data after several types of crashes:

• Operating system crash

• Power failure

• Filesystem crash

• Hardware problem (hard drive, motherboard, and so forth)

The example commands do not include options such as --user and --password for the mysqldump and mysql programs. You
should include such options as necessary so that the MySQL server allows you to connect to it.

We assume that data is stored in the InnoDB storage engine, which has support for transactions and automatic crash recovery. We also
assume that the MySQL server is under load at the time of the crash. If it were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is available after a restart. The InnoDB
data files might not contain consistent data due to the crash, but InnoDB reads its logs and finds in them the list of pending committed
and non-committed transactions that have not been flushed to the data files. InnoDB automatically rolls back those transactions that
were not committed, and flushes to its data files those that were committed. Information about this recovery process is conveyed to the
user through the MySQL error log. The following is an example log excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of filesystem crashes or hardware problems, we can assume that the MySQL disk data is not available after a restart. This
means that MySQL fails to start successfully because some blocks of disk data are no longer readable. In this case, it is necessary to re-
format the disk, install a new one, or otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from
backups, which means that we must already have made backups. To make sure that is the case, we should design a backup policy.

6.2.1. Backup Policy
We all know that backups must be scheduled periodically. A full backup (a snapshot of the data at a point in time) can be done in
MySQL with several tools. For example, InnoDB Hot Backup provides online non-blocking physical backup of the InnoDB data
files, and mysqldump provides online logical backup. This discussion uses mysqldump.

MySQL Enterprise
For expert advice on backups and replication, subscribe to the MySQL Enterprise Monitor. For more informa-
tion, see http://www.mysql.com/products/enterprise/advisors.html.

Backup and Recovery

490

http://www.mysql.com/products/enterprise/advisors.html


Assume that we make a backup on Sunday at 1 p.m., when load is low. The following command makes a full backup of all our InnoDB
tables in all databases:

shell> mysqldump --single-transaction --all-databases > backup_sunday_1_PM.sql

This is an online, non-blocking backup that does not disturb the reads and writes on the tables. We assumed earlier that our tables are
InnoDB tables, so --single-transaction uses a consistent read and guarantees that data seen by mysqldump does not change.
(Changes made by other clients to InnoDB tables are not seen by the mysqldump process.) If we do also have other types of tables,
we must assume that they are not changed during the backup. For example, for the MyISAM tables in the mysql database, we must as-
sume that no administrative changes are being made to MySQL accounts during the backup.

The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can be used to reload the dumped
tables at a later time.

Full backups are necessary, but they are not always convenient. They produce large backup files and take time to generate. They are not
optimal in the sense that each successive full backup includes all data, even that part that has not changed since the previous full
backup. After we have made the initial full backup, it is more efficient to make incremental backups. They are smaller and take less
time to produce. The tradeoff is that, at recovery time, you cannot restore your data just by reloading the full backup. You must also
process the incremental backups to recover the incremental changes.

To make incremental backups, we need to save the incremental changes. The MySQL server should always be started with the -
-log-bin option so that it stores these changes in a file while it updates data. This option enables binary logging, so that the server
writes each SQL statement that updates data into a file called a MySQL binary log. Looking at the data directory of a MySQL server
that was started with the --log-bin option and that has been running for some days, we find these MySQL binary log files:

-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the sequence. While the server is run-
ning, you can also tell it to close the current binary log file and begin a new one manually by issuing a FLUSH LOGS SQL statement or
with a mysqladmin flush-logs command. mysqldump also has an option to flush the logs. The .index file in the data direct-
ory contains the list of all MySQL binary logs in the directory. This file is used for replication.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If you make sure to flush the logs
when you make your full backup, then any binary log files created afterward contain all the data changes made since the backup. Let's
modify the previous mysqldump command a bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that
the dump file contains the name of the new current binary log:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
--all-databases > backup_sunday_1_PM.sql

After executing this command, the data directory contains a new binary log file, gbichot2-bin.000007. The resulting .sql file
includes these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, those lines mean two things:

• The .sql file contains all changes made before any changes written to the gbichot2-bin.000007 binary log file or newer.

• All data changes logged after the backup are not present in the .sql, but are present in the gbichot2-bin.000007 binary log
file or newer.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new binary log file. For example, executing a
mysqladmin flush-logs command creates gbichot2-bin.000008. All changes between the Sunday 1 p.m. full backup and
Monday 1 p.m. will be in the gbichot2-bin.000007 file. This incremental backup is important, so it is a good idea to copy it to a
safe place. (For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday at 1 p.m., execute another mysqlad-
min flush-logs command. All changes between Monday 1 p.m. and Tuesday 1 p.m. will be in the gbichot2-bin.000008 file

Backup and Recovery

491



(which also should be copied somewhere safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One way to do this is by deleting the bin-
ary logs that are no longer needed, such as when we make a full backup:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
--all-databases --delete-master-logs > backup_sunday_1_PM.sql

Note

Deleting the MySQL binary logs with mysqldump --delete-master-logs can be dangerous if your server is a
replication master server, because slave servers might not yet fully have processed the contents of the binary log. The de-
scription for the PURGE MASTER LOGS statement explains what should be verified before deleting the MySQL binary
logs. See Section 12.6.1.1, “PURGE MASTER LOGS Syntax”.

6.2.2. Using Backups for Recovery
Now, suppose that we have a catastrophic crash on Wednesday at 8 a.m. that requires recovery from backups. To recover, first we re-
store the last full backup we have (the one from Sunday 1 p.m.). The full backup file is just a set of SQL statements, so restoring it is
very easy:

shell> mysql < backup_sunday_1_PM.sql

At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since then, we must use the incremental
backups; that is, the gbichot2-bin.000007 and gbichot2-bin.000008 binary log files. Fetch the files if necessary from
where they were backed up, and then process their contents like this:

shell> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes from that date to the date of the
crash. To not lose them, we would have needed to have the MySQL server store its MySQL binary logs into a safe location (RAID
disks, SAN, ...) different from the place where it stores its data files, so that these logs were not on the destroyed disk. (That is, we can
start the server with a --log-bin option that specifies a location on a different physical device from the one on which the data direct-
ory resides. That way, the logs are safe even if the device containing the directory is lost.) If we had done this, we would have the gbi-
chot2-bin.000009 file at hand, and we could apply it using mysqlbinlog and mysql to restore the most recent data changes
with no loss up to the moment of the crash.

6.2.3. Backup Strategy Summary
In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data. But to make sure that you can
sleep well, observe the following guidelines:

• Always run the MySQL server with the --log-bin option, or even --log-bin=log_name, where the log file name is located
on some safe media different from the drive on which the data directory is located. If you have such safe media, this technique can
also be good for disk load balancing (which results in a performance improvement).

• Make periodic full backups, using the mysqldump command shown earlier in Section 6.2.1, “Backup Policy”, that makes an on-
line, non-blocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin flush-logs.

6.3. Point-in-Time Recovery
If a MySQL server was started with the --log-bin option to enable binary logging, you can use the mysqlbinlog utility to recov-
er data from the binary log files, starting from a specified point in time (for example, since your last backup) until the present or another
specified point in time. For information on enabling the binary log and using mysqlbinlog, see Section 5.2.4, “The Binary Log”, and
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”.

MySQL Enterprise
For maximum data recovery, the MySQL Enterprise Monitor advises subscribers to synchronize to disk at each
write. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

Backup and Recovery

492

http://www.mysql.com/products/enterprise/advisors.html


To restore data from a binary log, you must know the location and name of the current binary log file. By default, the server creates bin-
ary log files in the data directory, but a pathname can be specified with the --log-bin option to place the files in a different location.
Typically the option is given in an option file (that is, my.cnf or my.ini, depending on your system). It can also be given on the
command line when the server is started. To determine the name of the current binary log file, issue the following statement:

mysql> SHOW MASTER STATUS

If you prefer, you can execute the following command from the command line instead:

shell> mysql -u root -p -E -e "SHOW MASTER STATUS"

Enter the root password for your server when mysql prompts you for it.

To view the contents of a binary log, use mysqlbinlog. See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log
Files”.

6.3.1. Specifying Times for Recovery
To indicate the start and end times for recovery, specify the --start-date and --stop-date options for mysqlbinlog, in
DATETIME format. As an example, suppose that exactly at 10:00 a.m. on April 20, 2005 an SQL statement was executed that deleted a
large table. To restore the table and data, you could restore the previous night's backup, and then execute the following command:

shell> mysqlbinlog --stop-date="2005-04-20 9:59:59" \
/var/log/mysql/bin.123456 | mysql -u root -p

This command recovers all of the data up until the date and time given by the --stop-date option. If you did not detect the erro-
neous SQL statement that was entered until hours later, you will probably also want to recover the activity that occurred afterward.
Based on this, you could run mysqlbinlog again with a start date and time, like so:

shell> mysqlbinlog --start-date="2005-04-20 10:01:00" \
/var/log/mysql/bin.123456 | mysql -u root -p

In this command, the SQL statements logged from 10:01 a.m. on will be re-executed. The combination of restoring of the previous
night's dump file and the two mysqlbinlog commands restores everything up until one second before 10:00 a.m. and everything
from 10:01 a.m. on. You should examine the log to be sure of the exact times to specify for the commands. To display the log file con-
tents without executing them, use this command:

shell> mysqlbinlog /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

Then open the file with a text editor to examine it.

6.3.2. Specifying Positions for Recovery
Instead of specifying dates and times, the --start-position and --stop-position options for mysqlbinlog can be used
for specifying log positions. They work the same as the start and stop date options, except that you specify log position numbers rather
than dates. Using positions may enable you to be more precise about which part of the log to recover, especially if many transactions
occurred around the same time as a damaging SQL statement. To determine the position numbers, run mysqlbinlog for a range of
times near the time when the unwanted transaction was executed, but redirect the results to a text file for examination. This can be done
like so:

shell> mysqlbinlog --start-date="2005-04-20 9:55:00" \
--stop-date="2005-04-20 10:05:00" \
/var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

This command creates a small text file in the /tmp directory that contains the SQL statements around the time that the deleterious SQL
statement was executed. Open this file with a text editor and look for the statement that you don't want to repeat. Determine the posi-
tions in the binary log for stopping and resuming the recovery and make note of them. Positions are labeled as log_pos followed by a
number. After restoring the previous backup file, use the position numbers to process the binary log file. For example, you would use
commands something like these:

shell> mysqlbinlog --stop-position="368312" /var/log/mysql/bin.123456 \
| mysql -u root -p

shell> mysqlbinlog --start-position="368315" /var/log/mysql/bin.123456 \

Backup and Recovery

493



| mysql -u root -p

The first command recovers all the transactions up until the stop position given. The second command recovers all transactions from the
starting position given until the end of the binary log. Because the output of mysqlbinlog includes SET TIMESTAMP statements
before each SQL statement recorded, the recovered data and related MySQL logs will reflect the original times at which the transactions
were executed.

6.4. Table Maintenance and Crash Recovery
This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have .MYD and .MYI files for storing
data and indexes). For general myisamchk background, see Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

You can use myisamchk to get information about your database tables or to check, repair, or optimize them. The following sections
describe how to perform these operations and how to set up a table maintenance schedule.

Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup before doing a repair or any main-
tenance operation that could make a lot of changes to a table.

myisamchk operations that affect indexes can cause FULLTEXT indexes to be rebuilt with full-text parameters that are incompatible
with the values used by the MySQL server. To avoid this problem, follow the guidelines in Section 4.6.3.1, “myisamchk General Op-
tions”.

In many cases, you may find it simpler to do MyISAM table maintenance using the SQL statements that perform operations that myis-
amchk can do:

• To check or repair MyISAM tables, use CHECK TABLE or REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

These statements can be used directly or by means of the mysqlcheck client program. One advantage of these statements over my-
isamchk is that the server does all the work. With myisamchk, you must make sure that the server does not use the tables at the
same time so that there is no unwanted interaction between myisamchk and the server. See Section 12.5.2.1, “ANALYZE TABLE
Syntax”, Section 12.5.2.3, “CHECK TABLE Syntax”, Section 12.5.2.5, “OPTIMIZE TABLE Syntax”, and Section 12.5.2.6, “REPAIR
TABLE Syntax”.

6.4.1. Using myisamchk for Crash Recovery
This section describes how to check for and deal with data corruption in MySQL databases. If your tables become corrupted frequently,
you should try to find the reason why. See Section B.1.4.2, “What to Do If MySQL Keeps Crashing”.

For an explanation of how MyISAM tables can become corrupted, see Section 13.4.4, “MyISAM Table Problems”.

If you run mysqld with external locking disabled (which is the default as of MySQL 4.0), you cannot reliably use myisamchk to
check a table when mysqld is using the same table. If you can be certain that no one will access the tables through mysqld while you
run myisamchk, you only have to execute mysqladmin flush-tables before you start checking the tables. If you cannot guar-
antee this, you must stop mysqld while you check the tables. If you run myisamchk to check tables that mysqld is updating at the
same time, you may get a warning that a table is corrupt even when it is not.

If the server is run with external locking enabled, you can use myisamchk to check tables at any time. In this case, if the server tries to
update a table that myisamchk is using, the server will wait for myisamchk to finish before it continues.

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server is not using the table (this also ap-
plies if external locking is disabled). If you don't stop mysqld, you should at least do a mysqladmin flush-tables before you
run myisamchk. Your tables may become corrupted if the server and myisamchk access the tables simultaneously.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a database corresponds to three
files in the database directory:

File Purpose

tbl_name.frm Definition (format) file

Backup and Recovery

494



tbl_name.MYD Data file

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by removing the old .MYD file and re-
naming the new file to the original file name. If you use --quick, myisamchk does not create a temporary .MYD file, but instead as-
sumes that the .MYD file is correct and generates only a new index file without touching the .MYD file. This is safe, because myis-
amchk automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify the --quick option
twice to myisamchk. In this case, myisamchk does not abort on some errors (such as duplicate-key errors) but instead tries to re-
solve them by modifying the .MYD file. Normally the use of two --quick options is useful only if you have too little free disk space
to perform a normal repair. In this case, you should at least make a backup of the table before running myisamchk.

6.4.2. How to Check MyISAM Tables for Errors
To check a MyISAM table, use the following commands:

• myisamchk tbl_name

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which is very unusual). If you want
to check a table, you should normally run myisamchk without options or with the -s (silent) option.

• myisamchk -m tbl_name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all rows. It calculates a checksum
for all key values in the rows and verifies that the checksum matches the checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means “extended check”). It does a check-read of every key for each row
to verify that they indeed point to the correct row. This may take a long time for a large table that has many indexes. Normally, my-
isamchk stops after the first error it finds. If you want to obtain more information, you can add the -v (verbose) option. This
causes myisamchk to keep going, up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

This is like the previous command, but the -i option tells myisamchk to print additional statistical information.

In most cases, a simple myisamchk command with no arguments other than the table name is sufficient to check a table.

6.4.3. How to Repair Tables
The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI and .MYD).

You can also (and should, if possible) use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.
See Section 12.5.2.3, “CHECK TABLE Syntax”, and Section 12.5.2.6, “REPAIR TABLE Syntax”.

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as these:

• tbl_name.frm is locked against change

• Can't find file tbl_name.MYI (Errcode: nnn)

• Unexpected end of file

• Record file is crashed

• Got error nnn from table handler

Backup and Recovery

495



To get more information about the error, run perror nnn, where nnn is the error number. The following example shows how to use
perror to find the meanings for the most common error numbers that indicate a problem with a table:

shell> perror 126 127 132 134 135 136 141 144 145
MySQL error code 126 = Index file is crashed
MySQL error code 127 = Record-file is crashed
MySQL error code 132 = Old database file
MySQL error code 134 = Record was already deleted (or record file crashed)
MySQL error code 135 = No more room in record file
MySQL error code 136 = No more room in index file
MySQL error code 141 = Duplicate unique key or constraint on write or update
MySQL error code 144 = Table is crashed and last repair failed
MySQL error code 145 = Table was marked as crashed and should be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not errors that can be fixed by a simple
repair. In this case, you must use ALTER TABLE to increase the MAX_ROWS and AVG_ROW_LENGTH table option values:

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems that occur.

The repair process involves up to four stages, described here. Before you begin, you should change location to the database directory
and check the permissions of the table files. On Unix, make sure that they are readable by the user that mysqld runs as (and to you, be-
cause you need to access the files you are checking). If it turns out you need to modify files, they must also be writable by you.

This section is for the cases where a table check fails (such as those described in Section 6.4.2, “How to Check MyISAM Tables for Er-
rors”), or you want to use the extended features that myisamchk provides.

The options that you can use for table maintenance with myisamchk are described in Section 4.6.3, “myisamchk — MyISAM Ta-
ble-Maintenance Utility”.

If you are going to repair a table from the command line, you must first stop the mysqld server. Note that when you do mysqladmin
shutdown on a remote server, the mysqld server is still alive for a while after mysqladmin returns, until all statement-processing
has stopped and all index changes have been flushed to disk.

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option to suppress unnecessary in-
formation.

If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to mark the table as “checked.”

You have to repair only those tables for which myisamchk announces an error. For such tables, proceed to Stage 2.

If you get unexpected errors when checking (such as out of memory errors), or if myisamchk crashes, go to Stage 3.

Stage 2: Easy safe repair

First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to repair the index file without
touching the data file. If the data file contains everything that it should and the delete links point at the correct locations within the data
file, this should work, and the table is fixed. Start repairing the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows and deleted rows from the data file
and reconstructs the index file.

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode uses an old recovery method
that handles a few cases that regular recovery mode does not (but is slower).

Note

If you want a repair operation to go much faster, you should set the values of the sort_buffer_size and
key_buffer_size variables each to about 25% of your available memory when running myisamchk.

Backup and Recovery

496



If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk crashes, go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains incorrect information, or if the index
file is missing. In this case, it is necessary to create a new index file. Do so as follows:

1. Move the data file to a safe place.

2. Use the table description file to create new (empty) data and index files:

shell> mysql db_name
mysql> SET AUTOCOMMIT=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back onto the new file. You want to re-
tain a copy in case something goes wrong.)

Important

If you are using replication, you should stop it prior to performing the above procedure, since it involves filesystem opera-
tions, and these are not logged by MySQL.

Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)

You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs the whole procedure automatically.
There is also no possibility of unwanted interaction between a utility and the server, because the server does all the work when you use
REPAIR TABLE. See Section 12.5.2.6, “REPAIR TABLE Syntax”.

Stage 4: Very difficult repair

You should reach this stage only if the .frm description file has also crashed. That should never happen, because the description file is
not changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the index file and go back to Stage 2. In the
latter case, you should start with myisamchk -r.

2. If you do not have a backup but know exactly how the table was created, create a copy of the table in another database. Remove
the new data file, and then move the .frm description and .MYI index files from the other database to your crashed database.
This gives you new description and index files, but leaves the .MYD data file alone. Go back to Stage 2 and attempt to reconstruct
the index file.

6.4.4. Table Optimization
To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows, run myisamchk in recovery
mode:

shell> myisamchk -r tbl_name

You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIMIZE TABLE does a table repair
and a key analysis, and also sorts the index tree so that key lookups are faster. There is also no possibility of unwanted interaction
between a utility and the server, because the server does all the work when you use OPTIMIZE TABLE. See Section 12.5.2.5, “OP-
TIMIZE TABLE Syntax”.

myisamchk has a number of other options that you can use to improve the performance of a table:

• --analyze, -a

• --sort-index, -S

Backup and Recovery

497



• --sort-records=index_num, -R index_num

For a full description of all available options, see Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

6.4.5. Getting Information About a Table
To obtain a description of a table or statistics about it, use the commands shown here. We explain some of the information in more de-
tail later.

• myisamchk -d tbl_name

Runs myisamchk in “describe mode” to produce a description of your table. If you start the MySQL server with external locking
disabled, myisamchk may report an error for a table that is updated while it runs. However, because myisamchk does not change
the table in describe mode, there is no risk of destroying data.

• myisamchk -d -v tbl_name

Adding -v runs myisamchk in verbose mode so that it produces more information about what it is doing.

• myisamchk -eis tbl_name

Shows only the most important information from a table. This operation is slow because it must read the entire table.

• myisamchk -eiv tbl_name

This is like -eis, but tells you what is being done.

The tbl_name argument can be either the name of a MyISAM table or the name of its index file, as described in Section 4.6.3, “my-
isamchk — MyISAM Table-Maintenance Utility”. Multiple tbl_name arguments can be given.

Sample output for some of these commands follows. They are based on a table with these data and index file sizes:

-rw-rw-r-- 1 monty tcx 317235748 Jan 12 17:30 company.MYD
-rw-rw-r-- 1 davida tcx 96482304 Jan 12 18:35 company.MYI

Example of myisamchk -d output:

MyISAM file: company.MYI
Record format: Fixed length
Data records: 1403698 Deleted blocks: 0
Recordlength: 226

table description:
Key Start Len Index Type
1 2 8 unique double
2 15 10 multip. text packed stripped
3 219 8 multip. double
4 63 10 multip. text packed stripped
5 167 2 multip. unsigned short
6 177 4 multip. unsigned long
7 155 4 multip. text
8 138 4 multip. unsigned long
9 177 4 multip. unsigned long

193 1 text

Example of myisamchk -d -v output:

MyISAM file: company
Record format: Fixed length
File-version: 1
Creation time: 1999-10-30 12:12:51
Recover time: 1999-10-31 19:13:01
Status: checked
Data records: 1403698 Deleted blocks: 0
Datafile parts: 1403698 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 3
Max datafile length: 3791650815 Max keyfile length: 4294967294
Recordlength: 226

table description:

Backup and Recovery

498



Key Start Len Index Type Rec/key Root Blocksize
1 2 8 unique double 1 15845376 1024
2 15 10 multip. text packed stripped 2 25062400 1024
3 219 8 multip. double 73 40907776 1024
4 63 10 multip. text packed stripped 5 48097280 1024
5 167 2 multip. unsigned short 4840 55200768 1024
6 177 4 multip. unsigned long 1346 65145856 1024
7 155 4 multip. text 4995 75090944 1024
8 138 4 multip. unsigned long 87 85036032 1024
9 177 4 multip. unsigned long 178 96481280 1024

193 1 text

Example of myisamchk -eis output:

Checking MyISAM file: company
Key: 1: Keyblocks used: 97% Packed: 0% Max levels: 4
Key: 2: Keyblocks used: 98% Packed: 50% Max levels: 4
Key: 3: Keyblocks used: 97% Packed: 0% Max levels: 4
Key: 4: Keyblocks used: 99% Packed: 60% Max levels: 3
Key: 5: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 6: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 7: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 8: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 9: Keyblocks used: 98% Packed: 0% Max levels: 4
Total: Keyblocks used: 98% Packed: 17%

Records: 1403698 M.recordlength: 226
Packed: 0%
Recordspace used: 100% Empty space: 0%
Blocks/Record: 1.00
Record blocks: 1403698 Delete blocks: 0
Recorddata: 317235748 Deleted data: 0
Lost space: 0 Linkdata: 0

User time 1626.51, System time 232.36
Maximum resident set size 0, Integral resident set size 0
Non physical pagefaults 0, Physical pagefaults 627, Swaps 0
Blocks in 0 out 0, Messages in 0 out 0, Signals 0
Voluntary context switches 639, Involuntary context switches 28966

Example of myisamchk -eiv output:

Checking MyISAM file: company
Data records: 1403698 Deleted blocks: 0
- check file-size
- check delete-chain
block_size 1024:
index 1:
index 2:
index 3:
index 4:
index 5:
index 6:
index 7:
index 8:
index 9:
No recordlinks
- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 97% Packed: 0% Max levels: 4
- check data record references index: 2
Key: 2: Keyblocks used: 98% Packed: 50% Max levels: 4
- check data record references index: 3
Key: 3: Keyblocks used: 97% Packed: 0% Max levels: 4
- check data record references index: 4
Key: 4: Keyblocks used: 99% Packed: 60% Max levels: 3
- check data record references index: 5
Key: 5: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 6
Key: 6: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 7
Key: 7: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 8
Key: 8: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 9
Key: 9: Keyblocks used: 98% Packed: 0% Max levels: 4
Total: Keyblocks used: 9% Packed: 17%

- check records and index references
*** LOTS OF ROW NUMBERS DELETED ***

Records: 1403698 M.recordlength: 226 Packed: 0%
Recordspace used: 100% Empty space: 0% Blocks/Record: 1.00
Record blocks: 1403698 Delete blocks: 0
Recorddata: 317235748 Deleted data: 0
Lost space: 0 Linkdata: 0

Backup and Recovery

499



User time 1639.63, System time 251.61
Maximum resident set size 0, Integral resident set size 0
Non physical pagefaults 0, Physical pagefaults 10580, Swaps 0
Blocks in 4 out 0, Messages in 0 out 0, Signals 0
Voluntary context switches 10604, Involuntary context switches 122798

Explanations for the types of information myisamchk produces are given here. “Keyfile” refers to the index file. “Record” and “row”
are synonymous.

• MyISAM file

Name of the MyISAM (index) file.

• File-version

Version of MyISAM format. Currently always 2.

• Creation time

When the data file was created.

• Recover time

When the index/data file was last reconstructed.

• Data records

How many rows are in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this space. See Section 6.4.4, “Table
Optimization”.

• Datafile parts

For dynamic-row format, this indicates how many data blocks there are. For an optimized table without fragmented rows, this is the
same as Data records.

• Deleted data

How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize this space. See Section 6.4.4,
“Table Optimization”.

• Datafile pointer

The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage with 2 bytes, but this cannot be con-
trolled from MySQL yet. For fixed tables, this is a row address. For dynamic tables, this is a byte address.

• Keyfile pointer

The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with 2 bytes, but this is calculated auto-
matically by MySQL. It is always a block address.

• Max datafile length

How long the table data file can become, in bytes.

• Max keyfile length

How long the table index file can become, in bytes.

• Recordlength

How much space each row takes, in bytes.

Backup and Recovery

500



• Record format

The format used to store table rows. The preceding examples use Fixed length. Other possible values are Compressed and
Packed.

• table description

A list of all keys in the table. For each key, myisamchk displays some low-level information:

• Key

This key's number.

• Start

Where in the row this portion of the index starts.

• Len

How long this portion of the index is. For packed numbers, this should always be the full length of the column. For strings, it
may be shorter than the full length of the indexed column, because you can index a prefix of a string column.

• Index

Whether a key value can exist multiple times in the index. Possible values are unique or multip. (multiple).

• Type

What data type this portion of the index has. This is a MyISAM data type with the possible values packed, stripped, or
empty.

• Root

Address of the root index block.

• Blocksize

The size of each index block. By default this is 1024, but the value may be changed at compile time when MySQL is built from
source.

• Rec/key

This is a statistical value used by the optimizer. It tells how many rows there are per value for this index. A unique index always
has a value of 1. This may be updated after a table is loaded (or greatly changed) with myisamchk -a. If this is not updated at
all, a default value of 30 is given.

For the table shown in the examples, there are two table description lines for the ninth index. This indicates that it is a mul-
tiple-part index with two parts.

• Keyblocks used

What percentage of the keyblocks are used. When a table has just been reorganized with myisamchk, as for the table in the ex-
amples, the values are very high (very near the theoretical maximum).

• Packed

MySQL tries to pack key values that have a common suffix. This can only be used for indexes on CHAR and VARCHAR columns.
For long indexed strings that have similar leftmost parts, this can significantly reduce the space used. In the third of the preceding
examples, the fourth key is 10 characters long and a 60% reduction in space is achieved.

• Max levels

How deep the B-tree for this key is. Large tables with long key values get high values.

• Records

How many rows are in the table.

Backup and Recovery

501



• M.recordlength

The average row length. This is the exact row length for tables with fixed-length rows, because all rows have the same length.

• Packed

MySQL strips spaces from the end of strings. The Packed value indicates the percentage of savings achieved by doing this.

• Recordspace used

What percentage of the data file is used.

• Empty space

What percentage of the data file is unused.

• Blocks/Record

Average number of blocks per row (that is, how many links a fragmented row is composed of). This is always 1.0 for fixed-format
tables. This value should stay as close to 1.0 as possible. If it gets too large, you can reorganize the table. See Section 6.4.4, “Table
Optimization”.

• Recordblocks

How many blocks (links) are used. For fixed-format tables, this is the same as the number of rows.

• Deleteblocks

How many blocks (links) are deleted.

• Recorddata

How many bytes in the data file are used.

• Deleted data

How many bytes in the data file are deleted (unused).

• Lost space

If a row is updated to a shorter length, some space is lost. This is the sum of all such losses, in bytes.

• Linkdata

When the dynamic table format is used, row fragments are linked with pointers (4 to 7 bytes each). Linkdata is the sum of the
amount of storage used by all such pointers.

If a table has been compressed with myisampack, myisamchk -d prints additional information about each table column. See Sec-
tion 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”, for an example of this information and a descrip-
tion of what it means.

6.4.6. Setting Up a Table Maintenance Schedule
It is a good idea to perform table checks on a regular basis rather than waiting for problems to occur. One way to check and repair My-
ISAM tables is with the CHECK TABLE and REPAIR TABLE statements. See Section 12.5.2.3, “CHECK TABLE Syntax”, and Sec-
tion 12.5.2.6, “REPAIR TABLE Syntax”.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use myisamchk -s. The -s option (short for
--silent) causes myisamchk to run in silent mode, printing messages only when errors occur.

It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine has done a restart in the middle
of an update, you usually need to check each table that could have been affected before it is used further. (These are “expected crashed
tables.”) To check MyISAM tables automatically, start the server with the --myisam-recover option. See Section 5.1.2, “Command
Options”.

Backup and Recovery

502



You should also check your tables regularly during normal system operation. At MySQL AB, we run a cron job to check all our im-
portant tables once a week, using a line like this in a crontab file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so that we can examine and repair them when needed.

Because we have not had any unexpectedly crashed tables (tables that become corrupted for reasons other than hardware trouble) for
several years, once a week is more than sufficient for us.

We recommend that to start with, you execute myisamchk -s each night on all tables that have been updated during the last 24
hours, until you come to trust MySQL as much as we do.

Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM tables with dynamic-sized rows
(tables with VARCHAR, BLOB, or TEXT columns) or have tables with many deleted rows you may want to defragment/reclaim space
from the tables from time to time. You can do this by using OPTIMIZE TABLE on the tables in question. Alternatively, if you can stop
the mysqld server for a while, change location into the data directory and use this command while the server is stopped:

shell> myisamchk -r -s --sort-index --sort_buffer_size=16M */*.MYI

Backup and Recovery

503



Chapter 7. Optimization
Optimization is a complex task because ultimately it requires understanding of the entire system to be optimized. Although it may be
possible to perform some local optimizations with little knowledge of your system or application, the more optimal you want your sys-
tem to become, the more you must know about it.

This chapter tries to explain and give some examples of different ways to optimize MySQL. Remember, however, that there are always
additional ways to make the system even faster, although they may require increasing effort to achieve.

7.1. Optimization Overview
The most important factor in making a system fast is its basic design. You must also know what kinds of processing your system is do-
ing, and what its bottlenecks are. In most cases, system bottlenecks arise from these sources:

• Disk seeks. It takes time for the disk to find a piece of data. With modern disks, the mean time for this is usually lower than 10ms,
so we can in theory do about 100 seeks a second. This time improves slowly with new disks and is very hard to optimize for a single
table. The way to optimize seek time is to distribute the data onto more than one disk.

• Disk reading and writing. When the disk is at the correct position, we need to read the data. With modern disks, one disk delivers at
least 10–20MB/s throughput. This is easier to optimize than seeks because you can read in parallel from multiple disks.

• CPU cycles. When we have the data in main memory, we need to process it to get our result. Having small tables compared to the
amount of memory is the most common limiting factor. But with small tables, speed is usually not the problem.

• Memory bandwidth. When the CPU needs more data than can fit in the CPU cache, main memory bandwidth becomes a bottleneck.
This is an uncommon bottleneck for most systems, but one to be aware of.

MySQL Enterprise
For instant notification of system bottlenecks subscribe to the MySQL Enterprise Monitor. For more information
see http://www.mysql.com/products/enterprise/advisors.html.

7.1.1. MySQL Design Limitations and Tradeoffs
When using the MyISAM storage engine, MySQL uses extremely fast table locking that allows multiple readers or a single writer. The
biggest problem with this storage engine occurs when you have a steady stream of mixed updates and slow selects on a single table. If
this is a problem for certain tables, you can use another storage engine for them. See Chapter 13, Storage Engines.

MySQL can work with both transactional and non-transactional tables. To make it easier to work smoothly with non-transactional tables
(which cannot roll back if something goes wrong), MySQL has the following rules. Note that these rules apply only when not running in
strict SQL mode or if you use the IGNORE specifier for INSERT or UPDATE.

• All columns have default values.

• If you insert an inappropriate or out-of-range value into a column, MySQL sets the column to the “best possible value” instead of re-
porting an error. For numerical values, this is 0, the smallest possible value or the largest possible value. For strings, this is either the
empty string or as much of the string as can be stored in the column.

• All calculated expressions return a value that can be used instead of signaling an error condition. For example, 1/0 returns NULL.

To change the preceding behaviors, you can enable stricter data handling by setting the server SQL mode appropriately. For more in-
formation about data handling, see Section 1.8.6, “How MySQL Deals with Constraints”, Section 5.1.6, “SQL Modes”, and Sec-
tion 12.2.4, “INSERT Syntax”.

7.1.2. Designing Applications for Portability
Because all SQL servers implement different parts of standard SQL, it takes work to write portable database applications. It is very easy
to achieve portability for very simple selects and inserts, but becomes more difficult the more capabilities you require. If you want an
application that is fast with many database systems, it becomes even more difficult.

504

http://www.mysql.com/products/enterprise/advisors.html


All database systems have some weak points. That is, they have different design compromises that lead to different behavior.

To make a complex application portable, you need to determine which SQL servers it must work with, and then determine what features
those servers support. You can use the MySQL crash-me program to find functions, types, and limits that you can use with a selec-
tion of database servers. crash-me does not check for every possible feature, but it is still reasonably comprehensive, performing
about 450 tests. An example of the type of information crash-me can provide is that you should not use column names that are longer
than 18 characters if you want to be able to use Informix or DB2.

The crash-me program and the MySQL benchmarks are all very database independent. By taking a look at how they are written, you
can get a feeling for what you must do to make your own applications database independent. The programs can be found in the sql-
bench directory of MySQL source distributions. They are written in Perl and use the DBI database interface. Use of DBI in itself
solves part of the portability problem because it provides database-independent access methods. See Section 7.1.4, “The MySQL
Benchmark Suite”.

If you strive for database independence, you need to get a good feeling for each SQL server's bottlenecks. For example, MySQL is very
fast in retrieving and updating rows for MyISAM tables, but has a problem in mixing slow readers and writers on the same table. Trans-
actional database systems in general are not very good at generating summary tables from log tables, because in this case row locking is
almost useless.

MySQL Enterprise
For expert advice on choosing the database engine suitable to your circumstances subscribe to the MySQL En-
terprise Monitor. For more information see http://www.mysql.com/products/enterprise/advisors.html.

To make your application really database independent, you should define an easily extendable interface through which you manipulate
your data. For example, C++ is available on most systems, so it makes sense to use a C++ class-based interface to the databases.

If you use some feature that is specific to a given database system (such as the REPLACE statement, which is specific to MySQL), you
should implement the same feature for other SQL servers by coding an alternative method. Although the alternative might be slower, it
enables the other servers to perform the same tasks.

With MySQL, you can use the /*! */ syntax to add MySQL-specific keywords to a statement. The code inside /* */ is treated as a
comment (and ignored) by most other SQL servers. For information about writing comments, see Section 8.5, “Comment Syntax”.

If high performance is more important than exactness, as for some Web applications, it is possible to create an application layer that
caches all results to give you even higher performance. By letting old results expire after a while, you can keep the cache reasonably
fresh. This provides a method to handle high load spikes, in which case you can dynamically increase the cache size and set the expira-
tion timeout higher until things get back to normal.

In this case, the table creation information should contain information about the initial cache size and how often the table should nor-
mally be refreshed.

An attractive alternative to implementing an application cache is to use the MySQL query cache. By enabling the query cache, the serv-
er handles the details of determining whether a query result can be reused. This simplifies your application. See Section 7.5.4, “The
MySQL Query Cache”.

7.1.3. What We Have Used MySQL For
This section describes an early application for MySQL.

During MySQL initial development, the features of MySQL were made to fit our largest customer, which handled data warehousing for
a couple of the largest retailers in Sweden.

From all stores, we got weekly summaries of all bonus card transactions, and were expected to provide useful information for the store
owners to help them find how their advertising campaigns were affecting their own customers.

The volume of data was quite huge (about seven million summary transactions per month), and we had data for 4–10 years that we
needed to present to the users. We got weekly requests from our customers, who wanted instant access to new reports from this data.

We solved this problem by storing all information per month in compressed “transaction tables.” We had a set of simple macros that
generated summary tables grouped by different criteria (product group, customer id, store, and so on) from the tables in which the trans-
actions were stored. The reports were Web pages that were dynamically generated by a small Perl script. This script parsed a Web page,
executed the SQL statements in it, and inserted the results. We would have used PHP or mod_perl instead, but they were not available
at the time.

For graphical data, we wrote a simple tool in C that could process SQL query results and produce GIF images based on those results.

Optimization

505

http://www.mysql.com/products/enterprise/advisors.html


This tool also was dynamically executed from the Perl script that parses the Web pages.

In most cases, a new report could be created simply by copying an existing script and modifying the SQL query that it used. In some
cases, we needed to add more columns to an existing summary table or generate a new one. This also was quite simple because we kept
all transaction-storage tables on disk. (This amounted to about 50GB of transaction tables and 200GB of other customer data.)

We also let our customers access the summary tables directly with ODBC so that the advanced users could experiment with the data
themselves.

This system worked well and we had no problems handling the data with quite modest Sun Ultra SPARCstation hardware (2×200MHz).
Eventually the system was migrated to Linux.

7.1.4. The MySQL Benchmark Suite
This benchmark suite is meant to tell any user what operations a given SQL implementation performs well or poorly. You can get a
good idea for how the benchmarks work by looking at the code and results in the sql-bench directory in any MySQL source distribu-
tion.

Note that this benchmark is single-threaded, so it measures the minimum time for the operations performed. We plan to add multi-
threaded tests to the benchmark suite in the future.

To use the benchmark suite, the following requirements must be satisfied:

• The benchmark suite is provided with MySQL source distributions. You can either download a released distribution from ht-
tp://dev.mysql.com/downloads/, or use the current development source tree. (See Section 2.9.3, “Installing from the Development
Source Tree”.)

• The benchmark scripts are written in Perl and use the Perl DBI module to access database servers, so DBI must be installed. You
also need the server-specific DBD drivers for each of the servers you want to test. For example, to test MySQL, PostgreSQL, and
DB2, you must have the DBD::mysql, DBD::Pg, and DBD::DB2 modules installed. See Section 2.15, “Perl Installation Notes”.

After you obtain a MySQL source distribution, you can find the benchmark suite located in its sql-bench directory. To run the
benchmark tests, build MySQL, and then change location into the sql-bench directory and execute the run-all-tests script:

shell> cd sql-bench
shell> perl run-all-tests --server=server_name

server_name should be the name of one of the supported servers. To get a list of all options and supported servers, invoke this com-
mand:

shell> perl run-all-tests --help

The crash-me script also is located in the sql-bench directory. crash-me tries to determine what features a database system sup-
ports and what its capabilities and limitations are by actually running queries. For example, it determines:

• What data types are supported

• How many indexes are supported

• What functions are supported

• How big a query can be

• How big a VARCHAR column can be

For more information about benchmark results, visit http://dev.mysql.com/tech-resources/benchmarks/.

7.1.5. Using Your Own Benchmarks
You should definitely benchmark your application and database to find out where the bottlenecks are. After fixing one bottleneck (or by

Optimization

506

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/
http://dev.mysql.com/tech-resources/benchmarks/


replacing it with a “dummy” module), you can proceed to identify the next bottleneck. Even if the overall performance for your applica-
tion currently is acceptable, you should at least make a plan for each bottleneck and decide how to solve it if someday you really need
the extra performance.

For examples of portable benchmark programs, look at those in the MySQL benchmark suite. See Section 7.1.4, “The MySQL Bench-
mark Suite”. You can take any program from this suite and modify it for your own needs. By doing this, you can try different solutions
to your problem and test which really is fastest for you.

Another free benchmark suite is the Open Source Database Benchmark, available at http://osdb.sourceforge.net/.

It is very common for a problem to occur only when the system is very heavily loaded. We have had many customers who contact us
when they have a (tested) system in production and have encountered load problems. In most cases, performance problems turn out to
be due to issues of basic database design (for example, table scans are not good under high load) or problems with the operating system
or libraries. Most of the time, these problems would be much easier to fix if the systems were not already in production.

To avoid problems like this, you should put some effort into benchmarking your whole application under the worst possible load:

• The mysqlslap program can be helpful for simulating a high load produced by multiple clients issuing queries simultaneously.
See Section 4.5.7, “mysqlslap — Load Emulation Client”.

• You can also try Super Smack, available at http://jeremy.zawodny.com/mysql/super-smack/.

As suggested by the names of these programs, they can bring a system to its knees, so make sure to use them only on your development
systems.

7.2. Optimizing SELECT and Other Statements
First, one factor affects all statements: The more complex your permissions setup, the more overhead you have. Using simpler permis-
sions when you issue GRANT statements enables MySQL to reduce permission-checking overhead when clients execute statements. For
example, if you do not grant any table-level or column-level privileges, the server need not ever check the contents of the
tables_priv and columns_priv tables. Similarly, if you place no resource limits on any accounts, the server does not have to
perform resource counting. If you have a very high statement-processing load, it may be worth the time to use a simplified grant struc-
ture to reduce permission-checking overhead.

If your problem is with a specific MySQL expression or function, you can perform a timing test by invoking the BENCHMARK() func-
tion using the mysql client program. Its syntax is BENCHMARK(loop_count,expression). The return value is always zero, but
mysql prints a line displaying approximately how long the statement took to execute. For example:

mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+
| 0 |
+------------------------+
1 row in set (0.32 sec)

This result was obtained on a Pentium II 400MHz system. It shows that MySQL can execute 1,000,000 simple addition expressions in
0.32 seconds on that system.

All MySQL functions should be highly optimized, but there may be some exceptions. BENCHMARK() is an excellent tool for finding
out if some function is a problem for your queries.

7.2.1. Optimizing Queries with EXPLAIN

The EXPLAIN statement can be used either as a synonym for DESCRIBE or as a way to obtain information about how MySQL ex-
ecutes a SELECT statement:

• EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name or SHOW COLUMNS FROM tbl_name:

EXPLAIN tbl_name

• When you precede a SELECT statement with the keyword EXPLAIN, MySQL displays information from the optimizer about the

Optimization

507

http://osdb.sourceforge.net/
http://jeremy.zawodny.com/mysql/super-smack/


query execution plan. That is, MySQL explains how it would process the SELECT, including information about how tables are
joined and in which order:

EXPLAIN [EXTENDED | PARTITIONS] SELECT select_options

• EXPLAIN PARTITIONS is available beginning with MySQL 5.1.5. It is useful only when examining queries involving partitioned
tables. For details, see Section 18.3.4, “Obtaining Information About Partitions”.

This section describes the second use of EXPLAIN for obtaining query execution plan information. For a description of the DESCRIBE
and SHOW COLUMNS statements, see Section 12.3.1, “DESCRIBE Syntax”, and Section 12.5.4.4, “SHOW COLUMNS Syntax”.

With the help of EXPLAIN, you can see where you should add indexes to tables to get a faster SELECT that uses indexes to find rows.
You can also use EXPLAIN to check whether the optimizer joins the tables in an optimal order. To force the optimizer to use a join or-
der corresponding to the order in which the tables are named in the SELECT statement, begin the statement with SELECT
STRAIGHT_JOIN rather than just SELECT.

If you have a problem with indexes not being used when you believe that they should be, you should run ANALYZE TABLE to update
table statistics such as cardinality of keys, that can affect the choices the optimizer makes. See Section 12.5.2.1, “ANALYZE TABLE
Syntax”.

EXPLAIN returns a row of information for each table used in the SELECT statement. The tables are listed in the output in the order that
MySQL would read them while processing the query. MySQL resolves all joins using a single-sweep multi-join method. This means
that MySQL reads a row from the first table, and then finds a matching row in the second table, the third table, and so on. When all
tables are processed, MySQL outputs the selected columns and backtracks through the table list until a table is found for which there are
more matching rows. The next row is read from this table and the process continues with the next table.

When the EXTENDED keyword is used, EXPLAIN produces extra information that can be viewed by issuing a SHOW WARNINGS state-
ment following the EXPLAIN statement. This information displays how the optimizer qualifies table and column names in the SELECT
statement, what the SELECT looks like after the application of rewriting and optimization rules, and possibly other notes about the op-
timization process. EXPLAIN EXTENDED also displays the filtered column as of MySQL 5.1.12.

Note

You cannot use the EXTENDED and PARTITIONS keywords together in the same EXPLAIN statement.

Each output row from EXPLAIN provides information about one table, and each row contains the following columns:

• id

The SELECT identifier. This is the sequential number of the SELECT within the query.

• select_type

The type of SELECT, which can be any of those shown in the following table:

SIMPLE Simple SELECT (not using UNION or subqueries)

PRIMARY Outermost SELECT

UNION Second or later SELECT statement in a UNION

DEPENDENT UNION Second or later SELECT statement in a UNION, dependent on outer query

UNION RESULT Result of a UNION.

SUBQUERY First SELECT in subquery

DEPENDENT SUBQUERY First SELECT in subquery, dependent on outer query

DERIVED Derived table SELECT (subquery in FROM clause)

UNCACHEABLE SUBQUERY A subquery for which the result cannot be cached and must be re-evaluated for each row of the outer
query

UNCACHEABLE UNION The second or later select in a UNION that belongs to an uncacheable subquery (see UNCACHEABLE
SUBQUERY)

Optimization

508



DEPENDENT typically signifies the use of a correlated subquery. See Section 12.2.8.7, “Correlated Subqueries”.

“DEPENDENT SUBQUERY” evaluation differs from UNCACHEABLE SUBQUERY evaluation. For “DEPENDENT SUB-
QUERY”, the subquery is re-evaluated only once for each set of different values of the variables from its outer context. For UN-
CACHEABLE SUBQUERY, the subquery is re-evaluated for each row of the outer context. Cacheability of subqueries is subject to
the restrictions detailed in Section 7.5.4.1, “How the Query Cache Operates”. For example, referring to user variables makes a sub-
query uncacheable.

• table

The table to which the row of output refers.

• type

The join type. The different join types are listed here, ordered from the best type to the worst:

• system

The table has only one row (= system table). This is a special case of the const join type.

• const

The table has at most one matching row, which is read at the start of the query. Because there is only one row, values from the
column in this row can be regarded as constants by the rest of the optimizer. const tables are very fast because they are read
only once.

const is used when you compare all parts of a PRIMARY KEY or UNIQUE index to constant values. In the following queries,
tbl_name can be used as a const table:

SELECT * FROM tbl_name WHERE primary_key=1;

SELECT * FROM tbl_name
WHERE primary_key_part1=1 AND primary_key_part2=2;

• eq_ref

One row is read from this table for each combination of rows from the previous tables. Other than the system and const
types, this is the best possible join type. It is used when all parts of an index are used by the join and the index is a PRIMARY
KEY or UNIQUE index.

eq_ref can be used for indexed columns that are compared using the = operator. The comparison value can be a constant or an
expression that uses columns from tables that are read before this table. In the following examples, MySQL can use an eq_ref
join to process ref_table:

SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;

• ref

All rows with matching index values are read from this table for each combination of rows from the previous tables. ref is used
if the join uses only a leftmost prefix of the key or if the key is not a PRIMARY KEY or UNIQUE index (in other words, if the
join cannot select a single row based on the key value). If the key that is used matches only a few rows, this is a good join type.

ref can be used for indexed columns that are compared using the = or <=> operator. In the following examples, MySQL can
use a ref join to process ref_table:

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;

Optimization

509



• fulltext

The join is performed using a FULLTEXT index.

• ref_or_null

This join type is like ref, but with the addition that MySQL does an extra search for rows that contain NULL values. This join
type optimization is used most often in resolving subqueries. In the following examples, MySQL can use a ref_or_null join
to process ref_table:

SELECT * FROM ref_table
WHERE key_column=expr OR key_column IS NULL;

See Section 7.2.7, “IS NULL Optimization”.

• index_merge

This join type indicates that the Index Merge optimization is used. In this case, the key column in the output row contains a list
of indexes used, and key_len contains a list of the longest key parts for the indexes used. For more information, see Sec-
tion 7.2.6, “Index Merge Optimization”.

• unique_subquery

This type replaces ref for some IN subqueries of the following form:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

unique_subquery is just an index lookup function that replaces the subquery completely for better efficiency.

• index_subquery

This join type is similar to unique_subquery. It replaces IN subqueries, but it works for non-unique indexes in subqueries
of the following form:

value IN (SELECT key_column FROM single_table WHERE some_expr)

• range

Only rows that are in a given range are retrieved, using an index to select the rows. The key column in the output row indicates
which index is used. The key_len contains the longest key part that was used. The ref column is NULL for this type.

range can be used when a key column is compared to a constant using any of the =, <>, >, >=, <, <=, IS NULL, <=>,
BETWEEN, or IN() operators:

SELECT * FROM tbl_name
WHERE key_column = 10;

SELECT * FROM tbl_name
WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name
WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name
WHERE key_part1= 10 AND key_part2 IN (10,20,30);

• index

This join type is the same as ALL, except that only the index tree is scanned. This usually is faster than ALL because the index
file usually is smaller than the data file.

MySQL can use this join type when the query uses only columns that are part of a single index.

• ALL

A full table scan is done for each combination of rows from the previous tables. This is normally not good if the table is the first

Optimization

510



table not marked const, and usually very bad in all other cases. Normally, you can avoid ALL by adding indexes that allow
row retrieval from the table based on constant values or column values from earlier tables.

• possible_keys

The possible_keys column indicates which indexes MySQL can choose from use to find the rows in this table. Note that this
column is totally independent of the order of the tables as displayed in the output from EXPLAIN. That means that some of the keys
in possible_keys might not be usable in practice with the generated table order.

If this column is NULL, there are no relevant indexes. In this case, you may be able to improve the performance of your query by ex-
amining the WHERE clause to check whether it refers to some column or columns that would be suitable for indexing. If so, create an
appropriate index and check the query with EXPLAIN again. See Section 12.1.4, “ALTER TABLE Syntax”.

To see what indexes a table has, use SHOW INDEX FROM tbl_name.

• key

The key column indicates the key (index) that MySQL actually decided to use. If MySQL decides to use one of the pos-
sible_keys indexes to look up rows, that index is listed as the key value.

It is possible that key will name an index that is not present in the possible_keys value. This can happen if none of the pos-
sible_keys indexes are suitable for looking up rows, but all the columns selected by the query are columns of some other index.
That is, the named index covers the selected columns, so although it is not used to determine which rows to retrieve, an index scan is
more efficient than a data row scan.

For InnoDB, a secondary index might cover the selected columns even if the query also selects the primary key because InnoDB
stores the primary key value with each secondary index. If key is NULL, MySQL found no index to use for executing the query
more efficiently.

To force MySQL to use or ignore an index listed in the possible_keys column, use FORCE INDEX, USE INDEX, or IGNORE
INDEX in your query. See Section 12.2.7.2, “Index Hint Syntax”.

For MyISAM tables, running ANALYZE TABLE helps the optimizer choose better indexes. For MyISAM tables, myisamchk -
-analyze does the same. See Section 12.5.2.1, “ANALYZE TABLE Syntax”, and Section 6.4, “Table Maintenance and Crash Re-
covery”.

• key_len

The key_len column indicates the length of the key that MySQL decided to use. The length is NULL if the key column says
NULL. Note that the value of key_len enables you to determine how many parts of a multiple-part key MySQL actually uses.

• ref

The ref column shows which columns or constants are compared to the index named in the key column to select rows from the ta-
ble.

• rows

The rows column indicates the number of rows MySQL believes it must examine to execute the query.

• filtered

The filtered column indicates an estimated percentage of table rows that will be filtered by the table condition. That is, rows
shows the estimated number of rows examined and rows × filtered / 100 shows the number of rows that will be joined with
previous tables. This column is displayed if you use EXPLAIN EXTENDED. (New in MySQL 5.1.12)

• Extra

This column contains additional information about how MySQL resolves the query. The following list explains the values that can
appear in this column. If you want to make your queries as fast as possible, you should look out for Extra values of Using
filesort and Using temporary.

• Distinct

Optimization

511



MySQL is looking for distinct values, so it stops searching for more rows for the current row combination after it has found the
first matching row.

• Full scan on NULL key

This occurs for subquery optimization as a fallback strategy when the optimizer cannot use an index-lookup access method.

• Impossible WHERE noticed after reading const tables

MySQL has read all const (and system) tables and notice that the WHERE clause is always false.

• No tables

The query has no FROM clause, or has a FROM DUAL clause.

• Not exists

MySQL was able to do a LEFT JOIN optimization on the query and does not examine more rows in this table for the previous
row combination after it finds one row that matches the LEFT JOIN criteria. Here is an example of the type of query that can
be optimized this way:

SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id
WHERE t2.id IS NULL;

Assume that t2.id is defined as NOT NULL. In this case, MySQL scans t1 and looks up the rows in t2 using the values of
t1.id. If MySQL finds a matching row in t2, it knows that t2.id can never be NULL, and does not scan through the rest of
the rows in t2 that have the same id value. In other words, for each row in t1, MySQL needs to do only a single lookup in t2,
regardless of how many rows actually match in t2.

• Range checked for each record (index map: N)

MySQL found no good index to use, but found that some of indexes might be used after column values from preceding tables
are known. For each row combination in the preceding tables, MySQL checks whether it is possible to use a range or in-
dex_merge access method to retrieve rows. This is not very fast, but is faster than performing a join with no index at all. The
applicability criteria are as described in Section 7.2.5, “Range Optimization”, and Section 7.2.6, “Index Merge Optimization”,
with the exception that all column values for the preceding table are known and considered to be constants.

Indexes are numbered beginning with 1, in the same order as shown by SHOW INDEX for the table. The index map value N is a
bitmask value that indicates which indexes are candidates. For example, a value of 0x19 (binary 11001) means that indexes 1,
4, and 5 will be considered.

• Scanned N databases

This indicates how many directory scans the server performs when processing a query for INFORMATION_SCHEMA tables, as
described in Section 7.2.17, “INFORMATION_SCHEMA Optimization”. The value of N can be 0, 1, or all.

• Select tables optimized away

The query contained only aggregate functions (MIN(), MAX()) that were all resolved using an index, or COUNT(*) for My-
ISAM, and no GROUP BY clause. The optimizer determined that only one row should be returned.

• Skip_open_table, Open_frm_only, Open_trigger_only, Open_full_table

These values indicate file-opening optimizations that apply to queries for INFORMATION_SCHEMA tables, as described in Sec-
tion 7.2.17, “INFORMATION_SCHEMA Optimization”.

• Skip_open_table: Table files do not need to be opened. The information has already become available within the query
by scanning the database directory.

• Open_frm_only: Only the table's .frm file need be opened.

• Open_trigger_only: Only the table's .TRG file need be opened.

• Open_full_table: The unoptimized information lookup. The .frm, .MYD, and .MYI files must be opened.

Optimization

512



• Using filesort

MySQL must do an extra pass to find out how to retrieve the rows in sorted order. The sort is done by going through all rows ac-
cording to the join type and storing the sort key and pointer to the row for all rows that match the WHERE clause. The keys then
are sorted and the rows are retrieved in sorted order. See Section 7.2.11, “ORDER BY Optimization”.

• Using index

The column information is retrieved from the table using only information in the index tree without having to do an additional
seek to read the actual row. This strategy can be used when the query uses only columns that are part of a single index.

For InnoDB tables that have a user-defined clustered index, that index can be used even when Using index is absent from
the Extra column. This is the case if if type is index and key is PRIMARY.

• Using join buffer

Tables are read in portions into the join buffer, and then their rows are used from the buffer to perform the join.

• Using temporary

To resolve the query, MySQL needs to create a temporary table to hold the result. This typically happens if the query contains
GROUP BY and ORDER BY clauses that list columns differently.

• Using where

A WHERE clause is used to restrict which rows to match against the next table or send to the client. Unless you specifically in-
tend to fetch or examine all rows from the table, you may have something wrong in your query if the Extra value is not Us-
ing where and the table join type is ALL or index.

• Using sort_union(...), Using union(...), Using intersect(...)

These indicate how index scans are merged for the index_merge join type. See Section 7.2.6, “Index Merge Optimization”,
for more information.

• Using index for group-by

Similar to the Using index way of accessing a table, Using index for group-by indicates that MySQL found an in-
dex that can be used to retrieve all columns of a GROUP BY or DISTINCT query without any extra disk access to the actual ta-
ble. Additionally, the index is used in the most efficient way so that for each group, only a few index entries are read. For de-
tails, see Section 7.2.12, “GROUP BY Optimization”.

• Using where with pushed condition

This item applies to NDB Cluster tables only. It means that MySQL Cluster is using condition pushdown to improve the effi-
ciency of a direct comparison between a non-indexed column and a constant. In such cases, the condition is “pushed down” to
the cluster's data nodes where it is evaluated in all partitions simultaneously. This eliminates the need to send non-matching
rows over the network, and can speed up such queries by a factor of 5 to 10 times over cases where condition pushdown could
be but is not used.

Suppose that you have a Cluster table defined as follows:

CREATE TABLE t1 (
a INT,
b INT,
KEY(a)

) ENGINE=NDBCLUSTER;

In this case, condition pushdown can be used with a query such as this one:

SELECT a,b FROM t1 WHERE b = 10;

This can be seen in the output of EXPLAIN SELECT, as shown here:

mysql> EXPLAIN SELECT a,b FROM t1 WHERE b = 10\G
*************************** 1. row ***************************

id: 1

Optimization

513



select_type: SIMPLE
table: t1
type: ALL

possible_keys: NULL
key: NULL

key_len: NULL
ref: NULL
rows: 10

Extra: Using where with pushed condition

Condition pushdown cannot be used with either of these two queries:

SELECT a,b FROM t1 WHERE a = 10;
SELECT a,b FROM t1 WHERE b + 1 = 10;

With regard to the first of these two queries, condition pushdown is not applicable because an index exists on column a. In the
case of the second query, a condition pushdown cannot be employed because the comparison involving the non-indexed column
b is an indirect one. (However, it would apply if you were to reduce b + 1 = 10 to b = 9 in the WHERE clause.)

However, a condition pushdown may also be employed when an indexed column is compared with a constant using a > or < op-
erator:

mysql> EXPLAIN SELECT a,b FROM t1 WHERE a<2\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: t1
type: range

possible_keys: a
key: a

key_len: 5
ref: NULL
rows: 2

Extra: Using where with pushed condition

Other comparisons which are supported for condition pushdown include the following:

• column LIKE pattern and column NOT LIKE pattern

pattern must be a string literal containing the pattern to be matched; see Section 11.4.1, “String Comparison Functions”,
for syntax.

• column IS NULL and column IS NOT NULL

• column IN (value-list)

Each item in the value-list must be a constant, literal value.

• column BETWEEN constant1 AND constant2

Each of constant1 and constant2 must be a constant, literal value.
In each of these cases, it is possible for the condition to be converted into the form of one or more direct comparisons between a
column and a constant.

Condition pushdown capability is used by default (this is a change from MySQL 5.0, where it had to be enabled). To disable it,
you can start mysqld with either --engine-condition-pushdown=OFF or --engine-condition-pushdown=0,
or you can execute either of the following statements:

SET engine_condition_pushdown=OFF;

SET engine_condition_pushdown=0;

Limitations. Condition pushdown is subject to the following limitations:

• Condition pushdown is currently supported by the NDB storage engine only, and does not occur when executing queries
against tables using any other storage engine.

• Columns may be compared with constants only; however, this includes expressions which evaluate to constant values.

Optimization

514



• Columns used in comparisons cannot be of any of the BLOB or TEXT types.

• A string value to be compared with a column must use the same collation as the column.

• Joins are not directly supported; conditions involving multiple tables are pushed separately where possible. Use EXPLAIN
EXTENDED to determine which conditions are actaully pushed down.

You can get a good indication of how good a join is by taking the product of the values in the rows column of the EXPLAIN output.
This should tell you roughly how many rows MySQL must examine to execute the query. If you restrict queries with the
max_join_size system variable, this row product also is used to determine which multiple-table SELECT statements to execute and
which to abort. See Section 7.5.2, “Tuning Server Parameters”.

The following example shows how a multiple-table join can be optimized progressively based on the information provided by EX-
PLAIN.

Suppose that you have the SELECT statement shown here and that you plan to examine it using EXPLAIN:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
tt.ProjectReference, tt.EstimatedShipDate,
tt.ActualShipDate, tt.ClientID,
tt.ServiceCodes, tt.RepetitiveID,
tt.CurrentProcess, tt.CurrentDPPerson,
tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
et_1.COUNTRY, do.CUSTNAME

FROM tt, et, et AS et_1, do
WHERE tt.SubmitTime IS NULL
AND tt.ActualPC = et.EMPLOYID
AND tt.AssignedPC = et_1.EMPLOYID
AND tt.ClientID = do.CUSTNMBR;

For this example, make the following assumptions:

• The columns being compared have been declared as follows:

Table Column Data Type

tt ActualPC CHAR(10)

tt AssignedPC CHAR(10)

tt ClientID CHAR(10)

et EMPLOYID CHAR(15)

do CUSTNMBR CHAR(15)

• The tables have the following indexes:

Table Index

tt ActualPC

tt AssignedPC

tt ClientID

et EMPLOYID (primary key)

do CUSTNMBR (primary key)

• The tt.ActualPC values are not evenly distributed.

Initially, before any optimizations have been performed, the EXPLAIN statement produces the following information:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
do ALL PRIMARY NULL NULL NULL 2135

Optimization

515



et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC, NULL NULL NULL 3872

ClientID,
ActualPC

Range checked for each record (index map: 0x23)

Because type is ALL for each table, this output indicates that MySQL is generating a Cartesian product of all the tables; that is, every
combination of rows. This takes quite a long time, because the product of the number of rows in each table must be examined. For the
case at hand, this product is 74 × 2135 × 74 × 3872 = 45,268,558,720 rows. If the tables were bigger, you can only imagine how long it
would take.

One problem here is that MySQL can use indexes on columns more efficiently if they are declared as the same type and size. In this
context, VARCHAR and CHAR are considered the same if they are declared as the same size. tt.ActualPC is declared as CHAR(10)
and et.EMPLOYID is CHAR(15), so there is a length mismatch.

To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from 10 characters to 15 characters:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

Now tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN statement again produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC, NULL NULL NULL 3872 Using

ClientID, where
ActualPC

do ALL PRIMARY NULL NULL NULL 2135
Range checked for each record (index map: 0x1)

et_1 ALL PRIMARY NULL NULL NULL 74
Range checked for each record (index map: 0x1)

et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

This is not perfect, but is much better: The product of the rows values is less by a factor of 74. This version executes in a couple of
seconds.

A second alteration can be made to eliminate the column length mismatches for the tt.AssignedPC = et_1.EMPLOYID and
tt.ClientID = do.CUSTNMBR comparisons:

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
-> MODIFY ClientID VARCHAR(15);

After that modification, EXPLAIN produces the output shown here:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using

ClientID, where
ActualPC

et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

At this point, the query is optimized almost as well as possible. The remaining problem is that, by default, MySQL assumes that values
in the tt.ActualPC column are evenly distributed, and that is not the case for the tt table. Fortunately, it is easy to tell MySQL to
analyze the key distribution:

mysql> ANALYZE TABLE tt;

With the additional index information, the join is perfect and EXPLAIN produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC NULL NULL NULL 3872 Using

ClientID, where
ActualPC

et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

Note that the rows column in the output from EXPLAIN is an educated guess from the MySQL join optimizer. You should check
whether the numbers are even close to the truth by comparing the rows product with the actual number of rows that the query returns.
If the numbers are quite different, you might get better performance by using STRAIGHT_JOIN in your SELECT statement and trying

Optimization

516



to list the tables in a different order in the FROM clause.

It is possible in some cases to execute statements that modify data when EXPLAIN SELECT is used with a subquery; for more inform-
ation, see Section 12.2.8.8, “Subqueries in the FROM clause”.

MySQL Enterprise
Subscribers to the MySQL Enterprise Monitor regularly receive expert advice on optimization. For more inform-
ation see http://www.mysql.com/products/enterprise/advisors.html.

7.2.2. Estimating Query Performance
In most cases, you can estimate query performance by counting disk seeks. For small tables, you can usually find a row in one disk seek
(because the index is probably cached). For bigger tables, you can estimate that, using B-tree indexes, you need this many seeks to find
a row: log(row_count) / log(index_block_length / 3 × 2 / (index_length +
data_pointer_length)) + 1.

In MySQL, an index block is usually 1,024 bytes and the data pointer is usually four bytes. For a 500,000-row table with an index
length of three bytes (the size of MEDIUMINT), the formula indicates log(500,000)/log(1024/3×2/(3+4)) + 1 = 4 seeks.

This index would require storage of about 500,000 × 7 × 3/2 = 5.2MB (assuming a typical index buffer fill ratio of 2/3), so you probably
have much of the index in memory and so need only one or two calls to read data to find the row.

For writes, however, you need four seek requests to find where to place a new index value and normally two seeks to update the index
and write the row.

Note that the preceding discussion does not mean that your application performance slowly degenerates by log N. As long as everything
is cached by the OS or the MySQL server, things become only marginally slower as the table gets bigger. After the data gets too big to
be cached, things start to go much slower until your applications are bound only by disk seeks (which increase by log N). To avoid this,
increase the key cache size as the data grows. For MyISAM tables, the key cache size is controlled by the key_buffer_size system
variable. See Section 7.5.2, “Tuning Server Parameters”.

MySQL Enterprise
The MySQL Enterprise Monitor provides a number of advisors specifically designed to improve query perform-
ance. For more information see http://www.mysql.com/products/enterprise/advisors.html.

7.2.3. Speed of SELECT Queries
In general, when you want to make a slow SELECT ... WHERE query faster, the first thing to check is whether you can add an index.
All references between different tables should usually be done with indexes. You can use the EXPLAIN statement to determine which
indexes are used for a SELECT. See Section 12.3.2, “EXPLAIN Syntax”, and Section 7.4.5, “How MySQL Uses Indexes”.

Some general tips for speeding up queries on MyISAM tables:

• To help MySQL better optimize queries, use ANALYZE TABLE or run myisamchk --analyze on a table after it has been
loaded with data. This updates a value for each index part that indicates the average number of rows that have the same value. (For
unique indexes, this is always 1.) MySQL uses this to decide which index to choose when you join two tables based on a non-
constant expression. You can check the result from the table analysis by using SHOW INDEX FROM tbl_name and examining
the Cardinality value. myisamchk --description --verbose shows index distribution information.

• To sort an index and data according to an index, use myisamchk --sort-index --sort-records=1 (assuming that you
want to sort on index 1). This is a good way to make queries faster if you have a unique index from which you want to read all rows
in order according to the index. The first time you sort a large table this way, it may take a long time.

7.2.4. WHERE Clause Optimization
This section discusses optimizations that can be made for processing WHERE clauses. The examples use SELECT statements, but the
same optimizations apply for WHERE clauses in DELETE and UPDATE statements.

Work on the MySQL optimizer is ongoing, so this section is incomplete. MySQL performs a great many optimizations, not all of which
are documented here.

Some of the optimizations performed by MySQL follow:

Optimization

517

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


• Removal of unnecessary parentheses:

((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)

• Constant folding:

(a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5

• Constant condition removal (needed because of constant folding):

(B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6)
-> B=5 OR B=6

• Constant expressions used by indexes are evaluated only once.

• COUNT(*) on a single table without a WHERE is retrieved directly from the table information for MyISAM and MEMORY tables.
This is also done for any NOT NULL expression when used with only one table.

• Early detection of invalid constant expressions. MySQL quickly detects that some SELECT statements are impossible and returns
no rows.

• HAVING is merged with WHERE if you do not use GROUP BY or aggregate functions (COUNT(), MIN(), and so on).

• For each table in a join, a simpler WHERE is constructed to get a fast WHERE evaluation for the table and also to skip rows as soon as
possible.

• All constant tables are read first before any other tables in the query. A constant table is any of the following:

• An empty table or a table with one row.

• A table that is used with a WHERE clause on a PRIMARY KEY or a UNIQUE index, where all index parts are compared to con-
stant expressions and are defined as NOT NULL.

All of the following tables are used as constant tables:

SELECT * FROM t WHERE primary_key=1;
SELECT * FROM t1,t2
WHERE t1.primary_key=1 AND t2.primary_key=t1.id;

• The best join combination for joining the tables is found by trying all possibilities. If all columns in ORDER BY and GROUP BY
clauses come from the same table, that table is preferred first when joining.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY contains columns from
tables other than the first table in the join queue, a temporary table is created.

• If you use the SQL_SMALL_RESULT option, MySQL uses an in-memory temporary table.

• Each table index is queried, and the best index is used unless the optimizer believes that it is more efficient to use a table scan. At
one time, a scan was used based on whether the best index spanned more than 30% of the table, but a fixed percentage no longer de-
termines the choice between using an index or a scan. The optimizer now is more complex and bases its estimate on additional
factors such as table size, number of rows, and I/O block size.

• In some cases, MySQL can read rows from the index without even consulting the data file. If all columns used from the index are
numeric, only the index tree is used to resolve the query.

• Before each row is output, those that do not match the HAVING clause are skipped.

Some examples of queries that are very fast:

SELECT COUNT(*) FROM tbl_name;

SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;

SELECT MAX(key_part2) FROM tbl_name
WHERE key_part1=constant;

Optimization

518



SELECT ... FROM tbl_name
ORDER BY key_part1,key_part2,... LIMIT 10;

SELECT ... FROM tbl_name
ORDER BY key_part1 DESC, key_part2 DESC, ... LIMIT 10;

MySQL resolves the following queries using only the index tree, assuming that the indexed columns are numeric:

SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;

SELECT COUNT(*) FROM tbl_name
WHERE key_part1=val1 AND key_part2=val2;

SELECT key_part2 FROM tbl_name GROUP BY key_part1;

The following queries use indexing to retrieve the rows in sorted order without a separate sorting pass:

SELECT ... FROM tbl_name
ORDER BY key_part1,key_part2,... ;

SELECT ... FROM tbl_name
ORDER BY key_part1 DESC, key_part2 DESC, ... ;

7.2.5. Range Optimization
The range access method uses a single index to retrieve a subset of table rows that are contained within one or several index value in-
tervals. It can be used for a single-part or multiple-part index. The following sections give a detailed description of how intervals are ex-
tracted from the WHERE clause.

7.2.5.1. The Range Access Method for Single-Part Indexes

For a single-part index, index value intervals can be conveniently represented by corresponding conditions in the WHERE clause, so we
speak of range conditions rather than “intervals.”

The definition of a range condition for a single-part index is as follows:

• For both BTREE and HASH indexes, comparison of a key part with a constant value is a range condition when using the =, <=>,
IN(), IS NULL, or IS NOT NULL operators.

• For BTREE indexes, comparison of a key part with a constant value is a range condition when using the >, <, >=, <=, BETWEEN,
!=, or <> operators, or LIKE comparisons if the argument to LIKE is a constant string that does not start with a wildcard character.

• For all types of indexes, multiple range conditions combined with OR or AND form a range condition.

“Constant value” in the preceding descriptions means one of the following:

• A constant from the query string

• A column of a const or system table from the same join

• The result of an uncorrelated subquery

• Any expression composed entirely from subexpressions of the preceding types

Here are some examples of queries with range conditions in the WHERE clause:

SELECT * FROM t1
WHERE key_col > 1
AND key_col < 10;

SELECT * FROM t1
WHERE key_col = 1
OR key_col IN (15,18,20);

SELECT * FROM t1
WHERE key_col LIKE 'ab%'
OR key_col BETWEEN 'bar' AND 'foo';

Optimization

519



Note that some non-constant values may be converted to constants during the constant propagation phase.

MySQL tries to extract range conditions from the WHERE clause for each of the possible indexes. During the extraction process, condi-
tions that cannot be used for constructing the range condition are dropped, conditions that produce overlapping ranges are combined,
and conditions that produce empty ranges are removed.

Consider the following statement, where key1 is an indexed column and nonkey is not indexed:

SELECT * FROM t1 WHERE
(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z');

The extraction process for key key1 is as follows:

1. Start with original WHERE clause:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z')

2. Remove nonkey = 4 and key1 LIKE '%b' because they cannot be used for a range scan. The correct way to remove them is
to replace them with TRUE, so that we do not miss any matching rows when doing the range scan. Having replaced them with
TRUE, we get:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR TRUE)) OR
(key1 < 'bar' AND TRUE) OR
(key1 < 'uux' AND key1 > 'z')

3. Collapse conditions that are always true or false:

• (key1 LIKE 'abcde%' OR TRUE) is always true

• (key1 < 'uux' AND key1 > 'z') is always false

Replacing these conditions with constants, we get:

(key1 < 'abc' AND TRUE) OR (key1 < 'bar' AND TRUE) OR (FALSE)

Removing unnecessary TRUE and FALSE constants, we obtain:

(key1 < 'abc') OR (key1 < 'bar')

4. Combining overlapping intervals into one yields the final condition to be used for the range scan:

(key1 < 'bar')

In general (and as demonstrated by the preceding example), the condition used for a range scan is less restrictive than the WHERE
clause. MySQL performs an additional check to filter out rows that satisfy the range condition but not the full WHERE clause.

The range condition extraction algorithm can handle nested AND/OR constructs of arbitrary depth, and its output does not depend on the
order in which conditions appear in WHERE clause.

Currently, MySQL does not support merging multiple ranges for the range access method for spatial indexes. To work around this
limitation, you can use a UNION with identical SELECT statements, except that you put each spatial predicate in a different SELECT.

7.2.5.2. The Range Access Method for Multiple-Part Indexes

Range conditions on a multiple-part index are an extension of range conditions for a single-part index. A range condition on a multiple-
part index restricts index rows to lie within one or several key tuple intervals. Key tuple intervals are defined over a set of key tuples,
using ordering from the index.

Optimization

520



For example, consider a multiple-part index defined as key1(key_part1, key_part2, key_part3), and the following set of
key tuples listed in key order:

key_part1 key_part2 key_part3
NULL 1 'abc'
NULL 1 'xyz'
NULL 2 'foo'
1 1 'abc'
1 1 'xyz'
1 2 'abc'
2 1 'aaa'

The condition key_part1 = 1 defines this interval:

(1,-inf,-inf) <= (key_part1,key_part2,key_part3) < (1,+inf,+inf)

The interval covers the 4th, 5th, and 6th tuples in the preceding data set and can be used by the range access method.

By contrast, the condition key_part3 = 'abc' does not define a single interval and cannot be used by the range access method.

The following descriptions indicate how range conditions work for multiple-part indexes in greater detail.

• For HASH indexes, each interval containing identical values can be used. This means that the interval can be produced only for con-
ditions in the following form:

key_part1 cmp const1
AND key_part2 cmp const2
AND ...
AND key_partN cmp constN;

Here, const1, const2, … are constants, cmp is one of the =, <=>, or IS NULL comparison operators, and the conditions cover
all index parts. (That is, there are N conditions, one for each part of an N-part index.) For example, the following is a range condition
for a three-part HASH index:

key_part1 = 1 AND key_part2 IS NULL AND key_part3 = 'foo'

For the definition of what is considered to be a constant, see Section 7.2.5.1, “The Range Access Method for Single-Part Indexes”.

• For a BTREE index, an interval might be usable for conditions combined with AND, where each condition compares a key part with
a constant value using =, <=>, IS NULL, >, <, >=, <=, !=, <>, BETWEEN, or LIKE 'pattern' (where 'pattern' does not
start with a wildcard). An interval can be used as long as it is possible to determine a single key tuple containing all rows that match
the condition (or two intervals if <> or != is used). For example, for this condition:

key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10

The single interval is:

('foo',10,10) < (key_part1,key_part2,key_part3) < ('foo',+inf,+inf)

It is possible that the created interval contains more rows than the initial condition. For example, the preceding interval includes the
value ('foo', 11, 0), which does not satisfy the original condition.

• If conditions that cover sets of rows contained within intervals are combined with OR, they form a condition that covers a set of
rows contained within the union of their intervals. If the conditions are combined with AND, they form a condition that covers a set
of rows contained within the intersection of their intervals. For example, for this condition on a two-part index:

(key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)

The intervals are:

(1,-inf) < (key_part1,key_part2) < (1,2)
(5,-inf) < (key_part1,key_part2)

In this example, the interval on the first line uses one key part for the left bound and two key parts for the right bound. The interval

Optimization

521



on the second line uses only one key part. The key_len column in the EXPLAIN output indicates the maximum length of the key
prefix used.

In some cases, key_len may indicate that a key part was used, but that might be not what you would expect. Suppose that
key_part1 and key_part2 can be NULL. Then the key_len column displays two key part lengths for the following condi-
tion:

key_part1 >= 1 AND key_part2 < 2

But, in fact, the condition is converted to this:

key_part1 >= 1 AND key_part2 IS NOT NULL

Section 7.2.5.1, “The Range Access Method for Single-Part Indexes”, describes how optimizations are performed to combine or elimin-
ate intervals for range conditions on a single-part index. Analogous steps are performed for range conditions on multiple-part indexes.

7.2.6. Index Merge Optimization
The Index Merge method is used to retrieve rows with several range scans and to merge their results into one. The merge can produce
unions, intersections, or unions-of-intersections of its underlying scans. This access method merges index scans from a single table; it
does not merge scans across multiple tables.

In EXPLAIN output, the Index Merge method appears as index_merge in the type column. In this case, the key column contains a
list of indexes used, and key_len contains a list of the longest key parts for those indexes.

Examples:

SELECT * FROM tbl_name WHERE key1 = 10 OR key2 = 20;

SELECT * FROM tbl_name
WHERE (key1 = 10 OR key2 = 20) AND non_key=30;

SELECT * FROM t1, t2
WHERE (t1.key1 IN (1,2) OR t1.key2 LIKE 'value%')
AND t2.key1=t1.some_col;

SELECT * FROM t1, t2
WHERE t1.key1=1
AND (t2.key1=t1.some_col OR t2.key2=t1.some_col2);

The Index Merge method has several access algorithms (seen in the Extra field of EXPLAIN output):

• Using intersect(...)

• Using union(...)

• Using sort_union(...)

The following sections describe these methods in greater detail.

Note

The Index Merge optimization algorithm has the following known deficiencies:

• If a range scan is possible on some key, the optimizer will not consider using Index Merge Union or Index Merge Sort-Union al-
gorithms. For example, consider this query:

SELECT * FROM t1 WHERE (goodkey1 < 10 OR goodkey2 < 20) AND badkey < 30;

For this query, two plans are possible:

• An Index Merge scan using the (goodkey1 < 10 OR goodkey2 < 20) condition.

Optimization

522



• A range scan using the badkey < 30 condition.

However, the optimizer considers only the second plan.

• If your query has a complex WHERE clause with deep AND/OR nesting and MySQL doesn't choose the optimal plan, try distributing
terms using the following identity laws:

(x AND y) OR z = (x OR z) AND (y OR z)
(x OR y) AND z = (x AND z) OR (y AND z)

• Index Merge is not applicable to fulltext indexes. We plan to extend it to cover these in a future MySQL release.

The choice between different possible variants of the Index Merge access method and other access methods is based on cost estimates
of various available options.

7.2.6.1. The Index Merge Intersection Access Algorithm

This access algorithm can be employed when a WHERE clause was converted to several range conditions on different keys combined
with AND, and each condition is one of the following:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

• Any range condition over a primary key of an InnoDB table.

Examples:

SELECT * FROM innodb_table WHERE primary_key < 10 AND key_col1=20;

SELECT * FROM tbl_name
WHERE (key1_part1=1 AND key1_part2=2) AND key2=2;

The Index Merge intersection algorithm performs simultaneous scans on all used indexes and produces the intersection of row se-
quences that it receives from the merged index scans.

If all columns used in the query are covered by the used indexes, full table rows are not retrieved (EXPLAIN output contains Using
index in Extra field in this case). Here is an example of such a query:

SELECT COUNT(*) FROM t1 WHERE key1=1 AND key2=1;

If the used indexes don't cover all columns used in the query, full rows are retrieved only when the range conditions for all used keys
are satisfied.

If one of the merged conditions is a condition over a primary key of an InnoDB table, it is not used for row retrieval, but is used to fil-
ter out rows retrieved using other conditions.

7.2.6.2. The Index Merge Union Access Algorithm

The applicability criteria for this algorithm are similar to those for the Index Merge method intersection algorithm. The algorithm can be
employed when the table's WHERE clause was converted to several range conditions on different keys combined with OR, and each con-
dition is one of the following:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

• Any range condition over a primary key of an InnoDB table.

• A condition for which the Index Merge method intersection algorithm is applicable.

Optimization

523



Examples:

SELECT * FROM t1 WHERE key1=1 OR key2=2 OR key3=3;

SELECT * FROM innodb_table WHERE (key1=1 AND key2=2) OR
(key3='foo' AND key4='bar') AND key5=5;

7.2.6.3. The Index Merge Sort-Union Access Algorithm

This access algorithm is employed when the WHERE clause was converted to several range conditions combined by OR, but for which
the Index Merge method union algorithm is not applicable.

Examples:

SELECT * FROM tbl_name WHERE key_col1 < 10 OR key_col2 < 20;

SELECT * FROM tbl_name
WHERE (key_col1 > 10 OR key_col2 = 20) AND nonkey_col=30;

The difference between the sort-union algorithm and the union algorithm is that the sort-union algorithm must first fetch row IDs for all
rows and sort them before returning any rows.

7.2.7. IS NULL Optimization
MySQL can perform the same optimization on col_name IS NULL that it can use for col_name = constant_value. For ex-
ample, MySQL can use indexes and ranges to search for NULL with IS NULL.

Examples:

SELECT * FROM tbl_name WHERE key_col IS NULL;

SELECT * FROM tbl_name WHERE key_col <=> NULL;

SELECT * FROM tbl_name
WHERE key_col=const1 OR key_col=const2 OR key_col IS NULL;

If a WHERE clause includes a col_name IS NULL condition for a column that is declared as NOT NULL, that expression is optimized
away. This optimization does not occur in cases when the column might produce NULL anyway; for example, if it comes from a table
on the right side of a LEFT JOIN.

MySQL can also optimize the combination col_name = expr OR col_name IS NULL, a form that is common in resolved
subqueries. EXPLAIN shows ref_or_null when this optimization is used.

This optimization can handle one IS NULL for any key part.

Some examples of queries that are optimized, assuming that there is an index on columns a and b of table t2:

SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;

SELECT * FROM t1, t2 WHERE t1.a=t2.a OR t2.a IS NULL;

SELECT * FROM t1, t2
WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;

SELECT * FROM t1, t2
WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);

SELECT * FROM t1, t2
WHERE (t1.a=t2.a AND t2.a IS NULL AND ...)
OR (t1.a=t2.a AND t2.a IS NULL AND ...);

ref_or_null works by first doing a read on the reference key, and then a separate search for rows with a NULL key value.

Note that the optimization can handle only one IS NULL level. In the following query, MySQL uses key lookups only on the expres-
sion (t1.a=t2.a AND t2.a IS NULL) and is not able to use the key part on b:

SELECT * FROM t1, t2
WHERE (t1.a=t2.a AND t2.a IS NULL)
OR (t1.b=t2.b AND t2.b IS NULL);

Optimization

524



7.2.8. LEFT JOIN and RIGHT JOIN Optimization
MySQL implements an A LEFT JOIN B join_condition as follows:

• Table B is set to depend on table A and all tables on which A depends.

• Table A is set to depend on all tables (except B) that are used in the LEFT JOIN condition.

• The LEFT JOIN condition is used to decide how to retrieve rows from table B. (In other words, any condition in the WHERE clause
is not used.)

• All standard join optimizations are performed, with the exception that a table is always read after all tables on which it depends. If
there is a circular dependence, MySQL issues an error.

• All standard WHERE optimizations are performed.

• If there is a row in A that matches the WHERE clause, but there is no row in B that matches the ON condition, an extra B row is gener-
ated with all columns set to NULL.

• If you use LEFT JOIN to find rows that do not exist in some table and you have the following test: col_name IS NULL in the
WHERE part, where col_name is a column that is declared as NOT NULL, MySQL stops searching for more rows (for a particular
key combination) after it has found one row that matches the LEFT JOIN condition.

The implementation of RIGHT JOIN is analogous to that of LEFT JOIN with the roles of the tables reversed.

The join optimizer calculates the order in which tables should be joined. The table read order forced by LEFT JOIN or
STRAIGHT_JOIN helps the join optimizer do its work much more quickly, because there are fewer table permutations to check. Note
that this means that if you do a query of the following type, MySQL does a full scan on b because the LEFT JOIN forces it to be read
before d:

SELECT *
FROM a JOIN b LEFT JOIN c ON (c.key=a.key)
LEFT JOIN d ON (d.key=a.key)
WHERE b.key=d.key;

The fix in this case is reverse the order in which a and b are listed in the FROM clause:

SELECT *
FROM b JOIN a LEFT JOIN c ON (c.key=a.key)
LEFT JOIN d ON (d.key=a.key)
WHERE b.key=d.key;

For a LEFT JOIN, if the WHERE condition is always false for the generated NULL row, the LEFT JOIN is changed to a normal join.
For example, the WHERE clause would be false in the following query if t2.column1 were NULL:

SELECT * FROM t1 LEFT JOIN t2 ON (column1) WHERE t2.column2=5;

Therefore, it is safe to convert the query to a normal join:

SELECT * FROM t1, t2 WHERE t2.column2=5 AND t1.column1=t2.column1;

This can be made faster because MySQL can use table t2 before table t1 if doing so would result in a better query plan. To force a
specific table order, use STRAIGHT_JOIN.

7.2.9. Nested Join Optimization
The syntax for expressing joins allows nested joins. The following discussion refers to the join syntax described in Section 12.2.7.1,
“JOIN Syntax”.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts only table_reference, not a
list of them inside a pair of parentheses. This is a conservative extension if we consider each comma in a list of table_reference
items as equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)

Optimization

525



ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, CROSS JOIN is a syntactic equivalent to INNER JOIN (they can replace each other). In standard SQL, they are not equi-
valent. INNER JOIN is used with an ON clause; CROSS JOIN is used otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations. After removing parentheses and group-
ing operations to the left, the join expression:

t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
ON t1.a=t2.a

transforms into the expression:

(t1 LEFT JOIN t2 ON t1.a=t2.a) LEFT JOIN t3
ON t2.b=t3.b OR t2.b IS NULL

Yet, the two expressions are not equivalent. To see this, suppose that the tables t1, t2, and t3 have the following state:

• Table t1 contains rows (1), (2)

• Table t2 contains row (1,101)

• Table t3 contains row (101)

In this case, the first expression returns a result set including the rows (1,1,101,101), (2,NULL,NULL,NULL), whereas the
second expression returns the rows (1,1,101,101), (2,NULL,NULL,101):

mysql> SELECT *
-> FROM t1
-> LEFT JOIN
-> (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
-> ON t1.a=t2.a;

+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
-> FROM (t1 LEFT JOIN t2 ON t1.a=t2.a)
-> LEFT JOIN t3
-> ON t2.b=t3.b OR t2.b IS NULL;

+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

In the following example, an outer join operation is used together with an inner join operation:

t1 LEFT JOIN (t2, t3) ON t1.a=t2.a

That expression cannot be transformed into the following expression:

t1 LEFT JOIN t2 ON t1.a=t2.a, t3.

For the given table states, the two expressions return different sets of rows:

mysql> SELECT *
-> FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a;

+------+------+------+------+
| a | a | b | b |

Optimization

526



+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
-> FROM t1 LEFT JOIN t2 ON t1.a=t2.a, t3;

+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

Therefore, if we omit parentheses in a join expression with outer join operators, we might change the result set for the original expres-
sion.

More exactly, we cannot ignore parentheses in the right operand of the left outer join operation and in the left operand of a right join op-
eration. In other words, we cannot ignore parentheses for the inner table expressions of outer join operations. Parentheses for the other
operand (operand for the outer table) can be ignored.

The following expression:

(t1,t2) LEFT JOIN t3 ON P(t2.b,t3.b)

is equivalent to this expression:

t1, t2 LEFT JOIN t3 ON P(t2.b,t3.b)

for any tables t1,t2,t3 and any condition P over attributes t2.b and t3.b.

Whenever the order of execution of the join operations in a join expression (join_table) is not from left to right, we talk about nes-
ted joins. Consider the following queries:

SELECT * FROM t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b) ON t1.a=t2.a
WHERE t1.a > 1

SELECT * FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a
WHERE (t2.b=t3.b OR t2.b IS NULL) AND t1.a > 1

Those queries are considered to contain these nested joins:

t2 LEFT JOIN t3 ON t2.b=t3.b
t2, t3

The nested join is formed in the first query with a left join operation, whereas in the second query it is formed with an inner join opera-
tion.

In the first query, the parentheses can be omitted: The grammatical structure of the join expression will dictate the same order of execu-
tion for join operations. For the second query, the parentheses cannot be omitted, although the join expression here can be interpreted
unambiguously without them. (In our extended syntax the parentheses in (t2, t3) of the second query are required, although theor-
etically the query could be parsed without them: We still would have unambiguous syntactical structure for the query because LEFT
JOIN and ON would play the role of the left and right delimiters for the expression (t2,t3).)

The preceding examples demonstrate these points:

• For join expressions involving only inner joins (and not outer joins), parentheses can be removed. You can remove parentheses and
evaluate left to right (or, in fact, you can evaluate the tables in any order).

• The same is not true, in general, for outer joins or for outer joins mixed with inner joins. Removal of parentheses may change the
result.

Queries with nested outer joins are executed in the same pipeline manner as queries with inner joins. More exactly, a variation of the
nested-loop join algorithm is exploited. Recall by what algorithmic schema the nested-loop join executes a query. Suppose that we have
a join query over 3 tables T1,T2,T3 of the form:

SELECT * FROM T1 INNER JOIN T2 ON P1(T1,T2)
INNER JOIN T3 ON P2(T2,T3)

Optimization

527



WHERE P(T1,T2,T3).

Here, P1(T1,T2) and P2(T3,T3) are some join conditions (on expressions), whereas P(t1,t2,t3) is a condition over columns
of tables T1,T2,T3.

The nested-loop join algorithm would execute this query in the following manner:

FOR each row t1 in T1 {
FOR each row t2 in T2 such that P1(t1,t2) {
FOR each row t3 in T3 such that P2(t2,t3) {
IF P(t1,t2,t3) {

t:=t1||t2||t3; OUTPUT t;
}

}
}

}

The notation t1||t2||t3 means “a row constructed by concatenating the columns of rows t1, t2, and t3.” In some of the follow-
ing examples, NULL where a row name appears means that NULL is used for each column of that row. For example, t1||t2||NULL
means “a row constructed by concatenating the columns of rows t1 and t2, and NULL for each column of t3.”

Now let's consider a query with nested outer joins:

SELECT * FROM T1 LEFT JOIN
(T2 LEFT JOIN T3 ON P2(T2,T3))
ON P1(T1,T2)

WHERE P(T1,T2,T3).

For this query, we modify the nested-loop pattern to get:

FOR each row t1 in T1 {
BOOL f1:=FALSE;
FOR each row t2 in T2 such that P1(t1,t2) {
BOOL f2:=FALSE;
FOR each row t3 in T3 such that P2(t2,t3) {
IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;

}
f2=TRUE;
f1=TRUE;

}
IF (!f2) {
IF P(t1,t2,NULL) {
t:=t1||t2||NULL; OUTPUT t;

}
f1=TRUE;

}
}
IF (!f1) {
IF P(t1,NULL,NULL) {
t:=t1||NULL||NULL; OUTPUT t;

}
}

}

In general, for any nested loop for the first inner table in an outer join operation, a flag is introduced that is turned off before the loop
and is checked after the loop. The flag is turned on when for the current row from the outer table a match from the table representing the
inner operand is found. If at the end of the loop cycle the flag is still off, no match has been found for the current row of the outer table.
In this case, the row is complemented by NULL values for the columns of the inner tables. The result row is passed to the final check for
the output or into the next nested loop, but only if the row satisfies the join condition of all embedded outer joins.

In our example, the outer join table expressed by the following expression is embedded:

(T2 LEFT JOIN T3 ON P2(T2,T3))

Note that for the query with inner joins, the optimizer could choose a different order of nested loops, such as this one:

FOR each row t3 in T3 {
FOR each row t2 in T2 such that P2(t2,t3) {
FOR each row t1 in T1 such that P1(t1,t2) {
IF P(t1,t2,t3) {

t:=t1||t2||t3; OUTPUT t;
}

}
}

Optimization

528



}

For the queries with outer joins, the optimizer can choose only such an order where loops for outer tables precede loops for inner tables.
Thus, for our query with outer joins, only one nesting order is possible. For the following query, the optimizer will evaluate two differ-
ent nestings:

SELECT * T1 LEFT JOIN (T2,T3) ON P1(T1,T2) AND P2(T1,T3)
WHERE P(T1,T2,T3)

The nestings are these:

FOR each row t1 in T1 {
BOOL f1:=FALSE;
FOR each row t2 in T2 such that P1(t1,t2) {
FOR each row t3 in T3 such that P2(t1,t3) {
IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;

}
f1:=TRUE

}
}
IF (!f1) {
IF P(t1,NULL,NULL) {
t:=t1||NULL||NULL; OUTPUT t;

}
}

}

and:

FOR each row t1 in T1 {
BOOL f1:=FALSE;
FOR each row t3 in T3 such that P2(t1,t3) {
FOR each row t2 in T2 such that P1(t1,t2) {
IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;

}
f1:=TRUE

}
}
IF (!f1) {
IF P(t1,NULL,NULL) {
t:=t1||NULL||NULL; OUTPUT t;

}
}

}

In both nestings, T1 must be processed in the outer loop because it is used in an outer join. T2 and T3 are used in an inner join, so that
join must be processed in the inner loop. However, because the join is an inner join, T2 and T3 can be processed in either order.

When discussing the nested-loop algorithm for inner joins, we omitted some details whose impact on the performance of query execu-
tion may be huge. We did not mention so-called “pushed-down” conditions. Suppose that our WHERE condition P(T1,T2,T3) can be
represented by a conjunctive formula:

P(T1,T2,T2) = C1(T1) AND C2(T2) AND C3(T3).

In this case, MySQL actually uses the following nested-loop schema for the execution of the query with inner joins:

FOR each row t1 in T1 such that C1(t1) {
FOR each row t2 in T2 such that P1(t1,t2) AND C2(t2) {
FOR each row t3 in T3 such that P2(t2,t3) AND C3(t3) {
IF P(t1,t2,t3) {

t:=t1||t2||t3; OUTPUT t;
}

}
}

}

You see that each of the conjuncts C1(T1), C2(T2), C3(T3) are pushed out of the most inner loop to the most outer loop where it
can be evaluated. If C1(T1) is a very restrictive condition, this condition pushdown may greatly reduce the number of rows from table
T1 passed to the inner loops. As a result, the execution time for the query may improve immensely.

For a query with outer joins, the WHERE condition is to be checked only after it has been found that the current row from the outer table

Optimization

529



has a match in the inner tables. Thus, the optimization of pushing conditions out of the inner nested loops cannot be applied directly to
queries with outer joins. Here we have to introduce conditional pushed-down predicates guarded by the flags that are turned on when a
match has been encountered.

For our example with outer joins with:

P(T1,T2,T3)=C1(T1) AND C(T2) AND C3(T3)

the nested-loop schema using guarded pushed-down conditions looks like this:

FOR each row t1 in T1 such that C1(t1) {
BOOL f1:=FALSE;
FOR each row t2 in T2

such that P1(t1,t2) AND (f1?C2(t2):TRUE) {
BOOL f2:=FALSE;
FOR each row t3 in T3

such that P2(t2,t3) AND (f1&&f2?C3(t3):TRUE) {
IF (f1&&f2?TRUE:(C2(t2) AND C3(t3))) {
t:=t1||t2||t3; OUTPUT t;

}
f2=TRUE;
f1=TRUE;

}
IF (!f2) {
IF (f1?TRUE:C2(t2) && P(t1,t2,NULL)) {
t:=t1||t2||NULL; OUTPUT t;

}
f1=TRUE;

}
}
IF (!f1 && P(t1,NULL,NULL)) {

t:=t1||NULL||NULL; OUTPUT t;
}

}

In general, pushed-down predicates can be extracted from join conditions such as P1(T1,T2) and P(T2,T3). In this case, a pushed-
down predicate is guarded also by a flag that prevents checking the predicate for the NULL-complemented row generated by the corres-
ponding outer join operation.

Note that access by key from one inner table to another in the same nested join is prohibited if it is induced by a predicate from the
WHERE condition. (We could use conditional key access in this case, but this technique is not employed yet in MySQL 5.1.)

7.2.10. Outer Join Simplification
Table expressions in the FROM clause of a query are simplified in many cases.

At the parser stage, queries with right outer joins operations are converted to equivalent queries containing only left join operations. In
the general case, the conversion is performed according to the following rule:

(T1, ...) RIGHT JOIN (T2,...) ON P(T1,...,T2,...) =
(T2, ...) LEFT JOIN (T1,...) ON P(T1,...,T2,...)

All inner join expressions of the form T1 INNER JOIN T2 ON P(T1,T2) are replaced by the list T1,T2, P(T1,T2) being
joined as a conjunct to the WHERE condition (or to the join condition of the embedding join, if there is any).

When the optimizer evaluates plans for join queries with outer join operation, it takes into consideration only the plans where, for each
such operation, the outer tables are accessed before the inner tables. The optimizer options are limited because only such plans enables
us to execute queries with outer joins operations by the nested loop schema.

Suppose that we have a query of the form:

SELECT * T1 LEFT JOIN T2 ON P1(T1,T2)
WHERE P(T1,T2) AND R(T2)

with R(T2) narrowing greatly the number of matching rows from table T2. If we executed the query as it is, the optimizer would have
no other choice besides to access table T1 before table T2 that may lead to a very inefficient execution plan.

Fortunately, MySQL converts such a query into a query without an outer join operation if the WHERE condition is null-rejected. A con-
dition is called null-rejected for an outer join operation if it evaluates to FALSE or to UNKNOWN for any NULL-complemented row built
for the operation.

Optimization

530



Thus, for this outer join:

T1 LEFT JOIN T2 ON T1.A=T2.A

Conditions such as these are null-rejected:

T2.B IS NOT NULL,
T2.B > 3,
T2.C <= T1.C,
T2.B < 2 OR T2.C > 1

Conditions such as these are not null-rejected:

T2.B IS NULL,
T1.B < 3 OR T2.B IS NOT NULL,
T1.B < 3 OR T2.B > 3

The general rules for checking whether a condition is null-rejected for an outer join operation are simple. A condition is null-rejected in
the following cases:

• If it is of the form A IS NOT NULL, where A is an attribute of any of the inner tables

• If it is a predicate containing a reference to an inner table that evaluates to UNKNOWN when one of its arguments is NULL

• If it is a conjunction containing a null-rejected condition as a conjunct

• If it is a disjunction of null-rejected conditions

A condition can be null-rejected for one outer join operation in a query and not null-rejected for another. In the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
LEFT JOIN T3 ON T3.B=T1.B

WHERE T3.C > 0

the WHERE condition is null-rejected for the second outer join operation but is not null-rejected for the first one.

If the WHERE condition is null-rejected for an outer join operation in a query, the outer join operation is replaced by an inner join opera-
tion.

For example, the preceding query is replaced with the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
INNER JOIN T3 ON T3.B=T1.B

WHERE T3.C > 0

For the original query, the optimizer would evaluate plans compatible with only one access order T1,T2,T3. For the replacing query,
it additionally considers the access sequence T3,T1,T2.

A conversion of one outer join operation may trigger a conversion of another. Thus, the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
LEFT JOIN T3 ON T3.B=T2.B

WHERE T3.C > 0

will be first converted to the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
INNER JOIN T3 ON T3.B=T2.B

WHERE T3.C > 0

which is equivalent to the query:

SELECT * FROM (T1 LEFT JOIN T2 ON T2.A=T1.A), T3
WHERE T3.C > 0 AND T3.B=T2.B

Optimization

531



Now the remaining outer join operation can be replaced by an inner join, too, because the condition T3.B=T2.B is null-rejected and
we get a query without outer joins at all:

SELECT * FROM (T1 INNER JOIN T2 ON T2.A=T1.A), T3
WHERE T3.C > 0 AND T3.B=T2.B

Sometimes we succeed in replacing an embedded outer join operation, but cannot convert the embedding outer join. The following
query:

SELECT * FROM T1 LEFT JOIN
(T2 LEFT JOIN T3 ON T3.B=T2.B)
ON T2.A=T1.A

WHERE T3.C > 0

is converted to:

SELECT * FROM T1 LEFT JOIN
(T2 INNER JOIN T3 ON T3.B=T2.B)
ON T2.A=T1.A

WHERE T3.C > 0,

That can be rewritten only to the form still containing the embedding outer join operation:

SELECT * FROM T1 LEFT JOIN
(T2,T3)
ON (T2.A=T1.A AND T3.B=T2.B)

WHERE T3.C > 0.

When trying to convert an embedded outer join operation in a query, we must take into account the join condition for the embedding
outer join together with the WHERE condition. In the query:

SELECT * FROM T1 LEFT JOIN
(T2 LEFT JOIN T3 ON T3.B=T2.B)
ON T2.A=T1.A AND T3.C=T1.C

WHERE T3.D > 0 OR T1.D > 0

the WHERE condition is not null-rejected for the embedded outer join, but the join condition of the embedding outer join T2.A=T1.A
AND T3.C=T1.C is null-rejected. So the query can be converted to:

SELECT * FROM T1 LEFT JOIN
(T2, T3)
ON T2.A=T1.A AND T3.C=T1.C AND T3.B=T2.B

WHERE T3.D > 0 OR T1.D > 0

7.2.11. ORDER BY Optimization
In some cases, MySQL can use an index to satisfy an ORDER BY clause without doing any extra sorting.

The index can also be used even if the ORDER BY does not match the index exactly, as long as all of the unused portions of the index
and all the extra ORDER BY columns are constants in the WHERE clause. The following queries use the index to resolve the ORDER BY
part:

SELECT * FROM t1
ORDER BY key_part1,key_part2,... ;

SELECT * FROM t1
WHERE key_part1=constant
ORDER BY key_part2;

SELECT * FROM t1
ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
WHERE key_part1=1
ORDER BY key_part1 DESC, key_part2 DESC;

In some cases, MySQL cannot use indexes to resolve the ORDER BY, although it still uses indexes to find the rows that match the
WHERE clause. These cases include the following:

Optimization

532



• You use ORDER BY on different keys:

SELECT * FROM t1 ORDER BY key1, key2;

• You use ORDER BY on non-consecutive parts of a key:

SELECT * FROM t1 WHERE key2=constant ORDER BY key_part2;

• You mix ASC and DESC:

SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 ASC;

• The key used to fetch the rows is not the same as the one used in the ORDER BY:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1;

• You use ORDER BY with an expression that includes terms other than the key column name:

SELECT * FROM t1 ORDER BY ABS(key);
SELECT * FROM t1 ORDER BY -key;

• You are joining many tables, and the columns in the ORDER BY are not all from the first non-constant table that is used to retrieve
rows. (This is the first table in the EXPLAIN output that does not have a const join type.)

• You have different ORDER BY and GROUP BY expressions.

• The type of table index used does not store rows in order. For example, this is true for a HASH index in a MEMORY table.

Availability of an index for sorting may be affected by the use of column aliases. Suppose that the column t1.a is indexed. In this
statement, the name of the column in the select list is a. It refers to t1.a, so for the reference to a in the ORDER BY, the index can be
used:

SELECT a FROM t1 ORDER BY a;

In this statement, the name of the column in the select list is also a, but it is the alias name. It refers to ABS(a), so for the reference to
a in the ORDER BY, the index cannot be used:

SELECT ABS(a) AS a FROM t1 ORDER BY a;

In the following statement, the ORDER BY refers to a name that is not the name of a column in the select list. But there is a column in
t1 named a, so the ORDER BY uses that, and the index can be used. (The resulting sort order may be completely different from the or-
der for ABS(a), of course.)

SELECT ABS(a) AS b FROM t1 ORDER BY a;

By default, MySQL sorts all GROUP BY col1, col2, ... queries as if you specified ORDER BY col1, col2, ... in the
query as well. If you include an ORDER BY clause explicitly that contains the same column list, MySQL optimizes it away without any
speed penalty, although the sorting still occurs. If a query includes GROUP BY but you want to avoid the overhead of sorting the result,
you can suppress sorting by specifying ORDER BY NULL. For example:

INSERT INTO foo
SELECT a, COUNT(*) FROM bar GROUP BY a ORDER BY NULL;

With EXPLAIN SELECT ... ORDER BY, you can check whether MySQL can use indexes to resolve the query. It cannot if you see
Using filesort in the Extra column. See Section 12.3.2, “EXPLAIN Syntax”.

MySQL has two filesort algorithms for sorting and retrieving results. The original method uses only the ORDER BY columns. The
modified method uses not just the ORDER BY columns, but all the columns used in the query.

The optimizer selects which filesort algorithm to use. It normally uses the modified algorithm except when BLOB or TEXT
columns are involved, in which case it uses the original algorithm.

Optimization

533



The original filesort algorithm works as follows:

1. Read all rows according to key or by table scanning. Rows that do not match the WHERE clause are skipped.

2. For each row, store a pair of values in a buffer (the sort key and the row pointer). The size of the buffer is the value of the
sort_buffer_size system variable.

3. When the buffer gets full, run a qsort (quicksort) on it and store the result in a temporary file. Save a pointer to the sorted block. (If
all pairs fit into the sort buffer, no temporary file is created.)

4. Repeat the preceding steps until all rows have been read.

5. Do a multi-merge of up to MERGEBUFF (7) regions to one block in another temporary file. Repeat until all blocks from the first
file are in the second file.

6. Repeat the following until there are fewer than MERGEBUFF2 (15) blocks left.

7. On the last multi-merge, only the pointer to the row (the last part of the sort key) is written to a result file.

8. Read the rows in sorted order by using the row pointers in the result file. To optimize this, we read in a big block of row pointers,
sort them, and use them to read the rows in sorted order into a row buffer. The size of the buffer is the value of the
read_rnd_buffer_size system variable. The code for this step is in the sql/records.cc source file.

One problem with this approach is that it reads rows twice: One time when evaluating the WHERE clause, and again after sorting the pair
values. And even if the rows were accessed successively the first time (for example, if a table scan is done), the second time they are ac-
cessed randomly. (The sort keys are ordered, but the row positions are not.)

The modified filesort algorithm incorporates an optimization such that it records not only the sort key value and row position, but
also the columns required for the query. This avoids reading the rows twice. The modified filesort algorithm works like this:

1. Read the rows that match the WHERE clause.

2. For each row, record a tuple of values consisting of the sort key value and row position, and also the columns required for the
query.

3. Sort the tuples by sort key value

4. Retrieve the rows in sorted order, but read the required columns directly from the sorted tuples rather than by accessing the table a
second time.

Using the modified filesort algorithm, the tuples are longer than the pairs used in the original method, and fewer of them fit in the
sort buffer (the size of which is given by sort_buffer_size). As a result, it is possible for the extra I/O to make the modified ap-
proach slower, not faster. To avoid a slowdown, the optimization is used only if the total size of the extra columns in the sort tuple does
not exceed the value of the max_length_for_sort_data system variable. (A symptom of setting the value of this variable too
high is that you should see high disk activity and low CPU activity.)

For slow queries for which filesort is not used, you might try lowering max_length_for_sort_data to a value that is appro-
priate to trigger a filesort.

If you want to increase ORDER BY speed, check whether you can get MySQL to use indexes rather than an extra sorting phase. If this
is not possible, you can try the following strategies:

• Increase the size of the sort_buffer_size variable.

• Increase the size of the read_rnd_buffer_size variable.

• Use less RAM per row by declaring columns only as large as they need to be to hold the values stored in them. For example,
CHAR(16) is better than CHAR(200) if values never exceed 16 characters.

• Change tmpdir to point to a dedicated filesystem with large amounts of free space. Also, this option accepts several paths that are
used in round-robin fashion, so you can use this feature to spread the load across several directories. Paths should be separated by

Optimization

534



colon characters (“:”) on Unix and semicolon characters (“;”) on Windows, NetWare, and OS/2. The paths should be for director-
ies in filesystems that are located on different physical disks, not different partitions on the same disk.

7.2.12. GROUP BY Optimization
The most general way to satisfy a GROUP BY clause is to scan the whole table and create a new temporary table where all rows from
each group are consecutive, and then use this temporary table to discover groups and apply aggregate functions (if any). In some cases,
MySQL is able to do much better than that and to avoid creation of temporary tables by using index access.

The most important preconditions for using indexes for GROUP BY are that all GROUP BY columns reference attributes from the same
index, and that the index stores its keys in order (for example, this is a BTREE index and not a HASH index). Whether use of temporary
tables can be replaced by index access also depends on which parts of an index are used in a query, the conditions specified for these
parts, and the selected aggregate functions.

In MySQL, GROUP BY is used for sorting, so the server may also apply ORDER BY optimizations to grouping. See Section 7.2.11,
“ORDER BY Optimization”.

There are two ways to execute a GROUP BY query via index access, as detailed in the following sections. In the first method, the group-
ing operation is applied together with all range predicates (if any). The second method first performs a range scan, and then groups the
resulting tuples.

7.2.12.1. Loose index scan

The most efficient way to process GROUP BY is when the index is used to directly retrieve the group fields. With this access method,
MySQL uses the property of some index types that the keys are ordered (for example, BTREE). This property enables use of lookup
groups in an index without having to consider all keys in the index that satisfy all WHERE conditions. This access method considers only
a fraction of the keys in an index, so it is called a loose index scan. When there is no WHERE clause, a loose index scan reads as many
keys as the number of groups, which may be a much smaller number than that of all keys. If the WHERE clause contains range predicates
(see the discussion of the range join type in Section 12.3.2, “EXPLAIN Syntax”), a loose index scan looks up the first key of each
group that satisfies the range conditions, and again reads the least possible number of keys. This is possible under the following condi-
tions:

• The query is over a single table.

• The GROUP BY includes the first consecutive parts of the index. (If, instead of GROUP BY, the query has a DISTINCT clause, all
distinct attributes refer to the beginning of the index.)

• The only aggregate functions used (if any) are MIN() and MAX(), and all of them refer to the same column.

• Any other parts of the index than those from the GROUP BY referenced in the query must be constants (that is, they must be refer-
enced in equalities with constants), except for the argument of MIN() or MAX() functions.

The EXPLAIN output for such queries shows Using index for group-by in the Extra column.

The following queries fall into this category, assuming that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4):

SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2;

The following queries cannot be executed with this quick select method, for the reasons given:

• There are aggregate functions other than MIN() or MAX(), for example:

SELECT c1, SUM(c2) FROM t1 GROUP BY c1;

• The fields in the GROUP BY clause do not refer to the beginning of the index, as shown here:

Optimization

535



SELECT c1,c2 FROM t1 GROUP BY c2, c3;

• The query refers to a part of a key that comes after the GROUP BY part, and for which there is no equality with a constant, an ex-
ample being:

SELECT c1,c3 FROM t1 GROUP BY c1, c2;

7.2.12.2. Tight index scan

A tight index scan may be either a full index scan or a range index scan, depending on the query conditions.

When the conditions for a loose index scan are not met, it is still possible to avoid creation of temporary tables for GROUP BY queries.
If there are range conditions in the WHERE clause, this method reads only the keys that satisfy these conditions. Otherwise, it performs
an index scan. Because this method reads all keys in each range defined by the WHERE clause, or scans the whole index if there are no
range conditions, we term it a tight index scan. Notice that with a tight index scan, the grouping operation is performed only after all
keys that satisfy the range conditions have been found.

For this method to work, it is sufficient that there is a constant equality condition for all columns in a query referring to parts of the key
coming before or in between parts of the GROUP BY key. The constants from the equality conditions fill in any “gaps” in the search
keys so that it is possible to form complete prefixes of the index. These index prefixes then can be used for index lookups. If we require
sorting of the GROUP BY result, and it is possible to form search keys that are prefixes of the index, MySQL also avoids extra sorting
operations because searching with prefixes in an ordered index already retrieves all the keys in order.

The following queries do not work with the loose index scan access method described earlier, but still work with the tight index scan ac-
cess method (assuming that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4)).

• There is a gap in the GROUP BY, but it is covered by the condition c2 = 'a':

SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;

• The GROUP BY does not begin with the first part of the key, but there is a condition that provides a constant for that part:

SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;

7.2.13. DISTINCT Optimization
DISTINCT combined with ORDER BY needs a temporary table in many cases.

Because DISTINCT may use GROUP BY, you should be aware of how MySQL works with columns in ORDER BY or HAVING
clauses that are not part of the selected columns. See Section 11.12.3, “GROUP BY and HAVING with Hidden Fields”.

In most cases, a DISTINCT clause can be considered as a special case of GROUP BY. For example, the following two queries are equi-
valent:

SELECT DISTINCT c1, c2, c3 FROM t1
WHERE c1 > const;

SELECT c1, c2, c3 FROM t1
WHERE c1 > const GROUP BY c1, c2, c3;

Due to this equivalence, the optimizations applicable to GROUP BY queries can be also applied to queries with a DISTINCT clause.
Thus, for more details on the optimization possibilities for DISTINCT queries, see Section 7.2.12, “GROUP BY Optimization”.

When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count unique rows.

If you do not use columns from all tables named in a query, MySQL stops scanning any unused tables as soon as it finds the first match.
In the following case, assuming that t1 is used before t2 (which you can check with EXPLAIN), MySQL stops reading from t2 (for
any particular row in t1) when it finds the first row in t2:

SELECT DISTINCT t1.a FROM t1, t2 where t1.a=t2.a;

Optimization

536



7.2.14. Optimizing IN/=ANY Subqueries
Certain optimizations are applicable to comparisons that use the IN operator to test subquery results (or that use =ANY, which is equi-
valent). This section discusses these optimizations, particularly with regard to the challenges that NULL values present. Suggestions on
what you can do to help the optimizer are given at the end of the discussion.

Consider the following subquery comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

MySQL evaluates queries “from outside to inside.” That is, it first obtains the value of the outer expression outer_expr, and then
runs the subquery and captures the rows that it produces.

A very useful optimization is to “inform” the subquery that the only rows of interest are those where the inner expression in-
ner_expr is equal to outer_expr. This is done by pushing down an appropriate equality into the subquery's WHERE clause. That
is, the comparison is converted to this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

After the conversion, MySQL can use the pushed-down equality to limit the number of rows that it must examine when evaluating the
subquery.

More generally, a comparison of N values to a subquery that returns N-value rows is subject to the same conversion. If oe_i and ie_i
represent corresponding outer and inner expression values, this subquery comparison:

(oe_1, ..., oe_N) IN
(SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

Becomes:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
AND oe_1 = ie_1
AND ...
AND oe_N = ie_N)

The following discussion assumes a single pair of outer and inner expression values for simplicity.

The conversion just described has its limitations. It is valid only if we ignore possible NULL values. That is, the “pushdown” strategy
works as long as both of these two conditions are true:

• outer_expr and inner_expr cannot be NULL.

• You do not need to distinguish NULL from FALSE subquery results. (If the subquery is a part of an OR or AND expression in the
WHERE clause, MySQL assumes that you don't care.)

When either or both of those conditions do not hold, optimization is more complex.

Suppose that outer_expr is known to be a non-NULL value but the subquery does not produce a row such that outer_expr = in-
ner_expr. Then outer_expr IN (SELECT ...) evaluates as follows:

• NULL, if the SELECT produces any row where inner_expr is NULL

• FALSE, if the SELECT produces only non-NULL values or produces nothing

In this situation, the approach of looking for rows with outer_expr = inner_expr is no longer valid. It is necessary to look for
such rows, but if none are found, also look for rows where inner_expr is NULL. Roughly speaking, the subquery can be converted
to:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND
(outer_expr=inner_expr OR inner_expr IS NULL))

The need to evaluate the extra IS NULL condition is why MySQL has the ref_or_null access method:

Optimization

537



mysql> EXPLAIN
-> SELECT outer_expr IN (SELECT t2.maybe_null_key
-> FROM t2, t3 WHERE ...)
-> FROM t1;

*************************** 1. row ***************************
id: 1

select_type: PRIMARY
table: t1

...
*************************** 2. row ***************************

id: 2
select_type: DEPENDENT SUBQUERY

table: t2
type: ref_or_null

possible_keys: maybe_null_key
key: maybe_null_key

key_len: 5
ref: func
rows: 2
Extra: Using where; Using index

...

The unique_subquery and index_subquery subquery-specific access methods also have or-null variants. However, they are
not visible in EXPLAIN output, so you must use EXPLAIN EXTENDED followed by SHOW WARNINGS (note the checking NULL
in the warning message):

mysql> EXPLAIN EXTENDED
-> SELECT outer_expr IN (SELECT maybe_null_key FROM t2) FROM t1\G

*************************** 1. row ***************************
id: 1

select_type: PRIMARY
table: t1

...
*************************** 2. row ***************************

id: 2
select_type: DEPENDENT SUBQUERY

table: t2
type: index_subquery

possible_keys: maybe_null_key
key: maybe_null_key

key_len: 5
ref: func
rows: 2
Extra: Using index

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Note
Code: 1003

Message: select (`test`.`t1`.`outer_expr`,
(((`test`.`t1`.`outer_expr`) in t2 on
maybe_null_key checking NULL))) AS `outer_expr IN (SELECT
maybe_null_key FROM t2)` from `test`.`t1`

The additional OR ... IS NULL condition makes query execution slightly more complicated (and some optimizations within the
subquery become inapplicable), but generally this is tolerable.

The situation is much worse when outer_expr can be NULL. According to the SQL interpretation of NULL as “unknown value,”
NULL IN (SELECT inner_expr ...) should evaluate to:

• NULL, if the SELECT produces any rows

• FALSE, if the SELECT produces no rows

For proper evaluation, it is necessary to be able to check whether the SELECT has produced any rows at all, so outer_expr = in-
ner_expr cannot be pushed down into the subquery. This is a problem, because many real world subqueries become very slow unless
the equality can be pushed down.

Essentially, there must be different ways to execute the subquery depending on the value of outer_expr. In MySQL 5.1 before
5.1.16, the optimizer chose speed over distinguishing a NULL from FALSE result, so for some queries, you might get a FALSE result
rather than NULL.

As of MySQL 5.1.16, the optimizer chooses SQL compliance over speed, so it accounts for the possibility that outer_expr might be
NULL.

Optimization

538



If outer_expr is NULL, to evaluate the following expression, it is necessary to run the SELECT to determine whether it produces any
rows:

NULL IN (SELECT inner_expr FROM ... WHERE subquery_where)

It is necessary to run the original SELECT here, without any pushed-down equalities of the kind mentioned earlier.

On the other hand, when outer_expr is not NULL, it is absolutely essential that this comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

be converted to this expression that uses a pushed-down condition:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

Without this conversion, subqueries will be slow. To solve the dilemma of whether to push down or not push down conditions into the
subquery, the conditions are wrapped in “trigger” functions. Thus, an expression of the following form:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

is converted into:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
AND trigcond(outer_expr=inner_expr))

More generally, if the subquery comparison is based on several pairs of outer and inner expressions, the conversion takes this comparis-
on:

(oe_1, ..., oe_N) IN (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

and converts it to this expression:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
AND trigcond(oe_1=ie_1)
AND ...
AND trigcond(oe_N=ie_N)

)

Each trigcond(X) is a special function that evaluates to the following values:

• X when the “linked” outer expression oe_i is not NULL

• TRUE when the “linked” outer expression oe_i is NULL

Note that trigger functions are not triggers of the kind that you create with CREATE TRIGGER.

Equalities that are wrapped into trigcond() functions are not first class predicates for the query optimizer. Most optimizations can-
not deal with predicates that may be turned on and off at query execution time, so they assume any trigcond(X) to be an unknown
function and ignore it. At the moment, triggered equalities can be used by those optimizations:

• Reference optimizations: trigcond(X=Y [OR Y IS NULL]) can be used to construct ref, eq_ref, or ref_or_null ta-
ble accesses.

• Index lookup-based subquery execution engines: trigcond(X=Y) can be used to construct unique_subquery or in-
dex_subquery accesses.

• Table-condition generator: If the subquery is a join of several tables, the triggered condition will be checked as soon as possible.

When the optimizer uses a triggered condition to create some kind of index lookup-based access (as for the first two items of the pre-
ceding list), it must have a fallback strategy for the case when the condition is turned off. This fallback strategy is always the same: Do
a full table scan. In EXPLAIN output, the fallback shows up as Full scan on NULL key in the Extra column:

Optimization

539



mysql> EXPLAIN SELECT t1.col1,
-> t1.col1 IN (SELECT t2.key1 FROM t2 WHERE t2.col2=t1.col2) FROM t1\G

*************************** 1. row ***************************
id: 1

select_type: PRIMARY
table: t1
...

*************************** 2. row ***************************
id: 2

select_type: DEPENDENT SUBQUERY
table: t2
type: index_subquery

possible_keys: key1
key: key1

key_len: 5
ref: func
rows: 2
Extra: Using where; Full scan on NULL key

If you run EXPLAIN EXTENDED followed by SHOW WARNINGS, you can see the triggered condition:

*************************** 1. row ***************************
Level: Note
Code: 1003

Message: select `test`.`t1`.`col1` AS `col1`,
<in_optimizer>(`test`.`t1`.`col1`,
<exists>(<index_lookup>(<cache>(`test`.`t1`.`col1`) in t2
on key1 checking NULL
where (`test`.`t2`.`col2` = `test`.`t1`.`col2`) having
trigcond(<is_not_null_test>(`test`.`t2`.`key1`))))) AS
`t1.col1 IN (select t2.key1 from t2 where t2.col2=t1.col2)`
from `test`.`t1`

The use of triggered conditions has some performance implications. A NULL IN (SELECT ...) expression now may cause a full
table scan (which is slow) when it previously did not. This is the price paid for correct results (the goal of the trigger-condition strategy
was to improve compliance and not speed).

For multiple-table subqueries, execution of NULL IN (SELECT ...) will be particularly slow because the join optimizer doesn't
optimize for the case where the outer expression is NULL. It assumes that subquery evaluations with NULL on the left side are very rare,
even if there are statistics that indicate otherwise. On the other hand, if the outer expression might be NULL but never actually is, there
is no performance penalty.

To help the query optimizer better execute your queries, use these tips:

• A column must be declared as NOT NULL if it really is. (This also helps other aspects of the optimizer.)

• If you don't need to distinguish a NULL from FALSE subquery result, you can easily avoid the slow execution path. Replace a com-
parison that looks like this:

outer_expr IN (SELECT inner_expr FROM ...)

with this expression:

(outer_expr IS NOT NULL) AND (outer_expr IN (SELECT inner_expr FROM ...))

Then NULL IN (SELECT ...) will never be evaluated because MySQL stops evaluating AND parts as soon as the expression
result is clear.

7.2.15. LIMIT Optimization
In some cases, MySQL handles a query differently when you are using LIMIT row_count and not using HAVING:

• If you are selecting only a few rows with LIMIT, MySQL uses indexes in some cases when normally it would prefer to do a full ta-
ble scan.

• If you use LIMIT row_count with ORDER BY, MySQL ends the sorting as soon as it has found the first row_count rows of
the sorted result, rather than sorting the entire result. If ordering is done by using an index, this is very fast. If a filesort must be
done, all rows that match the query without the LIMIT clause must be selected, and most or all of them must be sorted, before it can

Optimization

540



be ascertained that the first row_count rows have been found. In either case, after the initial rows have been found, there is no
need to sort any remainder of the result set, and MySQL does not do so.

• When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count unique rows.

• In some cases, a GROUP BY can be resolved by reading the key in order (or doing a sort on the key) and then calculating summaries
until the key value changes. In this case, LIMIT row_count does not calculate any unnecessary GROUP BY values.

• As soon as MySQL has sent the required number of rows to the client, it aborts the query unless you are using
SQL_CALC_FOUND_ROWS.

• LIMIT 0 quickly returns an empty set. This can be useful for checking the validity of a query. When using one of the MySQL
APIs, it can also be employed for obtaining the types of the result columns. (This trick does not work in the MySQL Monitor (the
mysql program), which merely displays Empty set in such cases; you should instead use SHOW COLUMNS or DESCRIBE for
this purpose.)

• When the server uses temporary tables to resolve the query, it uses the LIMIT row_count clause to calculate how much space is
required.

7.2.16. How to Avoid Table Scans
The output from EXPLAIN shows ALL in the type column when MySQL uses a table scan to resolve a query. This usually happens
under the following conditions:

• The table is so small that it is faster to perform a table scan than to bother with a key lookup. This is common for tables with fewer
than 10 rows and a short row length.

• There are no usable restrictions in the ON or WHERE clause for indexed columns.

• You are comparing indexed columns with constant values and MySQL has calculated (based on the index tree) that the constants
cover too large a part of the table and that a table scan would be faster. See Section 7.2.4, “WHERE Clause Optimization”.

• You are using a key with low cardinality (many rows match the key value) through another column. In this case, MySQL assumes
that by using the key it probably will do many key lookups and that a table scan would be faster.

MySQL Enterprise
For expert advice on avoiding excessive table scans subscribe to the MySQL Enterprise Monitor. For more in-
formation see http://www.mysql.com/products/enterprise/advisors.html.

For small tables, a table scan often is appropriate and the performance impact is negligible. For large tables, try the following techniques
to avoid having the optimizer incorrectly choose a table scan:

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See Section 12.5.2.1, “ANALYZE TA-
BLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive compared to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

See Section 12.2.7.2, “Index Hint Syntax”.

• Start mysqld with the --max-seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the optim-
izer to assume that no key scan causes more than 1,000 key seeks. See Section 5.1.3, “System Variables”.

7.2.17. INFORMATION_SCHEMA Optimization
In MySQL 5.1.23, changes to the implementation of INFORMATION_SCHEMA were made that optimize certain types of queries for
INFORMATION_SCHEMA tables so that they execute more quickly. This section provides guidelines on writing queries that take ad-
vantage of these optimizations. In general, the strategies outlined here minimize the need for the server to access the filesystem to obtain

Optimization

541

http://www.mysql.com/products/enterprise/advisors.html


the information that makes up the contents of INFORMATION_SCHEMA tables. By writing queries that enable the server to avoid dir-
ectory scans or opening table files, you will obtain better performance.

1) Try to use constant lookup values for database and table names in the WHERE clause

You can take advantage of this principle as follows:

• To look up databases or tables, use expressions that evaluate to a constant, such as literal values, functions that return a constant, or
scalar subqueries.

• Avoid queries that use a non-constant database name lookup value (or no lookup value) because they require a scan of the data dir-
ectory to find matching database directory names.

• Within a database, avoid queries that use a non-constant table name lookup value (or no lookup value) because they require a scan
of the database directory to find matching table files.

This principle applies to the INFORMATION_SCHEMA tables shown in the following table, which shows the columns for which a con-
stant lookup value enables the server to avoid a directory scan. For example, if you are selecting from TABLES, using a constant lookup
value for TABLE_SCHEMA in the WHERE clause enables a data directory scan to be avoided.

Table Column to specify to avoid data direct-
ory scan

Column to specify to avoid database dir-
ectory scan

COLUMNS TABLE_SCHEMA TABLE_NAME

KEY_COLUMN_USAGE TABLE_SCHEMA TABLE_NAME

PARTITIONS TABLE_SCHEMA TABLE_NAME

REFERENTIAL_CONSTRAINTS CONSTRAINT_SCHEMA TABLE_NAME

STATISTICS TABLE_SCHEMA TABLE_NAME

TABLES TABLE_SCHEMA TABLE_NAME

TABLE_CONSTRAINTS TABLE_SCHEMA TABLE_NAME

TRIGGERS EVENT_OBJECT_SCHEMA EVENT_OBJECT_TABLE

VIEWS TABLE_SCHEMA TABLE_NAME

The benefit of a query that is limited to a specific constant database name is that checks need be made only for the named database dir-
ectory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

Use of the literal database name test enables the server to check only the test database directory, regardless of how many databases
there might be. By contrast, the following query is less efficient because it requires a scan of the data directory to determine which data-
base names match the pattern 'test%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA LIKE 'test%';

For a query that is limited to a specific constant table name, checks need be made only for the named table within the corresponding
database directory. Example:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 't1';

Use of the literal table name t1 enables the server to check only the files for the t1 table, regardless of how many tables there might be
in the test database. By contrast, the following query requires a scan of the test database directory to determine which table names
match the pattern 't%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME LIKE 't%';

Optimization

542



The following query requires a scan of the database directory to determine matching database names for the pattern 'test%', and for
each matching database, it requires a scan of the database directory to determine matching table names for the pattern 't%':

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test%' AND TABLE_NAME LIKE 't%';

2) Write queries that minimize the number of table files that must be opened

For queries that refer to certain INFORMATION_SCHEMA table columns, several optimizations are available that minimize the number
of table files that must be opened. Example:

SELECT TABLE_NAME, ENGINE FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';

In this case, after the server has scanned the database directory to determine the names of the tables in the database, those names be-
come available with no further filesystem lookups. Thus, TABLE_NAME requires no files to be opened. The ENGINE (storage engine)
value can be determined by opening the table's .frm file, without touching other table files such as the .MYD or .MYI file.

Some values, such as INDEX_LENGTH for MyISAM tables, require opening the .MYD or .MYI file as well.

The file-opening optimization types are denoted thus:

• SKIP_OPEN_TABLE: Table files do not need to be opened. The information has already become available within the query by
scanning the database directory.

• OPEN_FRM_ONLY: Only the table's .frm file need be opened.

• OPEN_TRIGGER_ONLY: Only the table's .TRG file need be opened.

• OPEN_FULL_TABLE: The unoptimized information lookup. The .frm, .MYD, and .MYI files must be opened.

The following list indicates how the preceding optimization types apply to INFORMATION_SCHEMA table columns. For tables and
columns not named, none of the optimizations apply.

• COLUMNS: OPEN_FRM_ONLY applies to all columns

• KEY_COLUMN_USAGE: OPEN_FULL_TABLE applies to all columns

• PARTITIONS: OPEN_FULL_TABLE applies to all columns

• REFERENTIAL_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• STATISTICS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

NON_UNIQUE OPEN_FRM_ONLY

INDEX_SCHEMA OPEN_FRM_ONLY

INDEX_NAME OPEN_FRM_ONLY

SEQ_IN_INDEX OPEN_FRM_ONLY

COLUMN_NAME OPEN_FRM_ONLY

COLLATION OPEN_FRM_ONLY

CARDINALITY OPEN_FULL_TABLE

SUB_PART OPEN_FRM_ONLY

PACKED OPEN_FRM_ONLY

Optimization

543



NULLABLE OPEN_FRM_ONLY

INDEX_TYPE OPEN_FULL_TABLE

COMMENT OPEN_FRM_ONLY

• TABLES:

Column Optimization type

TABLE_CATALOG SKIP_OPEN_TABLE

TABLE_SCHEMA SKIP_OPEN_TABLE

TABLE_NAME SKIP_OPEN_TABLE

TABLE_TYPE OPEN_FRM_ONLY

ENGINE OPEN_FRM_ONLY

VERSION OPEN_FRM_ONLY

ROW_FORMAT OPEN_FULL_TABLE

TABLE_ROWS OPEN_FULL_TABLE

AVG_ROW_LENGTH OPEN_FULL_TABLE

DATA_LENGTH OPEN_FULL_TABLE

MAX_DATA_LENGTH OPEN_FULL_TABLE

INDEX_LENGTH OPEN_FULL_TABLE

DATA_FREE OPEN_FULL_TABLE

AUTO_INCREMENT OPEN_FULL_TABLE

CREATE_TIME OPEN_FULL_TABLE

UPDATE_TIME OPEN_FULL_TABLE

CHECK_TIME OPEN_FULL_TABLE

TABLE_COLLATION OPEN_FRM_ONLY

CHECKSUM OPEN_FULL_TABLE

CREATE_OPTIONS OPEN_FRM_ONLY

TABLE_COMMENT OPEN_FRM_ONLY

• TABLE_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns

• TRIGGERS: OPEN_FULL_TABLE applies to all columns

• VIEWS:

Column Optimization type

TABLE_CATALOG OPEN_FRM_ONLY

TABLE_SCHEMA OPEN_FRM_ONLY

TABLE_NAME OPEN_FRM_ONLY

VIEW_DEFINITION OPEN_FULL_TABLE

CHECK_OPTION OPEN_FULL_TABLE

IS_UPDATABLE OPEN_FULL_TABLE

DEFINER OPEN_FULL_TABLE

SECURITY_TYPE OPEN_FULL_TABLE

CHARACTER_SET_CLIENT OPEN_FULL_TABLE

COLLATION_CONNECTION OPEN_FULL_TABLE

Optimization

544



3) Use EXPLAIN to determine whether the server can use INFORMATION_SCHEMA optimizations for a query

The Extra value in EXPLAIN output indicates which, if any, of the optimizations described earlier the server can use to evaluate IN-
FORMATION_SCHEMA queries. The following examples demonstrate the kinds of information you can expect to see in the Extra
value.

mysql> EXPLAIN SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS WHERE
-> TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v1'\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
table: VIEWS
type: ALL

possible_keys: NULL
key: TABLE_SCHEMA,TABLE_NAME

key_len: NULL
ref: NULL
rows: NULL
Extra: Using where; Open_frm_only; Scanned 0 databases

Use of constant database and table lookup values enables the server to avoid directory scans. For references to VIEWS.TABLE_NAME,
only the .frm file need be opened.

mysql> EXPLAIN SELECT TABLE_NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.TABLES\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: TABLES
type: ALL

possible_keys: NULL
key: NULL

key_len: NULL
ref: NULL
rows: NULL
Extra: Open_full_table; Scanned all databases

No lookup values are provided (there is no WHERE clause), so the server must scan the data directory and each database directory. For
each table thus identified, the table name and row format are selected. TABLE_NAME requires no further table files to be opened (the
SKIP_OPEN_TABLE optimization applies). ROW_FORMAT requires all table files to be opened (OPEN_FULL_TABLE applies). EX-
PLAIN reports OPEN_FULL_TABLE because it is more expensive than SKIP_OPEN_TABLE.

mysql> EXPLAIN SELECT TABLE_NAME, TABLE_TYPE FROM INFORMATION_SCHEMA.TABLES
-> WHERE TABLE_SCHEMA = 'test'\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
table: TABLES
type: ALL

possible_keys: NULL
key: TABLE_SCHEMA

key_len: NULL
ref: NULL
rows: NULL
Extra: Using where; Open_frm_only; Scanned 1 database

No table name lookup value is provided, so the server must scan the test database directory. For the TABLE_NAME and TA-
BLE_TYPE columns, the SKIP_OPEN_TABLE and OPEN_FRM_ONLY optimizations apply, respectively. EXPLAIN reports
OPEN_FRM_ONLY because it is more expensive.

mysql> EXPLAIN SELECT B.TABLE_NAME
-> FROM INFORMATION_SCHEMA.TABLES AS A, INFORMATION_SCHEMA.COLUMNS AS B
-> WHERE A.TABLE_SCHEMA = 'test'
-> AND A.TABLE_NAME = 't1'
-> AND B.TABLE_NAME = A.TABLE_NAME\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
table: A
type: ALL

possible_keys: NULL
key: TABLE_SCHEMA,TABLE_NAME

key_len: NULL
ref: NULL
rows: NULL
Extra: Using where; Skip_open_table; Scanned 0 databases

*************************** 2. row ***************************
id: 1

select_type: SIMPLE
table: B

Optimization

545



type: ALL
possible_keys: NULL

key: NULL
key_len: NULL

ref: NULL
rows: NULL
Extra: Using where; Open_frm_only; Scanned all databases;

Using join buffer

For the first EXPLAIN output row: Constant database and table lookup values enable the server to avoid directory scans for TABLES
values. References to TABLES.TABLE_NAME require no further table files.

For the second EXPLAIN output row: All COLUMNS table values are OPEN_FRM_ONLY lookups, so COLUMNS.TABLE_NAME re-
quires the .frm file to be opened.

mysql> EXPLAIN SELECT * FROM INFORMATION_SCHEMA.COLLATIONS\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: COLLATIONS
type: ALL

possible_keys: NULL
key: NULL

key_len: NULL
ref: NULL
rows: NULL
Extra:

In this case, no optimizations apply because COLLATIONS is not one of the INFORMATION_SCHEMA tables for which optimizations
are available.

7.2.18. Speed of INSERT Statements
The time required for inserting a row is determined by the following factors, where the numbers indicate approximate proportions:

• Connecting: (3)

• Sending query to server: (2)

• Parsing query: (2)

• Inserting row: (1 × size of row)

• Inserting indexes: (1 × number of indexes)

• Closing: (1)

This does not take into consideration the initial overhead to open tables, which is done once for each concurrently running query.

The size of the table slows down the insertion of indexes by log N, assuming B-tree indexes.

You can use the following methods to speed up inserts:

• If you are inserting many rows from the same client at the same time, use INSERT statements with multiple VALUES lists to insert
several rows at a time. This is considerably faster (many times faster in some cases) than using separate single-row INSERT state-
ments. If you are adding data to a non-empty table, you can tune the bulk_insert_buffer_size variable to make data inser-
tion even faster. See Section 5.1.3, “System Variables”.

• If multiple clients are inserting a lot of rows, you can get higher speed by using the INSERT DELAYED statement. See Sec-
tion 12.2.4.2, “INSERT DELAYED Syntax”.

• For a MyISAM table, you can use concurrent inserts to add rows at the same time that SELECT statements are running, if there are
no deleted rows in middle of the data file. See Section 7.3.3, “Concurrent Inserts”.

• When loading a table from a text file, use LOAD DATA INFILE. This is usually 20 times faster than using INSERT statements.
See Section 12.2.5, “LOAD DATA INFILE Syntax”.

Optimization

546



• With some extra work, it is possible to make LOAD DATA INFILE run even faster for a MyISAM table when the table has many
indexes. Use the following procedure:

1. Optionally create the table with CREATE TABLE.

2. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

3. Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name. This removes all use of indexes for the table.

4. Insert data into the table with LOAD DATA INFILE. This does not update any indexes and therefore is very fast.

5. If you intend only to read from the table in the future, use myisampack to compress it. See Section 13.4.3.3, “Compressed
Table Characteristics”.

6. Re-create the indexes with myisamchk -rq /path/to/db/tbl_name. This creates the index tree in memory before
writing it to disk, which is much faster that updating the index during LOAD DATA INFILE because it avoids lots of disk
seeks. The resulting index tree is also perfectly balanced.

7. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

LOAD DATA INFILE performs the preceding optimization automatically if the MyISAM table into which you insert data is empty.
The main difference between automatic optimization and using the procedure explicitly is that you can let myisamchk allocate
much more temporary memory for the index creation than you might want the server to allocate for index re-creation when it ex-
ecutes the LOAD DATA INFILE statement.

You can also disable or enable the indexes for a MyISAM table by using the following statements rather than myisamchk. If you
use these statements, you can skip the FLUSH TABLE operations:

ALTER TABLE tbl_name DISABLE KEYS;
ALTER TABLE tbl_name ENABLE KEYS;

• To speed up INSERT operations that are performed with multiple statements for non-transactional tables, lock your tables:

LOCK TABLES a WRITE;
INSERT INTO a VALUES (1,23),(2,34),(4,33);
INSERT INTO a VALUES (8,26),(6,29);
...
UNLOCK TABLES;

This benefits performance because the index buffer is flushed to disk only once, after all INSERT statements have completed. Nor-
mally, there would be as many index buffer flushes as there are INSERT statements. Explicit locking statements are not needed if
you can insert all rows with a single INSERT.

To obtain faster insertions for transactional tables, you should use START TRANSACTION and COMMIT instead of LOCK
TABLES.

Locking also lowers the total time for multiple-connection tests, although the maximum wait time for individual connections might
go up because they wait for locks. Suppose that five clients attempt to perform inserts simultaneously as follows:

• Connection 1 does 1000 inserts

• Connections 2, 3, and 4 do 1 insert

• Connection 5 does 1000 inserts

If you do not use locking, connections 2, 3, and 4 finish before 1 and 5. If you use locking, connections 2, 3, and 4 probably do not
finish before 1 or 5, but the total time should be about 40% faster.

INSERT, UPDATE, and DELETE operations are very fast in MySQL, but you can obtain better overall performance by adding locks
around everything that does more than about five successive inserts or updates. If you do very many successive inserts, you could do
a LOCK TABLES followed by an UNLOCK TABLES once in a while (each 1,000 rows or so) to allow other threads access to the ta-
ble. This would still result in a nice performance gain.

INSERT is still much slower for loading data than LOAD DATA INFILE, even when using the strategies just outlined.

• To increase performance for MyISAM tables, for both LOAD DATA INFILE and INSERT, enlarge the key cache by increasing the

Optimization

547



key_buffer_size system variable. See Section 7.5.2, “Tuning Server Parameters”.

MySQL Enterprise
For more advice on optimizing the performance of your server, subscribe to the MySQL Enterprise Monitor. Nu-
merous advisors are dedicated to monitoring performance. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

7.2.19. Speed of UPDATE Statements
An update statement is optimized like a SELECT query with the additional overhead of a write. The speed of the write depends on the
amount of data being updated and the number of indexes that are updated. Indexes that are not changed do not get updated.

Another way to get fast updates is to delay updates and then do many updates in a row later. Performing multiple updates together is
much quicker than doing one at a time if you lock the table.

For a MyISAM table that uses dynamic row format, updating a row to a longer total length may split the row. If you do this often, it is
very important to use OPTIMIZE TABLE occasionally. See Section 12.5.2.5, “OPTIMIZE TABLE Syntax”.

7.2.20. Speed of DELETE Statements
The time required to delete individual rows is exactly proportional to the number of indexes. To delete rows more quickly, you can in-
crease the size of the key cache by increasing the key_buffer_size system variable. See Section 7.5.2, “Tuning Server
Parameters”.

To delete all rows from a table, TRUNCATE TABLE tbl_name is faster than than DELETE FROM Truncate operations
are not transaction-safe; an error occurs when attempting one in the course of an active
transaction or active table lock. tbl_name. See Section 12.2.9, “TRUNCATE Syntax”.

7.2.21. Other Optimization Tips
This section lists a number of miscellaneous tips for improving query processing speed:

• Use persistent connections to the database to avoid connection overhead. If you cannot use persistent connections and you are initi-
ating many new connections to the database, you may want to change the value of the thread_cache_size variable. See Sec-
tion 7.5.2, “Tuning Server Parameters”.

• Always check whether all your queries really use the indexes that you have created in the tables. In MySQL, you can do this with
the EXPLAIN statement. See Section 12.3.2, “EXPLAIN Syntax”.

• Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid problems with table locking that oc-
cur due to contention between readers and writers.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you can INSERT new rows into it at
the same time that other threads are reading from the table. If it is important to be able to do this, you should consider using the table
in ways that avoid deleting rows. Another possibility is to run OPTIMIZE TABLE to defragment the table after you have deleted a
lot of rows from it. This behavior is altered by setting the concurrent_insert variable. You can force new rows to be appen-
ded (and therefore allow concurrent inserts), even in tables that have deleted rows. See Section 7.3.3, “Concurrent Inserts”.

MySQL Enterprise
For optimization tips geared to your specific circumstances subscribe to the MySQL Enterprise Monitor. For
more information see http://www.mysql.com/products/enterprise/advisors.html.

• To fix any compression issues that may have occurred with ARCHIVE tables, you can use OPTIMIZE TABLE. See Section 13.10,
“The ARCHIVE Storage Engine”.

• Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in expr1, expr2, ... order.
By using this option after extensive changes to the table, you may be able to get higher performance.

• In some cases, it may make sense to introduce a column that is “hashed” based on information from other columns. If this column is
short, reasonably unique, and indexed, it may be much faster than a “wide” index on many columns. In MySQL, it is very easy to
use this extra column:

Optimization

548

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


SELECT * FROM tbl_name
WHERE hash_col=MD5(CONCAT(col1,col2))
AND col1='constant' AND col2='constant';

• For MyISAM tables that change frequently, you should try to avoid all variable-length columns (VARCHAR, BLOB, and TEXT). The
table uses dynamic row format if it includes even a single variable-length column. See Chapter 13, Storage Engines.

• It is normally not useful to split a table into different tables just because the rows become large. In accessing a row, the biggest per-
formance hit is the disk seek needed to find the first byte of the row. After finding the data, most modern disks can read the entire
row fast enough for most applications. The only cases where splitting up a table makes an appreciable difference is if it is a MyISAM
table using dynamic row format that you can change to a fixed row size, or if you very often need to scan the table but do not need
most of the columns. See Chapter 13, Storage Engines.

• If you often need to calculate results such as counts based on information from a lot of rows, it may be preferable to introduce a new
table and update the counter in real time. An update of the following form is very fast:

UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;

This is very important when you use MySQL storage engines such as MyISAM that has only table-level locking (multiple readers
with single writers). This also gives better performance with most database systems, because the row locking manager in this case
has less to do.

• If you need to collect statistics from large log tables, use summary tables instead of scanning the entire log table. Maintaining the
summaries should be much faster than trying to calculate statistics “live.” Regenerating new summary tables from the logs when
things change (depending on business decisions) is faster than changing the running application.

• If possible, you should classify reports as “live” or as “statistical,” where data needed for statistical reports is created only from
summary tables that are generated periodically from the live data.

• Take advantage of the fact that columns have default values. Insert values explicitly only when the value to be inserted differs from
the default. This reduces the parsing that MySQL must do and improves the insert speed.

• In some cases, it is convenient to pack and store data into a BLOB column. In this case, you must provide code in your application to
pack and unpack information, but this may save a lot of accesses at some stage. This is practical when you have data that does not
conform well to a rows-and-columns table structure.

• Normally, you should try to keep all data non-redundant (observing what is referred to in database theory as third normal form).
However, there may be situations in which it can be advantageous to duplicate information or create summary tables to gain more
speed.

• Stored routines or UDFs (user-defined functions) may be a good way to gain performance for some tasks. See Chapter 20, Stored
Procedures and Functions, and Section 29.3, “Adding New Functions to MySQL”, for more information.

• You can increase performance by caching queries or answers in your application and then executing many inserts or updates togeth-
er. If your database system supports table locks, this should help to ensure that the index cache is only flushed once after all updates.
You can also take advantage of MySQL's query cache to achieve similar results; see Section 7.5.4, “The MySQL Query Cache”.

• Use INSERT DELAYED when you do not need to know when your data is written. This reduces the overall insertion impact be-
cause many rows can be written with a single disk write.

• Use INSERT LOW_PRIORITY when you want to give SELECT statements higher priority than your inserts.

Use SELECT HIGH_PRIORITY to get retrievals that jump the queue. That is, the SELECT is executed even if there is another cli-
ent waiting to do a write.

LOW_PRIORITY and HIGH_PRIORITY have an effect only for storage engines that use only table-level locking (MyISAM,
MEMORY, MERGE).

• Use multiple-row INSERT statements to store many rows with one SQL statement. Many SQL servers support this, including
MySQL.

• Use LOAD DATA INFILE to load large amounts of data. This is faster than using INSERT statements.

• Use AUTO_INCREMENT columns so that each row in a table can be identified by a single unique value. unique values.

Optimization

549



• Use OPTIMIZE TABLE once in a while to avoid fragmentation with dynamic-format MyISAM tables. See Section 13.4.3, “MyIS-
AM Table Storage Formats”.

• Use MEMORY tables when possible to get more speed. See Section 13.7, “The MEMORY (HEAP) Storage Engine”. MEMORY tables are
useful for non-critical data that is accessed often, such as information about the last displayed banner for users who don't have cook-
ies enabled in their Web browser. User sessions are another alternative available in many Web application environments for hand-
ling volatile state data.

• With Web servers, images and other binary assets should normally be stored as files. That is, store only a reference to the file rather
than the file itself in the database. Most Web servers are better at caching files than database contents, so using files is generally
faster.

• Columns with identical information in different tables should be declared to have identical data types so that joins based on the cor-
responding columns will be faster.

• Try to keep column names simple. For example, in a table named customer, use a column name of name instead of custom-
er_name. To make your names portable to other SQL servers, you should keep them shorter than 18 characters.

• If you need really high speed, you should take a look at the low-level interfaces for data storage that the different SQL servers sup-
port. For example, by accessing the MySQL MyISAM storage engine directly, you could get a speed increase of two to five times
compared to using the SQL interface. To be able to do this, the data must be on the same server as the application, and usually it
should only be accessed by one process (because external file locking is really slow). One could eliminate these problems by intro-
ducing low-level MyISAM commands in the MySQL server (this could be one easy way to get more performance if needed). By
carefully designing the database interface, it should be quite easy to support this type of optimization.

• If you are using numerical data, it is faster in many cases to access information from a database (using a live connection) than to ac-
cess a text file. Information in the database is likely to be stored in a more compact format than in the text file, so accessing it in-
volves fewer disk accesses. You also save code in your application because you need not parse your text files to find line and
column boundaries.

• Replication can provide a performance benefit for some operations. You can distribute client retrievals among replication servers to
split up the load. To avoid slowing down the master while making backups, you can make backups using a slave server. See
Chapter 16, Replication.

• Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates faster because they are not flushed
to disk until the table is closed. The downside is that if something kills the server while such a table is open, you should ensure that
the table is okay by running the server with the --myisam-recover option, or by running myisamchk before restarting the
server. (However, even in this case, you should not lose anything by using DELAY_KEY_WRITE, because the key information can
always be generated from the data rows.)

7.3. Locking Issues
MySQL manages contention for table contents using locking:

• Internal locking is performed within the MySQL server itself to manage contention for table contents by multiple threads. This type
of locking is internal because it is performed entirely by the server and involves no other programs. See Section 7.3.1, “Internal
Locking Methods”.

• External locking occurs when the server and other programs lock table files to coordinate among themselves which program can ac-
cess the tables at which time. See Section 7.3.4, “External Locking”. See Section 7.3.4, “External Locking”.

7.3.1. Internal Locking Methods
This section discusses internal locking; that is, locking performed within the MySQL server itself to manage contention for table con-
tents by multiple threads. This type of locking is internal because it is performed entirely by the server and involves no other programs.
External locking occurs when the server and other programs lock table files to coordinate among themselves which program can access
the tables at which time. See Section 7.3.4, “External Locking”.

MySQL uses table-level locking for MyISAM and MEMORY tables, and row-level locking for InnoDB tables.

In many cases, you can make an educated guess about which locking type is best for an application, but generally it is difficult to say

Optimization

550



that a given lock type is better than another. Everything depends on the application and different parts of an application may require dif-
ferent lock types.

To decide whether you want to use a storage engine with row-level locking, you should look at what your application does and what
mix of select and update statements it uses. For example, most Web applications perform many selects, relatively few deletes, updates
based mainly on key values, and inserts into a few specific tables. The base MySQL MyISAM setup is very well tuned for this.

MySQL Enterprise
The MySQL Enterprise Monitor provides expert advice on when to use table-level locking and when to use row-
level locking. To subscribe see http://www.mysql.com/products/enterprise/advisors.html.

Table locking in MySQL is deadlock-free for storage engines that use table-level locking. Deadlock avoidance is managed by always
requesting all needed locks at once at the beginning of a query and always locking the tables in the same order.

MySQL grants table WRITE locks as follows:

1. If there are no locks on the table, put a write lock on it.

2. Otherwise, put the lock request in the write lock queue.

MySQL grants table READ locks as follows:

1. If there are no write locks on the table, put a read lock on it.

2. Otherwise, put the lock request in the read lock queue.

When a lock is released, the lock is made available to the threads in the write lock queue and then to the threads in the read lock queue.
This means that if you have many updates for a table, SELECT statements wait until there are no more updates.

You can analyze the table lock contention on your system by checking the Table_locks_waited and Ta-
ble_locks_immediate status variables:

mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and writers for a given table: If a MyIS-
AM table has no free blocks in the middle of the data file, rows are always inserted at the end of the data file. In this case, you can freely
mix concurrent INSERT and SELECT statements for a MyISAM table without locks. That is, you can insert rows into a MyISAM table
at the same time other clients are reading from it. Holes can result from rows having been deleted from or updated in the middle of the
table. If there are holes, concurrent inserts are disabled but are re-enabled automatically when all holes have been filled with new data..
This behavior is altered by the concurrent_insert system variable. See Section 7.3.3, “Concurrent Inserts”.

If you want to perform many INSERT and SELECT operations on a table real_table when concurrent inserts are not possible, you
can insert rows into a temporary table temp_table and update the real table with the rows from the temporary table periodically. This
can be done with the following code:

mysql> LOCK TABLES real_table WRITE, temp_table WRITE;
mysql> INSERT INTO real_table SELECT * FROM temp_table;
mysql> DELETE FROM temp_table;
mysql> UNLOCK TABLES;

InnoDB uses row locks. Deadlocks are possible for InnoDB because it automatically acquires locks during the processing of SQL
statements, not at the start of the transaction.

Advantages of row-level locking:

• Fewer lock conflicts when accessing different rows in many threads

Optimization

551

http://www.mysql.com/products/enterprise/advisors.html


• Fewer changes for rollbacks

• Possible to lock a single row for a long time

Disadvantages of row-level locking:

• Requires more memory than table-level locks

• Slower than table-level locks when used on a large part of the table because you must acquire many more locks

• Definitely much slower than other locks if you often do GROUP BY operations on a large part of the data or if you must scan the en-
tire table frequently

Table locks are superior to row-level locks in the following cases:

• Most statements for the table are reads

• Statements for the table are a mix of reads and writes, where writes are updates or deletes for a single row that can be fetched with
one key read:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;

• SELECT combined with concurrent INSERT statements, and very few UPDATE or DELETE statements

• Many scans or GROUP BY operations on the entire table without any writers

With higher-level locks, you can more easily tune applications by supporting locks of different types, because the lock overhead is less
than for row-level locks.

Options other than row-level locking:

• Versioning (such as that used in MySQL for concurrent inserts) where it is possible to have one writer at the same time as many
readers. This means that the database or table supports different views for the data depending on when access begins. Other common
terms for this are “time travel,” “copy on write,” or “copy on demand.”

• Copy on demand is in many cases superior to row-level locking. However, in the worst case, it can use much more memory than us-
ing normal locks.

• Instead of using row-level locks, you can employ application-level locks, such as those provided by GET_LOCK() and RE-
LEASE_LOCK() in MySQL. These are advisory locks, so they work only in well-behaved applications. See Section 11.11.4,
“Miscellaneous Functions”.

7.3.2. Table Locking Issues
To achieve a very high lock speed, MySQL uses table locking (instead of page, row, or column locking) for all storage engines except
InnoDB and NDBCLUSTER.

For InnoDB tables, MySQL only uses table locking if you explicitly lock the table with LOCK TABLES. For these storage engines, we
recommend that you not use LOCK TABLES at all, because InnoDB uses automatic row-level locking to ensure transaction isolation.

For large tables, table locking is much better than row locking for most applications, but there are some pitfalls:

• Table locking enables many threads to read from a table at the same time, but if a thread wants to write to a table, it must first get
exclusive access. During the update, all other threads that want to access this particular table must wait until the update is done.

• Table updates normally are considered to be more important than table retrievals, so they are given higher priority. This should en-
sure that updates to a table are not “starved” even if there is heavy SELECT activity for the table.

Optimization

552



• Table locking causes problems in cases such as when a thread is waiting because the disk is full and free space needs to become
available before the thread can proceed. In this case, all threads that want to access the problem table are also put in a waiting state
until more disk space is made available.

Table locking is also disadvantageous under the following scenario:

• A client issues a SELECT that takes a long time to run.

• Another client then issues an UPDATE on the same table. This client waits until the SELECT is finished.

• Another client issues another SELECT statement on the same table. Because UPDATE has higher priority than SELECT, this SE-
LECT waits for the UPDATE to finish, and for the first SELECT to finish.

The following items describe some ways to avoid or reduce contention caused by table locking:

• Try to get the SELECT statements to run faster so that they lock tables for a shorter time. You might have to create some summary
tables to do this.

• Start mysqld with --low-priority-updates. For storage engines that use only table-level locking (MyISAM, MEMORY,
MERGE), this gives all statements that update (modify) a table lower priority than SELECT statements. In this case, the second SE-
LECT statement in the preceding scenario would execute before the UPDATE statement, and would not need to wait for the first
SELECT to finish.

• You can specify that all updates issued in a specific connection should be done with low priority by using the SET
LOW_PRIORITY_UPDATES=1 statement. See Section 12.5.3, “SET Syntax”.

• You can give a specific INSERT, UPDATE, or DELETE statement lower priority with the LOW_PRIORITY attribute.

• You can give a specific SELECT statement higher priority with the HIGH_PRIORITY attribute. See Section 12.2.7, “SELECT Syn-
tax”.

• You can start mysqld with a low value for the max_write_lock_count system variable to force MySQL to temporarily elev-
ate the priority of all SELECT statements that are waiting for a table after a specific number of inserts to the table occur. This allows
READ locks after a certain number of WRITE locks.

• If you have problems with INSERT combined with SELECT, you might want to consider switching to MyISAM tables, which sup-
port concurrent SELECT and INSERT statements. (See Section 7.3.3, “Concurrent Inserts”.)

• If you mix inserts and deletes on the same table, INSERT DELAYED may be of great help. See Section 12.2.4.2, “INSERT
DELAYED Syntax”.

• If you have problems with mixed SELECT and DELETE statements, the LIMIT option to DELETE may help. See Section 12.2.1,
“DELETE Syntax”.

• Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table locks shorter. See Section 12.2.7,
“SELECT Syntax”.

• You could change the locking code in mysys/thr_lock.c to use a single queue. In this case, write locks and read locks would
have the same priority, which might help some applications.

Here are some tips concerning table locks in MySQL:

• Concurrent users are not a problem if you do not mix updates with selects that need to examine many rows in the same table.

• You can use LOCK TABLES to increase speed, because many updates within a single lock is much faster than updating without
locks. Splitting table contents into separate tables may also help.

• If you encounter speed problems with table locks in MySQL, you may be able to improve performance by converting some of your
tables to InnoDB. See Section 13.5, “The InnoDB Storage Engine”.

Optimization

553



MySQL Enterprise
Lock contention can seriously degrade performance. The MySQL Enterprise Monitor provides expert advice on
avoiding this problem. To subscribe see http://www.mysql.com/products/enterprise/advisors.html.

7.3.3. Concurrent Inserts
The MyISAM storage engine supports concurrent inserts to reduce contention between readers and writers for a given table: If a MyIS-
AM table has no holes in the data file (deleted rows in the middle), inserts can be performed to add rows to the end of the table at the
same time that SELECT statements are reading rows from the table.

The concurrent_insert system variable can be set to modify the concurrent-insert processing. By default, the variable is set to 1
and concurrent inserts are handled as just described. If concurrent_inserts is set to 0, concurrent inserts are disabled. If the vari-
able is set to 2, concurrent inserts at the end of the table are allowed even for tables that have deleted rows. See also the description of
the concurrent_insert system variable.

Under circumstances where concurrent inserts can be used, there is seldom any need to use the DELAYED modifier for INSERT state-
ments. See Section 12.2.4.2, “INSERT DELAYED Syntax”.

If you are using the binary log, concurrent inserts are converted to normal inserts for CREATE ... SELECT or INSERT ... SE-
LECT statements. This is done to ensure that you can re-create an exact copy of your tables by applying the log during a backup opera-
tion. See Section 5.2.4, “The Binary Log”.

With LOAD DATA INFILE, if you specify CONCURRENT with a MyISAM table that satisfies the condition for concurrent inserts (that
is, it contains no free blocks in the middle), other threads can retrieve data from the table while LOAD DATA is executing. Use of the
CONCURRENT option affects the performance of LOAD DATA a bit, even if no other thread is using the table at the same time.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the server was started with
that option. It also causes concurrent inserts not to be used.

For LOCK TABLE, the difference between READ LOCAL and READ is that READ LOCAL allows non-conflicting INSERT statements
(concurrent inserts) to execute while the lock is held. However, this cannot be used if you are going to manipulate the database using
processes external to the server while you hold the lock.

7.3.4. External Locking
External locking is the use of filesystem locking to manage contention for database tables by multiple processes. External locking is
used in situations where a single process such as the MySQL server cannot be assumed to be the only process that requires access to
tables. Here are some examples:

• If you run multiple servers that use the same database directory (not recommended), each server must have external locking enabled.

• If you use myisamchk to perform table maintenance operations on MyISAM tables, you must either ensure that the server is not
running, or that the server has external locking enabled so that it locks table files as necessary to coordinate with myisamchk for
access to the tables. The same is true for use of myisampack to pack MyISAM tables.

With external locking in effect, each process that requires access to a table acquires a filesystem lock for the table files before proceed-
ing to access the table. If all necessary locks cannot be acquired, the process is blocked from accessing the table until the locks can be
obtained (after the process that currently holds the locks releases them).

External locking affects server performance because the server must sometimes wait for other processes before it can access tables.

External locking is unnecessary if you run a single server to access a given data directory (which is the usual case) and if no other pro-
grams such as myisamchk need to modify tables while the server is running. If you only read tables with other programs, external
locking is not required, although myisamchk might report warnings if the server changes tables while myisamchk is reading them.

With external locking disabled, to use myisamchk, you must either stop the server while myisamchk executes or else lock and flush
the tables before running myisamchk. (See Section 7.5.1, “System Factors and Startup Parameter Tuning”.) To avoid this requirement,
use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.

For mysqld, external locking is controlled by the value of the skip_external_locking system variable. (Before MySQL 4.0.3,
this variable is named skip_locking.) When this variable is enabled, external locking is disabled, and vice versa. From MySQL 4.0

Optimization

554

http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/6.0/en/server-system-variables.html#option_mysqld_concurrent-insert


on, external locking is disabled by default. Before MySQL 4.0, external locking is enabled by default on Linux or when MySQL is con-
figured to use MIT-pthreads.

Use of external locking can be controlled at server startup by using the --external-locking or --skip-external-locking
option. (Before MySQL 4.0.3, these options are named --enable-locking and --skip-locking.)

If you do use external locking option to enable updates to MyISAM tables from many MySQL processes, you must ensure that the fol-
lowing conditions are satisfied:

• You should not use the query cache for queries that use tables that are updated by another process.

• You should not start the server with the --delay-key-write=ALL option or use the DELAY_KEY_WRITE=1 table option for
any shared tables. Otherise, index corruption can occur.

The easiest way to satisfy these conditions is to always use --external-locking together with --delay-key-write=OFF
and --query-cache-size=0. (This is not done by default because in many setups it is useful to have a mixture of the preceding
options.)

7.4. Optimizing Database Structure

7.4.1. Design Choices
MySQL keeps row data and index data in separate files. Many (almost all) other database systems mix row and index data in the same
file. We believe that the MySQL choice is better for a very wide range of modern systems.

Another way to store the row data is to keep the information for each column in a separate area (examples are SDBM and Focus). This
causes a performance hit for every query that accesses more than one column. Because this degenerates so quickly when more than one
column is accessed, we believe that this model is not good for general-purpose databases.

The more common case is that the index and data are stored together (as in Oracle/Sybase, et al). In this case, you find the row informa-
tion at the leaf page of the index. The good thing with this layout is that it, in many cases, depending on how well the index is cached,
saves a disk read. The bad things with this layout are:

• Table scanning is much slower because you have to read through the indexes to get at the data.

• You cannot use only the index table to retrieve data for a query.

• You use more space because you must duplicate indexes from the nodes (you cannot store the row in the nodes).

• Deletes degenerate the table over time (because indexes in nodes are usually not updated on delete).

• It is more difficult to cache only the index data.

7.4.2. Make Your Data as Small as Possible
One of the most basic optimizations is to design your tables to take as little space on the disk as possible. This can result in huge im-
provements because disk reads are faster, and smaller tables normally require less main memory while their contents are being actively
processed during query execution. Indexing also is a lesser resource burden if done on smaller columns.

MySQL supports many different storage engines (table types) and row formats. For each table, you can decide which storage and index-
ing method to use. Choosing the proper table format for your application may give you a big performance gain. See Chapter 13, Storage
Engines.

You can get better performance for a table and minimize storage space by using the techniques listed here:

• Use the most efficient (smallest) data types possible. MySQL has many specialized types that save disk space and memory. For ex-
ample, use the smaller integer types if possible to get smaller tables. MEDIUMINT is often a better choice than INT because a ME-
DIUMINT column uses 25% less space.

• Declare columns to be NOT NULL if possible. It makes everything faster and you save one bit per column. If you really need NULL

Optimization

555



in your application, you should definitely use it. Just avoid having it on all columns by default.

• For MyISAM tables, if you do not have any variable-length columns (VARCHAR, TEXT, or BLOB columns), a fixed-size row format
is used. This is faster but unfortunately may waste some space. See Section 13.4.3, “MyISAM Table Storage Formats”. You can hint
that you want to have fixed length rows even if you have VARCHAR columns with the CREATE TABLE option
ROW_FORMAT=FIXED.

• InnoDB tables use a compact storage format. In versions of MySQL earlier than 5.0.3, InnoDB rows contain some redundant in-
formation, such as the number of columns and the length of each column, even for fixed-size columns. By default, tables are created
in the compact format (ROW_FORMAT=COMPACT). If you wish to downgrade to older versions of MySQL, you can request the old
format with ROW_FORMAT=REDUNDANT.

The presence of the compact row format decreases row storage space by about 20% at the cost of increasing CPU use for some op-
erations. If your workload is a typical one that is limited by cache hit rates and disk speed it is likely to be faster. If it is a rare case
that is limited by CPU speed, it might be slower.

The compact InnoDB format also changes how CHAR columns containing UTF-8 data are stored. With
ROW_FORMAT=REDUNDANT, a UTF-8 CHAR(N) occupies 3 × N bytes, given that the maximum length of a UTF-8 encoded char-
acter is three bytes. Many languages can be written primarily using single-byte UTF-8 characters, so a fixed storage length often
wastes space. With ROW_FORMAT=COMPACT format, InnoDB allocates a variable amount of storage in the range from N to 3 × N
bytes for these columns by stripping trailing spaces if necessary. The minimum storage length is kept as N bytes to facilitate in-place
updates in typical cases.

• The primary index of a table should be as short as possible. This makes identification of each row easy and efficient.

• Create only the indexes that you really need. Indexes are good for retrieval but bad when you need to store data quickly. If you ac-
cess a table mostly by searching on a combination of columns, create an index on them. The first part of the index should be the
column most used. If you always use many columns when selecting from the table, you should use the column with more duplicates
first to obtain better compression of the index.

• If it is very likely that a string column has a unique prefix on the first number of characters, it's better to index only this prefix, using
MySQL's support for creating an index on the leftmost part of the column (see Section 12.1.7, “CREATE INDEX Syntax”). Shorter
indexes are faster, not only because they require less disk space, but because they also give you more hits in the index cache, and
thus fewer disk seeks. See Section 7.5.2, “Tuning Server Parameters”.

• In some circumstances, it can be beneficial to split into two a table that is scanned very often. This is especially true if it is a dynam-
ic-format table and it is possible to use a smaller static format table that can be used to find the relevant rows when scanning the ta-
ble.

7.4.3. Column Indexes
All MySQL data types can be indexed. Use of indexes on the relevant columns is the best way to improve the performance of SELECT
operations.

The maximum number of indexes per table and the maximum index length is defined per storage engine. See Chapter 13, Storage En-
gines. All storage engines support at least 16 indexes per table and a total index length of at least 256 bytes. Most storage engines have
higher limits.

With col_name(N) syntax in an index specification, you can create an index that uses only the first N characters of a string column.
Indexing only a prefix of column values in this way can make the index file much smaller. When you index a BLOB or TEXT column,
you must specify a prefix length for the index. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables). Note that prefix limits are measured in bytes, whereas the prefix
length in CREATE TABLE statements is interpreted as number of characters. Be sure to take this into account when specifying a prefix
length for a column that uses a multi-byte character set.

You can also create FULLTEXT indexes. These are used for full-text searches. Only the MyISAM storage engine supports FULLTEXT
indexes and only for CHAR, VARCHAR, and TEXT columns. Indexing always takes place over the entire column and column prefix in-
dexing is not supported. For details, see Section 11.8, “Full-Text Search Functions”.

You can also create indexes on spatial data types. Currently, only MyISAM supports R-tree indexes on spatial types. Other storage en-

Optimization

556



gines use B-trees for indexing spatial types (except for ARCHIVE and NDBCLUSTER, which do not support spatial type indexing).

The MEMORY storage engine uses HASH indexes by default, but also supports BTREE indexes.

7.4.4. Multiple-Column Indexes
MySQL can create composite indexes (that is, indexes on multiple columns). An index may consist of up to 15 columns. For certain
data types, you can index a prefix of the column (see Section 7.4.3, “Column Indexes”).

A multiple-column index can be considered a sorted array containing values that are created by concatenating the values of the indexed
columns.

MySQL uses multiple-column indexes in such a way that queries are fast when you specify a known quantity for the first column of the
index in a WHERE clause, even if you do not specify values for the other columns.

Suppose that a table has the following specification:

CREATE TABLE test (
id INT NOT NULL,
last_name CHAR(30) NOT NULL,
first_name CHAR(30) NOT NULL,
PRIMARY KEY (id),
INDEX name (last_name,first_name)

);

The name index is an index over the last_name and first_name columns. The index can be used for queries that specify values
in a known range for last_name, or for both last_name and first_name. Therefore, the name index is used in the following
queries:

SELECT * FROM test WHERE last_name='Widenius';

SELECT * FROM test
WHERE last_name='Widenius' AND first_name='Michael';

SELECT * FROM test
WHERE last_name='Widenius'
AND (first_name='Michael' OR first_name='Monty');

SELECT * FROM test
WHERE last_name='Widenius'
AND first_name >='M' AND first_name < 'N';

However, the name index is not used in the following queries:

SELECT * FROM test WHERE first_name='Michael';

SELECT * FROM test
WHERE last_name='Widenius' OR first_name='Michael';

The manner in which MySQL uses indexes to improve query performance is discussed further in Section 7.4.5, “How MySQL Uses In-
dexes”.

7.4.5. How MySQL Uses Indexes
Indexes are used to find rows with specific column values quickly. Without an index, MySQL must begin with the first row and then
read through the entire table to find the relevant rows. The larger the table, the more this costs. If the table has an index for the columns
in question, MySQL can quickly determine the position to seek to in the middle of the data file without having to look at all the data. If
a table has 1,000 rows, this is at least 100 times faster than reading sequentially. If you need to access most of the rows, it is faster to
read sequentially, because this minimizes disk seeks.

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees. Exceptions are that indexes on spa-
tial data types use R-trees, and that MEMORY tables also support hash indexes.

Strings are automatically prefix- and end-space compressed. See Section 12.1.7, “CREATE INDEX Syntax”.

In general, indexes are used as described in the following discussion. Characteristics specific to hash indexes (as used in MEMORY
tables) are described at the end of this section.

MySQL uses indexes for these operations:

Optimization

557



• To find the rows matching a WHERE clause quickly.

• To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally uses the index that finds the
smallest number of rows.

• To retrieve rows from other tables when performing joins. MySQL can use indexes on columns more efficiently if they are declared
as the same type and size. In this context, VARCHAR and CHAR are considered the same if they are declared as the same size. For
example, VARCHAR(10) and CHAR(10) are the same size, but VARCHAR(10) and CHAR(15) are not.

Comparison of dissimilar columns may prevent use of indexes if values cannot be compared directly without conversion. Suppose
that a numeric column is compared to a string column. For a given value such as 1 in the numeric column, it might compare equal to
any number of values in the string column such as '1', ' 1', '00001', or '01.e1'. This rules out use of any indexes for the
string column.

• To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized by a preprocessor that checks
whether you are using WHERE key_part_N = constant on all key parts that occur before key_col in the index. In this
case, MySQL does a single key lookup for each MIN() or MAX() expression and replaces it with a constant. If all expressions are
replaced with constants, the query returns at once. For example:

SELECT MIN(key_part2),MAX(key_part2)
FROM tbl_name WHERE key_part1=10;

• To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable key (for example, ORDER BY
key_part1, key_part2). If all key parts are followed by DESC, the key is read in reverse order. See Section 7.2.11, “ORDER
BY Optimization”.

• In some cases, a query can be optimized to retrieve values without consulting the data rows. If a query uses only columns from a ta-
ble that are numeric and that form a leftmost prefix for some key, the selected values may be retrieved from the index tree for great-
er speed:

SELECT key_part3 FROM tbl_name
WHERE key_part1=1

Suppose that you issue the following SELECT statement:

mysql> SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly. If separate single-column indexes
exist on col1 and col2, the optimizer will attempt to use the Index Merge optimization (see Section 7.2.6, “Index Merge Optimiza-
tion”), or attempt to find the most restrictive index by deciding which index finds fewer rows and using that index to fetch the rows.

If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer to find rows. For example, if you
have a three-column index on (col1, col2, col3), you have indexed search capabilities on (col1), (col1, col2), and
(col1, col2, col3).

MySQL cannot use an index if the columns do not form a leftmost prefix of the index. Suppose that you have the SELECT statements
shown here:

SELECT * FROM tbl_name WHERE col1=val1;
SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1, col2, col3), only the first two queries use the index. The third and fourth queries do involve in-
dexed columns, but (col2) and (col2, col3) are not leftmost prefixes of (col1, col2, col3).

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or BETWEEN operators. The index also
can be used for LIKE comparisons if the argument to LIKE is a constant string that does not start with a wildcard character. For ex-
ample, the following SELECT statements use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';

Optimization

558



In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are considered. In the second statement, only rows
with 'Pat' <= key_col < 'Pau' are considered.

The following SELECT statements do not use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the LIKE value is not a constant.

If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the Turbo Boyer-Moore algorithm to
initialize the pattern for the string and then uses this pattern to perform the search more quickly.

A search using col_name IS NULL employs indexes if col_name is indexed.

Any index that does not span all AND levels in the WHERE clause is not used to optimize the query. In other words, to be able to use an
index, a prefix of the index must be used in every AND group.

The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3
/* index = 1 OR index = 2 */

... WHERE index=1 OR A=10 AND index=2
/* optimized like "index_part1='hello'" */

... WHERE index_part1='hello' AND index_part3=5
/* Can use index on index1 but not on index2 or index3 */

... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;

These WHERE clauses do not use indexes:

/* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2

/* Index is not used in both parts of the WHERE clause */
... WHERE index=1 OR A=10

/* No index spans all rows */
... WHERE index_part1=1 OR index_part2=10

Sometimes MySQL does not use an index, even if one is available. One circumstance under which this occurs is when the optimizer es-
timates that using the index would require MySQL to access a very large percentage of the rows in the table. (In this case, a table scan is
likely to be much faster because it requires fewer seeks.) However, if such a query uses LIMIT to retrieve only some of the rows,
MySQL uses an index anyway, because it can much more quickly find the few rows to return in the result.

Hash indexes have somewhat different characteristics from those just discussed:

• They are used only for equality comparisons that use the = or <=> operators (but are very fast). They are not used for comparison
operators such as < that find a range of values.

• The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index cannot be used to search for the next
entry in order.)

• MySQL cannot determine approximately how many rows there are between two values (this is used by the range optimizer to decide
which index to use). This may affect some queries if you change a MyISAM table to a hash-indexed MEMORY table.

• Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key can be used to find rows.)

MySQL Enterprise
Often, it is not possible to predict exactly what indexes will be required or will be most efficient — actual table
usage is the best indicator. The MySQL Enterprise Monitor provides expert advice on this topic. For more in-
formation see http://www.mysql.com/products/enterprise/advisors.html.

7.4.6. The MyISAM Key Cache
To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database management systems. It employs a
cache mechanism to keep the most frequently accessed table blocks in memory:

Optimization

559

http://www.mysql.com/products/enterprise/advisors.html


• For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure contains a number of block buf-
fers where the most-used index blocks are placed.

• For data blocks, MySQL uses no special cache. Instead it relies on the native operating system filesystem cache.

This section first describes the basic operation of the MyISAM key cache. Then it discusses features that improve key cache perform-
ance and that enable you to better control cache operation:

• Multiple threads can access the cache concurrently.

• You can set up multiple key caches and assign table indexes to specific caches.

To control the size of the key cache, use the key_buffer_size system variable. If this variable is set equal to zero, no key cache is
used. The key cache also is not used if the key_buffer_size value is too small to allocate the minimal number of block buffers (8).

MySQL Enterprise
For expert advice on identifying the optimum size for key_buffer_size, subscribe to the MySQL Enterprise
Monitor. See http://www.mysql.com/products/enterprise/advisors.html.

When the key cache is not operational, index files are accessed using only the native filesystem buffering provided by the operating sys-
tem. (In other words, table index blocks are accessed using the same strategy as that employed for table data blocks.)

An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an index block is equal to the size of nodes
of the index B-tree. (Indexes are represented on disk using a B-tree data structure. Nodes at the bottom of the tree are leaf nodes. Nodes
above the leaf nodes are non-leaf nodes.)

All block buffers in a key cache structure are the same size. This size can be equal to, greater than, or less than the size of a table index
block. Usually one these two values is a multiple of the other.

When data from any table index block must be accessed, the server first checks whether it is available in some block buffer of the key
cache. If it is, the server accesses data in the key cache rather than on disk. That is, it reads from the cache or writes into it rather than
reading from or writing to disk. Otherwise, the server chooses a cache block buffer containing a different table index block (or blocks)
and replaces the data there by a copy of required table index block. As soon as the new index block is in the cache, the index data can be
accessed.

If it happens that a block selected for replacement has been modified, the block is considered “dirty.” In this case, prior to being re-
placed, its contents are flushed to the table index from which it came.

Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for replacement, it selects the least recently
used index block. To make this choice easier, the key cache module maintains a special queue (LRU chain) of all used blocks. When a
block is accessed, it is placed at the end of the queue. When blocks need to be replaced, blocks at the beginning of the queue are the
least recently used and become the first candidates for eviction.

7.4.6.1. Shared Key Cache Access

Threads can access key cache buffers simultaneously, subject to the following conditions:

• A buffer that is not being updated can be accessed by multiple threads.

• A buffer that is being updated causes threads that need to use it to wait until the update is complete.

• Multiple threads can initiate requests that result in cache block replacements, as long as they do not interfere with each other (that is,
as long as they need different index blocks, and thus cause different cache blocks to be replaced).

Shared access to the key cache enables the server to improve throughput significantly.

7.4.6.2. Multiple Key Caches

Shared access to the key cache improves performance but does not eliminate contention among threads entirely. They still compete for
control structures that manage access to the key cache buffers. To reduce key cache access contention further, MySQL also provides

Optimization

560

http://www.mysql.com/products/enterprise/advisors.html


multiple key caches. This feature enables you to assign different table indexes to different key caches.

Where there are multiple key caches, the server must know which cache to use when processing queries for a given MyISAM table. By
default, all MyISAM table indexes are cached in the default key cache. To assign table indexes to a specific key cache, use the CACHE
INDEX statement (see Section 12.5.5.1, “CACHE INDEX Syntax”). For example, the following statement assigns indexes from the
tables t1, t2, and t3 to the key cache named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
| test.t1 | assign_to_keycache | status | OK |
| test.t2 | assign_to_keycache | status | OK |
| test.t3 | assign_to_keycache | status | OK |
+---------+--------------------+----------+----------+

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET GLOBAL parameter setting state-
ment or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

To destroy a key cache, set its size to zero:

mysql> SET GLOBAL keycache1.key_buffer_size=0;

Note that you cannot destroy the default key cache. Any attempt to do this will be ignored:

mysql> SET GLOBAL key_buffer_size = 0;

mysql> SHOW VARIABLES LIKE 'key_buffer_size';
+-----------------+---------+
| Variable_name | Value |
+-----------------+---------+
| key_buffer_size | 8384512 |
+-----------------+---------+

Key cache variables are structured system variables that have a name and components. For keycache1.key_buffer_size,
keycache1 is the cache variable name and key_buffer_size is the cache component. See Section 5.1.4.1, “Structured System
Variables”, for a description of the syntax used for referring to structured key cache system variables.

By default, table indexes are assigned to the main (default) key cache created at the server startup. When a key cache is destroyed, all
indexes assigned to it are reassigned to the default key cache.

For a busy server, we recommend a strategy that uses three key caches:

• A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that are heavily used for searches
but that are not updated.

• A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for medium-sized, intensively modi-
fied tables, such as temporary tables.

• A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache, to be used by default for all
other tables.

One reason the use of three key caches is beneficial is that access to one key cache structure does not block access to the others. State-
ments that access tables assigned to one cache do not compete with statements that access tables assigned to another cache. Performance
gains occur for other reasons as well:

• The hot cache is used only for retrieval queries, so its contents are never modified. Consequently, whenever an index block needs to
be pulled in from disk, the contents of the cache block chosen for replacement need not be flushed first.

• For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a high probability that the index
blocks corresponding to non-leaf nodes of the index B-tree remain in the cache.

• An update operation most frequently executed for temporary tables is performed much faster when the updated node is in the cache

Optimization

561



and need not be read in from disk first. If the size of the indexes of the temporary tables are comparable with the size of cold key
cache, the probability is very high that the updated node is in the cache.

CACHE INDEX sets up an association between a table and a key cache, but the association is lost each time the server restarts. If you
want the association to take effect each time the server starts, one way to accomplish this is to use an option file: Include variable set-
tings that configure your key caches, and an init-file option that names a file containing CACHE INDEX statements to be ex-
ecuted. For example:

key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G
init_file=/path/to/data-directory/mysqld_init.sql

MySQL Enterprise
For advice on how best to configure your my.cnf/my.ini option file subscribe to MySQL Enterprise Monitor.
Recommendations are based on actual table usage. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

The statements in mysqld_init.sql are executed each time the server starts. The file should contain one SQL statement per line.
The following example assigns several tables each to hot_cache and cold_cache:

CACHE INDEX db1.t1, db1.t2, db2.t3 IN hot_cache
CACHE INDEX db1.t4, db2.t5, db2.t6 IN cold_cache

7.4.6.3. Midpoint Insertion Strategy

By default, the key cache management system uses the LRU strategy for choosing key cache blocks to be evicted, but it also supports a
more sophisticated method called the midpoint insertion strategy.

When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot sub-chain and a warm sub-chain. The divi-
sion point between two parts is not fixed, but the key cache management system takes care that the warm part is not “too short,” always
containing at least key_cache_division_limit percent of the key cache blocks. key_cache_division_limit is a com-
ponent of structured key cache variables, so its value is a parameter that can be set per cache.

When an index block is read from a table into the key cache, it is placed at the end of the warm sub-chain. After a certain number of hits
(accesses of the block), it is promoted to the hot sub-chain. At present, the number of hits required to promote a block (3) is the same for
all index blocks.

A block promoted into the hot sub-chain is placed at the end of the chain. The block then circulates within this sub-chain. If the block
stays at the beginning of the sub-chain for a long enough time, it is demoted to the warm chain. This time is determined by the value of
the key_cache_age_threshold component of the key cache.

The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning of the hot sub-chain not accessed
within the last N × key_cache_age_threshold / 100 hits is to be moved to the beginning of the warm sub-chain. It then be-
comes the first candidate for eviction, because blocks for replacement always are taken from the beginning of the warm sub-chain.

The midpoint insertion strategy allows you to keep more-valued blocks always in the cache. If you prefer to use the plain LRU strategy,
leave the key_cache_division_limit value set to its default of 100.

The midpoint insertion strategy helps to improve performance when execution of a query that requires an index scan effectively pushes
out of the cache all the index blocks corresponding to valuable high-level B-tree nodes. To avoid this, you must use a midpoint insertion
strategy with the key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes are preserved in the
hot sub-chain during an index scan operation as well.

7.4.6.4. Index Preloading

If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks corresponding to its non-leaf nodes, it
makes sense to preload the key cache with index blocks before starting to use it. Preloading allows you to put the table index blocks into
a key cache buffer in the most efficient way: by reading the index blocks from disk sequentially.

Without preloading, the blocks are still placed into the key cache as needed by queries. Although the blocks will stay in the cache, be-
cause there are enough buffers for all of them, they are fetched from disk in random order, and not sequentially.

To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example, the following statement preloads

Optimization

562

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

The IGNORE LEAVES modifier causes only blocks for the non-leaf nodes of the index to be preloaded. Thus, the statement shown pre-
loads all index blocks from t1, but only blocks for the non-leaf nodes from t2.

If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places index blocks into that cache. Other-
wise, the index is loaded into the default key cache.

7.4.6.5. Key Cache Block Size

It is possible to specify the size of the block buffers for an individual key cache using the key_cache_block_size variable. This
permits tuning of the performance of I/O operations for index files.

The best performance for I/O operations is achieved when the size of read buffers is equal to the size of the native operating system I/O
buffers. But setting the size of key nodes equal to the size of the I/O buffer does not always ensure the best overall performance. When
reading the big leaf nodes, the server pulls in a lot of unnecessary data, effectively preventing reading other leaf nodes.

Currently, you cannot control the size of the index blocks in a table. This size is set by the server when the .MYI index file is created,
depending on the size of the keys in the indexes present in the table definition. In most cases, it is set equal to the I/O buffer size.

7.4.6.6. Restructuring a Key Cache

A key cache can be restructured at any time by updating its parameter values. For example:

mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;

If you assign to either the key_buffer_size or key_cache_block_size key cache component a value that differs from the
component's current value, the server destroys the cache's old structure and creates a new one based on the new values. If the cache con-
tains any dirty blocks, the server saves them to disk before destroying and re-creating the cache. Restructuring does not occur if you
change other key cache parameters.

When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk. After that, the cache contents become
unavailable. However, restructuring does not block queries that need to use indexes assigned to the cache. Instead, the server directly
accesses the table indexes using native filesystem caching. Filesystem caching is not as efficient as using a key cache, so although quer-
ies execute, a slowdown can be anticipated. After the cache has been restructured, it becomes available again for caching indexes as-
signed to it, and the use of filesystem caching for the indexes ceases.

7.4.7. MyISAM Index Statistics Collection
Storage engines collect statistics about tables for use by the optimizer. Table statistics are based on value groups, where a value group is
a set of rows with the same key prefix value. For optimizer purposes, an important statistic is the average value group size.

MySQL uses the average value group size in the following ways:

• To estimate how may rows must be read for each ref access

• To estimate how many row a partial join will produce; that is, the number of rows that an operation of this form will produce:

(...) JOIN tbl_name ON tbl_name.key = expr

As the average value group size for an index increases, the index is less useful for those two purposes because the average number of
rows per lookup increases: For the index to be good for optimization purposes, it is best that each index value target a small number of
rows in the table. When a given index value yields a large number of rows, the index is less useful and MySQL is less likely to use it.

The average value group size is related to table cardinality, which is the number of value groups. The SHOW INDEX statement displays
a cardinality value based on N/S, where N is the number of rows in the table and S is the average value group size. That ratio yields an

Optimization

563



approximate number of value groups in the table.

For a join based on the <=> comparison operator, NULL is not treated differently from any other value: NULL <=> NULL, just as N
<=> N for any other N.

However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = expr2 is not true when expr1 or
expr2 (or both) are NULL. This affects ref accesses for comparisons of the form tbl_name.key = expr: MySQL will not ac-
cess the table if the current value of expr is NULL, because the comparison cannot be true.

For = comparisons, it does not matter how many NULL values are in the table. For optimization purposes, the relevant value is the aver-
age size of the non-NULL value groups. However, MySQL does not currently allow that average size to be collected or used.

For MyISAM tables, you have some control over collection of table statistics by means of the myisam_stats_method system vari-
able. This variable has two possible values, which differ as follows:

• When myisam_stats_method is nulls_equal, all NULL values are treated as identical (that is, they all form a single value
group).

If the NULL value group size is much higher than the average non-NULL value group size, this method skews the average value
group size upward. This makes index appear to the optimizer to be less useful than it really is for joins that look for non-NULL val-
ues. Consequently, the nulls_equal method may cause the optimizer not to use the index for ref accesses when it should.

• When myisam_stats_method is nulls_unequal, NULL values are not considered the same. Instead, each NULL value
forms a separate value group of size 1.

If you have many NULL values, this method skews the average value group size downward. If the average non-NULL value group
size is large, counting NULL values each as a group of size 1 causes the optimizer to overestimate the value of the index for joins
that look for non-NULL values. Consequently, the nulls_unequal method may cause the optimizer to use this index for ref
lookups when other methods may be better.

If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons and one NULL is equal to another.
In this case, nulls_equal is the appropriate statistics method.

The myisam_stats_method system variable has global and session values. Setting the global value affects MyISAM statistics col-
lection for all MyISAM tables. Setting the session value affects statistics collection only for the current client connection. This means
that you can force a table's statistics to be regenerated with a given method without affecting other clients by setting the session value of
myisam_stats_method.

To regenerate table statistics, you can use any of the following methods:

• Set myisam_stats_method, and then issue a CHECK TABLE statement

• Execute myisamchk --stats_method=method_name --analyze

• Change the table to cause its statistics to go out of date (for example, insert a row and then delete it), and then set myis-
am_stats_method and issue an ANALYZE TABLE statement

Some caveats regarding the use of myisam_stats_method:

• You can force table statistics to be collected explicitly, as just described. However, MySQL may also collect statistics automatically.
For example, if during the course of executing statements for a table, some of those statements modify the table, MySQL may col-
lect statistics. (This may occur for bulk inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the
statistics are collected using whatever value myisam_stats_method has at the time. Thus, if you collect statistics using one
method, but myisam_stats_method is set to the other method when a table's statistics are collected automatically later, the oth-
er method will be used.

• There is no way to tell which method was used to generate statistics for a given MyISAM table.

• myisam_stats_method applies only to MyISAM tables. Other storage engines have only one method for collecting table statist-
ics. Usually it is closer to the nulls_equal method.

Optimization

564



7.4.8. How MySQL Opens and Closes Tables
When you execute a mysqladmin status command, you should see something like this:

Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12

The Open tables value of 12 can be somewhat puzzling if you have only six tables.

MySQL is multi-threaded, so there may be many clients issuing queries for a given table simultaneously. To minimize the problem with
multiple client threads having different states on the same table, the table is opened independently by each concurrent thread. This uses
additional memory but normally increases performance. With MyISAM tables, one extra file descriptor is required for the data file for
each client that has the table open. (By contrast, the index file descriptor is shared between all threads.)

Note

table_open_cache was previously known as table_cache in MySQL 5.1.2 and earlier.

The table_open_cache, max_connections, and max_tmp_tables system variables affect the maximum number of files the
server keeps open. If you increase one or more of these values, you may run up against a limit imposed by your operating system on the
per-process number of open file descriptors. Many operating systems allow you to increase the open-files limit, although the method
varies widely from system to system. Consult your operating system documentation to determine whether it is possible to increase the
limit and how to do so.

table_open_cache is related to max_connections. For example, for 200 concurrent running connections, you should have a
table cache size of at least 200 × N, where N is the maximum number of tables per join in any of the queries which you execute. You
must also reserve some extra file descriptors for temporary tables and files.

Make sure that your operating system can handle the number of open file descriptors implied by the table_open_cache setting. If
table_open_cache is set too high, MySQL may run out of file descriptors and refuse connections, fail to perform queries, and be
very unreliable. You also have to take into account that the MyISAM storage engine needs two file descriptors for each unique open ta-
ble. You can increase the number of file descriptors available to MySQL using the --open-files-limit startup option to
mysqld. See Section B.1.2.18, “'FILE' NOT FOUND and Similar Errors”.

The cache of open tables is kept at a level of table_open_cache entries. The default value is 64; this can be changed with the -
-table_open_cache option to mysqld. Note that MySQL may temporarily open more tables than this to execute queries.

MySQL Enterprise
Performance may suffer if table_cache is set too low. For expert advice on the optimum value for this vari-
able, subscribe to the MySQL Enterprise Monitor. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

MySQL closes an unused table and removes it from the table cache under the following circumstances:

• When the cache is full and a thread tries to open a table that is not in the cache.

• When the cache contains more than table_open_cache entries and a table in the cache is no longer being used by any threads.

• When a table flushing operation occurs. This happens when someone issues a FLUSH TABLES statement or executes a mysqlad-
min flush-tables or mysqladmin refresh command.

When the table cache fills up, the server uses the following procedure to locate a cache entry to use:

• Tables that are not currently in use are released, beginning with the table least recently used.

• If a new table needs to be opened, but the cache is full and no tables can be released, the cache is temporarily extended as necessary.

When the cache is in a temporarily extended state and a table goes from a used to unused state, the table is closed and released from the
cache.

A table is opened for each concurrent access. This means the table needs to be opened twice if two threads access the same table or if a
thread accesses the table twice in the same query (for example, by joining the table to itself). Each concurrent open requires an entry in

Optimization

565

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


the table cache. The first open of any MyISAM table takes two file descriptors: one for the data file and one for the index file. Each addi-
tional use of the table takes only one file descriptor for the data file. The index file descriptor is shared among all threads.

If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table object is allocated for the thread. This ta-
ble object is not shared by other threads and is not closed until the thread calls HANDLER tbl_name CLOSE or the thread terminates.
When this happens, the table is put back in the table cache (if the cache is not full). See Section 12.2.3, “HANDLER Syntax”.

You can determine whether your table cache is too small by checking the mysqld status variable Opened_tables:

mysql> SHOW GLOBAL STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 2741 |
+---------------+-------+

If the value is very large, even when you have not issued many FLUSH TABLES statements, you should increase the table cache size.
See Section 5.1.3, “System Variables”, and Section 5.1.5, “Status Variables”.

7.4.9. Drawbacks to Creating Many Tables in the Same Database
If you have many MyISAM tables in the same database directory, open, close, and create operations are slow. If you execute SELECT
statements on many different tables, there is a little overhead when the table cache is full, because for every table that has to be opened,
another must be closed. You can reduce this overhead by increasing the number of entries allowed in the table cache.

7.5. Optimizing the MySQL Server

7.5.1. System Factors and Startup Parameter Tuning
We start with system-level factors, because some of these decisions must be made very early to achieve large performance gains. In oth-
er cases, a quick look at this section may suffice. However, it is always nice to have a sense of how much can be gained by changing
factors that apply at this level.

The operating system to use is very important. To get the best use of multiple-CPU machines, you should use Solaris (because its
threads implementation works well) or Linux (because the 2.4 and later kernels have good SMP support). Note that older Linux kernels
have a 2GB filesize limit by default. If you have such a kernel and a need for files larger than 2GB, you should get the Large File Sup-
port (LFS) patch for the ext2 filesystem. Other filesystems such as ReiserFS and XFS do not have this 2GB limitation.

Before using MySQL in production, we advise you to test it on your intended platform.

Other tips:

• If you have enough RAM, you could remove all swap devices. Some operating systems use a swap device in some contexts even if
you have free memory.

• Avoid external locking. Since MySQL 4.0, the default has been for external locking to be disabled on all systems. The -
-external-locking and --skip-external-locking options explicitly enable and disable external locking.

Note that disabling external locking does not affect MySQL's functionality as long as you run only one server. Just remember to
take down the server (or lock and flush the relevant tables) before you run myisamchk. On some systems it is mandatory to disable
external locking because it does not work, anyway.

The only case in which you cannot disable external locking is when you run multiple MySQL servers (not clients) on the same data,
or if you run myisamchk to check (not repair) a table without telling the server to flush and lock the tables first. Note that using
multiple MySQL servers to access the same data concurrently is generally not recommended, except when using MySQL Cluster.

The LOCK TABLES and UNLOCK TABLES statements use internal locking, so you can use them even if external locking is dis-
abled.

7.5.2. Tuning Server Parameters
You can determine the default buffer sizes used by the mysqld server using this command:

Optimization

566



shell> mysqld --verbose --help

This command produces a list of all mysqld options and configurable system variables. The output includes the default variable values
and looks something like this:

help TRUE
abort-slave-event-count 0
allow-suspicious-udfs FALSE
auto-increment-increment 1
auto-increment-offset 1
automatic-sp-privileges TRUE
basedir /home/mysql/
bind-address (No default value)
character-set-client-handshake TRUE
character-set-server latin1
character-sets-dir /home/mysql/share/mysql/charsets/
chroot (No default value)
collation-server latin1_swedish_ci
completion-type 0
concurrent-insert 1
console FALSE
datadir /home/mysql/var/
default-character-set latin1
default-collation latin1_swedish_ci
default-time-zone (No default value)
disconnect-slave-event-count 0
enable-locking FALSE
enable-pstack FALSE
engine-condition-pushdown FALSE
external-locking FALSE
gdb FALSE
large-pages FALSE
init-connect (No default value)
init-file (No default value)
init-slave (No default value)
innodb TRUE
innodb_checksums TRUE
innodb_data_home_dir (No default value)
innodb_doublewrite TRUE
innodb_fast_shutdown 1
innodb_file_per_table FALSE
innodb_flush_log_at_trx_commit 1
innodb_flush_method (No default value)
innodb_locks_unsafe_for_binlog FALSE
innodb_log_arch_dir (No default value)
innodb_log_group_home_dir (No default value)
innodb_max_dirty_pages_pct 90
innodb_max_purge_lag 0
innodb_status_file FALSE
innodb_table_locks TRUE
innodb_support_xa TRUE
isam FALSE
language /home/mysql/share/mysql/english
local-infile TRUE
log /home/mysql/var/master1.log
log-bin /home/mysql/var/master1
log-bin-index (No default value)
log-bin-trust-routine-creators FALSE
log-error /home/mysql/var/master1.err
log-isam myisam.log
log-queries-not-using-indexes FALSE
log-short-format FALSE
log-slave-updates FALSE
log-slow-admin-statements FALSE
log-slow-queries (No default value)
log-tc tc.log
log-tc-size 24576
log-update (No default value)
log-warnings 1
low-priority-updates FALSE
master-connect-retry 60
master-host (No default value)
master-info-file master.info
master-password (No default value)
master-port 3306
master-retry-count 86400
master-ssl FALSE
master-ssl-ca (No default value)
master-ssl-capath (No default value)
master-ssl-cert (No default value)
master-ssl-cipher (No default value)
master-ssl-key (No default value)
master-user test
max-binlog-dump-events 0
memlock FALSE
myisam-recover OFF
ndbcluster FALSE

Optimization

567



ndb-connectstring (No default value)
ndb-mgmd-host (No default value)
ndb-nodeid 0
ndb-autoincrement-prefetch-sz 32
ndb-distibution KEYHASH
ndb-force-send TRUE
ndb_force_send TRUE
ndb-use-exact-count TRUE
ndb_use_exact_count TRUE
ndb-shm FALSE
ndb-optimized-node-selection TRUE
ndb-cache-check-time 0
ndb-index-stat-enable TRUE
ndb-index-stat-cache-entries 32
ndb-index-stat-update-freq 20
new FALSE
old-alter-table FALSE
old-passwords FALSE
old-style-user-limits FALSE
pid-file /home/mysql/var/hostname.pid1
port 3306
relay-log (No default value)
relay-log-index (No default value)
relay-log-info-file relay-log.info
replicate-same-server-id FALSE
report-host (No default value)
report-password (No default value)
report-port 3306
report-user (No default value)
rpl-recovery-rank 0
safe-user-create FALSE
secure-auth FALSE
server-id 1
show-slave-auth-info FALSE
skip-grant-tables FALSE
skip-slave-start FALSE
slave-load-tmpdir /tmp/
socket /tmp/mysql.sock
sporadic-binlog-dump-fail FALSE
sql-mode OFF
symbolic-links TRUE
tc-heuristic-recover (No default value)
temp-pool TRUE
timed_mutexes FALSE
tmpdir (No default value)
use-symbolic-links TRUE
verbose TRUE
warnings 1
back_log 50
binlog_cache_size 32768
bulk_insert_buffer_size 8388608
connect_timeout 5
date_format (No default value)
datetime_format (No default value)
default_week_format 0
delayed_insert_limit 100
delayed_insert_timeout 300
delayed_queue_size 1000
expire_logs_days 0
flush_time 0
ft_max_word_len 84
ft_min_word_len 4
ft_query_expansion_limit 20
ft_stopword_file (No default value)
group_concat_max_len 1024
innodb_additional_mem_pool_size 1048576
innodb_autoextend_increment 8
innodb_buffer_pool_awe_mem_mb 0
innodb_buffer_pool_size 8388608
innodb_concurrency_tickets 500
innodb_file_io_threads 4
innodb_force_recovery 0
innodb_lock_wait_timeout 50
innodb_log_buffer_size 1048576
innodb_log_file_size 5242880
innodb_log_files_in_group 2
innodb_mirrored_log_groups 1
innodb_open_files 300
innodb_sync_spin_loops 20
innodb_thread_concurrency 20
innodb_commit_concurrency 0
innodb_thread_sleep_delay 10000
interactive_timeout 28800
join_buffer_size 131072
key_buffer_size 8388600
key_cache_age_threshold 300
key_cache_block_size 1024
key_cache_division_limit 100
long_query_time 10
lower_case_table_names 0

Optimization

568



max_allowed_packet 1048576
max_binlog_cache_size 4294967295
max_binlog_size 1073741824
max_connect_errors 10
max_connections 100
max_delayed_threads 20
max_error_count 64
max_heap_table_size 16777216
max_join_size 4294967295
max_length_for_sort_data 1024
max_relay_log_size 0
max_seeks_for_key 4294967295
max_sort_length 1024
max_tmp_tables 32
max_user_connections 0
max_write_lock_count 4294967295
multi_range_count 256
myisam_block_size 1024
myisam_data_pointer_size 6
myisam_max_sort_file_size 2147483647
myisam_repair_threads 1
myisam_sort_buffer_size 8388608
myisam_stats_method nulls_unequal
net_buffer_length 16384
net_read_timeout 30
net_retry_count 10
net_write_timeout 60
open_files_limit 0
optimizer_prune_level 1
optimizer_search_depth 62
preload_buffer_size 32768
query_alloc_block_size 8192
query_cache_limit 1048576
query_cache_min_res_unit 4096
query_cache_size 0
query_cache_type 1
query_cache_wlock_invalidate FALSE
query_prealloc_size 8192
range_alloc_block_size 2048
read_buffer_size 131072
read_only FALSE
read_rnd_buffer_size 262144
div_precision_increment 4
record_buffer 131072
relay_log_purge TRUE
relay_log_space_limit 0
slave_compressed_protocol FALSE
slave_net_timeout 3600
slave_transaction_retries 10
slow_launch_time 2
sort_buffer_size 2097144
sync-binlog 0
sync-frm TRUE
sync-replication 0
sync-replication-slave-id 0
sync-replication-timeout 10
table_open_cache 64
table_lock_wait_timeout 50
thread_cache_size 0
thread_concurrency 10
thread_stack 196608
time_format (No default value)
tmp_table_size 33554432
transaction_alloc_block_size 8192
transaction_prealloc_size 4096
updatable_views_with_limit 1
wait_timeout 28800

For a mysqld server that is currently running, you can see the current values of its system variables by connecting to it and issuing this
statement:

mysql> SHOW VARIABLES;

You can also see some statistical and status indicators for a running server by issuing this statement:

mysql> SHOW STATUS;

System variable and status information also can be obtained using mysqladmin:

shell> mysqladmin variables
shell> mysqladmin extended-status

Optimization

569



For a full description of all system and status variables, see Section 5.1.3, “System Variables”, and Section 5.1.5, “Status Variables”.

MySQL uses algorithms that are very scalable, so you can usually run with very little memory. However, normally you get better per-
formance by giving MySQL more memory.

When tuning a MySQL server, the two most important variables to configure are key_buffer_size and table_open_cache.
You should first feel confident that you have these set appropriately before trying to change any other variables.

The following examples indicate some typical variable values for different runtime configurations.

• If you have at least 256MB of memory and many tables and want maximum performance with a moderate number of clients, you
should use something like this:

shell> mysqld_safe --key_buffer_size=64M --table_open_cache=256 \
--sort_buffer_size=4M --read_buffer_size=1M &

• If you have only 128MB of memory and only a few tables, but you still do a lot of sorting, you can use something like this:

shell> mysqld_safe --key_buffer_size=16M --sort_buffer_size=1M

If there are very many simultaneous connections, swapping problems may occur unless mysqld has been configured to use very
little memory for each connection. mysqld performs better if you have enough memory for all connections.

• With little memory and lots of connections, use something like this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=100K \
--read_buffer_size=100K &

Or even this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=16K \
--table_open_cache=32 --read_buffer_size=8K \
--net_buffer_length=1K &

If you are performing GROUP BY or ORDER BY operations on tables that are much larger than your available memory, you should in-
crease the value of read_rnd_buffer_size to speed up the reading of rows following sorting operations.

You can make use of the example option files included with your MySQL distribution; see Section 4.2.2.2.2, “Preconfigured Option
Files”.

If you specify an option on the command line for mysqld or mysqld_safe, it remains in effect only for that invocation of the server.
To use the option every time the server runs, put it in an option file.

To see the effects of a parameter change, do something like this:

shell> mysqld --key_buffer_size=32M --verbose --help

The variable values are listed near the end of the output. Make sure that the --verbose and --help options are last. Otherwise, the
effect of any options listed after them on the command line are not reflected in the output.

For information on tuning the InnoDB storage engine, see Section 13.5.11, “InnoDB Performance Tuning Tips”.

MySQL Enterprise
For expert advice on tuning system parameters subscribe to the MySQL Enterprise Monitor. For more informa-
tion see http://www.mysql.com/products/enterprise/advisors.html.

7.5.3. Controlling Query Optimizer Performance
The task of the query optimizer is to find an optimal plan for executing an SQL query. Because the difference in performance between
“good” and “bad” plans can be orders of magnitude (that is, seconds versus hours or even days), most query optimizers, including that
of MySQL, perform a more or less exhaustive search for an optimal plan among all possible query evaluation plans. For join queries,
the number of possible plans investigated by the MySQL optimizer grows exponentially with the number of tables referenced in a

Optimization

570

http://www.mysql.com/products/enterprise/advisors.html


query. For small numbers of tables (typically less than 7–10) this is not a problem. However, when larger queries are submitted, the
time spent in query optimization may easily become the major bottleneck in the server's performance.

A more flexible method for query optimization allows the user to control how exhaustive the optimizer is in its search for an optimal
query evaluation plan. The general idea is that the fewer plans that are investigated by the optimizer, the less time it spends in compiling
a query. On the other hand, because the optimizer skips some plans, it may miss finding an optimal plan.

The behavior of the optimizer with respect to the number of plans it evaluates can be controlled via two system variables:

• The optimizer_prune_level variable tells the optimizer to skip certain plans based on estimates of the number of rows ac-
cessed for each table. Our experience shows that this kind of “educated guess” rarely misses optimal plans, and may dramatically re-
duce query compilation times. That is why this option is on (optimizer_prune_level=1) by default. However, if you believe
that the optimizer missed a better query plan, this option can be switched off (optimizer_prune_level=0) with the risk that
query compilation may take much longer. Note that, even with the use of this heuristic, the optimizer still explores a roughly expo-
nential number of plans.

• The optimizer_search_depth variable tells how far into the “future” of each incomplete plan the optimizer should look to
evaluate whether it should be expanded further. Smaller values of optimizer_search_depth may result in orders of mag-
nitude smaller query compilation times. For example, queries with 12, 13, or more tables may easily require hours and even days to
compile if optimizer_search_depth is close to the number of tables in the query. At the same time, if compiled with op-
timizer_search_depth equal to 3 or 4, the optimizer may compile in less than a minute for the same query. If you are unsure
of what a reasonable value is for optimizer_search_depth, this variable can be set to 0 to tell the optimizer to determine the
value automatically.

7.5.4. The MySQL Query Cache
The query cache stores the text of a SELECT statement together with the corresponding result that was sent to the client. If an identical
statement is received later, the server retrieves the results from the query cache rather than parsing and executing the statement again.

The query cache is extremely useful in an environment where you have tables that do not change very often and for which the server re-
ceives many identical queries. This is a typical situation for many Web servers that generate many dynamic pages based on database
content.

Note

The query cache does not return stale data. When tables are modified, any relevant entries in the query cache are flushed.

The query cache does not work in an environment where you have multiple mysqld servers updating the same MyISAM
tables.

Note

The query cache is not used for server-side prepared statements before MySQL 5.1.17. If you are using server-side pre-
pared statements, consider that these statements will not be satisfied by the query cache. As of 5.1.17, the query cache is
used under the conditions described in Section 7.5.4.1, “How the Query Cache Operates”.

Some performance data for the query cache follows. These results were generated by running the MySQL benchmark suite on a Linux
Alpha 2×500MHz system with 2GB RAM and a 64MB query cache.

• If all the queries you are performing are simple (such as selecting a row from a table with one row), but still differ so that the queries
cannot be cached, the overhead for having the query cache active is 13%. This could be regarded as the worst case scenario. In real
life, queries tend to be much more complicated, so the overhead normally is significantly lower.

• Searches for a single row in a single-row table are 238% faster with the query cache than without it. This can be regarded as close to
the minimum speedup to be expected for a query that is cached.

To disable the query cache at server startup, set the query_cache_size system variable to 0. By disabling the query cache code,
there is no noticeable overhead. If you build MySQL from source, query cache capabilities can be excluded from the server entirely by
invoking configure with the --without-query-cache option.

7.5.4.1. How the Query Cache Operates

Optimization

571



This section describes how the query cache works when it is operational. Section 7.5.4.3, “Query Cache Configuration”, describes how
to control whether it is operational.

Incoming queries are compared to those in the query cache before parsing, so the following two queries are regarded as different by the
query cache:

SELECT * FROM tbl_name
Select * from tbl_name

Queries must be exactly the same (byte for byte) to be seen as identical. In addition, query strings that are identical may be treated as
different for other reasons. Queries that use different databases, different protocol versions, or different default character sets are con-
sidered different queries and are cached separately.

The cache is not used for queries of the following types:

• Queries that are a subquery of an outer query

• Queries executed within the body of a stored function, trigger, or event

Before a query result is fetched from the query cache, MySQL checks that the user has SELECT privilege for all databases and tables
involved. If this is not the case, the cached result is not used.

If a query result is returned from query cache, the server increments the Qcache_hits status variable, not Com_select. See Sec-
tion 7.5.4.4, “Query Cache Status and Maintenance”.

If a table changes, all cached queries that use the table become invalid and are removed from the cache. This includes queries that use
MERGE tables that map to the changed table. A table can be changed by many types of statements, such as INSERT, UPDATE,
DELETE, TRUNCATE, ALTER TABLE, DROP TABLE, or DROP DATABASE.

The query cache also works within transactions when using InnoDB tables.

In MySQL 5.1, the results of a SELECT query on a view is cached.

The query cache works for SELECT SQL_CALC_FOUND_ROWS ... queries and stores a value that is returned by a following SE-
LECT FOUND_ROWS() query. FOUND_ROWS() returns the correct value even if the preceding query was fetched from the cache be-
cause the number of found rows is also stored in the cache. The SELECT FOUND_ROWS() query itself cannot be cached.

Before MySQL 5.1.17, prepared statements do not use the query cache. Beginning with 5.1.17, prepared statements use the query cache
under certain conditions, which differ depending on the preparation method:

• Statements that are issued via the binary protocol using mysql_stmt_prepare() and mysql_stmt_execute(). See Sec-
tion 26.2.4, “C API Prepared Statements”.

For a prepared statement executed via the binary protocol, comparison with statements in the query cache is based on the text of the
statement after expansion of ? parameter markers. The statement is compared only with other cached statements that were executed
via the binary protocol. That is, for query cache purposes, statements issued via the binary protocol are distinct from statements is-
sued via the text protocol.

• Statements that are issued via the text (non-binary) protocol using PREPARE and EXECUTE. See Section 12.7, “SQL Syntax for
Prepared Statements”. These are denoted SQL PS statements here.

Before MySQL 5.1.21, for a prepared statement executed via PREPARE and EXECUTE, it is not cached if it contains any ? para-
meter markers. In that case, the statement after parameter expansion contains references to user variables, which prevents caching,
even for non-prepared statements. If the statement contains no parameter markers, the statement is compared with statements in the
query cache that were executed via the text protocol (that is, it is compared with other SQL PS statements and non-prepared state-
ments). As of MySQL 5.1.21, this limitation is lifted and prepared statments that contain parameter markers can be cached because
expansion directly substitutes the user variable values.

A query cannot be cached if it contains any of the functions shown in the following table:

BENCHMARK() CONNECTION_ID() CONVERT_TZ()

Optimization

572



CURDATE() CURRENT_DATE() CURRENT_TIME()

CURRENT_TIMESTAMP() CURTIME() DATABASE()

ENCRYPT() with one parameter FOUND_ROWS() GET_LOCK()

LAST_INSERT_ID() LOAD_FILE() MASTER_POS_WAIT()

NOW() RAND() RELEASE_LOCK()

SLEEP() SYSDATE() UNIX_TIMESTAMP() with no parameters

USER()

A query also is not cached under these conditions:

• It refers to user-defined functions (UDFs) or stored functions.

• It refers to user variables or local stored routine variables.

• It refers to tables in the mysql or INFORMATION_SCHEMA system database.

• It is of any of the following forms:

SELECT ... IN SHARE MODE
SELECT ... FOR UPDATE
SELECT ... INTO OUTFILE ...
SELECT ... INTO DUMPFILE ...
SELECT * FROM ... WHERE autoincrement_col IS NULL

The last form is not cached because it is used as the ODBC workaround for obtaining the last insert ID value. See the MyODBC
section of Chapter 27, Connectors.

• It uses TEMPORARY tables.

• It does not use any tables.

• The user has a column-level privilege for any of the involved tables.

7.5.4.2. Query Cache SELECT Options

Two query cache-related options may be specified in SELECT statements:

• SQL_CACHE

The query result is cached if it is cacheable and the value of the query_cache_type system variable is ON or DEMAND.

• SQL_NO_CACHE

The query result is not cached.

Examples:

SELECT SQL_CACHE id, name FROM customer;
SELECT SQL_NO_CACHE id, name FROM customer;

7.5.4.3. Query Cache Configuration

The have_query_cache server system variable indicates whether the query cache is available:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

Optimization

573



When using a standard MySQL binary, this value is always YES, even if query caching is disabled.

Several other system variables control query cache operation. These can be set in an option file or on the command line when starting
mysqld. The query cache system variables all have names that begin with query_cache_. They are described briefly in Sec-
tion 5.1.3, “System Variables”, with additional configuration information given here.

To set the size of the query cache, set the query_cache_size system variable. Setting it to 0 disables the query cache. The default
size is 0, so the query cache is disabled by default.

MySQL Enterprise
For expert advice on configuring the query cache subscribe to the MySQL Enterprise Monitor. For more inform-
ation see http://www.mysql.com/products/enterprise/advisors.html.

Note

When using the Windows Configuration Wizard to install or configure MySQL, the default value for
query_cache_size will be configured automatically for you based on the different configuration types available.
When using the Windows Configuration Wizard, the query cache may be enabled (i.e. set to a non-zero value) due to the
selected configuration. The query cache is also controlled by the setting of the query_cache_type variable. You
should check the values of these variables as set in your my.ini file after configuration has taken place.

When you set query_cache_size to a non-zero value, keep in mind that the query cache needs a minimum size of about 40KB to
allocate its structures. (The exact size depends on system architecture.) If you set the value too small, you'll get a warning, as in this ex-
ample:

mysql> SET GLOBAL query_cache_size = 40000;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Warning
Code: 1282

Message: Query cache failed to set size 39936; »
new query cache size is 0

mysql> SET GLOBAL query_cache_size = 41984;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| query_cache_size | 41984 |
+------------------+-------+

For the query cache to actually be able to hold any query results, its size must be set larger:

mysql> SET GLOBAL query_cache_size = 1000000;
Query OK, 0 rows affected (0.04 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+--------+
| Variable_name | Value |
+------------------+--------+
| query_cache_size | 999424 |
+------------------+--------+
1 row in set (0.00 sec)

The query_cache_size is aligned to the nearest 1024 byte block. The value reported may therefore be different from the value that
you set.

If the query cache size is greater than 0, the query_cache_type variable influences how it works. This variable can be set to the
following values:

• A value of 0 or OFF prevents caching or retrieval of cached results.

• A value of 1 or ON allows caching except of those statements that begin with SELECT SQL_NO_CACHE.

• A value of 2 or DEMAND causes caching of only those statements that begin with SELECT SQL_CACHE.

Optimization

574

http://www.mysql.com/products/enterprise/advisors.html


Setting the GLOBAL query_cache_type value determines query cache behavior for all clients that connect after the change is
made. Individual clients can control cache behavior for their own connection by setting the SESSION query_cache_type value.
For example, a client can disable use of the query cache for its own queries like this:

mysql> SET SESSION query_cache_type = OFF;

To control the maximum size of individual query results that can be cached, set the query_cache_limit system variable. The de-
fault value is 1MB.

Note

You can set the maximum size that can be specified for the query cache during runtine with the SET statement by using
the --maximum-query_cache_size=32M option on the command line or in the configuration file.

When a query is to be cached, its result (the data sent to the client) is stored in the query cache during result retrieval. Therefore the data
usually is not handled in one big chunk. The query cache allocates blocks for storing this data on demand, so when one block is filled, a
new block is allocated. Because memory allocation operation is costly (timewise), the query cache allocates blocks with a minimum
size given by the query_cache_min_res_unit system variable. When a query is executed, the last result block is trimmed to the
actual data size so that unused memory is freed. Depending on the types of queries your server executes, you might find it helpful to
tune the value of query_cache_min_res_unit:

• The default value of query_cache_min_res_unit is 4KB. This should be adequate for most cases.

• If you have a lot of queries with small results, the default block size may lead to memory fragmentation, as indicated by a large
number of free blocks. Fragmentation can force the query cache to prune (delete) queries from the cache due to lack of memory. In
this case, you should decrease the value of query_cache_min_res_unit. The number of free blocks and queries removed due
to pruning are given by the values of the Qcache_free_blocks and Qcache_lowmem_prunes status variables.

• If most of your queries have large results (check the Qcache_total_blocks and Qcache_queries_in_cache status vari-
ables), you can increase performance by increasing query_cache_min_res_unit. However, be careful to not make it too
large (see the previous item).

MySQL Enterprise
If the query cache is under-utilized, performance will suffer. Advice on avoiding this problem is provided to sub-
scribers to the MySQL Enterprise Monitor. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

7.5.4.4. Query Cache Status and Maintenance

You can check whether the query cache is present in your MySQL server using the following statement:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

You can defragment the query cache to better utilize its memory with the FLUSH QUERY CACHE statement. The statement does not
remove any queries from the cache.

The RESET QUERY CACHE statement removes all query results from the query cache. The FLUSH TABLES statement also does this.

To monitor query cache performance, use SHOW STATUS to view the cache status variables:

mysql> SHOW STATUS LIKE 'Qcache%';
+-------------------------+--------+
| Variable_name | Value |
+-------------------------+--------+
| Qcache_free_blocks | 36 |
| Qcache_free_memory | 138488 |
| Qcache_hits | 79570 |
| Qcache_inserts | 27087 |
| Qcache_lowmem_prunes | 3114 |
| Qcache_not_cached | 22989 |
| Qcache_queries_in_cache | 415 |
| Qcache_total_blocks | 912 |

Optimization

575

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


+-------------------------+--------+

Descriptions of each of these variables are given in Section 5.1.5, “Status Variables”. Some uses for them are described here.

The total number of SELECT queries is given by this formula:

Com_select
+ Qcache_hits
+ queries with errors found by parser

The Com_select value is given by this formula:

Qcache_inserts
+ Qcache_not_cached
+ queries with errors found during the column-privileges check

The query cache uses variable-length blocks, so Qcache_total_blocks and Qcache_free_blocks may indicate query cache
memory fragmentation. After FLUSH QUERY CACHE, only a single free block remains.

Every cached query requires a minimum of two blocks (one for the query text and one or more for the query results). Also, every table
that is used by a query requires one block. However, if two or more queries use the same table, only one table block needs to be alloc-
ated.

The information provided by the Qcache_lowmem_prunes status variable can help you tune the query cache size. It counts the
number of queries that have been removed from the cache to free up memory for caching new queries. The query cache uses a least re-
cently used (LRU) strategy to decide which queries to remove from the cache. Tuning information is given in Section 7.5.4.3, “Query
Cache Configuration”.

7.5.5. Examining Thread Information
When you are attempting to ascertain what your MySQL server is doing, it can be helpful to examine the process list, which is the set of
threads currently executing within the server. Process list information is available from these sources:

• The SHOW [FULL] PROCESSLIST statement (Section 12.5.4.25, “SHOW PROCESSLIST Syntax”)

• The INFORMATION_SCHEMA PROCESSLIST table (Section 24.22, “The INFORMATION_SCHEMA PROCESSLIST Table”)

• The myqladmin processlist command (Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”)

You can always view information about your own threads. To view information about threads being executed for other accounts, you
must have the PROCESS privilege.

Each process list entry contains several pieces of information:

• Id is the connection identifier for the client associated with the thread.

• User and Host indicate the account associated with the thread.

• db is the default database for the thread, or NULL if none is selected.

• Command and State indicate what the thread is doing.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds, there might be a problem that
needs to be investigated.

• Time indicates how long the thread has been in its current state.

• Info contains the text of the statement being executed by the thread, or NULL if it is not executing one. By default, this value con-
tains only the first 100 characters of the statement. To see the complete statements, use SHOW FULL PROCESSLIST.

The following sections list the possible Command values, and State values grouped by category. The meaning for some of these val-
ues is self-evident. For others, additional description is provided.

Optimization

576



7.5.5.1. Thread Command Values

A thread can have any of the following Command values:

• Binlog Dump

This is a thread on a master server for sending binary log contents to a slave server.

• Change user

The thread is executing a change-user operation.

• Close stmt

The thread is closing a prepared statement.

• Connect

A replication slave is connected to its master.

• Connect Out

A replication slave is connecting to its master.

• Create DB

The thread is executing a create-database operation.

• Daemon

This thread is internal to the server, not a thread that services a client connection.

• Debug

The thread is generating debugging information.

• Delayed insert

The thread is a delayed-insert handler.

• Drop DB

The thread is executing a drop-database operation.

• Error

• Execute

The thread is executing a prepared statement.

• Fetch

The thread is fetching the results from executing a prepared statement.

• Field List

The thread is retrieving information for table columns.

• Init DB

The thread is selecting a default database.

• Kill

The thread is killing another thread.

Optimization

577



• Long Data

The thread is retrieving long data in the result of executing a prepared statement.

• Ping

The thread is handling a server-ping request.

• Prepare

The thread is preparing a prepared statement.

• Processlist

The thread is producing information about server threads.

• Query

The thread is executing a statement.

• Quit

The thread is terminating.

• Refresh

The thread is flushing table, logs, or caches, or resetting status variable or replication server information.

• Register Slave

The thread is registering a slave server.

• Reset stmt

The thread is resetting a prepared statement.

• Set option

The thread is setting or resetting a client statement-execution option.

• Shutdown

The thread is shutting down the server.

• Sleep

The thread is waiting for the client to send a new statement to it.

• Statistics

The thread is producing server-status information.

• Table Dump

The thread is sending table contents to a slave server.

• Time

Unused.

7.5.5.2. General Thread States

The following list describes thread State values that are associated with general query processing and not more specialized activities
such as replication. Many of these are useful only for finding bugs in the server.

Optimization

578



• After create

Occurs when the thread creates a table (including internal temporary tables), at the end of the function that creates the table. This
state is used even if the table could not be created due to some error.

• Analyzing

The thread is calculating a MyISAM table key distributions (for example, for ANALYZE TABLE).

• Checking table

The thread is performing a table check operation.

• cleaning up

The thread has processed one command and is preparing to free memory and reset certain state variables.

• closing tables

Means that the thread is flushing the changed table data to disk and closing the used tables. This should be a fast operation. If not,
you should verify that you do not have a full disk and that the disk is not in very heavy use.

• converting HEAP to MyISAM

The thread is converting an internal temporary table from a MEMORY table to an on-disk MyISAM table.

• copy to tmp table

The thread is processing an ALTER TABLE statement. This state occurs after the table with the new structure has been created but
before rows are copied into it.

• Copying to group table

If a statement has different ORDER BY and GROUP BY criteria, the rows are sorted by group and copied to a temporary table.

• Copying to tmp table

The server is copying to a temporary table in memory.

• Copying to tmp table on disk

The server is copying to a temporary table on disk. The temporary result set was larger than tmp_table_size and the thread is
changing the temporary table from in-memory to disk-based format to save memory.

• Creating index

The thread is processing ALTER TABLE ... ENABLE KEYS for a MyISAM table.

• Creating sort index

The thread is processing a SELECT that is resolved using an internal temporary table.

• creating table

The thread is creating a table. This includes creation of temporary tables.

• Creating tmp table

The thread is creating a temporary table in memory or on disk. If the table is created in memory but later is converted to an on-disk
table, the state during that operation will be Copying to tmp table on disk.

• deleting from main table

The server is executing the first part of a multiple-table delete. It is deleting only from the first table, and saving fields and offsets to
be used for deleting from the other (reference) tables.

• deleting from reference tables

Optimization

579



The server is executing the second part of a multiple-table delete and deleting the matched rows from the other tables.

• discard_or_import_tablespace

The thread is processing an ALTER TABLE ... DISCARD TABLESPACE or ALTER TABLE ... IMPORT TABLESPACE
statement.

• end

This occurs at the end but before the cleanup of ALTER TABLE, CREATE VIEW, DELETE, INSERT, SELECT, or UPDATE state-
ments.

• Execution of init_command

The thread is executing statements in the value of the init_command system variable.

• freeing items

The thread has executed a command. This state is usually followed by cleaning up.

• Flushing tables

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables.

• FULLTEXT initialization

The server is preparing to perform a natural-language full-text search.

• init

This occurs before the initialization of ALTER TABLE, DELETE, INSERT, SELECT, or UPDATE statements.

• Killed

Someone has sent a KILL statement to the thread and it should abort next time it checks the kill flag. The flag is checked in each
major loop in MySQL, but in some cases it might still take a short time for the thread to die. If the thread is locked by some other
thread, the kill takes effect as soon as the other thread releases its lock.

• Locked

The query is locked by another query.

• logging slow query

The thread is writing a statement to the slow-query log.

• login

The initial state for a connection thread until the client has been authenticated successfully.

• Opening tables, Opening table

The thread is trying to open a table. This is should be very fast procedure, unless something prevents opening. For example, an AL-
TER TABLE or a LOCK TABLE statement can prevent opening a table until the statement is finished.

• preparing

This state occurs during query optimization.

• Purging old relay logs

The thread is removing unneeded relay log files.

• query end

This state occurs after processing a query but before the freeing items state.

Optimization

580



• Reading from net

The server is reading a packet from the network.

• Removing duplicates

The query was using SELECT DISTINCT in such a way that MySQL could not optimize away the distinct operation at an early
stage. Because of this, MySQL requires an extra stage to remove all duplicated rows before sending the result to the client.

• removing tmp table

The thread is removing an internal temporary table after processing a SELECT statement. This state is not used if no temporary table
was created.

• rename

The thread is renaming a table.

• rename result table

The thread is processing an ALTER TABLE statement, has created the new table, and is renaming it to replace the original table.

• Reopen tables

The thread got a lock for the table, but noticed after getting the lock that the underlying table structure changed. It has freed the lock,
closed the table, and is trying to reopen it.

• Repair by sorting

The repair code is using a sort to create indexes.

• Repair done

The thread has completed a multi-threaded repair for a MyISAM table.

• Repair with keycache

The repair code is using creating keys one by one through the key cache. This is much slower than Repair by sorting.

• Rolling back

The thread is rolling back a transaction.

• Saving state

For MyISAM table operations such as repair or analysis, the thread is saving the new table state to the .MYI file header. State in-
cludes information such as number of rows, the AUTO_INCREMENT counter, and key distributions.

• Searching rows for update

The thread is doing a first phase to find all matching rows before updating them. This has to be done if the UPDATE is changing the
index that is used to find the involved rows.

• Sending data

The thread is processing rows for a SELECT statement and also is sending data to the client.

• setup

The thread is beginning an ALTER TABLE operation.

• Sorting for group

The thread is doing a sort to satisfy a GROUP BY.

• Sorting for order

Optimization

581



The thread is doing a sort to satisfy a ORDER BY.

• Sorting index

The thread is sorting index pages for more efficient access during a MyISAM table optimization operation.

• Sorting result

For a SELECT statement, this is similar to Creating sort index, but for non-temporary tables.

• statistics

The server is calculating statistics to develop a query execution plan.

• System lock

The thread is going to request or is waiting for an external system lock for the table. If you are not using multiple mysqld servers
that are accessing the same tables, you can disable system locks with the --skip-external-locking option.

• Table lock

The next thread state after System lock. The thread has acquired an external lock and is going to request an internal table lock.

• Updating

The thread is searching for rows to update and is updating them.

• updating main table

The server is executing the first part of a multiple-table update. It is updating only the first table, and saving fields and offsets to be
used for updating the other (reference) tables.

• updating reference tables

The server is executing the second part of a multiple-table update and updating the matched rows from the other tables.

• User lock

The thread is going to request or is waiting for an advisory lock requested with a GET_LOCK() call.

• Waiting for tables, Waiting for table

The thread got a notification that the underlying structure for a table has changed and it needs to reopen the table to get the new
structure. However, to reopen the table, it must wait until all other threads have closed the table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following statements on the table in question:
FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE, REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TA-
BLE.

• Waiting on cond

A generic state in which the the thread is waiting for a condition to become true. No specific state information is available.

• Writing to net

The server is writing a packet to the network.

7.5.5.3. Delayed-Insert Thread States

These thread states are associated with processing for DELAYED inserts (see Section 12.2.4.2, “INSERT DELAYED Syntax”). Some
states are associated with connection threads that process INSERT DELAYED statements from clients. Other states are associated with
delayed-insert handler threads that insert the rows. There is a delayed-insert handler thread for each table for which INSERT
DELAYED statements are issued.

Optimization

582



States associated with a connection thread that processes an INSERT DELAYED statement from the client:

• allocating local table

The thread is preparing to feed rows to the delayed-insert handler thread.

• Creating delayed handler

The thread is creating a handler for DELAYED inserts.

• got handler lock

This occurs before the allocating local table state and after the waiting for handler lock state, when the con-
nection thread gets access to the delayed-insert handler thread.

• got old table

This occurs after the waiting for handler open state. The delayed-insert handler thread has signaled that it has ended its
initialization phase, which includes opening the table for delayed inserts.

• storing row into queue

The thread is adding a new row to the list of rows that the delayed-insert handler thread must insert.

• update

• waiting for delay_list

This occurs during the initialization phase when the thread is trying to find the delayed-insert handler thread for the table, and before
attempting to gain access to the list of delayed-insert threads.

• waiting for handler insert

An INSERT DELAYED handler has processed all pending inserts and is waiting for new ones.

• waiting for handler lock

This occurs before the allocating local table state when the connection thread waits for access to the delayed-insert
handler thread.

• waiting for handler open

This occurs after the Creating delayed handler state and before the got old table state. The delayed-insert handler
thread has just been started, and the connection thread is waiting for it to initialize.

States associated with a delayed-insert handler thread that inserts the rows:

• insert

The state that occurs just before inserting rows into the table.

• reschedule

After inserting a number of rows, the delayed-insert thread sleeps to let other threads do work.

• upgrading lock

A delayed-insert handler is trying to get a lock for the table to insert rows.

• Waiting for INSERT

A delayed-insert handler is waiting for a connection thread to add rows to the queue (see storing row into queue).

Optimization

583



7.5.5.4. Replication Master Thread States

The following list shows the most common states you may see in the State column for the master's Binlog Dump thread. If you see
no Binlog Dump threads on a master server, this means that replication is not running — that is, that no slaves are currently connec-
ted.

• Sending binlog event to slave

Binary logs consist of events, where an event is usually an update plus some other information. The thread has read an event from
the binary log and is now sending it to the slave.

• Finished reading one binlog; switching to next binlog

The thread has finished reading a binary log file and is opening the next one to send to the slave.

• Has sent all binlog to slave; waiting for binlog to be updated

The thread has read all outstanding updates from the binary logs and sent them to the slave. The thread is now idle, waiting for new
events to appear in the binary log resulting from new updates occurring on the master.

• Waiting to finalize termination

A very brief state that occurs as the thread is stopping.

7.5.5.5. Replication Slave I/O Thread States

The following list shows the most common states you see in the State column for a slave server I/O thread. This state also appears in
the Slave_IO_State column displayed by SHOW SLAVE STATUS, so you can get a good view of what is happening by using that
statement.

• Waiting for master update

The initial state before Connecting to master.

• Connecting to master

The thread is attempting to connect to the master.

• Checking master version

A state that occurs very briefly, after the connection to the master is established.

• Registering slave on master

A state that occurs very briefly after the connection to the master is established.

• Requesting binlog dump

A state that occurs very briefly, after the connection to the master is established. The thread sends to the master a request for the
contents of its binary logs, starting from the requested binary log filename and position.

• Waiting to reconnect after a failed binlog dump request

If the binary log dump request failed (due to disconnection), the thread goes into this state while it sleeps, then tries to reconnect
periodically. The interval between retries can be specified using the CHANGE MASTER TO statement or the -
-master-connect-retry option.

• Reconnecting after a failed binlog dump request

The thread is trying to reconnect to the master.

• Waiting for master to send event

Optimization

584



The thread has connected to the master and is waiting for binary log events to arrive. This can last for a long time if the master is
idle. If the wait lasts for slave_net_timeout seconds, a timeout occurs. At that point, the thread considers the connection to be
broken and makes an attempt to reconnect.

• Queueing master event to the relay log

The thread has read an event and is copying it to the relay log so that the SQL thread can process it.

• Waiting to reconnect after a failed master event read

An error occurred while reading (due to disconnection). The thread is sleeping for the number of seconds set by the CHANGE MAS-
TER TO statement or --master-connect-retry option (default 60) before attempting to reconnect.

• Reconnecting after a failed master event read

The thread is trying to reconnect to the master. When connection is established again, the state becomes Waiting for master
to send event.

• Waiting for the slave SQL thread to free enough relay log space

You are using a non-zero relay_log_space_limit value, and the relay logs have grown large enough that their combined
size exceeds this value. The I/O thread is waiting until the SQL thread frees enough space by processing relay log contents so that it
can delete some relay log files.

• Waiting for slave mutex on exit

A state that occurs briefly as the thread is stopping.

7.5.5.6. Replication Slave SQL Thread States

The following list shows the most common states you may see in the State column for a slave server SQL thread:

• Waiting for the next event in relay log

The initial state before Reading event from the relay log.

• Reading event from the relay log

The thread has read an event from the relay log so that the event can be processed.

• Has read all relay log; waiting for the slave I/O thread to update it

The thread has processed all events in the relay log files, and is now waiting for the I/O thread to write new events to the relay log.

• Making temp file

The thread is executing a LOAD DATA INFILE statement and is creating a temporary file containing the data from which the
slave will read rows.

• Waiting for slave mutex on exit

A very brief state that occurs as the thread is stopping.

The State column for the I/O thread may also show the text of a statement. This indicates that the thread has read an event from the
relay log, extracted the statement from it, and is executing it.

7.5.5.7. Replication Slave Connection Thread States

These thread states occur on a replication slave but are associated with connection threads, not with the I/O or SQL threads.

• Changing master

Optimization

585



The thread is processing a CHANGE MASTER statement.

• Creating table from master dump

The slave is creating a table using the CREATE TABLE statement contained in the dump from the master. Used for LOAD TABLE
FROM MASTER and LOAD DATA FROM MASTER.

• Killing slave

The thread is processing a SLAVE STOP statement.

• Opening master dump table

This state occurs after Creating table from master dump.

• Reading master dump table data

This state occurs after Opening master dump table.

• Rebuilding the index on master dump table

This state occurs after Reading master dump table data.

• starting slave

The thread is starting the slave threads after processing a successful LOAD DATA FROM MASTER load operation.

7.5.5.8. MySQL Cluster Thread States

• Committing events to binlog

• Opening mysql.ndb_apply_status

• Processing events

The thread is processing events for binary logging.

• Processing events from schema table

The thread is doing the work of schema replication.

• Shutting down

• Syncing ndb table schema operation and binlog

This is used to have a correct binary log of schema operations for NDB.

• Waiting for event from ndbcluster

The server is acting as an SQL node in a MySQL Cluster, and is connected to a cluster management node.

• Waiting for first event from ndbcluster

• Waiting for ndbcluster binlog update to reach current position

• Waiting for ndbcluster to start

• Waiting for schema epoch

The thread is waiting for a schema epoch (that is, a global checkpoint).

7.5.5.9. Event Scheduler Thread States

Optimization

586



These states occur for the Event Scheduler thread, threads that are created to execute scheduled events, or threads that terminate the
scheduler.

• Clearing

The scheduler thread or a thread that was executing an event is terminating and is about to end.

• Initialized

The scheduler thread or a thread that will execute an event has been initialized.

• Waiting for next activation

The scheduler has a non-empty event queue but the next activation is in the future.

• Waiting for scheduler to stop

The thread issued SET GLOBAL event_scheduler=OFF and is waiting for the scheduler to stop.

• Waiting on empty queue

The scheduler's event queue is empty and it is sleeping.

7.5.6. How Compiling and Linking Affects the Speed of MySQL
Most of the following tests were performed on Linux with the MySQL benchmarks, but they should give some indication for other op-
erating systems and workloads.

You obtain the fastest executables when you link with -static.

On Linux, it is best to compile the server with pgcc and -O3. You need about 200MB memory to compile sql_yacc.cc with these
options, because gcc or pgcc needs a great deal of memory to make all functions inline. You should also set CXX=gcc when config-
uring MySQL to avoid inclusion of the libstdc++ library, which is not needed. Note that with some versions of pgcc, the resulting
binary runs only on true Pentium processors, even if you use the compiler option indicating that you want the resulting code to work on
all x586-type processors (such as AMD).

By using a better compiler and compilation options, you can obtain a 10–30% speed increase in applications. This is particularly import-
ant if you compile the MySQL server yourself.

When we tested both the Cygnus CodeFusion and Fujitsu compilers, neither was sufficiently bug-free to allow MySQL to be compiled
with optimizations enabled.

The standard MySQL binary distributions are compiled with support for all character sets. When you compile MySQL yourself, you
should include support only for the character sets that you are going to use. This is controlled by the --with-charset option to
configure.

Here is a list of some measurements that we have made:

• If you use pgcc and compile everything with -O6, the mysqld server is 1% faster than with gcc 2.95.2.

• If you link dynamically (without -static), the result is 13% slower on Linux. Note that you still can use a dynamically linked
MySQL library for your client applications. It is the server that is most critical for performance.

• For a connection from a client to a server running on the same host, if you connect using TCP/IP rather than a Unix socket file, per-
formance is 7.5% slower. (On Unix, if you connect to the hostname localhost, MySQL uses a socket file by default.)

• For TCP/IP connections from a client to a server, connecting to a remote server on another host is 8–11% slower than connecting to
a server on the same host, even for connections over 100Mb/s Ethernet.

• When running our benchmark tests using secure connections (all data encrypted with internal SSL support) performance was 55%
slower than with unencrypted connections.

• If you compile with --with-debug=full, most queries are 20% slower. Some queries may take substantially longer; for ex-

Optimization

587



ample, the MySQL benchmarks run 35% slower. If you use --with-debug (without =full), the speed decrease is only 15%.
For a version of mysqld that has been compiled with --with-debug=full, you can disable memory checking at runtime by
starting it with the --skip-safemalloc option. The execution speed should then be close to that obtained when configuring
with --with-debug.

• On a Sun UltraSPARC-IIe, a server compiled with Forte 5.0 is 4% faster than one compiled with gcc 3.2.

• On a Sun UltraSPARC-IIe, a server compiled with Forte 5.0 is 4% faster in 32-bit mode than in 64-bit mode.

• Compiling with gcc 2.95.2 for UltraSPARC with the -mcpu=v8 -Wa,-xarch=v8plusa options gives 4% more performance.

• On Solaris 2.5.1, MIT-pthreads is 8–12% slower than Solaris native threads on a single processor. With greater loads or more CPUs,
the difference should be larger.

• Compiling on Linux-x86 using gcc without frame pointers (-fomit-frame-pointer or -fomit-frame-pointer -
ffixed-ebp) makes mysqld 1–4% faster.

Binary MySQL distributions for Linux that are provided by MySQL AB used to be compiled with pgcc. We had to go back to regular
gcc due to a bug in pgcc that would generate binaries that do not run on AMD. We will continue using gcc until that bug is resolved.
In the meantime, if you have a non-AMD machine, you can build a faster binary by compiling with pgcc. The standard MySQL Linux
binary is linked statically to make it faster and more portable.

7.5.7. How MySQL Uses Threads for Client Connections
Connection manager threads handle client connection requests on the network interfaces that the server listens to. On all platforms, one
manager thread handles TCP/IP connection requests. On Unix, this manager thread also handles Unix socket file connection requests.
On Windows, a manager thread handles shared-memory connection requests, and another handles named-pipe connection requests. The
server does not create threads to handle interfaces that it does not listen to. For example, a Windows server that does not have support
for named-pipe connections enabled does not create a thread to handle them.

Connection manager threads associate each client connection with a thread dedicated to it that handles authentication and request pro-
cessing for that connection. Manager threads create a new thread when necessary but try to avoid doing so by consulting the thread
cache first to see whether it contains a thread that can be used for the connection. When a connection ends, its thread is returned to the
thread cache if the cache is not full.

In this connection thread model, there are as many threads as there are clients currently connected, which has some drawbacks when
server workload must scale to handle large numbers of connections. For example, thread creation and disposal becomes expensive.
Also, each thread requires server and kernel resources, such as stack space. To accommodate a large number of simultaneous connec-
tions, the stack size per thread must be kept small, leading to a situation where it is either too small or the server consumes large
amounts of memory. Exhaustion of other resources can occur as well, and scheduling overhead can become significant.

To control and monitor how the server manages threads that handle client connections, several system and status variables are relevant.
(See Section 5.1.3, “System Variables”, and Section 5.1.5, “Status Variables”.)

The thread cache has a size determined by the thread_cache_size system variable. The default value is 0 (no caching), which
causes a thread to be set up for each new connection and disposed of when the connection terminates. Set thread_cache_size to N
to allow N inactive connection threads to be cached. thread_cache_size can be set at server startup or changed while the server
runs.

To monitor the number of threads in the cache and how many threads have been created because a thread could not be taken from the
cache, monitor the Threads_cached and Threads_created status variables.

You can set max_connections at server startup or at runtime to control the maximum number of clients that can connect simultan-
eously.

When the thread stack is too small, this limits the complexity of the SQL statements which the server can handle, the recursion depth of
stored procedures, and other memory-consuming actions. To set a stack size of N bytes for each thread, start the server with -
-thread_stack=N.

7.5.8. How MySQL Uses Memory
The following list indicates some of the ways that the mysqld server uses memory. Where applicable, the name of the system variable
relevant to the memory use is given:

Optimization

588



• The key buffer is shared by all threads; its size is determined by the key_buffer_size variable. Other buffers used by the server
are allocated as needed. See Section 7.5.2, “Tuning Server Parameters”.

• Each thread that is used to manage client connections uses some thread-specific space. The following list indicates these and which
variables control their size:

• A stack (default 192KB, variable thread_stack)

• A connection buffer (variable net_buffer_length)

• A result buffer (variable net_buffer_length)

The connection buffer and result buffer both begin with a size given by net_buffer_length but are dynamically enlarged up to
max_allowed_packet bytes as needed. The result buffer shrinks to net_buffer_length after each SQL statement. While
a statement is running, a copy of the current statement string is also allocated.

• All threads share the same base memory.

• When a thread is no longer needed, the memory allocated to it is released and returned to the system unless the thread goes back into
the thread cache. In that case, the memory remains allocated.

• Before MySQL 5.1.4, only compressed MyISAM tables are memory mapped. As of MySQL 5.1.4, the myisam_use_mmap system
variable can be set to 1 to enable memory-mapping for all MyISAM tables.

• Each request that performs a sequential scan of a table allocates a read buffer (variable read_buffer_size).

• When reading rows in an arbitrary sequence (for example, following a sort), a random-read buffer (variable
read_rnd_buffer_size) may be allocated in order to avoid disk seeks.

• All joins are executed in a single pass, and most joins can be done without even using a temporary table. Most temporary tables are
memory-based hash tables. Temporary tables with a large row length (calculated as the sum of all column lengths) or that contain
BLOB columns are stored on disk.

If an internal heap table exceeds the size of tmp_table_size, MySQL handles this automatically by changing the in-memory
heap table to a disk-based MyISAM table as necessary. You can also increase the temporary table size by setting the
tmp_table_size option to mysqld, or by setting the SQL option SQL_BIG_TABLES in the client program. See Sec-
tion 12.5.3, “SET Syntax”.

MySQL Enterprise
Subscribers to the MySQL Enterprise Monitor are alerted when temporary tables exceed tmp_table_size.
Advisors make recommendations for the optimum value of tmp_table_size based on actual table usage.
For more information about the MySQL Enterprise Monitor please see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

• Most requests that perform a sort allocate a sort buffer and zero to two temporary files depending on the result set size. See Sec-
tion B.1.4.4, “Where MySQL Stores Temporary Files”.

• Almost all parsing and calculating is done in a local memory store. No memory overhead is needed for small items, so the normal
slow memory allocation and freeing is avoided. Memory is allocated only for unexpectedly large strings. This is done with mal-
loc() and free().

• For each MyISAM table that is opened, the index file is opened once; the data file is opened once for each concurrently running
thread. For each concurrent thread, a table structure, column structures for each column, and a buffer of size 3 × N are allocated
(where N is the maximum row length, not counting BLOB columns). A BLOB column requires five to eight bytes plus the length of
the BLOB data. The MyISAM storage engine maintains one extra row buffer for internal use.

• For each table having BLOB columns, a buffer is enlarged dynamically to read in larger BLOB values. If you scan a table, a buffer as
large as the largest BLOB value is allocated.

• Handler structures for all in-use tables are saved in a cache and managed as a FIFO. By default, the cache has 64 entries. If a table
has been used by two running threads at the same time, the cache contains two entries for the table. See Section 7.4.8, “How
MySQL Opens and Closes Tables”.

• A FLUSH TABLES statement or mysqladmin flush-tables command closes all tables that are not in use at once and marks
all in-use tables to be closed when the currently executing thread finishes. This effectively frees most in-use memory. FLUSH
TABLES does not return until all tables have been closed.

Optimization

589

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


ps and other system status programs may report that mysqld uses a lot of memory. This may be caused by thread stacks on different
memory addresses. For example, the Solaris version of ps counts the unused memory between stacks as used memory. You can verify
this by checking available swap with swap -s. We test mysqld with several memory-leakage detectors (both commercial and Open
Source), so there should be no memory leaks.

7.5.9. How MySQL Uses Internal Temporary Tables
In some cases, the server creates internal temporary tables while processing queries. A temporary table can be held in memory and pro-
cessed by the MEMORY storage engine, or stored on disk and processed by the MyISAM storage engine. Temporary tables can be created
under conditions such as these:

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY contains columns from
tables other than the first table in the join queue, a temporary table is created.

• If you use the SQL_SMALL_RESULT option, MySQL uses an in-memory temporary table.

• DISTINCT combined with ORDER BY may require a temporary table.

You can tell whether a query requires a temporary table by using EXPLAIN and checking the Extra column to see whether it says
Using temporary. See Section 12.3.2, “EXPLAIN Syntax”.

Some conditions prevent the use of a MEMORY temporary table, in which case the server uses a MyISAM table instead:

• Presence of a TEXT or BLOB column in the table

• Presence of any column in a GROUP BY or DISTINCT clause larger than 512 bytes

• Presence of any column larger than 512 bytes in the SELECT list, if UNION or UNION ALL is used.

A temporary table that is created initially as a MEMORY table might be converted to a MyISAM table and stored on disk if it becomes too
large. The max_heap_table_size system variable determines how large MEMORY tables are allowed to grow. It applies to all
MEMORY tables, including those created with CREATE TABLE. However, for internal MEMORY tables, the actual maximum size is de-
termined by max_heap_table_size in combination with tmp_table_size: Whichever value is smaller is the one that applies.
If the size of an internal MEMORY table exceeds the limit, MySQL automatically converts it to an on-disk MyISAM table.

7.5.10. How MySQL Uses DNS
When a new client connects to mysqld, mysqld spawns a new thread to handle the request. This thread first checks whether the host-
name is in the hostname cache. If not, the thread attempts to resolve the hostname:

• If the operating system supports the thread-safe gethostbyaddr_r() and gethostbyname_r() calls, the thread uses them
to perform hostname resolution.

• If the operating system does not support the thread-safe calls, the thread locks a mutex and calls gethostbyaddr() and geth-
ostbyname() instead. In this case, no other thread can resolve hostnames that are not in the hostname cache until the first thread
unlocks the mutex.

You can disable DNS hostname lookups by starting mysqld with the --skip-name-resolve option. However, in this case, you
can use only IP numbers in the MySQL grant tables.

If you have a very slow DNS and many hosts, you can get more performance by either disabling DNS lookups with -
-skip-name-resolve or by increasing the HOST_CACHE_SIZE define (default value: 128) and recompiling mysqld.

You can disable the hostname cache by starting the server with the --skip-host-cache option. To clear the hostname cache, issue
a FLUSH HOSTS statement or execute the mysqladmin flush-hosts command.

To disallow TCP/IP connections entirely, start mysqld with the --skip-networking option.

Optimization

590



7.6. Disk Issues

• Disk seeks are a huge performance bottleneck. This problem becomes more apparent when the amount of data starts to grow so
large that effective caching becomes impossible. For large databases where you access data more or less randomly, you can be sure
that you need at least one disk seek to read and a couple of disk seeks to write things. To minimize this problem, use disks with low
seek times.

• Increase the number of available disk spindles (and thereby reduce the seek overhead) by either symlinking files to different disks or
striping the disks:

• Using symbolic links

This means that, for MyISAM tables, you symlink the index file and data files from their usual location in the data directory to
another disk (that may also be striped). This makes both the seek and read times better, assuming that the disk is not used for
other purposes as well. See Section 7.6.1, “Using Symbolic Links”.

• Striping

Striping means that you have many disks and put the first block on the first disk, the second block on the second disk, and the N-
th block on the (N MOD number_of_disks) disk, and so on. This means if your normal data size is less than the stripe size
(or perfectly aligned), you get much better performance. Striping is very dependent on the operating system and the stripe size,
so benchmark your application with different stripe sizes. See Section 7.1.5, “Using Your Own Benchmarks”.

The speed difference for striping is very dependent on the parameters. Depending on how you set the striping parameters and
number of disks, you may get differences measured in orders of magnitude. You have to choose to optimize for random or se-
quential access.

• For reliability, you may want to use RAID 0+1 (striping plus mirroring), but in this case, you need 2 × N drives to hold N drives of
data. This is probably the best option if you have the money for it. However, you may also have to invest in some volume-man-
agement software to handle it efficiently.

• A good option is to vary the RAID level according to how critical a type of data is. For example, store semi-important data that can
be regenerated on a RAID 0 disk, but store really important data such as host information and logs on a RAID 0+1 or RAID N disk.
RAID N can be a problem if you have many writes, due to the time required to update the parity bits.

• On Linux, you can get much more performance by using hdparm to configure your disk's interface. (Up to 100% under load is not
uncommon.) The following hdparm options should be quite good for MySQL, and probably for many other applications:

hdparm -m 16 -d 1

Note that performance and reliability when using this command depend on your hardware, so we strongly suggest that you test your
system thoroughly after using hdparm. Please consult the hdparm manual page for more information. If hdparm is not used
wisely, filesystem corruption may result, so back up everything before experimenting!

• You can also set the parameters for the filesystem that the database uses:

If you do not need to know when files were last accessed (which is not really useful on a database server), you can mount your
filesystems with the -o noatime option. That skips updates to the last access time in inodes on the filesystem, which avoids some
disk seeks.

On many operating systems, you can set a filesystem to be updated asynchronously by mounting it with the -o async option. If
your computer is reasonably stable, this should give you more performance without sacrificing too much reliability. (This flag is on
by default on Linux.)

7.6.1. Using Symbolic Links
You can move tables and databases from the database directory to other locations and replace them with symbolic links to the new loca-
tions. You might want to do this, for example, to move a database to a file system with more free space or increase the speed of your
system by spreading your tables to different disk.

The recommended way to do this is simply to symlink databases to a different disk. Symlink tables only as a last resort.

7.6.1.1. Using Symbolic Links for Databases on Unix

Optimization

591



On Unix, the way to symlink a database is first to create a directory on some disk where you have free space and then to create a sym-
link to it from the MySQL data directory.

shell> mkdir /dr1/databases/test
shell> ln -s /dr1/databases/test /path/to/datadir

MySQL does not support linking one directory to multiple databases. Replacing a database directory with a symbolic link works as long
as you do not make a symbolic link between databases. Suppose that you have a database db1 under the MySQL data directory, and
then make a symlink db2 that points to db1:

shell> cd /path/to/datadir
shell> ln -s db1 db2

The result is that, or any table tbl_a in db1, there also appears to be a table tbl_a in db2. If one client updates db1.tbl_a and
another client updates db2.tbl_a, problems are likely to occur.

However, if you really need to do this, it is possible by altering the source file mysys/my_symlink.c, in which you should look for
the following statement:

if (!(MyFlags & MY_RESOLVE_LINK) ||
(!lstat(filename,&stat_buff) && S_ISLNK(stat_buff.st_mode)))

Change the statement to this:

if (1)

7.6.1.2. Using Symbolic Links for Tables on Unix

You should not symlink tables on systems that do not have a fully operational realpath() call. (Linux and Solaris support
realpath()). You can check whether your system supports symbolic links by issuing a SHOW VARIABLES LIKE
'have_symlink' statement.

Symlinks are fully supported only for MyISAM tables. For files used by tables for other storage engines, you may get strange problems
if you try to use symbolic links.

The handling of symbolic links for MyISAM tables works as follows:

• In the data directory, you always have the table format (.frm) file, the data (.MYD) file, and the index (.MYI) file. The data file
and index file can be moved elsewhere and replaced in the data directory by symlinks. The format file cannot.

• You can symlink the data file and the index file independently to different directories.

• You can instruct a running MySQL server to perform the symlinking by using the DATA DIRECTORY and INDEX DIRECTORY
options to CREATE TABLE. See Section 12.1.10, “CREATE TABLE Syntax”. Alternatively, symlinking can be accomplished
manually from the command line using ln -s if mysqld is not running.

• myisamchk does not replace a symlink with the data file or index file. It works directly on the file to which the symlink points.
Any temporary files are created in the directory where the data file or index file is located. The same is true for the ALTER TABLE,
OPTIMIZE TABLE, and REPAIR TABLE statements.

•
Note

When you drop a table that is using symlinks, both the symlink and the file to which the symlink points are dropped. This
is an extremely good reason why you should not run mysqld as the system root or allow system users to have write ac-
cess to MySQL database directories.

• If you rename a table with ALTER TABLE ... RENAME or RENAME TABLE and you do not move the table to another database,
the symlinks in the database directory are renamed to the new names and the data file and index file are renamed accordingly.

• If you use ALTER TABLE ... RENAME or RENAME TABLE to move a table to another database, the table is moved to the other
database directory. If the table name changed, the symlinks in the new database directory are renamed to the new names and the data
file and index file are renamed accordingly.

Optimization

592



• If you are not using symlinks, you should use the --skip-symbolic-links option to mysqld to ensure that no one can use
mysqld to drop or rename a file outside of the data directory.

Table symlink operations that are not yet supported:

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

• BACKUP TABLE and RESTORE TABLE do not respect symbolic links.

• The .frm file must never be a symbolic link (as indicated previously, only the data and index files can be symbolic links). Attempt-
ing to do this (for example, to make synonyms) produces incorrect results. Suppose that you have a database db1 under the MySQL
data directory, a table tbl1 in this database, and in the db1 directory you make a symlink tbl2 that points to tbl1:

shell> cd /path/to/datadir/db1
shell> ln -s tbl1.frm tbl2.frm
shell> ln -s tbl1.MYD tbl2.MYD
shell> ln -s tbl1.MYI tbl2.MYI

Problems result if one thread reads db1.tbl1 and another thread updates db1.tbl2:

• The query cache is “fooled” (it has no way of knowing that tbl1 has not been updated, so it returns outdated results).

• ALTER statements on tbl2 fail.

7.6.1.3. Using Symbolic Links for Databases on Windows

Symbolic links are enabled by default for all Windows servers. This enables you to put a database directory on a different disk by set-
ting up a symbolic link to it. This is similar to the way that database symbolic links work on Unix, although the procedure for setting up
the link is different. If you do not need symbolic links, you can disable them using the --skip-symbolic-links option.

On Windows, create a symbolic link to a MySQL database by creating a file in the data directory that contains the path to the destina-
tion directory. The file should be named db_name.sym, where db_name is the database name.

Suppose that the MySQL data directory is C:\mysql\data and you want to have database foo located at D:\data\foo. Set up a
symlink using this procedure

1. Make sure that the D:\data\foo directory exists by creating it if necessary. If you already have a database directory named foo
in the data directory, you should move it to D:\data. Otherwise, the symbolic link will be ineffective. To avoid problems, make
sure that the server is not running when you move the database directory.

2. Create a text file C:\mysql\data\foo.sym that contains the pathname D:\data\foo\.

After this, all tables created in the database foo are created in D:\data\foo.

The following limitations apply to the use of .sym files for database symbolic linking on Windows:

• The symbolic link is not used if a directory with the same name as the database exists in the MySQL data directory.

• The --innodb_file_per_table option cannot be used.

Optimization

593



Chapter 8. Language Structure
This chapter discusses the rules for writing the following elements of SQL statements when using MySQL:

• Literal values such as strings and numbers

• Identifiers such as database, table, and column names

• Reserved words

• User-defined and system variables

• Comments

8.1. Literal Values
This section describes how to write literal values in MySQL. These include strings, numbers, hexadecimal values, boolean values, and
NULL. The section also covers the various nuances and “gotchas” that you may run into when dealing with these basic types in MySQL.

8.1.1. Strings
A string is a sequence of bytes or characters, enclosed within either single quote (“'”) or double quote (“"”) characters. Examples:

'a string'
"another string"

If the ANSI_QUOTES SQL mode is enabled, string literals can be quoted only within single quotes because a string quoted within
double quotes is interpreted as an identifier.

A binary string is a string of bytes that has no character set or collation. A non-binary string is a string of characters that has a character
set and collation. For both types of strings, comparisons are based on the numeric values of the string unit. For binary strings, the unit is
the byte. For non-binary strings the unit is the character and some character sets allow multi-byte characters. Character value ordering is
a function of the string collation.

String literals may have an optional character set introducer and COLLATE clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

You can use N'literal' (or n'literal') to create a string in the national character set. These statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For more information about these forms of string syntax, see Section 9.1.3.5, “Character String Literal Character Set and Collation”,
and Section 9.1.3.6, “National Character Set”.

Within a string, certain sequences have special meaning. Each of these sequences begins with a backslash (“\”), known as the escape
character. MySQL recognizes the following escape sequences:

\0 An ASCII 0 (NUL) character.

\' A single quote (“'”) character.

\" A double quote (“"”) character.

\b A backspace character.

594



\n A newline (linefeed) character.

\r A carriage return character.

\t A tab character.

\Z ASCII 26 (Control-Z). See note following the table.

\\ A backslash (“\”) character.

\% A “%” character. See note following the table.

\_ A “_” character. See note following the table.

For all other escape sequences, backslash is ignored. That is, the escaped character is interpreted as if it was not escaped. For example,
“\x” is just “x”.

These sequences are case sensitive. For example, “\b” is interpreted as a backspace, but “\B” is interpreted as “B”.

The ASCII 26 character can be encoded as “\Z” to enable you to work around the problem that ASCII 26 stands for END-OF-FILE on
Windows. ASCII 26 within a file causes problems if you try to use mysql db_name < file_name.

Escape processing is done according to the character set indicated by the character_set_connection system variable. This is
true even for strings that are preceded by an introducer that indicates a different character set, as discussed in Section 9.1.3.5, “Character
String Literal Character Set and Collation”.

The “\%” and “\_” sequences are used to search for literal instances of “%” and “_” in pattern-matching contexts where they would
otherwise be interpreted as wildcard characters. See the description of the LIKE operator in Section 11.4.1, “String Comparison Func-
tions”. If you use “\%” or “\_” in non-pattern-matching contexts, they evaluate to the strings “\%” and “\_”, not to “%” and “_”.

There are several ways to include quote characters within a string:

• A “'” inside a string quoted with “'” may be written as “''”.

• A “"” inside a string quoted with “"” may be written as “""”.

• Precede the quote character by an escape character (“\”).

• A “'” inside a string quoted with “"” needs no special treatment and need not be doubled or escaped. In the same way, “"” inside a
string quoted with “'” needs no special treatment.

The following SELECT statements demonstrate how quoting and escaping work:

mysql> SELECT 'hello', '"hello"', '""hello""', 'hel''lo', '\'hello';
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel'lo | 'hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT "hello", "'hello'", "''hello''", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | 'hello' | ''hello'' | hel"lo | "hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT 'This\nIs\nFour\nLines';
+--------------------+
| This
Is
Four
Lines |
+--------------------+

mysql> SELECT 'disappearing\ backslash';
+------------------------+
| disappearing backslash |
+------------------------+

If you want to insert binary data into a string column (such as a BLOB column), the following characters must be represented by escape
sequences:

NUL NUL byte (ASCII 0). Represent this character by “\0” (a backslash followed by an ASCII “0” character).

Language Structure

595



\ Backslash (ASCII 92). Represent this character by “\\”.

' Single quote (ASCII 39). Represent this character by “\'”.

" Double quote (ASCII 34). Represent this character by “\"”.

When writing application programs, any string that might contain any of these special characters must be properly escaped before the
string is used as a data value in an SQL statement that is sent to the MySQL server. You can do this in two ways:

• Process the string with a function that escapes the special characters. In a C program, you can use the
mysql_real_escape_string() C API function to escape characters. See Section 26.2.3.53,
“mysql_real_escape_string()”. The Perl DBI interface provides a quote method to convert special characters to the
proper escape sequences. See Section 26.4, “MySQL Perl API”. Other language interfaces may provide a similar capability.

• As an alternative to explicitly escaping special characters, many MySQL APIs provide a placeholder capability that enables you to
insert special markers into a statement string, and then bind data values to them when you issue the statement. In this case, the API
takes care of escaping special characters in the values for you.

8.1.2. Numbers
Integers are represented as a sequence of digits. Floats use “.” as a decimal separator. Either type of number may be preceded by “-” or
“+” to indicate a negative or positive value, respectively

Examples of valid integers:

1221
0
-32

Examples of valid floating-point numbers:

294.42
-32032.6809e+10
148.00

An integer may be used in a floating-point context; it is interpreted as the equivalent floating-point number.

8.1.3. Hexadecimal Values
MySQL supports hexadecimal values. In numeric contexts, these act like integers (64-bit precision). In string contexts, these act like
binary strings, where each pair of hex digits is converted to a character:

mysql> SELECT x'4D7953514C';
-> 'MySQL'

mysql> SELECT 0x0a+0;
-> 10

mysql> SELECT 0x5061756c;
-> 'Paul'

The default type of a hexadecimal value is a string. If you want to ensure that the value is treated as a number, you can use CAST(...
AS UNSIGNED):

mysql> SELECT 0x41, CAST(0x41 AS UNSIGNED);
-> 'A', 65

The x'hexstring' syntax is based on standard SQL. The 0x syntax is based on ODBC. Hexadecimal strings are often used by
ODBC to supply values for BLOB columns.

You can convert a string or a number to a string in hexadecimal format with the HEX() function:

mysql> SELECT HEX('cat');
-> '636174'

mysql> SELECT 0x636174;
-> 'cat'

Language Structure

596



8.1.4. Boolean Values
The constants TRUE and FALSE evaluate to 1 and 0, respectively. The constant names can be written in any lettercase.

mysql> SELECT TRUE, true, FALSE, false;
-> 1, 1, 0, 0

8.1.5. Bit-Field Values
Bit-field values can be written using b'value' or 0bvalue notation. value is a binary value written using zeros and ones.

Bit-field notation is convenient for specifying values to be assigned to BIT columns:

mysql> CREATE TABLE t (b BIT(8));
mysql> INSERT INTO t SET b = b'11111111';
mysql> INSERT INTO t SET b = b'1010';
mysql> INSERT INTO t SET b = b'0101';

Bit values are returned as binary values. To display them in printable form, add 0 or use a conversion function such as BIN(). High-or-
der 0 bits are not displayed in the converted value.

mysql> SELECT b+0, BIN(b+0), OCT(b+0), HEX(b+0) FROM t;
+------+----------+----------+----------+
| b+0 | BIN(b+0) | OCT(b+0) | HEX(b+0) |
+------+----------+----------+----------+
| 255 | 11111111 | 377 | FF |
| 10 | 1010 | 12 | A |
| 5 | 101 | 5 | 5 |
+------+----------+----------+----------+

Bit values assigned to user variables are treated as binary strings. To assign a bit value as a number to a user variable, use CAST() or
+0:

mysql> SET @v1 = b'1000001';
mysql> SET @v2 = CAST(b'1000001' AS UNSIGNED), @v3 = b'1000001'+0;
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

8.1.6. NULL Values
The NULL value means “no data.” NULL can be written in any lettercase. A synonym is \N (case sensitive).

For text file import or export operations performed with LOAD DATA INFILE or SELECT ... INTO OUTFILE, NULL is repres-
ented by the \N sequence. See Section 12.2.5, “LOAD DATA INFILE Syntax”.

Be aware that the NULL value is different from values such as 0 for numeric types or the empty string for string types. For more inform-
ation, see Section B.1.5.3, “Problems with NULL Values”.

8.2. Schema Object Names
Certain objects within MySQL, including database, table, index, column, alias, view, stored procedure, partition, tablespace, and other
object names are known as identifiers. This section describes the allowable syntax for identifiers in MySQL. Section 8.2.2, “Identifier
Case Sensitivity”, describes which types of identifiers are case sensitive and under what conditions.

An identifier may be quoted or unquoted. If an identifier contains special characters or is a reserved word, you must quote it whenever
you refer to it. The set of alphanumeric characters from the current character set, “_”, and “$” are not special. Reserved words are listed
at Section 8.3, “Reserved Words”. (Exception: A reserved word that follows a period in a qualified name must be an identifier, so it
need not be quoted.)

The identifier quote character is the backtick (“`”):

mysql> SELECT * FROM `select` WHERE `select`.id > 100;

Language Structure

597



If the ANSI_QUOTES SQL mode is enabled, it is also allowable to quote identifiers within double quotes:

mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax...
mysql> SET sql_mode='ANSI_QUOTES';
mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)

The ANSI_QUOTES mode causes the server to interpret double-quoted strings as identifiers. Consequently, when this mode is enabled,
string literals must be enclosed within single quotes. They cannot be enclosed within double quotes.

The server SQL mode is controlled as described in Section 5.1.6, “SQL Modes”.

Identifier quote characters can be included within an identifier if you quote the identifier. If the character to be included within the iden-
tifier is the same as that used to quote the identifier itself, then you need to double the character. The following statement creates a table
named a`b that contains a column named c"d:

mysql> CREATE TABLE `a``b` (`c"d` INT);

Identifiers may begin with a digit but unless quoted may not consist solely of digits.

It is recommended that you do not use names of the form Me or MeN, where M and N are integers. For example, avoid using 1e or 2e2
as identifiers, because an expression such as 1e+3 is ambiguous. Depending on context, it might be interpreted as the expression 1e +
3 or as the number 1e+3.

Be careful when using MD5() to produce table names because it can produce names in illegal or ambiguous formats such as those just
described.

A user variable cannot be used directly in an SQL statement as an identifier or as part of an identifier. See Section 8.4, “User-Defined
Variables”, for more information and examples of workarounds.

There are some restrictions on the characters that may appear in identifiers:

• No identifier can contain ASCII 0 (0x00) or a byte with a value of 255.

• Database, table, and column names should not end with space characters.

• Before MySQL 5.1.6, database and table names cannot contain “/”, “\”, “.”, or characters that are not allowed in filenames.

As of MySQL 5.1.6, special characters in database and table names are encoded in the corresponding filesystem names as described in
Section 8.2.3, “Mapping of Identifiers to Filenames”. If you have databases or tables from an older version of MySQL that contain spe-
cial characters and for which the underlying directory names or filenames have not been updated to use the new encoding, the server
displays their names with a prefix of #mysql50#. For information about referring to such names or converting them to the newer en-
coding, see that section.

The following table describes the maximum length for each type of identifier.

Identifier Maximum Length (characters)

Database 64

Table 64

Column 64

Index 64

Stored Function or Procedure 64

Trigger 64

View 64

Event 64

Tablespace 64

Log File Group 64

Alias 255

Language Structure

598



Identifiers are stored using Unicode (UTF-8). This applies to identifiers in table definitions that are stored in .frm files and to identifi-
ers stored in the grant tables in the mysql database. The sizes of the identifier string columns in the grant tables are measured in char-
acters. You can use multi-byte characters without reducing the number of characters allowed for values stored in these columns,
something not true prior to MySQL 4.1. The allowable Unicode characters are those in the Basic Multilingual Plane (BMP). Supple-
mentary characters are not allowed.

8.2.1. Identifier Qualifiers
MySQL allows names that consist of a single identifier or multiple identifiers. The components of a multiple-part name must be separ-
ated by period (“.”) characters. The initial parts of a multiple-part name act as qualifiers that affect the context within which the final
identifier is interpreted.

In MySQL, you can refer to a table column using any of the following forms:

Column Reference Meaning

col_name The column col_name from whichever table used in the statement contains a column of that
name.

tbl_name.col_name The column col_name from table tbl_name of the default database.

db_name.tbl_name.col_name The column col_name from table tbl_name of the database db_name.

If any components of a multiple-part name require quoting, quote them individually rather than quoting the name as a whole. For ex-
ample, write `my-table`.`my-column`, not `my-table.my-column`.

A reserved word that follows a period in a qualified name must be an identifier, so in that context it need not be quoted.

You need not specify a tbl_name or db_name.tbl_name prefix for a column reference in a statement unless the reference would
be ambiguous. Suppose that tables t1 and t2 each contain a column c, and you retrieve c in a SELECT statement that uses both t1
and t2. In this case, c is ambiguous because it is not unique among the tables used in the statement. You must qualify it with a table
name as t1.c or t2.c to indicate which table you mean. Similarly, to retrieve from a table t in database db1 and from a table t in
database db2 in the same statement, you must refer to columns in those tables as db1.t.col_name and db2.t.col_name.

The syntax .tbl_name means the table tbl_name in the default database. This syntax is accepted for ODBC compatibility because
some ODBC programs prefix table names with a “.” character.

8.2.2. Identifier Case Sensitivity
In MySQL, databases correspond to directories within the data directory. Each table within a database corresponds to at least one file
within the database directory (and possibly more, depending on the storage engine). Triggers also correspond to files. Consequently, the
case sensitivity of the underlying operating system plays a part in the case sensitivity of database and table names. This means database,
table, and trigger names are not case sensitive in Windows, but are case sensitive in most varieties of Unix. One notable exception is
Mac OS X, which is Unix-based but uses a default filesystem type (HFS+) that is not case sensitive. However, Mac OS X also supports
UFS volumes, which are case sensitive just as on any Unix. See Section 1.8.4, “MySQL Extensions to Standard SQL”. The
lower_case_table_names system variable also affects how the server handles identifier case sensitivity, as described later in this
section.

MySQL Enterprise
lower_case_table_names is just one of the system variables monitored by the MySQL Enterprise Monitor.
For information about subscribing to this service, see http://www.mysql.com/products/enterprise/advisors.html.

Note

Although database, table, and trigger names are not case sensitive on some platforms, you should not refer to one of these
using different cases within the same statement. The following statement would not work because it refers to a table both
as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Column, index, stored routine, and event names are not case sensitive on any platform, nor are column aliases.

However, names of triggers and logfile groups are case sensitive. This differs from standard SQL.

Language Structure

599

http://www.mysql.com/products/enterprise/advisors.html


By default, table aliases are case sensitive on Unix, but not so on Windows or Mac OS X. The following statement would not work on
Unix, because it refers to the alias both as a and as A:

mysql> SELECT col_name FROM tbl_name AS a
-> WHERE a.col_name = 1 OR A.col_name = 2;

However, this same statement is permitted on Windows. To avoid problems caused by such differences, it is best to adopt a consistent
convention, such as always creating and referring to databases and tables using lowercase names. This convention is recommended for
maximum portability and ease of use.

How table and database names are stored on disk and used in MySQL is affected by the lower_case_table_names system vari-
able, which you can set when starting mysqld. lower_case_table_names can take the values shown in the following table. This
variable does not affect case sensitivity of trigger identifiers. On Unix, the default value of lower_case_table_names is 0. On
Windows the default value is 1. On Mac OS X, the default value is 2.

Value Meaning

0 Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATA-
BASE statement. Name comparisons are case sensitive. Note that if you force this variable to 0 with -
-lower-case-table-names=0 on a case-insensitive filesystem and access MyISAM tablenames using different let-
tercases, index corruption may result.

1 Table names are stored in lowercase on disk and name comparisons are not case sensitive. MySQL converts all table
names to lowercase on storage and lookup. This behavior also applies to database names and table aliases.

2 Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATA-
BASE statement, but MySQL converts them to lowercase on lookup. Name comparisons are not case sensitive. This
works only on filesystems that are not case sensitive! InnoDB table names are stored in lowercase, as for
lower_case_table_names=1.

If you are using MySQL on only one platform, you do not normally have to change the lower_case_table_names variable from
its default value. However, you may encounter difficulties if you want to transfer tables between platforms that differ in filesystem case
sensitivity. For example, on Unix, you can have two different tables named my_table and MY_TABLE, but on Windows these two
names are considered identical. To avoid data transfer problems arising from lettercase of database or table names, you have two op-
tions:

• Use lower_case_table_names=1 on all systems. The main disadvantage with this is that when you use SHOW TABLES or
SHOW DATABASES, you do not see the names in their original lettercase.

• Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on Windows. This preserves the letter-
case of database and table names. The disadvantage of this is that you must ensure that your statements always refer to your data-
base and table names with the correct lettercase on Windows. If you transfer your statements to Unix, where lettercase is significant,
they do not work if the lettercase is incorrect.

Exception: If you are using InnoDB tables and you are trying to avoid these data transfer problems, you should set
lower_case_table_names to 1 on all platforms to force names to be converted to lowercase.

If you plan to set the lower_case_table_names system variable to 1 on Unix, you must first convert your old database and table
names to lowercase before stopping mysqld and restarting it with the new variable setting.

Object names may be considered duplicates if their uppercase forms are equal according to a binary collation. That is true for names of
cursors, conditions, functions, procedures, savepoints, and routine local variables. It is not true for names of columns, constraints, data-
bases, partitions, statements prepared with PREPARE, tables, triggers, users, and user-defined variables.

8.2.3. Mapping of Identifiers to Filenames
There is a correspondence between database and table identifiers and names in the filesystem. For the basic structure, MySQL repres-
ents each database as a directory in the data directory, and each table by one or more files in the appropriate database directory. For the
table format files (.FRM), the data is always stored in this structure and location.

For the data and index files, the exact representation on disk is storage engine specific. These files may be stored in the same location as
the FRM files, or the information may be stored separate file. InnoDB data is stored in the InnoDB data files. If you are using ta-
blespaces with InnoDB, then the specific tablespace files you create are used instead.

Language Structure

600



Before MySQL 5.1.6, there are some limitations on the characters that can be used in identifiers for database objects that correspond to
filesystem objects. For example, pathname separator characters are disallowed, and “.” is disallowed because it begins the extension for
table files.

As of MySQL 5.1.6, any character is legal in database or table identifiers except ASCII NUL (0x00). MySQL encodes any characters
that are problematic in the corresponding filesystem objects when it creates database directories or table files:

• Basic Latin letters (a..zA..Z) and digits (0..9) are encoded as is. Consequently, their case sensitivity directly depends on
filesystem features.

• All other national letters from alphabets that have uppercase/lowercase mapping are encoded as follows:

Code range Pattern Number Used Unused Blocks
-----------------------------------------------------------------------------
00C0..017F [@][0..4][g..z] 5*20= 100 97 3 Latin1 Supplement + Ext A
0370..03FF [@][5..9][g..z] 5*20= 100 88 12 Greek + Coptic
0400..052F [@][g..z][0..6] 20*7= 140 140 137 Cyrillic
0530..058F [@][g..z][7..8] 20*2= 40 38 2 Armenian
2160..217F [@][g..z][9] 20*1= 20 16 4 Number Forms
0180..02AF [@][g..z][a..k] 28*11=220 203 17 Latin Ext B + IPA
1E00..0EFF [@][g..z][l..r] 20*7= 140 136 4 Latin Additional Extended
1F00..1FFF [@][g..z][s..z] 20*8= 160 144 16 Greek Extended
.... .... [@][a..f][g..z] 6*20= 120 0 120 RESERVED
24B6..24E9 [@][@][a..z] 26 26 0 Enclosed Alphanumerics
FF21..FF5A [@][a..z][@] 26 26 0 Full Width forms

One of the bytes in the sequence encodes lettercase. For example: LATIN CAPITAL LETTER A WITH GRAVE is encoded as
@0G, whereas LATIN SMALL LETTER A WITH GRAVE is encoded as @0g. Here the third byte (G or g) indicates lettercase.
(On a case-insensitive filesystem, both letters will be treated as the same.)

For some blocks, such as Cyrillic, the second byte determines lettercase. For other blocks, such as Latin1 Supplement, the third byte
determines lettercase. If two bytes in the sequence are letters (as in Greek Extended), the leftmost letter character stands for letter-
case. All other letter bytes must be in lowercase.

• All non-letter characters, as well as letters from alphabets that do not have uppercase/lowercase mapping (such as Hebrew) are en-
coded using hexadecimal representation using lowercase letters for hex digits a..f:

0x003F -> @003f
0xFFFF -> @ffff

The hexadecimal values correspond to character values in the ucs2 double-byte character set.

On Windows, some names such as nul, prn, and aux cannot be used as filenames because they are reserved as device names. As of
MySQL 5.1.10, these are allowable names in MySQL. They are encoded by appending @@@ to the name when the server creates the
corresponding file or directory. This occurs on all platforms for portability of the corresponding database object between platforms.

If you have databases or tables from a version of MySQL older than 5.1.6 that contain special characters and for which the underlying
directory names or filenames have not been updated to use the new encoding, the server displays their names with a prefix of
#mysql50# in the output from INFORMATION_SCHEMA tables or SHOW statements. For example, if you have a table named a@b
and its name encoding has not been updated, SHOW TABLES displays it like this:

mysql> SHOW TABLES;
+----------------+
| Tables_in_test |
+----------------+
| #mysql50#a@b |
+----------------+

To refer to such a name for which the encoding has not been updated, you must supply the #mysql50# prefix:

mysql> SHOW COLUMNS FROM `a@b`;
ERROR 1146 (42S02): Table 'test.a@b' doesn't exist

mysql> SHOW COLUMNS FROM `#mysql50#a@b`;
+-------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-------+
| i | int(11) | YES | | NULL | |
+-------+---------+------+-----+---------+-------+

Language Structure

601



To update old names to eliminate the need to use the special prefix to refer to them, re-encode them with mysqlcheck. The following
command updates all names to the new encoding:

shell> mysqlcheck --check-upgrade --fix-db-names --fix-table-names --all-databases

To check only specific databases or tables, omit --all-databases and provide the appropriate database or table arguments. For in-
formation about mysqlcheck invocation syntax, see Section 4.5.3, “mysqlcheck — A Table Maintenance and Repair Program”.

Note

The #mysql50# prefix is intended only to be used internally by the server. You should not create databases or tables
with names that use this prefix.

Also, mysqlcheck cannot fix names that contain literal instances of the @ character that is used for encoding special
characters. If you have databases or tables that contain this character, use mysqldump to dump them before upgrading to
MySQL 5.1.6 or later, and then reload the dump file after upgrading.

8.2.4. Function Name Parsing and Resolution
MySQL 5.1 supports built-in (native) functions, user-defined functions (UDFs), and stored functions. This section describes how the
server recognizes whether the name of a built-in function is used as a function call or as an identifier, and how the server determines
which function to use in cases when functions of different types exist with a given name.

Built-In Function Name Parsing

The parser uses default rules for parsing names of built-in functions. These rules can be changed by enabling the IGNORE_SPACE SQL
mode.

When the parser encounters a word that is the name of a built-in function, it must determine whether the name signifies a function call
or is instead a non-expression reference to an identifier such as a table or column name. For example, in the following statements, the
first reference to count is a function call, whereas the second reference is a table name:

SELECT COUNT(*) FROM mytable;
CREATE TABLE count (i INT);

The parser should recognize the name of a built-in function as indicating a function call only when parsing what is expected to be an ex-
pression. That is, in non-expression context, function names are permitted as identifiers.

However, some built-in functions have special parsing or implementation considerations, so the parser uses the following rules by de-
fault to distinguish whether their names are being used as function calls or as identifiers in non-expression context:

• To use the name as a function call in an expression, there must be no whitespace between the name and the following “(” parenthes-
is character.

• Conversely, to use the function name as an identifier, it must not be followed immediately by a parenthesis.

The requirement that function calls be written with no whitespace between the name and the parenthesis applies only to the built-in
functions that have special considerations. COUNT is one such name. The exact list of function names for which following whitespace
determines their interpretation are those listed in the sql_functions[] array of the sql/lex.h source file. Before MySQL 5.1,
these are are rather numerous (about 200), so you may find it easiest to treat the no-whitespace requirement as applying to all function
calls. In MySQL 5.1, parser improvements reduce to about 30 the number of affected function names.

For functions not listed in the sql_functions[]) array, whitespace does not matter. They are interpreted as function calls only
when used in expression context and may be used freely as identifiers otherwise. ASCII is one such name. However, for these non-
affected function names, interpretation may vary in expression context: func_name () is interpreted as a built-in function if there is
one with the given name; if not, func_name () is interpreted as a user-defined function or stored function if one exists with that
name.

The IGNORE_SPACE SQL mode can be used to modify how the parser treats function names that are whitespace-sensitive:

• With IGNORE_SPACE disabled, the parser interprets the name as a function call when there is no whitespace between the name and
the following parenthesis. This occurs even when the function name is used in non-expression context:

Language Structure

602



mysql> CREATE TABLE count(i INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'count(i INT)'

To eliminate the error and cause the name to be treated as an identifier, either use whitespace following the name or write it as a
quoted identifier (or both):

CREATE TABLE count (i INT);
CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

• With IGNORE_SPACE enabled, the parser loosens the requirement that there be no whitespace between the function name and the
following parenthesis. This provides more flexibility in writing function calls. For example, either of the following function calls are
legal:

SELECT COUNT(*) FROM mytable;
SELECT COUNT (*) FROM mytable;

However, enabling IGNORE_SPACE also has the side effect that the parser treats the affected function names as reserved words
(see Section 8.3, “Reserved Words”). This means that a space following the name no longer signifies its use as an identifier. The
name can be used in function calls with or without following whitespace, but causes a syntax error in non-expression context unless
it is quoted. For example, with IGNORE_SPACE enabled, both of the following statements fail with a syntax error because the pars-
er interprets count as a reserved word:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

To use the function name in non-expression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

To enable the IGNORE_SPACE SQL mode, use this statement:

SET sql_mode = 'IGNORE_SPACE';

IGNORE_SPACE is also enabled by certain other composite modes such as ANSI that include it in their value:

SET sql_mode = 'ANSI';

Check Section 5.1.6, “SQL Modes”, to see which composite modes enable IGNORE_SPACE.

To minimize the dependency of SQL code on the IGNORE_SPACE setting, use these guidelines:

• Avoid creating UDFs or stored functions that have the same name as a built-in function.

• Avoid using function names in non-expression context. For example, these statements use count (one of the affected function
names affected by IGNORE_SPACE), so they fail with or without whitespace following the name if IGNORE_SPACE is enabled:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

If you must use a function name in non-expression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

The number of function names affected by IGNORE_SPACE was reduced significantly in MySQL 5.1.13, from about 200 to about 30.
As of MySQL 5.1.13, only the following functions are still affected by the IGNORE_SPACE setting:

ADDDATE BIT_AND BIT_OR BIT_XOR

Language Structure

603



CAST COUNT CURDATE CURTIME

DATE_ADD DATE_SUB EXTRACT GROUP_CONCAT

MAX MID MIN NOW

POSITION SESSION_USER STD STDDEV

STDDEV_POP STDDEV_SAMP SUBDATE SUBSTR

SUBSTRING SUM SYSDATE SYSTEM_USER

TRIM VARIANCE VAR_POP VAR_SAMP

For earlier versions of MySQL, check the contents of the sql_functions[] array in the sql/lex.h source file to see which func-
tions are affected by IGNORE_SPACE.

Incompatibility warning: The change in MySQL 5.1.13 that reduces the number of function names affected by IGNORE_SPACE im-
proves the consistency of parser operation. However, it also introduces the possibility of incompatibility for old SQL code that relies on
the following conditions:

• IGNORE_SPACE is disabled.

• The presence or absence of whitespace following a function name is used to distinguish between a built-in function and stored func-
tion that have the same name, such as PI() versus PI ().

For functions that are no longer affected by IGNORE_SPACE as of MySQL 5.1.13, that strategy no longer works. Either of the follow-
ing approaches can be used if you have code that is subject to the preceding incompatibility:

• If a stored function has a name that conflicts with a built-in function, refer to the stored function with a schema name qualifier, re-
gardless of whether whitespace is present. For example, write schema_name.PI() or schema_name.PI ().

• Alternatively, rename the stored function to use a non-conflicting name and change invocations of the function to use the new name.

Function Name Resolution

The following rules describe how the server resolves references to function names for function creation and invocation:

• Built-in functions and user-defined functions

As of MySQL 5.1.14, an error occurs if you try to create a UDF with the same name as a built-in function. Before 5.1.14, a UDF can
be created with the same name as a built-in function but the UDF cannot be invoked because the parser resolves invocations of the
function to refer to the built-in function. For example, if you create a UDF named ABS, references to ABS() invoke the built-in
function.

• Built-in functions and stored functions

It is possible to create a stored function with the same name as a built-in function, but to invoke the stored function it is necessary to
qualify it with a schema name. For example, if you create a stored function named PI in the test schema, you invoke it as
test.PI() because the server resolves PI() as a reference to the built-in function. As of 5.1.14, the server creates a warning if
the stored function name collides with a built-in function name. The warning can be displayed with SHOW WARNINGS.

• User-defined functions and stored functions

User-defined functions and stored functions share the same namespace, so you cannot create a UDF and a stored function with the
same name.

The preceding function name resolution rules have implications for upgrading to versions of MySQL that implement new built-in func-
tions:

• If you have already created a user-defined function with a given name and upgrade MySQL to a version that implements a new

Language Structure

604



built-in function with the same name, the UDF becomes inaccessible. To correct this, use DROP FUNCTION to drop the UDF, and
then use CREATE FUNCTION to re-create the UDF with a different non-conflicting name.

• If a new version of MySQL implements a built-in function with the same name as an existing stored function, you have two choices:
Rename the stored function to use a non-conflicting name, or change calls to the function so that they use a schema qualifier (that is,
use schema_name.func_name() syntax).

8.3. Reserved Words
Certain words such as SELECT, DELETE, or BIGINT are reserved and require special treatment for use as identifiers such as table and
column names. This may also be true for the names of built-in functions.

Reserved words are permitted as identifiers if you quote them as described in Section 8.2, “Schema Object Names”:

mysql> CREATE TABLE interval (begin INT, end INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'interval (begin INT, end INT)'

mysql> CREATE TABLE `interval` (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Exception: A word that follows a period in a qualified name must be an identifier, so it need not be quoted even if it is reserved:

mysql> CREATE TABLE mydb.interval (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Names of built-in functions are permitted as identifiers but may require care to be used as such. For example, COUNT is acceptable as a
column name. However, by default, no whitespace is allowed in function invocations between the function name and the following “(”
character. This requirement enables the parser to distinguish whether the name is used in a function call or in non-function context. For
further detail on recognition of function names, see Section 8.2.4, “Function Name Parsing and Resolution”.

The words in the following table are explicitly reserved in MySQL 5.1. At some point, you might upgrade to a higher version, so it's a
good idea to have a look at future reserved words, too. You can find these in the manuals that cover higher versions of MySQL. Most of
the words in the table are forbidden by standard SQL as column or table names (for example, GROUP). A few are reserved because
MySQL needs them and uses a yacc parser. A reserved word can be used as an identifier if you quote it.

For a more detailed list of reserved words, including differences between versions, see Reserved Words in MySQL 5.1.

ACCESSIBLE ADD ALL

ALTER ANALYZE AND

AS ASC ASENSITIVE

BEFORE BETWEEN BIGINT

BINARY BLOB BOTH

BY CALL CASCADE

CASE CHANGE CHAR

CHARACTER CHECK COLLATE

COLUMN CONDITION CONSTRAINT

CONTINUE CONVERT CREATE

CROSS CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATABASE DATABASES DAY_HOUR

DAY_MICROSECOND DAY_MINUTE DAY_SECOND

DEC DECIMAL DECLARE

DEFAULT DELAYED DELETE

DESC DESCRIBE DETERMINISTIC

DISTINCT DISTINCTROW DIV

Language Structure

605

http://dev.mysql.com/doc/mysqld-version-reference/en/mysqld-version-reference-reservedwords-5-1.html


DOUBLE DROP DUAL

EACH ELSE ELSEIF

ENCLOSED ESCAPED EXISTS

EXIT EXPLAIN FALSE

FETCH FLOAT FLOAT4

FLOAT8 FOR FORCE

FOREIGN FROM FULLTEXT

GRANT GROUP HAVING

HIGH_PRIORITY HOUR_MICROSECOND HOUR_MINUTE

HOUR_SECOND IF IGNORE

IN INDEX INFILE

INNER INOUT INSENSITIVE

INSERT INT INT1

INT2 INT3 INT4

INT8 INTEGER INTERVAL

INTO IS ITERATE

JOIN KEY KEYS

KILL LEADING LEAVE

LEFT LIKE LIMIT

LINEAR LINES LOAD

LOCALTIME LOCALTIMESTAMP LOCK

LONG LONGBLOB LONGTEXT

LOOP LOW_PRIORITY MASTER_SSL_VERIFY_SERVER_CERT

MATCH MEDIUMBLOB MEDIUMINT

MEDIUMTEXT MIDDLEINT MINUTE_MICROSECOND

MINUTE_SECOND MOD MODIFIES

NATURAL NOT NO_WRITE_TO_BINLOG

NULL NUMERIC ON

OPTIMIZE OPTION OPTIONALLY

OR ORDER OUT

OUTER OUTFILE PRECISION

PRIMARY PROCEDURE PURGE

RANGE READ READS

READ_ONLY READ_WRITE REAL

REFERENCES REGEXP RELEASE

RENAME REPEAT REPLACE

REQUIRE RESTRICT RETURN

REVOKE RIGHT RLIKE

SCHEMA SCHEMAS SECOND_MICROSECOND

SELECT SENSITIVE SEPARATOR

SET SHOW SMALLINT

SPATIAL SPECIFIC SQL

SQLEXCEPTION SQLSTATE SQLWARNING

SQL_BIG_RESULT SQL_CALC_FOUND_ROWS SQL_SMALL_RESULT

SSL STARTING STRAIGHT_JOIN

Language Structure

606



TABLE TERMINATED THEN

TINYBLOB TINYINT TINYTEXT

TO TRAILING TRIGGER

TRUE UNDO UNION

UNIQUE UNLOCK UNSIGNED

UPDATE USAGE USE

USING UTC_DATE UTC_TIME

UTC_TIMESTAMP VALUES VARBINARY

VARCHAR VARCHARACTER VARYING

WHEN WHERE WHILE

WITH WRITE XOR

YEAR_MONTH ZEROFILL

The following are new reserved words in MySQL 5.1:

ACCESSIBLE LINEAR MASTER_SSL_VERIFY_SERVER_CERT

RANGE READ_ONLY READ_WRITE

MySQL allows some keywords to be used as unquoted identifiers because many people previously used them. Examples are those in
the following list:

• ACTION

• BIT

• DATE

• ENUM

• NO

• TEXT

• TIME

• TIMESTAMP

8.4. User-Defined Variables
You can store a value in a user-defined variable and then refer to it later. This enables you to pass values from one statement to another.
User-defined variables are connection-specific. That is, a user variable defined by one client cannot be seen or used by other clients. All
variables for a given client connection are automatically freed when that client exits.

User variables are written as @var_name, where the variable name var_name may consist of alphanumeric characters from the cur-
rent character set, “.”, “_”, and “$”. The default character set is latin1 (cp1252 West European). This may be changed with the -
-character-set-server option to mysqld. See Section 9.2, “The Character Set Used for Data and Sorting”. A user variable
name can contain other characters if you quote it as a string or identifier (for example, @'my-var', @"my-var", or @`my-var`).

Note: User variable names not case sensitive in MySQL 5.0 and up.

One way to set a user-defined variable is by issuing a SET statement:

SET @var_name = expr [, @var_name = expr] ...

For SET, either = or := can be used as the assignment operator. The expr assigned to each variable can evaluate to an integer, decim-

Language Structure

607



al, floating-point, string, or NULL value. However, if the value of the variable is selected in a result set, it is returned to the client as a
string. Assignment of decimal and real values does not preserve the precision or scale of the value.

You can also assign a value to a user variable in statements other than SET. In this case, the assignment operator must be := and not =
because = is treated as a comparison operator in non-SET statements:

mysql> SET @t1=0, @t2=0, @t3=0;
mysql> SELECT @t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;
+----------------------+------+------+------+
| @t1:=(@t2:=1)+@t3:=4 | @t1 | @t2 | @t3 |
+----------------------+------+------+------+
| 5 | 5 | 1 | 4 |
+----------------------+------+------+------+

User variables may be used in contexts where expressions are allowed. This does not currently include contexts that explicitly require a
literal value, such as in the LIMIT clause of a SELECT statement, or the IGNORE N LINES clause of a LOAD DATA statement.

If a user variable is assigned a string value, it has the same character set and collation as the string. The coercibility of user variables is
implicit. (This is the same coercibility as for table column values.)

If you refer to a variable that has not been initialized, it has a value of NULL and a type of string.

Bit values assigned to user variables are treated as binary strings. To assign a bit value as a number to a user variable, use CAST() or
+0:

mysql> SET @v1 = b'1000001';
mysql> SET @v2 = CAST(b'1000001' AS UNSIGNED), @v3 = b'1000001'+0;
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

Note

In a SELECT statement, each expression is evaluated only when sent to the client. This means that in a HAVING, GROUP
BY, or ORDER BY clause, you cannot refer to an expression that involves variables that are set in the SELECT list. For ex-
ample, the following statement does not work as expected:

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;

The reference to b in the HAVING clause refers to an alias for an expression in the SELECT list that uses @aa. This does not work as
expected: @aa contains the value of id from the previous selected row, not from the current row.

The order of evaluation for user variables is undefined and may change based on the elements contained within a given query. In SE-
LECT @a, @a := @a+1 ..., you might think that MySQL will evaluate @a first and then do an assignment second, but changing
the query (for example, by adding a GROUP BY, HAVING, or ORDER BY clause) may change the order of evaluation.

The general rule is never to assign a value to a user variable in one part of a statement and use the same variable in some other part of
the same statement. You might get the results you expect, but this is not guaranteed.

Another issue with setting a variable and using it in the same statement is that the default result type of a variable is based on the type of
the variable at the start of the statement. The following example illustrates this:

mysql> SET @a='test';
mysql> SELECT @a,(@a:=20) FROM tbl_name;

For this SELECT statement, MySQL reports to the client that column one is a string and converts all accesses of @a to strings, even
though @a is set to a number for the second row. After the SELECT statement executes, @a is regarded as a number for the next state-
ment.

To avoid problems with this behavior, either do not set and use the same variable within a single statement, or else set the variable to 0,
0.0, or '' to define its type before you use it.

A user variable cannot be used directly in an SQL statement as an identifier or as part of an identifier, even if it is set off with backticks.
This is shown in the following example:

mysql> SELECT c1 FROM t;

Language Structure

608



+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> SET @col = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| c1 |
+------+
1 row in set (0.00 sec)

mysql> SELECT `@col` FROM t;
ERROR 1054 (42S22): UNKNOWN COLUMN '@COL' IN 'FIELD LIST'

mysql> SET @col = "`c1`";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| `c1` |
+------+
1 row in set (0.00 sec)

One way to work around this problem is to assemble a string for the query in application code, as shown here using PHP 5:

<?php
$mysqli = new mysqli("localhost", "user", "pass", "test");

if( mysqli_connect_errno() )
die("Connection failed: %s\n", mysqli_connect_error());

$col = "c1";

$query = "SELECT $col FROM t";

$result = $mysqli->query($query);

while($row = $result->fetch_assoc())
{
echo "<p>" . $row["$col"] . "</p>\n";

}

$result->close();

$mysqli->close();
?>

(Assembling an SQL statement in this fashion is sometimes known as “Dynamic SQL”.) It is also possible to perform such operations
using prepared statements, without the need to concatenate strings of SQL in client code. This example illustrates how this can be done:

mysql> SET @c = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SET @s = CONCAT("SELECT ", @c, " FROM t");
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE stmt FROM @s;
Query OK, 0 rows affected (0.04 sec)
Statement prepared

mysql> EXECUTE stmt;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> DEALLOCATE PREPARE stmt;
Query OK, 0 rows affected (0.00 sec)

Language Structure

609



You cannot use a placeholder for an identifier (such as the name of a database, table, or column) in an SQL prepared statement. See
Section 12.7, “SQL Syntax for Prepared Statements”, for more information.

8.5. Comment Syntax
MySQL Server supports three comment styles:

• From a “#” character to the end of the line.

• From a “-- ” sequence to the end of the line. In MySQL, the “-- ” (double-dash) comment style requires the second dash to be
followed by at least one whitespace or control character (such as a space, tab, newline, and so on). This syntax differs slightly from
standard SQL comment syntax, as discussed in Section 1.8.5.6, “'--' as the Start of a Comment”.

• From a /* sequence to the following */ sequence, as in the C programming language. This syntax allows a comment to extend
over multiple lines because the beginning and closing sequences need not be on the same line.

The following example demonstrates all three comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line
mysql> SELECT 1+1; -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+
/*
this is a
multiple-line comment
*/
1;

Nested comments are not supported.

MySQL Server supports some variants of C-style comments. These enable you to write code that includes MySQL extensions, but is
still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other SQL statement, but other SQL serv-
ers will ignore the extensions. For example, MySQL Server recognizes the STRAIGHT_JOIN keyword in the following statement, but
other servers will not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the “!” character, the syntax within the comment is executed only if the MySQL version is greater
than or equal to the specified version number. The TEMPORARY keyword in the following comment is executed only by servers from
MySQL 3.23.02 or higher:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

The comment syntax just described applies to how the mysqld server parses SQL statements. The mysql client program also per-
forms some parsing of statements before sending them to the server. (It does this to determine statement boundaries within a multiple-
statement input line.)

The use of short-form mysql commands such as \C within multi-line /* ... */ comments is not supported.

Language Structure

610



Chapter 9. Internationalization and Localization
This chapter covers issues of internationalization (MySQL's capabilities for adapting to local use) and localization (selecting particular
local conventions):

• MySQL support for character sets in SQL statements.

• How to configure the server to support different character sets.

• Selecting the language for error messages.

• How to set the server's time zone and enable per-connection time zone support.

• Selecting the locale for day and month names.

9.1. Character Set Support
MySQL includes character set support that enables you to store data using a variety of character sets and perform comparisons accord-
ing to a variety of collations. You can specify character sets at the server, database, table, and column level. MySQL supports the use of
character sets for the MyISAM, MEMORY, NDBCluster, and InnoDB storage engines.

This chapter discusses the following topics:

• What are character sets and collations?

• The multiple-level default system for character set assignment

• Syntax for specifying character sets and collations

• Affected functions and operations

• Unicode support

• The character sets and collations that are available, with notes

Character set issues affect not only data storage, but also communication between client programs and the MySQL server. If you want
the client program to communicate with the server using a character set different from the default, you'll need to indicate which one. For
example, to use the utf8 Unicode character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about character set-related issues in client/server communication, see Section 9.1.4, “Connection Character Sets
and Collations”.

9.1.1. Character Sets and Collations in General
A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters in a character set. Let's make
the distinction clear with an example of an imaginary character set.

Suppose that we have an alphabet with four letters: “A”, “B”, “a”, “b”. We give each letter a number: “A” = 0, “B” = 1, “a” = 2, “b” =
3. The letter “A” is a symbol, the number 0 is the encoding for “A”, and the combination of all four letters and their encodings is a char-
acter set.

Suppose that we want to compare two string values, “A” and “B”. The simplest way to do this is to look at the encodings: 0 for “A” and
1 for “B”. Because 0 is less than 1, we say “A” is less than “B”. What we've just done is apply a collation to our character set. The colla-
tion is a set of rules (only one rule in this case): “compare the encodings.” We call this simplest of all possible collations a binary colla-
tion.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would have at least two rules: (1) treat the

611



lowercase letters “a” and “b” as equivalent to “A” and “B”; (2) then compare the encodings. We call this a case-insensitive collation.
It's a little more complex than a binary collation.

In real life, most character sets have many characters: not just “A” and “B” but whole alphabets, sometimes multiple alphabets or eastern
writing systems with thousands of characters, along with many special symbols and punctuation marks. Also in real life, most collations
have many rules, not just for whether to distinguish lettercase, but also for whether to distinguish accents (an “accent” is a mark at-
tached to a character as in German “Ö”), and for multiple-character mappings (such as the rule that “Ö” = “OE” in one of the two Ger-
man collations).

MySQL can do these things for you:

• Store strings using a variety of character sets

• Compare strings using a variety of collations

• Mix strings with different character sets or collations in the same server, the same database, or even the same table

• Allow specification of character set and collation at any level

In these respects, MySQL is far ahead of most other database management systems. However, to use these features effectively, you
need to know what character sets and collations are available, how to change the defaults, and how they affect the behavior of string op-
erators and functions.

9.1.2. Character Sets and Collations in MySQL
The MySQL server can support multiple character sets. To list the available character sets, use the SHOW CHARACTER SET state-
ment. A partial listing follows. For more complete information, see Section 9.1.11, “Character Sets and Collations That MySQL Sup-
ports”.

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
| dec8 | DEC West European | dec8_swedish_ci | 1 |
| cp850 | DOS West European | cp850_general_ci | 1 |
| hp8 | HP West European | hp8_english_ci | 1 |
| koi8r | KOI8-R Relcom Russian | koi8r_general_ci | 1 |
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
| swe7 | 7bit Swedish | swe7_swedish_ci | 1 |
| ascii | US ASCII | ascii_general_ci | 1 |
| ujis | EUC-JP Japanese | ujis_japanese_ci | 3 |
| sjis | Shift-JIS Japanese | sjis_japanese_ci | 2 |
| hebrew | ISO 8859-8 Hebrew | hebrew_general_ci | 1 |
| tis620 | TIS620 Thai | tis620_thai_ci | 1 |
| euckr | EUC-KR Korean | euckr_korean_ci | 2 |
| koi8u | KOI8-U Ukrainian | koi8u_general_ci | 1 |
| gb2312 | GB2312 Simplified Chinese | gb2312_chinese_ci | 2 |
| greek | ISO 8859-7 Greek | greek_general_ci | 1 |
| cp1250 | Windows Central European | cp1250_general_ci | 1 |
| gbk | GBK Simplified Chinese | gbk_chinese_ci | 2 |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |
...

Any given character set always has at least one collation. It may have several collations. To list the collations for a character set, use the
SHOW COLLATION statement. For example, to see the collations for the latin1 (cp1252 West European) character set, use this state-
ment to find those collation names that begin with latin1:

mysql> SHOW COLLATION LIKE 'latin1%';
+---------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+---------+----+---------+----------+---------+
| latin1_german1_ci | latin1 | 5 | | | 0 |
| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 1 |
| latin1_danish_ci | latin1 | 15 | | | 0 |
| latin1_german2_ci | latin1 | 31 | | Yes | 2 |
| latin1_bin | latin1 | 47 | | Yes | 1 |
| latin1_general_ci | latin1 | 48 | | | 0 |
| latin1_general_cs | latin1 | 49 | | | 0 |
| latin1_spanish_ci | latin1 | 94 | | | 0 |
+---------------------+---------+----+---------+----------+---------+

Internationalization and Localization

612



The latin1 collations have the following meanings:

Collation Meaning

latin1_german1_ci German DIN-1

latin1_swedish_ci Swedish/Finnish

latin1_danish_ci Danish/Norwegian

latin1_german2_ci German DIN-2

latin1_bin Binary according to latin1 encoding

latin1_general_ci Multilingual (Western European)

latin1_general_cs Multilingual (ISO Western European), case sensitive

latin1_spanish_ci Modern Spanish

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has one collation that is the default collation. For example, the default collation for latin1 is lat-
in1_swedish_ci. The output for SHOW CHARACTER SET indicates which collation is the default for each displayed character
set.

• There is a convention for collation names: They start with the name of the character set with which they are associated, they usually
include a language name, and they end with _ci (case insensitive), _cs (case sensitive), or _bin (binary).

In cases where a character set has multiple collations, it might not be clear which collation is most suitable for a given application. To
avoid choosing the wrong collation, it can be helpful to perform some comparisons with representative data values to make sure that a
given collation sorts values the way you expect.

Collation-Charts.Org is a useful site for information that shows how one collation compares to another.

9.1.3. Specifying Character Sets and Collations
There are default settings for character sets and collations at four levels: server, database, table, and column. The description in the fol-
lowing sections may appear complex, but it has been found in practice that multiple-level defaulting leads to natural and obvious results.

CHARACTER SET is used in clauses that specify a character set. CHARSET may be used as a synonym for CHARACTER SET.

Character set issues affect not only data storage, but also communication between client programs and the MySQL server. If you want
the client program to communicate with the server using a character set different from the default, you'll need to indicate which one. For
example, to use the utf8 Unicode character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about character set-related issues in client/server communication, see Section 9.1.4, “Connection Character Sets
and Collations”.

9.1.3.1. Server Character Set and Collation

MySQL Server has a server character set and a server collation. These can be set at server startup on the command line or in an option
file and changed at runtime.

Initially, the server character set and collation depend on the options that you use when you start mysqld. You can use -
-character-set-server for the character set. Along with it, you can add --collation-server for the collation. If you
don't specify a character set, that is the same as saying --character-set-server=latin1. If you specify only a character set
(for example, latin1) but not a collation, that is the same as saying --character-set-server=latin1 -
-collation-server=latin1_swedish_ci because latin1_swedish_ci is the default collation for latin1. Therefore,
the following three commands all have the same effect:

shell> mysqld

Internationalization and Localization

613

http://www.collation-charts.org/


shell> mysqld --character-set-server=latin1
shell> mysqld --character-set-server=latin1 \

--collation-server=latin1_swedish_ci

One way to change the settings is by recompiling. If you want to change the default server character set and collation when building
from sources, use: --with-charset and --with-collation as arguments for configure. For example:

shell> ./configure --with-charset=latin1

Or:

shell> ./configure --with-charset=latin1 \
--with-collation=latin1_german1_ci

Both mysqld and configure verify that the character set/collation combination is valid. If not, each program displays an error mes-
sage and terminates.

The server character set and collation are used as default values if the database character set and collation are not specified in CREATE
DATABASE statements. They have no other purpose.

The current server character set and collation can be determined from the values of the character_set_server and colla-
tion_server system variables. These variables can be changed at runtime.

9.1.3.2. Database Character Set and Collation

Every database has a database character set and a database collation. The CREATE DATABASE and ALTER DATABASE statements
have optional clauses for specifying the database character set and collation:

CREATE DATABASE db_name
[[DEFAULT] CHARACTER SET charset_name]
[[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name
[[DEFAULT] CHARACTER SET charset_name]
[[DEFAULT] COLLATE collation_name]

The keyword SCHEMA can be used instead of DATABASE.

All database options are stored in a text file named db.opt that can be found in the database directory.

The CHARACTER SET and COLLATE clauses make it possible to create databases with different character sets and collations on the
same MySQL server.

Example:

CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation in the following manner:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and collation Y.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default collation.

• If COLLATE Y was specified without CHARACTER SET, then the character set associated with Y and collation Y.

• Otherwise, the server character set and server collation.

The database character set and collation are used as default values if the table character set and collation are not specified in CREATE
TABLE statements. The database character set also is used by LOAD DATA INFILE. The character set and collation have no other
purposes.

The character set and collation for the default database can be determined from the values of the character_set_database and
collation_database system variables. The server sets these variables whenever the default database changes. If there is no de-
fault database, the variables have the same value as the corresponding server-level system variables, character_set_server and
collation_server.

Internationalization and Localization

614



9.1.3.3. Table Character Set and Collation

Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE statements have optional clauses
for specifying the table character set and collation:

CREATE TABLE tbl_name (column_list)
[[DEFAULT] CHARACTER SET charset_name] [COLLATE collation_name]]

ALTER TABLE tbl_name
[[DEFAULT] CHARACTER SET charset_name] [COLLATE collation_name]

Example:

CREATE TABLE t1 ( ... ) CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and collation Y.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default collation.

• If COLLATE Y was specified without CHARACTER SET, then the character set associated with Y and collation Y.

• Otherwise, the database character set and collation.

The table character set and collation are used as default values if the column character set and collation are not specified in individual
column definitions. The table character set and collation are MySQL extensions; there are no such things in standard SQL.

9.1.3.4. Column Character Set and Collation

Every “character” column (that is, a column of type CHAR, VARCHAR, or TEXT) has a column character set and a column collation.
Column definition syntax for CREATE TABLE and ALTER TABLE has optional clauses for specifying the column character set and
collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)
[CHARACTER SET charset_name] [COLLATE collation_name]

Examples:

CREATE TABLE Table1
(

column1 VARCHAR(5) CHARACTER SET latin1 COLLATE latin1_german1_ci
);

ALTER TABLE Table1 MODIFY
column1 VARCHAR(5) CHARACTER SET latin1 COLLATE latin1_swedish_ci;

If you convert a column from one character set to another, ALTER TABLE attempts to map the data values, but if the character sets are
incompatible, there may be data loss.

MySQL chooses the column character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and collation Y are used.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default collation are used.

• If COLLATE Y was specified without CHARACTER SET, then the character set associated with Y and collation Y.

• Otherwise, the table character set and collation are used.

The CHARACTER SET and COLLATE clauses are standard SQL.

9.1.3.5. Character String Literal Character Set and Collation

Internationalization and Localization

615



Every character string literal has a character set and a collation.

A character string literal may have an optional character set introducer and COLLATE clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT 'string';
SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

For the simple statement SELECT 'string', the string has the character set and collation defined by the charac-
ter_set_connection and collation_connection system variables.

The _charset_name expression is formally called an introducer. It tells the parser, “the string that is about to follow uses character
set X.” Because this has confused people in the past, we emphasize that an introducer does not change the string to the introducer char-
acter set like CONVERT() would do. It does not change the string's value, although padding may occur. The introducer is just a signal.
An introducer is also legal before standard hex literal and numeric hex literal notation (x'literal' and 0xnnnn).

Examples:

SELECT _latin1 x'AABBCC';
SELECT _latin1 0xAABBCC;

MySQL determines a literal's character set and collation in the following manner:

• If both _X and COLLATE Y were specified, then character set X and collation Y are used.

• If _X is specified but COLLATE is not specified, then character set X and its default collation are used.

• Otherwise, the character set and collation given by the character_set_connection and collation_connection sys-
tem variables are used.

Examples:

• A string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

• A string with latin1 character set and its default collation (that is, latin1_swedish_ci):

SELECT _latin1'Müller';

• A string with the connection default character set and collation:

SELECT 'Müller';

Character set introducers and the COLLATE clause are implemented according to standard SQL specifications.

An introducer indicates the character set for the following string, but does not change now how the parser performs escape processing
within the string. Escapes are always interpreted by the parser according to the character set given by charac-
ter_set_connection.

The following examples show that escape processing occurs using character_set_connection even in the presence of an intro-
ducer. The examples use SET NAMES (which changes character_set_connection, as discussed in Section 9.1.4, “Connection
Character Sets and Collations”), and display the resulting strings using the HEX() function so that the exact string contents can be seen.

Example 1:

mysql> SET NAMES latin1;

Internationalization and Localization

616



Query OK, 0 rows affected (0.01 sec)

mysql> SELECT HEX('à\n'), HEX(_sjis'à\n');
+------------+-----------------+
| HEX('à\n') | HEX(_sjis'à\n') |
+------------+-----------------+
| E00A | E00A |
+------------+-----------------+
1 row in set (0.00 sec)

Here, “à” (hex value E0) is followed by “\n”, the escape sequence for newline. The escape sequence is interpreted using the charac-
ter_set_connection value of latin1 to produce a literal newline (hex value 0A). This happens even for the second string. That
is, the introducer of _sjis does not affect the parser's escape processing.

Example 2:

mysql> SET NAMES sjis;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT HEX('à\n'), HEX(_latin1'à\n');
+------------+-------------------+
| HEX('à\n') | HEX(_latin1'à\n') |
+------------+-------------------+
| E05C6E | E05C6E |
+------------+-------------------+
1 row in set (0.04 sec)

Here, character_set_connection is sjis, a character set in which the sequence of “à” followed by “\” (hex values 05 and
5C) is a valid multi-byte character. Hence, the first two bytes of the string are interpreted as a single sjis character, and the “\” is not
intrepreted as an escape character. The following “n” (hex value 6E) is not interpreted as part of an escape sequence. This is true even
for the second string; the introducer of _latin1 does not affect escape processing.

9.1.3.6. National Character Set

Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should use some predefined character set.
MySQL 5.1 uses utf8 as this predefined character set. For example, these data type declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N'literal' (or n'literal') to create a string in the national character set. These statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For information on upgrading character sets to MySQL 5.1 from versions prior to 4.1, see the MySQL 3.23, 4.0, 4.1 Reference Manual.

9.1.3.7. Examples of Character Set and Collation Assignment

The following examples show how MySQL determines default character set and collation values.

Example 1: Table and Column Definition

CREATE TABLE t1
(

c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The definition is explicit, so that's
straightforward. Notice that there is no problem with storing a latin1 column in a latin2 table.

Internationalization and Localization

617



Example 2: Table and Column Definition

CREATE TABLE t1
(

c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Although it might seem natural, the default collation
is not taken from the table level. Instead, because the default collation for latin1 is always latin1_swedish_ci, column c1 has
a collation of latin1_swedish_ci (not latin1_danish_ci).

Example 3: Table and Column Definition

CREATE TABLE t1
(

c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL checks the table level to determine
the column character set and collation. Consequently, the character set for column c1 is latin1 and its collation is lat-
in1_danish_ci.

Example 4: Database, Table, and Column Definition

CREATE DATABASE d1
DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_ci;

USE d1;
CREATE TABLE t1
(

c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a character set and a collation at the ta-
ble level. In this circumstance, MySQL checks the database level to determine the table settings, which thereafter become the column
settings.) Consequently, the character set for column c1 is latin2 and its collation is latin2_czech_ci.

9.1.3.8. Compatibility with Other DBMSs

For MaxDB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);

9.1.4. Connection Character Sets and Collations
Several character set and collation system variables relate to a client's interaction with the server. Some of these have been mentioned in
earlier sections:

• The server character set and collation can be determined from the values of the character_set_server and colla-
tion_server system variables.

• The character set and collation of the default database can be determined from the values of the character_set_database
and collation_database system variables.

Additional character set and collation system variables are involved in handling traffic for the connection between a client and the serv-
er. Every client has connection-related character set and collation system variables.

Consider what a “connection” is: It's what you make when you connect to the server. The client sends SQL statements, such as queries,
over the connection to the server. The server sends responses, such as result sets, over the connection back to the client. This leads to
several questions about character set and collation handling for client connections, each of which can be answered in terms of system
variables:

• What character set is the statement in when it leaves the client?

Internationalization and Localization

618



The server takes the character_set_client system variable to be the character set in which statements are sent by the client.

• What character set should the server translate a statement to after receiving it?

For this, the server uses the character_set_connection and collation_connection system variables. It converts
statements sent by the client from character_set_client to character_set_connection (except for string literals
that have an introducer such as _latin1 or _utf8). collation_connection is important for comparisons of literal strings.
For comparisons of strings with column values, collation_connection does not matter because columns have their own col-
lation, which has a higher collation precedence.

• What character set should the server translate to before shipping result sets or error messages back to the client?

The character_set_results system variable indicates the character set in which the server returns query results to the client.
This includes result data such as column values, and result metadata such as column names.

You can fine-tune the settings for these variables, or you can depend on the defaults (in which case, you can skip the rest of this sec-
tion).

There are two statements that affect the connection character sets:

SET NAMES 'charset_name'
SET CHARACTER SET charset_name

SET NAMES indicates what character set the client will use to send SQL statements to the server. Thus, SET NAMES 'cp1251' tells
the server “future incoming messages from this client are in character set cp1251.” It also specifies the character set that the server
should use for sending results back to the client. (For example, it indicates what character set to use for column values if you use a SE-
LECT statement.)

A SET NAMES 'x' statement is equivalent to these three statements:

SET character_set_client = x;
SET character_set_results = x;
SET character_set_connection = x;

Setting character_set_connection to x also sets collation_connection to the default collation for x. It is not necessary
to set that collation explicitly. To specify a particular collation for the character sets, use the optional COLLATE clause:

SET NAMES 'charset_name' COLLATE 'collation_name'

SET CHARACTER SET is similar to SET NAMES but sets character_set_connection and collation_connection to
character_set_database and collation_database. A SET CHARACTER SET x statement is equivalent to these three
statements:

SET character_set_client = x;
SET character_set_results = x;
SET collation_connection = @@collation_database;

Setting collation_connection also sets character_set_connection to the character set associated with the collation
(equivalent to executing SET character_set_connection = @@character_set_database). It is not necessary to set
character_set_connection explicitly.

When a client connects, it sends to the server the name of the character set that it wants to use. The server uses the name to set the
character_set_client, character_set_results, and character_set_connection system variables. In effect, the
server performs a SET NAMES operation using the character set name.

With the mysql client, it is not necessary to execute SET NAMES every time you start up if you want to use a character set different
from the default. You can add the --default-character-set option setting to your mysql statement line, or in your option file.
For example, the following option file setting changes the three character set variables set to koi8r each time you invoke mysql:

[mysql]
default-character-set=koi8r

If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is preferable to use the charset com-

Internationalization and Localization

619



mand rather than SET NAMES. For example:

mysql> charset utf8
Charset changed

The charset command issues a SET NAMES statement, and also changes the default character set that is used if mysql reconnects
after the connection has dropped.

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not say SET NAMES or SET
CHARACTER SET, then for SELECT column1 FROM t, the server sends back all the values for column1 using the character set
that the client specified when it connected. On the other hand, if you say SET NAMES 'latin1' or SET CHARACTER SET lat-
in1 before issuing the SELECT statement, the server converts the latin2 values to latin1 just before sending results back. Con-
version may be lossy if there are characters that are not in both character sets.

If you do not want the server to perform any conversion of result sets, set character_set_results to NULL:

SET character_set_results = NULL;

Note

ucs2 cannot be used as a client character set, which means that it does not work for SET NAMES or SET CHARACTER
SET.

To see the values of the character set and collation system variables that apply to your connection, use these statements:

SHOW VARIABLES LIKE 'character_set%';
SHOW VARIABLES LIKE 'collation%';

You must also consider the environment within which your MySQL application executes. For example, if you will send statements us-
ing UTF-8 text taken from a file that you create in an editor, you should edit the file with the locale of your environment set to UTF-8 so
that the file's encoding is correct and so that the operating system handles it correctly. For a script that executes in a Web environment,
the script must handle the character encoding properly for its interaction with the MySQL server, and it must generate pages that cor-
rectly indicate the encoding so that browsers know now to display the content of the pages.

9.1.5. Collation Issues
The following sections discuss various aspects of character set collations.

9.1.5.1. Using COLLATE in SQL Statements

With the COLLATE clause, you can override whatever the default collation is for a comparison. COLLATE may be used in various parts
of SQL statements. Here are some examples:

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

Internationalization and Localization

620



• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

• With WHERE:

SELECT *
FROM t1
WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;

SELECT *
FROM t1
WHERE k LIKE _latin1 'Müller' COLLATE latin1_german2_ci;

• With HAVING:

SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;

9.1.5.2. COLLATE Clause Precedence

The COLLATE clause has high precedence (higher than ||), so the following two expressions are equivalent:

x || y COLLATE z
x || (y COLLATE z)

9.1.5.3. BINARY Operator

The BINARY operator casts the string following it to a binary string. This is an easy way to force a comparison to be done byte by byte
rather than character by character. BINARY also causes trailing spaces to be significant.

mysql> SELECT 'a' = 'A';
-> 1

mysql> SELECT BINARY 'a' = 'A';
-> 0

mysql> SELECT 'a' = 'a ';
-> 1

mysql> SELECT BINARY 'a' = 'a ';
-> 0

BINARY str is shorthand for CAST(str AS BINARY).

The BINARY attribute in character column definitions has a different effect. A character column defined with the BINARY attribute is
assigned the binary collation of the column's character set. Every character set has a binary collation. For example, the binary collation
for the latin1 character set is latin1_bin, so if the table default character set is latin1, these two column definitions are equi-
valent:

CHAR(10) BINARY
CHAR(10) CHARACTER SET latin1 COLLATE latin1_bin

The effect of BINARY as a column attribute differs from its effect prior to MySQL 4.1. Formerly, BINARY resulted in a column that
was treated as a binary string. A binary string is a string of bytes that has no character set or collation, which differs from a non-binary
character string that has a binary collation. For both types of strings, comparisons are based on the numeric values of the string unit, but
for non-binary strings the unit is the character and some character sets allow multi-byte characters. Section 10.4.2, “The BINARY and
VARBINARY Types”.

The use of CHARACTER SET binary in the definition of a CHAR, VARCHAR, or TEXT column causes the column to be treated as a
binary data type. For example, the following pairs of definitions are equivalent:

CHAR(10) CHARACTER SET binary
BINARY(10)

Internationalization and Localization

621



VARCHAR(10) CHARACTER SET binary
VARBINARY(10)

TEXT CHARACTER SET binary
BLOB

9.1.5.4. Some Special Cases Where the Collation Determination Is Tricky

In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison operation. For example, in the fol-
lowing cases, it should be clear that the collation is the collation of column x:

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, when multiple operands are involved, there can be ambiguity. For example:

SELECT x FROM T WHERE x = 'Y';

Should this query use the collation of the column x, or of the string literal 'Y'?

Standard SQL resolves such questions using what used to be called “coercibility” rules. Basically, this means: Both x and 'Y' have
collations, so which collation takes precedence? This can be difficult to resolve, but the following rules cover most situations:

• An explicit COLLATE clause has a coercibility of 0. (Not coercible at all.)

• The concatenation of two strings with different collations has a coercibility of 1.

• The collation of a column or a stored routine parameter or local variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as USER() or VERSION()) has a coercibility of 3.

• A literal's collation has a coercibility of 4.

• NULL or an expression that is derived from NULL has a coercibility of 5.

The preceding coercibility values are current for MySQL 5.1.

Those rules resolve ambiguities in the following manner:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then:

• If both sides are Unicode, or both sides are not Unicode, it is an error.

• If one of the sides has a Unicode character set, and another side has a non-Unicode character set, the side with Unicode character
set wins, and automatic character set conversion is applied to the non-Unicode side. For example, the following statement will
not return an error:

SELECT CONCAT(utf8_column, latin1_column) FROM t1;

It will return a result, and the character set of the result will be utf8. The collation of the result will be the collation of
utf8_column. Values of latin1_column will be automatically converted to utf8 before concatenating.

Although automatic conversion is not in the SQL standard, the SQL standard document does say that every character set is (in terms of
supported characters) a “subset” of Unicode. Because it is a well-known principle that “what applies to a superset can apply to a sub-
set,” we believe that a collation for Unicode can apply for comparisons with non-Unicode strings.

Examples:

Internationalization and Localization

622



column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A' COLLATE x

column1 COLLATE x = 'A' COLLATE y Error

The COERCIBILITY() function can be used to determine the coercibility of a string expression:

mysql> SELECT COERCIBILITY('A' COLLATE latin1_swedish_ci);
-> 0

mysql> SELECT COERCIBILITY(VERSION());
-> 3

mysql> SELECT COERCIBILITY('A');
-> 4

See Section 11.11.3, “Information Functions”.

9.1.5.5. Collations Must Be for the Right Character Set

Each character set has one or more collations, but each collation is associated with one and only one character set. Therefore, the fol-
lowing statement causes an error message because the latin2_bin collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

9.1.5.6. Examples of the Effect of Collation

Example 1: Sorting German Umlauts

Suppose that column X in table T has these latin1 column values:

Muffler
Müller
MX Systems
MySQL

Suppose also that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The following table shows the resulting order of the values if we use ORDER BY with different collations:

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The character that causes the different sort orders in this example is the U with two dots over it (ü), which the Germans call
“U-umlaut.”

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which says that U-umlaut sorts with Y.

• The second column shows the result of the SELECT using the German DIN-1 rule, which says that U-umlaut sorts with U.

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-umlaut sorts with UE.

Example 2: Searching for German Umlauts

Suppose that you have three tables that differ only by the character set and collation used:

Internationalization and Localization

623



mysql> CREATE TABLE german1 (
-> c CHAR(10)
-> ) CHARACTER SET latin1 COLLATE latin1_german1_ci;

mysql> CREATE TABLE german2 (
-> c CHAR(10)
-> ) CHARACTER SET latin1 COLLATE latin1_german2_ci;

mysql> CREATE TABLE germanutf8 (
-> c CHAR(10)
-> ) CHARACTER SET utf8 COLLATE utf8_unicode_ci;

Each table contains two records:

mysql> INSERT INTO german1 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO german2 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO germanutf8 VALUES ('Bar'), ('Bär');

Two of the above collations have an A = Ä equality, and one has no such equality (latin1_german2_ci). For that reason, you'll
get these results in comparisons:

mysql> SELECT * FROM german1 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+
mysql> SELECT * FROM german2 WHERE c = 'Bär';
+------+
| c |
+------+
| Bär |
+------+
mysql> SELECT * FROM germanutf8 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+

This is not a bug but rather a consequence of the sorting that latin1_german1_ci or utf8_unicode_ci do (the sorting shown
is done according to the German DIN 5007 standard).

9.1.6. String Repertoire
The repertoire of a character set is the collection of characters in the set.

As of MySQL 5.1.21, string expressions have a repertoire attribute, which can have two values:

• ASCII: The expression can contain only characters in the Unicode range U+0000 to U+007F.

• UNICODE: The expression can contain characters in the Unicode range U+0000 to U+FFFF.

The ASCII range is a subset of UNICODE range, so a string with ASCII repertoire can be converted safely without loss of information
to the character set of any string with UNICODE repertoire or to a character set that is a superset of ASCII. (All MySQL character sets
are supersets of ASCII with the exception of swe7, which reuses some punctuation characters for Swedish accented characters.) The
use of repertoire enables character set conversion in expressions for many cases where MySQL would otherwise return an “illegal mix
of collations” error.

The following discussion provides examples of expressions and their repertoires, and describes how the use of repertoire changes string
expression evaluation:

• The repertoire for string constants depends on string content:

SET NAMES utf8; SELECT 'abc';
SELECT _utf8'def';
SELECT N'MySQL';

Although the character set is utf8 in each of the preceding cases, the strings do not actually contain any characters outside the AS-

Internationalization and Localization

624



CII range, so their repertoire is ASCII rather than UNICODE.

• Columns having the ascii character set have ASCII repertoire because of their character set. In the following table, c1 has AS-
CII repertoire:

CREATE TABLE t1 (c1 CHAR(1) CHARACTER SET ascii);

The following example illustrates how repertoire enables a result to be determined in a case where an error occurs without reper-
toire:

CREATE TABLE t1 (
c1 CHAR(1) CHARACTER SET latin1,
c2 CHAR(1) CHARACTER SET ascii

);
INSERT INTO t1 VALUES ('a','b');
SELECT CONCAT(c1,c2) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (ascii_general_ci,IMPLICIT) for operation 'concat'

Using repertoire, subset to superset (ascii to latin1) conversion can occur and a result is returned:

+---------------+
| CONCAT(c1,c2) |
+---------------+
| ab |
+---------------+

• Functions with one string argument inherit the repertoire of their argument. The result of UPPER(_utf8'abc') has ASCII rep-
ertoire, because its argument has ASCII repertoire.

• For functions that return a string but do not have string arguments and use character_set_connection as the result charac-
ter set, the result repertoire is ASCII if character_set_connection is ascii, and UNICODE otherwise:

FORMAT(numeric_column, 4);

Use of repertoire changes how MySQL evaluates the following example:

SET NAMES ascii;
CREATE TABLE t1 (a INT, b VARCHAR(10) CHARACTER SET latin1);
INSERT INTO t1 VALUES (1,'b');
SELECT CONCAT(FORMAT(a, 4), b) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (ascii_general_ci,COERCIBLE)
and (latin1_swedish_ci,IMPLICIT) for operation 'concat'

With repertoire, a result is returned:

+-------------------------+
| CONCAT(FORMAT(a, 4), b) |
+-------------------------+
| 1.0000b |
+-------------------------+

• Functions with two or more string arguments use the “widest” argument repertoire for the result repertoire (UNICODE is wider than
ASCII). Consider the following CONCAT() calls:

CONCAT(_ucs2 0x0041, _ucs2 0x0042)
CONCAT(_ucs2 0x0041, _ucs2 0x00C2)

For the first call, the repertoire is ASCII because both arguments are within the range of the ascii character set. For the second
call, the repertoire is UNICODE because the second argument is outside the ascii character set range.

Internationalization and Localization

625



• The repertoire for function return values is determined based only on the repertoire of the arguments that affect the result's character
set and collation.

IF(column1 < column2, 'smaller', 'greater')

The result repertoire is ASCII because the two string arguments (the second argument and the third argument) both have ASCII
repertoire. The first argument does not matter for the result repertoire, even if the expression uses string values.

9.1.7. Operations Affected by Character Set Support
This section describes operations that take character set information into account.

9.1.7.1. Result Strings

MySQL has many operators and functions that return a string. This section answers the question: What is the character set and collation
of such a string?

For simple functions that take string input and return a string result as output, the output's character set and collation are the same as
those of the principal input value. For example, UPPER(X) returns a string whose character string and collation are the same as that of
X. The same applies for INSTR(), LCASE(), LOWER(), LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(), RIGHT(),
RPAD(), RTRIM(), SOUNDEX(), SUBSTRING(), TRIM(), UCASE(), and UPPER().

Note: The REPLACE() function, unlike all other functions, always ignores the collation of the string input and performs a case-
sensitive comparison.

If a string input or function result is a binary string, the string has no character set or collation. This can be checked by using the CHAR-
SET() and COLLATION() functions, both of which return binary to indicate that their argument is a binary string:

mysql> SELECT CHARSET(BINARY 'a'), COLLATION(BINARY 'a');
+---------------------+-----------------------+
| CHARSET(BINARY 'a') | COLLATION(BINARY 'a') |
+---------------------+-----------------------+
| binary | binary |
+---------------------+-----------------------+

For operations that combine multiple string inputs and return a single string output, the “aggregation rules” of standard SQL apply for
determining the collation of the result:

• If an explicit COLLATE X occurs, use X.

• If explicit COLLATE X and COLLATE Y occur, raise an error.

• Otherwise, if all collations are X, use X.

• Otherwise, the result has no collation.

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resulting collation is X. The same ap-
plies for UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and LEAST().

For operations that convert to character data, the character set and collation of the strings that result from the operations are defined by
the character_set_connection and collation_connection system variables. This applies only to CAST(), CONV(),
FORMAT(), HEX(), and SPACE().

If you are uncertain about the character set or collation of the result returned by a string function, you can use the CHARSET() or COL-
LATION() function to find out:

mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+----------------+-----------------+-------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |
+----------------+-----------------+-------------------+
| test@localhost | utf8 | utf8_general_ci |
+----------------+-----------------+-------------------+

Internationalization and Localization

626



9.1.7.2. CONVERT() and CAST()

CONVERT() provides a way to convert data between different character sets. The syntax is:

CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT(_latin1'Müller' USING utf8);
INSERT INTO utf8table (utf8column)

SELECT CONVERT(latin1field USING utf8) FROM latin1table;

CONVERT(... USING ...) is implemented according to the standard SQL specification.

You may also use CAST() to convert a string to a different character set. The syntax is:

CAST(character_string AS character_data_type CHARACTER SET charset_name)

Example:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8);

If you use CAST() without specifying CHARACTER SET, the resulting character set and collation are defined by the charac-
ter_set_connection and collation_connection system variables. If you use CAST() with CHARACTER SET X, the
resulting character set and collation are X and the default collation of X.

You may not use a COLLATE clause inside a CAST(), but you may use it outside. That is, CAST(... COLLATE ...) is illegal,
but CAST(...) COLLATE ... is legal.

Example:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

9.1.7.3. SHOW Statements and INFORMATION_SCHEMA

Several SHOW statements provide additional character set information. These include SHOW CHARACTER SET, SHOW COLLATION,
SHOW CREATE DATABASE, SHOW CREATE TABLE and SHOW COLUMNS. These statements are described here briefly.

For more information, see Section 12.5.4, “SHOW Syntax”.

INFORMATION_SCHEMA has several tables that contain information similar to that displayed by the SHOW statements. For example,
the CHARACTER_SETS and COLLATIONS tables contain the information displayed by SHOW CHARACTER SET and SHOW COL-
LATION. Chapter 24, INFORMATION_SCHEMA Tables.

The SHOW CHARACTER SET command shows all available character sets. It takes an optional LIKE clause that indicates which char-
acter set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |
| latin7 | ISO 8859-13 Baltic | latin7_general_ci | 1 |
+---------+-----------------------------+-------------------+--------+

The output from SHOW COLLATION includes all available character sets. It takes an optional LIKE clause that indicates which colla-
tion names to match. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
| latin1_german1_ci | latin1 | 5 | | | 0 |

Internationalization and Localization

627



| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 0 |
| latin1_danish_ci | latin1 | 15 | | | 0 |
| latin1_german2_ci | latin1 | 31 | | Yes | 2 |
| latin1_bin | latin1 | 47 | | Yes | 0 |
| latin1_general_ci | latin1 | 48 | | | 0 |
| latin1_general_cs | latin1 | 49 | | | 0 |
| latin1_spanish_ci | latin1 | 94 | | | 0 |
+-------------------+---------+----+---------+----------+---------+

SHOW CREATE DATABASE displays the CREATE DATABASE statement that creates a given database:

mysql> SHOW CREATE DATABASE test;
+----------+-----------------------------------------------------------------+
| Database | Create Database |
+----------+-----------------------------------------------------------------+
| test | CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET latin1 */ |
+----------+-----------------------------------------------------------------+

If no COLLATE clause is shown, the default collation for the character set applies.

SHOW CREATE TABLE is similar, but displays the CREATE TABLE statement to create a given table. The column definitions indic-
ate any character set specifications, and the table options include character set information.

The SHOW COLUMNS statement displays the collations of a table's columns when invoked as SHOW FULL COLUMNS. Columns with
CHAR, VARCHAR, or TEXT data types have collations. Numeric and other non-character types have no collation (indicated by NULL as
the Collation value). For example:

mysql> SHOW FULL COLUMNS FROM person\G
*************************** 1. row ***************************

Field: id
Type: smallint(5) unsigned

Collation: NULL
Null: NO
Key: PRI

Default: NULL
Extra: auto_increment

Privileges: select,insert,update,references
Comment:

*************************** 2. row ***************************
Field: name
Type: char(60)

Collation: latin1_swedish_ci
Null: NO
Key:

Default:
Extra:

Privileges: select,insert,update,references
Comment:

The character set is not part of the display but is implied by the collation name.

9.1.8. Unicode Support
MySQL 5.1 supports two character sets for storing Unicode data:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character

These two character sets support the characters from the Basic Multilingual Plane (BMP) of Unicode Version 3.0. BMP characters have
these characteristics:

• Their code values are between 0 and 65535 (or U+0000 .. U+FFFF)

• They can be encoded with a fixed 16-bit word, as in ucs2

• They can be encoded with 8, 16, or 24 bits, as in utf8

• They are sufficient for almost all characters in major languages

Internationalization and Localization

628



The ucs2 and utf8 character sets do not support supplementary characters that lie outside the BMP.

A similar set of collations is available for each Unicode character set. For example, each has a Danish collation, the names of which are
ucs2_danish_ci and utf8_danish_ci. All Unicode collations are listed at Section 9.1.11.1, “Unicode Character Sets”.

In UCS-2, every character is represented by a two-byte Unicode code with the most significant byte first. For example: LATIN CAP-
ITAL LETTER A has the code 0x0041 and it is stored as a two-byte sequence: 0x00 0x41. CYRILLIC SMALL LETTER YERU
(Unicode 0x044B) is stored as a two-byte sequence: 0x04 0x4B. For Unicode characters and their codes, please refer to the Unicode
Home Page.

The MySQL implementation of UCS-2 stores characters in big-endian byte order and does not use a byte order mark (BOM) at the be-
ginning of UCS-2 values. Other database systems might use little-endian byte order or a BOM, in which case, conversion of UCS-2 val-
ues will need to be performed when transferring data between those systems and MySQL.

UTF-8 (Unicode Transformation Format with 8-bit units) is an alternative way to store Unicode data. It is implemented according to
RFC 3629. RFC 3629 describes encoding sequences that take from one to four bytes. Currently, MySQL support for UTF-8 does not in-
clude four-byte sequences. (An older standard for UTF-8 encoding is given by RFC 2279, which describes UTF-8 sequences that take
from one to six bytes. RFC 3629 renders RFC 2279 obsolete; for this reason, sequences with five and six bytes are no longer used.)

The idea of UTF-8 is that various Unicode characters are encoded using byte sequences of different lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a two-byte sequence: extended Latin letters (with tilde, macron, acute, grave
and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac, and others.

• Korean, Chinese, and Japanese ideographs use three-byte sequences.

MySQL uses no BOM for UTF-8 values.

Tip: To save space with UTF-8, use VARCHAR instead of CHAR. Otherwise, MySQL must reserve three bytes for each character in a
CHAR CHARACTER SET utf8 column because that is the maximum possible length. For example, MySQL must reserve 30 bytes
for a CHAR(10) CHARACTER SET utf8 column.

UCS-2 cannot be used as a client character set, which means that SET NAMES 'ucs2' does not work. (See Section 9.1.4,
“Connection Character Sets and Collations”.)

Client applications that need to communicate with the server using Unicode should set the client character set accordingly; for example,
by issuing a SET NAMES 'utf8' statement. ucs2 cannot be used as a client character set, which means that it does not work for
SET NAMES or SET CHARACTER SET. (See Section 9.1.4, “Connection Character Sets and Collations”.)

9.1.9. UTF-8 for Metadata
Metadata is “the data about the data.” Anything that describes the database — as opposed to being the contents of the database — is
metadata. Thus column names, database names, usernames, version names, and most of the string results from SHOW are metadata. This
is also true of the contents of tables in INFORMATION_SCHEMA, because those tables by definition contain information about database
objects.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, neither the SHOW commands nor SELECT statements for tables in IN-
FORMATION_SCHEMA would work properly because different rows in the same column of the results of these operations would be
in different character sets.

• Metadata must include all characters in all languages. Otherwise, users would not be able to name columns and tables using their
own languages.

To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This does not cause any disruption if
you never use accented or non-Latin characters. But if you do, you should be aware that metadata is in UTF-8.

The metadata requirements mean that the return values of the USER(), CURRENT_USER(), SESSION_USER(),

Internationalization and Localization

629

http://www.unicode.org/
http://www.unicode.org/


, DATABASE(), and VERSION() functions have the UTF-8 character set by default.

The server sets the character_set_system system variable to the name of the metadata character set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| character_set_system | utf8 |
+----------------------+-------+

Storage of metadata using Unicode does not mean that the server returns headers of columns and the results of DESCRIBE functions in
the character_set_system character set by default. When you use SELECT column1 FROM t, the name column1 itself is
returned from the server to the client in the character set determined by the value of the character_set_results system variable,
which has a default value of latin1. If you want the server to pass metadata results back in a different character set, use the SET
NAMES statement to force the server to perform character set conversion. SET NAMES sets the character_set_results and oth-
er related system variables. (See Section 9.1.4, “Connection Character Sets and Collations”.) Alternatively, a client program can per-
form the conversion after receiving the result from the server. It is more efficient for the client perform the conversion, but this option is
not always available for all clients.

If character_set_results is set to NULL, no conversion is performed and the server returns metadata using its original character
set (the set indicated by character_set_system).

Error messages returned from the server to the client are converted to the client character set automatically, as with metadata.

If you are using (for example) the USER() function for comparison or assignment within a single statement, don't worry. MySQL per-
forms some automatic conversion for you.

SELECT * FROM Table1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF-8 before the comparison.

INSERT INTO Table1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the assignment.

Although automatic conversion is not in the SQL standard, the SQL standard document does say that every character set is (in terms of
supported characters) a “subset” of Unicode. Because it is a well-known principle that “what applies to a superset can apply to a sub-
set,” we believe that a collation for Unicode can apply for comparisons with non-Unicode strings. For more information about coercion
of strings, see Section 9.1.5.4, “Some Special Cases Where the Collation Determination Is Tricky”.

9.1.10. Column Character Set Conversion
To convert a binary or non-binary string column to use a particular character set, use ALTER TABLE. For successful conversion to oc-
cur, one of the following conditions must apply:

• If the column has a binary data type (BINARY, VARBINARY, BLOB), all the values that it contains must be encoded using a single
character set (the character set you're converting the column to). If you use a binary column to store information in multiple charac-
ter sets, MySQL has no way to know which values use which character set and cannot convert the data properly.

• If the column has a non-binary data type (CHAR, VARCHAR, TEXT), its contents should be encoded in the column's character set,
not some other character set. If the contents are encoded in a different character set, you can convert the column to use a binary data
type first, and then to a non-binary column with the desired character set.

Suppose that a table t has a binary column named col1 defined as BINARY(50). Assuming that the information in the column is en-
coded using a single character set, you can convert it to a non-binary column that has that character set. For example, if col1 contains
binary data representing characters in the greek character set, you can convert it as follows:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET greek;

Suppose that table t has a non-binary column named col1 defined as CHAR(50) CHARACTER SET latin1 but you want to con-
vert it to use utf8 so that you can store values from many languages. The following statement accomplishes this:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET utf8;

Internationalization and Localization

630



Conversion may be lossy if the column contains characters that are not in both character sets.

A special case occurs if you have old tables from MySQL 4.0 or earlier where a non-binary column contains values that actually are en-
coded in a character set different from the server's default character set. For example, an application might have stored sjis values in a
column, even though MySQL's default character set was latin1. It is possible to convert the column to use the proper character set
but an additional step is required. Suppose that the server's default character set was latin1 and col1 is defined as CHAR(50) but
its contents are sjis values. The first step is to convert the column to a binary data type, which removes the existing character set in-
formation without performing any character conversion:

ALTER TABLE t MODIFY col1 BINARY(50);

The next step is to convert the column to a non-binary data type with the proper character set:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET sjis;

This procedure requires that the table not have been modified already with statements such as INSERT or UPDATE after an upgrade to
MySQL 4.1 or later. In that case, MySQL would store new values in the column using latin1, and the column will contain a mix of
sjis and latin1 values and cannot be converted properly.

If you specified attributes when creating a column initially, you should also specify them when altering the table with ALTER TABLE.
For example, if you specified NOT NULL and an explicit DEFAULT value, you should also provide them in the ALTER TABLE state-
ment. Otherwise, the resulting column definition will not include those attributes.

9.1.11. Character Sets and Collations That MySQL Supports
MySQL supports 70+ collations for 30+ character sets. This section indicates which character sets MySQL supports. There is one sub-
section for each group of related character sets. For each character set, the allowable collations are listed.

You can always list the available character sets and their default collations with the SHOW CHARACTER SET statement:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+
| Charset | Description | Default collation |
+----------+-----------------------------+---------------------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci |
| dec8 | DEC West European | dec8_swedish_ci |
| cp850 | DOS West European | cp850_general_ci |
| hp8 | HP West European | hp8_english_ci |
| koi8r | KOI8-R Relcom Russian | koi8r_general_ci |
| latin1 | cp1252 West European | latin1_swedish_ci |
| latin2 | ISO 8859-2 Central European | latin2_general_ci |
| swe7 | 7bit Swedish | swe7_swedish_ci |
| ascii | US ASCII | ascii_general_ci |
| ujis | EUC-JP Japanese | ujis_japanese_ci |
| sjis | Shift-JIS Japanese | sjis_japanese_ci |
| hebrew | ISO 8859-8 Hebrew | hebrew_general_ci |
| tis620 | TIS620 Thai | tis620_thai_ci |
| euckr | EUC-KR Korean | euckr_korean_ci |
| koi8u | KOI8-U Ukrainian | koi8u_general_ci |
| gb2312 | GB2312 Simplified Chinese | gb2312_chinese_ci |
| greek | ISO 8859-7 Greek | greek_general_ci |
| cp1250 | Windows Central European | cp1250_general_ci |
| gbk | GBK Simplified Chinese | gbk_chinese_ci |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci |
| armscii8 | ARMSCII-8 Armenian | armscii8_general_ci |
| utf8 | UTF-8 Unicode | utf8_general_ci |
| ucs2 | UCS-2 Unicode | ucs2_general_ci |
| cp866 | DOS Russian | cp866_general_ci |
| keybcs2 | DOS Kamenicky Czech-Slovak | keybcs2_general_ci |
| macce | Mac Central European | macce_general_ci |
| macroman | Mac West European | macroman_general_ci |
| cp852 | DOS Central European | cp852_general_ci |
| latin7 | ISO 8859-13 Baltic | latin7_general_ci |
| cp1251 | Windows Cyrillic | cp1251_general_ci |
| cp1256 | Windows Arabic | cp1256_general_ci |
| cp1257 | Windows Baltic | cp1257_general_ci |
| binary | Binary pseudo charset | binary |
| geostd8 | GEOSTD8 Georgian | geostd8_general_ci |
| cp932 | SJIS for Windows Japanese | cp932_japanese_ci |
| eucjpms | UJIS for Windows Japanese | eucjpms_japanese_ci |
+----------+-----------------------------+---------------------+

In cases where a character set has multiple collations, it might not be clear which collation is most suitable for a given application. To

Internationalization and Localization

631



avoid choosing the wrong collation, it can be helpful to perform some comparisons with representative data values to make sure that a
given collation sorts values the way you expect.

Collation-Charts.Org is a useful site for information that shows how one collation compares to another.

9.1.11.1. Unicode Character Sets

MySQL 5.1 has two Unicode character sets:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character

You can store text in about 650 languages using these character sets. This section lists the collations available for each Unicode charac-
ter set. For general information about the character sets, see Section 9.1.8, “Unicode Support”.

A similar set of collations is available for each Unicode character set. These are shown in the following list, where xxx represents the
character set name. For example, xxx_danish_ci represents the Danish collations, the specific names of which are
ucs2_danish_ci and utf8_danish_ci.

• xxx_bin

• xxx_czech_ci

• xxx_danish_ci

• xxx_esperanto_ci

• xxx_estonian_ci

• xxx_general_ci (default)

• xxx_hungarian_ci

• xxx_icelandic_ci

• xxx_latvian_ci

• xxx_lithuanian_ci

• xxx_persian_ci

• xxx_polish_ci

• xxx_roman_ci

• xxx_romanian_ci

• xxx_slovak_ci

• xxx_slovenian_ci

• xxx_spanish2_ci

• xxx_spanish_ci

• xxx_swedish_ci

• xxx_turkish_ci

• xxx_unicode_ci

The xxx_hungarian_ci collations were added in MySQL 5.1.5.

Internationalization and Localization

632

http://www.collation-charts.org/


MySQL implements the xxx_unicode_ci collations according to the Unicode Collation Algorithm (UCA) described at ht-
tp://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0 UCA weight keys: ht-
tp://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. Currently, the xxx_unicode_ci collations have only partial support for
the Unicode Collation Algorithm. Some characters are not supported yet. Also, combining marks are not fully supported. This affects
primarily Vietnamese, Yoruba, and some smaller languages such as Navajo. The following discussion uses utf8_unicode_ci for
concreteness.

For any Unicode character set, operations performed using the _general_ci collation are faster than those for the _unicode_ci
collation. For example, comparisons for the utf8_general_ci collation are faster, but slightly less correct, than comparisons for
utf8_unicode_ci. The reason for this is that utf8_unicode_ci supports mappings such as expansions; that is, when one char-
acter compares as equal to combinations of other characters. For example, in German and some other languages “ß” is equal to “ss”.
utf8_unicode_ci also supports contractions and ignorable characters. utf8_general_ci is a legacy collation that does not
support expansions, contractions, or ignorable characters. It can make only one-to-one comparisons between characters.

To further illustrate, the following equalities hold in both utf8_general_ci and utf8_unicode_ci (for the effect this has in
comparisons or when doing searches, see Section 9.1.5.6, “Examples of the Effect of Collation”):

Ä = A
Ö = O
Ü = U

A difference between the collations is that this is true for utf8_general_ci:

ß = s

Whereas this is true for utf8_unicode_ci:

ß = ss

MySQL implements language-specific collations for the utf8 character set only if the ordering with utf8_unicode_ci does not
work well for a language. For example, utf8_unicode_ci works fine for German and French, so there is no need to create special
utf8 collations for these two languages.

utf8_general_ci also is satisfactory for both German and French, except that “ß” is equal to “s”, and not to “ss”. If this is ac-
ceptable for your application, then you should use utf8_general_ci because it is faster. Otherwise, use utf8_unicode_ci be-
cause it is more accurate.

utf8_swedish_ci, like other utf8 language-specific collations, is derived from utf8_unicode_ci with additional language
rules. For example, in Swedish, the following relationship holds, which is not something expected by a German or French speaker:

Ü = Y < Ö

The xxx_spanish_ci and xxx_spanish2_ci collations correspond to modern Spanish and traditional Spanish, respectively. In
both collations, “ñ” (n-tilde) is a separate letter between “n” and “o”. In addition, for traditional Spanish, “ch” is a separate letter
between “c” and “d”, and “ll” is a separate letter between “l” and “m”

In the xxx_roman_ci collations, I and J compare as equal, and U and V compare as equal.

For additional information about Unicode collations in MySQL, see Collation-Charts.Org (utf8).

9.1.11.2. West European Character Sets

Western European character sets cover most West European languages, such as French, Spanish, Catalan, Basque, Portuguese, Italian,
Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish, Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

Internationalization and Localization

633

http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr10/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.collation-charts.org/mysql60/by-charset.html#utf8


• cp850_bin

• cp850_general_ci (default)

• dec8 (DEC Western European) collations:

• dec8_bin

• dec8_swedish_ci (default)

• hp8 (HP Western European) collations:

• hp8_bin

• hp8_english_ci (default)

• latin1 (cp1252 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

latin1 is the default character set. MySQL's latin1 is the same as the Windows cp1252 character set. This means it is the
same as the official ISO 8859-1 or IANA (Internet Assigned Numbers Authority) latin1, except that IANA latin1 treats the
code points between 0x80 and 0x9f as “undefined,” whereas cp1252, and therefore MySQL's latin1, assign characters for
those positions. For example, 0x80 is the Euro sign. For the “undefined” entries in cp1252, MySQL translates 0x81 to Unicode
0x0081, 0x8d to 0x008d, 0x8f to 0x008f, 0x90 to 0x0090, and 0x9d to 0x009d.

The latin1_swedish_ci collation is the default that probably is used by the majority of MySQL customers. Although it is fre-
quently said that it is based on the Swedish/Finnish collation rules, there are Swedes and Finns who disagree with this statement.

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and DIN-2 standards, where DIN
stands for Deutsches Institut für Normung (the German equivalent of ANSI). DIN-1 is called the “dictionary collation” and DIN-2 is
called the “phone book collation.” For an example of the effect this has in comparisons or when doing searches, see Section 9.1.5.6,
“Examples of the Effect of Collation”.

• latin1_german1_ci (dictionary) rules:

Ä = A
Ö = O
Ü = U
ß = s

• latin1_german2_ci (phone-book) rules:

Ä = AE
Ö = OE
Ü = UE
ß = ss

For an example of the effect this has in comparisons or when doing searches, see Section 9.1.5.6, “Examples of the Effect of Colla-
tion”.

In the latin1_spanish_ci collation, “ñ” (n-tilde) is a separate letter between “n” and “o”.

Internationalization and Localization

634



• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

• swe7 (7bit Swedish) collations:

• swe7_bin

• swe7_swedish_ci (default)

For additional information about Western European collations in MySQL, see Collation-Charts.Org (ascii, cp850, dec8, hp8, latin1,
macroman, swe7).

9.1.11.3. Central European Character Sets

MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary, Romania, Slovenia, Croatia, Poland,
and Serbia (Latin).

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_croatian_ci

• cp1250_czech_cs

• cp1250_general_ci (default)

• cp1250_polish_ci

• cp852 (DOS Central European) collations:

• cp852_bin

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

• macce_general_ci (default)

For additional information about Central European collations in MySQL, see Collation-Charts.Org (cp1250, cp852, keybcs2, latin2,
macce).

Internationalization and Localization

635

http://www.collation-charts.org/mysql60/by-charset.html#ascii
http://www.collation-charts.org/mysql60/by-charset.html#cp850
http://www.collation-charts.org/mysql60/by-charset.html#dec8
http://www.collation-charts.org/mysql60/by-charset.html#hp8
http://www.collation-charts.org/mysql60/by-charset.html#latin1
http://www.collation-charts.org/mysql60/by-charset.html#macroman
http://www.collation-charts.org/mysql60/by-charset.html#swe7
http://www.collation-charts.org/mysql60/by-charset.html#cp1250
http://www.collation-charts.org/mysql60/by-charset.html#cp852
http://www.collation-charts.org/mysql60/by-charset.html#keybcs2
http://www.collation-charts.org/mysql60/by-charset.html#latin2
http://www.collation-charts.org/mysql60/by-charset.html#macce


9.1.11.4. South European and Middle East Character Sets

South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic, Georgian, Greek, Hebrew, and
Turkish.

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

• greek_general_ci (default)

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

• latin5 (ISO 8859-9 Turkish) collations:

• latin5_bin

• latin5_turkish_ci (default)

For additional information about South European and Middle Eastern collations in MySQL, see Collation-Charts.Org (armscii8,
cp1256, geostd8, greek, hebrew, latin5).

9.1.11.5. Baltic Character Sets

The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

Internationalization and Localization

636

http://www.collation-charts.org/mysql60/by-charset.html#armscii8
http://www.collation-charts.org/mysql60/by-charset.html#cp1256
http://www.collation-charts.org/mysql60/by-charset.html#geostd8
http://www.collation-charts.org/mysql60/by-charset.html#greek
http://www.collation-charts.org/mysql60/by-charset.html#hebrew
http://www.collation-charts.org/mysql60/by-charset.html#latin5


• latin7_general_cs

For additional information about Baltic collations in MySQL, see Collation-Charts.Org (cp1257, latin7).

9.1.11.6. Cyrillic Character Sets

The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, Ukrainian, and Serbian (Cyrillic) languages.

• cp1251 (Windows Cyrillic) collations:

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

• cp1251_ukrainian_ci

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

• koi8u_general_ci (default)

For additional information about Cyrillic collations in MySQL, see Collation-Charts.Org (cp1251, cp866, koi8r, koi8u). ).

9.1.11.7. Asian Character Sets

The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can be complicated. For example, the
Chinese sets must allow for thousands of different characters. See Section 9.1.11.7.1, “The cp932 Character Set”, for additional in-
formation about the cp932 and sjis character sets.

For answers to some common questions and problems relating support for Asian character sets in MySQL, see Section A.11, “MySQL
5.1 FAQ — MySQL Chinese, Japanese, and Korean Character Sets”.

• big5 (Big5 Traditional Chinese) collations:

• big5_bin

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

Internationalization and Localization

637

http://www.collation-charts.org/mysql60/by-charset.html#cp1257
http://www.collation-charts.org/mysql60/by-charset.html#latin7
http://www.collation-charts.org/mysql60/by-charset.html#cp1251
http://www.collation-charts.org/mysql60/by-charset.html#cp866
http://www.collation-charts.org/mysql60/by-charset.html#koi8r
http://www.collation-charts.org/mysql60/by-charset.html#koi8u


• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

• gb2312_chinese_ci (default)

• gbk (GBK Simplified Chinese) collations:

• gbk_bin

• gbk_chinese_ci (default)

• sjis (Shift-JIS Japanese) collations:

• sjis_bin

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

For additional information about Asian collations in MySQL, see Collation-Charts.Org (big5, cp932, eucjpms, euckr, gb2312, gbk, sjis,
tis620, ujis).

9.1.11.7.1. The cp932 Character Set

Why is cp932 needed?

In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA, which supports JIS X0201 and JIS
X0208 characters. (See http://www.iana.org/assignments/character-sets.)

However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often includes the extensions to
Shift_JIS that are defined by various vendors.

For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of Shift_JIS and its exact name is Mi-
crosoft Windows Codepage : 932 or cp932. In addition to the characters supported by Shift_JIS, cp932 supports ex-
tension characters such as NEC special characters, NEC selected — IBM extended characters, and IBM extended characters.

Many Japanese users have experienced problems using these extension characters. These problems stem from the following factors:

• MySQL automatically converts character sets.

• Character sets are converted via Unicode (ucs2).

Internationalization and Localization

638

http://www.collation-charts.org/mysql60/by-charset.html#big5
http://www.collation-charts.org/mysql60/by-charset.html#cp932
http://www.collation-charts.org/mysql60/by-charset.html#eucjpms
http://www.collation-charts.org/mysql60/by-charset.html#euckr
http://www.collation-charts.org/mysql60/by-charset.html#gb2312
http://www.collation-charts.org/mysql60/by-charset.html#gbk
http://www.collation-charts.org/mysql60/by-charset.html#sjis
http://www.collation-charts.org/mysql60/by-charset.html#tis620
http://www.collation-charts.org/mysql60/by-charset.html#ujis
http://www.iana.org/assignments/character-sets


• The sjis character set does not support the conversion of these extension characters.

• There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters are converted to Unicode differ-
ently depending on the conversion rule. MySQL supports only one of these rules (described later).

The MySQL cp932 character set is designed to solve these problems.

Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and cp932 into two different char-
acter sets because they provide different conversion rules.

How does cp932 differ from sjis?

The cp932 character set differs from sjis in the following ways:

• cp932 supports NEC special characters, NEC selected — IBM extended characters, and IBM selected characters.

• Some cp932 characters have two different code points, both of which convert to the same Unicode code point. When converting
from Unicode back to cp932, one of the code points must be selected. For this “round trip conversion,” the rule recommended by
Microsoft is used. (See http://support.microsoft.com/kb/170559/EN-US/.)

The conversion rule works like this:

• If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X 0208.

• If the character is in both NEC special characters and IBM selected characters, use the code point of NEC special characters.

• If the character is in both IBM selected characters and NEC selected — IBM extended characters, use the code point of IBM ex-
tended characters.

The table shown at http://www.microsoft.com/globaldev/reference/dbcs/932.htm provides information about the Unicode values of
cp932 characters. For cp932 table entries with characters under which a four-digit number appears, the number represents the cor-
responding Unicode (ucs2) encoding. For table entries with an underlined two-digit value appears, there is a range of cp932 char-
acter values that begin with those two digits. Clicking such a table entry takes you to a page that displays the Unicode value for each
of the cp932 characters that begin with those digits.

The following links are of special interest. They correspond to the encodings for the following sets of characters:

• NEC special characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_87.htm

• NEC selected — IBM extended characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_ED.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_EE.htm

• IBM selected characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_FA.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FB.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FC.htm

• cp932 supports conversion of user-defined characters in combination with eucjpms, and solves the problems with sjis/ujis
conversion. For details, please refer to http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html.

For some characters, conversion to and from ucs2 is different for sjis and cp932. The following tables illustrate these differences.

Conversion to ucs2:

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

5C 005C 005C

7E 007E 007E

Internationalization and Localization

639

http://support.microsoft.com/kb/170559/EN-US/
http://www.microsoft.com/globaldev/reference/dbcs/932.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_87.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_ED.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_EE.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FA.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FB.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FC.htm
http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html


815C 2015 2015

815F 005C FF3C

8160 301C FF5E

8161 2016 2225

817C 2212 FF0D

8191 00A2 FFE0

8192 00A3 FFE1

81CA 00AC FFE2

Conversion from ucs2:

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

005C 815F 5C

007E 7E 7E

00A2 8191 3F

00A3 8192 3F

00AC 81CA 3F

2015 815C 815C

2016 8161 3F

2212 817C 3F

2225 3F 8161

301C 8160 3F

FF0D 3F 817C

FF3C 3F 815F

FF5E 3F 8160

FFE0 3F 8191

FFE1 3F 8192

FFE2 3F 81CA

Users of any Japanese character sets should be aware that using --character-set-client-handshake (or -
-skip-character-set-client-handshake) has an important effect. See Section 5.1.2, “Command Options”.

9.2. The Character Set Used for Data and Sorting
By default, MySQL uses the latin1 (cp1252 West European) character set and the latin1_swedish_ci collation that sorts ac-
cording to Swedish/Finnish rules. These defaults are suitable for the United States and most of Western Europe.

All MySQL binary distributions are compiled with --with-extra-charsets=complex. This adds code to all standard programs
that enables them to handle latin1 and all multi-byte character sets within the binary. Other character sets are loaded from a charac-
ter-set definition file when needed.

The character set determines what characters are allowed in identifiers. The collation determines how strings are sorted by the ORDER
BY and GROUP BY clauses of the SELECT statement.

You can change the default server character set and collation with the --character-set-server and --collation-server
options when you start the server. The collation must be a legal collation for the default character set. (Use the SHOW COLLATION
statement to determine which collations are available for each character set.) See Section 5.1.2, “Command Options”.

The character sets available depend on the --with-charset=charset_name and --with-extra-charsets=list-
of-charsets | complex | all | none options to configure, and the character set configuration files listed in
SHAREDIR/charsets/Index. See Section 2.9.2, “Typical configure Options”.

Internationalization and Localization

640



If you change the character set when running MySQL, that may also change the sort order. Consequently, you must run myisamchk
-r -q --set-collation=collation_name on all MyISAM tables, or your indexes may not be ordered correctly.

When a client connects to a MySQL server, the server indicates to the client what the server's default character set is. The client
switches to this character set for this connection.

You should use mysql_real_escape_string() when escaping strings for an SQL query. mysql_real_escape_string()
is identical to the old mysql_escape_string() function, except that it takes the MYSQL connection handle as the first parameter
so that the appropriate character set can be taken into account when escaping characters.

If the client is compiled with paths that differ from where the server is installed and the user who configured MySQL didn't include all
character sets in the MySQL binary, you must tell the client where it can find the additional character sets it needs if the server runs with
a different character set from the client. You can do this by specifying a --character-sets-dir option to indicate the path to the
directory in which the dynamic MySQL character sets are stored. For example, you can put the following in an option file:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

You can force the client to use specific character set as follows:

[client]
default-character-set=charset_name

This is normally unnecessary, however.

9.2.1. Using the German Character Set
In MySQL 5.1, character set and collation are specified separately. This means that if you want German sort order, you should select the
latin1 character set and either the latin1_german1_ci or latin1_german2_ci collation. For example, to start the server
with the latin1_german1_ci collation, use the --character-set-server=latin1 and -
-collation-server=latin1_german1_ci options.

For information on the differences between these two collations, see Section 9.1.11.2, “West European Character Sets”.

9.3. Setting the Error Message Language
By default, mysqld produces error messages in English, but they can also be displayed in any of these other languages: Czech, Danish,
Dutch, Estonian, French, German, Greek, Hungarian, Italian, Japanese, Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Ro-
manian, Russian, Slovak, Spanish, or Swedish.

To start mysqld with a particular language for error messages, use the --language or -L option. The option value can be a lan-
guage name or the full path to the error message file. For example:

shell> mysqld --language=swedish

Or:

shell> mysqld --language=/usr/local/share/swedish

The language name should be specified in lowercase.

By default, the language files are located in the share/LANGUAGE directory under the MySQL base directory.

You can also change the content of the error messages produced by the server. Details can be found in the MySQL Internals manual,
available at http://forge.mysql.com/wiki/MySQL_Internals_Error_Messages. If you upgrade to a newer version of MySQL after chan-
ging the error messages, remember to repeat your changes after the upgrade.

9.4. Adding a New Character Set
This section discusses the procedure for adding a new character set to MySQL. You must have a MySQL source distribution to use
these instructions. The proper procedure depends on whether the character set is simple or complex:

Internationalization and Localization

641

http://forge.mysql.com/wiki/MySQL_Internals_Error_Messages


• If the character set does not need to use special string collating routines for sorting and does not need multi-byte character support, it
is simple.

• If it needs either of those features, it is complex.

For example, latin1 and danish are simple character sets, whereas big5 and czech are complex character sets.

In the following instructions, MYSET represents the name of the character set.

1. Add MYSET to the end of the sql/share/charsets/Index file. Assign a unique number to it.

2. This step depends on whether you are adding a simple or complex character set. A simple character set requires only a configura-
tion file, whereas a complex character set requires C source file that defines support routines for collation, multi-byte handling, or
both.

For a simple character set, create a configuration file that describes the character set properties. Create the file sql/
share/charsets/MYSET.conf. (You can use a copy of sql/share/charsets/latin1.conf as the basis for this
file.) The syntax for the file is very simple:

• Comments start with a “#” character and continue to the end of the line.

• Words are separated by arbitrary amounts of whitespace.

• When defining the character set, every word must be a number in hexadecimal format.

• The ctype array takes up the first 257 words. The to_lower[], to_upper[] and sort_order[] arrays take up 256
words each after that.

See Section 9.4.1, “The Character Definition Arrays”.

For a complex character set, create a C source file that describes the character set properties and defines the support routines neces-
sary to properly perform operations on the character set:

a. Create the file strings/ctype-MYSET.c in the MySQL source distribution. Look at one of the existing ctype-*.c
files (such as strings/ctype-big5.c) to see what needs to be defined. The arrays in your file must have names like
ctype_MYSET, to_lower_MYSET, and so on. These correspond to the arrays for a simple character set. See Section 9.4.1,
“The Character Definition Arrays”.

b. Near the top of the file, place a special comment like this:

/*
* This comment is parsed by configure to create ctype.c,
* so don't change it unless you know what you are doing.
*
* .configure. number_MYSET=MYNUMBER
* .configure. strxfrm_multiply_MYSET=N
* .configure. mbmaxlen_MYSET=N
*/

The configure program uses this comment to include the character set into the MySQL library automatically.

The strxfrm_multiply and mbmaxlen lines are explained in the following sections. You need include them only if you
need the string collating functions or the multi-byte character set functions, respectively.

c. You should then create some of the following functions:

• my_strncoll_MYSET()

• my_strcoll_MYSET()

• my_strxfrm_MYSET()

• my_like_range_MYSET()

See Section 9.4.2, “String Collating Support”.

Internationalization and Localization

642



d. If you need multi-byte character support, see See Section 9.4.3, “Multi-Byte Character Support”.

3. Add the character set name to the CHARSETS_AVAILABLE and COMPILED_CHARSETS lists in configure.in.

4. Reconfigure, recompile, and test.

The sql/share/charsets/README file includes additional instructions.

If you want to have the character set included in the MySQL distribution, mail a patch to the MySQL internals mailing list. See
Section 1.6.1, “MySQL Mailing Lists”.

9.4.1. The Character Definition Arrays
Each character set is described by several arrays:

• ctype[] defines attributes for each character

• to_lower[] and to_upper[] list the lowercase and uppercase characters

• sort_order[] indicates character ordering for comparisons and sorts

to_lower[], to_upper[], and sort_order[] are indexed by character value, whereas ctype[] is indexed by character value
+ 1. This is an old legacy convention for handling EOF.

ctype[] is an array of bit values, with one element for each character of the character set. Each element describes the attributes of a
single character.

The bitmask definitions are as defined in include/m_ctype.h:

#define _MY_U 01 /* Upper case */
#define _MY_L 02 /* Lower case */
#define _MY_NMR 04 /* Numeral (digit) */
#define _MY_SPC 010 /* Spacing character */
#define _MY_PNT 020 /* Punctuation */
#define _MY_CTR 040 /* Control character */
#define _MY_B 0100 /* Blank */
#define _MY_X 0200 /* heXadecimal digit */

The ctype[] entry for each character should be the union of the applicable bitmask values that describe the character. For example,
'A' is an uppercase character (_U) as well as a hexadecimal digit (_X), so ctype['A'+1] should contain the value:

_U | _X = 01 | 0200 = 0201

Note that the bitmask values in m_ctype.h are octal values, but the elements of the ctype[] array in *.conf files should be writ-
ten as hexadecimal values.

to_lower[] and to_upper[] are simple arrays that hold the lowercase and uppercase characters corresponding to each member of
the character set. For example:

to_lower['A'] should contain 'a'
to_upper['a'] should contain 'A'

sort_order[] is a map indicating how characters should be ordered for comparison and sorting purposes. Quite often (but not for all
character sets) this is the same as to_upper[], which means that sorting is case-insensitive. MySQL sorts characters based on the
values of sort_order[] elements. For more complicated sorting rules, see the discussion of string collating in Section 9.4.2, “String
Collating Support”.

9.4.2. String Collating Support
If the sorting rules for your language are too complex to be handled with a simple sort_order[] array, you need to define string
collating functions in the ctype-MYSET.c source file in the strings directory.

Internationalization and Localization

643



The best documentation for this is the existing character sets. Look at the big5, czech, gbk, sjis, and tis160 character sets for
examples.

You must specify the strxfrm_multiply_MYSET=N value in the special comment at the top of the source file. N should be set to
the maximum ratio to which strings may grow during execution of the my_strxfrm_MYSET() function. N must be a positive integer.

9.4.3. Multi-Byte Character Support
If you want to add support for a new character set that includes multi-byte characters, you need to use the multi-byte character func-
tions.

The best documentation for this is the existing character sets. Look at the euc_kr, gb2312, gbk, sjis, and ujis character sets for
examples. These are implemented in the ctype-charset_name.c files in the strings directory.

You must specify the mbmaxlen_MYSET=N value in the special comment at the top of the ctype-MYSET.c source file for your
character set. N should be set to the size in bytes of the largest character in the set.

9.5. Problems With Character Sets
If you try to use a character set that is not compiled into your binary, you might run into the following problems:

• Your program uses an incorrect path to determine where the character sets are stored (typically in the share/mysql/charsets
or share/charsets directory under the MySQL installation directory). This can be fixed by using the -
-character-sets-dir option when you run the program in question. For example, to specify a directory to be used by
MySQL client programs, list it in the [client] group of your option file. The examples given here show what the setting might
look like for Unix or Windows, respectively:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

[client]
character-sets-dir="C:/Program Files/MySQL/MySQL Server 5.1/share/charsets"

• The character set is a multi-byte character set that cannot be loaded dynamically. In this case, you must recompile the program with
support for the character set.

• The character set is a dynamic character set, but you do not have a configuration file for it. In this case, you should install the con-
figuration file for the character set from a new MySQL distribution.

• If your Index file does not contain the name for the character set, your program displays an error message:

ERROR 1105: File '/usr/local/share/mysql/charsets/?.conf'
not found (Errcode: 2)

In this case, you should either get a new Index file or manually add the name of any missing character sets to the current file.

For MyISAM tables, you can check the character set name and number for a table with myisamchk -dvv tbl_name.

9.6. MySQL Server Time Zone Support
The MySQL server maintains several time zone settings:

• The system time zone. When the server starts, it attempts to determine the time zone of the host machine and uses it to set the sys-
tem_time_zone system variable. The value does not change thereafter.

You can set the system time zone for MySQL Server at startup with the --timezone=timezone_name option to
mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld. The allowable values for -
-timezone or TZ are system-dependent. Consult your operating system documentation to see what values are acceptable.

• The server's current time zone. The global time_zone system variable indicates the time zone the server currently is operating in.
The initial value for time_zone is 'SYSTEM', which indicates that the server time zone is the same as the system time zone.

Internationalization and Localization

644



The initial global server time zone value can be specified explicitly at startup with the --default-time-zone=timezone op-
tion on the command line, or you can use the following line in an option file:

default-time-zone='timezone'

If you have the SUPER privilege, you can set the global server time zone value at runtime with this statement:

mysql> SET GLOBAL time_zone = timezone;

• Per-connection time zones. Each client that connects has its own time zone setting, given by the session time_zone variable. Ini-
tially, the session variable takes its value from the global time_zone variable, but the client can change its own time zone with
this statement:

mysql> SET time_zone = timezone;

The current session time zone setting affects display and storage of time values that are zone-sensitive. This includes the values dis-
played by functions such as NOW() or CURTIME(), and values stored in and retrieved from TIMESTAMP columns. Values for
TIMESTAMP columns are converted from the current time zone to UTC for storage, and from UTC to the current time zone for retriev-
al. The current time zone setting does not affect values displayed by functions such as UTC_TIMESTAMP() or values in DATE, TIME,
or DATETIME columns.

The current values of the global and client-specific time zones can be retrieved like this:

mysql> SELECT @@global.time_zone, @@session.time_zone;

timezone values can be given in several formats, none of which are case sensitive:

• The value 'SYSTEM' indicates that the time zone should be the same as the system time zone.

• The value can be given as a string indicating an offset from UTC, such as '+10:00' or '-6:00'.

• The value can be given as a named time zone, such as 'Europe/Helsinki', 'US/Eastern', or 'MET'. Named time zones
can be used only if the time zone information tables in the mysql database have been created and populated.

The MySQL installation procedure creates the time zone tables in the mysql database, but does not load them. You must do so manu-
ally using the following instructions. (If you are upgrading to MySQL 4.1.3 or later from an earlier version, you can create the tables by
upgrading your mysql database. Use the instructions in Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.
After creating the tables, you can load them.)

Note

Loading the time zone information is not necessarily a one-time operation because the information changes occasionally.
For example, the rules for Daylight Saving Time in the United States, Mexico, and parts of Canada changed in 2007.
When such changes occur, applications that use the old rules become out of date and you may find it necessary to reload
the time zone tables to keep the information used by your MySQL server current. See the notes at the end of this section.

If your system has its own zoneinfo database (the set of files describing time zones), you should use the mysql_tzinfo_to_sql
program for filling the time zone tables. Examples of such systems are Linux, FreeBSD, Sun Solaris, and Mac OS X. One likely loca-
tion for these files is the /usr/share/zoneinfo directory. If your system does not have a zoneinfo database, you can use the
downloadable package described later in this section.

The mysql_tzinfo_to_sql program is used to load the time zone tables. On the command line, pass the zoneinfo directory path-
name to mysql_tzinfo_to_sql and send the output into the mysql program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them. mysql processes those
statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file or to generate leap second information:

Internationalization and Localization

645



• To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke mysql_tzinfo_to_sql like
this:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

With this approach, you must execute a separate command to load the time zone file for each named zone that the server needs to
know about.

• If your time zone needs to account for leap seconds, initialize the leap second information like this, where tz_file is the name of
your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

• After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to use any previously cached
time zone data.

If your system is one that has no zoneinfo database (for example, Windows or HP-UX), you can use the package of pre-built time zone
tables that is available for download at the MySQL Developer Zone:

http://dev.mysql.com/downloads/timezones.html

This time zone package contains .frm, .MYD, and .MYI files for the MyISAM time zone tables. These tables should be part of the
mysql database, so you should place the files in the mysql subdirectory of your MySQL server's data directory. The server should be
stopped while you do this and restarted afterward.

Warning

Do not use the downloadable package if your system has a zoneinfo database. Use the mysql_tzinfo_to_sql utility
instead. Otherwise, you may cause a difference in datetime handling between MySQL and other applications on your sys-
tem.

For information about time zone settings in replication setup, please see Section 16.3.1, “Replication Features and Issues”.

Staying Current with Time Zone Changes

As mentioned earlier, when the time zone rules change, applications that use the old rules become out of date. To stay current, it is ne-
cessary to make sure that your system uses current time zone information is used. For MySQL, there are two factors to consider in stay-
ing current:

• The operating system time affects the value that the MySQL server uses for times if its time zone is set to SYSTEM. Make sure that
your operating system is using the latest time zone information. For most operating systems, the latest update or service pack pre-
pares your system for the time changes. Check the Web site for your operating system vendor for an update that addresses the time
changes.

• If you replace the system's /etc/localtime timezone file with a version that uses rules differing from those in effect at
mysqld startup, you should restart mysqld so that it uses the updated rules. Otherwise, mysqld might not notice when the sys-
tem changes its time.

• If you use named time zones with MySQL, make sure that the time zone tables in the mysql database are up to date. If your system
has its own zoneinfo database, you should reload the MySQL time zone tables whenever the zoneinfo database is updated, using the
instructions given earlier in this section. For systems that do not have their own zoneinfo database, check the MySQL Developer
Zone for updates. When a new update is available, download it and use it to replace your current time zone tables. mysqld caches
time zone information that it looks up, so after replacing the time zone tables, you should restart mysqld to make sure that it does
not continue to serve outdated time zone data.

If you are uncertain whether named time zones are available, for use either as the server's time zone setting or by clients that set their
own time zone, check whether your time zone tables are empty. The following query determines whether the table that contains time
zone names has any rows:

mysql> SELECT COUNT(*) FROM mysql.time_zone_name;
+----------+
| COUNT(*) |
+----------+

Internationalization and Localization

646

http://dev.mysql.com/downloads/timezones.html


| 0 |
+----------+

A count of zero indicates that the table is empty. In this case, no one can be using named time zones, and you don't need to update the
tables. A count greater than zero indicates that the table is not empty and that its contents are available to be used for named time zone
support. In this case, you should be sure to reload your time zone tables so that anyone who uses named time zones will get correct
query results.

To check whether your MySQL installation is updated properly for a change in Daylight Saving Time rules, use a test like the one fol-
lowing. The example uses values that are appropriate for the 2007 DST 1-hour change that occurs in the United States on March 11 at 2
a.m.

The test uses these two queries:

SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');

The two time values indicate the times at which the DST change occurs, and the use of named time zones requires that the time zone
tables be used. The desired result is that both queries return the same result (the input time, converted to the equivalent value in the 'US/
Central' time zone).

Before updating the time zone tables, you would see an incorrect result like this:

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 01:00:00 |
+------------------------------------------------------------+

mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 02:00:00 |
+------------------------------------------------------------+

After updating the tables, you should see the correct result:

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 01:00:00 |
+------------------------------------------------------------+

mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 01:00:00 |
+------------------------------------------------------------+

9.7. MySQL Server Locale Support
Beginning with MySQL 5.1.12, the locale indicated by the lc_time_names system variable controls the language used to display
day and month names and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and MONTH-
NAME() functions.

Locale names are POSIX-style values such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of your system's loc-
ale setting, but you can set the value at server startup or set the GLOBAL value if you have the SUPER privilge. Any client can examine
the value of lc_time_names or set its SESSION value to affect the locale for its own connection.

mysql> SET NAMES 'utf8';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)

Internationalization and Localization

647



mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| Friday | January |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+-----------------------------------------+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+-----------------------------------------+
| Friday Fri January Jan |
+-----------------------------------------+
1 row in set (0.00 sec)

mysql> SET lc_time_names = 'es_MX';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| es_MX |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| viernes | enero |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+-----------------------------------------+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+-----------------------------------------+
| viernes vie enero ene |
+-----------------------------------------+
1 row in set (0.00 sec)

The day or month name for each of the affected functions is converted from utf8 to the character set indicated by the charac-
ter_set_connection system variable.

lc_time_names may be set to any of the following locale values:

ar_AE: Arabic - United Arab Emirates ar_BH: Arabic - Bahrain

ar_DZ: Arabic - Algeria ar_EG: Arabic - Egypt

ar_IN: Arabic - Iran ar_IQ: Arabic - Iraq

ar_JO: Arabic - Jordan ar_KW: Arabic - Kuwait

ar_LB: Arabic - Lebanon ar_LY: Arabic - Libya

ar_MA: Arabic - Morocco ar_OM: Arabic - Oman

ar_QA: Arabic - Qatar ar_SA: Arabic - Saudi Arabia

ar_SD: Arabic - Sudan ar_SY: Arabic - Syria

ar_TN: Arabic - Tunisia ar_YE: Arabic - Yemen

be_BY: Belarusian - Belarus bg_BG: Bulgarian - Bulgaria

ca_ES: Catalan - Catalan cs_CZ: Czech - Czech Republic

da_DK: Danish - Denmark de_AT: German - Austria

de_BE: German - Belgium de_CH: German - Switzerland

de_DE: German - Germany de_LU: German - Luxembourg

EE: Estonian - Estonia en_AU: English - Australia

en_CA: English - Canada en_GB: English - United Kingdom

en_IN: English - India en_NZ: English - New Zealand

en_PH: English - Philippines en_US: English - United States

en_ZA: English - South Africa en_ZW: English - Zimbabwe

es_AR: Spanish - Argentina es_BO: Spanish - Bolivia

Internationalization and Localization

648



es_CL: Spanish - Chile es_CO: Spanish - Columbia

es_CR: Spanish - Costa Rica es_DO: Spanish - Dominican Republic

es_EC: Spanish - Ecuador es_ES: Spanish - Spain

es_GT: Spanish - Guatemala es_HN: Spanish - Honduras

es_MX: Spanish - Mexico es_NI: Spanish - Nicaragua

es_PA: Spanish - Panama es_PE: Spanish - Peru

es_PR: Spanish - Puerto Rico es_PY: Spanish - Paraguay

es_SV: Spanish - El Salvador es_US: Spanish - United States

es_UY: Spanish - Uruguay es_VE: Spanish - Venezuela

eu_ES: Basque - Basque fi_FI: Finnish - Finland

fo_FO: Faroese - Faroe Islands fr_BE: French - Belgium

fr_CA: French - Canada fr_CH: French - Switzerland

fr_FR: French - France fr_LU: French - Luxembourg

gl_ES: Galician - Galician gu_IN: Gujarati - India

he_IL: Hebrew - Israel hi_IN: Hindi - India

hr_HR: Croatian - Croatia hu_HU: Hungarian - Hungary

id_ID: Indonesian - Indonesia is_IS: Icelandic - Iceland

it_CH: Italian - Switzerland it_IT: Italian - Italy

ja_JP: Japanese - Japan ko_KR: Korean - Korea

lt_LT: Lithuanian - Lithuania lv_LV: Latvian - Latvia

mk_MK: Macedonian - FYROM mn_MN: Mongolia - Mongolian

ms_MY: Malay - Malaysia nb_NO: Norwegian(Bokml) - Norway

nl_BE: Dutch - Belgium nl_NL: Dutch - The Netherlands

no_NO: Norwegian - Norway pl_PL: Polish - Poland

pt_BR: Portugese - Brazil pt_PT: Portugese - Portugal

ro_RO: Romanian - Romania ru_RU: Russian - Russia

ru_UA: Russian - Ukraine sk_SK: Slovak - Slovakia

sl_SI: Slovenian - Slovenia sq_AL: Albanian - Albania

sr_YU: Serbian - Yugoslavia sv_FI: Swedish - Finland

sv_SE: Swedish - Sweden ta_IN: Tamil - India

te_IN: Telugu - India th_TH: Thai - Thailand

tr_TR: Turkish - Turkey uk_UA: Ukrainian - Ukraine

ur_PK: Urdu - Pakistan vi_VN: Vietnamese - Vietnam

zh_CN: Chinese - Peoples Republic of China zh_HK: Chinese - Hong Kong SAR

zh_TW: Chinese - Taiwan

lc_time_names currently does not affect the STR_TO_DATE() or GET_FORMAT() function.

Internationalization and Localization

649



Chapter 10. Data Types
MySQL supports a number of data types in several categories: numeric types, date and time types, and string (character) types. This
chapter first gives an overview of these data types, and then provides a more detailed description of the properties of the types in each
category, and a summary of the data type storage requirements. The initial overview is intentionally brief. The more detailed descrip-
tions later in the chapter should be consulted for additional information about particular data types, such as the allowable formats in
which you can specify values.

MySQL also supports extensions for handing spatial data. Chapter 19, Spatial Extensions, provides information about these data types.

Data type descriptions use these conventions:

• M indicates the maximum display width for integer types. For floating-point and fixed-point types, M is the total number of digits
that can be stored. For string types, M is the maximum length. The maximum allowable value of M depends on the data type.

• D applies to floating-point and fixed-point types and indicates the number of digits following the decimal point. The maximum pos-
sible value is 30, but should be no greater than M–2.

• Square brackets (“[” and “]”) indicate optional parts of type definitions.

10.1. Data Type Overview

10.1.1. Overview of Numeric Types
A summary of the numeric data types follows. For additional information, see Section 10.2, “Numeric Types”. Storage requirements are
given in Section 10.5, “Data Type Storage Requirements”.

M indicates the maximum display width for integer types. The maximum legal display width is 255. Display width is unrelated to the
range of values a type can contain, as described in Section 10.2, “Numeric Types”. For floating-point and fixed-point types, M is the
total number of digits that can be stored.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to the column.

Numeric data types that allow the UNSIGNED attribute also allow SIGNED. However, these data types are signed by default, so the
SIGNED attribute has no effect.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL AUTO_INCREMENT UNIQUE.

Warning

When you use subtraction between integer values where one is of type UNSIGNED, the result is unsigned unless the
NO_UNSIGNED_SUBTRACTION SQL mode is enabled. See Section 11.9, “Cast Functions and Operators”.

• BIT[(M)]

A bit-field type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omitted.

• TINYINT[(M)] [UNSIGNED] [ZEROFILL]

A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.

• BOOL, BOOLEAN

These types are synonyms for TINYINT(1). A value of zero is considered false. Non-zero values are considered true:

mysql> SELECT IF(0, 'true', 'false');
+------------------------+
| IF(0, 'true', 'false') |
+------------------------+
| false |
+------------------------+

650



mysql> SELECT IF(1, 'true', 'false');
+------------------------+
| IF(1, 'true', 'false') |
+------------------------+
| true |
+------------------------+

mysql> SELECT IF(2, 'true', 'false');
+------------------------+
| IF(2, 'true', 'false') |
+------------------------+
| true |
+------------------------+

However, the values TRUE and FALSE are merely aliases for 1 and 0, respectively, as shown here:

mysql> SELECT IF(0 = FALSE, 'true', 'false');
+--------------------------------+
| IF(0 = FALSE, 'true', 'false') |
+--------------------------------+
| true |
+--------------------------------+

mysql> SELECT IF(1 = TRUE, 'true', 'false');
+-------------------------------+
| IF(1 = TRUE, 'true', 'false') |
+-------------------------------+
| true |
+-------------------------------+

mysql> SELECT IF(2 = TRUE, 'true', 'false');
+-------------------------------+
| IF(2 = TRUE, 'true', 'false') |
+-------------------------------+
| false |
+-------------------------------+

mysql> SELECT IF(2 = FALSE, 'true', 'false');
+--------------------------------+
| IF(2 = FALSE, 'true', 'false') |
+--------------------------------+
| false |
+--------------------------------+

The last two statements display the results shown because 2 is equal to neither 1 nor 0.

We intend to implement full boolean type handling, in accordance with standard SQL, in a future MySQL release.

• SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

• MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to 16777215.

• INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned range is 0 to 4294967295.

• INTEGER[(M)] [UNSIGNED] [ZEROFILL]

This type is a synonym for INT.

• BIGINT[(M)] [UNSIGNED] [ZEROFILL]

A large integer. The signed range is -9223372036854775808 to 9223372036854775807. The unsigned range is 0 to
18446744073709551615.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

Some things you should be aware of with respect to BIGINT columns:

• All arithmetic is done using signed BIGINT or DOUBLE values, so you should not use unsigned big integers larger than

Data Types

651



9223372036854775807 (63 bits) except with bit functions! If you do that, some of the last digits in the result may be wrong
because of rounding errors when converting a BIGINT value to a DOUBLE.

MySQL can handle BIGINT in the following cases:

• When using integers to store large unsigned values in a BIGINT column.

• In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT column.

• When using operators (+, -, *, and so on) where both operands are integers.

• You can always store an exact integer value in a BIGINT column by storing it using a string. In this case, MySQL performs a
string-to-number conversion that involves no intermediate double-precision representation.

• The -, +, and * operators use BIGINT arithmetic when both operands are integer values. This means that if you multiply two
big integers (or results from functions that return integers), you may get unexpected results when the result is larger than
9223372036854775807.

• FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

A small (single-precision) floating-point number. Allowable values are -3.402823466E+38 to -1.175494351E-38, 0, and
1.175494351E-38 to 3.402823466E+38. These are the theoretical limits, based on the IEEE standard. The actual range
might be slightly smaller depending on your hardware or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are omitted, values are stored to
the limits allowed by the hardware. A single-precision floating-point number is accurate to approximately 7 decimal places.

UNSIGNED, if specified, disallows negative values.

Using FLOAT might give you some unexpected problems because all calculations in MySQL are done with double precision. See
Section B.1.5.7, “Solving Problems with No Matching Rows”.

• DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

A normal-size (double-precision) floating-point number. Allowable values are -1.7976931348623157E+308 to -
2.2250738585072014E-308, 0, and 2.2250738585072014E-308 to 1.7976931348623157E+308. These are the
theoretical limits, based on the IEEE standard. The actual range might be slightly smaller depending on your hardware or operating
system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are omitted, values are stored to
the limits allowed by the hardware. A double-precision floating-point number is accurate to approximately 15 decimal places.

UNSIGNED, if specified, disallows negative values.

• DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)] [UNSIGNED] [ZEROFILL]

These types are synonyms for DOUBLE. Exception: If the REAL_AS_FLOAT SQL mode is enabled, REAL is a synonym for FLOAT
rather than DOUBLE.

• FLOAT(p) [UNSIGNED] [ZEROFILL]

A floating-point number. p represents the precision in bits, but MySQL uses this value only to determine whether to use FLOAT or
DOUBLE for the resulting data type. If p is from 0 to 24, the data type becomes FLOAT with no M or D values. If p is from 25 to 53,
the data type becomes DOUBLE with no M or D values. The range of the resulting column is the same as for the single-precision
FLOAT or double-precision DOUBLE data types described earlier in this section.

FLOAT(p) syntax is provided for ODBC compatibility.

• DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

A packed “exact” fixed-point number. M is the total number of digits (the precision) and D is the number of digits after the decimal
point (the scale). The decimal point and (for negative numbers) the “-” sign are not counted in M. If D is 0, values have no decimal
point or fractional part. The maximum number of digits (M) for DECIMAL is 65. The maximum number of supported decimals (D) is
30. If D is omitted, the default is 0. If M is omitted, the default is 10.

Data Types

652



UNSIGNED, if specified, disallows negative values.

All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 digits.

• DEC[(M[,D])] [UNSIGNED] [ZEROFILL], NUMERIC[(M[,D])] [UNSIGNED] [ZEROFILL], FIXED[(M[,D])]
[UNSIGNED] [ZEROFILL]

These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with other database systems.

10.1.2. Overview of Date and Time Types
A summary of the temporal data types follows. For additional information, see Section 10.3, “Date and Time Types”. Storage require-
ments are given in Section 10.5, “Data Type Storage Requirements”. Functions that operate on temporal values are described at Sec-
tion 11.6, “Date and Time Functions”.

For the DATETIME and DATE range descriptions, “supported” means that although earlier values might work, there is no guarantee.

• DATE

A date. The supported range is '1000-01-01' to '9999-12-31'. MySQL displays DATE values in 'YYYY-MM-DD' format,
but allows assignment of values to DATE columns using either strings or numbers.

• DATETIME

A date and time combination. The supported range is '1000-01-01 00:00:00' to '9999-12-31 23:59:59'. MySQL
displays DATETIME values in 'YYYY-MM-DD HH:MM:SS' format, but allows assignment of values to DATETIME columns us-
ing either strings or numbers.

• TIMESTAMP

A timestamp. The range is '1970-01-01 00:00:01' UTC to partway through the year 2038. TIMESTAMP values are stored
as the number of seconds since the epoch ('1970-01-01 00:00:00' UTC). A TIMESTAMP cannot represent the value
'1970-01-01 00:00:00' because that is equivalent to 0 seconds from the epoch and the value 0 is reserved for representing
'0000-00-00 00:00:00', the “zero” TIMESTAMP value.

A TIMESTAMP column is useful for recording the date and time of an INSERT or UPDATE operation. By default, the first
TIMESTAMP column in a table is automatically set to the date and time of the most recent operation if you do not assign it a value
yourself. You can also set any TIMESTAMP column to the current date and time by assigning it a NULL value. Variations on auto-
matic initialization and update properties are described in Section 10.3.1.1, “TIMESTAMP Properties”.

A TIMESTAMP value is returned as a string in the format 'YYYY-MM-DD HH:MM:SS' with a display width fixed at 19 charac-
ters. To obtain the value as a number, you should add +0 to the timestamp column.

Note

The TIMESTAMP format that was used prior to MySQL 4.1 is not supported in MySQL 5.1; see MySQL 3.23, 4.0, 4.1 Ref-
erence Manual for information regarding the old format.

• TIME

A time. The range is '-838:59:59' to '838:59:59'. MySQL displays TIME values in 'HH:MM:SS' format, but allows as-
signment of values to TIME columns using either strings or numbers.

• YEAR[(2|4)]

A year in two-digit or four-digit format. The default is four-digit format. In four-digit format, the allowable values are 1901 to
2155, and 0000. In two-digit format, the allowable values are 70 to 69, representing years from 1970 to 2069. MySQL displays
YEAR values in YYYY format, but allows you to assign values to YEAR columns using either strings or numbers.

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values to numbers, which loses the
part after the first non-numeric character.) To work around this problem, you can convert to numeric units, perform the aggregate opera-
tion, and convert back to a temporal value. Examples:

Data Types

653



SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

10.1.3. Overview of String Types
A summary of the string data types follows. For additional information, see Section 10.4, “String Types”. Storage requirements are giv-
en in Section 10.5, “Data Type Storage Requirements”.

In some cases, MySQL may change a string column to a type different from that given in a CREATE TABLE or ALTER TABLE state-
ment. See Section 12.1.10.1, “Silent Column Specification Changes”.

MySQL interprets length specifications in character column definitions in character units. This applies to CHAR, VARCHAR, and the
TEXT types.

Column definitions for many string data types can include attributes that specify the character set or collation of the column. These at-
tributes apply to the CHAR, VARCHAR, the TEXT types, ENUM, and SET data types:

• The CHARACTER SET attribute specifies the character set, and the COLLATE attribute specifies a collation for the character set.
For example:

CREATE TABLE t
(

c1 VARCHAR(20) CHARACTER SET utf8,
c2 TEXT CHARACTER SET latin1 COLLATE latin1_general_cs

);

This table definition creates a column named c1 that has a character set of utf8 with the default collation for that character set, and
a column named c2 that has a character set of latin1 and a case-sensitive collation.

CHARSET is a synonym for CHARACTER SET.

• The ASCII attribute is shorthand for CHARACTER SET latin1.

• The UNICODE attribute is shorthand for CHARACTER SET ucs2.

• The BINARY attribute is shorthand for specifying the binary collation of the column character set. In this case, sorting and compar-
ison are based on numeric character values.

Character column sorting and comparison are based on the character set assigned to the column. For the CHAR, VARCHAR, TEXT,
ENUM, and SET data types, you can declare a column with a binary collation or the BINARY attribute to cause sorting and comparison
to use the underlying character code values rather than a lexical ordering.

Section 9.1, “Character Set Support”, provides additional information about use of character sets in MySQL.

• [NATIONAL] CHAR[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

A fixed-length string that is always right-padded with spaces to the specified length when stored. M represents the column length in
characters. The range of M is 0 to 255. If M is omitted, the length is 1.

Note

Trailing spaces are removed when CHAR values are retrieved unless the PAD_CHAR_TO_FULL_LENGTH SQL mode is
enabled.

CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR) is the standard SQL way to define
that a CHAR column should use some predefined character set. MySQL 4.1 and up uses utf8 as this predefined character set. Sec-
tion 9.1.3.6, “National Character Set”.

The CHAR BYTE data type is an alias for the BINARY data type. This is a compatibility feature.

MySQL allows you to create a column of type CHAR(0). This is useful primarily when you have to be compliant with old applica-
tions that depend on the existence of a column but that do not actually use its value. CHAR(0) is also quite nice when you need a
column that can take only two values: A column that is defined as CHAR(0) NULL occupies only one bit and can take only the val-

Data Types

654



ues NULL and '' (the empty string).

• [NATIONAL] VARCHAR(M) [CHARACTER SET charset_name] [COLLATE collation_name]

A variable-length string. M represents the maximum column length in characters. The range of M is 0 to 65,535. The effective max-
imum length of a VARCHAR is subject to the maximum row size (65,535 bytes, which is shared among all columns) and the charac-
ter set used. For example, utf8 characters can require up to three bytes per character, so a VARCHAR column that uses the utf8
character set can be declared to be a maximum of 21,844 characters.

MySQL stores VARCHAR values as a one-byte or two-byte length prefix plus data. The length prefix indicates the number of bytes
in the value. A VARCHAR column uses one length byte if values require no more than 255 bytes, two length bytes if values may re-
quire more than 255 bytes.

Note

MySQL 5.1 follows the standard SQL specification, and does not remove trailing spaces from VARCHAR values.

VARCHAR is shorthand for CHARACTER VARYING. NATIONAL VARCHAR is the standard SQL way to define that a VARCHAR
column should use some predefined character set. MySQL 4.1 and up uses utf8 as this predefined character set. Section 9.1.3.6,
“National Character Set”. NVARCHAR is shorthand for NATIONAL VARCHAR.

• BINARY(M)

The BINARY type is similar to the CHAR type, but stores binary byte strings rather than non-binary character strings. M represents
the column length in bytes.

• VARBINARY(M)

The VARBINARY type is similar to the VARCHAR type, but stores binary byte strings rather than non-binary character strings. M rep-
resents the maximum column length in bytes.

• TINYBLOB

A BLOB column with a maximum length of 255 (28 – 1) bytes. Each TINYBLOB value is stored using a one-byte length prefix that
indicates the number of bytes in the value.

• TINYTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 255 (28 – 1) characters. The effective maximum length is less if the value contains
multi-byte characters. Each TINYTEXT value is stored using a one-byte length prefix that indicates the number of bytes in the
value.

• BLOB[(M)]

A BLOB column with a maximum length of 65,535 (216 – 1) bytes. Each BLOB value is stored using a two-byte length prefix that in-
dicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the smallest BLOB type large enough
to hold values M bytes long.

• TEXT[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 65,535 (216 – 1) characters. The effective maximum length is less if the value contains
multi-byte characters. Each TEXT value is stored using a two-byte length prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the smallest TEXT type large enough
to hold values M characters long.

• MEDIUMBLOB

A BLOB column with a maximum length of 16,777,215 (224 – 1) bytes. Each MEDIUMBLOB value is stored using a three-byte
length prefix that indicates the number of bytes in the value.

• MEDIUMTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 16,777,215 (224 – 1) characters. The effective maximum length is less if the value con-

Data Types

655



tains multi-byte characters. Each MEDIUMTEXT value is stored using a three-byte length prefix that indicates the number of bytes in
the value.

• LONGBLOB

A BLOB column with a maximum length of 4,294,967,295 or 4GB (232 – 1) bytes. The effective maximum length of LONGBLOB
columns depends on the configured maximum packet size in the client/server protocol and available memory. Each LONGBLOB
value is stored using a four-byte length prefix that indicates the number of bytes in the value.

• LONGTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 4,294,967,295 or 4GB (232 – 1) characters. The effective maximum length is less if the
value contains multi-byte characters. The effective maximum length of LONGTEXT columns also depends on the configured maxim-
um packet size in the client/server protocol and available memory. Each LONGTEXT value is stored using a four-byte length prefix
that indicates the number of bytes in the value.

• ENUM('value1','value2',...) [CHARACTER SET charset_name] [COLLATE collation_name]

An enumeration. A string object that can have only one value, chosen from the list of values 'value1', 'value2', ..., NULL
or the special '' error value. An ENUM column can have a maximum of 65,535 distinct values. ENUM values are represented intern-
ally as integers.

• SET('value1','value2',...) [CHARACTER SET charset_name] [COLLATE collation_name]

A set. A string object that can have zero or more values, each of which must be chosen from the list of values 'value1',
'value2', ... A SET column can have a maximum of 64 members. SET values are represented internally as integers.

10.1.4. Data Type Default Values
The DEFAULT value clause in a data type specification indicates a default value for a column. With one exception, the default value
must be a constant; it cannot be a function or an expression. This means, for example, that you cannot set the default for a date column
to be the value of a function such as NOW() or CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as the
default for a TIMESTAMP column. See Section 10.3.1.1, “TIMESTAMP Properties”.

BLOB and TEXT columns cannot be assigned a default value.

If a column definition includes no explicit DEFAULT value, MySQL determines the default value as follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause.

If the column cannot take NULL as the value, MySQL defines the column with no explicit DEFAULT clause. For data entry, if an IN-
SERT or REPLACE statement includes no value for the column, MySQL handles the column according to the SQL mode in effect at the
time:

• If strict SQL mode is not enabled, MySQL sets the column to the implicit default value for the column data type.

• If strict mode is enabled, an error occurs for transactional tables and the statement is rolled back. For non-transactional tables, an er-
ror occurs, but if this happens for the second or subsequent row of a multiple-row statement, the preceding rows will have been in-
serted.

Suppose that a table t is defined as follows:

CREATE TABLE t (i INT NOT NULL);

In this case, i has no explicit default, so in strict mode each of the following statements produce an error and no row is inserted. When
not using strict mode, only the third statement produces an error; the implicit default is inserted for the first two statements, but the third
fails because DEFAULT(i) cannot produce a value:

INSERT INTO t VALUES();
INSERT INTO t VALUES(DEFAULT);
INSERT INTO t VALUES(DEFAULT(i));

Data Types

656



See Section 5.1.6, “SQL Modes”.

For a given table, you can use the SHOW CREATE TABLE statement to see which columns have an explicit DEFAULT clause.

Implicit defaults are defined as follows:

• For numeric types, the default is 0, with the exception that for integer or floating-point types declared with the AUTO_INCREMENT
attribute, the default is the next value in the sequence.

• For date and time types other than TIMESTAMP, the default is the appropriate “zero” value for the type. For the first TIMESTAMP
column in a table, the default value is the current date and time. See Section 10.3, “Date and Time Types”.

• For string types other than ENUM, the default value is the empty string. For ENUM, the default is the first enumeration value.

10.2. Numeric Types
MySQL supports all of the standard SQL numeric data types. These types include the exact numeric data types (INTEGER,
SMALLINT, DECIMAL, and NUMERIC), as well as the approximate numeric data types (FLOAT, REAL, and DOUBLE PRECISION).
The keyword INT is a synonym for INTEGER, and the keyword DEC is a synonym for DECIMAL. For numeric type storage require-
ments, see Section 10.5, “Data Type Storage Requirements”.

The BIT data type stores bit-field values and is supported for MyISAM, MEMORY, InnoDB, and NDBCLUSTER tables.

As an extension to the SQL standard, MySQL also supports the integer types TINYINT, MEDIUMINT, and BIGINT. The following ta-
ble shows the required storage and range for each of the integer types.

Type Bytes Minimum Value Maximum Value

(Signed/Unsigned) (Signed/Unsigned)

TINYINT 1 -128 127

0 255

SMALLINT 2 -32768 32767

0 65535

MEDIUMINT 3 -8388608 8388607

0 16777215

INT 4 -2147483648 2147483647

0 4294967295

BIGINT 8 -9223372036854775808 9223372036854775807

0 18446744073709551615

Another extension is supported by MySQL for optionally specifying the display width of integer data types in parentheses following the
base keyword for the type (for example, INT(4)). This optional display width is used to display integer values having a width less than
the width specified for the column by left-padding them with spaces.

The display width does not constrain the range of values that can be stored in the column, nor the number of digits that are displayed for
values having a width exceeding that specified for the column. For example, a column specified as SMALLINT(3) has the usual
SMALLINT range of -32768 to 32767, and values outside the range allowed by three characters are displayed using more than three
characters.

When used in conjunction with the optional extension attribute ZEROFILL, the default padding of spaces is replaced with zeros. For
example, for a column declared as INT(5) ZEROFILL, a value of 4 is retrieved as 00004. Note that if you store larger values than
the display width in an integer column, you may experience problems when MySQL generates temporary tables for some complicated
joins, because in these cases MySQL assumes that the data fits into the original column width.

Note

The ZEROFILL attribute is ignored when a column is involved in expressions or UNION queries.

Data Types

657



All integer types can have an optional (non-standard) attribute UNSIGNED. Unsigned values can be used when you want to allow only
non-negative numbers in a column and you need a larger upper numeric range for the column. For example, if an INT column is UN-
SIGNED, the size of the column's range is the same but its endpoints shift from -2147483648 and 2147483647 up to 0 and
4294967295.

Floating-point and fixed-point types also can be UNSIGNED. As with integer types, this attribute prevents negative values from being
stored in the column. However, unlike the integer types, the upper range of column values remains the same.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to the column.

Integer or floating-point data types can have the additional attribute AUTO_INCREMENT. When you insert a value of NULL
(recommended) or 0 into an indexed AUTO_INCREMENT column, the column is set to the next sequence value. Typically this is
value+1, where value is the largest value for the column currently in the table. AUTO_INCREMENT sequences begin with 1.

For floating-point data types, MySQL uses four bytes for single-precision values and eight bytes for double-precision values.

The FLOAT and DOUBLE data types are used to represent approximate numeric data values. For FLOAT, the SQL standard allows an
optional specification of the precision (but not the range of the exponent) in bits following the keyword FLOAT in parentheses. MySQL
also supports this optional precision specification, but the precision value is used only to determine storage size. A precision from 0 to
23 results in a four-byte single-precision FLOAT column. A precision from 24 to 53 results in an eight-byte double-precision DOUBLE
column.

MySQL allows a non-standard syntax: FLOAT(M,D) or REAL(M,D) or DOUBLE PRECISION(M,D). Here, “(M,D)” means than
values can be stored with up to M digits in total, of which D digits may be after the decimal point. For example, a column defined as
FLOAT(7,4) will look like -999.9999 when displayed. MySQL performs rounding when storing values, so if you insert
999.00009 into a FLOAT(7,4) column, the approximate result is 999.0001.

MySQL treats DOUBLE as a synonym for DOUBLE PRECISION (a non-standard extension). MySQL also treats REAL as a synonym
for DOUBLE PRECISION (a non-standard variation), unless the REAL_AS_FLOAT SQL mode is enabled.

For maximum portability, code requiring storage of approximate numeric data values should use FLOAT or DOUBLE PRECISION
with no specification of precision or number of digits.

The DECIMAL and NUMERIC data types are used to store exact numeric data values. In MySQL, NUMERIC is implemented as
DECIMAL. These types are used to store values for which it is important to preserve exact precision, for example with monetary data.

MySQL 5.1 stores DECIMAL and NUMERIC values in binary format. Before MySQL 5.0.3, they were stored as strings. See Chapter 25,
Precision Math.

When declaring a DECIMAL or NUMERIC column, the precision and scale can be (and usually is) specified; for example:

salary DECIMAL(5,2)

In this example, 5 is the precision and 2 is the scale. The precision represents the number of significant digits that are stored for values,
and the scale represents the number of digits that can be stored following the decimal point. If the scale is 0, DECIMAL and NUMERIC
values contain no decimal point or fractional part.

Standard SQL requires that the salary column be able to store any value with five digits and two decimals. In this case, therefore, the
range of values that can be stored in the salary column is from -999.99 to 999.99.

In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax DECIMAL is equivalent to
DECIMAL(M,0), where the implementation is allowed to decide the value of M. MySQL supports both of these variant forms of the
DECIMAL and NUMERIC syntax. The default value of M is 10.

The maximum number of digits for DECIMAL or NUMERIC is 65, but the actual range for a given DECIMAL or NUMERIC column can
be constrained by the precision or scale for a given column. When such a column is assigned a value with more digits following the
decimal point than are allowed by the specified scale, the value is converted to that scale. (The precise behavior is operating system-
specific, but generally the effect is truncation to the allowable number of digits.)

The BIT data type is used to store bit-field values. A type of BIT(M) allows for storage of M-bit values. M can range from 1 to 64.

To specify bit values, b'value' notation can be used. value is a binary value written using zeros and ones. For example, b'111'
and b'10000000' represent 7 and 128, respectively. See Section 8.1.5, “Bit-Field Values”.

If you assign a value to a BIT(M) column that is less than M bits long, the value is padded on the left with zeros. For example, assign-

Data Types

658



ing a value of b'101' to a BIT(6) column is, in effect, the same as assigning b'000101'.

When asked to store a value in a numeric column that is outside the data type's allowable range, MySQL's behavior depends on the SQL
mode in effect at the time. For example, if no restrictive modes are enabled, MySQL clips the value to the appropriate endpoint of the
range and stores the resulting value instead. However, if the mode is set to TRADITIONAL, MySQL rejects a value that is out of range
with an error, and the insert fails, in accordance with the SQL standard.

In non-strict mode, when an out-of-range value is assigned to an integer column, MySQL stores the value representing the correspond-
ing endpoint of the column data type range. If you store 256 into a TINYINT or TINYINT UNSIGNED column, MySQL stores 127 or
255, respectively. When a floating-point or fixed-point column is assigned a value that exceeds the range implied by the specified (or
default) precision and scale, MySQL stores the value representing the corresponding endpoint of that range.

Conversions that occur due to clipping when MySQL is not operating in strict mode are reported as warnings for ALTER TABLE,
LOAD DATA INFILE, UPDATE, and multiple-row INSERT statements. When MySQL is operating in strict mode, these statements
fail, and some or all of the values will not be inserted or changed, depending on whether the table is a transactional table and other
factors. For details, see Section 5.1.6, “SQL Modes”.

10.3. Date and Time Types
The date and time types for representing temporal values are DATETIME, DATE, TIMESTAMP, TIME, and YEAR. Each temporal type
has a range of legal values, as well as a “zero” value that may be used when you specify an illegal value that MySQL cannot represent.
The TIMESTAMP type has special automatic updating behavior, described later on. For temporal type storage requirements, see Sec-
tion 10.5, “Data Type Storage Requirements”.

MySQL gives warnings or errors if you try to insert an illegal date. By setting the SQL mode to the appropriate value, you can specify
more exactly what kind of dates you want MySQL to support. (See Section 5.1.6, “SQL Modes”.) You can get MySQL to accept certain
dates, such as '1999-11-31', by using the ALLOW_INVALID_DATES SQL mode. This is useful when you want to store a
“possibly wrong” value which the user has specified (for example, in a web form) in the database for future processing. Under this
mode, MySQL verifies only that the month is in the range from 0 to 12 and that the day is in the range from 0 to 31. These ranges are
defined to include zero because MySQL allows you to store dates where the day or month and day are zero in a DATE or DATETIME
column. This is extremely useful for applications that need to store a birthdate for which you do not know the exact date. In this case,
you simply store the date as '1999-00-00' or '1999-01-00'. If you store dates such as these, you should not expect to get cor-
rect results for functions such as DATE_SUB() or DATE_ADD() that require complete dates. (If you do not want to allow zero in
dates, you can use the NO_ZERO_IN_DATE SQL mode).

Prior to MySQL 5.1.18, when DATE values are compared with DATETIME values the time portion of the DATETIME value is ignored.
Starting from MySQL 5.1.18, a DATE value is coerced to the DATETIME type by adding the time portion as '00:00:00'. To mimic
the old behavior, use the CAST() function to perform the comparison in the following way:

date_col = CAST(NOW() as DATE);

MySQL also allows you to store '0000-00-00' as a “dummy date” (if you are not using the NO_ZERO_DATE SQL mode). This is
in some cases more convenient (and uses less data and index space) than using NULL values.

Here are some general considerations to keep in mind when working with date and time types:

• MySQL retrieves values for a given date or time type in a standard output format, but it attempts to interpret a variety of formats for
input values that you supply (for example, when you specify a value to be assigned to or compared to a date or time type). Only the
formats described in the following sections are supported. It is expected that you supply legal values. Unpredictable results may oc-
cur if you use values in other formats.

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL interprets two-digit year values us-
ing the following rules:

• Year values in the range 70-99 are converted to 1970-1999.

• Year values in the range 00-69 are converted to 2000-2069.

• Although MySQL tries to interpret values in several formats, dates always must be given in year-month-day order (for example,
'98-09-04'), rather than in the month-day-year or day-month-year orders commonly used elsewhere (for example,
'09-04-98', '04-09-98').

• MySQL automatically converts a date or time type value to a number if the value is used in a numeric context and vice versa.

Data Types

659



• By default, when MySQL encounters a value for a date or time type that is out of range or otherwise illegal for the type (as de-
scribed at the beginning of this section), it converts the value to the “zero” value for that type. The exception is that out-of-range
TIME values are clipped to the appropriate endpoint of the TIME range.

The following table shows the format of the “zero” value for each type. Note that the use of these values produces warnings if the
NO_ZERO_DATE SQL mode is enabled.

Data Type “Zero” Value

DATETIME '0000-00-00 00:00:00'

DATE '0000-00-00'

TIMESTAMP '0000-00-00 00:00:00'

TIME '00:00:00'

YEAR 0000

• The “zero” values are special, but you can store or refer to them explicitly using the values shown in the table. You can also do this
using the values '0' or 0, which are easier to write.

• “Zero” date or time values used through MyODBC are converted automatically to NULL in MyODBC 2.50.12 and above, because
ODBC cannot handle such values.

10.3.1. The DATETIME, DATE, and TIMESTAMP Types
The DATETIME, DATE, and TIMESTAMP types are related. This section describes their characteristics, how they are similar, and how
they differ.

The DATETIME type is used when you need values that contain both date and time information. MySQL retrieves and displays DATE-
TIME values in 'YYYY-MM-DD HH:MM:SS' format. The supported range is '1000-01-01 00:00:00' to '9999-12-31
23:59:59'.

The DATE type is used when you need only a date value, without a time part. MySQL retrieves and displays DATE values in 'YYYY-
MM-DD' format. The supported range is '1000-01-01' to '9999-12-31'.

For the DATETIME and DATE range descriptions, “supported” means that although earlier values might work, there is no guarantee.

The TIMESTAMP data type has varying properties, depending on the MySQL version and the SQL mode the server is running in. These
properties are described later in this section.

You can specify DATETIME, DATE, and TIMESTAMP values using any of a common set of formats:

• As a string in either 'YYYY-MM-DD HH:MM:SS' or 'YY-MM-DD HH:MM:SS' format. A “relaxed” syntax is allowed: Any
punctuation character may be used as the delimiter between date parts or time parts. For example, '98-12-31 11:30:45',
'98.12.31 11+30+45', '98/12/31 11*30*45', and '98@12@31 11^30^45' are equivalent.

• As a string in either 'YYYY-MM-DD' or 'YY-MM-DD' format. A “relaxed” syntax is allowed here, too. For example,
'98-12-31', '98.12.31', '98/12/31', and '98@12@31' are equivalent.

• As a string with no delimiters in either 'YYYYMMDDHHMMSS' or 'YYMMDDHHMMSS' format, provided that the string makes sense
as a date. For example, '19970523091528' and '970523091528' are interpreted as '1997-05-23 09:15:28', but
'971122129015' is illegal (it has a nonsensical minute part) and becomes '0000-00-00 00:00:00'.

• As a string with no delimiters in either 'YYYYMMDD' or 'YYMMDD' format, provided that the string makes sense as a date. For ex-
ample, '19970523' and '970523' are interpreted as '1997-05-23', but '971332' is illegal (it has nonsensical month and
day parts) and becomes '0000-00-00'.

• As a number in either YYYYMMDDHHMMSS or YYMMDDHHMMSS format, provided that the number makes sense as a date. For ex-
ample, 19830905132800 and 830905132800 are interpreted as '1983-09-05 13:28:00'.

• As a number in either YYYYMMDD or YYMMDD format, provided that the number makes sense as a date. For example, 19830905
and 830905 are interpreted as '1983-09-05'.

Data Types

660



• As the result of a function that returns a value that is acceptable in a DATETIME, DATE, or TIMESTAMP context, such as NOW() or
CURRENT_DATE.

A microseconds part is allowable in temporal values in some contexts, such as in literal values, and in the arguments to or return values
from some temporal functions. Microseconds are specified as a trailing .uuuuuu part in the value. Example:

mysql> SELECT MICROSECOND('2010-12-10 14:12:09.019473');
+-------------------------------------------+
| MICROSECOND('2010-12-10 14:12:09.019473') |
+-------------------------------------------+
| 19473 |
+-------------------------------------------+

However, microseconds cannot be stored into a column of any temporal data type. Any microseconds part is discarded.

Conversion of TIME or DATETIME values to numeric form (for example, by adding +0) results in a double value with a microseconds
part of .000000:

mysql> SELECT CURTIME(), CURTIME()+0;
+-----------+---------------+
| CURTIME() | CURTIME()+0 |
+-----------+---------------+
| 10:41:36 | 104136.000000 |
+-----------+---------------+
mysql> SELECT NOW(), NOW()+0;
+---------------------+-----------------------+
| NOW() | NOW()+0 |
+---------------------+-----------------------+
| 2007-11-30 10:41:47 | 20071130104147.000000 |
+---------------------+-----------------------+

Illegal DATETIME, DATE, or TIMESTAMP values are converted to the “zero” value of the appropriate type ('0000-00-00
00:00:00' or '0000-00-00').

For values specified as strings that include date part delimiters, it is not necessary to specify two digits for month or day values that are
less than 10. '1979-6-9' is the same as '1979-06-09'. Similarly, for values specified as strings that include time part delimiters,
it is not necessary to specify two digits for hour, minute, or second values that are less than 10. '1979-10-30 1:2:3' is the same
as '1979-10-30 01:02:03'.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 digits long, it is assumed to be in YYYYMMDD or
YYYYMMDDHHMMSS format and that the year is given by the first 4 digits. If the number is 6 or 12 digits long, it is assumed to be in
YYMMDD or YYMMDDHHMMSS format and that the year is given by the first 2 digits. Numbers that are not one of these lengths are inter-
preted as though padded with leading zeros to the closest length.

Values specified as non-delimited strings are interpreted using their length as given. If the string is 8 or 14 characters long, the year is
assumed to be given by the first 4 characters. Otherwise, the year is assumed to be given by the first 2 characters. The string is inter-
preted from left to right to find year, month, day, hour, minute, and second values, for as many parts as are present in the string. This
means you should not use strings that have fewer than 6 characters. For example, if you specify '9903', thinking that represents
March, 1999, MySQL inserts a “zero” date value into your table. This occurs because the year and month values are 99 and 03, but the
day part is completely missing, so the value is not a legal date. However, you can explicitly specify a value of zero to represent missing
month or day parts. For example, you can use '990300' to insert the value '1999-03-00'.

You can to some extent assign values of one date type to an object of a different date type. However, there may be some alteration of
the value or loss of information:

• If you assign a DATE value to a DATETIME or TIMESTAMP object, the time part of the resulting value is set to '00:00:00' be-
cause the DATE value contains no time information.

• If you assign a DATETIME or TIMESTAMP value to a DATE object, the time part of the resulting value is deleted because the DATE
type stores no time information.

• Remember that although DATETIME, DATE, and TIMESTAMP values all can be specified using the same set of formats, the types
do not all have the same range of values. For example, TIMESTAMP values cannot be earlier than 1970 or later than 2038. This
means that a date such as '1968-01-01', while legal as a DATETIME or DATE value, is not valid as a TIMESTAMP value and is
converted to 0.

Data Types

661



Be aware of certain pitfalls when specifying date values:

• The relaxed format allowed for values specified as strings can be deceiving. For example, a value such as '10:11:12' might look
like a time value because of the “:” delimiter, but if used in a date context is interpreted as the year '2010-11-12'. The value
'10:45:15' is converted to '0000-00-00' because '45' is not a legal month.

• The server requires that month and day values be legal, and not merely in the range 1 to 12 and 1 to 31, respectively. With strict
mode disabled, invalid dates such as '2004-04-31' are converted to '0000-00-00' and a warning is generated. With strict
mode enabled, invalid dates generate an error. To allow such dates, enable ALLOW_INVALID_DATES. See Section 5.1.6, “SQL
Modes”, for more information.

• MySQL does not accept timestamp values that include a zero in the day or month column or values that are not a valid date. The
sole exception to this rule is the special value '0000-00-00 00:00:00'.

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL interprets two-digit year values us-
ing the following rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

10.3.1.1. TIMESTAMP Properties

TIMESTAMP columns are displayed in the same format as DATETIME columns. In other words, the display width is fixed at 19 charac-
ters, and the format is 'YYYY-MM-DD HH:MM:SS'.

TIMESTAMP values are converted from the current time zone to UTC for storage, and converted back from UTC to the current time
zone for retrieval. (This occurs only for the TIMESTAMP data type, not for other types such as DATETIME.) By default, the current
time zone for each connection is the server's time. The time zone can be set on a per-connection basis, as described in Section 9.6,
“MySQL Server Time Zone Support”. As long as the time zone setting remains constant, you get back the same value you store. If you
store a TIMESTAMP value, and then change the time zone and retrieve the value, the retrieved value is different from the value you
stored. This occurs because the same time zone was not used for conversion in both directions. The current time zone is available as the
value of the time_zone system variable.

The TIMESTAMP data type offers automatic initialization and updating. You can choose whether to use these properties and which
column should have them:

• For one TIMESTAMP column in a table, you can assign the current timestamp as the default value and the auto-update value. It is
possible to have the current timestamp be the default value for initializing the column, for the auto-update value, or both. It is not
possible to have the current timestamp be the default value for one column and the auto-update value for another column.

• Any single TIMESTAMP column in a table can be used as the one that is initialized to the current date and time, or updated automat-
ically. This need not be the first TIMESTAMP column.

• If a DEFAULT value is specified for the first TIMESTAMP column in a table, it is not ignored. The default can be CUR-
RENT_TIMESTAMP or a constant date and time value.

• In a CREATE TABLE statement, the first TIMESTAMP column can be declared in any of the following ways:

• With both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP clauses, the column has the cur-
rent timestamp for its default value, and is automatically updated.

• With neither DEFAULT nor ON UPDATE clauses, it is the same as DEFAULT CURRENT_TIMESTAMP ON UPDATE CUR-
RENT_TIMESTAMP.

• With a DEFAULT CURRENT_TIMESTAMP clause and no ON UPDATE clause, the column has the current timestamp for its
default value but is not automatically updated.

• With no DEFAULT clause and with an ON UPDATE CURRENT_TIMESTAMP clause, the column has a default of 0 and is auto-
matically updated.

• With a constant DEFAULT value, the column has the given default and is not automatically initialized to the current timestamp.
If the column also has an ON UPDATE CURRENT_TIMESTAMP clause, it is automatically updated; otherwise, it has a constant

Data Types

662



default and is not automatically updated.

In other words, you can use the current timestamp for both the initial value and the auto-update value, or either one, or neither. (For
example, you can specify ON UPDATE to enable auto-update without also having the column auto-initialized.) The following
column definitions demonstrate each of the possiblities:

• Auto-initialization and auto-update:

ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

• Auto-initialization only:

ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP

• Auto-update only:

ts TIMESTAMP DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP

• Neither:

ts TIMESTAMP DEFAULT 0

• To specify automatic default or updating for a TIMESTAMP column other than the first one, you must suppress the automatic initial-
ization and update behaviors for the first TIMESTAMP column by explicitly assigning it a constant DEFAULT value (for example,
DEFAULT 0 or DEFAULT '2003-01-01 00:00:00'). Then, for the other TIMESTAMP column, the rules are the same as for
the first TIMESTAMP column, except that if you omit both of the DEFAULT and ON UPDATE clauses, no automatic initialization or
updating occurs.

Example:

CREATE TABLE t (
ts1 TIMESTAMP DEFAULT 0,
ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP

ON UPDATE CURRENT_TIMESTAMP);

• CURRENT_TIMESTAMP or any of its synonyms (CURRENT_TIMESTAMP(), NOW(), LOCALTIME, LOCALTIME(), LOCAL-
TIMESTAMP, or LOCALTIMESTAMP()) can be used in the DEFAULT and ON UPDATE clauses. They all mean “the current
timestamp.” (UTC_TIMESTAMP is not allowed. Its range of values does not align with those of the TIMESTAMP column anyway
unless the current time zone is UTC.)

• The order of the DEFAULT and ON UPDATE attributes does not matter. If both DEFAULT and ON UPDATE are specified for a
TIMESTAMP column, either can precede the other. For example, these statements are equivalent:

CREATE TABLE t (ts TIMESTAMP);
CREATE TABLE t (ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP

ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t (ts TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

DEFAULT CURRENT_TIMESTAMP);

TIMESTAMP columns are NOT NULL by default, cannot contain NULL values, and assigning NULL assigns the current timestamp.
However, a TIMESTAMP column can be allowed to contain NULL by declaring it with the NULL attribute. In this case, the default value
also becomes NULL unless overridden with a DEFAULT clause that specifies a different default value. DEFAULT NULL can be used to
explicitly specify NULL as the default value. (For a TIMESTAMP column not declared with the NULL attribute, DEFAULT NULL is il-
legal.) If a TIMESTAMP column allows NULL values, assigning NULL sets it to NULL, not to the current timestamp.

The following table contains several TIMESTAMP columns that allow NULL values:

CREATE TABLE t
(
ts1 TIMESTAMP NULL DEFAULT NULL,
ts2 TIMESTAMP NULL DEFAULT 0,
ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP

);

Data Types

663



Note that a TIMESTAMP column that allows NULL values will not take on the current timestamp except under one of the following con-
ditions:

• Its default value is defined as CURRENT_TIMESTAMP

• NOW() or CURRENT_TIMESTAMP is inserted into the column

In other words, a TIMESTAMP column defined as NULL will auto-initialize only if it is created using a definition such as the following:

CREATE TABLE t (ts TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP);

Otherwise — that is, if the TIMESTAMP column is defined to allow NULL values but not using DEFAULT CURRENT_TIMESTAMP,
as shown here…

CREATE TABLE t1 (ts TIMESTAMP NULL DEFAULT NULL);
CREATE TABLE t2 (ts TIMESTAMP NULL DEFAULT '0000-00-00 00:00:00');

…then you must explicitly insert a value corresponding to the current date and time. For example:

INSERT INTO t1 VALUES (NOW());
INSERT INTO t2 VALUES (CURRENT_TIMESTAMP);

Note

The MySQL server can be run with the MAXDB SQL mode enabled. When the server runs with this mode enabled,
TIMESTAMP is identical with DATETIME. That is, if this mode is enabled at the time that a table is created, TIMESTAMP
columns are created as DATETIME columns. As a result, such columns use DATETIME display format, have the same
range of values, and there is no automatic initialization or updating to the current date and time.

To enable MAXDB mode, set the server SQL mode to MAXDB at startup using the --sql-mode=MAXDB server option or by setting the
global sql_mode variable at runtime:

mysql> SET GLOBAL sql_mode=MAXDB;

A client can cause the server to run in MAXDB mode for its own connection as follows:

mysql> SET SESSION sql_mode=MAXDB;

10.3.2. The TIME Type
MySQL retrieves and displays TIME values in 'HH:MM:SS' format (or 'HHH:MM:SS' format for large hours values). TIME values
may range from '-838:59:59' to '838:59:59'. The hours part may be so large because the TIME type can be used not only to
represent a time of day (which must be less than 24 hours), but also elapsed time or a time interval between two events (which may be
much greater than 24 hours, or even negative).

You can specify TIME values in a variety of formats:

• As a string in 'D HH:MM:SS.fraction' format. You can also use one of the following “relaxed” syntaxes:
'HH:MM:SS.fraction', 'HH:MM:SS', 'HH:MM', 'D HH:MM:SS', 'D HH:MM', 'D HH', or 'SS'. Here D represents
days and can have a value from 0 to 34. Note that MySQL does not store the fraction part.

• As a string with no delimiters in 'HHMMSS' format, provided that it makes sense as a time. For example, '101112' is understood
as '10:11:12', but '109712' is illegal (it has a nonsensical minute part) and becomes '00:00:00'.

• As a number in HHMMSS format, provided that it makes sense as a time. For example, 101112 is understood as '10:11:12'.
The following alternative formats are also understood: SS, MMSS, HHMMSS, HHMMSS.fraction. Note that MySQL does not
store the fraction part.

• As the result of a function that returns a value that is acceptable in a TIME context, such as CURRENT_TIME.

Data Types

664



A trailing .uuuuuu microseconds part of TIME values is allowed under the same conditions as for other temporal values, as described
in Section 10.3.1, “The DATETIME, DATE, and TIMESTAMP Types”. This includes the property that any microseconds part is dis-
carded from values stored into TIME columns.

For TIME values specified as strings that include a time part delimiter, it is not necessary to specify two digits for hours, minutes, or
seconds values that are less than 10. '8:3:2' is the same as '08:03:02'.

Be careful about assigning abbreviated values to a TIME column. Without colons, MySQL interprets values using the assumption that
the two rightmost digits represent seconds. (MySQL interprets TIME values as elapsed time rather than as time of day.) For example,
you might think of '1112' and 1112 as meaning '11:12:00' (12 minutes after 11 o'clock), but MySQL interprets them as
'00:11:12' (11 minutes, 12 seconds). Similarly, '12' and 12 are interpreted as '00:00:12'. TIME values with colons, by con-
trast, are always treated as time of the day. That is, '11:12' mean '11:12:00', not '00:11:12'.

By default, values that lie outside the TIME range but are otherwise legal are clipped to the closest endpoint of the range. For example,
'-850:00:00' and '850:00:00' are converted to '-838:59:59' and '838:59:59'. Illegal TIME values are converted to
'00:00:00'. Note that because '00:00:00' is itself a legal TIME value, there is no way to tell, from a value of '00:00:00'
stored in a table, whether the original value was specified as '00:00:00' or whether it was illegal.

For more restrictive treatment of invalid TIME values, enable strict SQL mode to cause errors to occur. See Section 5.1.6, “SQL
Modes”.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL AUTO_INCREMENT UNIQUE.

10.3.3. The YEAR Type
The YEAR type is a one-byte type used for representing years. It can be declared as YEAR(2) or YEAR(4) to specify a display width
of two or four characters. The default is four characters if no width is given.

For four-digit format, MySQL displays YEAR values in YYYY format, with a range of 1901 to 2155. For two-digit format, MySQL
displays values with a range of 70 (1970) to 69 (2069).

You can specify input YEAR values in a variety of formats:

• As a four-digit string in the range '1901' to '2155'.

• As a four-digit number in the range 1901 to 2155.

• As a two-digit string in the range '00' to '99'. Values in the ranges '00' to '69' and '70' to '99' are converted to YEAR
values in the ranges 2000 to 2069 and 1970 to 1999.

• As a two-digit number in the range 1 to 99. Values in the ranges 1 to 69 and 70 to 99 are converted to YEAR values in the ranges
2001 to 2069 and 1970 to 1999. Note that the range for two-digit numbers is slightly different from the range for two-digit
strings, because you cannot specify zero directly as a number and have it be interpreted as 2000. You must specify it as a string
'0' or '00' or it is interpreted as 0000.

• As the result of a function that returns a value that is acceptable in a YEAR context, such as NOW().

Illegal YEAR values are converted to 0000.

10.3.4. Year 2000 Issues and Date Types
MySQL Server itself has no problems with Year 2000 (Y2K) compliance:

• MySQL Server uses Unix time functions that handle dates into the year 2038 for TIMESTAMP values. For DATE and DATETIME
values, dates through the year 9999 are accepted.

• All MySQL date functions are implemented in one source file, sql/time.cc, and are coded very carefully to be year 2000-safe.

• In MySQL, the YEAR data type can store the years 0 and 1901 to 2155 in one byte and display them using two or four digits. All
two-digit years are considered to be in the range 1970 to 2069, which means that if you store 01 in a YEAR column, MySQL
Server treats it as 2001.

Data Types

665



Although MySQL Server itself is Y2K-safe, you may run into problems if you use it with applications that are not Y2K-safe. For ex-
ample, many old applications store or manipulate years using two-digit values (which are ambiguous) rather than four-digit values. This
problem may be compounded by applications that use values such as 00 or 99 as “missing” value indicators. Unfortunately, these prob-
lems may be difficult to fix because different applications may be written by different programmers, each of whom may use a different
set of conventions and date-handling functions.

Thus, even though MySQL Server has no Y2K problems, it is the application's responsibility to provide unambiguous input. Any value
containing a two-digit year is ambiguous, because the century is unknown. Such values must be interpreted into four-digit form because
MySQL stores years internally using four digits.

For DATETIME, DATE, TIMESTAMP, and YEAR types, MySQL interprets dates with ambiguous year values using the following rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

Remember that these rules are only heuristics that provide reasonable guesses as to what your data values mean. If the rules used by
MySQL do not produce the correct values, you should provide unambiguous input containing four-digit year values.

ORDER BY properly sorts YEAR values that have two-digit years.

Some functions like MIN() and MAX() convert a YEAR to a number. This means that a value with a two-digit year does not work
properly with these functions. The fix in this case is to convert the TIMESTAMP or YEAR to four-digit year format.

10.4. String Types
The string types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET. This section describes how these types
work and how to use them in your queries. For string type storage requirements, see Section 10.5, “Data Type Storage Requirements”.

10.4.1. The CHAR and VARCHAR Types
The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved. They also differ in maximum length and
in whether trailing spaces are retained.

The CHAR and VARCHAR types are declared with a length that indicates the maximum number of characters you want to store. For ex-
ample, CHAR(30) can hold up to 30 characters.

The length of a CHAR column is fixed to the length that you declare when you create the table. The length can be any value from 0 to
255. When CHAR values are stored, they are right-padded with spaces to the specified length. When CHAR values are retrieved, trailing
spaces are removed unless the PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.

Values in VARCHAR columns are variable-length strings. The length can be specified as a value from 0 to 65,535. The effective maxim-
um length of a VARCHAR is subject to the maximum row size (65,535 bytes, which is shared among all columns) and the character set
used.

In contrast to CHAR, VARCHAR values are stored as a one-byte or two-byte length prefix plus data. The length prefix indicates the num-
ber of bytes in the value. A column uses one length byte if values require no more than 255 bytes, two length bytes if values may re-
quire more than 255 bytes.

If strict SQL mode is not enabled and you assign a value to a CHAR or VARCHAR column that exceeds the column's maximum length,
the value is truncated to fit and a warning is generated. For truncation of non-space characters, you can cause an error to occur (rather
than a warning) and suppress insertion of the value by using strict SQL mode. See Section 5.1.6, “SQL Modes”.

For VARCHAR columns, excess trailing spaces are truncated prior to insertion and a warning is generated, regardless of the SQL mode
in use. Prior to MySQL MySQL 5.1.24, truncation of excess trailing spaces from values inserted into CHAR columns was performed si-
lently regardless of the SQL mode; beginning with MySQL MySQL 5.1.24, a warning is issued in such cases (also without regard to the
SQL mode in effect). (Bug#30059)

VARCHAR values are not padded when they are stored. Trailing spaces are retained when values are stored and retrieved, in conform-
ance with standard SQL.

The following table illustrates the differences between CHAR and VARCHAR by showing the result of storing various string values into

Data Types

666

http://bugs.mysql.com/30059


CHAR(4) and VARCHAR(4) columns (assuming that the column uses a single-byte character set such as latin1):

Value CHAR(4) Storage Required VARCHAR(4) Storage Required

'' ' ' 4 bytes '' 1 byte

'ab' 'ab ' 4 bytes 'ab' 3 bytes

'abcd' 'abcd' 4 bytes 'abcd' 5 bytes

'abcdefgh' 'abcd' 4 bytes 'abcd' 5 bytes

The values shown as stored in the last row of the table apply only when not using strict mode; if MySQL is running in strict mode, val-
ues that exceed the column length are not stored, and an error results.

If a given value is stored into the CHAR(4) and VARCHAR(4) columns, the values retrieved from the columns are not always the same
because trailing spaces are removed from CHAR columns upon retrieval. The following example illustrates this difference:

mysql> CREATE TABLE vc (v VARCHAR(4), c CHAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO vc VALUES ('ab ', 'ab ');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT CONCAT('(', v, ')'), CONCAT('(', c, ')') FROM vc;
+---------------------+---------------------+
| CONCAT('(', v, ')') | CONCAT('(', c, ')') |
+---------------------+---------------------+
| (ab ) | (ab) |
+---------------------+---------------------+
1 row in set (0.06 sec)

Values in CHAR and VARCHAR columns are sorted and compared according to the character set collation assigned to the column.

All MySQL collations are of type PADSPACE. This means that all CHAR and VARCHAR values in MySQL are compared without regard
to any trailing spaces. For example:

mysql> CREATE TABLE names (myname CHAR(10), yourname VARCHAR(10));
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO names VALUES ('Monty ', 'Monty ');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT myname = 'Monty ', yourname = 'Monty ' FROM names;
+--------------------+----------------------+
| myname = 'Monty ' | yourname = 'Monty ' |
+--------------------+----------------------+
| 1 | 1 |
+--------------------+----------------------+
1 row in set (0.00 sec)

This is true for all MySQL versions, and that it is not affected by the server SQL mode.

For those cases where trailing pad characters are stripped or comparisons ignore them, if a column has an index that requires unique val-
ues, inserting into the column values that differ only in number of trailing pad characters will result in a duplicate-key error. For ex-
ample, if a table contains 'a', an attempt to store 'a ' causes a duplicate-key error.

10.4.2. The BINARY and VARBINARY Types
The BINARY and VARBINARY types are similar to CHAR and VARCHAR, except that they contain binary strings rather than non-binary
strings. That is, they contain byte strings rather than character strings. This means that they have no character set, and sorting and com-
parison are based on the numeric values of the bytes in the values.

The allowable maximum length is the same for BINARY and VARBINARY as it is for CHAR and VARCHAR, except that the length for
BINARY and VARBINARY is a length in bytes rather than in characters.

The BINARY and VARBINARY data types are distinct from the CHAR BINARY and VARCHAR BINARY data types. For the latter
types, the BINARY attribute does not cause the column to be treated as a binary string column. Instead, it causes the binary collation for
the column character set to be used, and the column itself contains non-binary character strings rather than binary byte strings. For ex-
ample, CHAR(5) BINARY is treated as CHAR(5) CHARACTER SET latin1 COLLATE latin1_bin, assuming that the de-
fault character set is latin1. This differs from BINARY(5), which stores 5-bytes binary strings that have no character set or colla-
tion.

Data Types

667



If strict SQL mode is not enabled and you assign a value to a BINARY or VARBINARY column that exceeds the column's maximum
length, the value is truncated to fit and a warning is generated. For cases of truncation, you can cause an error to occur (rather than a
warning) and suppress insertion of the value by using strict SQL mode. See Section 5.1.6, “SQL Modes”.

When BINARY values are stored, they are right-padded with the pad value to the specified length. The pad value is 0x00 (the zero
byte). Values are right-padded with 0x00 on insert, and no trailing bytes are removed on select. All bytes are significant in comparis-
ons, including ORDER BY and DISTINCT operations. 0x00 bytes and spaces are different in comparisons, with 0x00 < space.

Example: For a BINARY(3) column, 'a ' becomes 'a \0' when inserted. 'a\0' becomes 'a\0\0' when inserted. Both inser-
ted values remain unchanged when selected.

For VARBINARY, there is no padding on insert and no bytes are stripped on select. All bytes are significant in comparisons, including
ORDER BY and DISTINCT operations. 0x00 bytes and spaces are different in comparisons, with 0x00 < space.

For those cases where trailing pad bytes are stripped or comparisons ignore them, if a column has an index that requires unique values,
inserting into the column values that differ only in number of trailing pad bytes will result in a duplicate-key error. For example, if a ta-
ble contains 'a', an attempt to store 'a\0' causes a duplicate-key error.

You should consider the preceding padding and stripping characteristics carefully if you plan to use the BINARY data type for storing
binary data and you require that the value retrieved be exactly the same as the value stored. The following example illustrates how
0x00-padding of BINARY values affects column value comparisons:

mysql> CREATE TABLE t (c BINARY(3));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET c = 'a';
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(c), c = 'a', c = 'a\0\0' from t;
+--------+---------+-------------+
| HEX(c) | c = 'a' | c = 'a\0\0' |
+--------+---------+-------------+
| 610000 | 0 | 1 |
+--------+---------+-------------+
1 row in set (0.09 sec)

If the value retrieved must be the same as the value specified for storage with no padding, it might be preferable to use VARBINARY or
one of the BLOB data types instead.

10.4.3. The BLOB and TEXT Types
A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types are TINYBLOB, BLOB, MEDIUMBLOB,
and LONGBLOB. These differ only in the maximum length of the values they can hold. The four TEXT types are TINYTEXT, TEXT,
MEDIUMTEXT, and LONGTEXT. These correspond to the four BLOB types and have the same maximum lengths and storage require-
ments. See Section 10.5, “Data Type Storage Requirements”.

BLOB columns are treated as binary strings (byte strings). TEXT columns are treated as non-binary strings (character strings). BLOB
columns have no character set, and sorting and comparison are based on the numeric values of the bytes in column values. TEXT
columns have a character set, and values are sorted and compared based on the collation of the character set.

If strict SQL mode is not enabled and you assign a value to a BLOB or TEXT column that exceeds the column's maximum length, the
value is truncated to fit and a warning is generated. For truncation of non-space characters, you can cause an error to occur (rather than a
warning) and suppress insertion of the value by using strict SQL mode. See Section 5.1.6, “SQL Modes”.

Beginning with MySQL MySQL 5.1.24, truncation of excess trailing spaces from values to be inserted into TEXT columns always gen-
erates a warning, regardless of the SQL mode. (Bug#30059)

If a TEXT column is indexed, index entry comparisons are space-padded at the end. This means that, if the index requires unique values,
duplicate-key errors will occur for values that differ only in the number of trailing spaces. For example, if a table contains 'a', an at-
tempt to store 'a ' causes a duplicate-key error. This is not true for BLOB columns.

In most respects, you can regard a BLOB column as a VARBINARY column that can be as large as you like. Similarly, you can regard a
TEXT column as a VARCHAR column. BLOB and TEXT differ from VARBINARY and VARCHAR in the following ways:

• For indexes on BLOB and TEXT columns, you must specify an index prefix length. For CHAR and VARCHAR, a prefix length is op-
tional. See Section 7.4.3, “Column Indexes”.

Data Types

668

http://bugs.mysql.com/30059


• BLOB and TEXT columns cannot have DEFAULT values.

LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a compatibility feature. If you use the BINARY attribute with
a TEXT data type, the column is assigned the binary collation of the column character set.

MySQL Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as LONGVARCHAR.

Because BLOB and TEXT values can be extremely long, you might encounter some constraints in using them:

• Only the first max_sort_length bytes of the column are used when sorting. The default value of max_sort_length is 1024.
This value can be changed using the --max_sort_length=N option when starting the mysqld server. See Section 5.1.3,
“System Variables”.

You can make more bytes significant in sorting or grouping by increasing the value of max_sort_length at runtime. Any client
can change the value of its session max_sort_length variable:

mysql> SET max_sort_length = 2000;
mysql> SELECT id, comment FROM t

-> ORDER BY comment;

Another way to use GROUP BY or ORDER BY on a BLOB or TEXT column containing long values when you want more than
max_sort_length bytes to be significant is to convert the column value into a fixed-length object. The standard way to do this
is with the SUBSTRING() function. For example, the following statement causes 2000 bytes of the comment column to be taken
into account for sorting:

mysql> SELECT id, SUBSTRING(comment,1,2000) FROM t
-> ORDER BY SUBSTRING(comment,1,2000);

• The maximum size of a BLOB or TEXT object is determined by its type, but the largest value you actually can transmit between the
client and server is determined by the amount of available memory and the size of the communications buffers. You can change the
message buffer size by changing the value of the max_allowed_packet variable, but you must do so for both the server and
your client program. For example, both mysql and mysqldump allow you to change the client-side max_allowed_packet
value. See Section 7.5.2, “Tuning Server Parameters”, Section 4.5.1, “mysql — The MySQL Command-Line Tool”, and Sec-
tion 4.5.4, “mysqldump — A Database Backup Program”. You may also want to compare the packet sizes and the size of the data
objects you are storing with the storage requirements, see Section 10.5, “Data Type Storage Requirements”

Each BLOB or TEXT value is represented internally by a separately allocated object. This is in contrast to all other data types, for which
storage is allocated once per column when the table is opened.

In some cases, it may be desirable to store binary data such as media files in BLOB or TEXT columns. You may find MySQL's string
handling functions useful for working with such data. See Section 11.4, “String Functions”. For security and other reasons, it is usually
preferable to do so using application code rather than allowing application users the FILE privilege. You can discuss specifics for vari-
ous languages and platforms in the MySQL Forums (http://forums.mysql.com/).

10.4.4. The ENUM Type
An ENUM is a string object with a value chosen from a list of allowed values that are enumerated explicitly in the column specification
at table creation time.

An enumeration value must be a quoted string literal; it may not be an expression, even one that evaluates to a string value. This means
that you also may not employ a user variable as an enumeration value.

The value may also be the empty string ('') or NULL under certain circumstances:

• If you insert an invalid value into an ENUM (that is, a string not present in the list of allowed values), the empty string is inserted in-
stead as a special error value. This string can be distinguished from a “normal” empty string by the fact that this string has the nu-
merical value 0. More about this later.

If strict SQL mode is enabled, attempts to insert invalid ENUM values result in an error.

• If an ENUM column is declared to allow NULL, the NULL value is a legal value for the column, and the default value is NULL. If an

Data Types

669

http://forums.mysql.com/


ENUM column is declared NOT NULL, its default value is the first element of the list of allowed values.

Each enumeration value has an index:

• Values from the list of allowable elements in the column specification are numbered beginning with 1.

• The index value of the empty string error value is 0. This means that you can use the following SELECT statement to find rows into
which invalid ENUM values were assigned:

mysql> SELECT * FROM tbl_name WHERE enum_col=0;

• The index of the NULL value is NULL.

• The term “index” here refers only to position within the list of enumeration values. It has nothing to do with table indexes.

For example, a column specified as ENUM('one', 'two', 'three') can have any of the values shown here. The index of each
value is also shown:

Value Index

NULL NULL

'' 0

'one' 1

'two' 2

'three' 3

An enumeration can have a maximum of 65,535 elements.

Trailing spaces are automatically deleted from ENUM member values in the table definition when a table is created.

When retrieved, values stored into an ENUM column are displayed using the lettercase that was used in the column definition. Note that
ENUM columns can be assigned a character set and collation. For binary or case-sensitive collations, lettercase is taken into account
when assigning values to the column.

If you retrieve an ENUM value in a numeric context, the column value's index is returned. For example, you can retrieve numeric values
from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

If you store a number into an ENUM column, the number is treated as the index into the possible values, and the value stored is the enu-
meration member with that index. (However, this does not work with LOAD DATA, which treats all input as strings.) If the numeric
value is quoted, it is still interpreted as an index if there is no matching string in the list of enumeration values. For these reasons, it is
not advisable to define an ENUM column with enumeration values that look like numbers, because this can easily become confusing. For
example, the following column has enumeration members with string values of '0', '1', and '2', but numeric index values of 1, 2,
and 3:

numbers ENUM('0','1','2')

If you store 2, it is interpreted as an index value, and becomes '1' (the value with index 2). If you store '2', it matches an enumera-
tion value, so it is stored as '2'. If you store '3', it does not match any enumeration value, so it is treated as an index and becomes
'2' (the value with index 3).

mysql> INSERT INTO t (numbers) VALUES(2),('2'),('3');
mysql> SELECT * FROM t;
+---------+
| numbers |
+---------+
| 1 |
| 2 |
| 2 |
+---------+

Data Types

670



ENUM values are sorted according to the order in which the enumeration members were listed in the column specification. (In other
words, ENUM values are sorted according to their index numbers.) For example, 'a' sorts before 'b' for ENUM('a', 'b'), but
'b' sorts before 'a' for ENUM('b', 'a'). The empty string sorts before non-empty strings, and NULL values sort before all other
enumeration values. To prevent unexpected results, specify the ENUM list in alphabetical order. You can also use GROUP BY
CAST(col AS CHAR) or GROUP BY CONCAT(col) to make sure that the column is sorted lexically rather than by index number.

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if necessary. For ENUM values, the
cast operation causes the index number to be used.

If you want to determine all possible values for an ENUM column, use SHOW COLUMNS FROM tbl_name LIKE enum_col and
parse the ENUM definition in the Type column of the output.

10.4.5. The SET Type
A SET is a string object that can have zero or more values, each of which must be chosen from a list of allowed values specified when
the table is created. SET column values that consist of multiple set members are specified with members separated by commas (“,”). A
consequence of this is that SET member values should not themselves contain commas.

For example, a column specified as SET('one', 'two') NOT NULL can have any of these values:

''
'one'
'two'
'one,two'

A SET can have a maximum of 64 different members.

Trailing spaces are automatically deleted from SET member values in the table definition when a table is created.

When retrieved, values stored in a SET column are displayed using the lettercase that was used in the column definition. Note that SET
columns can be assigned a character set and collation. For binary or case-sensitive collations, lettercase is taken into account when as-
signing values to the column.

MySQL stores SET values numerically, with the low-order bit of the stored value corresponding to the first set member. If you retrieve
a SET value in a numeric context, the value retrieved has bits set corresponding to the set members that make up the column value. For
example, you can retrieve numeric values from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;

If a number is stored into a SET column, the bits that are set in the binary representation of the number determine the set members in the
column value. For a column specified as SET('a','b','c','d'), the members have the following decimal and binary values:

SET Member Decimal Value Binary Value

'a' 1 0001

'b' 2 0010

'c' 4 0100

'd' 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET value members 'a' and 'd' are selected
and the resulting value is 'a,d'.

For a value containing more than one SET element, it does not matter what order the elements are listed in when you insert the value. It
also does not matter how many times a given element is listed in the value. When the value is retrieved later, each element in the value
appears once, with elements listed according to the order in which they were specified at table creation time. For example, suppose that
a column is specified as SET('a','b','c','d'):

mysql> CREATE TABLE myset (col SET('a', 'b', 'c', 'd'));

If you insert the values 'a,d', 'd,a', 'a,d,d', 'a,d,a', and 'd,a,d':

mysql> INSERT INTO myset (col) VALUES
-> ('a,d'), ('d,a'), ('a,d,a'), ('a,d,d'), ('d,a,d');

Data Types

671



Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0

Then all of these values appear as 'a,d' when retrieved:

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
5 rows in set (0.04 sec)

If you set a SET column to an unsupported value, the value is ignored and a warning is issued:

mysql> INSERT INTO myset (col) VALUES ('a,d,d,s');
Query OK, 1 row affected, 1 warning (0.03 sec)

mysql> SHOW WARNINGS;
+---------+------+------------------------------------------+
| Level | Code | Message |
+---------+------+------------------------------------------+
| Warning | 1265 | Data truncated for column 'col' at row 1 |
+---------+------+------------------------------------------+
1 row in set (0.04 sec)

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
6 rows in set (0.01 sec)

If strict SQL mode is enabled, attempts to insert invalid SET values result in an error.

SET values are sorted numerically. NULL values sort before non-NULL SET values.

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if necessary. For SET values, the
cast operation causes the numeric value to be used.

Normally, you search for SET values using the FIND_IN_SET() function or the LIKE operator:

mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET('value',set_col)>0;
mysql> SELECT * FROM tbl_name WHERE set_col LIKE '%value%';

The first statement finds rows where set_col contains the value set member. The second is similar, but not the same: It finds rows
where set_col contains value anywhere, even as a substring of another set member.

The following statements also are legal:

mysql> SELECT * FROM tbl_name WHERE set_col & 1;
mysql> SELECT * FROM tbl_name WHERE set_col = 'val1,val2';

The first of these statements looks for values containing the first set member. The second looks for an exact match. Be careful with
comparisons of the second type. Comparing set values to 'val1,val2' returns different results than comparing values to
'val2,val1'. You should specify the values in the same order they are listed in the column definition.

If you want to determine all possible values for a SET column, use SHOW COLUMNS FROM tbl_name LIKE set_col and parse
the SET definition in the Type column of the output.

10.5. Data Type Storage Requirements
The storage requirements for each of the data types supported by MySQL are listed here by category.

Data Types

672



The maximum size of a row in a MyISAM table is 65,535 bytes. Each BLOB and TEXT column accounts for only nine to twelve bytes
toward this size. This limitation may be shared by other storage engines as well.

Important

For tables using the NDBCluster storage engine, there is the factor of 4-byte alignment to be taken into account when
calculating storage requirements. This means that all NDB data storage is done in multiples of 4 bytes. Thus, a column
value that would take 15 bytes in a table using a storage engine other than NDB requires 16 bytes in an NDB table. This re-
quirement applies in addition to any other considerations that are discussed in this section. For example, in NDBCluster
tables, the TINYINT, SMALLINT, MEDIUMINT, and INTEGER (INT) column types each require 4 bytes storage per re-
cord due to the alignment factor.

In addition, when calculating storage requirements for Cluster tables, you must remember that every table using the NDBCluster stor-
age engine requires a primary key; if no primary key is defined by the user, then a “hidden” primary key will be created by NDB. This
hidden primary key consumes 31-35 bytes per table record.

You may find the ndb_size.pl utility to be useful for estimating NDB storage requirements. This Perl script connects to a current
MySQL (non-Cluster) database and creates a report on how much space that database would require if it used the NDBCluster stor-
age engine. See Section 17.11.15, “ndb_size.pl — NDBCluster Size Requirement Estimator”, for more information.

Storage Requirements for Numeric Types

Data Type Storage Required

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

INT, INTEGER 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53

FLOAT 4 bytes

DOUBLE [PRECISION], REAL 8 bytes

DECIMAL(M,D), NUMERIC(M,D) Varies; see following discussion

BIT(M) approximately (M+7)/8 bytes

Values for DECIMAL (and NUMERIC) columns are represented using a binary format that packs nine decimal (base 10) digits into four
bytes. Storage for the integer and fractional parts of each value are determined separately. Each multiple of nine digits requires four
bytes, and the “leftover” digits require some fraction of four bytes. The storage required for excess digits is given by the following table:

Leftover Digits Number of Bytes

0 0

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

Storage Requirements for Date and Time Types

Data Type Storage Required

DATE 3 bytes

Data Types

673



TIME 3 bytes

DATETIME 8 bytes

TIMESTAMP 4 bytes

YEAR 1 byte

The storage requirements shown in the table arise from the way that MySQL represents temporal values:

• DATE: A three-byte integer packed as DD + MM×32 + YYYY×16×32

• TIME: A three-byte integer packed as DD×24×3600 + HH×3600 + MM×60 + SS

• DATETIME: Eight bytes:

• A four-byte integer packed as YYYY×10000 + MM×100 + DD

• A four-byte integer packed as HH×10000 + MM×100 + SS

• TIMESTAMP: A four-byte integer representing seconds UTC since the epoch ('1970-01-01 00:00:00' UTC)

• YEAR: A one-byte integer

Storage Requirements for String Types

In the following table, M represents the declared column length in characters for non-binary string types and bytes for binary string
types. L represents the actual length in bytes of a given string value.

Data Type Storage Required

CHAR(M) M × w bytes, 0 <= M <= 255, where w is the number of bytes required for the
maximum-length character in the character set

BINARY(M) M bytes, 0 <= M <= 255

VARCHAR(M), VARBINARY(M) L + 1 bytes if column values require 0 – 255 bytes, L + 2 bytes if values may re-
quire more than 255 bytes

TINYBLOB, TINYTEXT L + 1 bytes, where L < 28

BLOB, TEXT L + 2 bytes, where L < 216

MEDIUMBLOB, MEDIUMTEXT L + 3 bytes, where L < 224

LONGBLOB, LONGTEXT L + 4 bytes, where L < 232

ENUM('value1','value2',...) 1 or 2 bytes, depending on the number of enumeration values (65,535 values
maximum)

SET('value1','value2',...) 1, 2, 3, 4, or 8 bytes, depending on the number of set members (64 members
maximum)

Variable-length string types are stored using a length prefix plus data. The length prefix requires from one to four bytes depending on
the data type, and the value of the prefix is L (the byte length of the string). For example, storage for a MEDIUMTEXT value requires L
bytes to store the value plus three bytes to store the length of the value.

To calculate the number of bytes used to store a particular CHAR, VARCHAR, or TEXT column value, you must take into account the
character set used for that column and whether the value contains multi-byte characters. In particular, when using the utf8 Unicode
character set, you must keep in mind that not all utf8 characters use the same number of bytes and can require up to three bytes per
character. For a breakdown of the storage used for different categories of utf8 characters, see Section 9.1.8, “Unicode Support”.

VARCHAR, VARBINARY, and the BLOB and TEXT types are variable-length types. For each, the storage requirements depend on these
factors:

• The actual length of the column value

Data Types

674



• The column's maximum possible length

• The character set used for the column, because some character sets contain multi-byte characters

For example, a VARCHAR(255) column can hold a string with a maximum length of 255 characters. Assuming that the column uses
the latin1 character set (one byte per character), the actual storage required is the length of the string (L), plus one byte to record the
length of the string. For the string 'abcd', L is 4 and the storage requirement is five bytes. If the same column is instead declared to
use the ucs2 double-byte character set, the storage requirement is 10 bytes: The length of 'abcd' is eight bytes and the column re-
quires two bytes to store lengths because the maximum length is greater than 255 (up to 510 bytes).

Note

The effective maximum number of bytes that can be stored in a VARCHAR or VARBINARY column is subject to the max-
imum row size of 65,535 bytes, which is shared among all columns. For a VARCHAR column that stores multi-byte charac-
ters, the effective maximum number of characters is less. For example, utf8 characters can require up to three bytes per
character, so a VARCHAR column that uses the utf8 character set can be declared to be a maximum of 21,844 characters.

The NDBCLUSTER storage engine in MySQL 5.1 supports variable-width columns. This means that a VARCHAR column in a MySQL
Cluster table requires the same amount of storage as it would using any other storage engine, with the exception that such values are
4-byte aligned. Thus, the string 'abcd' stored in a VARCHAR(50) column using the latin1 character set requires 8 bytes (rather
than 6 bytes for the same column value in a MyISAM table). This represents a change in behavior from earlier versions of NDB-
CLUSTER, where a VARCHAR(50) column would require 52 bytes storage per record regardless of the length of the string being
stored.

TEXT and BLOB columns are implemented differently in the NDB Cluster storage engine, wherein each row in a TEXT column is made
up of two separate parts. One of these is of fixed size (256 bytes), and is actually stored in the original table. The other consists of any
data in excess of 256 bytes, which is stored in a hidden table. The rows in this second table are always 2,000 bytes long. This means that
the size of a TEXT column is 256 if size <= 256 (where size represents the size of the row); otherwise, the size is 256 + size +
(2000 – (size – 256) % 2000).

The size of an ENUM object is determined by the number of different enumeration values. One byte is used for enumerations with up to
255 possible values. Two bytes are used for enumerations having between 256 and 65,535 possible values. See Section 10.4.4, “The
ENUM Type”.

The size of a SET object is determined by the number of different set members. If the set size is N, the object occupies (N+7)/8 bytes,
rounded up to 1, 2, 3, 4, or 8 bytes. A SET can have a maximum of 64 members. See Section 10.4.5, “The SET Type”.

10.6. Choosing the Right Type for a Column
For optimum storage, you should try to use the most precise type in all cases. For example, if an integer column is used for values in the
range from 1 to 99999, MEDIUMINT UNSIGNED is the best type. Of the types that represent all the required values, this type uses the
least amount of storage.

All basic calculations (+, -, *, and /) with DECIMAL columns are done with precision of 65 decimal (base 10) digits. See Sec-
tion 10.1.1, “Overview of Numeric Types”.

If accuracy is not too important or if speed is the highest priority, the DOUBLE type may be good enough. For high precision, you can
always convert to a fixed-point type stored in a BIGINT. This allows you to do all calculations with 64-bit integers and then convert
results back to floating-point values as necessary.

PROCEDURE ANALYSE can be used to obtain suggestions for optimal column data types. For more information, see Section 29.4.1,
“PROCEDURE ANALYSE”.

10.7. Using Data Types from Other Database Engines
To facilitate the use of code written for SQL implementations from other vendors, MySQL maps data types as shown in the following
table. These mappings make it easier to import table definitions from other database systems into MySQL:

Other Vendor Type MySQL Type

BOOL TINYINT

BOOLEAN TINYINT

Data Types

675



CHARACTER VARYING(M) VARCHAR(M)

FIXED DECIMAL

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT

MIDDLEINT MEDIUMINT

NUMERIC DECIMAL

Data type mapping occurs at table creation time, after which the original type specifications are discarded. If you create a table with
types used by other vendors and then issue a DESCRIBE tbl_name statement, MySQL reports the table structure using the equival-
ent MySQL types. For example:

mysql> CREATE TABLE t (a BOOL, b FLOAT8, c LONG VARCHAR, d NUMERIC);
Query OK, 0 rows affected (0.00 sec)

mysql> DESCRIBE t;
+-------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------+-------+
| a | tinyint(1) | YES | | NULL | |
| b | double | YES | | NULL | |
| c | mediumtext | YES | | NULL | |
| d | decimal(10,0) | YES | | NULL | |
+-------+---------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

Data Types

676



Chapter 11. Functions and Operators
Expressions can be used at several points in SQL statements, such as in the ORDER BY or HAVING clauses of SELECT statements, in
the WHERE clause of a SELECT, DELETE, or UPDATE statement, or in SET statements. Expressions can be written using literal values,
column values, NULL, built-in functions, stored functions, user-defined functions, and operators. This chapter describes the functions
and operators that are allowed for writing expressions in MySQL. Instructions for writing stored functions and user-defined functions
are given in Chapter 20, Stored Procedures and Functions, and Section 29.3, “Adding New Functions to MySQL”. See Section 8.2.4,
“Function Name Parsing and Resolution”, for the rules describing how the server interprets references to different kinds of functions.

An expression that contains NULL always produces a NULL value unless otherwise indicated in the documentation for a particular func-
tion or operator.

Note

By default, there must be no whitespace between a function name and the parenthesis following it. This helps the MySQL
parser distinguish between function calls and references to tables or columns that happen to have the same name as a func-
tion. However, spaces around function arguments are permitted.

You can tell the MySQL server to accept spaces after function names by starting it with the --sql-mode=IGNORE_SPACE option.
(See Section 5.1.6, “SQL Modes”.) Individual client programs can request this behavior by using the CLIENT_IGNORE_SPACE op-
tion for mysql_real_connect(). In either case, all function names become reserved words.

For the sake of brevity, most examples in this chapter display the output from the mysql program in abbreviated form. Rather than
showing examples in this format:

mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+
1 rows in set (0.00 sec)

This format is used instead:

mysql> SELECT MOD(29,9);
-> 2

11.1. Operator and Function Reference
Note

This table is part of an ongoing process to expand and simplify the information provided on these elements. Further im-
provements to the table, and corresponding descriptions will be applied over the coming months.

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ADDDATE()(v4.1.1) Add dates

ADDTIME()(v4.1.1) Add time

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

AND, && Logical AND

ASCII() Return numeric value of left-most character

ASIN() Return the arc sine

ATAN2(), ATAN() Return the arc tangent of the two arguments

ATAN() Return the arc tangent

AVG() Return the average value of the argument

677



Name Description

BENCHMARK() Repeatedly execute an expression

BETWEEN ... AND ... Check whether a value is within a range of values

BIN() Return a string representation of the argument

BINARY Cast a string to a binary string

BIT_AND() Return bitwise and

BIT_COUNT() Return the number of bits that are set

BIT_LENGTH() Return length of argument in bits

BIT_OR() Return bitwise or

BIT_XOR()(v4.1.1) Return bitwise xor

& Bitwise AND

~ Invert bits

| Bitwise OR

^ Bitwise XOR

CASE Case operator

CAST() Cast a value as a certain type

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CHAR_LENGTH() Return number of characters in argument

CHAR() Return the character for each integer passed

CHARACTER_LENGTH() A synonym for CHAR_LENGTH()

CHARSET()(v4.1.0) Return the character set of the argument

COALESCE() Return the first non-NULL argument

COERCIBILITY()(v4.1.1) Return the collation coercibility value of the string argument

COLLATION()(v4.1.0) Return the collation of the string argument

COMPRESS()(v4.1.1) Return result as a binary string

CONCAT_WS() Return concatenate with separator

CONCAT() Return concatenated string

CONNECTION_ID() Return the connection ID (thread ID) for the connection

CONV() Convert numbers between different number bases

CONVERT_TZ()(v4.1.3) Convert from one timezone to another

Convert() Cast a value as a certain type

COS() Return the cosine

COT() Return the cotangent

COUNT(DISTINCT) Return the count of a number of different values

COUNT() Return a count of the number of rows returned

CRC32()(v4.1.0) Compute a cyclic redundancy check value

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(), CUR-
RENT_TIMESTAMP

Synonyms for NOW()

CURRENT_USER(), CURRENT_USER Return the username and hostname combination

CURTIME() Return the current time

DATABASE() Return the default (current) database name

Functions and Operators

678



Name Description

DATE_ADD() Add two dates

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract two dates

DATE()(v4.1.1) Extract the date part of a date or datetime expression

DATEDIFF()(v4.1.1) Subtract two dates

DAY()(v4.1.1) Synonym for DAYOFMONTH()

DAYNAME()(v4.1.21) Return the name of the weekday

DAYOFMONTH() Return the day of the month (1-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

DECODE() Decodes a string encrypted using ENCODE()

DEFAULT() Return the default value for a table column

DEGREES() Convert radians to degrees

DES_DECRYPT() Decrypt a string

DES_ENCRYPT() Encrypt a string

DIV(v4.1.0) Integer division

/ Division operator

ELT() Return string at index number

ENCODE() Encode a string

ENCRYPT() Encrypt a string

<=> NULL-safe equal to operator

= Equal operator

EXP() Raise to the power of

EXPORT_SET() Return a string such that for every bit set in the value bits, you get an on string
and for every unset bit, you get an off string

EXTRACT Extract part of a date

ExtractValue()(v5.1.5) Extracts a value from an XML string using XPath notation

FIELD() Return the index (position) of the first argument in the subsequent arguments

FIND_IN_SET() Return the index position of the first argument within the second argument

FLOOR() Return the largest integer value not greater than the argument

FORMAT() Return a number formatted to specified number of decimal places

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of rows that would be returned
were there no LIMIT clause

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format date as a UNIX timestamp

GET_FORMAT()(v4.1.1) Return a date format string

GET_LOCK() Get a named lock

>= Greater than or equal operator

> Greater than operator

GREATEST() Return the largest argument

GROUP_CONCAT()(v4.1) Return a concatenated string

HEX() Return a hexadecimal representation of a decimal or string value

HOUR() Extract the hour

IF() If/else construct

IFNULL() Null if/else construct

Functions and Operators

679



Name Description

IN() Check whether a value is within a set of values

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

INSERT() Insert a substring at the specified position up to the specified number of charac-
ters

INSTR() Return the index of the first occurrence of substring

INTERVAL() Return the index of the argument that is less than the first argument

IS_FREE_LOCK() Checks whether the named lock is free

IS NOT NULL NOT NULL value test

IS NOT Test a value against a boolean

IS NULL NULL value test

IS_USED_LOCK()(v4.1.0) Checks whether the named lock is in use. Return connection identifier if true.

IS Test a value against a boolean

ISNULL() Test whether the argument is NULL

LAST_DAY(v4.1.1) Return the last day of the month for the argument

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last INSERT

LCASE() Synonym for LOWER()

LEAST() Return the smallest argument

<< Left shift

LEFT() Return the leftmost number of characters as specified

LENGTH() Return the length of a string in bytes

<= Less than or equal operator

< Less than operator

LIKE Simple pattern matching

LN() Return the natural logarithm of the argument

LOAD_FILE() Load the named file

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()(v4.0.6)

Synonym for NOW()

LOCATE() Return the position of the first occurrence of substring

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the specified string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have the corresponding bit in bits
set

MAKEDATE()(v4.1.1) Create a date from the year and day of year

MAKETIME(v4.1.1) MAKETIME()

MASTER_POS_WAIT() Block until the slave has read and applied all updates up to the specified position

MATCH Perform full-text search

MAX() Return the maximum value

MD5() Calculate MD5 checksum

MICROSECOND()(v4.1.1) Return the microseconds from argument

Functions and Operators

680



Name Description

MID() Return a substring starting from the specified position

MIN() Return the minimum value

- Minus operator

MINUTE() Return the minute from the argument

MOD() Return the remainder

% Modulo operator

MONTH() Return the month from the date passed

MONTHNAME()(v4.1.21) Return the name of the month

NAME_CONST()(v5.0.12) Causes the column to have the given name

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT IN() Check whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

NOT, ! Negates value

NOW() Return the current date and time

NULLIF() Return NULL if expr1 = expr2

OCT() Return an octal representation of a decimal number

OCTET_LENGTH() A synonym for LENGTH()

OLD_PASSWORD()(v4.1) Return the value of the old (pre-4.1) implementation of PASSWORD

||, OR Logical OR

ORD() Return character code for leftmost character of the argument

PASSWORD() Calculate and return a password string

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

PI() Return the value of pi

+ Addition operator

POSITION() A synonym for LOCATE()

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

PROCEDURE ANALYSE() Analyze the results of a query

QUARTER() Return the quarter from a date argument

QUOTE() Escape the argument for use in an SQL statement

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

REGEXP Pattern matching using regular expressions

RELEASE_LOCK() Releases the named lock

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

>> Right shift

RIGHT() Return the specified rightmost number of characters

RLIKE Synonym for REGEXP

ROUND() Round the argument

Functions and Operators

681



Name Description

ROW_COUNT()(v5.0.1) The number of rows updated

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SCHEMA()(v5.0.2) A synonym for DATABASE()

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

SECOND() Return the second (0-59)

SESSION_USER() Synonym for USER()

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SLEEP()(v5.0.12) Sleep for a number of seconds

SOUNDEX() Return a soundex string

SOUNDS LIKE(v4.1.0) Compare sounds

SPACE() Return a string of the specified number of spaces

SQRT() Return the square root of the argument

STD() Return the population standard deviation

STDDEV_POP()(v5.0.3) Return the population standard deviation

STDDEV_SAMP()(v5.0.3) Return the sample standard deviation

STDDEV() Return the population standard deviation

STR_TO_DATE()(v4.1.1) Convert a string to a date

STRCMP() Compare two strings

SUBDATE() When invoked with three arguments a synonym for DATE_SUB()

SUBSTR() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified number of occurrences of
the delimiter

SUBSTRING() Return the substring as specified

SUBTIME()(v4.1.1) Subtract times

SUM() Return the sum

SYSDATE() Return the time at which the function executes

SYSTEM_USER() Synonym for USER()

TAN() Return the tangent of the argument

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIME()(v4.1.1) Extract the time portion of the expression passed

TIMEDIFF()(v4.1.1) Subtract time

* Times operator

TIMESTAMP()(v4.1.1) With a single argument, this function returns the date or datetime expression.
With two arguments, the sum of the arguments

TIMESTAMPADD()(v5.0.0) Add an interval to a datetime expression

TIMESTAMPDIFF()(v5.0.0) Subtract an interval from a datetime expression

TO_DAYS() Return the date argument converted to days

TRIM() Remove leading and trailing spaces

TRUNCATE() Truncate to specified number of decimal places

UCASE() Synonym for UPPER()

- Change the sign of the argument

Functions and Operators

682



Name Description

UNCOMPRESS()(v4.1.1) Uncompress a string compressed

UNCOMPRESSED_LENGTH()(v4.1.1) Return the length of a string before compression

UNHEX()(v4.1.2) Convert each pair of hexadecimal digits to a character

UNIX_TIMESTAMP() Return a UNIX timestamp

UpdateXML()(v5.1.5) Return replaced XML fragment

UPPER() Convert to uppercase

USER() Return the current username and hostname

UTC_DATE()(v4.1.1) Return the current UTC date

UTC_TIME()(v4.1.1) Return the current UTC time

UTC_TIMESTAMP()(v4.1.1) Return the current UTC date and time

UUID()(v4.1.2) Return a Universal Unique Identifier (UUID)

VALUES()(v4.1.1) Defines the values to be used during an INSERT

VAR_POP()(v5.0.3) Return the population standard variance

VAR_SAMP()(v5.0.3) Return the sample variance

VARIANCE()(v4.1) Return the population standard variance

VERSION() Returns a string that indicates the MySQL server version

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR()(v4.1.1) Return the calendar week of the date (1-53)

XOR Logical XOR

YEAR() Return the year

YEARWEEK() Return the year and week

11.2. Operators
Name Description

AND, && Logical AND

BETWEEN ... AND ... Check whether a value is within a range of values

BINARY Cast a string to a binary string

& Bitwise AND

~ Invert bits

| Bitwise OR

^ Bitwise XOR

CASE Case operator

DIV(v4.1.0) Integer division

/ Division operator

<=> NULL-safe equal to operator

= Equal operator

>= Greater than or equal operator

> Greater than operator

IS NOT NULL NOT NULL value test

IS NOT Test a value against a boolean

IS NULL NULL value test

IS Test a value against a boolean

Functions and Operators

683



Name Description

<< Left shift

<= Less than or equal operator

< Less than operator

LIKE Simple pattern matching

- Minus operator

% Modulo operator

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

NOT, ! Negates value

||, OR Logical OR

+ Addition operator

REGEXP Pattern matching using regular expressions

>> Right shift

RLIKE Synonym for REGEXP

SOUNDS LIKE(v4.1.0) Compare sounds

* Times operator

- Change the sign of the argument

XOR Logical XOR

11.2.1. Operator Precedence
Operator precedences are shown in the following list, from highest precedence to the lowest. Operators that are shown together on a line
have the same precedence.

BINARY, COLLATE
!
- (unary minus), ~ (unary bit inversion)
^
*, /, DIV, %, MOD
-, +
<<, >>
&
|
=, <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, IN
BETWEEN, CASE, WHEN, THEN, ELSE
NOT
&&, AND
XOR
||, OR
:=

The || operator has a precedence between ^ and the unary operators if the PIPES_AS_CONCAT SQL mode is enabled.

Note

If the HIGH_NOT_PRECEDENCE SQL mode is enabled, the precedence of NOT is the same as that of the ! operator. See
Section 5.1.6, “SQL Modes”.

The precedence of operators determines the order of evaluation of terms in an expression. To override this order and group terms expli-
citly, use parentheses. For example:

mysql> SELECT 1+2*3;
-> 7

mysql> SELECT (1+2)*3;
-> 9

Functions and Operators

684



11.2.2. Type Conversion in Expression Evaluation
When an operator is used with operands of different types, type conversion occurs to make the operands compatible. Some conversions
occur implicitly. For example, MySQL automatically converts numbers to strings as necessary, and vice versa.

mysql> SELECT 1+'1';
-> 2

mysql> SELECT CONCAT(2,' test');
-> '2 test'

It is also possible to perform explicit conversions. If you want to convert a number to a string explicitly, use the CAST() or CONCAT()
function (CAST() is preferable):

mysql> SELECT 38.8, CAST(38.8 AS CHAR);
-> 38.8, '38.8'

mysql> SELECT 38.8, CONCAT(38.8);
-> 38.8, '38.8'

The following rules describe how conversion occurs for comparison operations:

• If one or both arguments are NULL, the result of the comparison is NULL, except for the NULL-safe <=> equality comparison oper-
ator. For NULL <=> NULL, the result is true.

• If both arguments in a comparison operation are strings, they are compared as strings.

• If both arguments are integers, they are compared as integers.

• Hexadecimal values are treated as binary strings if not compared to a number.

• If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a constant, the constant is converted to a
timestamp before the comparison is performed. This is done to be more ODBC-friendly. Note that this is not done for the arguments
to IN()! To be safe, always use complete datetime, date, or time strings when doing comparisons.

• In all other cases, the arguments are compared as floating-point (real) numbers.

The following examples illustrate conversion of strings to numbers for comparison operations:

mysql> SELECT 1 > '6x';
-> 0

mysql> SELECT 7 > '6x';
-> 1

mysql> SELECT 0 > 'x6';
-> 0

mysql> SELECT 0 = 'x6';
-> 1

Note that when you are comparing a string column with a number, MySQL cannot use an index on the column to look up the value
quickly. If str_col is an indexed string column, the index cannot be used when performing the lookup in the following statement:

SELECT * FROM tbl_name WHERE str_col=1;

The reason for this is that there are many different strings that may convert to the value 1, such as '1', ' 1', or '1a'.

Comparisons that use floating-point numbers (or values that are converted to floating-point numbers) are approximate because such
numbers are inexact. This might lead to results that appear inconsistent:

mysql> SELECT '18015376320243458' = 18015376320243458;
-> 1

mysql> SELECT '18015376320243459' = 18015376320243459;
-> 0

Such results can occur because the values are converted to floating-point numbers, which have only 53 bits of precision and are subject
to rounding:

mysql> SELECT '18015376320243459'+0.0;
-> 1.8015376320243e+16

Functions and Operators

685



Furthermore, the conversion from string to floating-point and from integer to floating-point do not necessarily occur the same way. The
integer may be converted to floating-point by the CPU, whereas the string is converted digit by digit in an operation that involves float-
ing-point multiplications.

The results shown will vary on different systems, and can be affected by factors such as computer architecture or the compiler version
or optimization level. One way to avoid such problems is to use CAST() so that a value will not be converted implicitly to a float-point
number:

mysql> SELECT CAST('18015376320243459' AS UNSIGNED) = 18015376320243459;
-> 1

For more information about floating-point comparisons, see Section B.1.5.8, “Problems with Floating-Point Comparisons”.

11.2.3. Comparison Functions and Operators

Name Description

BETWEEN ... AND ... Check whether a value is within a range of values

COALESCE() Return the first non-NULL argument

<=> NULL-safe equal to operator

= Equal operator

>= Greater than or equal operator

> Greater than operator

GREATEST() Return the largest argument

IN() Check whether a value is within a set of values

INTERVAL() Return the index of the argument that is less than the first argument

IS NOT NULL NOT NULL value test

IS NOT Test a value against a boolean

IS NULL NULL value test

IS Test a value against a boolean

ISNULL() Test whether the argument is NULL

LEAST() Return the smallest argument

<= Less than or equal operator

< Less than operator

LIKE Simple pattern matching

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT IN() Check whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

SOUNDS LIKE(v4.1.0) Compare sounds

Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations work for both numbers and strings.
Strings are automatically converted to numbers and numbers to strings as necessary.

Some of the functions in this section return values other than 1 (TRUE), 0 (FALSE), or NULL. For example, LEAST() and
GREATEST(). However, the value they return is based on comparison operations performed according to the rules described in Sec-
tion 11.2.2, “Type Conversion in Expression Evaluation”.

To convert a value to a specific type for comparison purposes, you can use the CAST() function. String values can be converted to a
different character set using CONVERT(). See Section 11.9, “Cast Functions and Operators”.

By default, string comparisons are not case sensitive and use the current character set. The default is latin1 (cp1252 West European),
which also works well for English.

Functions and Operators

686



• =

Equal:

mysql> SELECT 1 = 0;
-> 0

mysql> SELECT '0' = 0;
-> 1

mysql> SELECT '0.0' = 0;
-> 1

mysql> SELECT '0.01' = 0;
-> 0

mysql> SELECT '.01' = 0.01;
-> 1

• <=>

NULL-safe equal. This operator performs an equality comparison like the = operator, but returns 1 rather than NULL if both oper-
ands are NULL, and 0 rather than NULL if one operand is NULL.

mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
-> 1, 1, 0

mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;
-> 1, NULL, NULL

• <>, !=

Not equal:

mysql> SELECT '.01' <> '0.01';
-> 1

mysql> SELECT .01 <> '0.01';
-> 0

mysql> SELECT 'zapp' <> 'zappp';
-> 1

• <=

Less than or equal:

mysql> SELECT 0.1 <= 2;
-> 1

• <

Less than:

mysql> SELECT 2 < 2;
-> 0

• >=

Greater than or equal:

mysql> SELECT 2 >= 2;
-> 1

• >

Greater than:

mysql> SELECT 2 > 2;
-> 0

• IS boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;

Functions and Operators

687



-> 1, 1, 1
-> 1, 1, 0

• IS NOT boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;
-> 1, 1, 0

• IS NULL

Tests whether a value is NULL.

mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
-> 0, 0, 1

To work well with ODBC programs, MySQL supports the following extra features when using IS NULL:

• You can find the row that contains the most recent AUTO_INCREMENT value by issuing a statement of the following form im-
mediately after generating the value:

SELECT * FROM tbl_name WHERE auto_col IS NULL

This behavior can be disabled by setting SQL_AUTO_IS_NULL=0. See Section 12.5.3, “SET Syntax”.

• For DATE and DATETIME columns that are declared as NOT NULL, you can find the special date '0000-00-00' by using a
statement like this:

SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work because ODBC does not support a '0000-00-00' date value.

• IS NOT NULL

Tests whether a value is not NULL.

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;
-> 1, 1, 0

• expr BETWEEN min AND max

If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN returns 1, otherwise it returns 0. This is
equivalent to the expression (min <= expr AND expr <= max) if all the arguments are of the same type. Otherwise type
conversion takes place according to the rules described in Section 11.2.2, “Type Conversion in Expression Evaluation”, but applied
to all the three arguments.

mysql> SELECT 1 BETWEEN 2 AND 3;
-> 0

mysql> SELECT 'b' BETWEEN 'a' AND 'c';
-> 1

mysql> SELECT 2 BETWEEN 2 AND '3';
-> 1

mysql> SELECT 2 BETWEEN 2 AND 'x-3';
-> 0

For best results when using BETWEEN with date or time values, you should use CAST() to explicitly convert the values to the de-
sired data type. Examples: If you compare a DATETIME to two DATE values, convert the DATE values to DATETIME values. If you
use a string constant such as '2001-1-1' in a comparison to a DATE, cast the string to a DATE.

• expr NOT BETWEEN min AND max

This is the same as NOT (expr BETWEEN min AND max).

• COALESCE(value,...)

Functions and Operators

688



Returns the first non-NULL value in the list, or NULL if there are no non-NULL values.

mysql> SELECT COALESCE(NULL,1);
-> 1

mysql> SELECT COALESCE(NULL,NULL,NULL);
-> NULL

• GREATEST(value1,value2,...)

With two or more arguments, returns the largest (maximum-valued) argument. The arguments are compared using the same rules as
for LEAST().

mysql> SELECT GREATEST(2,0);
-> 2

mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
-> 767.0

mysql> SELECT GREATEST('B','A','C');
-> 'C'

GREATEST() returns NULL if any argument is NULL.

• expr IN (value,...)

Returns 1 if expr is equal to any of the values in the IN list, else returns 0. If all values are constants, they are evaluated according
to the type of expr and sorted. The search for the item then is done using a binary search. This means IN is very quick if the IN
value list consists entirely of constants. Otherwise, type conversion takes place according to the rules described in Section 11.2.2,
“Type Conversion in Expression Evaluation”, but applied to all the arguments.

mysql> SELECT 2 IN (0,3,5,7);
-> 0

mysql> SELECT 'wefwf' IN ('wee','wefwf','weg');
-> 1

You should never mix quoted and unquoted values in an IN list because the comparison rules for quoted values (such as strings) and
unquoted values (such as numbers) differ. Mixing types may therefore lead to inconsistent results. For example, do not write an IN
expression like this:

SELECT val1 FROM tbl1 WHERE val1 IN (1,2,'a');

Instead, write it like this:

SELECT val1 FROM tbl1 WHERE val1 IN ('1','2','a');

The number of values in the IN list is only limited by the max_allowed_packet value.

To comply with the SQL standard, IN returns NULL not only if the expression on the left hand side is NULL, but also if no match is
found in the list and one of the expressions in the list is NULL.

IN() syntax can also be used to write certain types of subqueries. See Section 12.2.8.3, “Subqueries with ANY, IN, and SOME”.

• expr NOT IN (value,...)

This is the same as NOT (expr IN (value,...)).

• ISNULL(expr)

If expr is NULL, ISNULL() returns 1, otherwise it returns 0.

mysql> SELECT ISNULL(1+1);
-> 0

mysql> SELECT ISNULL(1/0);
-> 1

ISNULL() can be used instead of = to test whether a value is NULL. (Comparing a value to NULL using = always yields false.)

The ISNULL() function shares some special behaviors with the IS NULL comparison operator. See the description of IS NULL.

Functions and Operators

689



• INTERVAL(N,N1,N2,N3,...)

Returns 0 if N < N1, 1 if N < N2 and so on or -1 if N is NULL. All arguments are treated as integers. It is required that N1 < N2 <
N3 < ... < Nn for this function to work correctly. This is because a binary search is used (very fast).

mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);
-> 3

mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
-> 2

mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
-> 0

• LEAST(value1,value2,...)

With two or more arguments, returns the smallest (minimum-valued) argument. The arguments are compared using the following
rules:

• If the return value is used in an INTEGER context or all arguments are integer-valued, they are compared as integers.

• If the return value is used in a REAL context or all arguments are real-valued, they are compared as reals.

• If any argument is a case-sensitive string, the arguments are compared as case-sensitive strings.

• In all other cases, the arguments are compared as case-insensitive strings.

LEAST() returns NULL if any argument is NULL.

mysql> SELECT LEAST(2,0);
-> 0

mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
-> 3.0

mysql> SELECT LEAST('B','A','C');
-> 'A'

Note that the preceding conversion rules can produce strange results in some borderline cases:

mysql> SELECT CAST(LEAST(3600, 9223372036854775808.0) as SIGNED);
-> -9223372036854775808

This happens because MySQL reads 9223372036854775808.0 in an integer context. The integer representation is not good
enough to hold the value, so it wraps to a signed integer.

11.2.4. Logical Operators

Name Description

AND, && Logical AND

NOT, ! Negates value

||, OR Logical OR

XOR Logical XOR

In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In MySQL, these are implemented as 1 (TRUE), 0
(FALSE), and NULL. Most of this is common to different SQL database servers, although some servers may return any non-zero value
for TRUE.

Note that MySQL evaluates any non-zero or non-NULL value to TRUE. For example, the following statements all assess to TRUE:

mysql> SELECT 10 IS TRUE;
-> 1
mysql> SELECT -10 IS TRUE;
-> 1
mysql> SELECT 'string' IS NOT NULL;
-> 1

Functions and Operators

690



• NOT, !

Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is non-zero, and NOT NULL returns NULL.

mysql> SELECT NOT 10;
-> 0

mysql> SELECT NOT 0;
-> 1

mysql> SELECT NOT NULL;
-> NULL

mysql> SELECT ! (1+1);
-> 0

mysql> SELECT ! 1+1;
-> 1

The last example produces 1 because the expression evaluates the same way as (!1)+1.

• AND, &&

Logical AND. Evaluates to 1 if all operands are non-zero and not NULL, to 0 if one or more operands are 0, otherwise NULL is re-
turned.

mysql> SELECT 1 && 1;
-> 1

mysql> SELECT 1 && 0;
-> 0

mysql> SELECT 1 && NULL;
-> NULL

mysql> SELECT 0 && NULL;
-> 0

mysql> SELECT NULL && 0;
-> 0

• OR, ||

Logical OR. When both operands are non-NULL, the result is 1 if any operand is non-zero, and 0 otherwise. With a NULL operand,
the result is 1 if the other operand is non-zero, and NULL otherwise. If both operands are NULL, the result is NULL.

mysql> SELECT 1 || 1;
-> 1

mysql> SELECT 1 || 0;
-> 1

mysql> SELECT 0 || 0;
-> 0

mysql> SELECT 0 || NULL;
-> NULL

mysql> SELECT 1 || NULL;
-> 1

• XOR

Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1 if an odd number of operands is
non-zero, otherwise 0 is returned.

mysql> SELECT 1 XOR 1;
-> 0

mysql> SELECT 1 XOR 0;
-> 1

mysql> SELECT 1 XOR NULL;
-> NULL

mysql> SELECT 1 XOR 1 XOR 1;
-> 1

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).

11.3. Control Flow Functions
Name Description

CASE Case operator

IF() If/else construct

Functions and Operators

691



Name Description

IFNULL() Null if/else construct

NULLIF() Return NULL if expr1 = expr2

• CASE value WHEN [compare_value] THEN result [WHEN [compare_value] THEN result ...] [ELSE
result] END

CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...] [ELSE result] END

The first version returns the result where value=compare_value. The second version returns the result for the first condi-
tion that is true. If there was no matching result value, the result after ELSE is returned, or NULL if there is no ELSE part.

mysql> SELECT CASE 1 WHEN 1 THEN 'one'
-> WHEN 2 THEN 'two' ELSE 'more' END;

-> 'one'
mysql> SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;

-> 'true'
mysql> SELECT CASE BINARY 'B'

-> WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;
-> NULL

The default return type of a CASE expression is the compatible aggregated type of all return values, but also depends on the context
in which it is used. If used in a string context, the result is returned as a string. If used in a numeric context, then the result is re-
turned as a decimal, real, or integer value.

Note

The syntax of the CASE expression shown here differs slightly from that of the SQL CASE statement described in Sec-
tion 20.2.10.2, “CASE Statement”, for use inside stored routines. The CASE statement cannot have an ELSE NULL
clause, and it is terminated with END CASE instead of END.

• IF(expr1,expr2,expr3)

If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL) then IF() returns expr2; otherwise it returns expr3. IF() returns a
numeric or string value, depending on the context in which it is used.

mysql> SELECT IF(1>2,2,3);
-> 3

mysql> SELECT IF(1<2,'yes','no');
-> 'yes'

mysql> SELECT IF(STRCMP('test','test1'),'no','yes');
-> 'no'

If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the type of the non-NULL expression.

expr1 is evaluated as an integer value, which means that if you are testing floating-point or string values, you should do so using a
comparison operation.

mysql> SELECT IF(0.1,1,0);
-> 0

mysql> SELECT IF(0.1<>0,1,0);
-> 1

In the first case shown, IF(0.1) returns 0 because 0.1 is converted to an integer value, resulting in a test of IF(0). This may
not be what you expect. In the second case, the comparison tests the original floating-point value to see whether it is non-zero. The
result of the comparison is used as an integer.

The default return type of IF() (which may matter when it is stored into a temporary table) is calculated as follows:

Expression Return Value

expr2 or expr3 returns a string string

expr2 or expr3 returns a floating-point value floating-point

expr2 or expr3 returns an integer integer

Functions and Operators

692



If expr2 and expr3 are both strings, the result is case sensitive if either string is case sensitive.

Note

There is also an IF statement, which differs from the IF() function described here. See Section 20.2.10.1, “IF State-
ment”.

• IFNULL(expr1,expr2)

If expr1 is not NULL, IFNULL() returns expr1; otherwise it returns expr2. IFNULL() returns a numeric or string value, de-
pending on the context in which it is used.

mysql> SELECT IFNULL(1,0);
-> 1

mysql> SELECT IFNULL(NULL,10);
-> 10

mysql> SELECT IFNULL(1/0,10);
-> 10

mysql> SELECT IFNULL(1/0,'yes');
-> 'yes'

The default result value of IFNULL(expr1,expr2) is the more “general” of the two expressions, in the order STRING, REAL,
or INTEGER. Consider the case of a table based on expressions or where MySQL must internally store a value returned by
IFNULL() in a temporary table:

mysql> CREATE TABLE tmp SELECT IFNULL(1,'test') AS test;
mysql> DESCRIBE tmp;
+-------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-------+
| test | char(4) | | | | |
+-------+---------+------+-----+---------+-------+

In this example, the type of the test column is CHAR(4).

• NULLIF(expr1,expr2)

Returns NULL if expr1 = expr2 is true, otherwise returns expr1. This is the same as CASE WHEN expr1 = expr2 THEN
NULL ELSE expr1 END.

mysql> SELECT NULLIF(1,1);
-> NULL

mysql> SELECT NULLIF(1,2);
-> 1

Note that MySQL evaluates expr1 twice if the arguments are not equal.

11.4. String Functions
Name Description

ASCII() Return numeric value of left-most character

BIN() Return a string representation of the argument

BIT_LENGTH() Return length of argument in bits

CHAR_LENGTH() Return number of characters in argument

CHAR() Return the character for each integer passed

CHARACTER_LENGTH() A synonym for CHAR_LENGTH()

CONCAT_WS() Return concatenate with separator

CONCAT() Return concatenated string

ELT() Return string at index number

EXPORT_SET() Return a string such that for every bit set in the value bits, you get an on string
and for every unset bit, you get an off string

Functions and Operators

693



Name Description

FIELD() Return the index (position) of the first argument in the subsequent arguments

FIND_IN_SET() Return the index position of the first argument within the second argument

FORMAT() Return a number formatted to specified number of decimal places

HEX() Return a hexadecimal representation of a decimal or string value

INSERT() Insert a substring at the specified position up to the specified number of charac-
ters

INSTR() Return the index of the first occurrence of substring

LCASE() Synonym for LOWER()

LEFT() Return the leftmost number of characters as specified

LENGTH() Return the length of a string in bytes

LIKE Simple pattern matching

LOAD_FILE() Load the named file

LOCATE() Return the position of the first occurrence of substring

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the specified string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have the corresponding bit in bits
set

MATCH Perform full-text search

MID() Return a substring starting from the specified position

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

OCTET_LENGTH() A synonym for LENGTH()

ORD() Return character code for leftmost character of the argument

POSITION() A synonym for LOCATE()

QUOTE() Escape the argument for use in an SQL statement

REGEXP Pattern matching using regular expressions

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of characters

RLIKE Synonym for REGEXP

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SOUNDEX() Return a soundex string

SOUNDS LIKE(v4.1.0) Compare sounds

SPACE() Return a string of the specified number of spaces

STRCMP() Compare two strings

SUBSTR() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified number of occurrences of
the delimiter

SUBSTRING() Return the substring as specified

TRIM() Remove leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX()(v4.1.2) Convert each pair of hexadecimal digits to a character

Functions and Operators

694



Name Description

UPPER() Convert to uppercase

String-valued functions return NULL if the length of the result would be greater than the value of the max_allowed_packet system
variable. See Section 7.5.2, “Tuning Server Parameters”.

For functions that operate on string positions, the first position is numbered 1.

For functions that take length arguments, non-integer arguments are rounded to the nearest integer.

• ASCII(str)

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the empty string. Returns NULL if str is
NULL. ASCII() works for 8-bit characters.

mysql> SELECT ASCII('2');
-> 50

mysql> SELECT ASCII(2);
-> 50

mysql> SELECT ASCII('dx');
-> 100

See also the ORD() function.

• BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT) number. This is equivalent to
CONV(N,10,2). Returns NULL if N is NULL.

mysql> SELECT BIN(12);
-> '1100'

• BIT_LENGTH(str)

Returns the length of the string str in bits.

mysql> SELECT BIT_LENGTH('text');
-> 32

• CHAR(N,... [USING charset_name])

CHAR() interprets each argument N as an integer and returns a string consisting of the characters given by the code values of those
integers. NULL values are skipped.

mysql> SELECT CHAR(77,121,83,81,'76');
-> 'MySQL'

mysql> SELECT CHAR(77,77.3,'77.3');
-> 'MMM'

CHAR() arguments larger than 255 are converted into multiple result bytes. For example, CHAR(256) is equivalent to
CHAR(1,0), and CHAR(256*256) is equivalent to CHAR(1,0,0):

mysql> SELECT HEX(CHAR(1,0)), HEX(CHAR(256));
+----------------+----------------+
| HEX(CHAR(1,0)) | HEX(CHAR(256)) |
+----------------+----------------+
| 0100 | 0100 |
+----------------+----------------+
mysql> SELECT HEX(CHAR(1,0,0)), HEX(CHAR(256*256));
+------------------+--------------------+
| HEX(CHAR(1,0,0)) | HEX(CHAR(256*256)) |
+------------------+--------------------+
| 010000 | 010000 |
+------------------+--------------------+

By default, CHAR() returns a binary string. To produce a string in a given character set, use the optional USING clause:

Functions and Operators

695



mysql> SELECT CHARSET(CHAR(0x65)), CHARSET(CHAR(0x65 USING utf8));
+---------------------+--------------------------------+
| CHARSET(CHAR(0x65)) | CHARSET(CHAR(0x65 USING utf8)) |
+---------------------+--------------------------------+
| binary | utf8 |
+---------------------+--------------------------------+

If USING is given and the result string is illegal for the given character set, a warning is issued. Also, if strict SQL mode is enabled,
the result from CHAR() becomes NULL.

• CHAR_LENGTH(str)

Returns the length of the string str, measured in characters. A multi-byte character counts as a single character. This means that for
a string containing five two-byte characters, LENGTH() returns 10, whereas CHAR_LENGTH() returns 5.

• CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().

• CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. May have one or more arguments. If all arguments are non-binary
strings, the result is a non-binary string. If the arguments include any binary strings, the result is a binary string. A numeric argu-
ment is converted to its equivalent binary string form; if you want to avoid that, you can use an explicit type cast, as in this example:

SELECT CONCAT(CAST(int_col AS CHAR), char_col);

CONCAT() returns NULL if any argument is NULL.

mysql> SELECT CONCAT('My', 'S', 'QL');
-> 'MySQL'

mysql> SELECT CONCAT('My', NULL, 'QL');
-> NULL

mysql> SELECT CONCAT(14.3);
-> '14.3'

• CONCAT_WS(separator,str1,str2,...)

CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT(). The first argument is the separator for
the rest of the arguments. The separator is added between the strings to be concatenated. The separator can be a string, as can the
rest of the arguments. If the separator is NULL, the result is NULL.

mysql> SELECT CONCAT_WS(',','First name','Second name','Last Name');
-> 'First name,Second name,Last Name'

mysql> SELECT CONCAT_WS(',','First name',NULL,'Last Name');
-> 'First name,Last Name'

CONCAT_WS() does not skip empty strings. However, it does skip any NULL values after the separator argument.

• ELT(N,str1,str2,str3,...)

Returns str1 if N = 1, str2 if N = 2, and so on. Returns NULL if N is less than 1 or greater than the number of arguments. ELT()
is the complement of FIELD().

mysql> SELECT ELT(1, 'ej', 'Heja', 'hej', 'foo');
-> 'ej'

mysql> SELECT ELT(4, 'ej', 'Heja', 'hej', 'foo');
-> 'foo'

• EXPORT_SET(bits,on,off[,separator[,number_of_bits]])

Returns a string such that for every bit set in the value bits, you get an on string and for every bit not set in the value, you get an
off string. Bits in bits are examined from right to left (from low-order to high-order bits). Strings are added to the result from left
to right, separated by the separator string (the default being the comma character “,”). The number of bits examined is given by
number_of_bits (defaults to 64).

mysql> SELECT EXPORT_SET(5,'Y','N',',',4);
-> 'Y,N,Y,N'

Functions and Operators

696



mysql> SELECT EXPORT_SET(6,'1','0',',',10);
-> '0,1,1,0,0,0,0,0,0,0'

• FIELD(str,str1,str2,str3,...)

Returns the index (position) of str in the str1, str2, str3, ... list. Returns 0 if str is not found.

If all arguments to FIELD() are strings, all arguments are compared as strings. If all arguments are numbers, they are compared as
numbers. Otherwise, the arguments are compared as double.

If str is NULL, the return value is 0 because NULL fails equality comparison with any value. FIELD() is the complement of
ELT().

mysql> SELECT FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo');
-> 2

mysql> SELECT FIELD('fo', 'Hej', 'ej', 'Heja', 'hej', 'foo');
-> 0

• FIND_IN_SET(str,strlist)

Returns a value in the range of 1 to N if the string str is in the string list strlist consisting of N substrings. A string list is a
string composed of substrings separated by “,” characters. If the first argument is a constant string and the second is a column of
type SET, the FIND_IN_SET() function is optimized to use bit arithmetic. Returns 0 if str is not in strlist or if strlist is
the empty string. Returns NULL if either argument is NULL. This function does not work properly if the first argument contains a
comma (“,”) character.

mysql> SELECT FIND_IN_SET('b','a,b,c,d');
-> 2

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the result as a string. If D is 0,
the result has no decimal point or fractional part.

mysql> SELECT FORMAT(12332.123456, 4);
-> '12,332.1235'

mysql> SELECT FORMAT(12332.1,4);
-> '12,332.1000'

mysql> SELECT FORMAT(12332.2,0);
-> '12,332'

• HEX(N_or_S)

If N_or_S is a number, returns a string representation of the hexadecimal value of N, where N is a longlong (BIGINT) number.
This is equivalent to CONV(N,10,16).

If N_or_S is a string, returns a hexadecimal string representation of N_or_S where each character in N_or_S is converted to two
hexadecimal digits. The inverse of this operation is performed by the UNHEX() function.

mysql> SELECT HEX(255);
-> 'FF'

mysql> SELECT 0x616263;
-> 'abc'

mysql> SELECT HEX('abc');
-> 616263

• INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters long replaced by the string newstr. Re-
turns the original string if pos is not within the length of the string. Replaces the rest of the string from position pos if len is not
within the length of the rest of the string. Returns NULL if any argument is NULL.

mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
-> 'QuWhattic'

mysql> SELECT INSERT('Quadratic', -1, 4, 'What');
-> 'Quadratic'

mysql> SELECT INSERT('Quadratic', 3, 100, 'What');
-> 'QuWhat'

Functions and Operators

697



This function is multi-byte safe.

• INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the same as the two-argument form of LOC-
ATE(), except that the order of the arguments is reversed.

mysql> SELECT INSTR('foobarbar', 'bar');
-> 4

mysql> SELECT INSTR('xbar', 'foobar');
-> 0

This function is multi-byte safe, and is case sensitive only if at least one argument is a binary string.

• LCASE(str)

LCASE() is a synonym for LOWER().

• LEFT(str,len)

Returns the leftmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT LEFT('foobarbar', 5);
-> 'fooba'

• LENGTH(str)

Returns the length of the string str, measured in bytes. A multi-byte character counts as multiple bytes. This means that for a string
containing five two-byte characters, LENGTH() returns 10, whereas CHAR_LENGTH() returns 5.

mysql> SELECT LENGTH('text');
-> 4

• LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. To use this function, the file must be located on the server host, you must spe-
cify the full pathname to the file, and you must have the FILE privilege. The file must be readable by all and its size less than
max_allowed_packet bytes.

If the file does not exist or cannot be read because one of the preceding conditions is not satisfied, the function returns NULL.

As of MySQL 5.1.6, the character_set_filesystem system variable controls interpretation of filenames that are given as
literal strings.

mysql> UPDATE t
SET blob_col=LOAD_FILE('/tmp/picture')
WHERE id=1;

• LOCATE(substr,str), LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string str. The second syntax returns the posi-
tion of the first occurrence of substring substr in string str, starting at position pos. Returns 0 if substr is not in str.

mysql> SELECT LOCATE('bar', 'foobarbar');
-> 4

mysql> SELECT LOCATE('xbar', 'foobar');
-> 0

mysql> SELECT LOCATE('bar', 'foobarbar', 5);
-> 7

This function is multi-byte safe, and is case-sensitive only if at least one argument is a binary string.

• LOWER(str)

Returns the string str with all characters changed to lowercase according to the current character set mapping. The default is lat-
in1 (cp1252 West European).

Functions and Operators

698



mysql> SELECT LOWER('QUADRATICALLY');
-> 'quadratically'

This function is multi-byte safe.

• LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters. If str is longer than len, the return
value is shortened to len characters.

mysql> SELECT LPAD('hi',4,'??');
-> '??hi'

mysql> SELECT LPAD('hi',1,'??');
-> 'h'

• LTRIM(str)

Returns the string str with leading space characters removed.

mysql> SELECT LTRIM(' barbar');
-> 'barbar'

This function is multi-byte safe.

• MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by “,” characters) consisting of the strings that have the corresponding
bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so on. NULL values in str1, str2, ... are not appended to the
result.

mysql> SELECT MAKE_SET(1,'a','b','c');
-> 'a'

mysql> SELECT MAKE_SET(1 | 4,'hello','nice','world');
-> 'hello,world'

mysql> SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');
-> 'hello'

mysql> SELECT MAKE_SET(0,'a','b','c');
-> ''

• MID(str,pos,len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

• OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().

• ORD(str)

If the leftmost character of the string str is a multi-byte character, returns the code for that character, calculated from the numeric
values of its constituent bytes using this formula:

(1st byte code)
+ (2nd byte code × 256)
+ (3rd byte code × 2562) ...

If the leftmost character is not a multi-byte character, ORD() returns the same value as the ASCII() function.

mysql> SELECT ORD('2');
-> 50

• POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

• QUOTE(str)

Functions and Operators

699



Quotes a string to produce a result that can be used as a properly escaped data value in an SQL statement. The string is returned en-
closed by single quotes and with each instance of single quote (“'”), backslash (“\”), ASCII NUL, and Control-Z preceded by a
backslash. If the argument is NULL, the return value is the word “NULL” without enclosing single quotes.

mysql> SELECT QUOTE('Don\'t!');
-> 'Don\'t!'

mysql> SELECT QUOTE(NULL);
-> NULL

• REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count is less than 1, returns an empty string. Returns NULL
if str or count are NULL.

mysql> SELECT REPEAT('MySQL', 3);
-> 'MySQLMySQLMySQL'

• REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string to_str. REPLACE() performs a case-
sensitive match when searching for from_str.

mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
-> 'WwWwWw.mysql.com'

This function is multi-byte safe.

• REVERSE(str)

Returns the string str with the order of the characters reversed.

mysql> SELECT REVERSE('abc');
-> 'cba'

This function is multi-byte safe.

• RIGHT(str,len)

Returns the rightmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT RIGHT('foobarbar', 4);
-> 'rbar'

This function is multi-byte safe.

• RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len characters. If str is longer than len, the return
value is shortened to len characters.

mysql> SELECT RPAD('hi',5,'?');
-> 'hi???'

mysql> SELECT RPAD('hi',1,'?');
-> 'h'

This function is multi-byte safe.

• RTRIM(str)

Returns the string str with trailing space characters removed.

mysql> SELECT RTRIM('barbar ');
-> 'barbar'

This function is multi-byte safe.

Functions and Operators

700



• SOUNDEX(str)

Returns a soundex string from str. Two strings that sound almost the same should have identical soundex strings. A standard soun-
dex string is four characters long, but the SOUNDEX() function returns an arbitrarily long string. You can use SUBSTRING() on
the result to get a standard soundex string. All non-alphabetic characters in str are ignored. All international alphabetic characters
outside the A-Z range are treated as vowels.

Important

When using SOUNDEX(), you should be aware of the following limitations:

• This function, as currently implemented, is intended to work well with strings that are in the English language only. Strings in
other languages may not produce reliable results.

• This function is not guaranteed to provide consistent results with strings that use multi-byte character sets, including utf-8.

We hope to remove these limitations in a future release. See Bug#22638 for more information.

mysql> SELECT SOUNDEX('Hello');
-> 'H400'

mysql> SELECT SOUNDEX('Quadratically');
-> 'Q36324'

Note

This function implements the original Soundex algorithm, not the more popular enhanced version (also described by D.
Knuth). The difference is that original version discards vowels first and duplicates second, whereas the enhanced version
discards duplicates first and vowels second.

• expr1 SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2).

• SPACE(N)

Returns a string consisting of N space characters.

mysql> SELECT SPACE(6);
-> ' '

• SUBSTR(str,pos), SUBSTR(str FROM pos), SUBSTR(str,pos,len), SUBSTR(str FROM pos FOR len)

SUBSTR() is a synonym for SUBSTRING().

• SUBSTRING(str,pos), SUBSTRING(str FROM pos), SUBSTRING(str,pos,len), SUBSTRING(str FROM pos
FOR len)

The forms without a len argument return a substring from string str starting at position pos. The forms with a len argument re-
turn a substring len characters long from string str, starting at position pos. The forms that use FROM are standard SQL syntax.
It is also possible to use a negative value for pos. In this case, the beginning of the substring is pos characters from the end of the
string, rather than the beginning. A negative value may be used for pos in any of the forms of this function.

For all forms of SUBSTRING(), the position of the first character in the string from which the substring is to be extracted is
reckoned as 1.

mysql> SELECT SUBSTRING('Quadratically',5);
-> 'ratically'

mysql> SELECT SUBSTRING('foobarbar' FROM 4);
-> 'barbar'

mysql> SELECT SUBSTRING('Quadratically',5,6);
-> 'ratica'

mysql> SELECT SUBSTRING('Sakila', -3);
-> 'ila'

mysql> SELECT SUBSTRING('Sakila', -5, 3);
-> 'aki'

mysql> SELECT SUBSTRING('Sakila' FROM -4 FOR 2);
-> 'ki'

Functions and Operators

701

http://bugs.mysql.com/22638


This function is multi-byte safe.

If len is less than 1, the result is the empty string.

• SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim. If count is positive, everything to the
left of the final delimiter (counting from the left) is returned. If count is negative, everything to the right of the final delimiter
(counting from the right) is returned. SUBSTRING_INDEX() performs a case-sensitive match when searching for delim.

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', 2);
-> 'www.mysql'

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', -2);
-> 'mysql.com'

This function is multi-byte safe.

• TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr FROM] str)

Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers BOTH, LEADING, or TRAILING is
given, BOTH is assumed. remstr is optional and, if not specified, spaces are removed.

mysql> SELECT TRIM(' bar ');
-> 'bar'

mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
-> 'barxxx'

mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
-> 'bar'

mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
-> 'barx'

This function is multi-byte safe.

• UCASE(str)

UCASE() is a synonym for UPPER().

• UNHEX(str)

Performs the inverse operation of HEX(str). That is, it interprets each pair of hexadecimal digits in the argument as a number and
converts it to the character represented by the number. The resulting characters are returned as a binary string.

mysql> SELECT UNHEX('4D7953514C');
-> 'MySQL'

mysql> SELECT 0x4D7953514C;
-> 'MySQL'

mysql> SELECT UNHEX(HEX('string'));
-> 'string'

mysql> SELECT HEX(UNHEX('1267'));
-> '1267'

The characters in the argument string must be legal hexadecimal digits: '0' .. '9', 'A' .. 'F', 'a' .. 'f'. If UNHEX() encoun-
ters any non-hexadecimal digits in the argument, it returns NULL:

mysql> SELECT UNHEX('GG');
+-------------+
| UNHEX('GG') |
+-------------+
| NULL |
+-------------+

A NULL result can occur if the argument to UNHEX() is a BINARY column, because values are padded with 0x00 bytes when
stored but those bytes are not stripped on retrieval. For example 'aa' is stored into a CHAR(3) column as 'aa ' and retrieved as
'aa' (with the trailing pad space stripped), so UNHEX() for the column value returns 'A'. By contrast 'aa' is stored into a
BINARY(3) column as 'aa\0' and retrieved as 'aa\0' (with the trailing pad 0x00 byte not stripped). '\0' is not a legal
hexadecimal digit, so UNHEX() for the column value returns NULL.

• UPPER(str)

Functions and Operators

702



Returns the string str with all characters changed to uppercase according to the current character set mapping. The default is lat-
in1 (cp1252 West European).

mysql> SELECT UPPER('Hej');
-> 'HEJ'

This function is multi-byte safe.

11.4.1. String Comparison Functions

Name Description

LIKE Simple pattern matching

NOT LIKE Negation of simple pattern matching

SOUNDS LIKE(v4.1.0) Compare sounds

If a string function is given a binary string as an argument, the resulting string is also a binary string. A number converted to a string is
treated as a binary string. This affects only comparisons.

Normally, if any expression in a string comparison is case sensitive, the comparison is performed in case-sensitive fashion.

• expr LIKE pat [ESCAPE 'escape_char']

Pattern matching using SQL simple regular expression comparison. Returns 1 (TRUE) or 0 (FALSE). If either expr or pat is
NULL, the result is NULL.

The pattern need not be a literal string. For example, it can be specified as a string expression or table column.

Per the SQL standard, LIKE performs matching on a per-character basis, thus it can produce results different from the = comparison
operator:

mysql> SELECT 'ä' LIKE 'ae' COLLATE latin1_german2_ci;
+-----------------------------------------+
| 'ä' LIKE 'ae' COLLATE latin1_german2_ci |
+-----------------------------------------+
| 0 |
+-----------------------------------------+
mysql> SELECT 'ä' = 'ae' COLLATE latin1_german2_ci;
+--------------------------------------+
| 'ä' = 'ae' COLLATE latin1_german2_ci |
+--------------------------------------+
| 1 |
+--------------------------------------+

With LIKE you can use the following two wildcard characters in the pattern:

Character Description

% Matches any number of characters, even zero characters

_ Matches exactly one character

mysql> SELECT 'David!' LIKE 'David_';
-> 1

mysql> SELECT 'David!' LIKE '%D%v%';
-> 1

To test for literal instances of a wildcard character, precede it by the escape character. If you do not specify the ESCAPE character,
“\” is assumed.

String Description

\% Matches one “%” character

Functions and Operators

703



\_ Matches one “_” character

mysql> SELECT 'David!' LIKE 'David\_';
-> 0

mysql> SELECT 'David_' LIKE 'David\_';
-> 1

To specify a different escape character, use the ESCAPE clause:

mysql> SELECT 'David_' LIKE 'David|_' ESCAPE '|';
-> 1

The escape sequence should be empty or one character long. As of MySQL 5.1.2, if the NO_BACKSLASH_ESCAPES SQL mode is
enabled, the sequence cannot be empty.

The following two statements illustrate that string comparisons are not case sensitive unless one of the operands is a binary string:

mysql> SELECT 'abc' LIKE 'ABC';
-> 1

mysql> SELECT 'abc' LIKE BINARY 'ABC';
-> 0

In MySQL, LIKE is allowed on numeric expressions. (This is an extension to the standard SQL LIKE.)

mysql> SELECT 10 LIKE '1%';
-> 1

Note

Because MySQL uses C escape syntax in strings (for example, “\n” to represent a newline character), you must double
any “\” that you use in LIKE strings. For example, to search for “\n”, specify it as “\\n”. To search for “\”, specify it as
“\\\\”; this is because the backslashes are stripped once by the parser and again when the pattern match is made, leaving
a single backslash to be matched against. (Exception: At the end of the pattern string, backslash can be specified as “\\”.
At the end of the string, backslash stands for itself because there is nothing following to escape.)

• expr NOT LIKE pat [ESCAPE 'escape_char']

This is the same as NOT (expr LIKE pat [ESCAPE 'escape_char']).

Note

Aggregate queries involving NOT LIKE comparisons with columns containing NULL may yield unexpected results. For
example, consider the following table and data:

CREATE TABLE foo (bar VARCHAR(10));

INSERT INTO foo VALUES (NULL), (NULL);

The query SELECT COUNT(*) FROM foo WHERE bar LIKE '%baz%'; returns 0. You might assume that SE-
LECT COUNT(*) FROM foo WHERE bar NOT LIKE '%baz%'; would return 2. However, this is not the case:
The second query returns 0. This is because NULL NOT LIKE expr always returns NULL, regardless of the value of
expr. The same is true for aggregate queries involving NULL and comparisons using NOT RLIKE or NOT REGEXP. In
such cases, you must test explicitly for NOT NULL using OR (and not AND), as shown here:

SELECT COUNT(*) FROM foo WHERE bar NOT LIKE '%baz%' OR bar IS NULL;

• expr NOT REGEXP pat, expr NOT RLIKE pat

This is the same as NOT (expr REGEXP pat).

• expr REGEXP pat, expr RLIKE pat

Performs a pattern match of a string expression expr against a pattern pat. The pattern can be an extended regular expression. The

Functions and Operators

704



syntax for regular expressions is discussed in Section 11.4.2, “Regular Expressions”. Returns 1 if expr matches pat; otherwise it
returns 0. If either expr or pat is NULL, the result is NULL. RLIKE is a synonym for REGEXP, provided for mSQL compatibility.

The pattern need not be a literal string. For example, it can be specified as a string expression or table column.

Note

Because MySQL uses the C escape syntax in strings (for example, “\n” to represent the newline character), you must
double any “\” that you use in your REGEXP strings.

REGEXP is not case sensitive, except when used with binary strings.

mysql> SELECT 'Monty!' REGEXP 'm%y%%';
-> 0

mysql> SELECT 'Monty!' REGEXP '.*';
-> 1

mysql> SELECT 'new*\n*line' REGEXP 'new\\*.\\*line';
-> 1

mysql> SELECT 'a' REGEXP 'A', 'a' REGEXP BINARY 'A';
-> 1 0

mysql> SELECT 'a' REGEXP '^[a-d]';
-> 1

REGEXP and RLIKE use the current character set when deciding the type of a character. The default is latin1 (cp1252 West
European).

Warning

The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multi-byte safe and may produce unexpec-
ted results with multi-byte character sets. In addition, these operators compare characters by their byte values and accented
characters may not compare as equal even if a given collation treats them as equal.

• STRCMP(expr1,expr2)

STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the second according to the current sort or-
der, and 1 otherwise.

mysql> SELECT STRCMP('text', 'text2');
-> -1

mysql> SELECT STRCMP('text2', 'text');
-> 1

mysql> SELECT STRCMP('text', 'text');
-> 0

STRCMP() uses the current character set when performing comparisons. This makes the default comparison behavior case insensit-
ive unless one or both of the operands are binary strings.

11.4.2. Regular Expressions

Name Description

NOT REGEXP Negation of REGEXP

REGEXP Pattern matching using regular expressions

RLIKE Synonym for REGEXP

A regular expression is a powerful way of specifying a pattern for a complex search.

MySQL uses Henry Spencer's implementation of regular expressions, which is aimed at conformance with POSIX 1003.2. See Ap-
pendix E, Credits. MySQL uses the extended version to support pattern-matching operations performed with the REGEXP operator in
SQL statements. See Section 3.3.4.7, “Pattern Matching”, and Section 11.4.1, “String Comparison Functions”.

This section is a summary, with examples, of the special characters and constructs that can be used in MySQL for REGEXP operations.
It does not contain all the details that can be found in Henry Spencer's regex(7) manual page. That manual page is included in
MySQL source distributions, in the regex.7 file under the regex directory.

Functions and Operators

705



A regular expression describes a set of strings. The simplest regular expression is one that has no special characters in it. For example,
the regular expression hello matches hello and nothing else.

Non-trivial regular expressions use certain special constructs so that they can match more than one string. For example, the regular ex-
pression hello|word matches either the string hello or the string word.

As a more complex example, the regular expression B[an]*s matches any of the strings Bananas, Baaaaas, Bs, and any other
string starting with a B, ending with an s, and containing any number of a or n characters in between.

A regular expression for the REGEXP operator may use any of the following special characters and constructs:

• ^

Match the beginning of a string.

mysql> SELECT 'fo\nfo' REGEXP '^fo$'; -> 0
mysql> SELECT 'fofo' REGEXP '^fo'; -> 1

• $

Match the end of a string.

mysql> SELECT 'fo\no' REGEXP '^fo\no$'; -> 1
mysql> SELECT 'fo\no' REGEXP '^fo$'; -> 0

• .

Match any character (including carriage return and newline).

mysql> SELECT 'fofo' REGEXP '^f.*$'; -> 1
mysql> SELECT 'fo\r\nfo' REGEXP '^f.*$'; -> 1

• a*

Match any sequence of zero or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Baaan' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba*n'; -> 1

• a+

Match any sequence of one or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba+n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba+n'; -> 0

• a?

Match either zero or one a character.

mysql> SELECT 'Bn' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Ban' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Baan' REGEXP '^Ba?n'; -> 0

• de|abc

Match either of the sequences de or abc.

mysql> SELECT 'pi' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'axe' REGEXP 'pi|apa'; -> 0
mysql> SELECT 'apa' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'apa' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pi' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pix' REGEXP '^(pi|apa)$'; -> 0

Functions and Operators

706



• (abc)*

Match zero or more instances of the sequence abc.

mysql> SELECT 'pi' REGEXP '^(pi)*$'; -> 1
mysql> SELECT 'pip' REGEXP '^(pi)*$'; -> 0
mysql> SELECT 'pipi' REGEXP '^(pi)*$'; -> 1

• {1}, {2,3}

{n} or {m,n} notation provides a more general way of writing regular expressions that match many occurrences of the previous
atom (or “piece”) of the pattern. m and n are integers.

• a*

Can be written as a{0,}.

• a+

Can be written as a{1,}.

• a?

Can be written as a{0,1}.

To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more instances of a. a{m,n} matches m through
n instances of a, inclusive.

m and n must be in the range from 0 to RE_DUP_MAX (default 255), inclusive. If both m and n are given, m must be less than or
equal to n.

mysql> SELECT 'abcde' REGEXP 'a[bcd]{2}e'; -> 0
mysql> SELECT 'abcde' REGEXP 'a[bcd]{3}e'; -> 1
mysql> SELECT 'abcde' REGEXP 'a[bcd]{1,10}e'; -> 1

• [a-dX], [^a-dX]

Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character between two other characters forms a range
that matches all characters from the first character to the second. For example, [0-9] matches any decimal digit. To include a liter-
al ] character, it must immediately follow the opening bracket [. To include a literal - character, it must be written first or last. Any
character that does not have a defined special meaning inside a [] pair matches only itself.

mysql> SELECT 'aXbc' REGEXP '[a-dXYZ]'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]$'; -> 0
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]+$'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[^a-dXYZ]+$'; -> 0
mysql> SELECT 'gheis' REGEXP '^[^a-dXYZ]+$'; -> 1
mysql> SELECT 'gheisa' REGEXP '^[^a-dXYZ]+$'; -> 0

• [.characters.]

Within a bracket expression (written using [ and ]), matches the sequence of characters of that collating element. characters is
either a single character or a character name like newline. The following table lists the allowable character names.

The following table shows the allowable character names and the characters that they match. For characters given as numeric val-
ues, the values are represented in octal.

Name Character Name Character

NUL 0 SOH 001

STX 002 ETX 003

EOT 004 ENQ 005

ACK 006 BEL 007

alert 007 BS 010

backspace '\b' HT 011

Functions and Operators

707



tab '\t' LF 012

newline '\n' VT 013

vertical-tab '\v' FF 014

form-feed '\f' CR 015

carriage-return '\r' SO 016

SI 017 DLE 020

DC1 021 DC2 022

DC3 023 DC4 024

NAK 025 SYN 026

ETB 027 CAN 030

EM 031 SUB 032

ESC 033 IS4 034

FS 034 IS3 035

GS 035 IS2 036

RS 036 IS1 037

US 037 space ' '

exclamation-mark '!' quotation-mark '"'

number-sign '#' dollar-sign '$'

percent-sign '%' ampersand '&'

apostrophe '\'' left-parenthesis '('

right-parenthesis ')' asterisk '*'

plus-sign '+' comma ','

hyphen '-' hyphen-minus '-'

period '.' full-stop '.'

slash '/' solidus '/'

zero '0' one '1'

two '2' three '3'

four '4' five '5'

six '6' seven '7'

eight '8' nine '9'

colon ':' semicolon ';'

less-than-sign '<' equals-sign '='

greater-than-sign '>' question-mark '?'

commercial-at '@' left-square-bracket '['

backslash '\\' reverse-solidus '\\'

right-square-bracket ']' circumflex '^'

circumflex-accent '^' underscore '_'

low-line '_' grave-accent '`'

left-brace '{' left-curly-bracket '{'

vertical-line '|' right-brace '}'

right-curly-bracket '}' tilde '~'

DEL 177

mysql> SELECT '~' REGEXP '[[.~.]]'; -> 1
mysql> SELECT '~' REGEXP '[[.tilde.]]'; -> 1

Functions and Operators

708



• [=character_class=]

Within a bracket expression (written using [ and ]), [=character_class=] represents an equivalence class. It matches all
characters with the same collation value, including itself. For example, if o and (+) are the members of an equivalence class, then
[[=o=]], [[=(+)=]], and [o(+)] are all synonymous. An equivalence class may not be used as an endpoint of a range.

• [:character_class:]

Within a bracket expression (written using [ and ]), [:character_class:] represents a character class that matches all char-
acters belonging to that class. The following table lists the standard class names. These names stand for the character classes defined
in the ctype(3) manual page. A particular locale may provide other class names. A character class may not be used as an end-
point of a range.

alnum Alphanumeric characters

alpha Alphabetic characters

blank Whitespace characters

cntrl Control characters

digit Digit characters

graph Graphic characters

lower Lowercase alphabetic characters

print Graphic or space characters

punct Punctuation characters

space Space, tab, newline, and carriage return

upper Uppercase alphabetic characters

xdigit Hexadecimal digit characters

mysql> SELECT 'justalnums' REGEXP '[[:alnum:]]+'; -> 1
mysql> SELECT '!!' REGEXP '[[:alnum:]]+'; -> 0

• [[:<:]], [[:>:]]

These markers stand for word boundaries. They match the beginning and end of words, respectively. A word is a sequence of word
characters that is not preceded by or followed by word characters. A word character is an alphanumeric character in the alnum
class or an underscore (_).

mysql> SELECT 'a word a' REGEXP '[[:<:]]word[[:>:]]'; -> 1
mysql> SELECT 'a xword a' REGEXP '[[:<:]]word[[:>:]]'; -> 0

To use a literal instance of a special character in a regular expression, precede it by two backslash (\) characters. The MySQL parser in-
terprets one of the backslashes, and the regular expression library interprets the other. For example, to match the string 1+2 that con-
tains the special + character, only the last of the following regular expressions is the correct one:

mysql> SELECT '1+2' REGEXP '1+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\\+2'; -> 1

11.5. Numeric Functions
Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN2(), ATAN() Return the arc tangent of the two arguments

Functions and Operators

709



Name Description

ATAN() Return the arc tangent

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32()(v4.1.0) Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

DIV(v4.1.0) Integer division

/ Division operator

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the argument

LN() Return the natural logarithm of the argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

LOG() Return the natural logarithm of the first argument

- Minus operator

MOD() Return the remainder

% Modulo operator

OCT() Return an octal representation of a decimal number

PI() Return the value of pi

+ Addition operator

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

* Times operator

TRUNCATE() Truncate to specified number of decimal places

- Change the sign of the argument

11.5.1. Arithmetic Operators

Name Description

DIV(v4.1.0) Integer division

/ Division operator

- Minus operator

% Modulo operator

+ Addition operator

* Times operator

Functions and Operators

710



Name Description

- Change the sign of the argument

The usual arithmetic operators are available. The result is determined according to the following rules:

• In the case of -, +, and *, the result is calculated with BIGINT (64-bit) precision if both arguments are integers.

• If one of the arguments is an unsigned integer, and the other argument is also an integer, the result is an unsigned integer.

• If any of the operands of a +, -, /, *, % is a real or string value, then the precision of the result is the precision of the argument with
the maximum precision.

• In division performed with /, the scale of the result when using two exact values is the scale of the first argument plus the value of
the div_precision_increment system variable (which is 4 by default). For example, the result of the expression 5.05 /
0.014 has a scale of six decimal places (360.714286).

These rules are applied for each operation, such that nested calculations imply the precision of each component. Hence, (14620 /
9432456) / (24250 / 9432456), would resolve first to (0.0014) / (0.0026), with the final result having 8 decimal
places (0.60288653).

Because of these rules and the way they are applied, care should be taken to ensure that components and sub-components of a calcula-
tion use the appropriate level of precision. See Section 11.9, “Cast Functions and Operators”.

• +

Addition:

mysql> SELECT 3+5;
-> 8

• -

Subtraction:

mysql> SELECT 3-5;
-> -2

• -

Unary minus. This operator changes the sign of the argument.

mysql> SELECT - 2;
-> -2

Note

If this operator is used with a BIGINT, the return value is also a BIGINT. This means that you should avoid using – on
integers that may have the value of –263.

• *

Multiplication:

mysql> SELECT 3*5;
-> 15

mysql> SELECT 18014398509481984*18014398509481984.0;
-> 324518553658426726783156020576256.0

mysql> SELECT 18014398509481984*18014398509481984;
-> 0

The result of the last expression is incorrect because the result of the integer multiplication exceeds the 64-bit range of BIGINT cal-
culations. (See Section 10.2, “Numeric Types”.)

Functions and Operators

711



• /

Division:

mysql> SELECT 3/5;
-> 0.60

Division by zero produces a NULL result:

mysql> SELECT 102/(1-1);
-> NULL

A division is calculated with BIGINT arithmetic only if performed in a context where its result is converted to an integer.

• DIV

Integer division. Similar to FLOOR(), but is safe with BIGINT values.

mysql> SELECT 5 DIV 2;
-> 2

• N % M

Modulo operation. Returns the remainder of N divided by M. For more information, see the description for the MOD() function in
Section 11.5.2, “Mathematical Functions”.

11.5.2. Mathematical Functions

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN2(), ATAN() Return the arc tangent of the two arguments

ATAN() Return the arc tangent

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32()(v4.1.0) Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the argument

LN() Return the natural logarithm of the argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

LOG() Return the natural logarithm of the first argument

MOD() Return the remainder

OCT() Return an octal representation of a decimal number

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

Functions and Operators

712



Name Description

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

All mathematical functions return NULL in the event of an error.

• ABS(X)

Returns the absolute value of X.

mysql> SELECT ABS(2);
-> 2

mysql> SELECT ABS(-32);
-> 32

This function is safe to use with BIGINT values.

• ACOS(X)

Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not in the range -1 to 1.

mysql> SELECT ACOS(1);
-> 0

mysql> SELECT ACOS(1.0001);
-> NULL

mysql> SELECT ACOS(0);
-> 1.5707963267949

• ASIN(X)

Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range -1 to 1.

mysql> SELECT ASIN(0.2);
-> 0.20135792079033

mysql> SELECT ASIN('foo');

+-------------+
| ASIN('foo') |
+-------------+
| 0 |
+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+-----------------------------------------+
| Level | Code | Message |
+---------+------+-----------------------------------------+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |
+---------+------+-----------------------------------------+

• ATAN(X)

Returns the arc tangent of X, that is, the value whose tangent is X.

mysql> SELECT ATAN(2);
-> 1.1071487177941

mysql> SELECT ATAN(-2);
-> -1.1071487177941

• ATAN(Y,X), ATAN2(Y,X)

Functions and Operators

713



Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y / X, except that the signs of
both arguments are used to determine the quadrant of the result.

mysql> SELECT ATAN(-2,2);
-> -0.78539816339745

mysql> SELECT ATAN2(PI(),0);
-> 1.5707963267949

• CEIL(X)

CEIL() is a synonym for CEILING().

• CEILING(X)

Returns the smallest integer value not less than X.

mysql> SELECT CEILING(1.23);
-> 2

mysql> SELECT CEILING(-1.23);
-> -1

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or floating-point arguments, the re-
turn value has a floating-point type.

• CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of the number N, converted from base
from_base to base to_base. Returns NULL if any argument is NULL. The argument N is interpreted as an integer, but may be
specified as an integer or a string. The minimum base is 2 and the maximum base is 36. If to_base is a negative number, N is re-
garded as a signed number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.

mysql> SELECT CONV('a',16,2);
-> '1010'

mysql> SELECT CONV('6E',18,8);
-> '172'

mysql> SELECT CONV(-17,10,-18);
-> '-H'

mysql> SELECT CONV(10+'10'+'10'+0xa,10,10);
-> '40'

• COS(X)

Returns the cosine of X, where X is given in radians.

mysql> SELECT COS(PI());
-> -1

• COT(X)

Returns the cotangent of X.

mysql> SELECT COT(12);
-> -1.5726734063977

mysql> SELECT COT(0);
-> NULL

• CRC32(expr)

Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The result is NULL if the argument is NULL. The ar-
gument is expected to be a string and (if possible) is treated as one if it is not.

mysql> SELECT CRC32('MySQL');
-> 3259397556

mysql> SELECT CRC32('mysql');
-> 2501908538

• DEGREES(X)

Functions and Operators

714



Returns the argument X, converted from radians to degrees.

mysql> SELECT DEGREES(PI());
-> 180

mysql> SELECT DEGREES(PI() / 2);
-> 90

• EXP(X)

Returns the value of e (the base of natural logarithms) raised to the power of X.

mysql> SELECT EXP(2);
-> 7.3890560989307

mysql> SELECT EXP(-2);
-> 0.13533528323661

mysql> SELECT EXP(0);
-> 1

• FLOOR(X)

Returns the largest integer value not greater than X.

mysql> SELECT FLOOR(1.23);
-> 1

mysql> SELECT FLOOR(-1.23);
-> -2

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or floating-point arguments, the re-
turn value has a floating-point type.

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the result as a string. For de-
tails, see Section 11.4, “String Functions”.

• HEX(N_or_S)

This function can be used to obtain a hexadecimal representation of a decimal number or a string; the manner in which it does so
varies according to the argument's type. See this function's description in Section 11.4, “String Functions”, for details.

• LN(X)

Returns the natural logarithm of X; that is, the base-e logarithm of X.

mysql> SELECT LN(2);
-> 0.69314718055995

mysql> SELECT LN(-2);
-> NULL

This function is synonymous with LOG(X).

• LOG(X), LOG(B,X)

If called with one parameter, this function returns the natural logarithm of X.

mysql> SELECT LOG(2);
-> 0.69314718055995

mysql> SELECT LOG(-2);
-> NULL

If called with two parameters, this function returns the logarithm of X for an arbitrary base B.

mysql> SELECT LOG(2,65536);
-> 16

mysql> SELECT LOG(10,100);
-> 2

LOG(B,X) is equivalent to LOG(X) / LOG(B).

Functions and Operators

715



• LOG2(X)

Returns the base-2 logarithm of X.

mysql> SELECT LOG2(65536);
-> 16

mysql> SELECT LOG2(-100);
-> NULL

LOG2() is useful for finding out how many bits a number requires for storage. This function is equivalent to the expression
LOG(X) / LOG(2).

• LOG10(X)

Returns the base-10 logarithm of X.

mysql> SELECT LOG10(2);
-> 0.30102999566398

mysql> SELECT LOG10(100);
-> 2

mysql> SELECT LOG10(-100);
-> NULL

LOG10(X) is equivalent to LOG(10,X).

• MOD(N,M), N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M.

mysql> SELECT MOD(234, 10);
-> 4

mysql> SELECT 253 % 7;
-> 1

mysql> SELECT MOD(29,9);
-> 2

mysql> SELECT 29 MOD 9;
-> 2

This function is safe to use with BIGINT values.

MOD() also works on values that have a fractional part and returns the exact remainder after division:

mysql> SELECT MOD(34.5,3);
-> 1.5

MOD(N,0) returns NULL.

• OCT(N)

Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number. This is equivalent to
CONV(N,10,8). Returns NULL if N is NULL.

mysql> SELECT OCT(12);
-> '14'

• PI()

Returns the value of # (pi). The default number of decimal places displayed is seven, but MySQL uses the full double-precision
value internally.

mysql> SELECT PI();
-> 3.141593

mysql> SELECT PI()+0.000000000000000000;
-> 3.141592653589793116

• POW(X,Y)

Returns the value of X raised to the power of Y.

Functions and Operators

716



mysql> SELECT POW(2,2);
-> 4

mysql> SELECT POW(2,-2);
-> 0.25

• POWER(X,Y)

This is a synonym for POW().

• RADIANS(X)

Returns the argument X, converted from degrees to radians. (Note that # radians equals 180 degrees.)

mysql> SELECT RADIANS(90);
-> 1.5707963267949

• RAND(), RAND(N)

Returns a random floating-point value v in the range 0 <= v < 1.0. If a constant integer argument N is specified, it is used as the
seed value, which produces a repeatable sequence of column values.

mysql> SELECT RAND();
-> 0.9233482386203

mysql> SELECT RAND(20);
-> 0.15888261251047

mysql> SELECT RAND(20);
-> 0.15888261251047

mysql> SELECT RAND();
-> 0.63553050033332

mysql> SELECT RAND();
-> 0.70100469486881

mysql> SELECT RAND(20);
-> 0.15888261251047

With a constant initializer, the seed is initialized once when the statement is compiled, prior to execution. As of MySQL 5.1.16, if a
non-constant initializer (such as a column name) is used as the argument, the seed is initialized with the value for each invocation of
RAND(). (One implication of this is that for equal argument values, RAND() will return the same value each time.) From MySQL
5.1.3 to 5.1.15, non-constant arguments are disallowed. Before that, the effect of using a non-constant argument is undefined.

To obtain a random integer R in the range i <= R < j, use the expression FLOOR(i + RAND() * (j – i)). For example, to
obtain a random integer in the range the range 7 <= R < 12, you could use the following statement:

SELECT FLOOR(7 + (RAND() * 5));

You cannot use a column with RAND() values in an ORDER BY clause, because ORDER BY would evaluate the column multiple
times. However, you can retrieve rows in random order like this:

mysql> SELECT * FROM tbl_name ORDER BY RAND();

ORDER BY RAND() combined with LIMIT is useful for selecting a random sample from a set of rows:

mysql> SELECT * FROM table1, table2 WHERE a=b AND c<d -> ORDER BY RAND() LIMIT 1000;

Note that RAND() in a WHERE clause is re-evaluated every time the WHERE is executed.

RAND() is not meant to be a perfect random generator, but instead is a fast way to generate ad hoc random numbers which is port-
able between platforms for the same MySQL version.

• ROUND(X), ROUND(X,D)

Rounds the argument X to D decimal places. The rounding algorithm depends on the data type of X. D defaults to 0 if not specified.
D can be negative to cause D digits left of the decimal point of the value X to become zero.

mysql> SELECT ROUND(-1.23);
-> -1

mysql> SELECT ROUND(-1.58);
-> -2

mysql> SELECT ROUND(1.58);

Functions and Operators

717



-> 2
mysql> SELECT ROUND(1.298, 1);

-> 1.3
mysql> SELECT ROUND(1.298, 0);

-> 1
mysql> SELECT ROUND(23.298, -1);

-> 20

The return type is the same type as that of the first argument (assuming that it is integer, double, or decimal). This means that for an
integer argument, the result is an integer (no decimal places):

mysql> SELECT ROUND(150.000,2), ROUND(150,2);
+------------------+--------------+
| ROUND(150.000,2) | ROUND(150,2) |
+------------------+--------------+
| 150.00 | 150 |
+------------------+--------------+

ROUND() uses the following rules depending on the type of the first argument:

• For exact-value numbers, ROUND() uses the “round half up” or “round toward nearest” rule: A value with a fractional part of .5
or greater is rounded up to the next integer if positive or down to the next integer if negative. (In other words, it is rounded away
from zero.) A value with a fractional part less than .5 is rounded down to the next integer if positive or up to the next integer if
negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this means that ROUND() uses the
"round to nearest even" rule: A value with any fractional part is rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For more information, see Chapter 25, Precision Math.

• SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or positive.

mysql> SELECT SIGN(-32);
-> -1

mysql> SELECT SIGN(0);
-> 0

mysql> SELECT SIGN(234);
-> 1

• SIN(X)

Returns the sine of X, where X is given in radians.

mysql> SELECT SIN(PI());
-> 1.2246063538224e-16

mysql> SELECT ROUND(SIN(PI()));
-> 0

• SQRT(X)

Returns the square root of a non-negative number X.

mysql> SELECT SQRT(4);
-> 2

mysql> SELECT SQRT(20);
-> 4.4721359549996

mysql> SELECT SQRT(-16);
-> NULL

• TAN(X)

Functions and Operators

718



Returns the tangent of X, where X is given in radians.

mysql> SELECT TAN(PI());
-> -1.2246063538224e-16

mysql> SELECT TAN(PI()+1);
-> 1.5574077246549

• TRUNCATE(X,D)

Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or fractional part. D can be negative to
cause D digits left of the decimal point of the value X to become zero.

mysql> SELECT TRUNCATE(1.223,1);
-> 1.2

mysql> SELECT TRUNCATE(1.999,1);
-> 1.9

mysql> SELECT TRUNCATE(1.999,0);
-> 1

mysql> SELECT TRUNCATE(-1.999,1);
-> -1.9

mysql> SELECT TRUNCATE(122,-2);
-> 100

mysql> SELECT TRUNCATE(10.28*100,0);
-> 1028

All numbers are rounded toward zero.

11.6. Date and Time Functions
This section describes the functions that can be used to manipulate temporal values. See Section 10.3, “Date and Time Types”, for a de-
scription of the range of values each date and time type has and the valid formats in which values may be specified.

Name Description

ADDDATE()(v4.1.1) Add dates

ADDTIME()(v4.1.1) Add time

CONVERT_TZ()(v4.1.3) Convert from one timezone to another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(), CUR-
RENT_TIMESTAMP

Synonyms for NOW()

CURTIME() Return the current time

DATE_ADD() Add two dates

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract two dates

DATE()(v4.1.1) Extract the date part of a date or datetime expression

DATEDIFF()(v4.1.1) Subtract two dates

DAY()(v4.1.1) Synonym for DAYOFMONTH()

DAYNAME()(v4.1.21) Return the name of the weekday

DAYOFMONTH() Return the day of the month (1-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

EXTRACT Extract part of a date

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format date as a UNIX timestamp

GET_FORMAT()(v4.1.1) Return a date format string

Functions and Operators

719



Name Description

HOUR() Extract the hour

LAST_DAY(v4.1.1) Return the last day of the month for the argument

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()(v4.0.6)

Synonym for NOW()

MAKEDATE()(v4.1.1) Create a date from the year and day of year

MAKETIME(v4.1.1) MAKETIME()

MICROSECOND()(v4.1.1) Return the microseconds from argument

MINUTE() Return the minute from the argument

MONTH() Return the month from the date passed

MONTHNAME()(v4.1.21) Return the name of the month

NOW() Return the current date and time

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

QUARTER() Return the quarter from a date argument

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

SECOND() Return the second (0-59)

STR_TO_DATE()(v4.1.1) Convert a string to a date

SUBDATE() When invoked with three arguments a synonym for DATE_SUB()

SUBTIME()(v4.1.1) Subtract times

SYSDATE() Return the time at which the function executes

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIME()(v4.1.1) Extract the time portion of the expression passed

TIMEDIFF()(v4.1.1) Subtract time

TIMESTAMP()(v4.1.1) With a single argument, this function returns the date or datetime expression.
With two arguments, the sum of the arguments

TIMESTAMPADD()(v5.0.0) Add an interval to a datetime expression

TIMESTAMPDIFF()(v5.0.0) Subtract an interval from a datetime expression

TO_DAYS() Return the date argument converted to days

UNIX_TIMESTAMP() Return a UNIX timestamp

UTC_DATE()(v4.1.1) Return the current UTC date

UTC_TIME()(v4.1.1) Return the current UTC time

UTC_TIMESTAMP()(v4.1.1) Return the current UTC date and time

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR()(v4.1.1) Return the calendar week of the date (1-53)

YEAR() Return the year

YEARWEEK() Return the year and week

Here is an example that uses date functions. The following query selects all rows with a date_col value from within the last 30 days:

mysql> SELECT something FROM tbl_name
-> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

Note that the query also selects rows with dates that lie in the future.

Functions and Operators

720



Functions that expect date values usually accept datetime values and ignore the time part. Functions that expect time values usually ac-
cept datetime values and ignore the date part.

Functions that return the current date or time each are evaluated only once per query at the start of query execution. This means that
multiple references to a function such as NOW() within a single query always produce the same result (for our purposes a single query
also includes a call to a stored routine or trigger and all sub-routines called by that routine/trigger). This principle also applies to CURD-
ATE(), CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to any of their synonyms.

The CURRENT_TIMESTAMP(), CURRENT_TIME(), CURRENT_DATE(), and FROM_UNIXTIME() functions return values in the
connection's current time zone, which is available as the value of the time_zone system variable. In addition, UNIX_TIMESTAMP()
assumes that its argument is a datetime value in the current time zone. See Section 9.6, “MySQL Server Time Zone Support”.

Some date functions can be used with “zero” dates or incomplete dates such as '2001-11-00', whereas others cannot. Functions that
extract parts of dates typically work with incomplete dates. For example:

mysql> SELECT DAYOFMONTH('2001-11-00'), MONTH('2005-00-00');
-> 0, 0

Other functions expect complete dates and return NULL for incomplete dates. These include functions that perform date arithmetic or
that map parts of dates to names. For example:

mysql> SELECT DATE_ADD('2006-05-00',INTERVAL 1 DAY);
-> NULL

mysql> SELECT DAYNAME('2006-05-00');
-> NULL

• ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for DATE_ADD(). The related func-
tion SUBDATE() is a synonym for DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for
DATE_ADD().

mysql> SELECT DATE_ADD('1998-01-02', INTERVAL 31 DAY);
-> '1998-02-02'

mysql> SELECT ADDDATE('1998-01-02', INTERVAL 31 DAY);
-> '1998-02-02'

When invoked with the days form of the second argument, MySQL treats it as an integer number of days to be added to expr.

mysql> SELECT ADDDATE('1998-01-02', 31);
-> '1998-02-02'

• ADDTIME(expr1,expr2)

ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression, and expr2 is a time expres-
sion.

mysql> SELECT ADDTIME('1997-12-31 23:59:59.999999',
-> '1 1:1:1.000002');

-> '1998-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');

-> '03:00:01.999997'

• CONVERT_TZ(dt,from_tz,to_tz)

CONVERT_TZ() converts a datetime value dt from the time zone given by from_tz to the time zone given by to_tz and re-
turns the resulting value. Time zones are specified as described in Section 9.6, “MySQL Server Time Zone Support”. This function
returns NULL if the arguments are invalid.

If the value falls out of the supported range of the TIMESTAMP type when converted from from_tz to UTC, no conversion oc-
curs. The TIMESTAMP range is described in Section 10.1.2, “Overview of Date and Time Types”.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
-> '2004-01-01 13:00:00'

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00');
-> '2004-01-01 22:00:00'

Functions and Operators

721



Note

To use named time zones such as 'MET' or 'Europe/Moscow', the time zone tables must be properly set up. See Sec-
tion 9.6, “MySQL Server Time Zone Support”, for instructions.

Before MySQL 5.1.17, if you intend to use CONVERT_TZ() while other tables are locked with LOCK TABLES, you must also
lock the mysql.time_zone_name table. See Section 12.4.5, “LOCK TABLES and UNLOCK TABLES Syntax”.

• CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the function is used in a string
or numeric context.

mysql> SELECT CURDATE();
-> '1997-12-15'

mysql> SELECT CURDATE() + 0;
-> 19971215

• CURRENT_DATE, CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().

• CURTIME()

Returns the current time as a value in 'HH:MM:SS' or HHMMSS.uuuuuu format, depending on whether the function is used in a
string or numeric context. The value is expressed in the current time zone.

mysql> SELECT CURTIME();
-> '23:50:26'

mysql> SELECT CURTIME() + 0;
-> 235026.000000

• CURRENT_TIME, CURRENT_TIME()

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

• CURRENT_TIMESTAMP, CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().

• DATE(expr)

Extracts the date part of the date or datetime expression expr.

mysql> SELECT DATE('2003-12-31 01:02:03');
-> '2003-12-31'

• DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 – expr2 expressed as a value in days from one date to the other. expr1 and expr2 are date or
date-and-time expressions. Only the date parts of the values are used in the calculation.

mysql> SELECT DATEDIFF('1997-12-31 23:59:59','1997-12-30');
-> 1

mysql> SELECT DATEDIFF('1997-11-30 23:59:59','1997-12-31');
-> -31

• DATE_ADD(date,INTERVAL expr unit), DATE_SUB(date,INTERVAL expr unit)

These functions perform date arithmetic. The date argument specifies the starting date or datetime value. expr is an expression
specifying the interval value to be added or subtracted from the starting date. expr is a string; it may start with a “-” for negative
intervals. unit is a keyword indicating the units in which the expression should be interpreted.

The INTERVAL keyword and the unit specifier are not case sensitive.

The following table shows the expected form of the expr argument for each unit value.

Functions and Operators

722



unit Value Expected expr Format

MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS.MICROSECONDS'

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS.MICROSECONDS'

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

The return value depends on the arguments:

• DATETIME if the first argument is a DATETIME (or TIMESTAMP) value, or if the first argument is a DATE and the unit value
uses HOURS, MINUTES, or SECONDS.

• String otherwise.

To ensure that the result is DATETIME, you can use CAST() to convert the first argument to DATETIME.

MySQL allows any punctuation delimiter in the expr format. Those shown in the table are the suggested delimiters. If the date
argument is a DATE value and your calculations involve only YEAR, MONTH, and DAY parts (that is, no time parts), the result is a
DATE value. Otherwise, the result is a DATETIME value.

Date arithmetic also can be performed using INTERVAL together with the + or - operator:

date + INTERVAL expr unit
date - INTERVAL expr unit

INTERVAL expr unit is allowed on either side of the + operator if the expression on the other side is a date or datetime value.
For the - operator, INTERVAL expr unit is allowed only on the right side, because it makes no sense to subtract a date or date-
time value from an interval.

mysql> SELECT '1997-12-31 23:59:59' + INTERVAL 1 SECOND;
-> '1998-01-01 00:00:00'

mysql> SELECT INTERVAL 1 DAY + '1997-12-31';
-> '1998-01-01'

mysql> SELECT '1998-01-01' - INTERVAL 1 SECOND;
-> '1997-12-31 23:59:59'

mysql> SELECT DATE_ADD('1997-12-31 23:59:59',
-> INTERVAL 1 SECOND);

-> '1998-01-01 00:00:00'
mysql> SELECT DATE_ADD('1997-12-31 23:59:59',

-> INTERVAL 1 DAY);
-> '1998-01-01 23:59:59'

mysql> SELECT DATE_ADD('1997-12-31 23:59:59',
-> INTERVAL '1:1' MINUTE_SECOND);

Functions and Operators

723



-> '1998-01-01 00:01:00'
mysql> SELECT DATE_SUB('1998-01-01 00:00:00',

-> INTERVAL '1 1:1:1' DAY_SECOND);
-> '1997-12-30 22:58:59'

mysql> SELECT DATE_ADD('1998-01-01 00:00:00',
-> INTERVAL '-1 10' DAY_HOUR);

-> '1997-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);

-> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',

-> INTERVAL '1.999999' SECOND_MICROSECOND);
-> '1993-01-01 00:00:01.000001'

If you specify an interval value that is too short (does not include all the interval parts that would be expected from the unit
keyword), MySQL assumes that you have left out the leftmost parts of the interval value. For example, if you specify a unit of
DAY_SECOND, the value of expr is expected to have days, hours, minutes, and seconds parts. If you specify a value like '1:10',
MySQL assumes that the days and hours parts are missing and the value represents minutes and seconds. In other words, '1:10'
DAY_SECOND is interpreted in such a way that it is equivalent to '1:10' MINUTE_SECOND. This is analogous to the way that
MySQL interprets TIME values as representing elapsed time rather than as a time of day.

Because expr is treated as a string, be careful if you specify a non-string value with INTERVAL. For example, with an interval spe-
cifier of HOUR_MINUTE, 6/4 evaluates to 1.5000 and is treated as 1 hour, 5000 minutes:

mysql> SELECT 6/4;
-> 1.5000

mysql> SELECT DATE_ADD('1999-01-01', INTERVAL 6/4 HOUR_MINUTE);
-> '1999-01-04 12:20:00'

To ensure interpretation of the interval value as you expect, a CAST() operation may be used. To treat 6/4 as 1 hour, 5 minutes,
cast it to a DECIMAL value with a single fractional digit:

mysql> SELECT CAST(6/4 AS DECIMAL(3,1));
-> 1.5

mysql> SELECT DATE_ADD('1970-01-01 12:00:00',
-> INTERVAL CAST(6/4 AS DECIMAL(3,1)) HOUR_MINUTE);

-> '1970-01-01 13:05:00'

If you add to or subtract from a date value something that contains a time part, the result is automatically converted to a datetime
value:

mysql> SELECT DATE_ADD('1999-01-01', INTERVAL 1 DAY);
-> '1999-01-02'

mysql> SELECT DATE_ADD('1999-01-01', INTERVAL 1 HOUR);
-> '1999-01-01 01:00:00'

If you add MONTH, YEAR_MONTH, or YEAR and the resulting date has a day that is larger than the maximum day for the new
month, the day is adjusted to the maximum days in the new month:

mysql> SELECT DATE_ADD('1998-01-30', INTERVAL 1 MONTH);
-> '1998-02-28'

Date arithmetic operations require complete dates and do not work with incomplete dates such as '2006-07-00' or badly mal-
formed dates:

mysql> SELECT DATE_ADD('2006-07-00', INTERVAL 1 DAY);
-> NULL

mysql> SELECT '2005-03-32' + INTERVAL 1 MONTH;
-> NULL

• DATE_FORMAT(date,format)

Formats the date value according to the format string.

The following specifiers may be used in the format string. The “%” character is required before format specifier characters.

Specifier Description

%a Abbreviated weekday name (Sun..Sat)

%b Abbreviated month name (Jan..Dec)

Functions and Operators

724



%c Month, numeric (0..12)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, …)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%I Hour (01..12)

%i Minutes, numeric (00..59)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of the week

%u Week (00..53), where Monday is the first day of the week

%V Week (01..53), where Sunday is the first day of the week; used with %X

%v Week (01..53), where Monday is the first day of the week; used with %x

%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day of the week, numeric, four digits; used with %V

%x Year for the week, where Monday is the first day of the week, numeric, four digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric (two digits)

%% A literal “%” character

%x x, for any “x” not listed above

Ranges for the month and day specifiers begin with zero due to the fact that MySQL allows the storing of incomplete dates such as
'2004-00-00'.

As of MySQL 5.1.12, the language used for day and month names and abbreviations is controlled by the value of the
lc_time_names system variable (Section 9.7, “MySQL Server Locale Support”).

As of MySQL 5.1.15, DATE_FORMAT() returns a string with a character set and collation given by charac-
ter_set_connection and collation_connection so that it can return month and weekday names containing non-ASCII
characters. Before 5.1.15, the return value is a binary string.

mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00', '%W %M %Y');
-> 'Saturday October 1997'

mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00', '%H:%i:%s');
-> '22:23:00'

mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
'%D %y %a %d %m %b %j');

-> '4th 97 Sat 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',

'%H %k %I %r %T %S %w');
-> '22 22 10 10:23:00 PM 22:23:00 00 6'

Functions and Operators

725



mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
-> '1998 52'

mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
-> '00'

• DATE_SUB(date,INTERVAL expr unit)

See the description for DATE_ADD().

• DAY(date)

DAY() is a synonym for DAYOFMONTH().

• DAYNAME(date)

Returns the name of the weekday for date. As of MySQL 5.1.12, the language used for the name is controlled by the value of the
lc_time_names system variable (Section 9.7, “MySQL Server Locale Support”).

mysql> SELECT DAYNAME('1998-02-05');
-> 'Thursday'

• DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31, or 0 for dates such as '0000-00-00' or '2008-00-00' that
have a zero day part.

mysql> SELECT DAYOFMONTH('1998-02-03');
-> 3

• DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, …, 7 = Saturday). These index values correspond to the ODBC
standard.

mysql> SELECT DAYOFWEEK('1998-02-03');
-> 3

• DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysql> SELECT DAYOFYEAR('1998-02-03');
-> 34

• EXTRACT(unit FROM date)

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(), but extracts parts from the
date rather than performing date arithmetic.

mysql> SELECT EXTRACT(YEAR FROM '1999-07-02');
-> 1999

mysql> SELECT EXTRACT(YEAR_MONTH FROM '1999-07-02 01:02:03');
-> 199907

mysql> SELECT EXTRACT(DAY_MINUTE FROM '1999-07-02 01:02:03');
-> 20102

mysql> SELECT EXTRACT(MICROSECOND
-> FROM '2003-01-02 10:30:00.000123');

-> 123

• FROM_DAYS(N)

Given a day number N, returns a DATE value.

mysql> SELECT FROM_DAYS(729669);
-> '1997-10-07'

Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the advent of the Gregorian calen-

Functions and Operators

726



dar (1582). See Section 11.7, “What Calendar Is Used By MySQL?”.

• FROM_UNIXTIME(unix_timestamp), FROM_UNIXTIME(unix_timestamp,format)

Returns a representation of the unix_timestamp argument as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDH-
HMMSS.uuuuuu format, depending on whether the function is used in a string or numeric context. The value is expressed in the
current time zone. unix_timestamp is an internal timestamp value such as is produced by the UNIX_TIMESTAMP() function.

If format is given, the result is formatted according to the format string, which is used the same way as listed in the entry for the
DATE_FORMAT() function.

mysql> SELECT FROM_UNIXTIME(1196440219);
-> '2007-11-30 10:30:19'

mysql> SELECT FROM_UNIXTIME(1196440219) + 0;
-> 20071130103019.000000

mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(),
-> '%Y %D %M %h:%i:%s %x');

-> '2007 30th November 10:30:59 2007'

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP values and Unix timestamp
values, the conversion is lossy because the mapping is not one-to-one in both directions. For details, see the description of the
UNIX_TIMESTAMP() function.

• GET_FORMAT(DATE|TIME|DATETIME, 'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL')

Returns a format string. This function is useful in combination with the DATE_FORMAT() and the STR_TO_DATE() functions.

The possible values for the first and second arguments result in several possible format strings (for the specifiers used, see the table
in the DATE_FORMAT() function description). ISO format refers to ISO 9075, not ISO 8601.

Function Call Result

GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s %p'

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

GET_FORMAT(TIME,'EUR') '%H.%i.%s'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

TIMESTAMP can also be used as the first argument to GET_FORMAT(), in which case the function returns the same values as for
DATETIME.

mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));
-> '03.10.2003'

mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
-> '2003-10-31'

• HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However, the range of TIME values ac-
tually is much larger, so HOUR can return values greater than 23.

Functions and Operators

727



mysql> SELECT HOUR('10:05:03');
-> 10

mysql> SELECT HOUR('272:59:59');
-> 272

• LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month. Returns NULL if the argument is
invalid.

mysql> SELECT LAST_DAY('2003-02-05');
-> '2003-02-28'

mysql> SELECT LAST_DAY('2004-02-05');
-> '2004-02-29'

mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
-> '2004-01-31'

mysql> SELECT LAST_DAY('2003-03-32');
-> NULL

• LOCALTIME, LOCALTIME()

LOCALTIME and LOCALTIME() are synonyms for NOW().

• LOCALTIMESTAMP, LOCALTIMESTAMP()

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

• MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result is NULL.

mysql> SELECT MAKEDATE(2001,31), MAKEDATE(2001,32);
-> '2001-01-31', '2001-02-01'

mysql> SELECT MAKEDATE(2001,365), MAKEDATE(2004,365);
-> '2001-12-31', '2004-12-30'

mysql> SELECT MAKEDATE(2001,0);
-> NULL

• MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute, and second arguments.

mysql> SELECT MAKETIME(12,15,30);
-> '12:15:30'

• MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the range from 0 to 999999.

mysql> SELECT MICROSECOND('12:00:00.123456');
-> 123456

mysql> SELECT MICROSECOND('1997-12-31 23:59:59.000010');
-> 10

• MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql> SELECT MINUTE('98-02-03 10:05:03');
-> 5

• MONTH(date)

Returns the month for date, in the range 1 to 12 for January to December, or 0 for dates such as '0000-00-00' or
'2008-00-00' that have a zero month part.

mysql> SELECT MONTH('1998-02-03');
-> 2

Functions and Operators

728



• MONTHNAME(date)

Returns the full name of the month for date. As of MySQL 5.1.12, the language used for the name is controlled by the value of the
lc_time_names system variable (Section 9.7, “MySQL Server Locale Support”).

mysql> SELECT MONTHNAME('1998-02-05');
-> 'February'

• NOW()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS.uuuuuu format, depending
on whether the function is used in a string or numeric context. The value is expressed in the current time zone.

mysql> SELECT NOW();
-> '2007-12-15 23:50:26'

mysql> SELECT NOW() + 0;
-> 20071215235026.000000

NOW() returns a constant time that indicates the time at which the statement began to execute. (Within a stored routine or trigger,
NOW() returns the time at which the routine or triggering statement began to execute.) This differs from the behavior for SYS-
DATE(), which returns the exact time at which it executes.

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by SYSDATE(). This means that
timestamp settings in the binary log have no effect on invocations of SYSDATE().

See the description for SYSDATE() for additional information about the differences between the two functions.

• PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM. Note that the period argument
P is not a date value.

mysql> SELECT PERIOD_ADD(9801,2);
-> 199803

• PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format YYMM or YYYYMM. Note that the
period arguments P1 and P2 are not date values.

mysql> SELECT PERIOD_DIFF(9802,199703);
-> 11

• QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.

mysql> SELECT QUARTER('98-04-01');
-> 2

• SECOND(time)

Returns the second for time, in the range 0 to 59.

mysql> SELECT SECOND('10:05:03');

Functions and Operators

729



-> 3

• SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes, and seconds, as a TIME value. The range of the result is constrained
to that of the TIME data type. A warning occurs if the argument corresponds to a value outside that range.

mysql> SELECT SEC_TO_TIME(2378);
-> '00:39:38'

mysql> SELECT SEC_TO_TIME(2378) + 0;
-> 3938

• STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string format. STR_TO_DATE() re-
turns a DATETIME value if the format string contains both date and time parts, or a DATE or TIME value if the string contains only
date or time parts.

The date, time, or datetime values contained in str should be given in the format indicated by format. For the specifiers that can
be used in format, see the DATE_FORMAT() function description. If str contains an illegal date, time, or datetime value,
STR_TO_DATE() returns NULL. An illegal value also produces a warning.

Range checking on the parts of date values is as described in Section 10.3.1, “The DATETIME, DATE, and TIMESTAMP Types”.
This means, for example, that “zero” dates or dates with part values of 0 are allowed unless the SQL mode is set to disallow such
values.

mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
-> '0000-00-00'

mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
-> '2004-04-31'

Note

You cannot use format "%X%V" to convert a year-week string to a date because the combination of a year and week does
not uniquely identify a year and month if the week crosses a month boundary. To convert a year-week to a date, then you
should also specify the weekday:

mysql> SELECT STR_TO_DATE('200442 Monday', '%X%V %W');
-> '2004-10-18'

• SUBDATE(date,INTERVAL expr unit), SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym for DATE_SUB(). For information
on the INTERVAL unit argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
-> '1997-12-02'

mysql> SELECT SUBDATE('1998-01-02', INTERVAL 31 DAY);
-> '1997-12-02'

The second form allows the use of an integer value for days. In such cases, it is interpreted as the number of days to be subtracted
from the date or datetime expression expr.

mysql> SELECT SUBDATE('1998-01-02 12:00:00', 31);
-> '1997-12-02 12:00:00'

• SUBTIME(expr1,expr2)

SUBTIME() returns expr1 – expr2 expressed as a value in the same format as expr1. expr1 is a time or datetime expression,
and expr2 is a time expression.

mysql> SELECT SUBTIME('1997-12-31 23:59:59.999999','1 1:1:1.000002');
-> '1997-12-30 22:58:58.999997'

mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');
-> '-00:59:59.999999'

Functions and Operators

730



• SYSDATE()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS.uuuuuu format, depending
on whether the function is used in a string or numeric context.

SYSDATE() returns the time at which it executes. This differs from the behavior for NOW(), which returns a constant time that in-
dicates the time at which the statement began to execute. (Within a stored routine or trigger, NOW() returns the time at which the
routine or triggering statement began to execute.)

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by SYSDATE(). This means that
timestamp settings in the binary log have no effect on invocations of SYSDATE().

Because SYSDATE() can return different values even within the same statement, and is not affected by SET TIMESTAMP, it is
non-deterministic and therefore unsafe for replication if statement-based binary logging is used. If that is a problem, you can use
row-based logging, or start the server with the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW(). The
non-deterministic nature of SYSDATE() also means that indexes cannot be used for evaluating expressions that refer to it.

• TIME(expr)

Extracts the time part of the time or datetime expression expr and returns it as a string.

mysql> SELECT TIME('2003-12-31 01:02:03');
-> '01:02:03'

mysql> SELECT TIME('2003-12-31 01:02:03.000123');
-> '01:02:03.000123'

• TIMEDIFF(expr1,expr2)

TIMEDIFF() returns expr1 – expr2 expressed as a time value. expr1 and expr2 are time or date-and-time expressions, but
both must be of the same type.

mysql> SELECT TIMEDIFF('2000:01:01 00:00:00',
-> '2000:01:01 00:00:00.000001');

-> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('1997-12-31 23:59:59.000001',

-> '1997-12-30 01:01:01.000002');
-> '46:58:57.999999'

• TIMESTAMP(expr), TIMESTAMP(expr1,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime value. With two arguments, it adds
the time expression expr2 to the date or datetime expression expr1 and returns the result as a datetime value.

mysql> SELECT TIMESTAMP('2003-12-31');
-> '2003-12-31 00:00:00'

mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
-> '2004-01-01 00:00:00'

• TIMESTAMPADD(unit,interval,datetime_expr)

Adds the integer expression interval to the date or datetime expression datetime_expr. The unit for interval is given by
the unit argument, which should be one of the following values: FRAC_SECOND (microseconds), SECOND, MINUTE, HOUR,
DAY, WEEK, MONTH, QUARTER, or YEAR.

Beginning with MySQL MySQL 5.1.24, it is possible to use MICROSECOND in place of FRAC_SECOND with this function, and
FRAC_SECOND is deprecated.

Functions and Operators

731



The unit value may be specified using one of keywords as shown, or with a prefix of SQL_TSI_. For example, DAY and
SQL_TSI_DAY both are legal.

mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
-> '2003-01-02 00:01:00'

mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
-> '2003-01-09'

• TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Returns the integer difference between the date or datetime expressions datetime_expr1 and datetime_expr2. The unit for
the result is given by the unit argument. The legal values for unit are the same as those listed in the description of the
TIMESTAMPADD() function.

mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
-> 3

mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');
-> -1

• TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain format specifiers only for hours, minutes, and
seconds. Other specifiers produce a NULL value or 0.

If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers produce a value larger than the
usual range of 0..23. The other hour format specifiers produce the hour value modulo 12.

mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
-> '100 100 04 04 4'

• TIME_TO_SEC(time)

Returns the time argument, converted to seconds.

mysql> SELECT TIME_TO_SEC('22:23:00');
-> 80580

mysql> SELECT TIME_TO_SEC('00:39:38');
-> 2378

• TO_DAYS(date)

Given a date date, returns a day number (the number of days since year 0).

mysql> SELECT TO_DAYS(950501);
-> 728779

mysql> SELECT TO_DAYS('1997-10-07');
-> 729669

TO_DAYS() is not intended for use with values that precede the advent of the Gregorian calendar (1582), because it does not take
into account the days that were lost when the calendar was changed. For dates before 1582 (and possibly a later year in other loc-
ales), results from this function are not reliable. See Section 11.7, “What Calendar Is Used By MySQL?”, for details.

Remember that MySQL converts two-digit year values in dates to four-digit form using the rules in Section 10.3, “Date and Time
Types”. For example, '1997-10-07' and '97-10-07' are seen as identical dates:

mysql> SELECT TO_DAYS('1997-10-07'), TO_DAYS('97-10-07');
-> 729669, 729669

• UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since '1970-01-01 00:00:00' UTC) as an unsigned integer. If
UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as seconds since '1970-01-01
00:00:00' UTC. date may be a DATE string, a DATETIME string, a TIMESTAMP, or a number in the format YYMMDD or
YYYYMMDD. The server interprets date as a value in the current time zone and converts it to an internal value in UTC. Clients can
set their time zone as described in Section 9.6, “MySQL Server Time Zone Support”.

Functions and Operators

732



mysql> SELECT UNIX_TIMESTAMP();
-> 1196440210

mysql> SELECT UNIX_TIMESTAMP('2007-11-30 10:30:19');
-> 1196440219

When UNIX_TIMESTAMP() is used on a TIMESTAMP column, the function returns the internal timestamp value directly, with no
implicit “string-to-Unix-timestamp” conversion. If you pass an out-of-range date to UNIX_TIMESTAMP(), it returns 0.

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP values and Unix timestamp
values, the conversion is lossy because the mapping is not one-to-one in both directions. For example, due to conventions for local
time zone changes, it is possible for two UNIX_TIMESTAMP() to map two TIMESTAMP values to the same Unix timestamp
value. FROM_UNIXTIME() will map that value back to only one of the original TIMESTAMP values. Here is an example, using
TIMESTAMP values in the CET time zone:

mysql> SELECT UNIX_TIMESTAMP('2005-03-27 03:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 03:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 02:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 02:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT FROM_UNIXTIME(1111885200);
+---------------------------+
| FROM_UNIXTIME(1111885200) |
+---------------------------+
| 2005-03-27 03:00:00 |
+---------------------------+

If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast the result to signed integers. See Section 11.9,
“Cast Functions and Operators”.

• UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the function is used in a
string or numeric context.

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
-> '2003-08-14', 20030814

• UTC_TIME, UTC_TIME()

Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS.uuuuuu format, depending on whether the function is used
in a string or numeric context.

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
-> '18:07:53', 180753.000000

• UTC_TIMESTAMP, UTC_TIMESTAMP()

Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS.uuuuuu format, de-
pending on whether the function is used in a string or numeric context.

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
-> '2003-08-14 18:08:04', 20030814180804.000000

• WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() allows you to specify whether the week starts
on Sunday or Monday and whether the return value should be in the range from 0 to 53 or from 1 to 53. If the mode argument is
omitted, the value of the default_week_format system variable is used. See Section 5.1.3, “System Variables”.

The following table describes how the mode argument works.

First day

Functions and Operators

733



Mode of week Range Week 1 is the first week …

0 Sunday 0-53 with a Sunday in this year

1 Monday 0-53 with more than 3 days this year

2 Sunday 1-53 with a Sunday in this year

3 Monday 1-53 with more than 3 days this year

4 Sunday 0-53 with more than 3 days this year

5 Monday 0-53 with a Monday in this year

6 Sunday 1-53 with more than 3 days this year

7 Monday 1-53 with a Monday in this year

mysql> SELECT WEEK('1998-02-20');
-> 7

mysql> SELECT WEEK('1998-02-20',0);
-> 7

mysql> SELECT WEEK('1998-02-20',1);
-> 8

mysql> SELECT WEEK('1998-12-31',1);
-> 53

Note that if a date falls in the last week of the previous year, MySQL returns 0 if you do not use 2, 3, 6, or 7 as the optional mode
argument:

mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
-> 2000, 0

One might argue that MySQL should return 52 for the WEEK() function, because the given date actually occurs in the 52nd week
of 1999. We decided to return 0 instead because we want the function to return “the week number in the given year.” This makes
use of the WEEK() function reliable when combined with other functions that extract a date part from a date.

If you would prefer the result to be evaluated with respect to the year that contains the first day of the week for the given date, use 0,
2, 5, or 7 as the optional mode argument.

mysql> SELECT WEEK('2000-01-01',2);
-> 52

Alternatively, use the YEARWEEK() function:

mysql> SELECT YEARWEEK('2000-01-01');
-> 199952

mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
-> '52'

• WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, … 6 = Sunday).

mysql> SELECT WEEKDAY('1998-02-03 22:23:00');
-> 1

mysql> SELECT WEEKDAY('1997-11-05');
-> 2

• WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a compatibility function that is
equivalent to WEEK(date,3).

mysql> SELECT WEEKOFYEAR('1998-02-20');
-> 8

• YEAR(date)

Functions and Operators

734



Returns the year for date, in the range 1000 to 9999, or 0 for the “zero” date.

mysql> SELECT YEAR('98-02-03');
-> 1998

• YEARWEEK(date), YEARWEEK(date,mode)

Returns year and week for a date. The mode argument works exactly like the mode argument to WEEK(). The year in the result
may be different from the year in the date argument for the first and the last week of the year.

mysql> SELECT YEARWEEK('1987-01-01');
-> 198653

Note that the week number is different from what the WEEK() function would return (0) for optional arguments 0 or 1, as WEEK()
then returns the week in the context of the given year.

11.7. What Calendar Is Used By MySQL?
MySQL uses what is known as a proleptic Gregorian calendar.

Every country that has switched from the Julian to the Gregorian calendar has had to discard at least ten days during the switch. To see
how this works, consider the month of October 1582, when the first Julian-to-Gregorian switch occurred:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3 4 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

There are no dates between October 4 and October 15. This discontinuity is called the cutover. Any dates before the cutover are Julian,
and any dates following the cutover are Gregorian. Dates during a cutover are non-existent.

A calendar applied to dates when it wasn't actually in use is called proleptic. Thus, if we assume there was never a cutover and Gregori-
an rules always rule, we have a proleptic Gregorian calendar. This is what is used by MySQL, as is required by standard SQL. For this
reason, dates prior to the cutover stored as MySQL DATE or DATETIME values must be adjusted to compensate for the difference. It is
important to realize that the cutover did not occur at the same time in all countries, and that the later it happened, the more days were
lost. For example, in Great Britain, it took place in 1752, when Wednesday September 2 was followed by Thursday September 14. Rus-
sia remained on the Julian calendar until 1918, losing 13 days in the process, and what is popularly referred to as its “October Revolu-
tion” occurred in November according to the Gregorian calendar.

11.8. Full-Text Search Functions
MATCH (col1,col2,...) AGAINST (expr [search_modifier])

search_modifier:
{

IN BOOLEAN MODE
| IN NATURAL LANGUAGE MODE
| IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
| WITH QUERY EXPANSION

}

MySQL has support for full-text indexing and searching:

• A full-text index in MySQL is an index of type FULLTEXT.

• Full-text indexes can be used only with MyISAM tables, and can be created only for CHAR, VARCHAR, or TEXT columns.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a table is created, or added later using ALTER
TABLE or CREATE INDEX.

Functions and Operators

735



• For large data sets, it is much faster to load your data into a table that has no FULLTEXT index and then create the index after that,
than to load data into a table that has an existing FULLTEXT index.

Full-text searching is performed using MATCH() ... AGAINST syntax. MATCH() takes a comma-separated list that names the
columns to be searched. AGAINST takes a string to search for, and an optional modifier that indicates what type of search to perform.
The search string must be a literal string, not a variable or a column name. There are three types of full-text searches:

• A boolean search interprets the search string using the rules of a special query language. The string contains the words to search for.
It can also contain operators that specify requirements such that a word must be present or absent in matching rows, or that it should
be weighted higher or lower than usual. Common words such as “some” or “then” are stopwords and do not match if present in the
search string. The IN BOOLEAN MODE modifier specifies a boolean search. For more information, see Section 11.8.2, “Boolean
Full-Text Searches”.

• A natural language search interprets the search string as a phrase in natural human language (a phrase in free text). There are no spe-
cial operators. The stopword list applies. In addition, words that are present in 50% or more of the rows are considered common and
do not match. Full-text searches are natural language searches if the IN NATURAL LANGUAGE MODE modifier is given or if no
modifier is given.

• A query expansion search is a modification of a natural language search. The search string is used to perform a natural language
search. Then words from the most relevant rows returned by the search are added to the search string and the search is done again.
The query returns the rows from the second search. The IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION or
WITH QUERY EXPANSION modifier specifies a query expansion search. For more information, see Section 11.8.3, “Full-Text
Searches with Query Expansion”.

The IN NATURAL LANGUAGE MODE and IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION modifiers were added
in MySQL 5.1.7.

Constraints on full-text searching are listed in Section 11.8.5, “Full-Text Restrictions”.

11.8.1. Natural Language Full-Text Searches
By default or with the IN NATURAL LANGUAGE MODE modifier, the MATCH() function performs a natural language search for a
string against a text collection. A collection is a set of one or more columns included in a FULLTEXT index. The search string is given
as the argument to AGAINST(). For each row in the table, MATCH() returns a relevance value; that is, a similarity measure between
the search string and the text in that row in the columns named in the MATCH() list.

mysql> CREATE TABLE articles (
-> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
-> title VARCHAR(200),
-> body TEXT,
-> FULLTEXT (title,body)
-> );

Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO articles (title,body) VALUES
-> ('MySQL Tutorial','DBMS stands for DataBase ...'),
-> ('How To Use MySQL Well','After you went through a ...'),
-> ('Optimizing MySQL','In this tutorial we will show ...'),
-> ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
-> ('MySQL vs. YourSQL','In the following database comparison ...'),
-> ('MySQL Security','When configured properly, MySQL ...');

Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body)
-> AGAINST ('database' IN NATURAL LANGUAGE MODE);

+----+-------------------+------------------------------------------+
| id | title | body |
+----+-------------------+------------------------------------------+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
+----+-------------------+------------------------------------------+
2 rows in set (0.00 sec)

By default, the search is performed in case-insensitive fashion. However, you can perform a case-sensitive full-text search by using a
binary collation for the indexed columns. For example, a column that uses the latin1 character set of can be assigned a collation of
latin1_bin to make it case sensitive for full-text searches.

Functions and Operators

736



When MATCH() is used in a WHERE clause, as in the example shown earlier, the rows returned are automatically sorted with the
highest relevance first. Relevance values are non-negative floating-point numbers. Zero relevance means no similarity. Relevance is
computed based on the number of words in the row, the number of unique words in that row, the total number of words in the collec-
tion, and the number of documents (rows) that contain a particular word.

To simply count matches, you could use a query like this:

mysql> SELECT COUNT(*) FROM articles
-> WHERE MATCH (title,body)
-> AGAINST ('database' IN NATURAL LANGUAGE MODE);

+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+
1 row in set (0.00 sec)

However, you might find it quicker to rewrite the query as follows:

mysql> SELECT
-> COUNT(IF(MATCH (title,body) AGAINST ('database' IN NATURAL LANGUAGE MODE), 1, NULL))
-> AS count
-> FROM articles;

+-------+
| count |
+-------+
| 2 |
+-------+
1 row in set (0.03 sec)

The first query sorts the results by relevance whereas the second does not. However, the second query performs a full table scan and the
first does not. The first may be faster if the search matches few rows; otherwise, the second may be faster because it would read many
rows anyway.

For natural-language full-text searches, it is a requirement that the columns named in the MATCH() function be the same columns in-
cluded in some FULLTEXT index in your table. For the preceding query, note that the columns named in the MATCH() function
(title and body) are the same as those named in the definition of the article table's FULLTEXT index. If you wanted to search
the title or body separately, you would need to create separate FULLTEXT indexes for each column.

It is also possible to perform a boolean search or a search with query expansion. These search types are described in Section 11.8.2,
“Boolean Full-Text Searches”, and Section 11.8.3, “Full-Text Searches with Query Expansion”.

A full-text search that uses an index can name columns only from a single table in the MATCH() clause because an index cannot span
multiple tables. A boolean search can be done in the absence of an index (albeit more slowly), in which case it is possible to name
columns from multiple tables.

The preceding example is a basic illustration that shows how to use the MATCH() function where rows are returned in order of decreas-
ing relevance. The next example shows how to retrieve the relevance values explicitly. Returned rows are not ordered because the SE-
LECT statement includes neither WHERE nor ORDER BY clauses:

mysql> SELECT id, MATCH (title,body)
-> AGAINST ('Tutorial' IN NATURAL LANGUAGE MODE) AS score
-> FROM articles;

+----+------------------+
| id | score |
+----+------------------+
| 1 | 0.65545833110809 |
| 2 | 0 |
| 3 | 0.66266459226608 |
| 4 | 0 |
| 5 | 0 |
| 6 | 0 |
+----+------------------+
6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance values and it also sorts the rows in order of decreasing relev-
ance. To achieve this result, you should specify MATCH() twice: once in the SELECT list and once in the WHERE clause. This causes
no additional overhead, because the MySQL optimizer notices that the two MATCH() calls are identical and invokes the full-text search
code only once.

mysql> SELECT id, body, MATCH (title,body) AGAINST
-> ('Security implications of running MySQL as root'
-> IN NATURAL LANGUAGE MODE) AS score

Functions and Operators

737



-> FROM articles WHERE MATCH (title,body) AGAINST
-> ('Security implications of running MySQL as root'
-> IN NATURAL LANGUAGE MODE);

+----+-------------------------------------+-----------------+
| id | body | score |
+----+-------------------------------------+-----------------+
| 4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |
| 6 | When configured properly, MySQL ... | 1.3114095926285 |
+----+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

The MySQL FULLTEXT implementation regards any sequence of true word characters (letters, digits, and underscores) as a word. That
sequence may also contain apostrophes (“'”), but not more than one in a row. This means that aaa'bbb is regarded as one word, but
aaa''bbb is regarded as two words. Apostrophes at the beginning or the end of a word are stripped by the FULLTEXT parser;
'aaa'bbb' would be parsed as aaa'bbb.

The FULLTEXT parser determines where words start and end by looking for certain delimiter characters; for example, “ ” (space), “,”
(comma), and “.” (period). If words are not separated by delimiters (as in, for example, Chinese), the FULLTEXT parser cannot de-
termine where a word begins or ends. To be able to add words or other indexed terms in such languages to a FULLTEXT index, you
must preprocess them so that they are separated by some arbitrary delimiter such as “"”.

In MySQL 5.1, it is possible to write a plugin that replaces the built-in full-text parser. For details, see Section 29.2, “The MySQL Plu-
gin Interface”. For example parser plugin source code, see the plugin/fulltext directory of a MySQL source distribution.

Some words are ignored in full-text searches:

• Any word that is too short is ignored. The default minimum length of words that are found by full-text searches is four characters.

• Words in the stopword list are ignored. A stopword is a word such as “the” or “some” that is so common that it is considered to have
zero semantic value. There is a built-in stopword list, but it can be overwritten by a user-defined list.

The default stopword list is given in Section 11.8.4, “Full-Text Stopwords”. The default minimum word length and stopword list can be
changed as described in Section 11.8.6, “Fine-Tuning MySQL Full-Text Search”.

Every correct word in the collection and in the query is weighted according to its significance in the collection or query. Consequently,
a word that is present in many documents has a lower weight (and may even have a zero weight), because it has lower semantic value in
this particular collection. Conversely, if the word is rare, it receives a higher weight. The weights of the words are combined to compute
the relevance of the row.

Such a technique works best with large collections (in fact, it was carefully tuned this way). For very small tables, word distribution
does not adequately reflect their semantic value, and this model may sometimes produce bizarre results. For example, although the word
“MySQL” is present in every row of the articles table shown earlier, a search for the word produces no results:

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body)
-> AGAINST ('MySQL' IN NATURAL LANGUAGE MODE);

Empty set (0.00 sec)

The search result is empty because the word “MySQL” is present in at least 50% of the rows. As such, it is effectively treated as a stop-
word. For large data sets, this is the most desirable behavior: A natural language query should not return every second row from a 1GB
table. For small data sets, it may be less desirable.

A word that matches half of the rows in a table is less likely to locate relevant documents. In fact, it most likely finds plenty of irrelev-
ant documents. We all know this happens far too often when we are trying to find something on the Internet with a search engine. It is
with this reasoning that rows containing the word are assigned a low semantic value for the particular data set in which they occur. A
given word may reach the 50% threshold in one data set but not another.

The 50% threshold has a significant implication when you first try full-text searching to see how it works: If you create a table and in-
sert only one or two rows of text into it, every word in the text occurs in at least 50% of the rows. As a result, no search returns any res-
ults. Be sure to insert at least three rows, and preferably many more. Users who need to bypass the 50% limitation can use the boolean
search mode; see Section 11.8.2, “Boolean Full-Text Searches”.

11.8.2. Boolean Full-Text Searches
MySQL can perform boolean full-text searches using the IN BOOLEAN MODE modifier:

mysql> SELECT * FROM articles WHERE MATCH (title,body)

Functions and Operators

738



-> AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);
+----+-----------------------+-------------------------------------+
| id | title | body |
+----+-----------------------+-------------------------------------+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 2 | How To Use MySQL Well | After you went through a ... |
| 3 | Optimizing MySQL | In this tutorial we will show ... |
| 4 | 1001 MySQL Tricks | 1. Never run mysqld as root. 2. ... |
| 6 | MySQL Security | When configured properly, MySQL ... |
+----+-----------------------+-------------------------------------+

The + and - operators indicate that a word is required to be present or absent, respectively, for a match to occur. Thus, this query re-
trieves all the rows that contain the word “MySQL” but that do not contain the word “YourSQL”.

Note

In implementing this feature, MySQL uses what is sometimes referred to as implied Boolean logic, in which

• + stands for AND

• - stands for NOT

• [no operator] implies OR

Boolean full-text searches have these characteristics:

• They do not use the 50% threshold.

• They do not automatically sort rows in order of decreasing relevance. You can see this from the preceding query result: The row
with the highest relevance is the one that contains “MySQL” twice, but it is listed last, not first.

• They can work even without a FULLTEXT index, although a search executed in this fashion would be quite slow.

• The minimum and maximum word length full-text parameters apply.

• The stopword list applies.

The boolean full-text search capability supports the following operators:

• +

A leading plus sign indicates that this word must be present in each row that is returned.

• -

A leading minus sign indicates that this word must not be present in any of the rows that are returned.

Note: The - operator acts only to exclude rows that are otherwise matched by other search terms. Thus, a boolean-mode search that
contains only terms preceded by - returns an empty result. It does not return “all rows except those containing any of the excluded
terms.”

• (no operator)

By default (when neither + nor - is specified) the word is optional, but the rows that contain it are rated higher. This mimics the be-
havior of MATCH() ... AGAINST() without the IN BOOLEAN MODE modifier.

• > <

These two operators are used to change a word's contribution to the relevance value that is assigned to a row. The > operator in-
creases the contribution and the < operator decreases it. See the example following this list.

• ( )

Parentheses group words into subexpressions. Parenthesized groups can be nested.

Functions and Operators

739



• ~

A leading tilde acts as a negation operator, causing the word's contribution to the row's relevance to be negative. This is useful for
marking “noise” words. A row containing such a word is rated lower than others, but is not excluded altogether, as it would be with
the - operator.

• *

The asterisk serves as the truncation (or wildcard) operator. Unlike the other operators, it should be appended to the word to be af-
fected. Words match if they begin with the word preceding the * operator.

If a stopword or too-short word is specified with the truncation operator, it will not be stripped from a boolean query. For example, a
search for '+word +stopword*' will likely return fewer rows than a search for '+word +stopword' because the former
query remains as is and requires stopword* to be present in a document. The latter query is transformed to +word.

• "

A phrase that is enclosed within double quote (“"”) characters matches only rows that contain the phrase literally, as it was typed.
The full-text engine splits the phrase into words, performs a search in the FULLTEXT index for the words. Non-word characters
need not be matched exactly: Phrase searching requires only that matches contain exactly the same words as the phrase and in the
same order. For example, "test phrase" matches "test, phrase".

If the phrase contains no words that are in the index, the result is empty. For example, if all words are either stopwords or shorter
than the minimum length of indexed words, the result is empty.

The following examples demonstrate some search strings that use boolean full-text operators:

• 'apple banana'

Find rows that contain at least one of the two words.

• '+apple +juice'

Find rows that contain both words.

• '+apple macintosh'

Find rows that contain the word “apple”, but rank rows higher if they also contain “macintosh”.

• '+apple -macintosh'

Find rows that contain the word “apple” but not “macintosh”.

• '+apple ~macintosh'

Find rows that contain the word “apple”, but if the row also contains the word “macintosh”, rate it lower than if row does not. This
is “softer” than a search for '+apple -macintosh', for which the presence of “macintosh” causes the row not to be returned at
all.

• '+apple +(>turnover <strudel)'

Find rows that contain the words “apple” and “turnover”, or “apple” and “strudel” (in any order), but rank “apple turnover” higher
than “apple strudel”.

• 'apple*'

Find rows that contain words such as “apple”, “apples”, “applesauce”, or “applet”.

• '"some words"'

Find rows that contain the exact phrase “some words” (for example, rows that contain “some words of wisdom” but not “some noise
words”). Note that the “"” characters that enclose the phrase are operator characters that delimit the phrase. They are not the quotes
that enclose the search string itself.

Functions and Operators

740



11.8.3. Full-Text Searches with Query Expansion
Full-text search supports query expansion (and in particular, its variant “blind query expansion”). This is generally useful when a search
phrase is too short, which often means that the user is relying on implied knowledge that the full-text search engine lacks. For example,
a user searching for “database” may really mean that “MySQL”, “Oracle”, “DB2”, and “RDBMS” all are phrases that should match
“databases” and should be returned, too. This is implied knowledge.

Blind query expansion (also known as automatic relevance feedback) is enabled by adding WITH QUERY EXPANSION or IN NAT-
URAL LANGUAGE MODE WITH QUERY EXPANSION following the search phrase. It works by performing the search twice, where
the search phrase for the second search is the original search phrase concatenated with the few most highly relevant documents from the
first search. Thus, if one of these documents contains the word “databases” and the word “MySQL”, the second search finds the docu-
ments that contain the word “MySQL” even if they do not contain the word “database”. The following example shows this difference:

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body)
-> AGAINST ('database' IN NATURAL LANGUAGE MODE);

+----+-------------------+------------------------------------------+
| id | title | body |
+----+-------------------+------------------------------------------+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
+----+-------------------+------------------------------------------+
2 rows in set (0.00 sec)

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body)
-> AGAINST ('database' WITH QUERY EXPANSION);

+----+-------------------+------------------------------------------+
| id | title | body |
+----+-------------------+------------------------------------------+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 3 | Optimizing MySQL | In this tutorial we will show ... |
+----+-------------------+------------------------------------------+
3 rows in set (0.00 sec)

Another example could be searching for books by Georges Simenon about Maigret, when a user is not sure how to spell “Maigret”. A
search for “Megre and the reluctant witnesses” finds only “Maigret and the Reluctant Witnesses” without query expansion. A search
with query expansion finds all books with the word “Maigret” on the second pass.

Note

Because blind query expansion tends to increase noise significantly by returning non-relevant documents, it is meaningful
to use only when a search phrase is rather short.

11.8.4. Full-Text Stopwords
The following table shows the default list of full-text stopwords.

a's able about above according

accordingly across actually after afterwards

again against ain't all allow

allows almost alone along already

also although always am among

amongst an and another any

anybody anyhow anyone anything anyway

anyways anywhere apart appear appreciate

appropriate are aren't around as

aside ask asking associated at

available away awfully be became

because become becomes becoming been

before beforehand behind being believe

below beside besides best better

between beyond both brief but

Functions and Operators

741



by c'mon c's came can

can't cannot cant cause causes

certain certainly changes clearly co

com come comes concerning consequently

consider considering contain containing contains

corresponding could couldn't course currently

definitely described despite did didn't

different do does doesn't doing

don't done down downwards during

each edu eg eight either

else elsewhere enough entirely especially

et etc even ever every

everybody everyone everything everywhere ex

exactly example except far few

fifth first five followed following

follows for former formerly forth

four from further furthermore get

gets getting given gives go

goes going gone got gotten

greetings had hadn't happens hardly

has hasn't have haven't having

he he's hello help hence

her here here's hereafter hereby

herein hereupon hers herself hi

him himself his hither hopefully

how howbeit however i'd i'll

i'm i've ie if ignored

immediate in inasmuch inc indeed

indicate indicated indicates inner insofar

instead into inward is isn't

it it'd it'll it's its

itself just keep keeps kept

know knows known last lately

later latter latterly least less

lest let let's like liked

likely little look looking looks

ltd mainly many may maybe

me mean meanwhile merely might

more moreover most mostly much

must my myself name namely

nd near nearly necessary need

needs neither never nevertheless new

next nine no nobody non

none noone nor normally not

nothing novel now nowhere obviously

Functions and Operators

742



of off often oh ok

okay old on once one

ones only onto or other

others otherwise ought our ours

ourselves out outside over overall

own particular particularly per perhaps

placed please plus possible presumably

probably provides que quite qv

rather rd re really reasonably

regarding regardless regards relatively respectively

right said same saw say

saying says second secondly see

seeing seem seemed seeming seems

seen self selves sensible sent

serious seriously seven several shall

she should shouldn't since six

so some somebody somehow someone

something sometime sometimes somewhat somewhere

soon sorry specified specify specifying

still sub such sup sure

t's take taken tell tends

th than thank thanks thanx

that that's thats the their

theirs them themselves then thence

there there's thereafter thereby therefore

therein theres thereupon these they

they'd they'll they're they've think

third this thorough thoroughly those

though three through throughout thru

thus to together too took

toward towards tried tries truly

try trying twice two un

under unfortunately unless unlikely until

unto up upon us use

used useful uses using usually

value various very via viz

vs want wants was wasn't

way we we'd we'll we're

we've welcome well went were

weren't what what's whatever when

whence whenever where where's whereafter

whereas whereby wherein whereupon wherever

whether which while whither who

who's whoever whole whom whose

why will willing wish with

Functions and Operators

743



within without won't wonder would

would wouldn't yes yet you

you'd you'll you're you've your

yours yourself yourselves zero

11.8.5. Full-Text Restrictions

• Full-text searches are supported for MyISAM tables only.

• Full-text searches can be used with most multi-byte character sets. The exception is that for Unicode, the utf8 character set can be
used, but not the ucs2 character set. However, although FULLTEXT indexes on ucs2 columns cannot be used, you can perform
IN BOOLEAN MODE searches on a ucs2 column that has no such index.

• Ideographic languages such as Chinese and Japanese do not have word delimiters. Therefore, the FULLTEXT parser cannot determ-
ine where words begin and end in these and other such languages. The implications of this and some workarounds for the problem
are described in Section 11.8, “Full-Text Search Functions”.

• Although the use of multiple character sets within a single table is supported, all columns in a FULLTEXT index must use the same
character set and collation.

• The MATCH() column list must match exactly the column list in some FULLTEXT index definition for the table, unless this
MATCH() is IN BOOLEAN MODE. Boolean-mode searches can be done on non-indexed columns, although they are likely to be
slow.

• The argument to AGAINST() must be a constant string.

11.8.6. Fine-Tuning MySQL Full-Text Search
MySQL's full-text search capability has few user-tunable parameters. You can exert more control over full-text searching behavior if
you have a MySQL source distribution because some changes require source code modifications. See Section 2.9, “MySQL Installation
Using a Source Distribution”.

Note that full-text search is carefully tuned for the most effectiveness. Modifying the default behavior in most cases can actually de-
crease effectiveness. Do not alter the MySQL sources unless you know what you are doing.

Most full-text variables described in this section must be set at server startup time. A server restart is required to change them; they can-
not be modified while the server is running.

Some variable changes require that you rebuild the FULLTEXT indexes in your tables. Instructions for doing this are given at the end of
this section.

• The minimum and maximum lengths of words to be indexed are defined by the ft_min_word_len and ft_max_word_len
system variables. (See Section 5.1.3, “System Variables”.) The default minimum value is four characters; the default maximum is
version dependent. If you change either value, you must rebuild your FULLTEXT indexes. For example, if you want three-character
words to be searchable, you can set the ft_min_word_len variable by putting the following lines in an option file:

[mysqld]
ft_min_word_len=3

Then you must restart the server and rebuild your FULLTEXT indexes. Note particularly the remarks regarding myisamchk in the
instructions following this list.

• To override the default stopword list, set the ft_stopword_file system variable. (See Section 5.1.3, “System Variables”.) The
variable value should be the pathname of the file containing the stopword list, or the empty string to disable stopword filtering. After
changing the value of this variable or the contents of the stopword file, restart the server and rebuild your FULLTEXT indexes.

The stopword list is free-form. That is, you may use any non-alphanumeric character such as newline, space, or comma to separate
stopwords. Exceptions are the underscore character (“_”) and a single apostrophe (“'”) which are treated as part of a word. The
character set of the stopword list is the server's default character set; see Section 9.1.3.1, “Server Character Set and Collation”.

Functions and Operators

744



• The 50% threshold for natural language searches is determined by the particular weighting scheme chosen. To disable it, look for
the following line in storage/myisam/ftdefs.h:

#define GWS_IN_USE GWS_PROB

Change that line to this:

#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case.

Note

By making this change, you severely decrease MySQL's ability to provide adequate relevance values for the MATCH()
function. If you really need to search for such common words, it would be better to search using IN BOOLEAN MODE in-
stead, which does not observe the 50% threshold.

• To change the operators used for boolean full-text searches, set the ft_boolean_syntax system variable. This variable can be
changed while the server is running, but you must have the SUPER privilege to do so. No rebuilding of indexes is necessary in this
case. See Section 5.1.3, “System Variables”, which describes the rules governing how to set this variable.

• If you want to change the set of characters that are considered word characters, you can do so in two ways. Suppose that you want to
treat the hyphen character ('-') as a word character. Use either of these methods:

• Modify the MySQL source: In storage/myisam/ftdefs.h, see the true_word_char() and misc_word_char()
macros. Add '-' to one of those macros and recompile MySQL.

• Modify a character set file: This requires no recompilation. The true_word_char() macro uses a “character type” table to
distinguish letters and numbers from other characters. . You can edit the <ctype><map> contents in one of the character set
XML files to specify that '-' is a “letter.” Then use the given character set for your FULLTEXT indexes.

After making the modification, you must rebuild the indexes for each table that contains any FULLTEXT indexes.

If you modify full-text variables that affect indexing (ft_min_word_len, ft_max_word_len, or ft_stopword_file), or if
you change the stopword file itself, you must rebuild your FULLTEXT indexes after making the changes and restarting the server. To
rebuild the indexes in this case, it is sufficient to do a QUICK repair operation:

mysql> REPAIR TABLE tbl_name QUICK;

Each table that contains any FULLTEXT index must be repaired as just shown. Otherwise, queries for the table may yield incorrect res-
ults, and modifications to the table will cause the server to see the table as corrupt and in need of repair.

Note that if you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze), the FULLTEXT in-
dexes are rebuilt using the default full-text parameter values for minimum word length, maximum word length, and stopword file unless
you specify otherwise. This can result in queries failing.

The problem occurs because these parameters are known only by the server. They are not stored in MyISAM index files. To avoid the
problem if you have modified the minimum or maximum word length or stopword file values used by the server, specify the same
ft_min_word_len, ft_max_word_len, and ft_stopword_file values to myisamchk that you use for mysqld. For ex-
ample, if you have set the minimum word length to 3, you can repair a table with myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, place each one in both the [mysqld] and
[myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE TABLE, or ALTER TABLE
statements. These statements are performed by the server, which knows the proper full-text parameter values to use.

Functions and Operators

745



11.9. Cast Functions and Operators
Name Description

BINARY Cast a string to a binary string

CAST() Cast a value as a certain type

Convert() Cast a value as a certain type

• BINARY

The BINARY operator casts the string following it to a binary string. This is an easy way to force a column comparison to be done
byte by byte rather than character by character. This causes the comparison to be case sensitive even if the column isn't defined as
BINARY or BLOB. BINARY also causes trailing spaces to be significant.

mysql> SELECT 'a' = 'A';
-> 1

mysql> SELECT BINARY 'a' = 'A';
-> 0

mysql> SELECT 'a' = 'a ';
-> 1

mysql> SELECT BINARY 'a' = 'a ';
-> 0

In a comparison, BINARY affects the entire operation; it can be given before either operand with the same result.

BINARY str is shorthand for CAST(str AS BINARY).

Note that in some contexts, if you cast an indexed column to BINARY, MySQL is not able to use the index efficiently.

• CAST(expr AS type)

The CAST() function takes a value of one type and produce a value of another type, similar to CONVERT(). See the description of
CONVERT() for more information.

• CONVERT(expr,type), CONVERT(expr USING transcoding_name)

The CONVERT() and CAST() functions take a value of one type and produce a value of another type.

The type can be one of the following values:

• BINARY[(N)]

• CHAR[(N)]

• DATE

• DATETIME

• DECIMAL[(M[,D])]

• SIGNED [INTEGER]

• TIME

• UNSIGNED [INTEGER]

BINARY produces a string with the BINARY data type. See Section 10.4.2, “The BINARY and VARBINARY Types” for a descrip-
tion of how this affects comparisons. If the optional length N is given, BINARY(N) causes the cast to use no more than N bytes of
the argument. Values shorter than N bytes are padded with 0x00 bytes to a length of N.

CHAR(N) causes the cast to use no more than N characters of the argument.

CAST() and CONVERT(... USING ...) are standard SQL syntax. The non-USING form of CONVERT() is ODBC syntax.

CONVERT() with USING is used to convert data between different character sets. In MySQL, transcoding names are the same as

Functions and Operators

746



the corresponding character set names. For example, this statement converts the string 'abc' in the default character set to the cor-
responding string in the utf8 character set:

SELECT CONVERT('abc' USING utf8);

Normally, you cannot compare a BLOB value or other binary string in case-insensitive fashion because binary strings have no character
set, and thus no concept of lettercase. To perform a case-insensitive comparison, use the CONVERT() function to convert the value to a
non-binary string. If the character set of the result has a case-insensitive collation, the LIKE operation is not case sensitive:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) FROM tbl_name;

To use a different character set, substitute its name for latin1 in the preceding statement. To ensure that a case-insensitive collation is
used, specify a COLLATE clause following the CONVERT() call.

CONVERT() can be used more generally for comparing strings that are represented in different character sets.

The cast functions are useful when you want to create a column with a specific type in a CREATE ... SELECT statement:

CREATE TABLE new_table SELECT CAST('2000-01-01' AS DATE);

The functions also can be useful for sorting ENUM columns in lexical order. Normally, sorting of ENUM columns occurs using the intern-
al numeric values. Casting the values to CHAR results in a lexical sort:

SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);

CAST(str AS BINARY) is the same thing as BINARY str. CAST(expr AS CHAR) treats the expression as a string with the
default character set.

CAST() also changes the result if you use it as part of a more complex expression such as CONCAT('Date: ',CAST(NOW() AS
DATE)).

You should not use CAST() to extract data in different formats but instead use string functions like LEFT() or EXTRACT(). See Sec-
tion 11.6, “Date and Time Functions”.

To cast a string to a numeric value in numeric context, you normally do not have to do anything other than to use the string value as
though it were a number:

mysql> SELECT 1+'1';
-> 2

If you use a number in string context, the number automatically is converted to a BINARY string.

mysql> SELECT CONCAT('hello you ',2);
-> 'hello you 2'

MySQL supports arithmetic with both signed and unsigned 64-bit values. If you are using numeric operators (such as + or -) and one of
the operands is an unsigned integer, the result is unsigned. You can override this by using the SIGNED and UNSIGNED cast operators
to cast the operation to a signed or unsigned 64-bit integer, respectively.

mysql> SELECT CAST(1-2 AS UNSIGNED)
-> 18446744073709551615

mysql> SELECT CAST(CAST(1-2 AS UNSIGNED) AS SIGNED);
-> -1

Note that if either operand is a floating-point value, the result is a floating-point value and is not affected by the preceding rule. (In this
context, DECIMAL column values are regarded as floating-point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
-> -1.0

If you are using a string in an arithmetic operation, this is converted to a floating-point number.

If you convert a “zero” date string to a date, CONVERT() and CAST() return NULL and produce a warning when the

Functions and Operators

747



NO_ZERO_DATE SQL mode is enabled.

11.10. XML Functions
Name Description

ExtractValue()(v5.1.5) Extracts a value from an XML string using XPath notation

UpdateXML()(v5.1.5) Return replaced XML fragment

This section discusses XML and related functionality in MySQL.

Note

It is possible to obtain XML-formatted output from MySQL in the mysql and mysqldump clients by invoking them
with the --xml option. See Section 4.5.1, “mysql — The MySQL Command-Line Tool”, and Section 4.5.4, “mysql-
dump — A Database Backup Program”.

Beginning with MySQL 5.1.5, two functions providing basic XPath 1.0 (XML Path Language, version 1.0) capabilities are available.
Some basic information about XPath syntax and usage is provided later in this section; however, an in-depth discussion of these topics
is beyond the scope of this Manual, and you should refer to the XML Path Language (XPath) 1.0 standard for definitive information. A
useful resource for those new to XPath or who desire a refresher in the basics is the Zvon.org XPath Tutorial, which is available in sev-
eral languages.

Note

These functions remain under development. We continue to improve these and other aspects of XML and XPath function-
ality in MySQL 5.1 and onwards. You may discuss these, ask questions about them, and obtain help from other users with
them in the MySQL XML User Forum.

Beginning with MySQL 5.1.20, XPath expressions used with these functions support user variables and local routine variables. User
variables are weakly checked; variables local to routines are strongly checked (see also Bug#26518):

• User variables (weak checking). Variables using the syntax $@variable_name (that is, user variables) are not checked. No
warnings or errors are issued by the server if a variable has the wrong type or has previously not been assigned a value. This also
means the user is fully responsible for any typographical errors, since no warnings will be given if (for example) $@myvairable
is used where $@myvariable was intended.

Example.

mysql> SET @xml = '<a><b>X</b><b>Y</b></a>';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @i =1, @j = 2;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @i, ExtractValue(@xml, '//b[$@i]');
+------+--------------------------------+
| @i | ExtractValue(@xml, '//b[$@i]') |
+------+--------------------------------+
| 1 | X |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @j, ExtractValue(@xml, '//b[$@j]');
+------+--------------------------------+
| @j | ExtractValue(@xml, '//b[$@j]') |
+------+--------------------------------+
| 2 | Y |
+------+--------------------------------+
1 row in set (0.00 sec)

mysql> SELECT @k, ExtractValue(@xml, '//b[$@k]');
+------+--------------------------------+
| @k | ExtractValue(@xml, '//b[$@k]') |
+------+--------------------------------+
| NULL | |
+------+--------------------------------+
1 row in set (0.00 sec)

• Variables in routines (strong checking). Variables using the syntax $variable_name can be declared and used with these

Functions and Operators

748

http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/
http://forums.mysql.com/list.php?44
http://bugs.mysql.com/26518


functions when they are called inside stored procedures. Such variables are local to the stored procedure in which they are defined,
and are strongly checked for type and value.

Example.

mysql> DELIMITER |

mysql> CREATE PROCEDURE myproc ()
-> BEGIN
-> DECLARE i INT DEFAULT 1;
-> DECLARE xml VARCHAR(25) DEFAULT '<a>X</a><a>Y</a><a>Z</a>';
->
-> WHILE i < 4 DO
-> SELECT xml, i, ExtractValue(xml, '//a[$i]');
-> SET i = i+1;
-> END WHILE;
-> END |

Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

mysql> CALL myproc;
+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X</a><a>Y</a><a>Z</a> | 1 | X |
+--------------------------+---+------------------------------+
1 row in set (0.00 sec)

+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X</a><a>Y</a><a>Z</a> | 2 | Y |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X</a><a>Y</a><a>Z</a> | 3 | Z |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)

Parameters. Variables used in XPath expressions inside stored routines that are passed in as parameters are also subject to strong
checking.

Expressions containing user variables or variables local to routines must otherwise (except for notation) conform to the rules for XPath
expressions containing variables as given in the XPath 1.0 specification.

Note

Currently, a user variable used to store an XPath expression is treated as an empty string. Because of this, it is not possible
to store an XPath expression as a user variable. We intend to fix this issue in a future MySQL release. (Bug#32911)

• ExtractValue(xml_frag, xpath_expr)

ExtractValue() takes two string arguments, a fragment of XML markup xml_frag and an XPath expression xpath_expr
(also known as a locator); it returns the text (CDATA) of the first text node which is a child of the element(s) matched by the XPath
expression. It is the equivalent of performing a match using the xpath_expr after appending /text(). In other words, Ex-
tractValue('<a><b>Sakila</b></a>', '/a/b') and ExtractValue('<a><b>Sakila</b></a>', '/
a/b/text()') produce the same result.

If multiple matches are found, then the content of the first child text node of each matching element is returned (in the order
matched) as a single, space-delimited string.

If no matching text node is found for the expression (including the implicit /text()) — for whatever reason, as long as
xpath_expr is valid, and xml_frag consists of elements which are properly nested and closed — an empty string is returned.
No distinction is made between a match on an empty element and no match at all. This is by design.

If you need to determine whether no matching element was found in xml_frag or such an element was found but contained no
child text nodes, you should test the result of an expression that uses the XPath count() function. For example, both of these
statements return an empty string, as shown here:

Functions and Operators

749

http://bugs.mysql.com/32911


mysql> SELECT ExtractValue('<a><b/></a>', '/a/b');
+-------------------------------------+
| ExtractValue('<a><b/></a>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/></a>', '/a/b');
+-------------------------------------+
| ExtractValue('<a><c/></a>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)

However, you can determine whether there was actually a matching element using the following:

mysql> SELECT ExtractValue('<a><b/></a>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a><b/></a>', 'count(/a/b)') |
+-------------------------------------+
| 1 |
+-------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a><c/></a>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a><c/></a>', 'count(/a/b)') |
+-------------------------------------+
| 0 |
+-------------------------------------+
1 row in set (0.01 sec)

Important

ExtractValue() returns only CDATA, and does not return any tags that might be contained within a matching tag, nor
any of their content (see the result returned as val1 in the following example).

mysql> SELECT
-> ExtractValue('<a>ccc<b>ddd</b></a>', '/a') AS val1,
-> ExtractValue('<a>ccc<b>ddd</b></a>', '/a/b') AS val2,
-> ExtractValue('<a>ccc<b>ddd</b></a>', '//b') AS val3,
-> ExtractValue('<a>ccc<b>ddd</b></a>', '/b') AS val4,
-> ExtractValue('<a>ccc<b>ddd</b><b>eee</b></a>', '//b') AS val5;

+------+------+------+------+---------+
| val1 | val2 | val3 | val4 | val5 |
+------+------+------+------+---------+
| ccc | ddd | ddd | | ddd eee |
+------+------+------+------+---------+

Beginning with MySQL 5.1.8, this function uses the current SQL collation for making comparisons with contains(), performing
the same collation aggregation as other string functions (such as CONCAT()), in taking into account the collation coercibility of
their arguments; see Section 9.1.5.4, “Some Special Cases Where the Collation Determination Is Tricky”, for an explanation of the
rules governing this behavior.

(Previously, binary — that is, case-sensitive — comparison was always used.)

Beginning with MySQL 5.1.12, NULL is returned if xml_frag contains elements which are not properly nested or closed, and a
warning is generated, as shown in this example:

mysql> SELECT ExtractValue('<a>c</a><b', '//a');
+-----------------------------------+
| ExtractValue('<a>c</a><b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+-------------------------------------------------------------------------------------------+
| Level | Code | Message |
+---------+------+-------------------------------------------------------------------------------------------+
| Warning | 1523 | Incorrect XML value: 'parse error at line 1 pos 11: END-OF-INPUT unexpected ('>' wanted)' |
+---------+------+-------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

Functions and Operators

750



mysql> SELECT ExtractValue('<a>c</a><b/>', '//a');
+-------------------------------------+
| ExtractValue('<a>c</a><b/>', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)

Prior to MySQL 5.1.12, an empty string was returned in such cases. (Bug#18201)

• UpdateXML(xml_target, xpath_expr, new_xml)

This function replaces a single portion of a given fragment of XML markup xml_target with a new XML fragment new_xml,
and then returns the changed XML. The portion of xml_target that is replaced matches an XPath expression xpath_expr sup-
plied by the user. If no expression matching xpath_expr is found, or if multiple matches are found, the function returns the ori-
ginal xml_target XML fragment. All three arguments should be strings.

mysql> SELECT
-> UpdateXML('<a><b>ccc</b><d></d></a>', '/a', '<e>fff</e>') AS val1,
-> UpdateXML('<a><b>ccc</b><d></d></a>', '/b', '<e>fff</e>') AS val2,
-> UpdateXML('<a><b>ccc</b><d></d></a>', '//b', '<e>fff</e>') AS val3,
-> UpdateXML('<a><b>ccc</b><d></d></a>', '/a/d', '<e>fff</e>') AS val4,
-> UpdateXML('<a><d></d><b>ccc</b><d></d></a>', '/a/d', '<e>fff</e>') AS val5
-> \G

*************************** 1. row ***************************
val1: <e>fff</e>
val2: <a><b>ccc</b><d></d></a>
val3: <a><e>fff</e><d></d></a>
val4: <a><b>ccc</b><e>fff</e></a>
val5: <a><d></d><b>ccc</b><d></d></a>

Note

A discussion in depth of XPath syntax and usage are beyond the scope of this Manual. Please see the XML Path Language
(XPath) 1.0 specification for definitive information. A useful resource for those new to XPath or who are wishing a re-
fresher in the basics is the Zvon.org XPath Tutorial, which is available in several languages.

Descriptions and examples of some basic XPath expressions follow:

• /tag

Matches <tag/> if and only if <tag/> is the root element.

Example: /a has a match in <a><b/></a> because it matches the outermost (root) tag. It does not match the inner a element in
<b><a/></b> because in this instance it is the child of another element.

• /tag1/tag2

Matches <tag2/> if and only if it is a child of <tag1/>, and <tag1/> is the root element.

Example: /a/b matches the b element in the XML fragment <a><b/></a> because it is a child of the root element a. It does not
have a match in <b><a/></b> because in this case, b is the root element (and hence the child of no other element). Nor does the
XPath expression have a match in <a><c><b/></c></a>; here, b is a descendant of a, but not actually a child of a.

This construct is extendable to three or more elements. For example, the XPath expression /a/b/c matches the c element in the
fragment <a><b><c/></b></a>.

• //tag

Matches any instance of <tag>.

Example: //a matches the a element in any of the following: <a><b><c/></b></a>; <c><a><b/></a></b>;
<c><b><a/></b></c>.

// can be combined with /. For example, //a/b matches the b element in either of the fragments <a><b/></a> or
<a><b><c/></b></a>

Functions and Operators

751

http://bugs.mysql.com/18201
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/


Note

//tag is the equivalent of /descendant-or-self::*/tag. A common error is to confuse this with /
descendant-or-self::tag, although the latter expression can actually lead to very different results, as can be seen
here:

mysql> SET @xml = '<a><b><c>w</c><b>x</b><d>y</d>z</b></a>';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @xml;
+-----------------------------------------+
| @xml |
+-----------------------------------------+
| <a><b><c>w</c><b>x</b><d>y</d>z</b></a> |
+-----------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[1]');
+------------------------------+
| ExtractValue(@xml, '//b[1]') |
+------------------------------+
| x z |
+------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//b[2]');
+------------------------------+
| ExtractValue(@xml, '//b[2]') |
+------------------------------+
| |
+------------------------------+
1 row in set (0.01 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[1]');
+---------------------------------------------------+
| ExtractValue(@xml, '/descendant-or-self::*/b[1]') |
+---------------------------------------------------+
| x z |
+---------------------------------------------------+
1 row in set (0.06 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[2]');
+---------------------------------------------------+
| ExtractValue(@xml, '/descendant-or-self::*/b[2]') |
+---------------------------------------------------+
| |
+---------------------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[1]');
+-------------------------------------------------+
| ExtractValue(@xml, '/descendant-or-self::b[1]') |
+-------------------------------------------------+
| z |
+-------------------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[2]');
+-------------------------------------------------+
| ExtractValue(@xml, '/descendant-or-self::b[2]') |
+-------------------------------------------------+
| x |
+-------------------------------------------------+
1 row in set (0.00 sec)

• The * operator acts as a “wildcard” that matches any element. For example, the expression /*/b matches the b element in either of
the XML fragments <a><b/></a> or <c><b/></c>. However, the expression does not produce a match in the fragment
<b><a/></b> because b must be a child of some other element. The wildcard may be used in any position: The expression /
*/b/* will match any child of a b element that is itself not the root element.

• You can match any of several locators using the | (UNION) operator. For example, the expression //b|//c matches all b and c
elements in the XML target.

• It is also possible to match an element based on the value of one or more of its attributes. This done using the syntax tag[@at-
tribute="value"]. For example, the expression //b[@id="idB"] matches the second b element in the fragment <a><b
id="idA"/><c/><b id="idB"/></a>. To match against any element having attribute="value", use the XPath ex-
pression //*[attribute="value"].

Functions and Operators

752



To filter multiple attribute values, simply use multiple attribute-comparison clauses in succession. For example, the expression /
/b[@c="x"][@d="y"] matches the element <b c="x" d="y"/> occurring anywhere in a given XML fragment.

To find elements for which the same attribute matches any of several values, you can use multiple locators joined by the | operator.
For example, to match all b elements whose c attributes have either of the values 23 or 17, use the expression /
/b[@c="23"]|//b[@c="17"]. You can also use the logical or operator for this purpose: //b[@c="23" or @c="17"].

Note

The difference between or and | is that or joins conditions, while | joins result sets.

XPath Limitations. The XPath syntax supported by these functions is currently subject to the following limitations:

• Nodeset-to-nodeset comparison (such as '/a/b[@c=@d]') is not supported.

• Prior to MySQL 5.1.14, equality and inequality (= and !=) were the only supported comparison operators. Beginning with MySQL
5.1.14, all of the standard XPath comparison operators are supported. (Bug#22823)

• Relative locator expressions are resolved in the context of the root node. For example, consider the following query and result:

mysql> SELECT ExtractValue(
-> '<a><b c="1">X</b><b c="2">Y</b></a>',
-> 'a/b'
-> ) AS result;

+--------+
| result |
+--------+
| X Y |
+--------+
1 row in set (0.03 sec)

In this case, the locator a/b resolves to /a/b.

Relative locators are also supported within predicates. In the following example, d[../@c="1"] is resolved as /
a/b[@c="1"]/d:

mysql> SELECT ExtractValue(
-> '<a>
-> <b c="1"><d>X</d></b>
-> <b c="2"><d>X</d></b>
-> </a>',
-> 'a/b/d[../@c="1"]')
-> AS result;

+--------+
| result |
+--------+
| X |
+--------+
1 row in set (0.00 sec)

• The :: operator is not supported in combination with node types such as the following:

• axis::comment()

• axis::text()

• axis::processing-instructions()

• axis::node()

However, name tests (such as axis::name and axis::*) are supported, as shown in these examples:

mysql> SELECT ExtractValue('<a><b>x</b><c>y</c></a>','/a/child::b');
+-------------------------------------------------------+
| ExtractValue('<a><b>x</b><c>y</c></a>','/a/child::b') |
+-------------------------------------------------------+
| x |
+-------------------------------------------------------+
1 row in set (0.02 sec)

Functions and Operators

753

http://bugs.mysql.com/22823


mysql> SELECT ExtractValue('<a><b>x</b><c>y</c></a>','/a/child::*');
+-------------------------------------------------------+
| ExtractValue('<a><b>x</b><c>y</c></a>','/a/child::*') |
+-------------------------------------------------------+
| x y |
+-------------------------------------------------------+
1 row in set (0.01 sec)

• “Up-and-down” navigation is not supported in cases where the path would lead “above” the root element. That is, you cannot use
expressions which match on descendants of ancestors of a given element, where one or more of the ancestors of the current element
is also an ancestor of the root element (see Bug#16321).

• The following XPath functions are not supported:

• id()

• lang()

• Prior to MySQL 5.1.8, the last() function was not supported (see Bug#16318).

• local-name()

• name()

• namespace-uri()

• normalize-space()

• starts-with()

• string()

• substring-after()

• substring-before()

• translate()

• The following axes are not supported:

• following-sibling

• following

• preceding-sibling

• preceding

Beginning with MySQL 5.1.10, XPath expressions passed as arguments to ExtractValue() and UpdateXML() may contain the
colon character (“:”) in element selectors, which enables their use with markup employing XML namespaces notation. For example:

mysql> SET @xml = '<a>111<b:c>222<d>333</d><e:f>444</e:f></b:c></a>';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT ExtractValue(@xml, '//e:f');
+-----------------------------+
| ExtractValue(@xml, '//e:f') |
+-----------------------------+
| 444 |
+-----------------------------+
1 row in set (0.00 sec)

mysql> SELECT UpdateXML(@xml, '//b:c', '<g:h>555</g:h>');
+--------------------------------------------+
| UpdateXML(@xml, '//b:c', '<g:h>555</g:h>') |
+--------------------------------------------+
| <a>111<g:h>555</g:h></a> |
+--------------------------------------------+
1 row in set (0.00 sec)

Functions and Operators

754

http://bugs.mysql.com/16321
http://bugs.mysql.com/16318


This is similar in some respects to what is allowed by Apache Xalan and some other parsers, and is much simpler than requiring
namespace declarations or the use of the namespace-uri() and local-name() functions.

Error handling. For both ExtractValue() and UpdateXML(), the XPath locator used must be valid and the XML to be
searched must consist of elements which are properly nested and closed. If the locator is invalid, an error is generated:

mysql> SELECT ExtractValue('<a>c</a><b/>', '/&a');
ERROR 1105 (HY000): XPATH SYNTAX ERROR: '&A'

If xml_frag does not consist of elements which are properly nested and closed, then NULL is returned, and a warning is generated, as
shown in this example:

mysql> SELECT ExtractValue('<a>c</a><b', '//a');
+-----------------------------------+
| ExtractValue('<a>c</a><b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+-------------------------------------------------------------------------------------------+
| Level | Code | Message |
+---------+------+-------------------------------------------------------------------------------------------+
| Warning | 1523 | Incorrect XML value: 'parse error at line 1 pos 11: END-OF-INPUT unexpected ('>' wanted)' |
+---------+------+-------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT ExtractValue('<a>c</a><b/>', '//a');
+-------------------------------------+
| ExtractValue('<a>c</a><b/>', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)

Prior to MySQL 5.1.12, an empty string was returned in such cases. (Bug#18201)

Important

The replacement XML used as the third argument to UpdateXML() is not checked to determine whether it consists
solely of elements which are properly nested and closed.

XPath Injection. code injection occurs when malicious code is introduced into the system to gain unauthorized access to privileges
and data. It is based on exploiting assumptions made by developers about the type and content of data input from users. XPath is no ex-
ception in this regard.

A common scenario in which this can happen is the case of application which handles authorization by matching the combination of a
login name and password with those found in an XML file, using an XPath expression like this one:

//user[login/text()='neapolitan' and password/text()='1c3cr34m']/attribute::id

This is the XPath equivalent of an SQL statement like this one:

SELECT id FROM users WHERE login='neapolitan' AND password='1c3cr34m';

A PHP application employing XPath might handle the login process like this:

<?php

$file = "users.xml";

$login = $POST["login"];
$password = $POST["password"];

$xpath = "//user[login/text()=$login and password/text()=$password]/attribute::id";

if( file_exists($file) )
{
$xml = simplexml_load_file($file);

if($result = $xml->xpath($xpath))
echo "You are now logged in as user $result[0].";

else
echo "Invalid login name or password.";

}
else

Functions and Operators

755

http://xalan.apache.org/
http://bugs.mysql.com/18201


exit("Failed to open $file.");

?>

No checks are performed on the input. This means that a malevolent user can “short-circuit” the test by entering ' or 1=1 for both
the login name and password, resulting in $xpath being evaluated as shown here:

//user[login/text()='' or 1=1 and password/text()='' or 1=1]/attribute::id

Since the expression inside the square brackets always evaluates as true, it is effectively the same as this one, which matches the id
attribute of every user element in the XML document:

//user/attribute::id

One way in which this particular attack can be circumvented is simply by quoting the variable names to be interpolated in the definition
of $xpath, forcing the values passed from a Web form to be converted to strings:

$xpath = "//user[login/text()='$login' and password/text()='$password']/attribute::id";

This is the same strategy that is often recommended for preventing SQL injection attacks. In general, the practices you should follow for
preventing XPath injection attacks are the same as for preventing SQL injection:

• Never accepted untested data from users in your application.

• Check all user-submited data for type; reject or convert data that is of the wrong type

• Test numerical data for out of range values; truncate, round, or reject values that are out of range. Test strings for illegal characters
and either strip them out or reject input containing them.

• Do not output explicit error messages that might provide an unauthorized user with clues that could be used to compromise the sys-
tem; log these to a file or database table instead.

Just as SQL injection attacks can be used to obtain information about database schemas, so can XPath injection be used to traverse
XML files to uncover their structure, as discussed in Amit Klein's paper Blind XPath Injection (PDF file, 46KB).

It is also important to check the output being sent back to the client. Consider what can happen when we use the MySQL Extract-
Value() function:

mysql> SELECT ExtractValue(
-> LOAD_FILE('users.xml'),
-> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
-> ) AS id;

+-------------------------------+
| id |
+-------------------------------+
| 00327 13579 02403 42354 28570 |
+-------------------------------+
1 row in set (0.01 sec)

Because ExtractValue() returns multiple matches as a single space-delimited string, this injection attack provides every valid ID
contained within users.xml to the user as a single row of output. As an extra safeguard, you should also test output before returning
it to the user. Here is a simple example:

mysql> SELECT @id = ExtractValue(
-> LOAD_FILE('users.xml'),
-> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
-> );

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT IF(
-> INSTR(@id, ' ') = 0,
-> @id,
-> 'Unable to retrieve user ID')
-> AS singleID;

+----------------------------+
| singleID |
+----------------------------+
| Unable to retrieve user ID |
+----------------------------+

Functions and Operators

756



1 row in set (0.00 sec)

In general, the guidelines for returning data to users securely are the same as for accepting user input. These can be summed up as:

• Always test outgoing data for type and allowable values.

• Never allow unauthorized users to view error messages that might provide information about the application that could be used to
exploit it.

11.11. Other Functions
Name Description

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

BENCHMARK() Repeatedly execute an expression

BIT_COUNT() Return the number of bits that are set

& Bitwise AND

~ Invert bits

| Bitwise OR

^ Bitwise XOR

CHARSET()(v4.1.0) Return the character set of the argument

COERCIBILITY()(v4.1.1) Return the collation coercibility value of the string argument

COLLATION()(v4.1.0) Return the collation of the string argument

COMPRESS()(v4.1.1) Return result as a binary string

CONNECTION_ID() Return the connection ID (thread ID) for the connection

CURRENT_USER(), CURRENT_USER Return the username and hostname combination

DATABASE() Return the default (current) database name

DECODE() Decodes a string encrypted using ENCODE()

DEFAULT() Return the default value for a table column

DES_DECRYPT() Decrypt a string

DES_ENCRYPT() Encrypt a string

ENCODE() Encode a string

ENCRYPT() Encrypt a string

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of rows that would be returned
were there no LIMIT clause

GET_LOCK() Get a named lock

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

IS_FREE_LOCK() Checks whether the named lock is free

IS_USED_LOCK()(v4.1.0) Checks whether the named lock is in use. Return connection identifier if true.

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last INSERT

<< Left shift

MASTER_POS_WAIT() Block until the slave has read and applied all updates up to the specified position

MD5() Calculate MD5 checksum

NAME_CONST()(v5.0.12) Causes the column to have the given name

OLD_PASSWORD()(v4.1) Return the value of the old (pre-4.1) implementation of PASSWORD

PASSWORD() Calculate and return a password string

Functions and Operators

757



Name Description

RAND() Return a random floating-point value

RELEASE_LOCK() Releases the named lock

>> Right shift

ROW_COUNT()(v5.0.1) The number of rows updated

SCHEMA()(v5.0.2) A synonym for DATABASE()

SESSION_USER() Synonym for USER()

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

SLEEP()(v5.0.12) Sleep for a number of seconds

SYSTEM_USER() Synonym for USER()

UNCOMPRESS()(v4.1.1) Uncompress a string compressed

UNCOMPRESSED_LENGTH()(v4.1.1) Return the length of a string before compression

USER() Return the current username and hostname

UUID()(v4.1.2) Return a Universal Unique Identifier (UUID)

VALUES()(v4.1.1) Defines the values to be used during an INSERT

VERSION() Returns a string that indicates the MySQL server version

11.11.1. Bit Functions

Name Description

BIT_COUNT() Return the number of bits that are set

& Bitwise AND

~ Invert bits

| Bitwise OR

^ Bitwise XOR

<< Left shift

>> Right shift

MySQL uses BIGINT (64-bit) arithmetic for bit operations, so these operators have a maximum range of 64 bits.

• |

Bitwise OR:

mysql> SELECT 29 | 15;
-> 31

The result is an unsigned 64-bit integer.

• &

Bitwise AND:

mysql> SELECT 29 & 15;
-> 13

The result is an unsigned 64-bit integer.

• ^

Bitwise XOR:

Functions and Operators

758



mysql> SELECT 1 ^ 1;
-> 0

mysql> SELECT 1 ^ 0;
-> 1

mysql> SELECT 11 ^ 3;
-> 8

The result is an unsigned 64-bit integer.

• <<

Shifts a longlong (BIGINT) number to the left.

mysql> SELECT 1 << 2;
-> 4

The result is an unsigned 64-bit integer.

• >>

Shifts a longlong (BIGINT) number to the right.

mysql> SELECT 4 >> 2;
-> 1

The result is an unsigned 64-bit integer.

• ~

Invert all bits.

mysql> SELECT 5 & ~1;
-> 4

The result is an unsigned 64-bit integer.

• BIT_COUNT(N)

Returns the number of bits that are set in the argument N.

mysql> SELECT BIT_COUNT(29), BIT_COUNT(b'101010');
-> 4, 3

11.11.2. Encryption and Compression Functions

Name Description

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

COMPRESS()(v4.1.1) Return result as a binary string

DECODE() Decodes a string encrypted using ENCODE()

DES_DECRYPT() Decrypt a string

DES_ENCRYPT() Encrypt a string

ENCODE() Encode a string

ENCRYPT() Encrypt a string

MD5() Calculate MD5 checksum

OLD_PASSWORD()(v4.1) Return the value of the old (pre-4.1) implementation of PASSWORD

PASSWORD() Calculate and return a password string

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

Functions and Operators

759



Name Description

UNCOMPRESS()(v4.1.1) Uncompress a string compressed

UNCOMPRESSED_LENGTH()(v4.1.1) Return the length of a string before compression

Note

The encryption and compression functions return binary strings. For many of these functions, the result might contain ar-
bitrary byte values. If you want to store these results, use a BLOB column rather than a CHAR or VARCHAR column to
avoid potential problems with trailing space removal that would change data values.

Note

Exploits for the MD5 and SHA-1 algorithms have become known. You may wish to consider using one of the other en-
cryption functions described in this section instead.

• AES_DECRYPT(crypt_str,key_str)

This function allows decryption of data using the official AES (Advanced Encryption Standard) algorithm. For more information,
see the description of AES_ENCRYPT().

• AES_ENCRYPT(str,key_str)

AES_ENCRYPT() and AES_DECRYPT() allow encryption and decryption of data using the official AES (Advanced Encryption
Standard) algorithm, previously known as “Rijndael.” Encoding with a 128-bit key length is used, but you can extend it up to 256
bits by modifying the source. We chose 128 bits because it is much faster and it is secure enough for most purposes.

AES_ENCRYPT() encrypts a string and returns a binary string. AES_DECRYPT() decrypts the encrypted string and returns the
original string. The input arguments may be any length. If either argument is NULL, the result of this function is also NULL.

Because AES is a block-level algorithm, padding is used to encode uneven length strings and so the result string length may be cal-
culated using this formula:

16 × (trunc(string_length / 16) + 1)

If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL. However, it is possible for AES_DECRYPT() to
return a non-NULL value (possibly garbage) if the input data or the key is invalid.

You can use the AES functions to store data in an encrypted form by modifying your queries:

INSERT INTO t VALUES (1,AES_ENCRYPT('text','password'));

AES_ENCRYPT() and AES_DECRYPT() can be considered the most cryptographically secure encryption functions currently
available in MySQL.

• COMPRESS(string_to_compress)

Compresses a string and returns the result as a binary string. This function requires MySQL to have been compiled with a compres-
sion library such as zlib. Otherwise, the return value is always NULL. The compressed string can be uncompressed with UNCOM-
PRESS().

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
-> 21

mysql> SELECT LENGTH(COMPRESS(''));
-> 0

mysql> SELECT LENGTH(COMPRESS('a'));
-> 13

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
-> 15

The compressed string contents are stored the following way:

• Empty strings are stored as empty strings.

Functions and Operators

760



• Non-empty strings are stored as a four-byte length of the uncompressed string (low byte first), followed by the compressed
string. If the string ends with space, an extra “.” character is added to avoid problems with endspace trimming should the result
be stored in a CHAR or VARCHAR column. (Use of CHAR or VARCHAR to store compressed strings is not recommended. It is
better to use a BLOB column instead.)

• DECODE(crypt_str,pass_str)

Decrypts the encrypted string crypt_str using pass_str as the password. crypt_str should be a string returned from EN-
CODE().

• ENCODE(str,pass_str)

Encrypt str using pass_str as the password. To decrypt the result, use DECODE().

The result is a binary string of the same length as str.

The strength of the encryption is based on how good the random generator is. It should suffice for short strings.

• DES_DECRYPT(crypt_str[,key_str])

Decrypts a string encrypted with DES_ENCRYPT(). If an error occurs, this function returns NULL.

This function works only if MySQL has been configured with SSL support. See Section 5.5.7, “Using Secure Connections”.

If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted string to determine the DES key
number that was used to encrypt the original string, and then reads the key from the DES key file to decrypt the message. For this to
work, the user must have the SUPER privilege. The key file can be specified with the --des-key-file server option.

If you pass this function a key_str argument, that string is used as the key for decrypting the message.

If the crypt_str argument does not appear to be an encrypted string, MySQL returns the given crypt_str.

• DES_ENCRYPT(str[,{key_num|key_str}])

Encrypts the string with the given key using the Triple-DES algorithm.

This function works only if MySQL has been configured with SSL support. See Section 5.5.7, “Using Secure Connections”.

The encryption key to use is chosen based on the second argument to DES_ENCRYPT(), if one was given:

Argument Description

No argument The first key from the DES key file is used.

key_num The given key number (0-9) from the DES key file is used.

key_str The given key string is used to encrypt str.

The key file can be specified with the --des-key-file server option.

The return string is a binary string where the first character is CHAR(128 | key_num). If an error occurs, DES_ENCRYPT()
returns NULL.

The 128 is added to make it easier to recognize an encrypted key. If you use a string key, key_num is 127.

The string length for the result is given by this formula:

new_len = orig_len + (8 - (orig_len % 8)) + 1

Each line in the DES key file has the following format:

key_num des_key_str

Each key_num value must be a number in the range from 0 to 9. Lines in the file may be in any order. des_key_str is the
string that is used to encrypt the message. There should be at least one space between the number and the key. The first key is the

Functions and Operators

761



default key that is used if you do not specify any key argument to DES_ENCRYPT().

You can tell MySQL to read new key values from the key file with the FLUSH DES_KEY_FILE statement. This requires the RE-
LOAD privilege.

One benefit of having a set of default keys is that it gives applications a way to check for the existence of encrypted column values,
without giving the end user the right to decrypt those values.

mysql> SELECT customer_address FROM customer_table
> WHERE crypted_credit_card = DES_ENCRYPT('credit_card_number');

• ENCRYPT(str[,salt])

Encrypts str using the Unix crypt() system call and returns a binary string. The salt argument should be a string with at least
two characters. If no salt argument is given, a random value is used.

mysql> SELECT ENCRYPT('hello');
-> 'VxuFAJXVARROc'

ENCRYPT() ignores all but the first eight characters of str, at least on some systems. This behavior is determined by the imple-
mentation of the underlying crypt() system call.

The use of ENCRYPT() with multi-byte character sets other than utf8 is not recommended because the system call expects a
string terminated by a zero byte.

If crypt() is not available on your system (as is the case with Windows), ENCRYPT() always returns NULL.

• MD5(str)

Calculates an MD5 128-bit checksum for the string. The value is returned as a binary string of 32 hex digits, or NULL if the argu-
ment was NULL. The return value can, for example, be used as a hash key.

mysql> SELECT MD5('testing');
-> 'ae2b1fca515949e5d54fb22b8ed95575'

This is the “RSA Data Security, Inc. MD5 Message-Digest Algorithm.”

If you want to convert the value to uppercase, see the description of binary string conversion given in the entry for the BINARY op-
erator in Section 11.9, “Cast Functions and Operators”.

See the note regarding the MD5 algorithm at the beginning this section.

• OLD_PASSWORD(str)

OLD_PASSWORD() was added to MySQL when the implementation of PASSWORD() was changed to improve security.
OLD_PASSWORD() returns the value of the old (pre-4.1) implementation of PASSWORD() as a binary string, and is intended to
permit you to reset passwords for any pre-4.1 clients that need to connect to your version 5.1 MySQL server without locking them
out. See Section 5.4.9, “Password Hashing as of MySQL 4.1”.

• PASSWORD(str)

Calculates and returns a password string from the plaintext password str and returns a binary string, or NULL if the argument was
NULL. This is the function that is used for encrypting MySQL passwords for storage in the Password column of the user grant
table.

mysql> SELECT PASSWORD('badpwd');
-> '*AAB3E285149C0135D51A520E1940DD3263DC008C'

PASSWORD() encryption is one-way (not reversible).

PASSWORD() does not perform password encryption in the same way that Unix passwords are encrypted. See ENCRYPT().

Note

The PASSWORD() function is used by the authentication system in MySQL Server; you should not use it in your own ap-

Functions and Operators

762



plications. For that purpose, consider MD5() or SHA1() instead. Also see RFC 2195, section 2 (Challenge-Response Au-
thentication Mechanism (CRAM)), for more information about handling passwords and authentication securely in your ap-
plications.

• SHA1(str), SHA(str)

Calculates an SHA-1 160-bit checksum for the string, as described in RFC 3174 (Secure Hash Algorithm). The value is returned as
a binary string of 40 hex digits, or NULL if the argument was NULL. One of the possible uses for this function is as a hash key. You
can also use it as a cryptographic function for storing passwords. SHA() is synonymous with SHA1().

mysql> SELECT SHA1('abc');
-> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SHA1() can be considered a cryptographically more secure equivalent of MD5(). However, see the note regarding the MD5 and
SHA-1 algorithms at the beginning this section.

• UNCOMPRESS(string_to_uncompress)

Uncompresses a string compressed by the COMPRESS() function. If the argument is not a compressed value, the result is NULL.
This function requires MySQL to have been compiled with a compression library such as zlib. Otherwise, the return value is al-
ways NULL.

mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
-> 'any string'

mysql> SELECT UNCOMPRESS('any string');
-> NULL

• UNCOMPRESSED_LENGTH(compressed_string)

Returns the length that the compressed string had before being compressed.

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
-> 30

11.11.3. Information Functions

Name Description

BENCHMARK() Repeatedly execute an expression

CHARSET()(v4.1.0) Return the character set of the argument

COERCIBILITY()(v4.1.1) Return the collation coercibility value of the string argument

COLLATION()(v4.1.0) Return the collation of the string argument

CONNECTION_ID() Return the connection ID (thread ID) for the connection

CURRENT_USER(), CURRENT_USER Return the username and hostname combination

DATABASE() Return the default (current) database name

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of rows that would be returned
were there no LIMIT clause

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last INSERT

ROW_COUNT()(v5.0.1) The number of rows updated

SCHEMA()(v5.0.2) A synonym for DATABASE()

SESSION_USER() Synonym for USER()

SYSTEM_USER() Synonym for USER()

USER() Return the current username and hostname

VERSION() Returns a string that indicates the MySQL server version

• BENCHMARK(count,expr)

Functions and Operators

763

http://www.faqs.org/rfcs/rfc2195.html
http://www.faqs.org/rfcs/rfc2195.html


The BENCHMARK() function executes the expression expr repeatedly count times. It may be used to time how quickly MySQL
processes the expression. The result value is always 0. The intended use is from within the mysql client, which reports query exe-
cution times:

mysql> SELECT BENCHMARK(1000000,ENCODE('hello','goodbye'));
+----------------------------------------------+
| BENCHMARK(1000000,ENCODE('hello','goodbye')) |
+----------------------------------------------+
| 0 |
+----------------------------------------------+
1 row in set (4.74 sec)

The time reported is elapsed time on the client end, not CPU time on the server end. It is advisable to execute BENCHMARK() sev-
eral times, and to interpret the result with regard to how heavily loaded the server machine is.

BENCHMARK() is intended for measuring the runtime performance of scalar expressions, which has some significant implications
for the way that you use it and interpret the results:

• Only scalar expressions can be used. Although the expression can be a subquery, it must return a single column and at most a
single row. For example, BENCHMARK(10, (SELECT * FROM t)) will fail if the table t has more than one column or
more than one row.

• Executing a SELECT expr statement N times differs from executing SELECT BENCHMARK(N, expr) in terms of the
amount of overhead involved. The two have very different execution profiles and you should not expect them to take the same
amount of time. The former involves the parser, optimizer, table locking, and runtime evaluation N times each. The latter in-
volves only runtime evaluation N times, and all the other components just once. Memory structures already allocated are reused,
and runtime optimizations such as local caching of results already evaluated for aggregate functions can alter the results. Use of
BENCHMARK() thus measures performance of the runtime component by giving more weight to that component and removing
the “noise” introduced by the network, parser, optimizer, and so forth.

• CHARSET(str)

Returns the character set of the string argument.

mysql> SELECT CHARSET('abc');
-> 'latin1'

mysql> SELECT CHARSET(CONVERT('abc' USING utf8));
-> 'utf8'

mysql> SELECT CHARSET(USER());
-> 'utf8'

• COERCIBILITY(str)

Returns the collation coercibility value of the string argument.

mysql> SELECT COERCIBILITY('abc' COLLATE latin1_swedish_ci);
-> 0

mysql> SELECT COERCIBILITY(USER());
-> 3

mysql> SELECT COERCIBILITY('abc');
-> 4

The return values have the meanings shown in the following table. Lower values have higher precedence.

Coercibility Meaning Example

0 Explicit collation Value with COLLATE clause

1 No collation Concatenation of strings with different collations

2 Implicit collation Column value, stored routine parameter or local variable

3 System constant USER() return value

4 Coercible Literal string

5 Ignorable NULL or an expression derived from NULL

• COLLATION(str)

Functions and Operators

764



Returns the collation of the string argument.

mysql> SELECT COLLATION('abc');
-> 'latin1_swedish_ci'

mysql> SELECT COLLATION(_utf8'abc');
-> 'utf8_general_ci'

• CONNECTION_ID()

Returns the connection ID (thread ID) for the connection. Every connection has an ID that is unique among the set of currently con-
nected clients.

mysql> SELECT CONNECTION_ID();
-> 23786

• CURRENT_USER, CURRENT_USER()

Returns the username and hostname combination for the MySQL account that the server used to authenticate the current client. This
account determines your access privileges. Within a stored routine that is defined with the SQL SECURITY DEFINER character-
istic, CURRENT_USER() returns the creator of the routine. The return value is a string in the utf8 character set.

The value of CURRENT_USER() can differ from the value of USER().

mysql> SELECT USER();
-> 'davida@localhost'

mysql> SELECT * FROM mysql.user;
ERROR 1044: Access denied for user ''@'localhost' to
database 'mysql'
mysql> SELECT CURRENT_USER();

-> '@localhost'

The example illustrates that although the client specified a username of davida (as indicated by the value of the USER() func-
tion), the server authenticated the client using an anonymous user account (as seen by the empty username part of the CUR-
RENT_USER() value). One way this might occur is that there is no account listed in the grant tables for davida.

• DATABASE()

Returns the default (current) database name as a string in the utf8 character set. If there is no default database, DATABASE() re-
turns NULL. Within a stored routine, the default database is the database that the routine is associated with, which is not necessarily
the same as the database that is the default in the calling context.

mysql> SELECT DATABASE();
-> 'test'

If there is no default database, DATABASE() returns NULL.

• FOUND_ROWS()

A SELECT statement may include a LIMIT clause to restrict the number of rows the server returns to the client. In some cases, it is
desirable to know how many rows the statement would have returned without the LIMIT, but without running the statement again.
To obtain this row count, include a SQL_CALC_FOUND_ROWS option in the SELECT statement, and then invoke
FOUND_ROWS() afterward:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
-> WHERE id > 100 LIMIT 10;

mysql> SELECT FOUND_ROWS();

The second SELECT returns a number indicating how many rows the first SELECT would have returned had it been written without
the LIMIT clause.

In the absence of the SQL_CALC_FOUND_ROWS option in the most recent SELECT statement, FOUND_ROWS() returns the num-
ber of rows in the result set returned by that statement.

The row count available through FOUND_ROWS() is transient and not intended to be available past the statement following the
SELECT SQL_CALC_FOUND_ROWS statement. If you need to refer to the value later, save it:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM ... ;

Functions and Operators

765



mysql> SET @rows = FOUND_ROWS();

If you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how many rows are in the full result set. However,
this is faster than running the query again without LIMIT, because the result set need not be sent to the client.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to restrict the number of rows that a
query returns, but also determine the number of rows in the full result set without running the query again. An example is a Web
script that presents a paged display containing links to the pages that show other sections of a search result. Using FOUND_ROWS()
allows you to determine how many other pages are needed for the rest of the result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION statements than for simple SELECT
statements, because LIMIT may occur at multiple places in a UNION. It may be applied to individual SELECT statements in the
UNION, or global to the UNION result as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that would be returned without a global
LIMIT. The conditions for use of SQL_CALC_FOUND_ROWS with UNION are:

• The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.

• The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL is used, duplicate removal occurs
and the value of FOUND_ROWS() is only approximate.

• If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the number of rows in the temporary
table that is created to process the UNION.

Important

FOUND_ROWS() is not replicated reliably using statement-based replication. Starting with MySQL 5.1.23, this function is
automatically replicated using row-based replication.

• LAST_INSERT_ID(), LAST_INSERT_ID(expr)

For MySQL 5.1.12 and later, LAST_INSERT_ID() (no arguments) returns the first automatically generated value successfully in-
serted for an AUTO_INCREMENT column as a result of the most recently executed INSERT statement. The value of
LAST_INSERT_ID() remains unchanged if no rows are successfully inserted.

For example, after inserting a row that generates an AUTO_INCREMENT value, you can get the value like this:

mysql> SELECT LAST_INSERT_ID();
-> 195

In MySQL 5.1.11 and earlier, LAST_INSERT_ID() (no arguments) returns the first automatically generated value if any rows
were successfully inserted or updated. This means that the returned value could be a value that was not successfully inserted into the
table. If no rows were successfully inserted, LAST_INSERT_ID() returns 0.

The value of LAST_INSERT_ID() will be consistent across all versions if all rows in the INSERT or UPDATE statement were
successful.

The currently executing statement does not affect the value of LAST_INSERT_ID(). Suppose that you generate an
AUTO_INCREMENT value with one statement, and then refer to LAST_INSERT_ID() in a multiple-row INSERT statement that
inserts rows into a table with its own AUTO_INCREMENT column. The value of LAST_INSERT_ID() will remain stable in the
second statement; its value for the second and later rows is not affected by the earlier row insertions. (However, if you mix refer-
ences to LAST_INSERT_ID() and LAST_INSERT_ID(expr), the effect is undefined.)

If the previous statement returned an error, the value of LAST_INSERT_ID() is undefined. For transactional tables, if the state-
ment is rolled back due to an error, the value of LAST_INSERT_ID() is left undefined. For manual ROLLBACK, the value of
LAST_INSERT_ID() is not restored to that before the transaction; it remains as it was at the point of the ROLLBACK.

Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID() changes the same way
as for statements executed outside the body of these kinds of objects. The effect of a stored routine or trigger upon the value of
LAST_INSERT_ID() that is seen by following statements depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the changed value will be seen by
statements that follow the procedure call.

Functions and Operators

766



• For stored functions and triggers that change the value, the value is restored when the function or trigger ends, so following
statements will not see a changed value.

The ID that was generated is maintained in the server on a per-connection basis. This means that the value returned by the function
to a given client is the first AUTO_INCREMENT value generated for most recent statement affecting an AUTO_INCREMENT column
by that client. This value cannot be affected by other clients, even if they generate AUTO_INCREMENT values of their own. This
behavior ensures that each client can retrieve its own ID without concern for the activity of other clients, and without the need for
locks or transactions.

The value of LAST_INSERT_ID() is not changed if you set the AUTO_INCREMENT column of a row to a non-“magic” value
(that is, a value that is not NULL and not 0).

Important

If you insert multiple rows using a single INSERT statement, LAST_INSERT_ID() returns the value generated for the
first inserted row only. The reason for this is to make it possible to reproduce easily the same INSERT statement against
some other server.

For example:

mysql> USE test;
Database changed
mysql> CREATE TABLE t (

-> id INT AUTO_INCREMENT NOT NULL PRIMARY KEY,
-> name VARCHAR(10) NOT NULL
-> );

Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO t VALUES (NULL, 'Bob');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
| 1 | Bob |
+----+------+
1 row in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+
1 row in set (0.00 sec)

mysql> INSERT INTO t VALUES
-> (NULL, 'Mary'), (NULL, 'Jane'), (NULL, 'Lisa');

Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
| 1 | Bob |
| 2 | Mary |
| 3 | Jane |
| 4 | Lisa |
+----+------+
4 rows in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 2 |
+------------------+
1 row in set (0.00 sec)

Although the second INSERT statement inserted three new rows into t, the ID generated for the first of these rows was 2, and it is
this value that is returned by LAST_INSERT_ID() for the following SELECT statement.

If you use INSERT IGNORE and the row is ignored, the AUTO_INCREMENT counter is not incremented and
LAST_INSERT_ID() returns 0, which reflects that no row was inserted.

Functions and Operators

767



If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is returned by the function and is re-
membered as the next value to be returned by LAST_INSERT_ID(). This can be used to simulate sequences:

1. Create a table to hold the sequence counter and initialize it:

mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);

2. Use the table to generate sequence numbers like this:

mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);
mysql> SELECT LAST_INSERT_ID();

The UPDATE statement increments the sequence counter and causes the next call to LAST_INSERT_ID() to return the up-
dated value. The SELECT statement retrieves that value. The mysql_insert_id() C API function can also be used to get
the value. See Section 26.2.3.37, “mysql_insert_id()”.

You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the function this way is that the ID
value is maintained in the server as the last automatically generated value. It is multi-user safe because multiple clients can issue the
UPDATE statement and get their own sequence value with the SELECT statement (or mysql_insert_id()), without affecting
or being affected by other clients that generate their own sequence values.

Note that mysql_insert_id() is only updated after INSERT and UPDATE statements, so you cannot use the C API function to
retrieve the value for LAST_INSERT_ID(expr) after executing other SQL statements like SELECT or SET.

• ROW_COUNT()

ROW_COUNT() returns the number of rows updated, inserted, or deleted by the preceding statement. This is the same as the row
count that the mysql client displays and the value from the mysql_affected_rows() C API function.

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 3 |
+-------------+
1 row in set (0.00 sec)

mysql> DELETE FROM t WHERE i IN(1,2);
Query OK, 2 rows affected (0.00 sec)

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 2 |
+-------------+
1 row in set (0.00 sec)

Important

ROW_COUNT() is not replicated reliably using statement-based replication. Beginning with MySQL 5.1.23, this function
is automatically replicated using row-based replication. (Bug#30244)

• SCHEMA()

This function is a synonym for DATABASE().

• SESSION_USER()

SESSION_USER() is a synonym for USER().

• SYSTEM_USER()

SYSTEM_USER() is a synonym for USER().

Functions and Operators

768

http://bugs.mysql.com/30244


• USER()

Returns the current MySQL username and hostname as a string in the utf8 character set.

mysql> SELECT USER();
-> 'davida@localhost'

The value indicates the username you specified when connecting to the server, and the client host from which you connected. The
value can be different from that of CURRENT_USER().

You can extract only the username part like this:

mysql> SELECT SUBSTRING_INDEX(USER(),'@',1);
-> 'davida'

• VERSION()

Returns a string that indicates the MySQL server version. The string uses the utf8 character set.

mysql> SELECT VERSION();
-> '5.1.25-rc-standard'

Note that if your version string ends with -log this means that logging is enabled.

11.11.4. Miscellaneous Functions

Name Description

DEFAULT() Return the default value for a table column

GET_LOCK() Get a named lock

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

IS_FREE_LOCK() Checks whether the named lock is free

IS_USED_LOCK()(v4.1.0) Checks whether the named lock is in use. Return connection identifier if true.

MASTER_POS_WAIT() Block until the slave has read and applied all updates up to the specified position

NAME_CONST()(v5.0.12) Causes the column to have the given name

RAND() Return a random floating-point value

RELEASE_LOCK() Releases the named lock

SLEEP()(v5.0.12) Sleep for a number of seconds

UUID()(v4.1.2) Return a Universal Unique Identifier (UUID)

VALUES()(v4.1.1) Defines the values to be used during an INSERT

• DEFAULT(col_name)

Returns the default value for a table column. An error results if the column has no default value.

mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the result as a string. For de-
tails, see Section 11.4, “String Functions”.

• GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, using a timeout of timeout seconds. Returns 1 if the lock was ob-

Functions and Operators

769



tained successfully, 0 if the attempt timed out (for example, because another client has previously locked the name), or NULL if an
error occurred (such as running out of memory or the thread was killed with mysqladmin kill). If you have a lock obtained
with GET_LOCK(), it is released when you execute RELEASE_LOCK(), execute a new GET_LOCK(), or your connection ter-
minates (either normally or abnormally). Locks obtained with GET_LOCK() do not interact with transactions. That is, committing a
transaction does not release any such locks obtained during the transaction.

This function can be used to implement application locks or to simulate record locks. Names are locked on a server-wide basis. If a
name has been locked by one client, GET_LOCK() blocks any request by another client for a lock with the same name. This allows
clients that agree on a given lock name to use the name to perform cooperative advisory locking. But be aware that it also allows a
client that is not among the set of cooperating clients to lock a name, either inadvertently or deliberately, and thus prevent any of the
cooperating clients from locking that name. One way to reduce the likelihood of this is to use lock names that are database-specific
or application-specific. For example, use lock names of the form db_name.str or app_name.str.

mysql> SELECT GET_LOCK('lock1',10);
-> 1

mysql> SELECT IS_FREE_LOCK('lock2');
-> 1

mysql> SELECT GET_LOCK('lock2',10);
-> 1

mysql> SELECT RELEASE_LOCK('lock2');
-> 1

mysql> SELECT RELEASE_LOCK('lock1');
-> NULL

The second RELEASE_LOCK() call returns NULL because the lock 'lock1' was automatically released by the second
GET_LOCK() call.

Note: If a client attempts to acquire a lock that is already held by another client, it blocks according to the timeout argument. If
the blocked client terminates, its thread does not die until the lock request times out. This is a known bug.

• INET_ATON(expr)

Given the dotted-quad representation of a network address as a string, returns an integer that represents the numeric value of the ad-
dress. Addresses may be 4- or 8-byte addresses.

mysql> SELECT INET_ATON('209.207.224.40');
-> 3520061480

The generated number is always in network byte order. For the example just shown, the number is calculated as 209×2563 +
207×2562 + 224×256 + 40.

INET_ATON() also understands short-form IP addresses:

mysql> SELECT INET_ATON('127.0.0.1'), INET_ATON('127.1');
-> 2130706433, 2130706433

Note

When storing values generated by INET_ATON(), it is recommended that you use an INT UNSIGNED column. If you
use a (signed) INT column, values corresponding to IP addresses for which the first octet is greater than 127 cannot be
stored correctly. See Section 10.2, “Numeric Types”.

• INET_NTOA(expr)

Given a numeric network address (4 or 8 byte), returns the dotted-quad representation of the address as a string.

mysql> SELECT INET_NTOA(3520061480);
-> '209.207.224.40'

• IS_FREE_LOCK(str)

Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is free (no one is using the lock), 0 if
the lock is in use, and NULL if an error occurs (such as an incorrect argument).

• IS_USED_LOCK(str)

Checks whether the lock named str is in use (that is, locked). If so, it returns the connection identifier of the client that holds the

Functions and Operators

770



lock. Otherwise, it returns NULL.

• MASTER_POS_WAIT(log_name,log_pos[,timeout])

This function is useful for control of master/slave synchronization. It blocks until the slave has read and applied all updates up to the
specified position in the master log. The return value is the number of log events the slave had to wait for to advance to the specified
position. The function returns NULL if the slave SQL thread is not started, the slave's master information is not initialized, the argu-
ments are incorrect, or an error occurs. It returns -1 if the timeout has been exceeded. If the slave SQL thread stops while MAS-
TER_POS_WAIT() is waiting, the function returns NULL. If the slave is past the specified position, the function returns immedi-
ately.

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds have elapsed. timeout must be
greater than 0; a zero or negative timeout means no timeout.

• NAME_CONST(name,value)

Returns the given value. When used to produce a result set column, NAME_CONST() causes the column to have the given name.
The arguments should be constants.

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

This function was added in MySQL 5.0.12. It is for internal use only. The server uses it when writing statements from stored
routines that contain references to local routine variables, as described in Section 20.4, “Binary Logging of Stored Routines and
Triggers”, You might see this function in the output from mysqlbinlog.

• RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the lock was released, 0 if the lock
was not established by this thread (in which case the lock is not released), and NULL if the named lock did not exist. The lock does
not exist if it was never obtained by a call to GET_LOCK() or if it has previously been released.

The DO statement is convenient to use with RELEASE_LOCK(). See Section 12.2.2, “DO Syntax”.

• SLEEP(duration)

Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. If SLEEP() is interrupted, it returns
1. The duration may have a fractional part given in microseconds.

• UUID()

Returns a Universal Unique Identifier (UUID) generated according to “DCE 1.1: Remote Procedure Call” (Appendix A) CAE
(Common Applications Environment) Specifications published by The Open Group in October 1997 (Document Number C706, ht-
tp://www.opengroup.org/public/pubs/catalog/c706.htm).

A UUID is designed as a number that is globally unique in space and time. Two calls to UUID() are expected to generate two dif-
ferent values, even if these calls are performed on two separate computers that are not connected to each other.

A UUID is a 128-bit number represented by a utf8 string of five hexadecimal numbers in aaaaaaaa-
bbbb-cccc-dddd-eeeeeeeeeeee format:

• The first three numbers are generated from a timestamp.

• The fourth number preserves temporal uniqueness in case the timestamp value loses monotonicity (for example, due to daylight
saving time).

• The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random number is substituted if the latter is
not available (for example, because the host computer has no Ethernet card, or we do not know how to find the hardware address
of an interface on your operating system). In this case, spatial uniqueness cannot be guaranteed. Nevertheless, a collision should
have very low probability.

Currently, the MAC address of an interface is taken into account only on FreeBSD and Linux. On other operating systems,
MySQL uses a randomly generated 48-bit number.

Functions and Operators

771

http://www.opengroup.org/public/pubs/catalog/c706.htm
http://www.opengroup.org/public/pubs/catalog/c706.htm


mysql> SELECT UUID();
-> '6ccd780c-baba-1026-9564-0040f4311e29'

Note that UUID() does not yet work with replication.

• VALUES(col_name)

In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the VALUES(col_name) function in the UP-
DATE clause to refer to column values from the INSERT portion of the statement. In other words, VALUES(col_name) in the
UPDATE clause refers to the value of col_name that would be inserted, had no duplicate-key conflict occurred. This function is
especially useful in multiple-row inserts. The VALUES() function is meaningful only in INSERT ... ON DUPLICATE KEY
UPDATE statements and returns NULL otherwise. Section 12.2.4.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
-> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

11.12. Functions and Modifiers for Use with GROUP BY Clauses

11.12.1. GROUP BY (Aggregate) Functions

Name Description

AVG() Return the average value of the argument

BIT_AND() Return bitwise and

BIT_OR() Return bitwise or

BIT_XOR()(v4.1.1) Return bitwise xor

COUNT(DISTINCT) Return the count of a number of different values

COUNT() Return a count of the number of rows returned

GROUP_CONCAT()(v4.1) Return a concatenated string

MAX() Return the maximum value

MIN() Return the minimum value

STD() Return the population standard deviation

STDDEV_POP()(v5.0.3) Return the population standard deviation

STDDEV_SAMP()(v5.0.3) Return the sample standard deviation

STDDEV() Return the population standard deviation

SUM() Return the sum

VAR_POP()(v5.0.3) Return the population standard variance

VAR_SAMP()(v5.0.3) Return the sample variance

VARIANCE()(v4.1) Return the population standard variance

This section describes group (aggregate) functions that operate on sets of values. Unless otherwise stated, group functions ignore NULL
values.

If you use a group function in a statement containing no GROUP BY clause, it is equivalent to grouping on all rows.

For numeric arguments, the variance and standard deviation functions return a DOUBLE value. The SUM() and AVG() functions return
a DECIMAL value for exact-value arguments (integer or DECIMAL), and a DOUBLE value for approximate-value arguments (FLOAT or
DOUBLE).

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values to numbers, losing everything
after the first non-numeric character.) To work around this problem, you can convert to numeric units, perform the aggregate operation,
and convert back to a temporal value. Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;

Functions and Operators

772



SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if necessary. For SET or ENUM val-
ues, the cast operation causes the underlying numeric value to be used.

• AVG([DISTINCT] expr)

Returns the average value of expr. The DISTINCT option can be used to return the average of the distinct values of expr.

AVG() returns NULL if there were no matching rows.

mysql> SELECT student_name, AVG(test_score)
-> FROM student
-> GROUP BY student_name;

• BIT_AND(expr)

Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

This function returns 18446744073709551615 if there were no matching rows. (This is the value of an unsigned BIGINT
value with all bits set to 1.)

• BIT_OR(expr)

Returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

This function returns 0 if there were no matching rows.

• BIT_XOR(expr)

Returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

This function returns 0 if there were no matching rows.

• COUNT(expr)

Returns a count of the number of non-NULL values of expr in the rows retrieved by a SELECT statement. The result is a BIGINT
value.

COUNT() returns 0 if there were no matching rows.

mysql> SELECT student.student_name,COUNT(*)
-> FROM student,course
-> WHERE student.student_id=course.student_id
-> GROUP BY student_name;

COUNT(*) is somewhat different in that it returns a count of the number of rows retrieved, whether or not they contain NULL val-
ues.

COUNT(*) is optimized to return very quickly if the SELECT retrieves from one table, no other columns are retrieved, and there is
no WHERE clause. For example:

mysql> SELECT COUNT(*) FROM student;

This optimization applies only to MyISAM tables only, because an exact row count is stored for this storage engine and can be ac-
cessed very quickly. For transactional storage engines such as InnoDB, storing an exact row count is more problematic because
multiple transactions may be occurring, each of which may affect the count.

• COUNT(DISTINCT expr,[expr...])

Returns a count of the number of different non-NULL values.

COUNT(DISTINCT) returns 0 if there were no matching rows.

mysql> SELECT COUNT(DISTINCT results) FROM student;

Functions and Operators

773



In MySQL, you can obtain the number of distinct expression combinations that do not contain NULL by giving a list of expressions.
In standard SQL, you would have to do a concatenation of all expressions inside COUNT(DISTINCT ...).

• GROUP_CONCAT(expr)

This function returns a string result with the concatenated non-NULL values from a group. It returns NULL if there are no non-NULL
values. The full syntax is as follows:

GROUP_CONCAT([DISTINCT] expr [,expr ...]
[ORDER BY {unsigned_integer | col_name | expr}

[ASC | DESC] [,col_name ...]]
[SEPARATOR str_val])

mysql> SELECT student_name,
-> GROUP_CONCAT(test_score)
-> FROM student
-> GROUP BY student_name;

Or:

mysql> SELECT student_name,
-> GROUP_CONCAT(DISTINCT test_score
-> ORDER BY test_score DESC SEPARATOR ' ')
-> FROM student
-> GROUP BY student_name;

In MySQL, you can get the concatenated values of expression combinations. You can eliminate duplicate values by using DIS-
TINCT. If you want to sort values in the result, you should use ORDER BY clause. To sort in reverse order, add the DESC
(descending) keyword to the name of the column you are sorting by in the ORDER BY clause. The default is ascending order; this
may be specified explicitly using the ASC keyword. SEPARATOR is followed by the string value that should be inserted between
values of result. The default is a comma (“,”). You can eliminate the separator altogether by specifying SEPARATOR ''.

The result is truncated to the maximum length that is given by the group_concat_max_len system variable, which has a de-
fault value of 1024. The value can be set higher, although the effective maximum length of the return value is constrained by the
value of max_allowed_packet. The syntax to change the value of group_concat_max_len at runtime is as follows, where
val is an unsigned integer:

SET [SESSION | GLOBAL] group_concat_max_len = val;

The type returned by GROUP_CONCAT() is always VARCHAR unless group_concat_max_len is greater than 512, in which
case, it returns a BLOB.

See also CONCAT() and CONCAT_WS(): Section 11.4, “String Functions”.

• MAX([DISTINCT] expr)

Returns the maximum value of expr. MAX() may take a string argument; in such cases, it returns the maximum string value. See
Section 7.4.5, “How MySQL Uses Indexes”. The DISTINCT keyword can be used to find the maximum of the distinct values of
expr, however, this produces the same result as omitting DISTINCT.

MAX() returns NULL if there were no matching rows.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
-> FROM student
-> GROUP BY student_name;

For MAX(), MySQL currently compares ENUM and SET columns by their string value rather than by the string's relative position in
the set. This differs from how ORDER BY compares them. This is expected to be rectified in a future MySQL release.

• MIN([DISTINCT] expr)

Returns the minimum value of expr. MIN() may take a string argument; in such cases, it returns the minimum string value. See
Section 7.4.5, “How MySQL Uses Indexes”. The DISTINCT keyword can be used to find the minimum of the distinct values of
expr, however, this produces the same result as omitting DISTINCT.

MIN() returns NULL if there were no matching rows.

Functions and Operators

774



mysql> SELECT student_name, MIN(test_score), MAX(test_score)
-> FROM student
-> GROUP BY student_name;

For MIN(), MySQL currently compares ENUM and SET columns by their string value rather than by the string's relative position in
the set. This differs from how ORDER BY compares them. This is expected to be rectified in a future MySQL release.

• STD(expr)

Returns the population standard deviation of expr. This is an extension to standard SQL. The standard SQL function
STDDEV_POP() can be used instead.

This function returns NULL if there were no matching rows.

• STDDEV(expr)

Returns the population standard deviation of expr. This function is provided for compatibility with Oracle. The standard SQL
function STDDEV_POP() can be used instead.

This function returns NULL if there were no matching rows.

• STDDEV_POP(expr)

Returns the population standard deviation of expr (the square root of VAR_POP()). You can also use STD() or STDDEV(),
which are equivalent but not standard SQL.

STDDEV_POP() returns NULL if there were no matching rows.

• STDDEV_SAMP(expr)

Returns the sample standard deviation of expr (the square root of VAR_SAMP().

STDDEV_SAMP() returns NULL if there were no matching rows.

• SUM([DISTINCT] expr)

Returns the sum of expr. If the return set has no rows, SUM() returns NULL. The DISTINCT keyword can be used in MySQL 5.1
to sum only the distinct values of expr.

SUM() returns NULL if there were no matching rows.

• VAR_POP(expr)

Returns the population standard variance of expr. It considers rows as the whole population, not as a sample, so it has the number
of rows as the denominator. You can also use VARIANCE(), which is equivalent but is not standard SQL.

VAR_POP() returns NULL if there were no matching rows.

• VAR_SAMP(expr)

Returns the sample variance of expr. That is, the denominator is the number of rows minus one.

VAR_SAMP() returns NULL if there were no matching rows.

• VARIANCE(expr)

Returns the population standard variance of expr. This is an extension to standard SQL. The standard SQL function VAR_POP()
can be used instead.

VARIANCE() returns NULL if there were no matching rows.

11.12.2. GROUP BY Modifiers
The GROUP BY clause allows a WITH ROLLUP modifier that causes extra rows to be added to the summary output. These rows rep-

Functions and Operators

775



resent higher-level (or super-aggregate) summary operations. ROLLUP thus allows you to answer questions at multiple levels of analys-
is with a single query. It can be used, for example, to provide support for OLAP (Online Analytical Processing) operations.

Suppose that a table named sales has year, country, product, and profit columns for recording sales profitability:

CREATE TABLE sales
(

year INT NOT NULL,
country VARCHAR(20) NOT NULL,
product VARCHAR(32) NOT NULL,
profit INT

);

The table's contents can be summarized per year with a simple GROUP BY like this:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+-------------+

This output shows the total profit for each year, but if you also want to determine the total profit summed over all years, you must add
up the individual values yourself or run an additional query.

Or you can use ROLLUP, which provides both levels of analysis with a single query. Adding a WITH ROLLUP modifier to the GROUP
BY clause causes the query to produce another row that shows the grand total over all year values:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
| NULL | 7535 |
+------+-------------+

The grand total super-aggregate line is identified by the value NULL in the year column.

ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case, each time there is a “break” (change in
value) in any but the last grouping column, the query produces an extra super-aggregate summary row.

For example, without ROLLUP, a summary on the sales table based on year, country, and product might look like this:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
| 2000 | Finland | Computer | 1500 |
| 2000 | Finland | Phone | 100 |
| 2000 | India | Calculator | 150 |
| 2000 | India | Computer | 1200 |
| 2000 | USA | Calculator | 75 |
| 2000 | USA | Computer | 1500 |
| 2001 | Finland | Phone | 10 |
| 2001 | USA | Calculator | 50 |
| 2001 | USA | Computer | 2700 |
| 2001 | USA | TV | 250 |
+------+---------+------------+-------------+

The output indicates summary values only at the year/country/product level of analysis. When ROLLUP is added, the query produces
several extra rows:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product WITH ROLLUP;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
| 2000 | Finland | Computer | 1500 |
| 2000 | Finland | Phone | 100 |
| 2000 | Finland | NULL | 1600 |
| 2000 | India | Calculator | 150 |
| 2000 | India | Computer | 1200 |
| 2000 | India | NULL | 1350 |

Functions and Operators

776



| 2000 | USA | Calculator | 75 |
| 2000 | USA | Computer | 1500 |
| 2000 | USA | NULL | 1575 |
| 2000 | NULL | NULL | 4525 |
| 2001 | Finland | Phone | 10 |
| 2001 | Finland | NULL | 10 |
| 2001 | USA | Calculator | 50 |
| 2001 | USA | Computer | 2700 |
| 2001 | USA | TV | 250 |
| 2001 | USA | NULL | 3000 |
| 2001 | NULL | NULL | 3010 |
| NULL | NULL | NULL | 7535 |
+------+---------+------------+-------------+

For this query, adding ROLLUP causes the output to include summary information at four levels of analysis, not just one. Here's how to
interpret the ROLLUP output:

• Following each set of product rows for a given year and country, an extra summary row is produced showing the total for all
products. These rows have the product column set to NULL.

• Following each set of rows for a given year, an extra summary row is produced showing the total for all countries and products.
These rows have the country and products columns set to NULL.

• Finally, following all other rows, an extra summary row is produced showing the grand total for all years, countries, and products.
This row has the year, country, and products columns set to NULL.

Other Considerations When using ROLLUP

The following items list some behaviors specific to the MySQL implementation of ROLLUP:

When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. In other words, ROLLUP and ORDER BY are mu-
tually exclusive. However, you still have some control over sort order. GROUP BY in MySQL sorts results, and you can use explicit
ASC and DESC keywords with columns named in the GROUP BY list to specify sort order for individual columns. (The higher-level
summary rows added by ROLLUP still appear after the rows from which they are calculated, regardless of the sort order.)

LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after ROLLUP, so the limit applies against
the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product WITH ROLLUP
-> LIMIT 5;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
| 2000 | Finland | Computer | 1500 |
| 2000 | Finland | Phone | 100 |
| 2000 | Finland | NULL | 1600 |
| 2000 | India | Calculator | 150 |
| 2000 | India | Computer | 1200 |
+------+---------+------------+-------------+

Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because you have less context for understanding
the super-aggregate rows.

The NULL indicators in each super-aggregate row are produced when the row is sent to the client. The server looks at the columns
named in the GROUP BY clause following the leftmost one that has changed value. For any column in the result set with a name that is
a lexical match to any of those names, its value is set to NULL. (If you specify grouping columns by column number, the server identi-
fies which columns to set to NULL by number.)

Because the NULL values in the super-aggregate rows are placed into the result set at such a late stage in query processing, you cannot
test them as NULL values within the query itself. For example, you cannot add HAVING product IS NULL to the query to elimin-
ate from the output all but the super-aggregate rows.

On the other hand, the NULL values do appear as NULL on the client side and can be tested as such using any MySQL client program-
ming interface.

11.12.3. GROUP BY and HAVING with Hidden Fields
MySQL extends the use of GROUP BY so that you can use non-aggregated columns or calculations in the SELECT list that do not ap-

Functions and Operators

777



pear in the GROUP BY clause. You can use this feature to get better performance by avoiding unnecessary column sorting and group-
ing. For example, you do not need to group on customer.name in the following query:

SELECT order.custid, customer.name, MAX(payments)
FROM order,customer
WHERE order.custid = customer.custid
GROUP BY order.custid;

In standard SQL, you would have to add customer.name to the GROUP BY clause. In MySQL, the name is redundant.

Do not use this feature if the columns you omit from the GROUP BY part are not constant in the group. The server is free to return any
value from the group, so the results are indeterminate unless all values are the same.

A similar MySQL extension applies to the HAVING clause. The SQL standard does not allow the HAVING clause to name any column
that is not found in the GROUP BY clause if it is not enclosed in an aggregate function. MySQL allows the use of such columns to sim-
plify calculations. This extension assumes that the non-grouped columns will have the same group-wise values. Otherwise, the result is
indeterminate.

If the ONLY_FULL_GROUP_BY SQL mode is enabled, the MySQL extension to GROUP BY does not apply. That is, columns not
named in the GROUP BY clause cannot be used in the SELECT list or HAVING clause if not used in an aggregate function.

The select list extension also applies to ORDER BY. That is, you can use non-aggregated columns or calculations in the ORDER BY
clause that do not appear in the GROUP BY clause. This extension does not apply if the ONLY_FULL_GROUP_BY SQL mode is en-
abled.

In some cases, you can use MIN() and MAX() to obtain a specific column value even if it isn't unique. The following gives the value of
column from the row containing the smallest value in the sort column:

SUBSTR(MIN(CONCAT(RPAD(sort,6,' '),column)),7)

See Section 3.6.4, “The Rows Holding the Group-wise Maximum of a Certain Field”.

Note that if you are trying to follow standard SQL, you can't use expressions in GROUP BY clauses. You can work around this limita-
tion by using an alias for the expression:

SELECT id,FLOOR(value/100) AS val
FROM tbl_name
GROUP BY id, val;

MySQL does allow expressions in GROUP BY clauses. For example:

SELECT id,FLOOR(value/100)
FROM tbl_name
GROUP BY id, FLOOR(value/100);

Functions and Operators

778



Chapter 12. SQL Statement Syntax
This chapter describes the syntax for most of the SQL statements supported by MySQL. Additional statement descriptions can be found
in the following chapters:

• Statements for writing stored routines are covered in Chapter 20, Stored Procedures and Functions.

• Statements for writing triggers are covered in Chapter 21, Triggers.

• View-related statements are covered in Chapter 23, Views.

• Statements for scheduling events are covered in Chapter 22, Event Scheduler.

12.1. Data Definition Statements

12.1.1. ALTER DATABASE Syntax
ALTER {DATABASE | SCHEMA} [db_name]

alter_specification ...
ALTER {DATABASE | SCHEMA} db_name

UPGRADE DATA DIRECTORY NAME

alter_specification:
[DEFAULT] CHARACTER SET [=] charset_name

| [DEFAULT] COLLATE [=] collation_name

ALTER DATABASE enables you to change the overall characteristics of a database. These characteristics are stored in the db.opt file
in the database directory. To use ALTER DATABASE, you need the ALTER privilege on the database. ALTER SCHEMA is a synonym
for ALTER DATABASE.

The CHARACTER SET clause changes the default database character set. The COLLATE clause changes the default database collation.
Section 9.1, “Character Set Support”, discusses character set and collation names.

You can see what character sets and collations are available using, respectively, the SHOW CHARACTER SET and SHOW COLLA-
TION statements. See Section 12.5.4.2, “SHOW CHARACTER SET Syntax”, and Section 12.5.4.3, “SHOW COLLATION Syntax”, for
more information.

The database name can be omitted from the first syntax, in which case the statement applies to the default database.

The syntax that includes the UPGRADE DATA DIRECTORY NAME clause was added in MySQL 5.1.23. It updates the name of the
directory associated with the database to use the encoding implemented in MySQL 5.1 for mapping database names to database direct-
ory names (see Section 8.2.3, “Mapping of Identifiers to Filenames”). This clause is for use under these conditions:

• It is intended when upgrading MySQL to 5.1 or later from older versions.

• It is intended to update a database directory name to the current encoding format if the name contains special characters that need
encoding.

• The statement is used by mysqlcheck (as invoked by mysql_upgrade).

For example,if a database in MySQL 5.0 has a name of a-b-c, the name contains instance of the ‘-’ character. In 5.0, the database dir-
ectory is also named a-b-c, which is not necessarily safe for all filesystems. In MySQL 5.1 and up, the same database name is en-
coded as a@002db@002dc to produce a filesystem-neutral directory name.

When a MySQL installation is upgraded to MySQL 5.1 or later from an older version,the server displays a name such as a-b-c (which
is in the old format) as #mysql50#a-b-c, and you must refer to the name using the #mysql50# prefix. Use UPGRADE DATA
DIRECTORY NAME in this case to explicitly tell the server to re-encode the database directory name to the current encoding format:

ALTER DATABASE `#mysql50#a-b-c` UPGRADE DATA DIRECTORY NAME;

After executing this statement, you can refer to the database as a-b-c without the special #mysql50# prefix.

779



MySQL Enterprise
In a production environment, alteration of a database is not a common occurrence and may indicate a security
breach. Advisors provided as part of the MySQL Enterprise Monitor automatically alert you when data definition
statements are issued. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

12.1.2. ALTER LOGFILE GROUP Syntax
ALTER LOGFILE GROUP logfile_group

ADD UNDOFILE 'file_name'
[INITIAL_SIZE [=] size]
[WAIT]
ENGINE [=] engine_name

This statement adds an UNDO file named 'file_name' to an existing log file group logfile_group. An ALTER LOGFILE
GROUP statement has one and only one ADD UNDOFILE clause. No DROP UNDOFILE clause is supported.

The optional INITIAL_SIZE parameter sets the UNDO file's initial size in bytes; if not specified, the initial size default to 128M (128
megabytes). You may optionally follow size with a one-letter abbreviation for an order of magnitude, similar to those used in
my.cnf. Generally, this is one of the letters M (for megabytes) or G (for gigabytes).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4G. (Bug#29186)

WAIT is parsed but otherwise ignored, and so has no effect in MySQL 5.1. It is intended for future expansion.

The ENGINE parameter (required) determines the storage engine which is used by this log file group, with engine_name being the
name of the storage engine. In MySQL 5.1, the only accepted values for engine_name are NDB and NDBCLUSTER.

Here is an example, which assumes that the log file group lg_3 has already been created using CREATE LOGFILE GROUP (see Sec-
tion 12.1.8, “CREATE LOGFILE GROUP Syntax”):

ALTER LOGFILE GROUP lg_3
ADD UNDOFILE 'undo_10.dat'
INITIAL_SIZE=32M
ENGINE=NDB;

When ALTER LOGFILE GROUP is used with ENGINE = NDB, an UNDO log file is created on each Cluster data node. You can veri-
fy that the UNDO files were created and obtain information about them by querying the INFORMATION_SCHEMA.FILES table. For
example:

mysql> SELECT FILE_NAME, LOGFILE_GROUP_NUMBER, EXTRA
-> FROM INFORMATION_SCHEMA.FILES
-> WHERE LOGFILE_GROUP_NAME = 'lg_3';

+-------------+----------------------+----------------+
| FILE_NAME | LOGFILE_GROUP_NUMBER | EXTRA |
+-------------+----------------------+----------------+
| newdata.dat | 0 | CLUSTER_NODE=3 |
| newdata.dat | 0 | CLUSTER_NODE=4 |
| undo_10.dat | 11 | CLUSTER_NODE=3 |
| undo_10.dat | 11 | CLUSTER_NODE=4 |
+-------------+----------------------+----------------+
4 rows in set (0.01 sec)

(See Section 24.21, “The INFORMATION_SCHEMA FILES Table”.)

ALTER LOGFILE GROUP was added in MySQL 5.1.6. In MySQL 5.1, it is useful only with Disk Data storage for MySQL Cluster.
See Section 17.13, “MySQL Cluster Disk Data Tables”.

12.1.3. ALTER SERVER Syntax
ALTER SERVER server_name

OPTIONS (option [, option] ...)

Alters the server information for server_name, adjusting the specified options as per the CREATE SERVER command. See Sec-
tion 12.1.9, “CREATE SERVER Syntax”. The corresponding fields in the mysql.servers table are updated accordingly. This state-
ment requires the SUPER privilege.

For example, to update the USER option:

SQL Statement Syntax

780

http://www.mysql.com/products/enterprise/advisors.html
http://bugs.mysql.com/29186


ALTER SERVER s OPTIONS (USER 'sally');

ALTER SERVER does not cause an automatic commit.

ALTER SERVER was added in MySQL 5.1.15.

12.1.4. ALTER TABLE Syntax
ALTER [ONLINE | OFFLINE] [IGNORE] TABLE tbl_name

alter_specification [, alter_specification] ...

alter_specification:
table_option ...

| ADD [COLUMN] col_name column_definition
[FIRST | AFTER col_name ]

| ADD [COLUMN] (col_name column_definition,...)
| ADD {INDEX|KEY} [index_name]

[index_type] (index_col_name,...) [index_option ...]
| ADD [CONSTRAINT [symbol]] PRIMARY KEY

[index_type] (index_col_name,...) [index_option ...]
| ADD [CONSTRAINT [symbol]]

UNIQUE [INDEX|KEY] [index_name]
[index_type] (index_col_name,...) [index_option ...]

| ADD FULLTEXT [INDEX|KEY] [index_name]
(index_col_name,...) [index_option ...]

| ADD SPATIAL [INDEX|KEY] [index_name]
(index_col_name,...) [index_option ...]

| ADD [CONSTRAINT [symbol]]
FOREIGN KEY [index_name] (index_col_name,...)
reference_definition

| ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}
| CHANGE [COLUMN] old_col_name new_col_name column_definition

[FIRST|AFTER col_name]
| MODIFY [COLUMN] col_name column_definition

[FIRST | AFTER col_name]
| DROP [COLUMN] col_name
| DROP PRIMARY KEY
| DROP {INDEX|KEY} index_name
| DROP FOREIGN KEY fk_symbol
| DISABLE KEYS
| ENABLE KEYS
| RENAME [TO] new_tbl_name
| ORDER BY col_name [, col_name] ...
| CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
| [DEFAULT] CHARACTER SET [=] charset_name [COLLATE [=] collation_name]
| DISCARD TABLESPACE
| IMPORT TABLESPACE
| partition_options
| ADD PARTITION (partition_definition)
| DROP PARTITION partition_names
| COALESCE PARTITION number
| REORGANIZE PARTITION partition_names INTO (partition_definitions)
| ANALYZE PARTITION partition_names
| CHECK PARTITION partition_names
| OPTIMIZE PARTITION partition_names
| REBUILD PARTITION partition_names
| REPAIR PARTITION partition_names
| REMOVE PARTITIONING

index_col_name:
col_name [(length)] [ASC | DESC]

index_type:
USING {BTREE | HASH | RTREE}

index_option:
KEY_BLOCK_SIZE [=] value

| index_type
| WITH PARSER parser_name
| COMMENT 'string'

ALTER TABLE enables you to change the structure of an existing table. For example, you can add or delete columns, create or destroy
indexes, change the type of existing columns, or rename columns or the table itself. You can also change the comment for the table and
type of the table.

The syntax for many of the allowable alterations is similar to clauses of the CREATE TABLE statement. See Section 12.1.10, “CREATE
TABLE Syntax”, for more information.

Some operations may result in warnings if attempted on a table for which the storage engine does not support the operation. These
warnings can be displayed with SHOW WARNINGS. See Section 12.5.4.32, “SHOW WARNINGS Syntax”.

SQL Statement Syntax

781



In most cases, ALTER TABLE works by making a temporary copy of the original table. The alteration is performed on the copy, and
then the original table is deleted and the new one is renamed. While ALTER TABLE is executing, the original table is readable by other
clients. Updates and writes to the table are stalled until the new table is ready, and then are automatically redirected to the new table
without any failed updates. The temporary table is created in the database directory of the new table. This can be different from the
database directory of the original table if ALTER TABLE is renaming the table to a different database.

In some cases, no temporary table is necessary:

• Alterations that modify only table metadata and not table data can be made immediately by altering the table's .frm file and not
touching table contents. The following changes are fast alterations that can be made this way:

• Renaming a column or index.

• Changing the default value of a column.

• Changing the definition of an ENUM or SET column by adding new enumeration or set members to the end of the list of valid
member values.

In some cases, an operation such as changing a VARCHAR(10) column to VARCHAR(15) may be immediate, but this depends on
the storage engine for the table. A change such as VARCHAR(10) to a length greater than 255 is not immediate because data values
must be modified from using one byte to store the length to using two bytes.

• If you use ALTER TABLE tbl_name RENAME TO new_tbl_name without any other options, MySQL simply renames any
files that correspond to the table tbl_name. (You can also use the RENAME TABLE statement to rename tables. See Sec-
tion 12.1.19, “RENAME TABLE Syntax”.) Any privileges granted specifically for the renamed table are not migrated to the new
name. They must be changed manually.

• ALTER TABLE ... ADD PARTITION creates no temporary table except for MySQL Cluster. ADD or DROP operations for
RANGE or LIST partitions are immediate operations or nearly so. ADD or COALESCE operations for HASH or KEY partitions copy
data between changed partitions; unless LINEAR HASH or LINEAR KEY was used, this is much the same as creating a new table
(although the operation is done partition by partition). REORGANIZE operations copy only changed partitions and do not touch un-
changed ones.

If other cases, MySQL creates a temporary table, even if the data wouldn't strictly need to be copied. For MyISAM tables, you can speed
up the index re-creation operation (which is the slowest part of the alteration process) by setting the myisam_sort_buffer_size
system variable to a high value.

For information on troubleshooting ALTER TABLE, see Section B.1.7.1, “Problems with ALTER TABLE”.

• To use ALTER TABLE, you need ALTER, INSERT, and CREATE privileges for the table.

• MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

The ONLINE keyword can be used to perform online ADD COLUMN, ADD INDEX, and DROP INDEX operations on NDB tables.
Online adding and dropping of indexes is also supported for MyISAM tables. Online operations are non-copying; that is, they do not
require that indexes be re-created. Such operations do not require single user mode for NDB table alterations made in a cluster with
multiple API nodes; transactions can continue uninterrupted during online DDL operations.

Limitations. Online ALTER TABLE operations are subject to the following limitations:

• The table to be altered must have an explicit primary key; the hidden primary key created by the NDB storage engine is not suffi-
cient for this purpose. Columns to be added online must meet the following criteria:

• They must be dynamic; that is, it must be possible to create them using COLUMN_FORMAT DYNAMIC.

• They must be nullable, and not have any explicit default value other than NULL. Columns added online are automatically
created as DEFAULT NULL, as can be seen here:

mysql> CREATE TABLE t1 (c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER ONLINE TABLE t1 ADD COLUMN c2 INT, ADD COLUMN c3 INT;

SQL Statement Syntax

782



Query OK, 0 rows affected, 2 warnings (0.93 sec)

mysql> SHOW CREATE TABLE t2\G
*************************** 1. row ***************************

Table: t2
Create Table: CREATE TABLE `t2` (
`c1` int(11) NOT NULL AUTO_INCREMENT,
`c2` int(11) DEFAULT NULL,
`c3` int(11) DEFAULT NULL,
PRIMARY KEY (`c1`)

) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

• Columns must be added following any existing columns. If you attempt to add a column online before any existing columns,
the statement fails with an error. Trying to add a column online using the FIRST keyword also fails.

In addition, existing table columns cannot be reordered online.

• The storage engine used by the table cannot be changed online.

If the storage engine supports online ALTER TABLE, then fixed-format columns will be converted to dynamic when columns
are added online, or when indexes are created or dropped online, as shown here:

mysql> CREATE TABLE t1 (c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER ONLINE TABLE t1 ADD COLUMN c2 INT, ADD COLUMN c3 INT;
Query OK, 0 rows affected, 2 warnings (0.93 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW WARNINGS;
+---------+------+---------------------------------------------------------------+
| Level | Code | Message |
+---------+------+---------------------------------------------------------------+
| Warning | 1475 | Converted FIXED field to DYNAMIC to enable on-line ADD COLUMN |
| Warning | 1475 | Converted FIXED field to DYNAMIC to enable on-line ADD COLUMN |
+---------+------+---------------------------------------------------------------+
2 rows in set (0.00 sec)

(Note that existing columns, including the table's primary key, need not be dynamic; only a column to be added online must be
dynamic.)

mysql> CREATE TABLE t2 (c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY COLUMN_FORMAT FIXED) ENGINE=NDB;
Query OK, 0 rows affected (2.10 sec)

mysql> ALTER ONLINE TABLE t2 ADD COLUMN c2 INT;
Query OK, 0 rows affected, 1 warning (0.78 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW WARNINGS;
+---------+------+---------------------------------------------------------------+
| Level | Code | Message |
+---------+------+---------------------------------------------------------------+
| Warning | 1475 | Converted FIXED field to DYNAMIC to enable on-line ADD COLUMN |
+---------+------+---------------------------------------------------------------+
1 row in set (0.00 sec)

For more information about COLUMN_FORMAT, see Section 12.1.10, “CREATE TABLE Syntax”.

• Online DROP COLUMN operations are not supported.

• A given online ALTER TABLE can use only one of ADD COLUMN, ADD INDEX, or DROP INDEX. One or more columns can
be added online in a single statement; only one index may be created or dropped online in a single statement.

The KEY, CONSTRAINT, and IGNORE keywords are supported in ALTER TABLE statements using the ONLINE keyword.

The ONLINE keyword was added in MySQL 5.1.22-ndb-6.2.5 and MySQL 5.1.22-ndb-6.3.2.

Note

The CREATE INDEX and DROP INDEX statements also support online operations, as well as the ONLINE and OFF-
LINE keywords. See Section 12.1.7, “CREATE INDEX Syntax”, and Section 12.1.13, “DROP INDEX Syntax”, for more

SQL Statement Syntax

783



information.

The following information applies to all MySQL users.

• IGNORE is a MySQL extension to standard SQL. It controls how ALTER TABLE works if there are duplicates on unique keys in
the new table or if warnings occur when strict mode is enabled. If IGNORE is not specified, the copy is aborted and rolled back if
duplicate-key errors occur. If IGNORE is specified, only the first row is used of rows with duplicates on a unique key, The other
conflicting rows are deleted. Incorrect values are truncated to the closest matching acceptable value.

• table_option signifies a table option of the kind that can be used in the CREATE TABLE statement, such as ENGINE,
AUTO_INCREMENT, or AVG_ROW_LENGTH. (Section 12.1.10, “CREATE TABLE Syntax”, lists all table options.) However, AL-
TER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

For example, to convert a table to be an InnoDB table, use this statement:

ALTER TABLE t1 ENGINE = InnoDB;

The outcome of attempting to change a table's storage engine is affected by whether the desired storage engine is available and the
setting of the NO_ENGINE_SUBSTITUTION SQL mode, as described in Section 5.1.6, “SQL Modes”.

As of MySQL 5.1.11, to prevent inadvertent loss of data, ALTER TABLE cannot be used to change the storage engine of a table to
MERGE or BLACKHOLE.

To change the value of the AUTO_INCREMENT counter to be used for new rows, do this:

ALTER TABLE t2 AUTO_INCREMENT = value;

You cannot reset the counter to a value less than or equal to any that have already been used. For MyISAM, if the value is less than
or equal to the maximum value currently in the AUTO_INCREMENT column, the value is reset to the current maximum plus one.
For InnoDB, if the value is less than the current maximum value in the column, no error occurs and the current sequence value is
not changed.

• You can issue multiple ADD, ALTER, DROP, and CHANGE clauses in a single ALTER TABLE statement, separated by commas.
This is a MySQL extension to standard SQL, which allows only one of each clause per ALTER TABLE statement. For example, to
drop multiple columns in a single statement, do this:

ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;

• CHANGE col_name, DROP col_name, and DROP INDEX are MySQL extensions to standard SQL.

• MODIFY is an Oracle extension to ALTER TABLE.

• The word COLUMN is optional and can be omitted.

• column_definition clauses use the same syntax for ADD and CHANGE as for CREATE TABLE. See Section 12.1.10, “CRE-
ATE TABLE Syntax”.

• You can rename a column using a CHANGE old_col_name new_col_name column_definition clause. To do so, spe-
cify the old and new column names and the definition that the column currently has. For example, to rename an INTEGER column
from a to b, you can do this:

ALTER TABLE t1 CHANGE a b INTEGER;

If you want to change a column's type but not the name, CHANGE syntax still requires an old and new column name, even if they are
the same. For example:

ALTER TABLE t1 CHANGE b b BIGINT NOT NULL;

You can also use MODIFY to change a column's type without renaming it:

ALTER TABLE t1 MODIFY b BIGINT NOT NULL;

• If you use CHANGE or MODIFY to shorten a column for which an index exists on the column, and the resulting column length is less

SQL Statement Syntax

784



than the index length, MySQL shortens the index automatically.

• When you change a data type using CHANGE or MODIFY, MySQL tries to convert existing column values to the new type as well as
possible.

Warning

This conversion may result in alteration of data. For example, if you shorten a string column, values may be truncated. To
prevent the operation from succeeding if conversions to the new data type would result in loss of data, enable strict SQL
mode before using ALTER TABLE (see Section 5.1.6, “SQL Modes”).

• To add a column at a specific position within a table row, use FIRST or AFTER col_name. The default is to add the column last.
You can also use FIRST and AFTER in CHANGE or MODIFY operations to reorder columns within a table.

• ALTER ... SET DEFAULT or ALTER ... DROP DEFAULT specify a new default value for a column or remove the old de-
fault value, respectively. If the old default is removed and the column can be NULL, the new default is NULL. If the column cannot
be NULL, MySQL assigns a default value as described in Section 10.1.4, “Data Type Default Values”.

• DROP INDEX removes an index. This is a MySQL extension to standard SQL. See Section 12.1.13, “DROP INDEX Syntax”. If
you are unsure of the index name, use SHOW INDEX FROM tbl_name.

• If columns are dropped from a table, the columns are also removed from any index of which they are a part. If all columns that make
up an index are dropped, the index is dropped as well.

• If a table contains only one column, the column cannot be dropped. If what you intend is to remove the table, use DROP TABLE in-
stead.

• DROP PRIMARY KEY drops the primary key. If there is no primary key, an error occurs.

If you add a UNIQUE INDEX or PRIMARY KEY to a table, it is stored before any non-unique index so that MySQL can detect du-
plicate keys as early as possible.

• Some storage engines allow you to specify an index type when creating an index. The syntax for the index_type specifier is US-
ING type_name. For details about USING, see Section 12.1.7, “CREATE INDEX Syntax”. Before MySQL 5.1.10, USING can
be given only before the index column list. As of 5.1.10, the preferred position is after the column list. Use of the option before the
column list will no longer be recognized as of MySQL 5.3.

index_option values specify additional options for an index. USING is one such option. For details about allowable in-
dex_option values, see Section 12.1.7, “CREATE INDEX Syntax”.

• After an ALTER TABLE statement, it may be necessary to run ANALYZE TABLE to update index cardinality information. See Sec-
tion 12.5.4.18, “SHOW INDEX Syntax”.

• ORDER BY enables you to create the new table with the rows in a specific order. Note that the table does not remain in this order
after inserts and deletes. This option is useful primarily when you know that you are mostly to query the rows in a certain order most
of the time. By using this option after major changes to the table, you might be able to get higher performance. In some cases, it
might make sorting easier for MySQL if the table is in order by the column that you want to order it by later.

ORDER BY syntax allows for one or more column names to be specified for sorting, each of which optionally can be followed by
ASC or DESC to indicate ascending or descending sort order, respectively. The default is ascending order. Only column names are
allowed as sort criteria; arbitrary expressions are not allowed.

ORDER BY does not make sense for InnoDB tables that contain a user-defined clustered index (PRIMARY KEY or NOT NULL
UNIQUE index). InnoDB always orders table rows according to such an index if one is present.

Note

When used on a partitioned table, ALTER TABLE ... ORDER BY orders rows within each partition only.

• If you use ALTER TABLE on a MyISAM table, all non-unique indexes are created in a separate batch (as for REPAIR TABLE).
This should make ALTER TABLE much faster when you have many indexes.

This feature can be activated explicitly for a MyISAM table. ALTER TABLE ... DISABLE KEYS tells MySQL to stop updating
non-unique indexes. ALTER TABLE ... ENABLE KEYS then should be used to re-create missing indexes. MySQL does this
with a special algorithm that is much faster than inserting keys one by one, so disabling keys before performing bulk insert opera-
tions should give a considerable speedup. Using ALTER TABLE ... DISABLE KEYS requires the INDEX privilege in addition

SQL Statement Syntax

785



to the privileges mentioned earlier.

While the non-unique indexes are disabled, they are ignored for statements such as SELECT and EXPLAIN that otherwise would
use them.

ENABLE KEYS and DISABLE KEYS were not supported for partitioned tables prior to MySQL 5.1.11.

• If ALTER TABLE for an InnoDB table results in changes to column values (for example, because a column is truncated),
InnoDB's FOREIGN KEY constraint checks do not notice possible violations caused by changing the values.

• The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB storage engine, which implements ADD
[CONSTRAINT [symbol]] FOREIGN KEY (...) REFERENCES ... (...). See Section 13.5.6.4, “FOREIGN KEY
Constraints”. For other storage engines, the clauses are parsed but ignored. The CHECK clause is parsed but ignored by all storage
engines. See Section 12.1.10, “CREATE TABLE Syntax”. The reason for accepting but ignoring syntax clauses is for compatibility,
to make it easier to port code from other SQL servers, and to run applications that create tables with references. See Section 1.8.5,
“MySQL Differences from Standard SQL”.

Important

The inline REFERENCES specifications where the references are defined as part of the column specification are silently
ignored by InnoDB. InnoDB only accepts REFERENCES clauses defined as part of a separate FOREIGN KEY specifica-
tion.

Note

Partitioned tables do not support foreign keys. See Section 18.5, “Restrictions and Limitations on Partitioning”, for more
information.

• InnoDB supports the use of ALTER TABLE to drop foreign keys:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

For more information, see Section 13.5.6.4, “FOREIGN KEY Constraints”.

• You cannot add a foreign key and drop a foreign key in separate clauses of a single ALTER TABLE statement. You must use separ-
ate statements.

• For an InnoDB table that is created with its own tablespace in an .ibd file, that file can be discarded and imported. To discard the
.ibd file, use this statement:

ALTER TABLE tbl_name DISCARD TABLESPACE;

This deletes the current .ibd file, so be sure that you have a backup first. Attempting to access the table while the tablespace file is
discarded results in an error.

To import the backup .ibd file back into the table, copy it into the database directory, and then issue this statement:

ALTER TABLE tbl_name IMPORT TABLESPACE;

See Section 13.5.3.1, “Using Per-Table Tablespaces”.

• Pending INSERT DELAYED statements are lost if a table is write locked and ALTER TABLE is used to modify the table structure.

• If you want to change the table default character set and all character columns (CHAR, VARCHAR, TEXT) to a new character set, use
a statement like this:

ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name;

For a column that has a data type of VARCHAR or one of the TEXT types, CONVERT TO CHARACTER SET will change the data
type as necessary to ensure that the new column is long enough to store as many characters as the original column. For example, a
TEXT column has two length bytes, which store the byte-length of values in the column, up to a maximum of 65,535. For a lat-
in1 TEXT column, each character requires a single byte, so the column can store up to 65,535 characters. If the column is conver-
ted to utf8, each character might require up to three bytes, for a maximum possible length of 3 × 65,535 = 196,605 bytes. That
length will not fit in a TEXT column's length bytes, so MySQL will convert the data type to MEDIUMTEXT, which is the smallest

SQL Statement Syntax

786



string type for which the length bytes can record a value of 196,605. Similarly, a VARCHAR column might be converted to MEDI-
UMTEXT.

To avoid data type changes of the type just described, do not use CONVERT TO CHARACTER SET. Instead, use MODIFY to
change individual columns. For example:

ALTER TABLE t MODIFY latin1_text_col TEXT CHARACTER SET utf8;
ALTER TABLE t MODIFY latin1_varchar_col VARCHAR(M) CHARACTER SET utf8;

If you specify CONVERT TO CHARACTER SET binary, the CHAR, VARCHAR, and TEXT columns are converted to their cor-
responding binary string types (BINARY, VARBINARY, BLOB). This means that the columns no longer will have a character set and
a subsequent CONVERT TO operation will not apply to them.

If charset_name is DEFAULT, the database character set is used.

Warning

The CONVERT TO operation converts column values between the character sets. This is not what you want if you have a
column in one character set (like latin1) but the stored values actually use some other, incompatible character set (like
utf8). In this case, you have to do the following for each such column:

ALTER TABLE t1 CHANGE c1 c1 BLOB;
ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;

The reason this works is that there is no conversion when you convert to or from BLOB columns.

To change only the default character set for a table, use this statement:

ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;

The word DEFAULT is optional. The default character set is the character set that is used if you do not specify the character set for
columns that you add to a table later (for example, with ALTER TABLE ... ADD column).

• A number of partitioning-related extensions to ALTER TABLE were added in MySQL 5.1.5. These can be used with partitioned
tables for repartitioning, for adding, dropping, merging, and splitting partitions, and for performing partitioning maintenance.

Simply using a partition_options clause with ALTER TABLE on a partitioned table repartitions the table according to the
partitioning scheme defined by the partition_options. This clause always begins with PARTITION BY, and follows the
same syntax and other rules as apply to the partition_options clause for CREATE TABLE (see Section 12.1.10, “CREATE
TABLE Syntax”, for more detailed information), and can also be used to partition an existing table that is not already partitioned.
For example, consider a (non-partitioned) table defined as shown here:

CREATE TABLE t1 (
id INT,
year_col INT

);

This table can be partitioned by HASH, using the id column as the partitioning key, into 8 partitions by means of this statement:

ALTER TABLE t1
PARTITION BY HASH(id)
PARTITIONS 8;

The table that results from using an ALTER TABLE ... PARTITION BY statement must follow the same rules as one created
using CREATE TABLE ... PARTITION BY. This includes the rules governing the relationship between any unique keys
(including any primary key) that the table might have, and the column or columns used in the partitioning expression, as discussed
in Section 18.5.1, “Partitioning Keys, Primary Keys, and Unique Keys”. The CREATE TABLE ... PARTITION BY rules for
specifying the number of partitions also apply to ALTER TABLE ... PARTITION BY.

ALTER TABLE ... PARTITION BY became available in MySQL 5.1.6.

The partition_definition clause for ALTER TABLE ADD PARTITION supports the same options as the clause of the
same name for the CREATE TABLE statement. (See Section 12.1.10, “CREATE TABLE Syntax”, for the syntax and description.)
Suppose that you have the partitioned table created as shown here:

CREATE TABLE t1 (

SQL Statement Syntax

787



id INT,
year_col INT

)
PARTITION BY RANGE (year_col) (

PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1995),
PARTITION p2 VALUES LESS THAN (1999)

);

You can add a new partition p3 to this table for storing values less than 2002 as follows:

ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2002));

DROP PARTITION can be used to drop one or more RANGE or LIST partitions. This statement cannot be used with HASH or KEY
partitions; instead, use COALESCE PARTITION (see below). Any data that was stored in the dropped partitions named in the
partition_names list is discarded. For example, given the table t1 defined previously, you can drop the partitions named p0
and p1 as shown here:

ALTER TABLE t1 DROP PARTITION p0, p1;

Note

DROP PARTITION does not work with tables that use the NDB Cluster storage engine. See Section 18.3.1,
“Management of RANGE and LIST Partitions”, and Section 17.15, “Known Limitations of MySQL Cluster”.

ADD PARTITION and DROP PARTITION do not currently support IF [NOT] EXISTS. It is also not possible to rename a par-
tition or a partitioned table. Instead, if you wish to rename a partition, you must drop and re-create the partition; if you wish to re-
name a partitioned table, you must instead drop all partitions, rename the table, and then add back the partitions that were dropped.

COALESCE PARTITION can be used with a table that is partitioned by HASH or KEY to reduce the number of partitions by num-
ber. Suppose that you have created table t2 using the following definition:

CREATE TABLE t2 (
name VARCHAR (30),
started DATE

)
PARTITION BY HASH( YEAR(started) )
PARTITIONS 6;

You can reduce the number of partitions used by t2 from 6 to 4 using the following statement:

ALTER TABLE t2 COALESCE PARTITION 2;

The data contained in the last number partitions will be merged into the remaining partitions. In this case, partitions 4 and 5 will be
merged into the first 4 partitions (the partitions numbered 0, 1, 2, and 3).

To change some but not all the partitions used by a partitioned table, you can use REORGANIZE PARTITION. This statement can
be used in several ways:

• To merge a set of partitions into a single partition. This can be done by naming several partitions in the partition_names
list and supplying a single definition for partition_definition.

• To split an existing partition into several partitions. You can accomplish this by naming a single partition for parti-
tion_names and providing multiple partition_definitions.

• To change the ranges for a subset of partitions defined using VALUES LESS THAN or the value lists for a subset of partitions
defined using VALUES IN.

Note

For partitions that have not been explicitly named, MySQL automatically provides the default names p0, p1, p2, and so
on. As of MySQL 5.1.7, the same is true with regard to subpartitions.

For more detailed information about and examples of ALTER TABLE ... REORGANIZE PARTITION statements, see Sec-
tion 18.3, “Partition Management”.

SQL Statement Syntax

788



Important

Only a single PARTITION BY, ADD PARTITION, DROP PARTITION, REORGANIZE PARTITION, or COALESCE
PARTITION clause can be used in a given ALTER TABLE statement.

• Several additional options were introduced in MySQL 5.1.5 for providing partition maintenance and repair functionality analogous
to that implemented for non-partitioned tables by statements such as CHECK TABLE and REPAIR TABLE (which are not suppor-
ted for partitioned tables). These include ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, REBUILD
PARTITION, and REPAIR PARTITION. Each of these options takes a partition_names clause consisting of one or more
names of partitions, separated by commas. The partitions must already exist in the table to be altered. For more information and ex-
amples, see Section 18.3.3, “Maintenance of Partitions”.

The ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, and REPAIR PARTITION options were re-
moved in MySQL 5.1.24.

• REMOVE PARTITIONING was introduced in MySQL 5.1.8 for the purpose of removing a table's partitioning without otherwise
affecting the table or its data. (Previously, this was done using the ENGINE option.) This option can be combined with other AL-
TER TABLE options such as those used to add, drop, or rename drop columns or indexes.

• In MySQL 5.1.7 and earlier, using the ENGINE option with ALTER TABLE caused any partitioning that a table might have had to
be removed. Beginning with MySQL 5.1.8, this option merely changes the storage engine used by the table and no longer affects
partitioning in any way.

With the mysql_info() C API function, you can find out how many rows were copied, and (when IGNORE is used) how many rows
were deleted due to duplication of unique key values. See Section 26.2.3.35, “mysql_info()”.

Here are some examples that show uses of ALTER TABLE. Begin with a table t1 that is created as shown here:

CREATE TABLE t1 (a INTEGER,b CHAR(10));

To rename the table from t1 to t2:

ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to change column b from
CHAR(10) to CHAR(20) as well as renaming it from b to c:

ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

ALTER TABLE t2 ADD d TIMESTAMP;

To add an index on column d and a UNIQUE index on column a:

ALTER TABLE t2 ADD INDEX (d), ADD UNIQUE (a);

To remove column c:

ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
ADD PRIMARY KEY (c);

Note that we indexed c (as a PRIMARY KEY) because AUTO_INCREMENT columns must be indexed, and also that we declare c as
NOT NULL because primary key columns cannot be NULL.

When you add an AUTO_INCREMENT column, column values are filled in with sequence numbers automatically. For MyISAM tables,
you can set the first sequence number by executing SET INSERT_ID=value before ALTER TABLE or by using the

SQL Statement Syntax

789



AUTO_INCREMENT=value table option. See Section 12.5.3, “SET Syntax”.

With MyISAM tables, if you do not change the AUTO_INCREMENT column, the sequence number is not affected. If you drop an
AUTO_INCREMENT column and then add another AUTO_INCREMENT column, the numbers are resequenced beginning with 1.

When replication is used, adding an AUTO_INCREMENT column to a table might not produce the same ordering of the rows on the
slave and the master. This occurs because the order in which the rows are numbered depends on the specific storage engine used for the
table and the order in which the rows were inserted. If it is important to have the same order on the master and slave, the rows must be
ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an AUTO_INCREMENT column to the table
t1, the following statements produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 (id INT AUTO_INCREMENT PRIMARY KEY)
SELECT * FROM t1 ORDER BY col1, col2;

This assumes that the table t1 has columns col1 and col2.

This set of statements will also produce a new table t2 identical to t1, with the addition of an AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE T2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both master and slave, all columns of t1 must be referenced in the ORDER BY clause.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column, the final step is to drop the ori-
ginal table and then rename the copy:

DROP t1;
ALTER TABLE t2 RENAME t1;

12.1.5. ALTER TABLESPACE Syntax
ALTER TABLESPACE tablespace_name

{ADD|DROP} DATAFILE 'file_name'
[INITIAL_SIZE [=] size]
[WAIT]
ENGINE [=] engine_name

This statement can be used either to add a new data file, or to drop a data file from a tablespace.

The ADD DATAFILE variant allows you to specify an initial size using an INITIAL_SIZE clause, where size is measured in bytes;
the default value is 128M (128 megabytes). You may optionally follow this integer value with a one-letter abbreviation for an order of
magnitude, similar to those used in my.cnf. Generally, this is one of the letters M (for megabytes) or G (for gigabytes).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4G. (Bug#29186)

Once a data file has been created, its size cannot be changed; however, you can add more data files to the tablespace using additional
ALTER TABLESPACE ... ADD DATAFILE statements.

Using DROP DATAFILE with ALTER TABLESPACE drops the data file 'file_name' from the tablespace. This file must already
have been added to the tablespace using CREATE TABLESPACE or ALTER TABLESPACE; otherwise an error will result.

Both ALTER TABLESPACE ... ADD DATAFILE and ALTER TABLESPACE ... DROP DATAFILE require an ENGINE
clause which specifies the storage engine used by the tablespace. In MySQL 5.1, the only accepted values for engine_name are NDB
and NDBCLUSTER.

WAIT is parsed but otherwise ignored, and so has no effect in MySQL 5.1. It is intended for future expansion.

When ALTER TABLESPACE ... ADD DATAFILE is used with ENGINE = NDB, a data file is created on each Cluster data node.
You can verify that the data files were created and obtain information about them by querying the INFORMATION_SCHEMA.FILES
table. For example, the following query shows all data files belonging to the tablespace named newts:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_NAME, EXTRA
-> FROM INFORMATION_SCHEMA.FILES
-> WHERE TABLESPACE_NAME = 'newts' AND FILE_TYPE = 'DATAFILE';

+--------------------+--------------+----------------+

SQL Statement Syntax

790

http://bugs.mysql.com/29186


| LOGFILE_GROUP_NAME | FILE_NAME | EXTRA |
+--------------------+--------------+----------------+
| lg_3 | newdata.dat | CLUSTER_NODE=3 |
| lg_3 | newdata.dat | CLUSTER_NODE=4 |
| lg_3 | newdata2.dat | CLUSTER_NODE=3 |
| lg_3 | newdata2.dat | CLUSTER_NODE=4 |
+--------------------+--------------+----------------+
2 rows in set (0.03 sec)

See Section 24.21, “The INFORMATION_SCHEMA FILES Table”.

ALTER TABLESPACE was added in MySQL 5.1.6. In MySQL 5.1, it is useful only with Disk Data storage for MySQL Cluster. See
Section 17.13, “MySQL Cluster Disk Data Tables”.

12.1.6. CREATE DATABASE Syntax
CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

[create_specification ...]

create_specification:
[DEFAULT] CHARACTER SET [=] charset_name

| [DEFAULT] COLLATE [=] collation_name

CREATE DATABASE creates a database with the given name. To use this statement, you need the CREATE privilege for the database.
CREATE SCHEMA is a synonym for CREATE DATABASE.

An error occurs if the database exists and you did not specify IF NOT EXISTS.

create_specification options specify database characteristics. Database characteristics are stored in the db.opt file in the
database directory. The CHARACTER SET clause specifies the default database character set. The COLLATE clause specifies the de-
fault database collation. Section 9.1, “Character Set Support”, discusses character set and collation names.

A database in MySQL is implemented as a directory containing files that correspond to tables in the database. Because there are no
tables in a database when it is initially created, the CREATE DATABASE statement creates only a directory under the MySQL data dir-
ectory and the db.opt file. Rules for allowable database names are given in Section 8.2, “Schema Object Names”. If a database name
contains special characters, the name for the database directory contains encoded versions of those characters as described in Sec-
tion 8.2.3, “Mapping of Identifiers to Filenames”.

If you manually create a directory under the data directory (for example, with mkdir), the server considers it a database directory and it
shows up in the output of SHOW DATABASES.

You can also use the mysqladmin program to create databases. See Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”.

12.1.7. CREATE INDEX Syntax
CREATE [ONLINE|OFFLINE] [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name

[index_type]
ON tbl_name (index_col_name,...)
[index_option ...]

index_col_name:
col_name [(length)] [ASC | DESC]

index_type:
USING {BTREE | HASH | RTREE}

index_option:
KEY_BLOCK_SIZE [=] value

| index_type
| WITH PARSER parser_name

CREATE INDEX is mapped to an ALTER TABLE statement to create indexes. See Section 12.1.4, “ALTER TABLE Syntax”. CRE-
ATE INDEX cannot be used to create a PRIMARY KEY; use ALTER TABLE instead. For more information about indexes, see Sec-
tion 7.4.5, “How MySQL Uses Indexes”.

Normally, you create all indexes on a table at the time the table itself is created with CREATE TABLE. See Section 12.1.10, “CREATE
TABLE Syntax”. CREATE INDEX enables you to add indexes to existing tables.

A column list of the form (col1,col2,...) creates a multiple-column index. Index values are formed by concatenating the values
of the given columns.

SQL Statement Syntax

791



Indexes can be created that use only the leading part of column values, using col_name(length) syntax to specify an index prefix
length:

• Prefixes can be specified for CHAR, VARCHAR, BINARY, and VARBINARY columns.

• BLOB and TEXT columns also can be indexed, but a prefix length must be given.

• Prefix lengths are given in characters for non-binary string types and in bytes for binary string types. That is, index entries consist of
the first length characters of each column value for CHAR, VARCHAR, and TEXT columns, and the first length bytes of each
column value for BINARY, VARBINARY, and BLOB columns.

• For spatial columns, prefix values can be given as described later in this section.

The statement shown here creates an index using the first 10 characters of the name column:

CREATE INDEX part_of_name ON customer (name(10));

If names in the column usually differ in the first 10 characters, this index should not be much slower than an index created from the en-
tire name column. Also, using column prefixes for indexes can make the index file much smaller, which could save a lot of disk space
and might also speed up INSERT operations.

Prefix lengths are storage engine-dependent (for example, a prefix can be up to 1000 bytes long for MyISAM tables, 767 bytes for In-
noDB tables). Note that prefix limits are measured in bytes, whereas the prefix length in CREATE INDEX statements is interpreted as
number of characters for non-binary data types (CHAR, VARCHAR, TEXT). Take this into account when specifying a prefix length for a
column that uses a multi-byte character set. For example, utf8 columns require up to three index bytes per character.

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edition
only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade Edi-
tion”.

Beginning with MySQL 5.1.22-ndb-6.2.5 and MySQL 5.1.22-ndb-6.3.3, you can add indexes online, using the ONLINE keyword. This
means that the creation of the index does not require the affected table to be copied. You can also add indexes offline, which does cause
the table to be copied, using OFFLINE. The rules and limitations governing online CREATE ONLINE INDEX and CREATE OFF-
LINE INDEX are the same as for ALTER ONLINE TABLE ... ADD INDEX and ALTER OFFLINE TABLE ... ADD IN-
DEX. For more information, see Section 12.1.4, “ALTER TABLE Syntax”.

The following information applies to all MySQL users.

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs if you try to add a new row with
a key value that matches an existing row. For all engines, a UNIQUE index allows multiple NULL values for columns that can contain
NULL. If you specify a prefix value for a column in a UNIQUE index, the column values must be unique within the prefix.

MySQL Enterprise
Lack of proper indexes can greatly reduce performance. Subscribe to the MySQL Enterprise Monitor for notific-
ation of inefficient use of indexes. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

FULLTEXT indexes are supported only for MyISAM tables and can include only CHAR, VARCHAR, and TEXT columns. Indexing al-
ways happens over the entire column; column prefix indexing is not supported and any prefix length is ignored if specified. See Sec-
tion 11.8, “Full-Text Search Functions”, for details of operation.

The MyISAM, InnoDB, NDB, BDB, and ARCHIVE storage engines support spatial columns such as (POINT and GEOMETRY.
(Chapter 19, Spatial Extensions, describes the spatial data types.) However, support for spatial column indexing varies among engines.
Spatial and non-spatial indexes are available according to the following rules.

Spatial indexes (created using SPATIAL INDEX):

• Available only for MyISAM tables. Specifying a SPATIAL INDEX for other storage engines results in an error.

• Indexed columns must be NOT NULL.

• In MySQL 5.1, column prefix lengths are prohibited. The full width of each column is indexed.

SQL Statement Syntax

792

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


Non-spatial indexes (created with INDEX, UNIQUE, or PRIMARY KEY):

• Allowed for any storage engine that supports spatial columns except ARCHIVE.

• Columns can be NULL unless the index is a primary key.

• For each spatial column in a non-SPATIAL index except POINT columns, a column prefix length must be specified. (This is the
same requirement as for indexed BLOB columns.) The prefix length is given in bytes.

• The index type for a non-SPATIAL index depends on the storage engine. Currently, B-tree is used.

In MySQL 5.1:

• You can add an index on a column that can have NULL values only if you are using the MyISAM, InnoDB, or MEMORY storage en-
gine.

• You can add an index on a BLOB or TEXT column only if you are using the MyISAM, or InnoDB storage engine.

An index_col_name specification can end with ASC or DESC. These keywords are allowed for future extensions for specifying as-
cending or descending index value storage. Currently, they are parsed but ignored; index values are always stored in ascending order.

As of MySQL 5.1.10, index options can be given following the index column list. An index_option value can be any of the follow-
ing:

• KEY_BLOCK_SIZE [=] value

This option provides a hint to the storage engine about the size in bytes to use for index key blocks. The engine is allowed to change
the value if necessary. A value of 0 indicates that the default value should be used.

• index_type

Some storage engines allow you to specify an index type when creating an index. The allowable index type values supported by dif-
ferent storage engines are shown in the following table. Where multiple index types are listed, the first one is the default when no in-
dex type specifier is given.

Storage Engine Allowable Index Types

MyISAM BTREE, RTREE

InnoDB BTREE

MEMORY/HEAP HASH, BTREE

NDB HASH

The RTREE index type is allowable only for SPATIAL indexes.

If you specify an index type that is not legal for a given storage engine, but there is another index type available that the engine can
use without affecting query results, the engine uses the available type.

Examples:

CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index USING BTREE ON lookup (id);

For indexes on NDB table columns, the USING clause can be specified only for a unique index or primary key. In such cases, the
USING HASH clause prevents the creation of an implicit ordered index. Without USING HASH, a statement defining a unique in-
dex or primary key automatically results in the creation of a HASH index in addition to the ordered index, both of which index the
same set of columns.

TYPE type_name is recognized as a synonym for USING type_name. However, USING is the preferred form.

SQL Statement Syntax

793



Before MySQL 5.1.10, this option can be given only before the ON tbl_name clause. Use of the option in this position is deprec-
ated as of 5.1.10; support for it is to be dropped in a future MySQL release. If an index_type option is given in both the earlier
and later positions, the final option applies.

• WITH PARSER parser_name

This option can be used only with FULLTEXT indexes. It associates a parser plugin with the index if full-text indexing and search-
ing operations need special handling. See Section 29.2, “The MySQL Plugin Interface”, for details on creating plugins.

12.1.8. CREATE LOGFILE GROUP Syntax
CREATE LOGFILE GROUP logfile_group

ADD UNDOFILE 'undo_file'
[INITIAL_SIZE [=] initial_size]
[UNDO_BUFFER_SIZE [=] undo_buffer_size]
[REDO_BUFFER_SIZE [=] redo_buffer_size]
[NODEGROUP [=] nodegroup_id]
[WAIT]
[COMMENT [=] comment_text]
ENGINE [=] engine_name

This statement creates a new log file group named logfile_group having a single UNDO file named 'undo_file'. A CREATE
LOGFILE GROUP statement has one and only one ADD UNDOFILE clause. For rules covering the naming of log file groups, see Sec-
tion 8.2, “Schema Object Names”.

Beginning with MySQL 5.1.8, you can have only one log file group per Cluster at any given time. (See Bug#16386)

The optional INITIAL_SIZE parameter sets the UNDO file's initial size; if not specified, it defaults to 128M (128 megabytes). The op-
tional UNDO_BUFFFER_SIZE parameter sets the size used by the UNDO buffer for the log file group; The default value for
UNDO_BUFFER_SIZE is 8M (eight megabytes); this value cannot exceed the amount of system memory available. Both of these para-
meters are specified in bytes. You may optionally follow either or both of these with a one-letter abbreviation for an order of magnitude,
similar to those used in my.cnf. Generally, this is one of the letters M (for megabytes) or G (for gigabytes).

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4G. (Bug#29186)

The ENGINE parameter determines the storage engine to be used by this log file group, with engine_name being the name of the
storage engine. In MySQL 5.1. engine_name must be one of the values NDB or NDBCLUSTER.

REDO_BUFFER_SIZE, NODEGROUP, WAIT, and COMMENT are parsed but ignored, and so have no effect in MySQL 5.1. These op-
tions are intended for future expansion.

When used with ENGINE [=] NDB, a log file group and associated UNDO log file are created on each Cluster data node. You can
verify that the UNDO files were created and obtain information about them by querying the INFORMATION_SCHEMA.FILES table.
For example:

mysql> SELECT LOGFILE_GROUP_NAME, LOGFILE_GROUP_NUMBER, EXTRA
-> FROM INFORMATION_SCHEMA.FILES
-> WHERE FILE_NAME = 'undo_10.dat';

+--------------------+----------------------+----------------+
| LOGFILE_GROUP_NAME | LOGFILE_GROUP_NUMBER | EXTRA |
+--------------------+----------------------+----------------+
| lg_3 | 11 | CLUSTER_NODE=3 |
| lg_3 | 11 | CLUSTER_NODE=4 |
+--------------------+----------------------+----------------+
2 rows in set (0.06 sec)

(See Section 24.21, “The INFORMATION_SCHEMA FILES Table”.)

CREATE LOGFILE GROUP was added in MySQL 5.1.6. In MySQL 5.1, it is useful only with Disk Data storage for MySQL Cluster.
See Section 17.13, “MySQL Cluster Disk Data Tables”.

12.1.9. CREATE SERVER Syntax
CREATE SERVER server_name

FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)

option:

SQL Statement Syntax

794

http://bugs.mysql.com/16386
http://bugs.mysql.com/29186


{ HOST character-literal
| DATABASE character-literal
| USER character-literal
| PASSWORD character-literal
| SOCKET character-literal
| OWNER character-literal
| PORT numeric-literal }

This statement creates the definition of a server for use with the FEDERATED storage engine. The CREATE SERVER statement creates
a new row within the servers table within the mysql database. This statement requires the SUPER privilege.

The server_name should be a unique reference to the server. Server definitions are global within the scope of the server, it is not
possible to qualify the server definition to a specific database. server_name has a maximum length of 63 characters (names longer
than 63 characters are silently truncated), and is case insensitive. You may specify the name as a quoted string.

The wrapper_name should be mysql, and may be quoted with single quotes. Other values for wrapper_name are not currently
supported.

For each option you must specify either a character literal or numeric literal. Character literals are UTF-8, support a maximum length
of 64 characters and default to a blank (empty) string. String literals are silently truncated to 64 characters. Numeric literals must be a
number between 0 and 9999, default value is 0.

Note

Note that the OWNER option is currently not applied, and has no effect on the ownership or operation of the server connec-
tion that is created.

The CREATE SERVER statement creates an entry in the mysql.server table that can later be used with the CREATE TABLE state-
ment when creating a FEDERATED table. The options that you specify will be used to populate the columns in the mysql.server ta-
ble. The table columns are Server_name, Host, Db, Username, Password, Port and Socket.

For example:

CREATE SERVER s
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'Remote', HOST '192.168.1.106', DATABASE 'test');

The data stored in the table can be used when creating a connection to a FEDERATED table:

CREATE TABLE t (s1 INT) ENGINE=FEDERATED CONNECTION='s';

For more information, see Section 13.9, “The FEDERATED Storage Engine”.

CREATE SERVER does not cause an automatic commit.

CREATE SERVER was added in MySQL 5.1.15.

12.1.10. CREATE TABLE Syntax
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name

(create_definition,...)
[table_option] ...
[partition_options]

Or:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
[(create_definition,...)]
[table_option] ...
[partition_options]
select_statement

Or:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
{ LIKE old_tbl_name | (LIKE old_tbl_name) }

create_definition:

SQL Statement Syntax

795



col_name column_definition
| [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...)

[index_option] ...
| {INDEX|KEY} [index_name] [index_type] (index_col_name,...)

[index_option] ...
| [CONSTRAINT [symbol]] UNIQUE [INDEX|KEY]

[index_name] [index_type] (index_col_name,...)
[index_option] ...

| {FULLTEXT|SPATIAL} [INDEX|KEY] [index_name] (index_col_name,...)
[index_option] ...

| [CONSTRAINT [symbol]] FOREIGN KEY
[index_name] (index_col_name,...) reference_definition

| CHECK (expr)

column_definition:
data_type [NOT NULL | NULL] [DEFAULT default_value]
[AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
[COMMENT 'string'] [reference_definition]
[COLUMN_FORMAT {FIXED|DYNAMIC|DEFAULT}]
[STORAGE {DISK|MEMORY}]

data_type:
BIT[(length)]

| TINYINT[(length)] [UNSIGNED] [ZEROFILL]
| SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
| MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
| INT[(length)] [UNSIGNED] [ZEROFILL]
| INTEGER[(length)] [UNSIGNED] [ZEROFILL]
| BIGINT[(length)] [UNSIGNED] [ZEROFILL]
| REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
| FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DECIMAL(length,decimals) [UNSIGNED] [ZEROFILL]
| NUMERIC(length,decimals) [UNSIGNED] [ZEROFILL]
| DATE
| TIME
| TIMESTAMP
| DATETIME
| YEAR
| CHAR(length)

[CHARACTER SET charset_name] [COLLATE collation_name]
| VARCHAR(length)

[CHARACTER SET charset_name] [COLLATE collation_name]
| BINARY(length)
| VARBINARY(length)
| TINYBLOB
| BLOB
| MEDIUMBLOB
| LONGBLOB
| TINYTEXT [BINARY]

[CHARACTER SET charset_name] [COLLATE collation_name]
| TEXT [BINARY]

[CHARACTER SET charset_name] [COLLATE collation_name]
| MEDIUMTEXT [BINARY]

[CHARACTER SET charset_name] [COLLATE collation_name]
| LONGTEXT [BINARY]

[CHARACTER SET charset_name] [COLLATE collation_name]
| ENUM(value1,value2,value3,...)

[CHARACTER SET charset_name] [COLLATE collation_name]
| SET(value1,value2,value3,...)

[CHARACTER SET charset_name] [COLLATE collation_name]
| spatial_type

index_col_name:
col_name [(length)] [ASC | DESC]

index_type:
USING {BTREE | HASH | RTREE}

index_option:
KEY_BLOCK_SIZE [=] value

| index_type
| WITH PARSER parser_name

reference_definition:
REFERENCES tbl_name [(index_col_name,...)]
[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
[ON DELETE reference_option]
[ON UPDATE reference_option]

reference_option:
RESTRICT | CASCADE | SET NULL | NO ACTION

table_option:
TABLESPACE tablespace_name STORAGE DISK
ENGINE [=] engine_name

| AUTO_INCREMENT [=] value
| AVG_ROW_LENGTH [=] value
| [DEFAULT] CHARACTER SET [=] charset_name
| CHECKSUM [=] {0 | 1}
| [DEFAULT] COLLATE [=] collation_name

SQL Statement Syntax

796



| COMMENT [=] 'string'
| CONNECTION [=] 'connect_string'
| DATA DIRECTORY [=] 'absolute path to directory'
| DELAY_KEY_WRITE [=] {0 | 1}
| INDEX DIRECTORY [=] 'absolute path to directory'
| INSERT_METHOD [=] { NO | FIRST | LAST }
| KEY_BLOCK_SIZE [=] value
| MAX_ROWS [=] value
| MIN_ROWS [=] value
| PACK_KEYS [=] {0 | 1 | DEFAULT}
| PASSWORD [=] 'string'
| ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}
| UNION [=] (tbl_name[,tbl_name]...)

partition_options:
PARTITION BY

{ [LINEAR] HASH(expr)
| [LINEAR] KEY(column_list)
| RANGE(expr)
| LIST(expr) }

[PARTITIONS num]
[SUBPARTITION BY

{ [LINEAR] HASH(expr)
| [LINEAR] KEY(column_list) }

[SUBPARTITIONS num]
]
[(partition_definition [, partition_definition] ...)]

partition_definition:
PARTITION partition_name

[VALUES {LESS THAN {(expr) | MAXVALUE} | IN (value_list)}]
[[STORAGE] ENGINE [=] engine_name]
[COMMENT [=] 'comment_text' ]
[DATA DIRECTORY [=] 'data_dir']
[INDEX DIRECTORY [=] 'index_dir']
[MAX_ROWS [=] max_number_of_rows]
[MIN_ROWS [=] min_number_of_rows]
[TABLESPACE [=] tablespace_name]
[NODEGROUP [=] node_group_id]
[(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition:
SUBPARTITION logical_name

[[STORAGE] ENGINE [=] engine_name]
[COMMENT [=] 'comment_text' ]
[DATA DIRECTORY [=] 'data_dir']
[INDEX DIRECTORY [=] 'index_dir']
[MAX_ROWS [=] max_number_of_rows]
[MIN_ROWS [=] min_number_of_rows]
[TABLESPACE [=] tablespace_name]
[NODEGROUP [=] node_group_id]

select_statement:
[IGNORE | REPLACE] [AS] SELECT ... (Some legal select statement)

CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the table.

Rules for allowable table names are given in Section 8.2, “Schema Object Names”. By default, the table is created in the default data-
base. An error occurs if the table exists, if there is no default database, or if the database does not exist.

The table name can be specified as db_name.tbl_name to create the table in a specific database. This works regardless of whether
there is a default database, assuming that the database exists. If you use quoted identifiers, quote the database and table names separ-
ately. For example, write `mydb`.`mytbl`, not `mydb.mytbl`.

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only to the current connection, and is
dropped automatically when the connection is closed. This means that two different connections can use the same temporary table name
without conflicting with each other or with an existing non-TEMPORARY table of the same name. (The existing table is hidden until the
temporary table is dropped.) To create temporary tables, you must have the CREATE TEMPORARY TABLES privilege.

Note

CREATE TABLE does not automatically commit the current active transaction if you use the TEMPORARY keyword.

The keywords IF NOT EXISTS prevent an error from occurring if the table exists. However, there is no verification that the existing
table has a structure identical to that indicated by the CREATE TABLE statement.

Note

If you use IF NOT EXISTS in a CREATE TABLE ... SELECT statement, any rows selected by the SELECT part
are inserted regardless of whether the table already exists.

SQL Statement Syntax

797



MySQL represents each table by an .frm table format (definition) file in the database directory. The storage engine for the table might
create other files as well. In the case of MyISAM tables, the storage engine creates data and index files. Thus, for each MyISAM table
tbl_name, there are three disk files:

File Purpose

tbl_name.frm Table format (definition) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Chapter 13, Storage Engines, describes what files each storage engine creates to represent tables. If a table name contains special char-
acters, the names for the table files contain encoded versions of those characters as described in Section 8.2.3, “Mapping of Identifiers
to Filenames”.

data_type represents the data type in a column definition. spatial_type represents a spatial data type. The data type syntax
shown is representative only. For a full description of the syntax available for specifying column data types, as well as information
about the properties of each type, see Chapter 10, Data Types, and Chapter 19, Spatial Extensions.

Some attributes do not apply to all data types. AUTO_INCREMENT applies only to integer types. DEFAULT does not apply to the BLOB
or TEXT types.

• If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been specified.

• An integer column can have the additional attribute AUTO_INCREMENT. When you insert a value of NULL (recommended) or 0 in-
to an indexed AUTO_INCREMENT column, the column is set to the next sequence value. Typically this is value+1, where value
is the largest value for the column currently in the table. AUTO_INCREMENT sequences begin with 1.

To retrieve an AUTO_INCREMENT value after inserting a row, use the LAST_INSERT_ID() SQL function or the
mysql_insert_id() C API function. See Section 11.11.3, “Information Functions”, and Section 26.2.3.37,
“mysql_insert_id()”.

If the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled, you can store 0 in AUTO_INCREMENT columns as 0 without generat-
ing a new sequence value. See Section 5.1.6, “SQL Modes”.

Note

There can be only one AUTO_INCREMENT column per table, it must be indexed, and it cannot have a DEFAULT value.
An AUTO_INCREMENT column works properly only if it contains only positive values. Inserting a negative number is re-
garded as inserting a very large positive number. This is done to avoid precision problems when numbers “wrap” over
from positive to negative and also to ensure that you do not accidentally get an AUTO_INCREMENT column that contains
0.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key. See Section 3.6.9, “Using
AUTO_INCREMENT”.

To make MySQL compatible with some ODBC applications, you can find the AUTO_INCREMENT value for the last inserted row
with the following query:

SELECT * FROM tbl_name WHERE auto_col IS NULL

For information about InnoDB and AUTO_INCREMENT, see Section 13.5.6.3, “How AUTO_INCREMENT Handling Works in In-
noDB”.

• Character data types (CHAR, VARCHAR, TEXT) can include CHARACTER SET and COLLATE attributes to specify the character set
and collation for the column. For details, see Section 9.1, “Character Set Support”. CHARSET is a synonym for CHARACTER SET.
Example:

CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);

MySQL 5.1 interprets length specifications in character column definitions in characters. (Versions before MySQL 4.1 interpreted
them in bytes.) Lengths for BINARY and VARBINARY are in bytes.

SQL Statement Syntax

798



• The DEFAULT clause specifies a default value for a column. With one exception, the default value must be a constant; it cannot be a
function or an expression. This means, for example, that you cannot set the default for a date column to be the value of a function
such as NOW() or CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as the default for a
TIMESTAMP column. See Section 10.3.1.1, “TIMESTAMP Properties”.

If a column definition includes no explicit DEFAULT value, MySQL determines the default value as described in Section 10.1.4,
“Data Type Default Values”.

BLOB and TEXT columns cannot be assigned a default value.

CREATE TABLE fails if a date-valued default is not correct according to the NO_ZERO_IN_DATE SQL mode, even if strict SQL
mode is not enabled. For example, c1 DATE DEFAULT '2010-00-00' causes CREATE TABLE to fail with Invalid de-
fault value for 'c1'.

• A comment for a column can be specified with the COMMENT option, up to 255 characters long. The comment is displayed by the
SHOW CREATE TABLE and SHOW FULL COLUMNS statements.

• MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

Beginning with MySQL 5.1.19-ndb-6.2.5 and MySQL 5.1.20-ndb-6.3.2, it is also possible to specify a data storage format for indi-
vidual columns of NDB tables using COLUMN_FORMAT. Allowable column formats are FIXED, DYNAMIC, and DEFAULT. FIXED
is used to specify fixed-width storage, DYNAMIC allows the column to be variable-width, and DEFAULT causes the column to use
fixed-width or variable-width storage as determined by the column's data type (possibly overridden by a ROW_FORMAT specifier).

For NDB tables, the default value for COLUMN_FORMAT is DEFAULT.

COLUMN_FORMAT has no effect on columns of tables using storage engines other than NDB.

• MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

For NDB tables, beginning with MySQL 5.1.19-ndb-6.2.5 and MySQL 5.1.20-ndb-6.3.2, it is also possible to specify whether the
column is stored on disk or in memory by using a STORAGE clause. STORAGE DISK causes the column to be stored on disk, and
STORAGE MEMORY causes in-memory storage to be used.

For NDB tables, the default is MEMORY.

The STORAGE clause has no effect on tables using storage engines other than NDB.

The following information applies to all MySQL users.

• KEY is normally a synonym for INDEX. The key attribute PRIMARY KEY can also be specified as just KEY when given in a
column definition. This was implemented for compatibility with other database systems.

• A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs if you try to add a new row
with a key value that matches an existing row. For all engines, a UNIQUE index allows multiple NULL values for columns that can
contain NULL.

• A PRIMARY KEY is a unique index where all key columns must be defined as NOT NULL. If they are not explicitly declared as
NOT NULL, MySQL declares them so implicitly (and silently). A table can have only one PRIMARY KEY. If you do not have a
PRIMARY KEY and an application asks for the PRIMARY KEY in your tables, MySQL returns the first UNIQUE index that has no
NULL columns as the PRIMARY KEY.

In InnoDB tables, having a long PRIMARY KEY wastes a lot of space. (See Section 13.5.13, “InnoDB Table and Index Struc-
tures”.)

• In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and then the non-unique indexes. This helps
the MySQL optimizer to prioritize which index to use and also more quickly to detect duplicated UNIQUE keys.

• A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-column index using the PRIMARY KEY
key attribute in a column specification. Doing so only marks that single column as primary. You must use a separate PRIMARY
KEY(index_col_name, ...) clause.

SQL Statement Syntax

799



• If a PRIMARY KEY or UNIQUE index consists of only one column that has an integer type, you can also refer to the column as
_rowid in SELECT statements.

• In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you do not assign a name, the index is assigned the
same name as the first indexed column, with an optional suffix (_2, _3, ...) to make it unique. You can see index names for a ta-
ble using SHOW INDEX FROM tbl_name. See Section 12.5.4.18, “SHOW INDEX Syntax”.

• Some storage engines allow you to specify an index type when creating an index. The syntax for the index_type specifier is US-
ING type_name.

Example:

CREATE TABLE lookup
(id INT, INDEX USING BTREE (id))
ENGINE = MEMORY;

Before MySQL 5.1.10, USING can be given only before the index column list. As of 5.1.10, the preferred position is after the
column list. Use of the option before the column list will no longer be recognized as of MySQL 5.3.

index_option values specify additional options for an index. USING is one such option. For details about allowable in-
dex_option values, see Section 12.1.7, “CREATE INDEX Syntax”.

For more information about indexes, see Section 7.4.5, “How MySQL Uses Indexes”.

• In MySQL 5.1, only the MyISAM, InnoDB, and MEMORY storage engines support indexes on columns that can have NULL values.
In other cases, you must declare indexed columns as NOT NULL or an error results.

• For CHAR, VARCHAR, BINARY, and VARBINARY columns, indexes can be created that use only the leading part of column values,
using col_name(length) syntax to specify an index prefix length. BLOB and TEXT columns also can be indexed, but a prefix
length must be given. Prefix lengths are given in characters for non-binary string types and in bytes for binary string types. That is,
index entries consist of the first length characters of each column value for CHAR, VARCHAR, and TEXT columns, and the first
length bytes of each column value for BINARY, VARBINARY, and BLOB columns. Indexing only a prefix of column values like
this can make the index file much smaller. See Section 7.4.3, “Column Indexes”.

Only the MyISAM and InnoDB storage engines support indexing on BLOB and TEXT columns. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables). Note that prefix limits are measured in bytes, whereas the pre-
fix length in CREATE TABLE statements is interpreted as number of characters for non-binary data types (CHAR, VARCHAR,
TEXT). Take this into account when specifying a prefix length for a column that uses a multi-byte character set.

• An index_col_name specification can end with ASC or DESC. These keywords are allowed for future extensions for specifying
ascending or descending index value storage. Currently, they are parsed but ignored; index values are always stored in ascending or-
der.

• When you use ORDER BY or GROUP BY on a TEXT or BLOB column in a SELECT, the server sorts values using only the initial
number of bytes indicated by the max_sort_length system variable. See Section 10.4.3, “The BLOB and TEXT Types”.

• You can create special FULLTEXT indexes, which are used for full-text searches. Only the MyISAM storage engine supports
FULLTEXT indexes. They can be created only from CHAR, VARCHAR, and TEXT columns. Indexing always happens over the entire
column; column prefix indexing is not supported and any prefix length is ignored if specified. See Section 11.8, “Full-Text Search
Functions”, for details of operation. A WITH PARSER clause can be specified as an index_option value to associate a parser
plugin with the index if full-text indexing and searching operations need special handling. This clause is legal only for FULLTEXT
indexes. See Section 29.2, “The MySQL Plugin Interface”, for details on creating plugins.

• You can create SPATIAL indexes on spatial data types. Spatial types are supported only for MyISAM tables and indexed columns
must be declared as NOT NULL. See Chapter 19, Spatial Extensions.

• InnoDB tables support checking of foreign key constraints. See Section 13.5, “The InnoDB Storage Engine”. Note that the FOR-
EIGN KEY syntax in InnoDB is more restrictive than the syntax presented for the CREATE TABLE statement at the beginning of
this section: The columns of the referenced table must always be explicitly named. InnoDB supports both ON DELETE and ON
UPDATE actions on foreign keys. For the precise syntax, see Section 13.5.6.4, “FOREIGN KEY Constraints”.

For other storage engines, MySQL Server parses and ignores the FOREIGN KEY and REFERENCES syntax in CREATE TABLE

SQL Statement Syntax

800



statements. The CHECK clause is parsed but ignored by all storage engines. See Section 1.8.5.4, “Foreign Keys”.

Important

The inline REFERENCES specifications where the references are defined as part of the column specification are silently
ignored by InnoDB. InnoDB only accepts REFERENCES clauses when specified as part of a separate FOREIGN KEY
specification.

Note

Partitioned tables do not support foreign keys. See Section 18.5, “Restrictions and Limitations on Partitioning”, for more
information.

• There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given table and depends on the factors
discussed in Section D.7.2, “The Maximum Number of Columns Per Table”.

The TABLESPACE ... STORAGE DISK table option is used only with NDB Cluster tables. It assigns the table to a Cluster Disk
Data tablespace. The tablespace named tablespace_name must already have been created using CREATE TABLESPACE. This ta-
ble option was introduced in MySQL 5.1.6. See Section 17.13, “MySQL Cluster Disk Data Tables”.

The ENGINE table option specifies the storage engine for the table.

The ENGINE table option takes the storage engine names shown in the following table.

Storage Engine Description

ARCHIVE The archiving storage engine. See Section 13.10, “The ARCHIVE Storage Engine”.

CSV Tables that store rows in comma-separated values format. See Section 13.11, “The CSV Storage
Engine”.

EXAMPLE An example engine. See Section 13.8, “The EXAMPLE Storage Engine”.

FEDERATED Storage engine that accesses remote tables. See Section 13.9, “The FEDERATED Storage Engine”.

HEAP This is a synonym for MEMORY.

ISAM (OBSOLETE) Not available in MySQL 5.1. If you are upgrading to MySQL 5.1 from a previous version, you
should convert any existing ISAM tables to MyISAM before performing the upgrade.

InnoDB Transaction-safe tables with row locking and foreign keys. See Section 13.5, “The InnoDB Stor-
age Engine”.

MEMORY The data for this storage engine is stored only in memory. See Section 13.7, “The MEMORY (HEAP)
Storage Engine”.

MERGE A collection of MyISAM tables used as one table. Also known as MRG_MyISAM. See Section 13.6,
“The MERGE Storage Engine”.

MyISAM The binary portable storage engine that is the default storage engine used by MySQL. See Sec-
tion 13.4, “The MyISAM Storage Engine”.

NDBCLUSTER Clustered, fault-tolerant, memory-based tables. Also known as NDB. See Chapter 17, MySQL
Cluster.

If a storage engine is specified that is not available, MySQL uses the default engine instead. Normally, this is MyISAM. For example, if
a table definition includes the ENGINE=INNODB option but the MySQL server does not support INNODB tables, the table is created as
a MyISAM table. This makes it possible to have a replication setup where you have transactional tables on the master but tables created
on the slave are non-transactional (to get more speed). In MySQL 5.1, a warning occurs if the storage engine specification is not
honored.

Engine substitution can be controlled by the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as described in Section 5.1.6,
“SQL Modes”.

Note

The older TYPE option was synonymous with ENGINE. TYPE has been deprecated since MySQL 4.0 but is still supported
for backwards compatibility in MySQL 5.1 (excepting MySQL 5.1.7). Since MySQL 5.1.8, it produces a warning. It is re-
moved as of MySQL 5.2. You should not use TYPE in any new applications, and you should immediately begin conversion

SQL Statement Syntax

801



of existing applications to use ENGINE instead. (See Section C.1.26, “Changes in MySQL 5.1.8 (Not released)”.)

The other table options are used to optimize the behavior of the table. In most cases, you do not have to specify any of them. These op-
tions apply to all storage engines unless otherwise indicated. Options that do not apply to a given storage engine may be accepted and
remembered as part of the table definition. Such options then apply if you later use ALTER TABLE to convert the table to use a differ-
ent storage engine.

• AUTO_INCREMENT

The initial AUTO_INCREMENT value for the table. In MySQL 5.1, this works for MyISAM, MEMORY, and InnoDB tables. It also
works for ARCHIVE tables as of MySQL 5.1.6. To set the first auto-increment value for engines that do not support the
AUTO_INCREMENT table option, insert a “dummy” row with a value one less than the desired value after creating the table, and
then delete the dummy row.

For engines that support the AUTO_INCREMENT table option in CREATE TABLE statements, you can also use ALTER TABLE
tbl_name AUTO_INCREMENT = N to reset the AUTO_INCREMENT value. The value cannot be set lower than the maximum
value currently in the column.

• AVG_ROW_LENGTH

An approximation of the average row length for your table. You need to set this only for large tables with variable-size rows.

When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and AVG_ROW_LENGTH options to decide how big
the resulting table is. If you don't specify either option, the maximum size for a table is 256TB of data by default. (If your operating
system does not support files that large, table sizes are constrained by the file size limit.) If you want to keep down the pointer sizes
to make the index smaller and faster and you don't really need big files, you can decrease the default pointer size by setting the my-
isam_data_pointer_size system variable. (See Section 5.1.3, “System Variables”.) If you want all your tables to be able to
grow above the default limit and are willing to have your tables slightly slower and larger than necessary, you can increase the de-
fault pointer size by setting this variable. Setting the value to 7 allows table sizes up to 65,536TB.

• [DEFAULT] CHARACTER SET

Specify a default character set for the table. CHARSET is a synonym for CHARACTER SET. If the character set name is DEFAULT,
the database character set is used.

• CHECKSUM

Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum that MySQL updates automatically as
the table changes). This makes the table a little slower to update, but also makes it easier to find corrupted tables. The CHECKSUM
TABLE statement reports the checksum. (MyISAM only.)

• [DEFAULT] COLLATE

Specify a default collation for the table.

• COMMENT

A comment for the table, up to 60 characters long.

• CONNECTION

The connection string for a FEDERATED table.

Note

Older versions of MySQL used a COMMENT option for the connection string.

• DATA DIRECTORY, INDEX DIRECTORY

By using DATA DIRECTORY='directory' or INDEX DIRECTORY='directory' you can specify where the MyISAM
storage engine should put a table's data file and index file. The directory must be the full pathname to the directory, not a relative
path.

Important

Beginning with MySQL 5.1.23, table-level DATA DIRECTORY and INDEX DIRECTORY are ignored for partitioned

SQL Statement Syntax

802



tables. (Bug#32091)

These options work only when you are not using the --skip-symbolic-links option. Your operating system must also have a
working, thread-safe realpath() call. See Section 7.6.1.2, “Using Symbolic Links for Tables on Unix”, for more complete in-
formation.

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database directory. By default, if
MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies to .MYI files for tables created with no INDEX
DIRECTORY option. As of MySQL 5.1.23, to suppress this behavior, start the server with the --keep_files_on_create op-
tion, in which case MyISAM will not overwrite existing files and returns an error instead.

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing .MYD or .MYI file is
found, MyISAM always returns an error. It will not overwrite a file in the specified directory.

Important

Beginning with MySQL 5.1.24, you cannot use the MySQL data directory with DATA DIRECTORY or INDEX DIR-
ECTORY. This includes partitioned tables and individual table partitions. (See Bug#32167.)

• DELAY_KEY_WRITE

Set this to 1 if you want to delay key updates for the table until the table is closed. See the description of the delay_key_write
system variable in Section 5.1.3, “System Variables”. (MyISAM only.)

• INSERT_METHOD

If you want to insert data into a MERGE table, you must specify with INSERT_METHOD the table into which the row should be in-
serted. INSERT_METHOD is an option useful for MERGE tables only. Use a value of FIRST or LAST to have inserts go to the first
or last table, or a value of NO to prevent inserts. See Section 13.6, “The MERGE Storage Engine”.

• KEY_BLOCK_SIZE

This option provides a hint to the storage engine about the size in bytes to use for index key blocks. The engine is allowed to change
the value if necessary. A value of 0 indicates that the default value should be used. Individual index definitions can specify a
KEY_BLOCK_SIZE value of their own to override the table value. KEY_BLOCK_SIZE was added in MySQL 5.1.10.

• MAX_ROWS

The maximum number of rows you plan to store in the table. This is not a hard limit, but rather a hint to the storage engine that the
table must be able to store at least this many rows.

• MIN_ROWS

The minimum number of rows you plan to store in the table.

• PACK_KEYS

PACK_KEYS takes effect only with MyISAM tables. Set this option to 1 if you want to have smaller indexes. This usually makes up-
dates slower and reads faster. Setting the option to 0 disables all packing of keys. Setting it to DEFAULT tells the storage engine to
pack only long CHAR, VARCHAR, BINARY, or VARBINARY columns.

If you do not use PACK_KEYS, the default is to pack strings, but not numbers. If you use PACK_KEYS=1, numbers are packed as
well.

When packing binary number keys, MySQL uses prefix compression:

• Every key needs one extra byte to indicate how many bytes of the previous key are the same for the next key.

• The pointer to the row is stored in high-byte-first order directly after the key, to improve compression.

This means that if you have many equal keys on two consecutive rows, all following “same” keys usually only take two bytes
(including the pointer to the row). Compare this to the ordinary case where the following keys takes storage_size_for_key
+ pointer_size (where the pointer size is usually 4). Conversely, you get a significant benefit from prefix compression only if
you have many numbers that are the same. If all keys are totally different, you use one byte more per key, if the key is not a key that
can have NULL values. (In this case, the packed key length is stored in the same byte that is used to mark if a key is NULL.)

SQL Statement Syntax

803

http://bugs.mysql.com/32091
http://bugs.mysql.com/32167


• PASSWORD

This option is unused. If you have a need to scramble your .frm files and make them unusable to any other MySQL server, please
contact our sales department.

• RAID_TYPE

RAID support has been removed as of MySQL 5.0. For information on RAID, see ht-
tp://dev.mysql.com/doc/refman/4.1/en/create-table.html.

• ROW_FORMAT

Defines how the rows should be stored. For MyISAM tables, the option value can be FIXED or DYNAMIC for static or variable-
length row format. myisampack sets the type to COMPRESSED. See Section 13.4.3, “MyISAM Table Storage Formats”.

For InnoDB tables, rows are stored in compact format (ROW_FORMAT=COMPACT) by default. The non-compact format used in
older versions of MySQL can still be requested by specifying ROW_FORMAT=REDUNDANT.

Note

During CREATE TABLE, if you specify a row format that the engine does support, the table will be created using the stor-
age engines default row format. The information reported in this column in response to SHOW TABLE STATUS is the ac-
tual row format used. This may differ from the value in the Create_options column because the original CREATE
TABLE definition is retained during creation.

• UNION

UNION is used when you want to access a collection of identical MyISAM tables as one. This works only with MERGE tables. See
Section 13.6, “The MERGE Storage Engine”.

You must have SELECT, UPDATE, and DELETE privileges for the tables you map to a MERGE table.

Note

Formerly, all tables used had to be in the same database as the MERGE table itself. This restriction no longer applies.

partition_options can be used to control partitioning of the table created with CREATE TABLE.

Important

Not all options shown in the syntax for partition_options at the beginning of this section are available for all parti-
tioning types. Please see the listings for the following individual types for information specific to each type, and see
Chapter 18, Partitioning, for more complete information about the workings of and uses for partitioning in MySQL, as
well as additional examples of table creation and other statements relating to MySQL partitioning.

If used, partition_options is preceded by a PARTITION BY clause. This clause contains the function that is used to determine
the partition; the function returns an integer value ranging from 1 to num, where num is the number of partitions. (The maximum num-
ber of user-defined partitions which a table may contain is 1024; the number of subpartitions — discussed later in this section — is in-
cluded in this maximum.) The choices that are available for this function in MySQL 5.1 are shown in the following list:

• HASH(expr): Hashes one or more columns to create a key for placing and locating rows. expr is an expression using one or
more table columns. This can be any legal MySQL expression (including MySQL functions) that yields a single integer value. For
example, these are all valid CREATE TABLE statements using PARTITION BY HASH:

CREATE TABLE t1 (col1 INT, col2 CHAR(5))
PARTITION BY HASH(col1);

CREATE TABLE t1 (col1 INT, col2 CHAR(5))
PARTITION BY HASH( ORD(col2) );

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATETIME)
PARTITION BY HASH ( YEAR(col3) );

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY HASH.

SQL Statement Syntax

804

http://dev.mysql.com/doc/refman/4.1/en/create-table.html
http://dev.mysql.com/doc/refman/4.1/en/create-table.html


PARTITION BY HASH uses the remainder of expr divided by the number of partitions (that is, the modulus). For examples and
additional information, see Section 18.2.3, “HASH Partitioning”.

The LINEAR keyword entails a somewhat different algorithm. In this case, the number of the partition in which a row is stored is
calculated as the result of one or more logical AND operations. For discussion and examples of linear hashing, see Section 18.2.3.1,
“LINEAR HASH Partitioning”.

• KEY(column_list): This is similar to HASH, except that MySQL supplies the hashing function so as to guarantee an even data
distribution. The column_list argument is simply a list of table columns. This example shows a simple table partitioned by key,
with 4 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY KEY(col3)
PARTITIONS 4;

For tables that are partitioned by key, you can employ linear partitioning by using the LINEAR keyword. This has the same effect as
with tables that are partitioned by HASH. That is, the partition number is found using the & operator rather than the modulus (see
Section 18.2.3.1, “LINEAR HASH Partitioning”, and Section 18.2.4, “KEY Partitioning”, for details). This example uses linear par-
titioning by key to distribute data between 5 partitions:

CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY LINEAR KEY(col3)
PARTITIONS 5;

You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY KEY.

• RANGE: In this case, expr shows a range of values using a set of VALUES LESS THAN operators. When using range partitioning,
you must define at least one partition using VALUES LESS THAN. You cannot use VALUES IN with range partitioning.

VALUES LESS THAN can be used with either a literal value or an expression that evaluates to a single value.

Suppose that you have a table that you wish to partition on a column containing year values, according to the following scheme:

Partition Number: Years Range:

0 1990 and earlier

1 1991 – 1994

2 1995 – 1998

3 1999 – 2002

4 2003 – 2005

5 2006 and later

A table implementing such a partitioning scheme can be realized by the CREATE TABLE statement shown here:

CREATE TABLE t1 (
year_col INT,
some_data INT

)
PARTITION BY RANGE (year_col) (

PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1995),
PARTITION p2 VALUES LESS THAN (1999),
PARTITION p3 VALUES LESS THAN (2002),
PARTITION p4 VALUES LESS THAN (2006),
PARTITION p5 VALUES LESS THAN MAXVALUE

);

PARTITION ... VALUES LESS THAN ... statements work in a consecutive fashion. VALUES LESS THAN MAXVALUE
works to specify “leftover” values that are greater than the maximum value otherwise specified.

Note that VALUES LESS THAN clauses work sequentially in a manner similar to that of the case portions of a switch ...
case block (as found in many programming languages such as C, Java, and PHP). That is, the clauses must be arranged in such a
way that the upper limit specified in each successive VALUES LESS THAN is greater than that of the previous one, with the one
referencing MAXVALUE coming last of all in the list.

SQL Statement Syntax

805



• LIST(expr): This is useful when assigning partitions based on a table column with a restricted set of possible values, such as a
state or country code. In such a case, all rows pertaining to a certain state or country can be assigned to a single partition, or a parti-
tion can be reserved for a certain set of states or countries. It is similar to RANGE, except that only VALUES IN may be used to spe-
cify allowable values for each partition.

VALUES IN is used with a list of values to be matched. For instance, you could create a partitioning scheme such as the following:

CREATE TABLE client_firms (
id INT,
name VARCHAR(35)

)
PARTITION BY LIST (id) (

PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)

);

When using list partitioning, you must define at least one partition using VALUES IN. You cannot use VALUES LESS THAN
with PARTITION BY LIST.

Note

Currently, the value list used with VALUES IN must consist of integer values only.

• The number of partitions may optionally be specified with a PARTITIONS num clause, where num is the number of partitions. If
both this clause and any PARTITION clauses are used, num must be equal to the total number of any partitions that are declared us-
ing PARTITION clauses.

Note

Whether or not you use a PARTITIONS clause in creating a table that is partitioned by RANGE or LIST, you must still in-
clude at least one PARTITION VALUES clause in the table definition (see below).

• A partition may optionally be divided into a number of subpartitions. This can be indicated by using the optional SUBPARTITION
BY clause. Subpartitioning may be done by HASH or KEY. Either of these may be LINEAR. These work in the same way as previ-
ously described for the equivalent partitioning types. (It is not possible to subpartition by LIST or RANGE.)

The number of subpartitions can be indicated using the SUBPARTITIONS keyword followed by an integer value.

• MySQL 5.1.12 introduces rigorous checking of the value used in a PARTITIONS or SUBPARTITIONS clause. Beginning with
this version, this value must adhere to the following rules:

• The value must be a positive, non-zero integer.

• No leading zeroes are permitted.

• The value must be an integer literal, and cannot not be an expression. For example, PARTITIONS 0.2E+01 is not allowed,
even though 0.2E+01 evaluates to 2. (Bug#15890)

Note

The expression (expr) used in a PARTITION BY clause cannot refer to any columns not in the table being created; be-
ginning with MySQL 5.1.23, such references are specifically disallowed and cause the statement to fail with an error.
(Bug#29444)

Each partition may be individually defined using a partition_definition clause. The individual parts making up this clause are
as follows:

• PARTITION partition_name: This specifies a logical name for the partition.

• A VALUES clause: For range partitioning, each partition must include a VALUES LESS THAN clause; for list partitioning, you
must specify a VALUES IN clause for each partition. This is used to determine which rows are to be stored in this partition. See the
discussions of partitioning types in Chapter 18, Partitioning, for syntax examples.

• An optional COMMENT clause may be used to describe the partition. The comment must be set off in single quotes. Example:

SQL Statement Syntax

806

http://bugs.mysql.com/15890
http://bugs.mysql.com/29444


COMMENT = 'Data for the years previous to 1999'

• DATA DIRECTORY and INDEX DIRECTORY may be used to indicate the directory where, respectively, the data and indexes for
this partition are to be stored. Both the data_dir and the index_dir must be absolute system pathnames. Example:

CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(
PARTITION p1999 VALUES IN (1995, 1999, 2003)
DATA DIRECTORY = '/var/appdata/95/data'
INDEX DIRECTORY = '/var/appdata/95/idx',

PARTITION p2000 VALUES IN (1996, 2000, 2004)
DATA DIRECTORY = '/var/appdata/96/data'
INDEX DIRECTORY = '/var/appdata/96/idx',

PARTITION p2001 VALUES IN (1997, 2001, 2005)
DATA DIRECTORY = '/var/appdata/97/data'
INDEX DIRECTORY = '/var/appdata/97/idx',

PARTITION p2000 VALUES IN (1998, 2002, 2006)
DATA DIRECTORY = '/var/appdata/98/data'
INDEX DIRECTORY = '/var/appdata/98/idx'

);

DATA DIRECTORY and INDEX DIRECTORY behave in the same way as in the CREATE TABLE statement's table_option
clause as used for MyISAM tables.

One data directory and one index directory may be specified per partition. If left unspecified, the data and indexes are stored by de-
fault in the table's database directory.

On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for individual partitions or subparti-
tions. Beginning with MySQL 5.1.24, these options are ignored on Windows, except that a warning is generated. (Bug#30459)

Note

Prior to MySQL 5.1.18, DATA DIRECTORY and INDEX DIRECTORY were allowed even if the NO_DIR_IN_CREATE
server SQL mode was in effect at the time that a partitioned table was created. Beginning with MySQL 5.1.18, these op-
tions are ignored for creating partitioned tables if NO_DIR_IN_CREATE is in effect. (Bug#24633)

• MAX_ROWS and MIN_ROWS may be used to specify, respectively, the maximum and minimum number of rows to be stored in the
partition. The values for max_number_of_rows and min_number_of_rows must be positive integers. As with the table-
level options with the same names, these act only as “suggestions” to the server and are not hard limits.

• The optional TABLESPACE clause may be used to designate a tablespace for the partition. Used for MySQL Cluster only.

• The partitioning handler accepts a [STORAGE] ENGINE option for both PARTITION and SUBPARTITION. Currently, the only
way in which this can be used is to set all partitions or all subpartitions to the same storage engine, and an attempt to set different
storage engines for partitions or subpartitions in the same table will give rise to the error ERROR 1469 (HY000): THE MIX OF

HANDLERS IN THE PARTITIONS IS NOT ALLOWED IN THIS VERSION OF MYSQL. We expect to lift this restriction on partitioning
in a future MySQL release.

• The NODEGROUP option can be used to make this partition act as part of the node group identified by node_group_id. This op-
tion is applicable only to MySQL Cluster.

• The partition definition may optionally contain one or more subpartition_definition clauses. Each of these consists at a
minimum of the SUBPARTITION name, where name is an identifier for the subpartition. Except for the replacement of the PAR-
TITION keyword with SUBPARTITION, the syntax for a subpartition definition is identical to that for a partition definition.

Subpartitioning must be done by HASH or KEY, and can be done only on RANGE or LIST partitions. See Section 18.2.5,
“Subpartitioning”.

Partitions can be modified, merged, added to tables, and dropped from tables. For basic information about the MySQL statements to ac-
complish these tasks, see Section 12.1.4, “ALTER TABLE Syntax”. For more detailed descriptions and examples, see Section 18.3,
“Partition Management”.

Important

The original CREATE TABLE statement, including all specifications and table options are stored by MySQL when the ta-
ble is created. The information is retained so that if you change storage engines, collations or other settings using an AL-

SQL Statement Syntax

807

http://bugs.mysql.com/30459
http://bugs.mysql.com/24633


TER TABLE statement, the original table options specified are retained. This allows you to change between InnoDB and
MyISAM table types even though the row formats supported by the two engines are different.

Because the text of the original statement is retained, but due to the way that certain values and options may be silently re-
configured (such as the ROW_FORMAT), the active table definition (accessible through DESCRIBE or with SHOW TABLE
STATUS and the table creation string (accessible through SHOW CREATE TABLE) will report different values.

You can create one table from another by adding a SELECT statement at the end of the CREATE TABLE statement:

CREATE TABLE new_tbl SELECT * FROM orig_tbl;

MySQL creates new columns for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
-> PRIMARY KEY (a), KEY(b))
-> ENGINE=MyISAM SELECT b,c FROM test2;

This creates a MyISAM table with three columns, a, b, and c. Notice that the columns from the SELECT statement are appended to the
right side of the table, not overlapped onto it. Take the following example:

mysql> SELECT * FROM foo;
+---+
| n |
+---+
| 1 |
+---+

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM bar;
+------+---+
| m | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)

For each row in table foo, a row is inserted in bar with the values from foo and default values for the new columns.

In a table resulting from CREATE TABLE ... SELECT, columns named only in the CREATE TABLE part come first. Columns
named in both parts or only in the SELECT part come after that. The data type of SELECT columns can be overridden by also specify-
ing the column in the CREATE TABLE part.

If any errors occur while copying the data to the table, it is automatically dropped and not created.

CREATE TABLE ... SELECT does not automatically create any indexes for you. This is done intentionally to make the statement
as flexible as possible. If you want to have indexes in the created table, you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

Some conversion of data types might occur. For example, the AUTO_INCREMENT attribute is not preserved, and VARCHAR columns
can become CHAR columns.

When creating a table with CREATE ... SELECT, make sure to alias any function calls or expressions in the query. If you do not,
the CREATE statement might fail or result in undesirable column names.

CREATE TABLE artists_and_works
SELECT artist.name, COUNT(work.artist_id) AS number_of_works
FROM artist LEFT JOIN work ON artist.id = work.artist_id
GROUP BY artist.id;

You can also explicitly specify the data type for a generated column:

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

Use LIKE to create an empty table based on the definition of another table, including any column attributes and indexes defined in the
original table:

SQL Statement Syntax

808



CREATE TABLE new_tbl LIKE orig_tbl;

The copy is created using the same version of the table storage format as the original table. The SELECT privilege is required on the
original table.

CREATE TABLE ... LIKE does not preserve any DATA DIRECTORY or INDEX DIRECTORY table options that were specified
for the original table, or any foreign key definitions.

You can precede the SELECT by IGNORE or REPLACE to indicate how to handle rows that duplicate unique key values. With IG-
NORE, new rows that duplicate an existing row on a unique key value are discarded. With REPLACE, new rows replace rows that have
the same unique key value. If neither IGNORE nor REPLACE is specified, duplicate unique key values result in an error.

To ensure that the binary log can be used to re-create the original tables, MySQL does not allow concurrent inserts during CREATE
TABLE ... SELECT.

12.1.10.1. Silent Column Specification Changes

In some cases, MySQL silently changes column specifications from those given in a CREATE TABLE or ALTER TABLE statement.
These might be changes to a data type, to attributes associated with a data type, or to an index specification.

• TIMESTAMP display sizes are discarded.

Also note that TIMESTAMP columns are NOT NULL by default.

• Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that way.

• Trailing spaces are automatically deleted from ENUM and SET member values when the table is created.

• MySQL maps certain data types used by other SQL database vendors to MySQL types. See Section 10.7, “Using Data Types from
Other Database Engines”.

• If you include a USING clause to specify an index type that is not legal for a given storage engine, but there is another index type
available that the engine can use without affecting query results, the engine uses the available type.

• If strict SQL mode is not enabled, a VARCHAR column with a length specification greater than 65535 is converted to TEXT, and a
VARBINARY column with a length specification greater than 65535 is converted to BLOB. Otherwise, an error occurs in either of
these cases.

To see whether MySQL used a data type other than the one you specified, issue a DESCRIBE or SHOW CREATE TABLE statement
after creating or altering the table.

Certain other data type changes can occur if you compress a table using myisampack. See Section 13.4.3.3, “Compressed Table Char-
acteristics”.

12.1.11. CREATE TABLESPACE Syntax
CREATE TABLESPACE tablespace_name

ADD DATAFILE 'file_name'
USE LOGFILE GROUP logfile_group
[EXTENT_SIZE [=] extent_size]
[INITIAL_SIZE [=] initial_size]
[AUTOEXTEND_SIZE [=] autoextend_size]
[MAX_SIZE [=] max_size]
[NODEGROUP [=] nodegroup_id]
[WAIT]
[COMMENT [=] comment_text]
ENGINE [=] engine_name

This statement is used to create a tablespace, which can contain one or more data files, providing storage space for tables. One data file
is created and added to the tablespace using this statement. Additional data files may be added to the tablespace by using the ALTER
TABLESPACE statement (see Section 12.1.5, “ALTER TABLESPACE Syntax”). For rules covering the naming of tablespaces, see Sec-
tion 8.2, “Schema Object Names”.

A log file group of one or more UNDO log files must be assigned to the tablespace to be created with the USE LOGFILE GROUP
clause. logfile_group must be an existing log file group created with CREATE LOGFILE GROUP (see Section 12.1.8, “CREATE

SQL Statement Syntax

809



LOGFILE GROUP Syntax”). Multiple tablespaces may use the same log file group for UNDO logging.

The EXTENT_SIZE sets the size, in bytes, of the extents used by any files belonging to the tablespace. The default value is 1M. The
minimum size is 32K, and the theoretical maximum is 2G, although the practical maximum size depends on a number of factors.

An extent is a unit of disk space allocation. One extent is filled with as much data as that extent can contain before another extent is
used. In theory, up to 65,535 (64K) extents may used per data file; however, the recommended maximum is 32,768 (32K). The recom-
mended maximum size for a single data file is 32G — that is, 32K extents × 1 MB per extent. Smaller extents have the advantage that
they tend to provide lower latency; however, larger extents tend to allow for greater throughput. You must also take into consideration
that larger extents may mean longer node restart times. In addition, once an extent is allocated to a given table, it cannot be used to store
data from another; an extent cannot store table from more than one table. This means, for example that a tablespace having a single
datafile whose INITIAL_SIZE is 256 MB and whose EXTENT_SIZE is 128M has just two extents, and so can be used to store data
from at most two different disk data tables.

You can see how many extents remain free in a given data file by querying the INFORMATION_SCHEMA.FILES table, and so derive
an estimate for how much space remains free in the file. For further discussion and examples, see Section 24.21, “The INFORMA-
TION_SCHEMA FILES Table”.

The INITIAL_SIZE parameter sets the data file's total size in bytes. Once the file has been created, its size cannot be changed;
however, you can add more data files to the tablespace using ALTER TABLESPACE ... ADD DATAFILE. See Section 12.1.5,
“ALTER TABLESPACE Syntax”.

INITIAL_SIZE is optional; its default value is 128M.

On 32-bit systems, the maximum supported value for INITIAL_SIZE is 4G. (Bug#29186)

When setting EXTENT_SIZE or INITIAL_SIZE (either or both), you may optionally follow the number with a one-letter abbrevi-
ation for an order of magnitude, similar to those used in my.cnf. Generally, this is one of the letters M (for megabytes) or G (for giga-
bytes).

AUTOEXTEND_SIZE, MAX_SIZE, NODEGROUP, WAIT, and COMMENT are parsed but ignored, and so have no effect in MySQL 5.1.
These options are intended for future expansion.

The ENGINE parameter determines the storage engine which uses this tablespace, with engine_name being the name of the storage
engine. In MySQL 5.1, engine_name must be one of the values NDB or NDBCLUSTER.

When CREATE TABLESPACE is used with ENGINE = NDB, a tablespace and associated data file are created on each Cluster data
node. You can verify that the data files were created and obtain information about them by querying the INFORMA-
TION_SCHEMA.FILES table. For example:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_NAME, EXTRA
-> FROM INFORMATION_SCHEMA.FILES
-> WHERE TABLESPACE_NAME = 'newts' AND FILE_TYPE = 'DATAFILE';

+--------------------+-------------+----------------+
| LOGFILE_GROUP_NAME | FILE_NAME | EXTRA |
+--------------------+-------------+----------------+
| lg_3 | newdata.dat | CLUSTER_NODE=3 |
| lg_3 | newdata.dat | CLUSTER_NODE=4 |
+--------------------+-------------+----------------+
2 rows in set (0.01 sec)

(See Section 24.21, “The INFORMATION_SCHEMA FILES Table”.)

CREATE TABLESPACE was added in MySQL 5.1.6. In MySQL 5.1, it is useful only with Disk Data storage for MySQL Cluster. See
Section 17.13, “MySQL Cluster Disk Data Tables”.

12.1.12. DROP DATABASE Syntax
DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. Be very careful with this statement! To use DROP DATA-
BASE, you need the DROP privilege on the database. DROP SCHEMA is a synonym for DROP DATABASE.

Important

When a database is dropped, user privileges on the database are not automatically dropped. See Section 12.5.1.3, “GRANT
Syntax”.

SQL Statement Syntax

810

http://bugs.mysql.com/29186


IF EXISTS is used to prevent an error from occurring if the database does not exist.

If you use DROP DATABASE on a symbolically linked database, both the link and the original database are deleted.

DROP DATABASE returns the number of tables that were removed. This corresponds to the number of .frm files removed.

The DROP DATABASE statement removes from the given database directory those files and directories that MySQL itself may create
during normal operation:

• All files with these extensions:

.BAK .DAT .HSH .MRG

.MYD .MYI .TRG .TRN

.db .frm .ibd .ndb

.par

• The db.opt file, if it exists.

If other files or directories remain in the database directory after MySQL removes those just listed, the database directory cannot be re-
moved. In this case, you must remove any remaining files or directories manually and issue the DROP DATABASE statement again.

You can also drop databases with mysqladmin. See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.

12.1.13. DROP INDEX Syntax
DROP [ONLINE|OFFLINE] INDEX index_name ON tbl_name

DROP INDEX drops the index named index_name from the table tbl_name. This statement is mapped to an ALTER TABLE
statement to drop the index. See Section 12.1.4, “ALTER TABLE Syntax”.

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edition
only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade Edi-
tion”.

Beginning with MySQL 5.1.22-ndb-6.2.5 and MySQL 5.1.22-ndb-6.3.3, you can drop indexes online, using the ONLINE keyword. This
means that the the DROP operation does not require the affected table to be copied. You can also drop indexes offline, which does cause
the table to be copied, using OFFLINE. The rules and limitations governing online DROP ONLINE INDEX and ADD OFFLINE IN-
DEX are the same as for ALTER ONLINE TABLE ... DROP INDEX and ALTER OFFLINE TABLE ... DROP INDEX. For
more information, see Section 12.1.4, “ALTER TABLE Syntax”.

12.1.14. DROP LOGFILE GROUP Syntax
DROP LOGFILE GROUP logfile_group

ENGINE [=] engine_name

This statement drops the log file group named logfile_group. The log file group must already exist or an error results. (For inform-
ation on creating log file groups, see Section 12.1.8, “CREATE LOGFILE GROUP Syntax”.)

Important

Before dropping a log file group, you must drop all tablespaces that use that log file group for UNDO logging.

The required ENGINE clause provides the name of the storage engine used by the log file group to be dropped. In MySQL 5.1, the only
permitted values for engine_name are NDB and NDBCLUSTER.

DROP LOGFILE GROUP was added in MySQL 5.1.6. In MySQL 5.1, it is useful only with Disk Data storage for MySQL Cluster. See
Section 17.13, “MySQL Cluster Disk Data Tables”.

12.1.15. DROP SERVER Syntax

SQL Statement Syntax

811



DROP SERVER [ IF EXISTS ] server_name

Drops the server definition for the server named server_name. The corresponding row within the mysql.servers table will be
deleted. This statement requires the SUPER privilege.

Dropping a server for a table does not affect any FEDERATED tables that used this connection information when they were created. See
Section 12.1.9, “CREATE SERVER Syntax”.

DROP SERVER does not cause an automatic commit.

DROP SERVER was added in MySQL 5.1.15.

12.1.16. DROP TABLE Syntax
DROP [TEMPORARY] TABLE [IF EXISTS]

tbl_name [, tbl_name] ...
[RESTRICT | CASCADE]

DROP TABLE removes one or more tables. You must have the DROP privilege for each table. All table data and the table definition are
removed, so be careful with this statement! If any of the tables named in the argument list do not exist, MySQL returns an error indicat-
ing by name which non-existing tables it was unable to drop, but it also drops all of the tables in the list that do exist.

Important

When a table is dropped, user privileges on the table are not automatically dropped. See Section 12.5.1.3, “GRANT Syn-
tax”.

Note that for a partitioned table, DROP TABLE permanently removes the table definition, all of its partitions, and all of the data which
was stored in those partitions. It also removes the partitioning definition (.par) file associated with the dropped table.

Use IF EXISTS to prevent an error from occurring for tables that do not exist. A NOTE is generated for each non-existent table when
using IF EXISTS. See Section 12.5.4.32, “SHOW WARNINGS Syntax”.

RESTRICT and CASCADE are allowed to make porting easier. In MySQL 5.1, they do nothing.

Note

DROP TABLE automatically commits the current active transaction, unless you use the TEMPORARY keyword.

The TEMPORARY keyword has the following effects:

• The statement drops only TEMPORARY tables.

• The statement does not end an ongoing transaction.

• No access rights are checked. (A TEMPORARY table is visible only to the client that created it, so no check is necessary.)

Using TEMPORARY is a good way to ensure that you do not accidentally drop a non-TEMPORARY table.

12.1.17. DROP TABLESPACE Syntax
DROP TABLESPACE tablespace_name

ENGINE [=] engine_name

This statement drops a tablespace that was previously created using CREATE TABLESPACE (see Section 12.1.11, “CREATE TA-
BLESPACE Syntax”).

Important

The tablespace to be dropped must not contain any data files; in other words, before you can drop a tablespace, you must
first drop each of its data files using ALTER TABLESPACE ... DROP DATAFILE (see Section 12.1.5, “ALTER TA-
BLESPACE Syntax”).

SQL Statement Syntax

812



The ENGINE clause (required) specifies the storage engine used by the tablespace. In MySQL 5.1, the only accepted values for en-
gine_name are NDB and NDBCLUSTER.

DROP TABLESPACE was added in MySQL 5.1.6. In MySQL 5.1, it is useful only with Disk Data storage for MySQL Cluster. See
Section 17.13, “MySQL Cluster Disk Data Tables”.

12.1.18. RENAME DATABASE Syntax
RENAME {DATABASE | SCHEMA} db_name TO new_db_name;

This statement was added in MySQL 5.1.7 but was found to be dangerous and was removed in MySQL 5.1.23. It was intended to enable
upgrading pre-5.1 databases to use the encoding implemented in 5.1 for mapping database names to database directory names (see Sec-
tion 8.2.3, “Mapping of Identifiers to Filenames”). However, use of this statement could result in loss of database contents, which is
why it was removed. Do not use RENAME DATABASE in earlier versions in which it is present.

To perform the task of upgrading database names with the new encoding, use ALTER DATABASE db_name UPGRADE DATA
DIRECTORY NAME instead (see Section 12.1.1, “ALTER DATABASE Syntax”).

12.1.19. RENAME TABLE Syntax
RENAME TABLE tbl_name TO new_tbl_name

[, tbl_name2 TO new_tbl_name2] ...

This statement renames one or more tables.

The rename operation is done atomically, which means that no other thread can access any of the tables while the rename is running.
For example, if you have an existing table old_table, you can create another table new_table that has the same structure but is
empty, and then replace the existing table with the empty one as follows (assuming that backup_table does not already exist):

CREATE TABLE new_table (...);
RENAME TABLE old_table TO backup_table, new_table TO old_table;

If the statement renames more than one table, renaming operations are done from left to right. If you want to swap two table names, you
can do so like this (assuming that tmp_table does not already exist):

RENAME TABLE old_table TO tmp_table,
new_table TO old_table,
tmp_table TO new_table;

As long as two databases are on the same filesystem, you can use RENAME TABLE to move a table from one database to another:

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

If there are any triggers associated with a table which is moved to a different database using RENAME TABLE, then the statement fails
with the error TRIGGER IN WRONG SCHEMA.

RENAME TABLE also works for views, as long as you do not try to rename a view into a different database.

Any privileges granted specifically for the renamed table or view are not migrated to the new name. They must be changed manually.

When you execute RENAME, you cannot have any locked tables or active transactions. You must also have the ALTER and DROP priv-
ileges on the original table, and the CREATE and INSERT privileges on the new table.

If MySQL encounters any errors in a multiple-table rename, it does a reverse rename for all renamed tables to return everything to its
original state.

12.2. Data Manipulation Statements

12.2.1. DELETE Syntax
Single-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name

SQL Statement Syntax

813



[WHERE where_condition]
[ORDER BY ...]
[LIMIT row_count]

Multiple-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
tbl_name[.*] [, tbl_name[.*]] ...
FROM table_references
[WHERE where_condition]

Or:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
FROM tbl_name[.*] [, tbl_name[.*]] ...
USING table_references
[WHERE where_condition]

For the single-table syntax, the DELETE statement deletes rows from tbl_name. The number of rows deleted is returned by the
ROW_COUNT() function (see Section 11.11.3, “Information Functions”). The WHERE clause, if given, specifies the conditions that
identify which rows to delete. With no WHERE clause, all rows are deleted. If the ORDER BY clause is specified, the rows are deleted in
the order that is specified. The LIMIT clause places a limit on the number of rows that can be deleted.

For the multiple-table syntax, DELETE deletes from each tbl_name the rows that satisfy the conditions. In this case, ORDER BY and
LIMIT cannot be used.

where_condition is an expression that evaluates to true for each row to be deleted. It is specified as described in Section 12.2.7,
“SELECT Syntax”.

As stated, a DELETE statement with no WHERE clause deletes all rows. A faster way to do this, when you do not want to know the num-
ber of deleted rows, is to use TRUNCATE TABLE. See Section 12.2.9, “TRUNCATE Syntax”.

If you delete the row containing the maximum value for an AUTO_INCREMENT column, the value is not reused for a MyISAM or In-
noDB table. If you delete all rows in the table with DELETE FROM tbl_name (without a WHERE clause) in AUTOCOMMIT mode,
the sequence starts over for all storage engines except InnoDB and MyISAM. There are some exceptions to this behavior for InnoDB
tables, as discussed in Section 13.5.6.3, “How AUTO_INCREMENT Handling Works in InnoDB”.

For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key. In this case, reuse of values
deleted from the top of the sequence occurs even for MyISAM tables. See Section 3.6.9, “Using AUTO_INCREMENT”.

The DELETE statement supports the following modifiers:

• If you specify LOW_PRIORITY, the server delays execution of the DELETE until no other clients are reading from the table. This
affects only storage engines that use only table-level locking (MyISAM, MEMORY, MERGE).

• For MyISAM tables, if you use the QUICK keyword, the storage engine does not merge index leaves during delete, which may speed
up some kinds of delete operations.

• The IGNORE keyword causes MySQL to ignore all errors during the process of deleting rows. (Errors encountered during the pars-
ing stage are processed in the usual manner.) Errors that are ignored due to the use of IGNORE are returned as warnings.

The speed of delete operations may also be affected by factors discussed in Section 7.2.20, “Speed of DELETE Statements”.

In MyISAM tables, deleted rows are maintained in a linked list and subsequent INSERT operations reuse old row positions. To reclaim
unused space and reduce file sizes, use the OPTIMIZE TABLE statement or the myisamchk utility to reorganize tables. OPTIMIZE
TABLE is easier, but myisamchk is faster. See Section 12.5.2.5, “OPTIMIZE TABLE Syntax”, and Section 4.6.3, “myisamchk —
MyISAM Table-Maintenance Utility”.

The QUICK modifier affects whether index leaves are merged for delete operations. DELETE QUICK is most useful for applications
where index values for deleted rows are replaced by similar index values from rows inserted later. In this case, the holes left by deleted
values are reused.

DELETE QUICK is not useful when deleted values lead to underfilled index blocks spanning a range of index values for which new in-
serts occur again. In this case, use of QUICK can lead to wasted space in the index that remains unreclaimed. Here is an example of such
a scenario:

SQL Statement Syntax

814



1. Create a table that contains an indexed AUTO_INCREMENT column.

2. Insert many rows into the table. Each insert results in an index value that is added to the high end of the index.

3. Delete a block of rows at the low end of the column range using DELETE QUICK.

In this scenario, the index blocks associated with the deleted index values become underfilled but are not merged with other index
blocks due to the use of QUICK. They remain underfilled when new inserts occur, because new rows do not have index values in the de-
leted range. Furthermore, they remain underfilled even if you later use DELETE without QUICK, unless some of the deleted index val-
ues happen to lie in index blocks within or adjacent to the underfilled blocks. To reclaim unused index space under these circumstances,
use OPTIMIZE TABLE.

If you are going to delete many rows from a table, it might be faster to use DELETE QUICK followed by OPTIMIZE TABLE. This re-
builds the index rather than performing many index block merge operations.

The MySQL-specific LIMIT row_count option to DELETE tells the server the maximum number of rows to be deleted before con-
trol is returned to the client. This can be used to ensure that a given DELETE statement does not take too much time. You can simply re-
peat the DELETE statement until the number of affected rows is less than the LIMIT value.

If the DELETE statement includes an ORDER BY clause, the rows are deleted in the order specified by the clause. This is really useful
only in conjunction with LIMIT. For example, the following statement finds rows matching the WHERE clause, sorts them by
timestamp_column, and deletes the first (oldest) one:

DELETE FROM somelog WHERE user = 'jcole'
ORDER BY timestamp_column LIMIT 1;

You can specify multiple tables in a DELETE statement to delete rows from one or more tables depending on the particular condition in
the WHERE clause. However, you cannot use ORDER BY or LIMIT in a multiple-table DELETE. The table_references clause
lists the tables involved in the join. Its syntax is described in Section 12.2.7.1, “JOIN Syntax”.

For the first multiple-table syntax, only matching rows from the tables listed before the FROM clause are deleted. For the second mul-
tiple-table syntax, only matching rows from the tables listed in the FROM clause (before the USING clause) are deleted. The effect is
that you can delete rows from many tables at the same time and have additional tables that are used only for searching:

DELETE t1, t2 FROM t1, t2, t3 WHERE t1.id=t2.id AND t2.id=t3.id;

Or:

DELETE FROM t1, t2 USING t1, t2, t3 WHERE t1.id=t2.id AND t2.id=t3.id;

These statements use all three tables when searching for rows to delete, but delete matching rows only from tables t1 and t2.

The preceding examples show inner joins that use the comma operator, but multiple-table DELETE statements can use any type of join
allowed in SELECT statements, such as LEFT JOIN.

The syntax allows .* after the table names for compatibility with Access.

If you use a multiple-table DELETE statement involving InnoDB tables for which there are foreign key constraints, the MySQL optim-
izer might process tables in an order that differs from that of their parent/child relationship. In this case, the statement fails and rolls
back. Instead, you should delete from a single table and rely on the ON DELETE capabilities that InnoDB provides to cause the other
tables to be modified accordingly.

Note

If you provide an alias for a table, you must use the alias when referring to the table:

DELETE t1 FROM test AS t1, test2 WHERE ...

Cross-database deletes are supported for multiple-table deletes, but in this case, you must refer to the tables without using aliases. For
example:

DELETE test1.tmp1, test2.tmp2 FROM test1.tmp1, test2.tmp2 WHERE ...

SQL Statement Syntax

815



Currently, you cannot delete from a table and select from the same table in a subquery.

12.2.2. DO Syntax
DO expr [, expr] ...

DO executes the expressions but does not return any results. In most respects, DO is shorthand for SELECT expr, ..., but has the
advantage that it is slightly faster when you do not care about the result.

DO is useful primarily with functions that have side effects, such as RELEASE_LOCK().

12.2.3. HANDLER Syntax
HANDLER tbl_name OPEN [ [AS] alias]
HANDLER tbl_name READ index_name { = | >= | <= | < } (value1,value2,...)

[ WHERE where_condition ] [LIMIT ... ]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }

[ WHERE where_condition ] [LIMIT ... ]
HANDLER tbl_name READ { FIRST | NEXT }

[ WHERE where_condition ] [LIMIT ... ]
HANDLER tbl_name CLOSE

The HANDLER statement provides direct access to table storage engine interfaces. It is available for MyISAM and InnoDB tables.

The HANDLER ... OPEN statement opens a table, making it accessible via subsequent HANDLER ... READ statements. This table
object is not shared by other threads and is not closed until the thread calls HANDLER ... CLOSE or the thread terminates. If you
open the table using an alias, further references to the open table with other HANDLER statements must use the alias rather than the table
name.

The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given values and the WHERE condition is
met. If you have a multiple-column index, specify the index column values as a comma-separated list. Either specify values for all the
columns in the index, or specify values for a leftmost prefix of the index columns. Suppose that an index my_idx includes three
columns named col_a, col_b, and col_c, in that order. The HANDLER statement can specify values for all three columns in the in-
dex, or for the columns in a leftmost prefix. For example:

HANDLER ... READ my_idx = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... READ my_idx = (col_a_val,col_b_val) ...
HANDLER ... READ my_idx = (col_a_val) ...

To employ the HANDLER interface to refer to a table's PRIMARY KEY, use the quoted identifier `PRIMARY`:

HANDLER tbl_name READ `PRIMARY` ...

The second HANDLER ... READ syntax fetches a row from the table in index order that matches the WHERE condition.

The third HANDLER ... READ syntax fetches a row from the table in natural row order that matches the WHERE condition. It is faster
than HANDLER tbl_name READ index_name when a full table scan is desired. Natural row order is the order in which rows are
stored in a MyISAM table data file. This statement works for InnoDB tables as well, but there is no such concept because there is no
separate data file.

Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available. To return a specific number of
rows, include a LIMIT clause. It has the same syntax as for the SELECT statement. See Section 12.2.7, “SELECT Syntax”.

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

HANDLER is a somewhat low-level statement. For example, it does not provide consistency. That is, HANDLER ... OPEN does not
take a snapshot of the table, and does not lock the table. This means that after a HANDLER ... OPEN statement is issued, table data
can be modified (by the current thread or other threads) and these modifications might be only partially visible to HANDLER ...
NEXT or HANDLER ... PREV scans.

There are several reasons to use the HANDLER interface instead of normal SELECT statements:

• HANDLER is faster than SELECT:

SQL Statement Syntax

816



• A designated storage engine handler object is allocated for the HANDLER ... OPEN. The object is reused for subsequent
HANDLER statements for that table; it need not be reinitialized for each one.

• There is less parsing involved.

• There is no optimizer or query-checking overhead.

• The table does not have to be locked between two handler requests.

• The handler interface does not have to provide a consistent look of the data (for example, dirty reads are allowed), so the storage
engine can use optimizations that SELECT does not normally allow.

• For applications that use a low-level ISAM-like interface, HANDLER makes it much easier to port them to MySQL.

• HANDLER enables you to traverse a database in a manner that is difficult (or even impossible) to accomplish with SELECT. The
HANDLER interface is a more natural way to look at data when working with applications that provide an interactive user interface
to the database.

12.2.4. INSERT Syntax
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]

[INTO] tbl_name [(col_name,...)]
VALUES ({expr | DEFAULT},...),(...),...
[ ON DUPLICATE KEY UPDATE
col_name=expr
[, col_name=expr] ... ]

Or:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] tbl_name
SET col_name={expr | DEFAULT}, ...
[ ON DUPLICATE KEY UPDATE
col_name=expr
[, col_name=expr] ... ]

Or:

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
[INTO] tbl_name [(col_name,...)]
SELECT ...
[ ON DUPLICATE KEY UPDATE
col_name=expr
[, col_name=expr] ... ]

INSERT inserts new rows into an existing table. The INSERT ... VALUES and INSERT ... SET forms of the statement insert
rows based on explicitly specified values. The INSERT ... SELECT form inserts rows selected from another table or tables. IN-
SERT ... SELECT is discussed further in Section 12.2.4.1, “INSERT ... SELECT Syntax”.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to INSERT IGNORE in the treatment
of new rows that contain unique key values that duplicate old rows: The new rows are used to replace the old rows rather than being dis-
carded. See Section 12.2.6, “REPLACE Syntax”.

tbl_name is the table into which rows should be inserted. The columns for which the statement provides values can be specified as
follows:

• You can provide a comma-separated list of column names following the table name. In this case, a value for each named column
must be provided by the VALUES list or the SELECT statement.

• If you do not specify a list of column names for INSERT ... VALUES or INSERT ... SELECT, values for every column in
the table must be provided by the VALUES list or the SELECT statement. If you do not know the order of the columns in the table,
use DESCRIBE tbl_name to find out.

• The SET clause indicates the column names explicitly.

SQL Statement Syntax

817



Column values can be given in several ways:

• If you are not running in strict SQL mode, any column not explicitly given a value is set to its default (explicit or implicit) value.
For example, if you specify a column list that does not name all the columns in the table, unnamed columns are set to their default
values. Default value assignment is described in Section 10.1.4, “Data Type Default Values”. See also Section 1.8.6.2, “Constraints
on Invalid Data”.

If you want an INSERT statement to generate an error unless you explicitly specify values for all columns that do not have a default
value, you should use strict mode. See Section 5.1.6, “SQL Modes”.

• Use the keyword DEFAULT to set a column explicitly to its default value. This makes it easier to write INSERT statements that as-
sign values to all but a few columns, because it enables you to avoid writing an incomplete VALUES list that does not include a
value for each column in the table. Otherwise, you would have to write out the list of column names corresponding to each value in
the VALUES list.

You can also use DEFAULT(col_name) as a more general form that can be used in expressions to produce a given column's de-
fault value.

• If both the column list and the VALUES list are empty, INSERT creates a row with each column set to its default value:

INSERT INTO tbl_name () VALUES();

In strict mode, an error occurs if any column doesn't have a default value. Otherwise, MySQL uses the implicit default value for any
column that does not have an explicitly defined default.

• You can specify an expression expr to provide a column value. This might involve type conversion if the type of the expression
does not match the type of the column, and conversion of a given value can result in different inserted values depending on the data
type. For example, inserting the string '1999.0e-2' into an INT, FLOAT, DECIMAL(10,6), or YEAR column results in the
values 1999, 19.9921, 19.992100, and 1999 being inserted, respectively. The reason the value stored in the INT and YEAR
columns is 1999 is that the string-to-integer conversion looks only at as much of the initial part of the string as may be considered a
valid integer or year. For the floating-point and fixed-point columns, the string-to-floating-point conversion considers the entire
string a valid floating-point value.

An expression expr can refer to any column that was set earlier in a value list. For example, you can do this because the value for
col2 refers to col1, which has previously been assigned:

INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But the following is not legal, because the value for col1 refers to col2, which is assigned after col1:

INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

One exception involves columns that contain AUTO_INCREMENT values. Because the AUTO_INCREMENT value is generated after
other value assignments, any reference to an AUTO_INCREMENT column in the assignment returns a 0.

INSERT statements that use VALUES syntax can insert multiple rows. To do this, include multiple lists of column values, each en-
closed within parentheses and separated by commas. Example:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9);

The values list for each row must be enclosed within parentheses. The following statement is illegal because the number of values in the
list does not match the number of column names:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3,4,5,6,7,8,9);

The affected-rows value for an INSERT can be obtained using the ROW_COUNT() function (see Section 11.11.3, “Information Func-
tions”), or the mysql_affected_rows() C API function (see Section 26.2.3.1, “mysql_affected_rows()”).

If you use an INSERT ... VALUES statement with multiple value lists or INSERT ... SELECT, the statement returns an inform-
ation string in this format:

Records: 100 Duplicates: 0 Warnings: 0

SQL Statement Syntax

818



Records indicates the number of rows processed by the statement. (This is not necessarily the number of rows actually inserted be-
cause Duplicates can be non-zero.) Duplicates indicates the number of rows that could not be inserted because they would du-
plicate some existing unique index value. Warnings indicates the number of attempts to insert column values that were problematic in
some way. Warnings can occur under any of the following conditions:

• Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT statements or INSERT INTO ...
SELECT statements, the column is set to the implicit default value for the column data type. This is 0 for numeric types, the empty
string ('') for string types, and the “zero” value for date and time types. INSERT INTO ... SELECT statements are handled
the same way as multiple-row inserts because the server does not examine the result set from the SELECT to see whether it returns a
single row. (For a single-row INSERT, no warning occurs when NULL is inserted into a NOT NULL column. Instead, the statement
fails with an error.)

• Setting a numeric column to a value that lies outside the column's range. The value is clipped to the closest endpoint of the range.

• Assigning a value such as '10.34 a' to a numeric column. The trailing non-numeric text is stripped off and the remaining nu-
meric part is inserted. If the string value has no leading numeric part, the column is set to 0.

• Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the column's maximum length. The value is
truncated to the column's maximum length.

• Inserting a value into a date or time column that is illegal for the data type. The column is set to the appropriate zero value for the
type.

If you are using the C API, the information string can be obtained by invoking the mysql_info() function. See Section 26.2.3.35,
“mysql_info()”.

If INSERT inserts a row into a table that has an AUTO_INCREMENT column, you can find the value used for that column by using the
SQL LAST_INSERT_ID() function. From within the C API, use the mysql_insert_id() function. However, you should note
that the two functions do not always behave identically. The behavior of INSERT statements with respect to AUTO_INCREMENT
columns is discussed further in Section 11.11.3, “Information Functions”, and Section 26.2.3.37, “mysql_insert_id()”.

The INSERT statement supports the following modifiers:

• If you use the DELAYED keyword, the server puts the row or rows to be inserted into a buffer, and the client issuing the INSERT
DELAYED statement can then continue immediately. If the table is in use, the server holds the rows. When the table is free, the serv-
er begins inserting rows, checking periodically to see whether there are any new read requests for the table. If there are, the delayed
row queue is suspended until the table becomes free again. See Section 12.2.4.2, “INSERT DELAYED Syntax”.

DELAYED is ignored with INSERT ... SELECT or INSERT ... ON DUPLICATE KEY UPDATE.

Beginning with MySQL 5.1.19, DELAYED is also disregarded for an INSERT that uses functions accessing tables or triggers, or that
is called from a function or a trigger.

• If you use the LOW_PRIORITY keyword, execution of the INSERT is delayed until no other clients are reading from the table. This
includes other clients that began reading while existing clients are reading, and while the INSERT LOW_PRIORITY statement is
waiting. It is possible, therefore, for a client that issues an INSERT LOW_PRIORITY statement to wait for a very long time (or
even forever) in a read-heavy environment. (This is in contrast to INSERT DELAYED, which lets the client continue at once. Note
that LOW_PRIORITY should normally not be used with MyISAM tables because doing so disables concurrent inserts. See Sec-
tion 7.3.3, “Concurrent Inserts”.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the server was started
with that option. It also causes concurrent inserts not to be used. See Section 7.3.3, “Concurrent Inserts”.

LOW_PRIORITY and HIGH_PRIORITY affect only storage engines that use only table-level locking (MyISAM, MEMORY,
MERGE).

• If you use the IGNORE keyword, errors that occur while executing the INSERT statement are treated as warnings instead. For ex-
ample, without IGNORE, a row that duplicates an existing UNIQUE index or PRIMARY KEY value in the table causes a duplicate-
key error and the statement is aborted. With IGNORE, the row still is not inserted, but no error is issued.

IGNORE has a similar effect on inserts into partitioned tables where no partition matching a given value is found. Without IGNORE,

SQL Statement Syntax

819



such INSERT statements are aborted with an error; however, when INSERT IGNORE is used, the insert operation fails silently for
the row containing the unmatched value, but any rows that are matched are inserted. For an example, see Section 18.2.2, “LIST
Partitioning”.

Data conversions that would trigger errors abort the statement if IGNORE is not specified. With IGNORE, invalid values are adjus-
ted to the closest values and inserted; warnings are produced but the statement does not abort. You can determine with the
mysql_info() C API function how many rows were actually inserted into the table.

• If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate value in a UNIQUE index or
PRIMARY KEY, an UPDATE of the old row is performed. The affected-rows value per row is 1 if the row is inserted as a new row
and 2 if an existing row is updated. See Section 12.2.4.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

Inserting into a table requires the INSERT privilege for the table. If the ON DUPLICATE KEY UPDATE clause is used and a duplic-
ate key causes an UPDATE to be performed instead, the statement requires the UPDATE privilege for the columns to be updated.

12.2.4.1. INSERT ... SELECT Syntax
INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]

[INTO] tbl_name [(col_name,...)]
SELECT ...
[ ON DUPLICATE KEY UPDATE col_name=expr, ... ]

With INSERT ... SELECT, you can quickly insert many rows into a table from one or many tables. For example:

INSERT INTO tbl_temp2 (fld_id)
SELECT tbl_temp1.fld_order_id
FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

The following conditions hold for a INSERT ... SELECT statements:

• Specify IGNORE to ignore rows that would cause duplicate-key violations.

• DELAYED is ignored with INSERT ... SELECT.

• The target table of the INSERT statement may appear in the FROM clause of the SELECT part of the query. (This was not possible
in some older versions of MySQL.) In this case, MySQL creates a temporary table to hold the rows from the SELECT and then in-
serts those rows into the target table. However, it remains true that you cannot use INSERT INTO t ... SELECT ... FROM
t when t is a TEMPORARY table, because TEMPORARY tables cannot be referred to twice in the same statement (see Sec-
tion B.1.7.3, “TEMPORARY TABLE Problems”).

• AUTO_INCREMENT columns work as usual.

• To ensure that the binary log can be used to re-create the original tables, MySQL does not allow concurrent inserts for INSERT
... SELECT statements.

• Currently, you cannot insert into a table and select from the same table in a subquery.

• To avoid ambigious column reference problems when the SELECT and the INSERT refer to the same table, provide a unique alias
for each table used in the SELECT part, and qualify column names in that part with the appropriate alias.

In the values part of ON DUPLICATE KEY UPDATE, you can refer to columns in other tables, as long as you do not use GROUP BY
in the SELECT part. One side effect is that you must qualify non-unique column names in the values part.

12.2.4.2. INSERT DELAYED Syntax
INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL extension to standard SQL that is very useful if you have clients that can-
not or need not wait for the INSERT to complete. This is a common situation when you use MySQL for logging and you also periodic-
ally run SELECT and UPDATE statements that take a long time to complete.

When a client uses INSERT DELAYED, it gets an okay from the server at once, and the row is queued to be inserted when the table is

SQL Statement Syntax

820



not in use by any other thread.

Another major benefit of using INSERT DELAYED is that inserts from many clients are bundled together and written in one block.
This is much faster than performing many separate inserts.

Note that INSERT DELAYED is slower than a normal INSERT if the table is not otherwise in use. There is also the additional over-
head for the server to handle a separate thread for each table for which there are delayed rows. This means that you should use INSERT
DELAYED only when you are really sure that you need it.

The queued rows are held only in memory until they are inserted into the table. This means that if you terminate mysqld forcibly (for
example, with kill -9) or if mysqld dies unexpectedly, any queued rows that have not been written to disk are lost.

There are some constraints on the use of DELAYED:

• INSERT DELAYED works only with MyISAM, MEMORY, ARCHIVE, and (as of MySQL 5.1.19) BLACKHOLE tables. See Sec-
tion 13.4, “The MyISAM Storage Engine”, Section 13.7, “The MEMORY (HEAP) Storage Engine”, Section 13.10, “The ARCHIVE
Storage Engine”, and Section 13.12, “The BLACKHOLE Storage Engine”.

• For MyISAM tables, if there are no free blocks in the middle of the data file, concurrent SELECT and INSERT statements are sup-
ported. Under these circumstances, you very seldom need to use INSERT DELAYED with MyISAM.

• INSERT DELAYED should be used only for INSERT statements that specify value lists. The server ignores DELAYED for IN-
SERT ... SELECT or INSERT ... ON DUPLICATE KEY UPDATE statements.

• Because the INSERT DELAYED statement returns immediately, before the rows are inserted, you cannot use
LAST_INSERT_ID() to get the AUTO_INCREMENT value that the statement might generate.

• DELAYED rows are not visible to SELECT statements until they actually have been inserted.

• DELAYED is ignored on slave replication servers because it could cause the slave to have different data than the master.

• Pending INSERT DELAYED statements are lost if a table is write locked and ALTER TABLE is used to modify the table structure.

• INSERT DELAYED is not supported for views.

• INSERT DELAYED is not supported for partitioned tables.

The following describes in detail what happens when you use the DELAYED option to INSERT or REPLACE. In this description, the
“thread” is the thread that received an INSERT DELAYED statement and “handler” is the thread that handles all INSERT DELAYED
statements for a particular table.

• When a thread executes a DELAYED statement for a table, a handler thread is created to process all DELAYED statements for the ta-
ble, if no such handler already exists.

• The thread checks whether the handler has previously acquired a DELAYED lock; if not, it tells the handler thread to do so. The
DELAYED lock can be obtained even if other threads have a READ or WRITE lock on the table. However, the handler waits for all
ALTER TABLE locks or FLUSH TABLES statements to finish, to ensure that the table structure is up to date.

• The thread executes the INSERT statement, but instead of writing the row to the table, it puts a copy of the final row into a queue
that is managed by the handler thread. Any syntax errors are noticed by the thread and reported to the client program.

• The client cannot obtain from the server the number of duplicate rows or the AUTO_INCREMENT value for the resulting row, be-
cause the INSERT returns before the insert operation has been completed. (If you use the C API, the mysql_info() function
does not return anything meaningful, for the same reason.)

• The binary log is updated by the handler thread when the row is inserted into the table. In case of multiple-row inserts, the binary
log is updated when the first row is inserted.

• Each time that delayed_insert_limit rows are written, the handler checks whether any SELECT statements are still pending.
If so, it allows these to execute before continuing.

• When the handler has no more rows in its queue, the table is unlocked. If no new INSERT DELAYED statements are received with-
in delayed_insert_timeout seconds, the handler terminates.

SQL Statement Syntax

821



• If more than delayed_queue_size rows are pending in a specific handler queue, the thread requesting INSERT DELAYED
waits until there is room in the queue. This is done to ensure that mysqld does not use all memory for the delayed memory queue.

• The handler thread shows up in the MySQL process list with delayed_insert in the Command column. It is killed if you ex-
ecute a FLUSH TABLES statement or kill it with KILL thread_id. However, before exiting, it first stores all queued rows into
the table. During this time it does not accept any new INSERT statements from other threads. If you execute an INSERT
DELAYED statement after this, a new handler thread is created.

Note that this means that INSERT DELAYED statements have higher priority than normal INSERT statements if there is an IN-
SERT DELAYED handler running. Other update statements have to wait until the INSERT DELAYED queue is empty, someone
terminates the handler thread (with KILL thread_id), or someone executes a FLUSH TABLES.

• The following status variables provide information about INSERT DELAYED statements:

Status Variable Meaning

Delayed_insert_threads Number of handler threads

Delayed_writes Number of rows written with INSERT DELAYED

Not_flushed_delayed_rows Number of rows waiting to be written

You can view these variables by issuing a SHOW STATUS statement or by executing a mysqladmin extended-status com-
mand.

12.2.4.3. INSERT ... ON DUPLICATE KEY UPDATE Syntax

If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate value in a UNIQUE index or
PRIMARY KEY, an UPDATE of the old row is performed. For example, if column a is declared as UNIQUE and contains the value 1,
the following two statements have identical effect:

INSERT INTO table (a,b,c) VALUES (1,2,3)
ON DUPLICATE KEY UPDATE c=c+1;

UPDATE table SET c=c+1 WHERE a=1;

With ON DUPLICATE KEY UPDATE, the affected-rows value per row is 1 if the row is inserted as a new row and 2 if an existing row
is updated.

If column b is also unique, the INSERT is equivalent to this UPDATE statement instead:

UPDATE table SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

If a=1 OR b=2 matches several rows, only one row is updated. In general, you should try to avoid using an ON DUPLICATE KEY
clause on tables with multiple unique indexes.

The ON DUPLICATE KEY UPDATE clause can contain multiple column assignments, separated by commas.

You can use the VALUES(col_name) function in the UPDATE clause to refer to column values from the INSERT portion of the IN-
SERT ... UPDATE statement. In other words, VALUES(col_name) in the UPDATE clause refers to the value of col_name that
would be inserted, had no duplicate-key conflict occurred. This function is especially useful in multiple-row inserts. The VALUES()
function is meaningful only in INSERT ... UPDATE statements and returns NULL otherwise. Example:

INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

That statement is identical to the following two statements:

INSERT INTO table (a,b,c) VALUES (1,2,3)
ON DUPLICATE KEY UPDATE c=3;

INSERT INTO table (a,b,c) VALUES (4,5,6)
ON DUPLICATE KEY UPDATE c=9;

If a table contains an AUTO_INCREMENT column and INSERT ... UPDATE inserts a row, the LAST_INSERT_ID() function re-
turns the AUTO_INCREMENT value. If the statement updates a row instead, LAST_INSERT_ID() is not meaningful. However, you

SQL Statement Syntax

822



can work around this by using LAST_INSERT_ID(expr). Suppose that id is the AUTO_INCREMENT column. To make
LAST_INSERT_ID() meaningful for updates, insert rows as follows:

INSERT INTO table (a,b,c) VALUES (1,2,3)
ON DUPLICATE KEY UPDATE id=LAST_INSERT_ID(id), c=3;

The DELAYED option is ignored when you use ON DUPLICATE KEY UPDATE.

12.2.5. LOAD DATA INFILE Syntax
LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'

[REPLACE | IGNORE]
INTO TABLE tbl_name
[CHARACTER SET charset_name]
[FIELDS

[TERMINATED BY 'string']
[[OPTIONALLY] ENCLOSED BY 'char']
[ESCAPED BY 'char']

]
[LINES

[STARTING BY 'string']
[TERMINATED BY 'string']

]
[IGNORE number LINES]
[(col_name_or_user_var,...)]
[SET col_name = expr,...]

The LOAD DATA INFILE statement reads rows from a text file into a table at a very high speed. The filename must be given as a lit-
eral string.

LOAD DATA INFILE is the complement of SELECT ... INTO OUTFILE. (See Section 12.2.7, “SELECT Syntax”.) To write
data from a table to a file, use SELECT ... INTO OUTFILE. To read the file back into a table, use LOAD DATA INFILE. The
syntax of the FIELDS and LINES clauses is the same for both statements. Both clauses are optional, but FIELDS must precede
LINES if both are specified.

For more information about the efficiency of INSERT versus LOAD DATA INFILE and speeding up LOAD DATA INFILE, see
Section 7.2.18, “Speed of INSERT Statements”.

The character set indicated by the character_set_database system variable is used to interpret the information in the file. SET
NAMES and the setting of character_set_client do not affect interpretation of input. If the contents of the input file use a char-
acter set that differs from the default, it is usually preferable to specify the character set of the file by using the CHARACTER SET
clause, which is available as of MySQL 5.1.17.

LOAD DATA INFILE interprets all fields in the file as having the same character set, regardless of the data types of the columns into
which field values are loaded. For proper interpretation of file contents, you must ensure that it was written with the correct character
set. For example, if you write a data file with mysqldump -T or by issuing a SELECT ... INTO OUTFILE statement in mysql,
be sure to use a --default-character-set option with mysqldump or mysql so that output is written in the character set to
be used when the file is loaded with LOAD DATA INFILE.

Note that it is currently not possible to load data files that use the ucs2 character set.

As of MySQL 5.1.6, the character_set_filesystem system variable controls the interpretation of the filename.

You can also load data files by using the mysqlimport utility; it operates by sending a LOAD DATA INFILE statement to the serv-
er. The --local option causes mysqlimport to read data files from the client host. You can specify the --compress option to
get better performance over slow networks if the client and server support the compressed protocol. See Section 4.5.5, “mysqlimport
— A Data Import Program”.

If you use LOW_PRIORITY, execution of the LOAD DATA statement is delayed until no other clients are reading from the table. This
affects only storage engines that use only table-level locking (MyISAM, MEMORY, MERGE).

If you specify CONCURRENT with a MyISAM table that satisfies the condition for concurrent inserts (that is, it contains no free blocks
in the middle), other threads can retrieve data from the table while LOAD DATA is executing. Using this option affects the performance
of LOAD DATA a bit, even if no other thread is using the table at the same time.

CONCURRENT is not replicated when using statement-based replication; however, it is replicated when using row-based replication. See
Section 16.3.1.10, “Replication and LOAD DATA”, for more information.

Note

SQL Statement Syntax

823



Prior to MySQL 5.1.23, LOAD DATA performed very poorly when importing into partitioned tables. The statement now
uses buffering to improve performance; however, the buffer uses 130 KB memory per partition to achieve this.
(Bug#26527)

The LOCAL keyword, if specified, is interpreted with respect to the client end of the connection:

• If LOCAL is specified, the file is read by the client program on the client host and sent to the server. The file can be given as a full
pathname to specify its exact location. If given as a relative pathname, the name is interpreted relative to the directory in which the
client program was started.

• If LOCAL is not specified, the file must be located on the server host and is read directly by the server. The server uses the following
rules to locate the file:

• If the filename is an absolute pathname, the server uses it as given.

• If the filename is a relative pathname with one or more leading components, the server searches for the file relative to the serv-
er's data directory.

• If a filename with no leading components is given, the server looks for the file in the database directory of the default database.

Note that, in the non-LOCAL case, these rules mean that a file named as ./myfile.txt is read from the server's data directory,
whereas the file named as myfile.txt is read from the database directory of the default database. For example, if db1 is the default
database, the following LOAD DATA statement reads the file data.txt from the database directory for db1, even though the state-
ment explicitly loads the file into a table in the db2 database:

LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;

Windows pathnames are specified using forward slashes rather than backslashes. If you do use backslashes, you must double them.

For security reasons, when reading text files located on the server, the files must either reside in the database directory or be readable by
all. Also, to use LOAD DATA INFILE on server files, you must have the FILE privilege. See Section 5.4.3, “Privileges Provided by
MySQL”.

Using LOCAL is a bit slower than letting the server access the files directly, because the contents of the file must be sent over the con-
nection by the client to the server. On the other hand, you do not need the FILE privilege to load local files.

With LOCAL, the default behavior is the same as if IGNORE is specified; this is because the server has no way to stop transmission of
the file in the middle of the operation. IGNORE is explained further later in this section.

LOCAL works only if your server and your client both have been enabled to allow it. For example, if mysqld was started with -
-local-infile=0, LOCAL does not work. See Section 5.3.4, “Security Issues with LOAD DATA LOCAL”.

On Unix, if you need LOAD DATA to read from a pipe, you can use the following technique (here we load the listing of the / directory
into a table):

mkfifo /mysql/db/x/x
chmod 666 /mysql/db/x/x
find / -ls > /mysql/db/x/x &
mysql -e "LOAD DATA INFILE 'x' INTO TABLE x" x

Note that you must run the command that generates the data to be loaded and the mysql commands either on separate terminals, or run
the data generation process in the background (as shown in the preceding example). If you do not do this, the pipe will block until data
is read by the mysql process.

The REPLACE and IGNORE keywords control handling of input rows that duplicate existing rows on unique key values:

• If you specify REPLACE, input rows replace existing rows. In other words, rows that have the same value for a primary key or
unique index as an existing row. See Section 12.2.6, “REPLACE Syntax”.

• If you specify IGNORE, input rows that duplicate an existing row on a unique key value are skipped. If you do not specify either op-
tion, the behavior depends on whether the LOCAL keyword is specified. Without LOCAL, an error occurs when a duplicate key
value is found, and the rest of the text file is ignored. With LOCAL, the default behavior is the same as if IGNORE is specified; this
is because the server has no way to stop transmission of the file in the middle of the operation.

SQL Statement Syntax

824

http://bugs.mysql.com/26527


If you want to ignore foreign key constraints during the load operation, you can issue a SET FOREIGN_KEY_CHECKS=0 statement
before executing LOAD DATA.

If you use LOAD DATA INFILE on an empty MyISAM table, all non-unique indexes are created in a separate batch (as for REPAIR
TABLE). Normally, this makes LOAD DATA INFILE much faster when you have many indexes. In some extreme cases, you can cre-
ate the indexes even faster by turning them off with ALTER TABLE ... DISABLE KEYS before loading the file into the table and
using ALTER TABLE ... ENABLE KEYS to re-create the indexes after loading the file. See Section 7.2.18, “Speed of INSERT
Statements”.

For both the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements, the syntax of the FIELDS and LINES clauses
is the same. Both clauses are optional, but FIELDS must precede LINES if both are specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY] ENCLOSED BY, and ESCAPED BY)
is also optional, except that you must specify at least one of them.

If you specify no FIELDS clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'

If you specify no LINES clause, the defaults are the same as if you had written this:

LINES TERMINATED BY '\n' STARTING BY ''

In other words, the defaults cause LOAD DATA INFILE to act as follows when reading input:

• Look for line boundaries at newlines.

• Do not skip over any line prefix.

• Break lines into fields at tabs.

• Do not expect fields to be enclosed within any quoting characters.

• Interpret occurrences of tab, newline, or “\” preceded by “\” as literal characters that are part of field values.

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing output:

• Write tabs between fields.

• Do not enclose fields within any quoting characters.

• Use “\” to escape instances of tab, newline, or “\” that occur within field values.

• Write newlines at the ends of lines.

Backslash is the MySQL escape character within strings, so to write FIELDS ESCAPED BY '\\', you must specify two back-
slashes for the value to be interpreted as a single backslash.

Note

If you have generated the text file on a Windows system, you might have to use LINES TERMINATED BY '\r\n' to
read the file properly, because Windows programs typically use two characters as a line terminator. Some programs, such
as WordPad, might use \r as a line terminator when writing files. To read such files, use LINES TERMINATED BY
'\r'.

If all the lines you want to read in have a common prefix that you want to ignore, you can use LINES STARTING BY 'pre-
fix_string' to skip over the prefix, and anything before it. If a line does not include the prefix, the entire line is skipped. Suppose
that you issue the following statement:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test
FIELDS TERMINATED BY ',' LINES STARTING BY 'xxx';

SQL Statement Syntax

825



If the data file looks like this:

xxx"abc",1
something xxx"def",2
"ghi",3

The resulting rows will be ("abc",1) and ("def",2). The third row in the file is skipped because it does not contain the prefix.

The IGNORE number LINES option can be used to ignore lines at the start of the file. For example, you can use IGNORE 1
LINES to skip over an initial header line containing column names:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA INFILE to write data from a database into a file and
then read the file back into the database later, the field- and line-handling options for both statements must match. Otherwise, LOAD
DATA INFILE will not interpret the contents of the file properly. Suppose that you use SELECT ... INTO OUTFILE to write a
file with fields delimited by commas:

SELECT * INTO OUTFILE 'data.txt'
FIELDS TERMINATED BY ','
FROM table2;

To read the comma-delimited file back in, the correct statement would be:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
FIELDS TERMINATED BY ',';

If instead you tried to read in the file with the statement shown following, it wouldn't work because it instructs LOAD DATA INFILE
to look for tabs between fields:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
FIELDS TERMINATED BY '\t';

The likely result is that each input line would be interpreted as a single field.

LOAD DATA INFILE can be used to read files obtained from external sources. For example, many programs can export data in
comma-separated values (CSV) format, such that lines have fields separated by commas and enclosed within double quotes. If lines in
such a file are terminated by newlines, the statement shown here illustrates the field- and line-handling options you would use to load
the file:

LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' ENCLOSED BY '"'
LINES TERMINATED BY '\n';

If the input values are not necessarily enclosed within quotes, use OPTIONALLY before the ENCLOSED BY keywords.

Any of the field- or line-handling options can specify an empty string (''). If not empty, the FIELDS [OPTIONALLY] ENCLOSED
BY and FIELDS ESCAPED BY values must be a single character. The FIELDS TERMINATED BY, LINES STARTING BY, and
LINES TERMINATED BY values can be more than one character. For example, to write lines that are terminated by carriage return/
linefeed pairs, or to read a file containing such lines, specify a LINES TERMINATED BY '\r\n' clause.

To read a file containing jokes that are separated by lines consisting of %%, you can do this

CREATE TABLE jokes
(a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
joke TEXT NOT NULL);

LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes
FIELDS TERMINATED BY ''
LINES TERMINATED BY '\n%%\n' (joke);

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ... INTO OUTFILE), if you omit
the word OPTIONALLY, all fields are enclosed by the ENCLOSED BY character. An example of such output (using a comma as the
field delimiter) is shown here:

"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"

SQL Statement Syntax

826



"4","a string containing a \", quote and comma","102.20"

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose values from columns that have a string data type
(such as CHAR, BINARY, TEXT, or ENUM):

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20

Note that occurrences of the ENCLOSED BY character within a field value are escaped by prefixing them with the ESCAPED BY char-
acter. Also note that if you specify an empty ESCAPED BY value, it is possible to inadvertently generate output that cannot be read
properly by LOAD DATA INFILE. For example, the preceding output just shown would appear as follows if the escape character is
empty. Observe that the second field in the fourth line contains a comma following the quote, which (erroneously) appears to terminate
the field:

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values. (This is true regardless of whether OP-
TIONALLY is specified; OPTIONALLY has no effect on input interpretation.) Occurrences of the ENCLOSED BY character preceded
by the ESCAPED BY character are interpreted as part of the current field value.

If the field begins with the ENCLOSED BY character, instances of that character are recognized as terminating a field value only if fol-
lowed by the field or line TERMINATED BY sequence. To avoid ambiguity, occurrences of the ENCLOSED BY character within a field
value can be doubled and are interpreted as a single instance of the character. For example, if ENCLOSED BY '"' is specified, quotes
are handled as shown here:

"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss
The ""BIG"" boss -> The ""BIG"" boss

FIELDS ESCAPED BY controls how to write or read special characters. If the FIELDS ESCAPED BY character is not empty, it is
used to prefix the following characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII 0 (what is actually written following the escape character is ASCII “0”, not a zero-valued byte)

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as NULL, not \N. It is probably not a
good idea to specify an empty escape character, particularly if field values in your data contain any of the characters in the list just giv-
en.

For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are stripped and the following character
is taken literally as part of a field value. Some two-character sequences that are exceptions, where the first character is the escape char-
acter. These sequences are shown in the following table (using “\” for the escape character). The rules for NULL handling are described
later in this section.

\0 An ASCII 0 (NUL) character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character.

\Z ASCII 26 (Control-Z)

\N NULL

SQL Statement Syntax

827



For more information about “\”-escape syntax, see Section 8.1, “Literal Values”.

In certain cases, field- and line-handling options interact:

• If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is non-empty, lines are also terminated with
FIELDS TERMINATED BY.

• If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (''), a fixed-row (non-delimited) format
is used. With fixed-row format, no delimiters are used between fields (but you can still have a line terminator). Instead, column val-
ues are read and written using a field width wide enough to hold all values in the field. For TINYINT, SMALLINT, MEDIUMINT,
INT, and BIGINT, the field widths are 4, 6, 8, 11, and 20, respectively, no matter what the declared display width is.

LINES TERMINATED BY is still used to separate lines. If a line does not contain all fields, the rest of the columns are set to their
default values. If you do not have a line terminator, you should set this to ''. In this case, the text file must contain all fields for
each row.

Fixed-row format also affects handling of NULL values, as described later. Note that fixed-size format does not work if you are us-
ing a multi-byte character set.

Handling of NULL values varies according to the FIELDS and LINES options in use:

• For the default FIELDS and LINES values, NULL is written as a field value of \N for output, and a field value of \N is read as
NULL for input (assuming that the ESCAPED BY character is “\”).

• If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value is read as a NULL value. This differs
from the word NULL enclosed within FIELDS ENCLOSED BY characters, which is read as the string 'NULL'.

• If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.

• With fixed-row format (which is used when FIELDS TERMINATED BY and FIELDS ENCLOSED BY are both empty), NULL is
written as an empty string. Note that this causes both NULL values and empty strings in the table to be indistinguishable when writ-
ten to the file because both are written as empty strings. If you need to be able to tell the two apart when reading the file back in, you
should not use fixed-row format.

An attempt to load NULL into a NOT NULL column causes assignment of the implicit default value for the column's data type and a
warning, or an error in strict SQL mode. Implicit default values are discussed in Section 10.1.4, “Data Type Default Values”.

Some cases are not supported by LOAD DATA INFILE:

• Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and BLOB or TEXT columns.

• If you specify one separator that is the same as or a prefix of another, LOAD DATA INFILE cannot interpret the input properly.
For example, the following FIELDS clause would cause problems:

FIELDS TERMINATED BY '"' ENCLOSED BY '"'

• If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS ENCLOSED BY or LINES TERMIN-
ATED BY followed by the FIELDS TERMINATED BY value causes LOAD DATA INFILE to stop reading a field or line too
early. This happens because LOAD DATA INFILE cannot properly determine where the field or line value ends.

The following example loads all columns of the persondata table:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;

By default, when no column list is provided at the end of the LOAD DATA INFILE statement, input lines are expected to contain a
field for each table column. If you want to load only some of a table's columns, specify a column list:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata (col1,col2,...);

SQL Statement Syntax

828



You must also specify a column list if the order of the fields in the input file differs from the order of the columns in the table. Other-
wise, MySQL cannot tell how to match input fields with table columns.

The column list can contain either column names or user variables. With user variables, the SET clause enables you to perform trans-
formations on their values before assigning the result to columns.

User variables in the SET clause can be used in several ways. The following example uses the first input column directly for the value
of t1.column1, and assigns the second input column to a user variable that is subjected to a division operation before being used for
the value of t1.column2:

LOAD DATA INFILE 'file.txt'
INTO TABLE t1
(column1, @var1)
SET column2 = @var1/100;

The SET clause can be used to supply values not derived from the input file. The following statement sets column3 to the current date
and time:

LOAD DATA INFILE 'file.txt'
INTO TABLE t1
(column1, column2)
SET column3 = CURRENT_TIMESTAMP;

You can also discard an input value by assigning it to a user variable and not assigning the variable to a table column:

LOAD DATA INFILE 'file.txt'
INTO TABLE t1
(column1, @dummy, column2, @dummy, column3);

Use of the column/variable list and SET clause is subject to the following restrictions:

• Assignments in the SET clause should have only column names on the left hand side of assignment operators.

• You can use subqueries in the right hand side of SET assignments. A subquery that returns a value to be assigned to a column may
be a scalar subquery only. Also, you cannot use a subquery to select from the table that is being loaded.

• Lines ignored by an IGNORE clause are not processed for the column/variable list or SET clause.

• User variables cannot be used when loading data with fixed-row format because user variables do not have a display width.

When processing an input line, LOAD DATA splits it into fields and uses the values according to the column/variable list and the SET
clause, if they are present. Then the resulting row is inserted into the table. If there are BEFORE INSERT or AFTER INSERT triggers
for the table, they are activated before or after inserting the row, respectively.

If an input line has too many fields, the extra fields are ignored and the number of warnings is incremented.

If an input line has too few fields, the table columns for which input fields are missing are set to their default values. Default value as-
signment is described in Section 10.1.4, “Data Type Default Values”.

An empty field value is interpreted differently than if the field value is missing:

• For string types, the column is set to the empty string.

• For numeric types, the column is set to 0.

• For date and time types, the column is set to the appropriate “zero” value for the type. See Section 10.3, “Date and Time Types”.

These are the same values that result if you assign an empty string explicitly to a string, numeric, or date or time type explicitly in an
INSERT or UPDATE statement.

TIMESTAMP columns are set to the current date and time only if there is a NULL value for the column (that is, \N) and the column is
not declared to allow NULL values, or if the TIMESTAMP column's default value is the current timestamp and it is omitted from the
field list when a field list is specified.

SQL Statement Syntax

829



LOAD DATA INFILE regards all input as strings, so you cannot use numeric values for ENUM or SET columns the way you can with
INSERT statements. All ENUM and SET values must be specified as strings.

BIT values cannot be loaded using binary notation (for example, b'011010'). To work around this, specify the values as regular in-
tegers and use the SET clause to convert them so that MySQL performs a numeric type conversion and loads them into the BIT column
properly:

shell> cat /tmp/bit_test.txt
2
127
shell> mysql test
mysql> LOAD DATA INFILE '/tmp/bit_test.txt'

-> INTO TABLE bit_test (@var1) SET b= CAST(@var1 AS UNSIGNED);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT BIN(b+0) FROM bit_test;
+----------+
| bin(b+0) |
+----------+
| 10 |
| 1111111 |
+----------+
2 rows in set (0.00 sec)

When the LOAD DATA INFILE statement finishes, it returns an information string in the following format:

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

If you are using the C API, you can get information about the statement by calling the mysql_info() function. See Sec-
tion 26.2.3.35, “mysql_info()”.

Warnings occur under the same circumstances as when values are inserted via the INSERT statement (see Section 12.2.4, “INSERT
Syntax”), except that LOAD DATA INFILE also generates warnings when there are too few or too many fields in the input row. The
warnings are not stored anywhere; the number of warnings can be used only as an indication of whether everything went well.

You can use SHOW WARNINGS to get a list of the first max_error_count warnings as information about what went wrong. See
Section 12.5.4.32, “SHOW WARNINGS Syntax”.

12.2.6. REPLACE Syntax
REPLACE [LOW_PRIORITY | DELAYED]

[INTO] tbl_name [(col_name,...)]
VALUES ({expr | DEFAULT},...),(...),...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name
SET col_name={expr | DEFAULT}, ...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name [(col_name,...)]
SELECT ...

REPLACE works exactly like INSERT, except that if an old row in the table has the same value as a new row for a PRIMARY KEY or a
UNIQUE index, the old row is deleted before the new row is inserted. See Section 12.2.4, “INSERT Syntax”.

REPLACE is a MySQL extension to the SQL standard. It either inserts, or deletes and inserts. For another MySQL extension to standard
SQL — that either inserts or updates — see Section 12.2.4.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

Note that unless the table has a PRIMARY KEY or UNIQUE index, using a REPLACE statement makes no sense. It becomes equivalent
to INSERT, because there is no index to be used to determine whether a new row duplicates another.

Values for all columns are taken from the values specified in the REPLACE statement. Any missing columns are set to their default val-
ues, just as happens for INSERT. You cannot refer to values from the current row and use them in the new row. If you use an assign-
ment such as SET col_name = col_name + 1, the reference to the column name on the right hand side is treated as

SQL Statement Syntax

830



col_name), so the assignment is equivalent to SET col_name = DEFAULT(col_name) + 1.

To use REPLACE, you must have both the INSERT and DELETE privileges for the table.

The REPLACE statement returns a count to indicate the number of rows affected. This is the sum of the rows deleted and inserted. If the
count is 1 for a single-row REPLACE, a row was inserted and no rows were deleted. If the count is greater than 1, one or more old rows
were deleted before the new row was inserted. It is possible for a single row to replace more than one old row if the table contains mul-
tiple unique indexes and the new row duplicates values for different old rows in different unique indexes.

The affected-rows count makes it easy to determine whether REPLACE only added a row or whether it also replaced any rows: Check
whether the count is 1 (added) or greater (replaced).

If you are using the C API, the affected-rows count can be obtained using the mysql_affected_rows() function.

Currently, you cannot replace into a table and select from the same table in a subquery.

MySQL uses the following algorithm for REPLACE (and LOAD DATA ... REPLACE):

1. Try to insert the new row into the table

2. While the insertion fails because a duplicate-key error occurs for a primary key or unique index:

a. Delete from the table the conflicting row that has the duplicate key value

b. Try again to insert the new row into the table

12.2.7. SELECT Syntax
SELECT

[ALL | DISTINCT | DISTINCTROW ]
[HIGH_PRIORITY]
[STRAIGHT_JOIN]
[SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
[SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]

select_expr, ...
[FROM table_references
[WHERE where_condition]
[GROUP BY {col_name | expr | position}
[ASC | DESC], ... [WITH ROLLUP]]

[HAVING where_condition]
[ORDER BY {col_name | expr | position}
[ASC | DESC], ...]

[LIMIT {[offset,] row_count | row_count OFFSET offset}]
[PROCEDURE procedure_name(argument_list)]
[INTO OUTFILE 'file_name' export_options
| INTO DUMPFILE 'file_name'
| INTO var_name [, var_name]]

[FOR UPDATE | LOCK IN SHARE MODE]]

SELECT is used to retrieve rows selected from one or more tables, and can include UNION statements and subqueries. See Sec-
tion 12.2.7.3, “UNION Syntax”, and Section 12.2.8, “Subquery Syntax”.

The most commonly used clauses of SELECT statements are these:

• Each select_expr indicates a column that you want to retrieve. There must be at least one select_expr.

• table_references indicates the table or tables from which to retrieve rows. Its syntax is described in Section 12.2.7.1, “JOIN
Syntax”.

• The WHERE clause, if given, indicates the condition or conditions that rows must satisfy to be selected. where_condition is an
expression that evaluates to true for each row to be selected. The statement selects all rows if there is no WHERE clause.

In the WHERE clause, you can use any of the functions and operators that MySQL supports, except for aggregate (summary) func-
tions. See Chapter 11, Functions and Operators.

SELECT can also be used to retrieve rows computed without reference to any table.

SQL Statement Syntax

831



For example:

mysql> SELECT 1 + 1;
-> 2

You are allowed to specify DUAL as a dummy table name in situations where no tables are referenced:

mysql> SELECT 1 + 1 FROM DUAL;
-> 2

DUAL is purely for the convenience of people who require that all SELECT statements should have FROM and possibly other clauses.
MySQL may ignore the clauses. MySQL does not require FROM DUAL if no tables are referenced.

In general, clauses used must be given in exactly the order shown in the syntax description. For example, a HAVING clause must come
after any GROUP BY clause and before any ORDER BY clause. The exception is that the INTO clause can appear either as shown in the
syntax description or immediately following the select_expr list.

• A select_expr can be given an alias using AS alias_name. The alias is used as the expression's column name and can be
used in GROUP BY, ORDER BY, or HAVING clauses. For example:

SELECT CONCAT(last_name,', ',first_name) AS full_name
FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a select_expr. The preceding example could have been written like this:

SELECT CONCAT(last_name,', ',first_name) full_name
FROM mytable ORDER BY full_name;

However, because the AS is optional, a subtle problem can occur if you forget the comma between two select_expr expres-
sions: MySQL interprets the second as an alias name. For example, in the following statement, columnb is treated as an alias
name:

SELECT columna columnb FROM mytable;

For this reason, it is good practice to be in the habit of using AS explicitly when specifying column aliases.

It is not allowable to refer to a column alias in a WHERE clause, because the column value might not yet be determined when the
WHERE clause is executed. See Section B.1.5.4, “Problems with Column Aliases”.

• The FROM table_references clause indicates the table or tables from which to retrieve rows. If you name more than one ta-
ble, you are performing a join. For information on join syntax, see Section 12.2.7.1, “JOIN Syntax”. For each table specified, you
can optionally specify an alias.

tbl_name [[AS] alias] [index_hint]

The use of index hints provides the optimizer with information about how to choose indexes during query processing. For a descrip-
tion of the syntax for specifying these hints, see Section 12.2.7.2, “Index Hint Syntax”.

You can use SET max_seeks_for_key=value as an alternative way to force MySQL to prefer key scans instead of table
scans. See Section 5.1.3, “System Variables”.

• You can refer to a table within the default database as tbl_name, or as db_name.tbl_name to specify a database explicitly.
You can refer to a column as col_name, tbl_name.col_name, or db_name.tbl_name.col_name. You need not specify a
tbl_name or db_name.tbl_name prefix for a column reference unless the reference would be ambiguous. See Section 8.2.1,
“Identifier Qualifiers”, for examples of ambiguity that require the more explicit column reference forms.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
WHERE t1.name = t2.name;

SELECT t1.name, t2.salary FROM employee t1, info t2
WHERE t1.name = t2.name;

SQL Statement Syntax

832



• Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using column names, column aliases, or
column positions. Column positions are integers and begin with 1:

SELECT college, region, seed FROM tournament
ORDER BY region, seed;

SELECT college, region AS r, seed AS s FROM tournament
ORDER BY r, s;

SELECT college, region, seed FROM tournament
ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column in the ORDER BY clause that you are sort-
ing by. The default is ascending order; this can be specified explicitly using the ASC keyword.

If ORDER BY occurs within a subquery and also is applied in the outer query, the outermost ORDER BY takes precedence. For ex-
ample, results for the following statement are sorted in descending order, not ascending order:

(SELECT ... ORDER BY a) ORDER BY a DESC;

Use of column positions is deprecated because the syntax has been removed from the SQL standard.

• If you use GROUP BY, output rows are sorted according to the GROUP BY columns as if you had an ORDER BY for the same
columns. To avoid the overhead of sorting that GROUP BY produces, add ORDER BY NULL:

SELECT a, COUNT(b) FROM test_table GROUP BY a ORDER BY NULL;

• MySQL extends the GROUP BY clause so that you can also specify ASC and DESC after columns named in the clause:

SELECT a, COUNT(b) FROM test_table GROUP BY a DESC;

• MySQL extends the use of GROUP BY to allow selecting fields that are not mentioned in the GROUP BY clause. If you are not get-
ting the results that you expect from your query, please read the description of GROUP BY found in Section 11.12, “Functions and
Modifiers for Use with GROUP BY Clauses”.

• GROUP BY allows a WITH ROLLUP modifier. See Section 11.12.2, “GROUP BY Modifiers”.

• The HAVING clause is applied nearly last, just before items are sent to the client, with no optimization. (LIMIT is applied after
HAVING.)

The SQL standard requires that HAVING must reference only columns in the GROUP BY clause or columns used in aggregate func-
tions. However, MySQL supports an extension to this behavior, and allows HAVING to refer to columns in the SELECT list and
columns in outer subqueries as well.

If the HAVING clause refers to a column that is ambiguous, a warning occurs. In the following statement, col2 is ambiguous be-
cause it is used as both an alias and a column name:

SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;

Preference is given to standard SQL behavior, so if a HAVING column name is used both in GROUP BY and as an aliased column in
the output column list, preference is given to the column in the GROUP BY column.

• Do not use HAVING for items that should be in the WHERE clause. For example, do not write the following:

SELECT col_name FROM tbl_name HAVING col_name > 0;

Write this instead:

SELECT col_name FROM tbl_name WHERE col_name > 0;

• The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:

SELECT user, MAX(salary) FROM users
GROUP BY user HAVING MAX(salary) > 10;

SQL Statement Syntax

833



(This did not work in some older versions of MySQL.)

• MySQL allows duplicate column names. That is, there can be more than one select_expr with the same name. This is an exten-
sion to standard SQL. Because MySQL also allows GROUP BY and HAVING to refer to select_expr values, this can result in
an ambiguity:

SELECT 12 AS a, a FROM t GROUP BY a;

In that statement, both columns have the name a. To ensure that the correct column is used for grouping, use different names for
each select_expr.

• MySQL resolves unqualified column or alias references in ORDER BY clauses by searching in the select_expr values, then in
the columns of the tables in the FROM clause. For GROUP BY or HAVING clauses, it searches the FROM clause before searching in
the select_expr values. (For GROUP BY and HAVING, this differs from the pre-MySQL 5.0 behavior that used the same rules
as for ORDER BY.)

• The LIMIT clause can be used to constrain the number of rows returned by the SELECT statement. LIMIT takes one or two nu-
meric arguments, which must both be non-negative integer constants (except when using prepared statements).

With two arguments, the first argument specifies the offset of the first row to return, and the second specifies the maximum number
of rows to return. The offset of the initial row is 0 (not 1):

SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15

To retrieve all rows from a certain offset up to the end of the result set, you can use some large number for the second parameter.
This statement retrieves all rows from the 96th row to the last:

SELECT * FROM tbl LIMIT 95,18446744073709551615;

With one argument, the value specifies the number of rows to return from the beginning of the result set:

SELECT * FROM tbl LIMIT 5; # Retrieve first 5 rows

In other words, LIMIT row_count is equivalent to LIMIT 0, row_count.

For prepared statements, you can use placeholders. The following statements will return one row from the tbl table:

SET @a=1;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?';
EXECUTE STMT USING @a;

The following statements will return the second to sixth row from the tbl table:

SET @skip=1; SET @numrows=5;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?, ?';
EXECUTE STMT USING @skip, @numrows;

For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET offset syntax.

If LIMIT occurs within a subquery and also is applied in the outer query, the outermost LIMIT takes precedence. For example, the
following statement produces two rows, not one:

(SELECT ... LIMIT 1) LIMIT 2;

• A PROCEDURE clause names a procedure that should process the data in the result set. For an example, see Section 29.4.1, “PRO-
CEDURE ANALYSE”.

• The SELECT ... INTO OUTFILE 'file_name' form of SELECT writes the selected rows to a file. The file is created on
the server host, so you must have the FILE privilege to use this syntax. file_name cannot be an existing file, which among other
things prevents files such as /etc/passwd and database tables from being destroyed. As of MySQL 5.1.6, the charac-
ter_set_filesystem system variable controls the interpretation of the filename.

The SELECT ... INTO OUTFILE statement is intended primarily to let you very quickly dump a table to a text file on the serv-

SQL Statement Syntax

834



er machine. If you want to create the resulting file on some client host other than the server host, you cannot use SELECT ...
INTO OUTFILE. In that case, you should instead use a command such as mysql -e "SELECT ..." > file_name to gen-
erate the file on the client host.

SELECT ... INTO OUTFILE is the complement of LOAD DATA INFILE; the syntax for the export_options part of the
statement consists of the same FIELDS and LINES clauses that are used with the LOAD DATA INFILE statement. See Sec-
tion 12.2.5, “LOAD DATA INFILE Syntax”.

FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED BY character is not empty, it is used
as a prefix that precedes following characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII NUL (the zero-valued byte; what is actually written following the escape character is ASCII “0”, not a zero-valued byte)

The FIELDS TERMINATED BY, ENCLOSED BY, ESCAPED BY, or LINES TERMINATED BY characters must be escaped so
that you can read the file back in reliably. ASCII NUL is escaped to make it easier to view with some pagers.

The resulting file does not have to conform to SQL syntax, so nothing else need be escaped.

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as NULL, not \N. It is probably
not a good idea to specify an empty escape character, particularly if field values in your data contain any of the characters in the list
just given.

Here is an example that produces a file in the comma-separated values (CSV) format used by many programs:

SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt'
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY '\n'
FROM test_table;

• If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into the file, without any column or line
termination and without performing any escape processing. This is useful if you want to store a BLOB value in a file.

• The INTO clause can name a list of one or more variables, which can be user-defined variables, or parameters or local variables
within a stored function or procedure body (see Section 20.2.7.3, “SELECT ... INTO Statement”). The selected values are as-
signed to the variables. The number of variables must match the number of columns.

•
Note

Any file created by INTO OUTFILE or INTO DUMPFILE is writable by all users on the server host. The reason for this
is that the MySQL server cannot create a file that is owned by anyone other than the user under whose account it is run-
ning. (You should never run mysqld as root for this and other reasons.) The file thus must be world-writable so that
you can manipulate its contents.

• The SELECT syntax description at the beginning this section shows the INTO clause near the end of the statement. It is also pos-
sible to use INTO immediately following the select_expr list.

• If you use FOR UPDATE with a storage engine that uses page or row locks, rows examined by the query are write-locked until the
end of the current transaction. Using LOCK IN SHARE MODE sets a shared lock that allows other transactions to read the ex-
amined rows but not to update or delete them. See Section 13.5.10.5, “SELECT ... FOR UPDATE and SELECT ... LOCK
IN SHARE MODE Locking Reads”.

Following the SELECT keyword, you can use a number of options that affect the operation of the statement.

The ALL, DISTINCT, and DISTINCTROW options specify whether duplicate rows should be returned. If none of these options are giv-
en, the default is ALL (all matching rows are returned). DISTINCT and DISTINCTROW are synonyms and specify removal of duplic-
ate rows from the result set.

HIGH_PRIORITY, STRAIGHT_JOIN, and options beginning with SQL_ are MySQL extensions to standard SQL.

SQL Statement Syntax

835



• HIGH_PRIORITY gives the SELECT higher priority than a statement that updates a table. You should use this only for queries that
are very fast and must be done at once. A SELECT HIGH_PRIORITY query that is issued while the table is locked for reading
runs even if there is an update statement waiting for the table to be free. This affects only storage engines that use only table-level
locking (MyISAM, MEMORY, MERGE).

HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.

• STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are listed in the FROM clause. You can use this
to speed up a query if the optimizer joins the tables in non-optimal order. See Section 12.3.2, “EXPLAIN Syntax”.
STRAIGHT_JOIN also can be used in the table_references list. See Section 12.2.7.1, “JOIN Syntax”.

• SQL_BIG_RESULT can be used with GROUP BY or DISTINCT to tell the optimizer that the result set has many rows. In this
case, MySQL directly uses disk-based temporary tables if needed, and prefers sorting to using a temporary table with a key on the
GROUP BY elements.

• SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps MySQL free the table locks early and helps in
cases where it takes a long time to send the result set to the client.

• SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell the optimizer that the result set is small. In this case,
MySQL uses fast temporary tables to store the resulting table instead of using sorting. This should not normally be needed.

• SQL_CALC_FOUND_ROWS tells MySQL to calculate how many rows there would be in the result set, disregarding any LIMIT
clause. The number of rows can then be retrieved with SELECT FOUND_ROWS(). See Section 11.11.3, “Information Functions”.

• The SQL_CACHE and SQL_NO_CACHE options affect caching of query results in the query cache (see Section 7.5.4, “The MySQL
Query Cache”). SQL_CACHE tells MySQL to store the result in the query cache if it is cacheable and the value of the
query_cache_type system variable is 2 or DEMAND. SQL_NO_CACHE tells MySQL not to store the result in the query cache.
For a query that uses UNION, subqueries, or views, the following rules apply:

• SQL_NO_CACHE applies if it appears in any SELECT in the query.

• For a cacheable query, SQL_CACHE applies if it appears in the first SELECT of the query, or in the first SELECT of a view re-
ferred to by the query.

12.2.7.1. JOIN Syntax

MySQL supports the following JOIN syntaxes for the table_references part of SELECT statements and multiple-table DELETE
and UPDATE statements:

table_references:
table_reference [, table_reference] ...

table_reference:
table_factor

| join_table

table_factor:
tbl_name [[AS] alias] [index_hint_list]

| table_subquery [AS] alias
| ( table_references )
| { OJ table_reference LEFT OUTER JOIN table_reference

ON conditional_expr }

join_table:
table_reference [INNER | CROSS] JOIN table_factor [join_condition]

| table_reference STRAIGHT_JOIN table_factor
| table_reference STRAIGHT_JOIN table_factor ON conditional_expr
| table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_condition
| table_reference NATURAL [{LEFT|RIGHT} [OUTER]] JOIN table_factor

join_condition:
ON conditional_expr

| USING (column_list)

index_hint_list:
index_hint [, index_hint] ...

index_hint:
USE {INDEX|KEY}
[{FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])

| IGNORE {INDEX|KEY}
[{FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

| FORCE {INDEX|KEY}
[{FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

SQL Statement Syntax

836



index_list:
index_name [, index_name] ...

A table reference is also known as a join expression.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts only table_reference, not a
list of them inside a pair of parentheses.

This is a conservative extension if we consider each comma in a list of table_reference items as equivalent to an inner join. For
example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, CROSS JOIN is a syntactic equivalent to INNER JOIN (they can replace each other). In standard SQL, they are not equi-
valent. INNER JOIN is used with an ON clause, CROSS JOIN is used otherwise.

In general, parentheses can be ignored in join expressions containing only inner join operations. MySQL also supports nested joins (see
Section 7.2.9, “Nested Join Optimization”).

Index hints can be specified to affect how the MySQL optimizer makes use of indexes. For more information, see Section 12.2.7.2,
“Index Hint Syntax”.

The following list describes general factors to take into account when writing joins.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary
FROM employee AS t1 INNER JOIN info AS t2 ON t1.name = t2.name;

SELECT t1.name, t2.salary
FROM employee t1 INNER JOIN info t2 ON t1.name = t2.name;

• A table_subquery is also known as a subquery in the FROM clause. Such subqueries must include an alias to give the subquery
result a table name. A trivial example follows; see also Section 12.2.8.8, “Subqueries in the FROM clause”.

SELECT * FROM (SELECT 1, 2, 3) AS t1;

• INNER JOIN and , (comma) are semantically equivalent in the absence of a join condition: both produce a Cartesian product
between the specified tables (that is, each and every row in the first table is joined to each and every row in the second table).

However, the precedence of the comma operator is less than of INNER JOIN, CROSS JOIN, LEFT JOIN, and so on. If you mix
comma joins with the other join types when there is a join condition, an error of the form Unknown column 'col_name' in
'on clause' may occur. Information about dealing with this problem is given later in this section.

• The ON conditional is any conditional expression of the form that can be used in a WHERE clause. Generally, you should use the ON
clause for conditions that specify how to join tables, and the WHERE clause to restrict which rows you want in the result set.

• If there is no matching row for the right table in the ON or USING part in a LEFT JOIN, a row with all columns set to NULL is
used for the right table. You can use this fact to find rows in a table that have no counterpart in another table:

SELECT left_tbl.*
FROM left_tbl LEFT JOIN right_tbl ON left_tbl.id = right_tbl.id
WHERE right_tbl.id IS NULL;

This example finds all rows in left_tbl with an id value that is not present in right_tbl (that is, all rows in left_tbl with
no corresponding row in right_tbl). This assumes that right_tbl.id is declared NOT NULL. See Section 7.2.8, “LEFT
JOIN and RIGHT JOIN Optimization”.

• The USING(column_list) clause names a list of columns that must exist in both tables. If tables a and b both contain columns

SQL Statement Syntax

837



c1, c2, and c3, the following join compares corresponding columns from the two tables:

a LEFT JOIN b USING (c1,c2,c3)

• The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an INNER JOIN or a LEFT JOIN with
a USING clause that names all columns that exist in both tables.

• RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it is recommended that you use LEFT
JOIN instead of RIGHT JOIN.

• The { OJ ... LEFT OUTER JOIN ...} syntax shown in the join syntax description exists only for compatibility with
ODBC. The curly braces in the syntax should be written literally; they are not metasyntax as used elsewhere in syntax descriptions.

As of MySQL 5.1.24, you can use other types of joins within { OJ ... }, such as INNER JOIN or RIGHT OUTER JOIN.
This helps with compatibility with some third-party applications, but is not official ODBC syntax.

• STRAIGHT_JOIN is similar to JOIN, except that the left table is always read before the right table. This can be used for those
(few) cases for which the join optimizer puts the tables in the wrong order.

Some join examples:

SELECT * FROM table1, table2;

SELECT * FROM table1 INNER JOIN table2 ON table1.id=table2.id;

SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id;

SELECT * FROM table1 LEFT JOIN table2 USING (id);

SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id
LEFT JOIN table3 ON table2.id=table3.id;

Join Processing Changes in MySQL 5.0.12

Note

Natural joins and joins with USING, including outer join variants, are processed according to the SQL:2003 standard. The
goal was to align the syntax and semantics of MySQL with respect to NATURAL JOIN and JOIN ... USING accord-
ing to SQL:2003. However, these changes in join processing can result in different output columns for some joins. Also,
some queries that appeared to work correctly in older versions (prior to 5.0.12) must be rewritten to comply with the stand-
ard.

These changes have five main aspects:

• The way that MySQL determines the result columns of NATURAL or USING join operations (and thus the result of the entire FROM
clause).

• Expansion of SELECT * and SELECT tbl_name.* into a list of selected columns.

• Resolution of column names in NATURAL or USING joins.

• Transformation of NATURAL or USING joins into JOIN ... ON.

• Resolution of column names in the ON condition of a JOIN ... ON.

The following list provides more detail about several effects of current join processing versus join processing in older versions. The
term “previously” means “prior to MySQL 5.0.12.”

• The columns of a NATURAL join or a USING join may be different from previously. Specifically, redundant output columns no
longer appear, and the order of columns for SELECT * expansion may be different from before.

Consider this set of statements:

CREATE TABLE t1 (i INT, j INT);

SQL Statement Syntax

838



CREATE TABLE t2 (k INT, j INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
SELECT * FROM t1 NATURAL JOIN t2;
SELECT * FROM t1 JOIN t2 USING (j);

Previously, the statements produced this output:

+------+------+------+------+
| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |
+------+------+------+------+
+------+------+------+------+
| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |
+------+------+------+------+

In the first SELECT statement, column j appears in both tables and thus becomes a join column, so, according to standard SQL, it
should appear only once in the output, not twice. Similarly, in the second SELECT statement, column j is named in the USING
clause and should appear only once in the output, not twice. But in both cases, the redundant column is not eliminated. Also, the or-
der of the columns is not correct according to standard SQL.

Now the statements produce this output:

+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+
+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+

The redundant column is eliminated and the column order is correct according to standard SQL:

• First, coalesced common columns of the two joined tables, in the order in which they occur in the first table

• Second, columns unique to the first table, in order in which they occur in that table

• Third, columns unique to the second table, in order in which they occur in that table

The single result column that replaces two common columns is defined via the coalesce operation. That is, for two t1.a and t2.a
the resulting single join column a is defined as a = COALESCE(t1.a, t2.a), where:

COALESCE(x, y) = (CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END)

If the join operation is any other join, the result columns of the join consists of the concatenation of all columns of the joined tables.
This is the same as previously.

A consequence of the definition of coalesced columns is that, for outer joins, the coalesced column contains the value of the
non-NULL column if one of the two columns is always NULL. If neither or both columns are NULL, both common columns have the
same value, so it doesn't matter which one is chosen as the value of the coalesced column. A simple way to interpret this is to con-
sider that a coalesced column of an outer join is represented by the common column of the inner table of a JOIN. Suppose that the
tables t1(a,b) and t2(a,c) have the following contents:

t1 t2
---- ----
1 x 2 z
2 y 3 w

Then:

mysql> SELECT * FROM t1 NATURAL LEFT JOIN t2;
+------+------+------+
| a | b | c |
+------+------+------+
| 1 | x | NULL |

SQL Statement Syntax

839



| 2 | y | z |
+------+------+------+

Here column a contains the values of t1.a.

mysql> SELECT * FROM t1 NATURAL RIGHT JOIN t2;
+------+------+------+
| a | c | b |
+------+------+------+
| 2 | z | y |
| 3 | w | NULL |
+------+------+------+

Here column a contains the values of t2.a.

Compare these results to the otherwise equivalent queries with JOIN ... ON:

mysql> SELECT * FROM t1 LEFT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 1 | x | NULL | NULL |
| 2 | y | 2 | z |
+------+------+------+------+

mysql> SELECT * FROM t1 RIGHT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 2 | y | 2 | z |
| NULL | NULL | 3 | w |
+------+------+------+------+

• Previously, a USING clause could be rewritten as an ON clause that compares corresponding columns. For example, the following
two clauses were semantically identical:

a LEFT JOIN b USING (c1,c2,c3)
a LEFT JOIN b ON a.c1=b.c1 AND a.c2=b.c2 AND a.c3=b.c3

Now the two clauses no longer are quite the same:

• With respect to determining which rows satisfy the join condition, both joins remain semantically identical.

• With respect to determining which columns to display for SELECT * expansion, the two joins are not semantically identical.
The USING join selects the coalesced value of corresponding columns, whereas the ON join selects all columns from all tables.
For the preceding USING join, SELECT * selects these values:

COALESCE(a.c1,b.c1), COALESCE(a.c2,b.c2), COALESCE(a.c3,b.c3)

For the ON join, SELECT * selects these values:

a.c1, a.c2, a.c3, b.c1, b.c2, b.c3

With an inner join, COALESCE(a.c1,b.c1) is the same as either a.c1 or b.c1 because both columns will have the same
value. With an outer join (such as LEFT JOIN), one of the two columns can be NULL. That column will be omitted from the
result.

• The evaluation of multi-way natural joins differs in a very important way that affects the result of NATURAL or USING joins and
that can require query rewriting. Suppose that you have three tables t1(a,b), t2(c,b), and t3(a,c) that each have one row:
t1(1,2), t2(10,2), and t3(7,10). Suppose also that you have this NATURAL JOIN on the three tables:

SELECT ... FROM t1 NATURAL JOIN t2 NATURAL JOIN t3;

Previously, the left operand of the second join was considered to be t2, whereas it should be the nested join (t1 NATURAL JOIN
t2). As a result, the columns of t3 are checked for common columns only in t2, and, if t3 has common columns with t1, these
columns are not used as equi-join columns. Thus, previously, the preceding query was transformed to the following equi-join:

SELECT ... FROM t1, t2, t3

SQL Statement Syntax

840



WHERE t1.b = t2.b AND t2.c = t3.c;

That join is missing one more equi-join predicate (t1.a = t3.a). As a result, it produces one row, not the empty result that it
should. The correct equivalent query is this:

SELECT ... FROM t1, t2, t3
WHERE t1.b = t2.b AND t2.c = t3.c AND t1.a = t3.a;

If you require the same query result in current versions of MySQL as in older versions, rewrite the natural join as the first equi-join.

• Previously, the comma operator (,) and JOIN both had the same precedence, so the join expression t1, t2 JOIN t3 was inter-
preted as ((t1, t2) JOIN t3). Now JOIN has higher precedence, so the expression is interpreted as (t1, (t2 JOIN
t3)). This change affects statements that use an ON clause, because that clause can refer only to columns in the operands of the
join, and the change in precedence changes interpretation of what those operands are.

Example:

CREATE TABLE t1 (i1 INT, j1 INT);
CREATE TABLE t2 (i2 INT, j2 INT);
CREATE TABLE t3 (i3 INT, j3 INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
INSERT INTO t3 VALUES(1,1);
SELECT * FROM t1, t2 JOIN t3 ON (t1.i1 = t3.i3);

SELECT left_tbl.*
FROM { OJ left_tbl LEFT OUTER JOIN right_tbl ON left_tbl.id = right_tbl.id }
WHERE right_tbl.id IS NULL;

Previously, the SELECT was legal due to the implicit grouping of t1,t2 as (t1,t2). Now the JOIN takes precedence, so the
operands for the ON clause are t2 and t3. Because t1.i1 is not a column in either of the operands, the result is an Unknown
column 't1.i1' in 'on clause' error. To allow the join to be processed, group the first two tables explicitly with paren-
theses so that the operands for the ON clause are (t1,t2) and t3:

SELECT * FROM (t1, t2) JOIN t3 ON (t1.i1 = t3.i3);

Alternatively, avoid the use of the comma operator and use JOIN instead:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (t1.i1 = t3.i3);

This change also applies to statements that mix the comma operator with INNER JOIN, CROSS JOIN, LEFT JOIN, and RIGHT
JOIN, all of which now have higher precedence than the comma operator.

• Previously, the ON clause could refer to columns in tables named to its right. Now an ON clause can refer only to its operands.

Example:

CREATE TABLE t1 (i1 INT);
CREATE TABLE t2 (i2 INT);
CREATE TABLE t3 (i3 INT);
SELECT * FROM t1 JOIN t2 ON (i1 = i3) JOIN t3;

Previously, the SELECT statement was legal. Now the statement fails with an Unknown column 'i3' in 'on clause' er-
ror because i3 is a column in t3, which is not an operand of the ON clause. The statement should be rewritten as follows:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (i1 = i3);

• Resolution of column names in NATURAL or USING joins is different than previously. For column names that are outside the FROM
clause, MySQL now handles a superset of the queries compared to previously. That is, in cases when MySQL formerly issued an er-
ror that some column is ambiguous, the query now is handled correctly. This is due to the fact that MySQL now treats the common
columns of NATURAL or USING joins as a single column, so when a query refers to such columns, the query compiler does not con-
sider them as ambiguous.

Example:

SQL Statement Syntax

841



SELECT * FROM t1 NATURAL JOIN t2 WHERE b > 1;

Previously, this query would produce an error ERROR 1052 (23000): Column 'b' in where clause is ambigu-
ous. Now the query produces the correct result:

+------+------+------+
| b | c | y |
+------+------+------+
| 4 | 2 | 3 |
+------+------+------+

One extension of MySQL compared to the SQL:2003 standard is that MySQL allows you to qualify the common (coalesced)
columns of NATURAL or USING joins (just as previously), while the standard disallows that.

12.2.7.2. Index Hint Syntax

You can provide hints to give the optimizer information about how to choose indexes during query processing. Section 12.2.7.1, “JOIN
Syntax”, describes the general syntax for specifying tables in a SELECT statement. The syntax for an individual table, including that for
index hints, looks like this:

tbl_name [[AS] alias] [index_hint_list]

index_hint_list:
index_hint [, index_hint] ...

index_hint:
USE {INDEX|KEY}
[{FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])

| IGNORE {INDEX|KEY}
[{FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

| FORCE {INDEX|KEY}
[{FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

index_list:
index_name [, index_name] ...

By specifying USE INDEX (index_list), you can tell MySQL to use only one of the named indexes to find rows in the table.
The alternative syntax IGNORE INDEX (index_list) can be used to tell MySQL to not use some particular index or indexes.
These hints are useful if EXPLAIN shows that MySQL is using the wrong index from the list of possible indexes.

You can also use FORCE INDEX, which acts like USE INDEX (index_list) but with the addition that a table scan is assumed to
be very expensive. In other words, a table scan is used only if there is no way to use one of the given indexes to find rows in the table.

Each hint requires the names of indexes, not the names of columns. The name of a PRIMARY KEY is PRIMARY. To see the index
names for a table, use SHOW INDEX.

Index hints do not work for FULLTEXT indexes.

Prior to MySQL 5.1.17, USE INDEX, IGNORE INDEX, and FORCE INDEX affect only which indexes are used when MySQL de-
cides how to find rows in the table and how to process joins. They do not affect whether an index is used when resolving an ORDER BY
or GROUP BY clause.

Examples:

SELECT * FROM table1 USE INDEX (col1_index,col2_index)
WHERE col1=1 AND col2=2 AND col3=3;

SELECT * FROM table1 IGNORE INDEX (col3_index)
WHERE col1=1 AND col2=2 AND col3=3;

As of MySQL 5.1.17, the syntax for index hints is extended in the following ways:

• It is syntactically valid to specify an empty index_list for USE INDEX, which means “use no indexes.” Specifying an empty
index_list for FORCE INDEX or IGNORE INDEX is a syntax error.

• You can specify the scope of a index hint by adding a FOR clause to the hint. This provides more fine-grained control over the op-
timizer's selection of an execution plan for various phases of query processing. To affect only the indexes used when MySQL de-

SQL Statement Syntax

842



cides how to find rows in the table and how to process joins, use FOR JOIN. To influence index usage for sorting or grouping
rows, use FOR ORDER BY or FOR GROUP BY. (However, if there is a covering index for the table and it is used to access the ta-
ble, the optimizer will ignore IGNORE INDEX FOR {ORDER BY|GROUP BY} hints that disable that index.)

• You can specify multiple index hints:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX FOR ORDER BY (i2) ORDER BY a;

It is not a error to name the same index in several hints (even within the same hint):

SELECT * FROM t1 USE INDEX (i1) USE INDEX (i1,i1);

However, it is an error to mix USE INDEX and FORCE INDEX for the same table:

SELECT * FROM t1 USE INDEX FOR JOIN (i1) FORCE INDEX FOR JOIN (i2);

The default scope of index hints also is changed as of MySQL 5.1.17. Formerly, index hints applied only to how indexes are used for re-
trieval of records and not during resolution of ORDER BY or GROUP BY clauses. As of 5.1.17, if you specify no FOR clause for an in-
dex hint, the hint by default applies to all parts of the statement. For example, this hint:

IGNORE INDEX (i1)

is equivalent to this combination of hints:

IGNORE INDEX FOR JOIN (i1)
IGNORE INDEX FOR ORDER BY (i1)
IGNORE INDEX FOR GROUP BY (i1)

To cause the server to use the older behavior for hint scope when no FOR clause is present (so that hints apply only to row retrieval), en-
able the old system variable at server startup. Take care about enabling this variable in a replication setup. With statement-based bin-
ary logging, having different modes for the master and slaves might lead to replication errors.

When index hints are processed, they are are collected in a single list by type (USE, FORCE, IGNORE) and by scope (FOR JOIN, FOR
ORDER BY, FOR GROUP BY). For example:

SELECT * FROM t1
USE INDEX () IGNORE INDEX (i2) USE INDEX (i1) USE INDEX (i2);

is equivalent to:

SELECT * FROM t1
USE INDEX (i1,i2) IGNORE INDEX (i2);

The index hints then are applied for each scope in the following order:

1. {USE|FORCE} INDEX is applied if present. (If not, the optimizer-determined set of indexes is used.)

2. IGNORE INDEX is applied over the result of the previous step. For example:

SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX (i2) USE INDEX (i2)

is equivalent to:

SELECT * FROM t1 USE INDEX (i1).

12.2.7.3. UNION Syntax
SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]

SQL Statement Syntax

843



UNION is used to combine the result from multiple SELECT statements into a single result set.

The column names from the first SELECT statement are used as the column names for the results returned. Selected columns listed in
corresponding positions of each SELECT statement should have the same data type. (For example, the first column selected by the first
statement should have the same type as the first column selected by the other statements.)

If the data types of corresponding SELECT columns do not match, the types and lengths of the columns in the UNION result take into
account the values retrieved by all of the SELECT statements. For example, consider the following:

mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',10);
+---------------+
| REPEAT('a',1) |
+---------------+
| a |
| bbbbbbbbbb |
+---------------+

(In some earlier versions of MySQL, only the type and length from the first SELECT would have been used and the second row would
have been truncated to a length of 1.)

The SELECT statements are normal select statements, but with the following restrictions:

• Only the last SELECT statement can use INTO OUTFILE. (However, the entire UNION result is written to the file.)

• HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION. If you specify it for the first SELECT, it has
no effect. If you specify it for any subsequent SELECT statements, a syntax error results.

The default behavior for UNION is that duplicate rows are removed from the result. The optional DISTINCT keyword has no effect
other than the default because it also specifies duplicate-row removal. With the optional ALL keyword, duplicate-row removal does not
occur and the result includes all matching rows from all the SELECT statements.

You can mix UNION ALL and UNION DISTINCT in the same query. Mixed UNION types are treated such that a DISTINCT union
overrides any ALL union to its left. A DISTINCT union can be produced explicitly by using UNION DISTINCT or implicitly by using
UNION with no following DISTINCT or ALL keyword.

To use an ORDER BY or LIMIT clause to sort or limit the entire UNION result, parenthesize the individual SELECT statements and
place the ORDER BY or LIMIT after the last one. The following example uses both clauses:

(SELECT a FROM t1 WHERE a=10 AND B=1)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2)
ORDER BY a LIMIT 10;

This kind of ORDER BY cannot use column references that include a table name (that is, names in tbl_name.col_name format). In-
stead, provide a column alias in the first SELECT statement and refer to the alias in the ORDER BY. (Alternatively, refer to the column
in the ORDER BY using its column position. However, use of column positions is deprecated.)

Also, if a column to be sorted is aliased, the ORDER BY clause must refer to the alias, not the column name. The first of the following
statements will work, but the second will fail with an Unknown column 'a' in 'order clause' error:

(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY b;
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY a;

To apply ORDER BY or LIMIT to an individual SELECT, place the clause inside the parentheses that enclose the SELECT:

(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

However, use of ORDER BY for individual SELECT statements implies nothing about the order in which the rows appear in the final
result because UNION by default produces an unordered set of rows. Therefore, the use of ORDER BY in this context is typically in
conjunction with LIMIT, so that it is used to determine the subset of the selected rows to retrieve for the SELECT, even though it does
not necessarily affect the order of those rows in the final UNION result. If ORDER BY appears without LIMIT in a SELECT, it is op-
timized away because it will have no effect anyway.

SQL Statement Syntax

844



To cause rows in a UNION result to consist of the sets of rows retrieved by each SELECT one after the other, select an additional
column in each SELECT to use as a sort column and add an ORDER BY following the last SELECT:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col;

To additionally maintain sort order within individual SELECT results, add a secondary column to the ORDER BY clause:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col, col1a;

Use of an additional column also enables you to determine which SELECT each row comes from. Extra columns can provide other
identifying information as well, such as a string that indicates a table name.

12.2.8. Subquery Syntax
A subquery is a SELECT statement within another statement.

Starting with MySQL 4.1, all subquery forms and operations that the SQL standard requires are supported, as well as a few features that
are MySQL-specific.

Here is an example of a subquery:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and (SELECT column1 FROM t2) is the
subquery. We say that the subquery is nested within the outer query, and in fact it is possible to nest subqueries within other subqueries,
to a considerable depth. A subquery must always appear within parentheses.

The main advantages of subqueries are:

• They allow queries that are structured so that it is possible to isolate each part of a statement.

• They provide alternative ways to perform operations that would otherwise require complex joins and unions.

• They are, in many people's opinion, more readable than complex joins or unions. Indeed, it was the innovation of subqueries that
gave people the original idea of calling the early SQL “Structured Query Language.”

Here is an example statement that shows the major points about subquery syntax as specified by the SQL standard and supported in
MySQL:

DELETE FROM t1
WHERE s11 > ANY
(SELECT COUNT(*) /* no hint */ FROM t2
WHERE NOT EXISTS
(SELECT * FROM t3
WHERE ROW(5*t2.s1,77)=
(SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM
(SELECT * FROM t5) AS t5)));

A subquery can return a scalar (a single value), a single row, a single column, or a table (one or more rows of one or more columns).
These are called scalar, column, row, and table subqueries. Subqueries that return a particular kind of result often can be used only in
certain contexts, as described in the following sections.

There are few restrictions on the type of statements in which subqueries can be used. A subquery can contain any of the keywords or
clauses that an ordinary SELECT can contain: DISTINCT, GROUP BY, ORDER BY, LIMIT, joins, index hints, UNION constructs,
comments, functions, and so on.

One restriction is that a subquery's outer statement must be one of: SELECT, INSERT, UPDATE, DELETE, SET, or DO. Another re-
striction is that currently you cannot modify a table and select from the same table in a subquery. This applies to statements such as DE-
LETE, INSERT, REPLACE, UPDATE, and (because subqueries can be used in the SET clause) LOAD DATA INFILE.

A more comprehensive discussion of restrictions on subquery use, including performance issues for certain forms of subquery syntax, is

SQL Statement Syntax

845



given in Section D.3, “Restrictions on Subqueries”.

12.2.8.1. The Subquery as Scalar Operand

In its simplest form, a subquery is a scalar subquery that returns a single value. A scalar subquery is a simple operand, and you can use
it almost anywhere a single column value or literal is legal, and you can expect it to have those characteristics that all operands have: a
data type, a length, an indication whether it can be NULL, and so on. For example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
INSERT INTO t1 VALUES(100, 'abcde');
SELECT (SELECT s2 FROM t1);

The subquery in this SELECT returns a single value ('abcde') that has a data type of CHAR, a length of 5, a character set and colla-
tion equal to the defaults in effect at CREATE TABLE time, and an indication that the value in the column can be NULL. In fact, almost
all subqueries can be NULL. If the table used in the example were empty, the value of the subquery would be NULL.

There are a few contexts in which a scalar subquery cannot be used. If a statement allows only a literal value, you cannot use a sub-
query. For example, LIMIT requires literal integer arguments, and LOAD DATA INFILE requires a literal string filename. You can-
not use subqueries to supply these values.

When you see examples in the following sections that contain the rather spartan construct (SELECT column1 FROM t1), imagine
that your own code contains much more diverse and complex constructions.

Suppose that we make two tables:

CREATE TABLE t1 (s1 INT);
INSERT INTO t1 VALUES (1);
CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);

Then perform a SELECT:

SELECT (SELECT s1 FROM t2) FROM t1;

The result is 2 because there is a row in t2 containing a column s1 that has a value of 2.

A scalar subquery can be part of an expression, but remember the parentheses, even if the subquery is an operand that provides an argu-
ment for a function. For example:

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

12.2.8.2. Comparisons Using Subqueries

The most common use of a subquery is in the form:

non_subquery_operand comparison_operator (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <>

For example:

... 'a' = (SELECT column1 FROM t1)

At one time the only legal place for a subquery was on the right side of a comparison, and you might still find some old DBMSs that in-
sist on this.

Here is an example of a common-form subquery comparison that you cannot do with a join. It finds all the values in table t1 that are
equal to a maximum value in table t2:

SELECT column1 FROM t1
WHERE column1 = (SELECT MAX(column2) FROM t2);

SQL Statement Syntax

846



Here is another example, which again is impossible with a join because it involves aggregating for one of the tables. It finds all rows in
table t1 containing a value that occurs twice in a given column:

SELECT * FROM t1 AS t
WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);

For a comparison performed with one of these operators, the subquery must return a scalar, with the exception that = can be used with
row subqueries. See Section 12.2.8.5, “Row Subqueries”.

12.2.8.3. Subqueries with ANY, IN, and SOME

Syntax:

operand comparison_operator ANY (subquery)
operand IN (subquery)
operand comparison_operator SOME (subquery)

The ANY keyword, which must follow a comparison operator, means “return TRUE if the comparison is TRUE for ANY of the values in
the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains (21,14,7) because there is a
value 7 in t2 that is less than 10. The expression is FALSE if table t2 contains (20,10), or if table t2 is empty. The expression is
unknown if table t2 contains (NULL,NULL,NULL).

When used with a subquery, the word IN is an alias for = ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

IN and = ANY are not synonyms when used with an expression list. IN can take an expression list, but = ANY cannot. See Sec-
tion 11.2.3, “Comparison Functions and Operators”.

NOT IN is not an alias for <> ANY, but for <> ALL. See Section 12.2.8.4, “Subqueries with ALL”.

The word SOME is an alias for ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

Use of the word SOME is rare, but this example shows why it might be useful. To most people's ears, the English phrase “a is not equal
to any b” means “there is no b which is equal to a,” but that is not what is meant by the SQL syntax. The syntax means “there is some b
to which a is not equal.” Using <> SOME instead helps ensure that everyone understands the true meaning of the query.

12.2.8.4. Subqueries with ALL

Syntax:

operand comparison_operator ALL (subquery)

The word ALL, which must follow a comparison operator, means “return TRUE if the comparison is TRUE for ALL of the values in the
column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains (-5,0,+5) because 10 is
greater than all three values in t2. The expression is FALSE if table t2 contains (12,6,NULL,-100) because there is a single value
12 in table t2 that is greater than 10. The expression is unknown (that is, NULL) if table t2 contains (0,NULL,1).

Finally, if table t2 is empty, the result is TRUE. So, the following statement is TRUE when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);

SQL Statement Syntax

847



But this statement is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

In addition, the following statement is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

In general, tables containing NULL values and empty tables are “edge cases.” When writing subquery code, always consider whether
you have taken those two possibilities into account.

NOT IN is an alias for <> ALL. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);

12.2.8.5. Row Subqueries

The discussion to this point has been of scalar or column subqueries; that is, subqueries that return a single value or a column of values.
A row subquery is a subquery variant that returns a single row and can thus return more than one column value. Here are two examples:

SELECT * FROM t1 WHERE (1,2) = (SELECT column1, column2 FROM t2);
SELECT * FROM t1 WHERE ROW(1,2) = (SELECT column1, column2 FROM t2);

The queries here are both TRUE if table t2 has a row where column1 = 1 and column2 = 2.

The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are equivalent. They are legal in other con-
texts as well. For example, the following two statements are semantically equivalent (although the first one cannot be optimized until
MySQL 5.1.12):

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

The normal use of row constructors is for comparisons with subqueries that return two or more columns. For example, the following
query answers the request, “find all rows in table t1 that also exist in table t2”:

SELECT column1,column2,column3
FROM t1
WHERE (column1,column2,column3) IN

(SELECT column1,column2,column3 FROM t2);

12.2.8.6. EXISTS and NOT EXISTS

If a subquery returns any rows at all, EXISTS subquery is TRUE, and NOT EXISTS subquery is FALSE. For example:

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or SELECT column1 or anything at
all. MySQL ignores the SELECT list in such a subquery, so it makes no difference.

For the preceding example, if t2 contains any rows, even rows with nothing but NULL values, the EXISTS condition is TRUE. This is
actually an unlikely example because a [NOT] EXISTS subquery almost always contains correlations. Here are some more realistic
examples:

• What kind of store is present in one or more cities?

SELECT DISTINCT store_type FROM stores
WHERE EXISTS (SELECT * FROM cities_stores

WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in no cities?

SELECT DISTINCT store_type FROM stores
WHERE NOT EXISTS (SELECT * FROM cities_stores

SQL Statement Syntax

848



WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in all cities?

SELECT DISTINCT store_type FROM stores s1
WHERE NOT EXISTS (
SELECT * FROM cities WHERE NOT EXISTS (
SELECT * FROM cities_stores
WHERE cities_stores.city = cities.city
AND cities_stores.store_type = stores.store_type));

The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause within a NOT EXISTS clause. Form-
ally, it answers the question “does a city exist with a store that is not in Stores”? But it is easier to say that a nested NOT EXISTS
answers the question “is x TRUE for all y?”

12.2.8.7. Correlated Subqueries

A correlated subquery is a subquery that contains a reference to a table that also appears in the outer query. For example:

SELECT * FROM t1 WHERE column1 = ANY
(SELECT column1 FROM t2 WHERE t2.column2 = t1.column2);

Notice that the subquery contains a reference to a column of t1, even though the subquery's FROM clause does not mention a table t1.
So, MySQL looks outside the subquery, and finds t1 in the outer query.

Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table t2 contains a row where
column1 = 5 and column2 = 7. The simple expression ... WHERE column1 = ANY (SELECT column1 FROM t2)
would be TRUE, but in this example, the WHERE clause within the subquery is FALSE (because (5,6) is not equal to (5,7)), so the
subquery as a whole is FALSE.

Scoping rule: MySQL evaluates from inside to outside. For example:

SELECT column1 FROM t1 AS x
WHERE x.column1 = (SELECT column1 FROM t2 AS x
WHERE x.column1 = (SELECT column1 FROM t3
WHERE x.column2 = t3.column1));

In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM t2 AS x ... renames t2. It is
not a column in table t1 because SELECT column1 FROM t1 ... is an outer query that is farther out.

For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the outer select list.

For certain cases, a correlated subquery is optimized. For example:

val IN (SELECT key_val FROM tbl_name WHERE correlated_condition)

Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might improve performance.

Aggregate functions in correlated subqueries may contain outer references, provided the function contains nothing but outer references,
and provided the function is not contained in another function or expression.

12.2.8.8. Subqueries in the FROM clause

Subqueries are legal in a SELECT statement's FROM clause. The actual syntax is:

SELECT ... FROM (subquery) [AS] name ...

The [AS] name clause is mandatory, because every table in a FROM clause must have a name. Any columns in the subquery select
list must have unique names.

For the sake of illustration, assume that you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

SQL Statement Syntax

849



Here is how to use a subquery in the FROM clause, using the example table:

INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);
SELECT sb1,sb2,sb3

FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
WHERE sb1 > 1;

Result: 2, '2', 4.0.

Here is another example: Suppose that you want to know the average of a set of sums for a grouped table. This does not work:

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

However, this query provides the desired information:

SELECT AVG(sum_column1)
FROM (SELECT SUM(column1) AS sum_column1

FROM t1 GROUP BY column1) AS t1;

Notice that the column name used within the subquery (sum_column1) is recognized in the outer query.

Subqueries in the FROM clause can return a scalar, column, row, or table. Subqueries in the FROM clause cannot be correlated subquer-
ies, unless used within the ON clause of a JOIN operation.

Subqueries in the FROM clause are executed even for the EXPLAIN statement (that is, derived temporary tables are built). This occurs
because upper-level queries need information about all tables during the optimization phase, and the table represented by a subquery in
the FROM clause is unavailable unless the subquery is executed.

It is possible under certain circumstances to modify table data using EXPLAIN SELECT. This can occur if the outer query accesses
any tables and an inner query invokes a stored function that changes one or more rows of a table. For example, suppose there are two
tables t1 and t2 in database d1, created as shown here:

mysql> CREATE DATABASE d1;
Query OK, 1 row affected (0.00 sec)

mysql> USE d1;
Database changed

mysql> CREATE TABLE t1 (c1 INT);
Query OK, 0 rows affected (0.15 sec)

mysql> CREATE TABLE t2 (c1 INT);
Query OK, 0 rows affected (0.08 sec)

Now we create a stored function f1 which modifies t2:

mysql> DELIMITER //
mysql> CREATE FUNCTION f1(p1 INT) RETURNS INT
mysql> BEGIN
mysql> INSERT INTO t2 VALUES (p1);
mysql> RETURN p1;
mysql> END //
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

Referencing the function directly in an EXPLAIN SELECT does not have any affect on t2, as shown here:

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

mysql> EXPLAIN SELECT f1(5);
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | SIMPLE | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

This is because the SELECT statement did not reference any tables, as can be seen in the table and Extra columns of the output.
This is also true of the following nested SELECT:

SQL Statement Syntax

850



mysql> EXPLAIN SELECT NOW() AS a1, (SELECT f1(5)) AS a2;
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | PRIMARY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------------+
| Note | 1249 | Select 2 was reduced during optimization |
+-------+------+------------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

However, if the outer SELECT references any tables, then the optimizer executes the statement in the subquery as well:

mysql> EXPLAIN SELECT * FROM t1 AS a1, (SELECT f1(5)) AS a2;
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
| 1 | PRIMARY | a1 | system | NULL | NULL | NULL | NULL | 0 | const row not found |
| 1 | PRIMARY | <derived2> | system | NULL | NULL | NULL | NULL | 1 | |
| 2 | DERIVED | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+
| c1 |
+------+
| 5 |
+------+
1 row in set (0.00 sec)

This also means that an EXPLAIN SELECT statement such as the one shown here may take a long time to execute:

EXPLAIN SELECT * FROM t1 AS a1, (SELECT BENCHMARK(1000000, MD5(NOW())));

This is because the BENCHMARK() function is executed once for each row in t1.

12.2.8.9. Subquery Errors

There are some errors that apply only to subqueries. This section describes them.

• Unsupported subquery syntax:

ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000
Message = "This version of MySQL does not yet support
'LIMIT & IN/ALL/ANY/SOME subquery'"

This means that statements of the following form do not work yet:

SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

• Incorrect number of columns from subquery:

ERROR 1241 (ER_OPERAND_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"

This error occurs in cases like this:

SELECT (SELECT column1, column2 FROM t2) FROM t1;

You may use a subquery that returns multiple columns, if the purpose is comparison. In other contexts, the subquery must be a scal-
ar operand. See Section 12.2.8.5, “Row Subqueries”.

• Incorrect number of rows from subquery:

SQL Statement Syntax

851



ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

This error occurs for statements where the subquery returns more than one row. Consider the following example:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

If SELECT column1 FROM t2 returns just one row, the previous query will work. If the subquery returns more than one row,
error 1242 will occur. In that case, the query should be rewritten as:

SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

• Incorrectly used table in subquery:

Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can't specify target table 'x'
for update in FROM clause"

This error occurs in cases such as the following:

UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

You can use a subquery for assignment within an UPDATE statement because subqueries are legal in UPDATE and DELETE state-
ments as well as in SELECT statements. However, you cannot use the same table (in this case, table t1) for both the subquery's
FROM clause and the update target.

For transactional storage engines, the failure of a subquery causes the entire statement to fail. For non-transactional storage engines,
data modifications made before the error was encountered are preserved.

12.2.8.10. Optimizing Subqueries

Development is ongoing, so no optimization tip is reliable for the long term. The following list provides some interesting tricks that you
might want to play with:

• Use subquery clauses that affect the number or order of the rows in the subquery. For example:

SELECT * FROM t1 WHERE t1.column1 IN
(SELECT column1 FROM t2 ORDER BY column1);

SELECT * FROM t1 WHERE t1.column1 IN
(SELECT DISTINCT column1 FROM t2);

SELECT * FROM t1 WHERE EXISTS
(SELECT * FROM t2 LIMIT 1);

• Replace a join with a subquery. For example, try this:

SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (
SELECT column1 FROM t2);

Instead of this:

SELECT DISTINCT t1.column1 FROM t1, t2
WHERE t1.column1 = t2.column1;

• Some subqueries can be transformed to joins for compatibility with older versions of MySQL that do not support subqueries.
However, in some cases, converting a subquery to a join may improve performance. See Section 12.2.8.11, “Rewriting Subqueries
as Joins”.

• Move clauses from outside to inside the subquery. For example, use this query:

SELECT * FROM t1
WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

SQL Statement Syntax

852



Instead of this query:

SELECT * FROM t1
WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example, use this query:

SELECT (SELECT column1 + 5 FROM t1) FROM t2;

Instead of this query:

SELECT (SELECT column1 FROM t1) + 5 FROM t2;

• Use a row subquery instead of a correlated subquery. For example, use this query:

SELECT * FROM t1
WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);

Instead of this query:

SELECT * FROM t1
WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1
AND t2.column2=t1.column2);

• Use NOT (a = ANY (...)) rather than a <> ALL (...).

• Use x = ANY (table containing (1,2)) rather than x=1 OR x=2.

• Use = ANY rather than EXISTS.

• For uncorrelated subqueries that always return one row, IN is always slower than =. For example, use this query:

SELECT * FROM t1 WHERE t1.col_name
= (SELECT a FROM t2 WHERE b = some_const);

Instead of this query:

SELECT * FROM t1 WHERE t1.col_name
IN (SELECT a FROM t2 WHERE b = some_const);

These tricks might cause programs to go faster or slower. Using MySQL facilities like the BENCHMARK() function, you can get an
idea about what helps in your own situation. See Section 11.11.3, “Information Functions”.

Some optimizations that MySQL itself makes are:

• MySQL executes uncorrelated subqueries only once. Use EXPLAIN to make sure that a given subquery really is uncorrelated.

• MySQL rewrites IN, ALL, ANY, and SOME subqueries in an attempt to take advantage of the possibility that the select-list columns
in the subquery are indexed.

• MySQL replaces subqueries of the following form with an index-lookup function, which EXPLAIN describes as a special join type
(unique_subquery or index_subquery):

... IN (SELECT indexed_column FROM single_table ...)

• MySQL enhances expressions of the following form with an expression involving MIN() or MAX(), unless NULL values or empty
sets are involved:

value {ALL|ANY|SOME} {> | < | >= | <=} (uncorrelated subquery)

SQL Statement Syntax

853



For example, this WHERE clause:

WHERE 5 > ALL (SELECT x FROM t)

might be treated by the optimizer like this:

WHERE 5 > (SELECT MAX(x) FROM t)

See also the MySQL Internals Manual chapter How MySQL Transforms Subqueries.

12.2.8.11. Rewriting Subqueries as Joins

Although MySQL 5.1 supports subqueries (see Section 12.2.8, “Subquery Syntax”), it is still true that there are sometimes other ways to
test membership in a set of values. It is also true that on some occasions, it is not only possible to rewrite a query without a subquery,
but it can be more efficient to make use of some of these techniques rather than to use subqueries. One of these is the IN() construct:

For example, this query:

SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);

Can be rewritten as:

SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.id=t2.id;

The queries:

SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);
SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);

Can be rewritten as:

SELECT table1.*
FROM table1 LEFT JOIN table2 ON table1.id=table2.id
WHERE table2.id IS NULL;

A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be able to optimize it better — a fact
that is not specific to MySQL Server alone. Prior to SQL-92, outer joins did not exist, so subqueries were the only way to do certain
things. Today, MySQL Server and many other modern database systems offer a wide range of outer join types.

MySQL Server supports multiple-table DELETE statements that can be used to efficiently delete rows based on information from one
table or even from many tables at the same time. Multiple-table UPDATE statements are also supported. See Section 12.2.1, “DELETE
Syntax”, and Section 12.2.10, “UPDATE Syntax”.

12.2.9. TRUNCATE Syntax
TRUNCATE [TABLE] tbl_name

TRUNCATE TABLE empties a table completely. Logically, this is equivalent to a DELETE statement that deletes all rows, but there are
practical differences under some circumstances.

For an InnoDB table, InnoDB processes TRUNCATE TABLE by deleting rows one by one if there are any FOREIGN KEY con-
straints that reference the table. If there are no FOREIGN KEY constraints, InnoDB performs fast truncation by dropping the original
table and creating an empty one with the same definition, which is much faster than deleting rows one by one. The AUTO_INCREMENT
counter is reset by TRUNCATE TABLE, regardless of whether there is a FOREIGN KEY constraint.

In the case that FOREIGN KEY constraints reference the table, InnoDB deletes rows one by one and processes the constraints on each
one. If the FOREIGN KEY constraint specifies DELETE CASCADE, rows from the child (referenced) table are deleted, and the trun-
cated table becomes empty. If the FOREIGN KEY constraint does not specify CASCADE, the TRUNCATE statement deletes rows one
by one and stops if it encounters a parent row that is referenced by the child, returning this error:

ERROR 1451 (23000): Cannot delete or update a parent row: a foreign

SQL Statement Syntax

854

http://forge.mysql.com/wiki/MySQL_Internals_Transformations


key constraint fails (`test`.`child`, CONSTRAINT `child_ibfk_1`
FOREIGN KEY (`parent_id`) REFERENCES `parent` (`id`))

This is the same as a DELETE statement with no WHERE clause.

The count of of rows affected by TRUNCATE TABLE is accurate only when it is mapped to a DELETE statement.

For other storage engines, TRUNCATE TABLE differs from DELETE in the following ways in MySQL 5.1:

• Truncate operations drop and re-create the table, which is much faster than deleting rows one by one, particularly for large tables.

• Truncate operations are not transaction-safe; an error occurs when attempting one in the course of an active transaction or active ta-
ble lock.

• Truncation operations do not return the number of deleted rows.

• As long as the table format file tbl_name.frm is valid, the table can be re-created as an empty table with TRUNCATE TABLE,
even if the data or index files have become corrupted.

• The table handler does not remember the last used AUTO_INCREMENT value, but starts counting from the beginning. This is true
even for MyISAM and InnoDB, which normally do not reuse sequence values.

• When used with partitioned tables, TRUNCATE TABLE preserves the partitioning; that is, the data and index files are dropped and
re-created, while the partition definitions (.par) file is unaffected.

• Since truncation of a table does not make any use of DELETE, the TRUNCATE statement does not invoke ON DELETE triggers.

TRUNCATE TABLE requires the DROP privilege as of MySQL 5.1.16. (Before 5.1.16, it requires the DELETE privilege.

12.2.10. UPDATE Syntax
Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name
SET col_name1=expr1 [, col_name2=expr2 ...]
[WHERE where_condition]
[ORDER BY ...]
[LIMIT row_count]

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_references
SET col_name1=expr1 [, col_name2=expr2 ...]
[WHERE where_condition]

For the single-table syntax, the UPDATE statement updates columns of existing rows in tbl_name with new values. The SET clause
indicates which columns to modify and the values they should be given. The WHERE clause, if given, specifies the conditions that
identify which rows to update. With no WHERE clause, all rows are updated. If the ORDER BY clause is specified, the rows are updated
in the order that is specified. The LIMIT clause places a limit on the number of rows that can be updated.

For the multiple-table syntax, UPDATE updates rows in each table named in table_references that satisfy the conditions. In this
case, ORDER BY and LIMIT cannot be used.

where_condition is an expression that evaluates to true for each row to be updated. It is specified as described in Section 12.2.7,
“SELECT Syntax”.

The UPDATE statement supports the following modifiers:

• If you use the LOW_PRIORITY keyword, execution of the UPDATE is delayed until no other clients are reading from the table. This
affects only storage engines that use only table-level locking (MyISAM, MEMORY, MERGE).

• If you use the IGNORE keyword, the update statement does not abort even if errors occur during the update. Rows for which duplic-
ate-key conflicts occur are not updated. Rows for which columns are updated to values that would cause data conversion errors are

SQL Statement Syntax

855



updated to the closest valid values instead.

If you access a column from tbl_name in an expression, UPDATE uses the current value of the column. For example, the following
statement sets the age column to one more than its current value:

UPDATE persondata SET age=age+1;

Single-table UPDATE assignments are generally evaluated from left to right. For multiple-table updates, there is no guarantee that as-
signments are carried out in any particular order.

If you set a column to the value it currently has, MySQL notices this and does not update it.

If you update a column that has been declared NOT NULL by setting to NULL, the column is set to the default value appropriate for the
data type and the warning count is incremented. The default value is 0 for numeric types, the empty string ('') for string types, and the
“zero” value for date and time types.

UPDATE returns the number of rows that were actually changed. The mysql_info() C API function returns the number of rows that
were matched and updated and the number of warnings that occurred during the UPDATE.

You can use LIMIT row_count to restrict the scope of the UPDATE. A LIMIT clause is a rows-matched restriction. The statement
stops as soon as it has found row_count rows that satisfy the WHERE clause, whether or not they actually were changed.

If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order specified by the clause. This can be useful in
certain situations that might otherwise result in an error. Suppose that a table t contains a column id that has a unique index. The fol-
lowing statement could fail with a duplicate-key error, depending on the order in which rows are updated:

UPDATE t SET id = id + 1;

For example, if the table contains 1 and 2 in the id column and 1 is updated to 2 before 2 is updated to 3, an error occurs. To avoid this
problem, add an ORDER BY clause to cause the rows with larger id values to be updated before those with smaller values:

UPDATE t SET id = id + 1 ORDER BY id DESC;

You can also perform UPDATE operations covering multiple tables. However, you cannot use ORDER BY or LIMIT with a multiple-ta-
ble UPDATE. The table_references clause lists the tables involved in the join. Its syntax is described in Section 12.2.7.1, “JOIN
Syntax”. Here is an example:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

The preceding example shows an inner join that uses the comma operator, but multiple-table UPDATE statements can use any type of
join allowed in SELECT statements, such as LEFT JOIN.

You need the UPDATE privilege only for columns referenced in a multiple-table UPDATE that are actually updated. You need only the
SELECT privilege for any columns that are read but not modified.

If you use a multiple-table UPDATE statement involving InnoDB tables for which there are foreign key constraints, the MySQL optim-
izer might process tables in an order that differs from that of their parent/child relationship. In this case, the statement fails and rolls
back. Instead, update a single table and rely on the ON UPDATE capabilities that InnoDB provides to cause the other tables to be modi-
fied accordingly. See Section 13.5.6.4, “FOREIGN KEY Constraints”.

Currently, you cannot update a table and select from the same table in a subquery.

12.3. MySQL Utility Statements

12.3.1. DESCRIBE Syntax
{DESCRIBE | DESC} tbl_name [col_name | wild]

DESCRIBE provides information about the columns in a table. It is a shortcut for SHOW COLUMNS FROM. These statements also dis-
play information for views. (See Section 12.5.4.4, “SHOW COLUMNS Syntax”.)

SQL Statement Syntax

856



col_name can be a column name, or a string containing the SQL “%” and “_” wildcard characters to obtain output only for the
columns with names matching the string. There is no need to enclose the string within quotes unless it contains spaces or other special
characters.

mysql> DESCRIBE City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
| Id | int(11) | NO | PRI | NULL | auto_increment |
| Name | char(35) | NO | | | |
| Country | char(3) | NO | UNI | | |
| District | char(20) | YES | MUL | | |
| Population | int(11) | NO | | 0 | |
+------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

The description for SHOW COLUMNS provides more information about the output columns (see Section 12.5.4.4, “SHOW COLUMNS
Syntax”).

If the data types differ from what you expect them to be based on a CREATE TABLE statement, note that MySQL sometimes changes
data types when you create or alter a table. The conditions under which this occurs are described in Section 12.1.10.1, “Silent Column
Specification Changes”.

The DESCRIBE statement is provided for compatibility with Oracle.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide information about tables. See Sec-
tion 12.5.4, “SHOW Syntax”.

12.3.2. EXPLAIN Syntax
EXPLAIN tbl_name

Or:

EXPLAIN [EXTENDED | PARTITIONS] SELECT select_options

The EXPLAIN statement can be used either as a synonym for DESCRIBE or as a way to obtain information about how MySQL ex-
ecutes a SELECT statement:

• EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name or SHOW COLUMNS FROM tbl_name.

For a description of the DESCRIBE and SHOW COLUMNS statements, see Section 12.3.1, “DESCRIBE Syntax”, and Sec-
tion 12.5.4.4, “SHOW COLUMNS Syntax”.

• When you precede a SELECT statement with the keyword EXPLAIN, MySQL displays information from the optimizer about the
query execution plan. That is, MySQL explains how it would process the SELECT, including information about how tables are
joined and in which order.

For information regarding the use of EXPLAIN for obtaining query execution plan information, see Section 7.2.1, “Optimizing
Queries with EXPLAIN”.

• EXPLAIN PARTITIONS is available beginning with MySQL 5.1.5. It is useful only when examining queries involving partitioned
tables.

For details, see Section 18.3.4, “Obtaining Information About Partitions”.

12.3.3. HELP Syntax
HELP 'search_string'

The HELP statement returns online information from the MySQL Reference manual. Its proper operation requires that the help tables in
the mysql database be initialized with help topic information (see Section 5.1.7, “Server-Side Help”).

The HELP statement searches the help tables for the given search string and displays the result of the search. The search string is not

SQL Statement Syntax

857



case sensitive.

The HELP statement understands several types of search strings:

• At the most general level, use contents to retrieve a list of the top-level help categories:

HELP 'contents'

• For a list of topics in a given help category, such as Data Types, use the category name:

HELP 'data types'

• For help on a specific help topic, such as the ASCII() function or the CREATE TABLE statement, use the associated keyword or
keywords:

HELP 'ascii'
HELP 'create table'

In other words, the search string matches a category, many topics, or a single topic. You cannot necessarily tell in advance whether a
given search string will return a list of items or the help information for a single help topic. However, you can tell what kind of response
HELP returned by examining the number of rows and columns in the result set.

The following descriptions indicate the forms that the result set can take. Output for the example statements is shown using the familar
“tabular” or “vertical” format that you see when using the mysql client, but note that mysql itself reformats HELP result sets in a dif-
ferent way.

• Empty result set

No match could be found for the search string.

• Result set containing a single row with three columns

This means that the search string yielded a hit for the help topic. The result has three columns:

• name: The topic name.

• description: Descriptive help text for the topic.

• example: Usage example or exmples. This column might be blank.

Example: HELP 'replace'

Yields:

name: REPLACE
description: Syntax:
REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str
replaced by the string to_str. REPLACE() performs a case-sensitive
match when searching for from_str.
example: mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');

-> 'WwWwWw.mysql.com'

• Result set containing multiple rows with two columns

This means that the search string matched many help topics. The result set indicates the help topic names:

• name: The help topic name.

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the name value when specified as
the argument to the HELP statement should yield a single-row result set containing a description for the named item.

Example: HELP 'status'

SQL Statement Syntax

858



Yields:

+-----------------------+----------------+
| name | is_it_category |
+-----------------------+----------------+
| SHOW | N |
| SHOW ENGINE | N |
| SHOW INNODB STATUS | N |
| SHOW MASTER STATUS | N |
| SHOW PROCEDURE STATUS | N |
| SHOW SLAVE STATUS | N |
| SHOW STATUS | N |
| SHOW TABLE STATUS | N |
+-----------------------+----------------+

• Result set containing multiple rows with three columns

This means the search string matches a category. The result set contains category entries:

• source_category_name: The help category name.

• name: The category or topic name

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the name value when specified as
the argument to the HELP statement should yield a single-row result set containing a description for the named item.

Example: HELP 'functions'

Yields:

+----------------------+-------------------------+----------------+
| source_category_name | name | is_it_category |
+----------------------+-------------------------+----------------+
| Functions | CREATE FUNCTION | N |
| Functions | DROP FUNCTION | N |
| Functions | Bit Functions | Y |
| Functions | Comparison operators | Y |
| Functions | Control flow functions | Y |
| Functions | Date and Time Functions | Y |
| Functions | Encryption Functions | Y |
| Functions | Information Functions | Y |
| Functions | Logical operators | Y |
| Functions | Miscellaneous Functions | Y |
| Functions | Numeric Functions | Y |
| Functions | String Functions | Y |
+----------------------+-------------------------+----------------+

Before MySQL 5.1.17, if you intend to use the HELP statement while other tables are locked with LOCK TABLES, you must also lock
the required mysql.help_xxx tables. See Section 12.4.5, “LOCK TABLES and UNLOCK TABLES Syntax”.

12.3.4. USE Syntax
USE db_name

The USE db_name statement tells MySQL to use the db_name database as the default (current) database for subsequent statements.
The database remains the default until the end of the session or another USE statement is issued:

USE db1;
SELECT COUNT(*) FROM mytable; # selects from db1.mytable
USE db2;
SELECT COUNT(*) FROM mytable; # selects from db2.mytable

Making a particular database the default by means of the USE statement does not preclude you from accessing tables in other databases.
The following example accesses the author table from the db1 database and the editor table from the db2 database:

USE db1;
SELECT author_name,editor_name FROM author,db2.editor
WHERE author.editor_id = db2.editor.editor_id;

The USE statement is provided for compatibility with Sybase.

SQL Statement Syntax

859



12.4. MySQL Transactional and Locking Statements
MySQL supports local transactions (within a given client connection) through statements such as SET AUTOCOMMIT, START
TRANSACTION, COMMIT, and ROLLBACK. See Section 12.4.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”. XA
transaction support enables MySQL to participate in distributed transactions as well. See Section 12.4.7, “XA Transactions”.

12.4.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax
START TRANSACTION [WITH CONSISTENT SNAPSHOT] | BEGIN [WORK]
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
SET AUTOCOMMIT = {0 | 1}

The START TRANSACTION and BEGIN statement begin a new transaction. COMMIT commits the current transaction, making its
changes permanent. ROLLBACK rolls back the current transaction, canceling its changes. The SET AUTOCOMMIT statement disables
or enables the default autocommit mode for the current connection.

The optional WORK keyword is supported for COMMIT and ROLLBACK, as are the CHAIN and RELEASE clauses. CHAIN and RE-
LEASE can be used for additional control over transaction completion. The value of the completion_type system variable determ-
ines the default completion behavior. See Section 5.1.3, “System Variables”.

The AND CHAIN clause causes a new transaction to begin as soon as the current one ends, and the new transaction has the same isola-
tion level as the just-terminated transaction. The RELEASE clause causes the server to disconnect the current client connection after ter-
minating the current transaction. Including the NO keyword suppresses CHAIN or RELEASE completion, which can be useful if the
completion_type system variable is set to cause chaining or release completion by default.

By default, MySQL runs with autocommit mode enabled. This means that as soon as you execute a statement that updates (modifies) a
table, MySQL stores the update on disk.

If you are using a transaction-safe storage engine (such as InnoDB, or NDB Cluster), you can disable autocommit mode with the
following statement:

SET AUTOCOMMIT=0;

After disabling autocommit mode by setting the AUTOCOMMIT variable to zero, you must use COMMIT to store your changes to disk or
ROLLBACK if you want to ignore the changes you have made since the beginning of your transaction.

To disable autocommit mode for a single series of statements, use the START TRANSACTION statement:

START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;

With START TRANSACTION, autocommit remains disabled until you end the transaction with COMMIT or ROLLBACK. The autocom-
mit mode then reverts to its previous state.

BEGIN and BEGIN WORK are supported as aliases of START TRANSACTION for initiating a transaction. START TRANSACTION is
standard SQL syntax and is the recommended way to start an ad-hoc transaction.

Important

Many APIs used for writing MySQL client applications (such as JDBC) provide their own methods for starting transac-
tions that can (and sometimes should) be used instead of sending a START TRANSACTION statement from the client. See
Chapter 26, APIs and Libraries, or the documentation for your API, for more information.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END compound statement. The latter does
not begin a transaction. See Section 20.2.5, “BEGIN ... END Compound Statement Syntax”.

You can also begin a transaction like this:

START TRANSACTION WITH CONSISTENT SNAPSHOT;

The WITH CONSISTENT SNAPSHOT clause starts a consistent read for storage engines that are capable of it. This applies only to
InnoDB. The effect is the same as issuing a START TRANSACTION followed by a SELECT from any InnoDB table. See Sec-

SQL Statement Syntax

860



tion 13.5.10.4, “Consistent Non-Locking Read”. The WITH CONSISTENT SNAPSHOT clause does not change the current transaction
isolation level, so it provides a consistent snapshot only if the current isolation level is one that allows consistent read (REPEATABLE
READ or SERIALIZABLE).

Beginning a transaction causes any pending transaction to be committed. See Section 12.4.3, “Statements That Cause an Implicit Com-
mit”, for more information.

Beginning a transaction also causes table locks acquired with LOCK TABLES to be released, as though you had executed UNLOCK
TABLES. Beginning a transaction does not release a global read lock acquired with FLUSH TABLES WITH READ LOCK.

For best results, transactions should be performed using only tables managed by a single transactional storage engine. Otherwise, the
following problems can occur:

• If you use tables from more than one transaction-safe storage engine (such as InnoDB and Falcon), and the transaction isolation
level is not SERIALIZABLE, it is possible that when one transaction commits, another ongoing transaction that uses the same
tables will see only some of the changes made by the first transaction. That is, the atomicity of transactions is not guaranteed with
mixed engines and inconsistencies can result. (If mixed-engine transactions are infrequent, you can use SET TRANSACTION
ISOLATION LEVEL to set the isolation level to SERIALIZABLE on a per-transaction basis as necessary.)

• If you use non-transaction-safe tables within a transaction, any changes to those tables are stored at once, regardless of the status of
autocommit mode.

If you issue a ROLLBACK statement after updating a non-transactional table within a transaction, an
ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe tables are rolled back, but not changes
to non-transaction-safe tables.

Each transaction is stored in the binary log in one chunk, upon COMMIT. Transactions that are rolled back are not logged. (Exception:
Modifications to non-transactional tables cannot be rolled back. If a transaction that is rolled back includes modifications to non-
transactional tables, the entire transaction is logged with a ROLLBACK statement at the end to ensure that the modifications to those
tables are replicated.) See Section 5.2.4, “The Binary Log”.

You can change the isolation level for transactions with SET TRANSACTION ISOLATION LEVEL. See Section 12.4.6, “SET
TRANSACTION Syntax”.

Rolling back can be a slow operation that may occur without the user having explicitly asked for it (for example, when an error occurs).
Because of this, SHOW PROCESSLIST displays Rolling back in the State column for the connection during implicit and expli-
cit (ROLLBACK SQL statement) rollbacks.

12.4.2. Statements That Cannot Be Rolled Back
Some statements cannot be rolled back. In general, these include data definition language (DDL) statements, such as those that create or
drop databases, those that create, drop, or alter tables or stored routines.

You should design your transactions not to include such statements. If you issue a statement early in a transaction that cannot be rolled
back, and then another statement later fails, the full effect of the transaction cannot be rolled back in such cases by issuing a ROLLBACK
statement.

12.4.3. Statements That Cause an Implicit Commit
Each of the following statements (and any synonyms for them) implicitly end a transaction, as if you had done a COMMIT before ex-
ecuting the statement:

• ALTER EVENT, ALTER FUNCTION, ALTER PROCEDURE, ALTER TABLE, BEGIN, CREATE DATABASE, CREATE EVENT,
CREATE FUNCTION, CREATE INDEX, CREATE PROCEDURE, CREATE TABLE, DROP DATABASE, DROP EVENT, DROP
FUNCTION, DROP INDEX, DROP PROCEDURE, DROP TABLE, LOAD DATA INFILE LOCK TABLES, RENAME TABLE,
SET AUTOCOMMIT=1 (if the value is not already 1), START TRANSACTION, TRUNCATE TABLE, UNLOCK TABLES.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END compound statement. The latter
does not cause an implicit commit. See Section 20.2.5, “BEGIN ... END Compound Statement Syntax”.

• Beginning with MySQL 5.1.3, ALTER VIEW, CREATE TRIGGER, CREATE USER, CREATE VIEW, DROP TRIGGER, DROP
USER, DROP VIEW, and RENAME USER cause an implicit commit.

SQL Statement Syntax

861



• UNLOCK TABLES commits a transaction only if any tables currently have been locked with LOCK TABLES. This does not occur
for UNLOCK TABLES following FLUSH TABLES WITH READ LOCK because the latter statement does not acquire table-level
locks.

• The CREATE TABLE statement in InnoDB is processed as a single transaction. This means that a ROLLBACK from the user does
not undo CREATE TABLE statements the user made during that transaction.

• CREATE TABLE and DROP TABLE do not commit a transaction if the TEMPORARY keyword is used. (This does not apply to oth-
er operations on temporary tables such as CREATE INDEX, which do cause a commit.) However, although no implicit commit oc-
curs, neither can the statement be rolled back. Therefore, use of such statements will violate transaction atomicity: For example, if
you use CREATE TEMPOARARY TABLE and then roll back the transaction, the table remains in existence.

• In MySQL 5.1.11 and earlier, LOAD DATA INFILE caused an implicit commit for all storage engines. Beginning with MySQL
5.1.12, it causes an implicit commit only for tables using the NDB storage engine. For more information, see Bug#11151.

• Beginning with MySQL 5.1.15, CREATE TABLE ... SELECT causes an implicit commit before and after the statement is ex-
ecuted when you are creating non-temporary tables. (No commit occurs for CREATE TEMPORARY TABLE ... SELECT.) This
is to prevent an issue during replication where the table could be created on the master after a rollback, but fail to be recorded in the
binary log, and therefore not replicated to the slave. For more information, see Bug#22865.

• Beginning with MySQL 5.1.23, GRANT, REVOKE, and SET PASSWORD statements cause an implicit commit.

Transactions cannot be nested. This is a consequence of the implicit COMMIT performed for any current transaction when you issue a
START TRANSACTION statement or one of its synonyms.

Statements that cause implicit cannot be used in an XA transaction while the transaction is in an ACTIVE state.

12.4.4. SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax
SAVEPOINT identifier
ROLLBACK [WORK] TO [SAVEPOINT] identifier
RELEASE SAVEPOINT identifier

InnoDB supports the SQL statements SAVEPOINT, ROLLBACK TO SAVEPOINT, RELEASE SAVEPOINT and the optional WORK
keyword for ROLLBACK.

The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If the current transaction has a savepoint
with the same name, the old savepoint is deleted and a new one is set.

The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint. Modifications that the current transaction
made to rows after the savepoint was set are undone in the rollback, but InnoDB does not release the row locks that were stored in
memory after the savepoint. (Note that for a new inserted row, the lock information is carried by the transaction ID stored in the row;
the lock is not separately stored in memory. In this case, the row lock is released in the undo.) Savepoints that were set at a later time
than the named savepoint are deleted.

If the ROLLBACK TO SAVEPOINT statement returns the following error, it means that no savepoint with the specified name exists:

ERROR 1181: Got error 153 during ROLLBACK

The RELEASE SAVEPOINT statement removes the named savepoint from the set of savepoints of the current transaction. No commit
or rollback occurs. It is an error if the savepoint does not exist.

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK that does not name a savepoint.

A new savepoint level is created when a stored function is invoked or a trigger is activated. The savepoints on previous levels become
unavailable and thus do not conflict with savepoints on the new level. When the function or trigger terminates, any savepoints it created
are released and the previous savepoint level is restored.

12.4.5. LOCK TABLES and UNLOCK TABLES Syntax
LOCK TABLES

tbl_name [[AS] alias] lock_type
[, tbl_name [[AS] alias] lock_type] ...

lock_type:

SQL Statement Syntax

862

http://bugs.mysql.com/11151
http://bugs.mysql.com/22865


READ [LOCAL]
| [LOW_PRIORITY] WRITE

UNLOCK TABLES

LOCK TABLES acquires table locks for the current thread. It locks base tables but not views. To use LOCK TABLES, you must have
the LOCK TABLES privilege, and the SELECT privilege for each table to be locked.

UNLOCK TABLES explicitly releases any table locks held by the current thread. Another use for UNLOCK TABLES is to release the
global read lock acquired with FLUSH TABLES WITH READ LOCK. (You can lock all tables in all databases with read locks with
the FLUSH TABLES WITH READ LOCK statement. See Section 12.5.5.2, “FLUSH Syntax”. This is a very convenient way to get
backups if you have a filesystem such as Veritas that can take snapshots in time.)

The following general rules apply to acquisition and release of locks by a given thread:

• Table locks are acquired with LOCK TABLES.

• If the LOCK TABLES statement must wait due to locks held by other threads on any of the tables, it blocks until all locks can be ac-
quired.

• Table locks are released explicitly with UNLOCK TABLES.

• Table locks are released implicitly under these conditions:

• LOCK TABLES releases any table locks currently held by the thread before acquiring new locks.

• Beginning a transaction (for example, with START TRANSACTION) implicitly performs an UNLOCK TABLES. (Additional in-
formation about the interaction between table locking and transactions is given later in the section.)

• If a client connection drops, the server releases table locks held by the client. If the client reconnects, the locks will no longer be
in effect. For this reason, clients may wish to disable auto-reconnect. With auto-reconnect in effect, the client is not notified if
reconnect occurs but any table locks will have been lost. With auto-reconnect disabled, if the connection drops, an error occurs
for the next statement issued. The client can detect the error and take appropriate action such as reacquiring the locks. See Sec-
tion 26.2.13, “Controlling Automatic Reconnect Behavior”.

• One thread cannot release locks held by another thread.

Note

If you use ALTER TABLE on a locked table, it may become unlocked. See Section B.1.7.1, “Problems with ALTER TA-
BLE”.

The main reasons to use LOCK TABLES are to emulate transactions or to get more speed when updating tables. This is explained in
more detail later in this section.

A table lock protects only against inappropriate reads or writes by other clients. The client holding the lock, even a read lock, can per-
form table-level operations such as DROP TABLE. Truncate operations are not transaction-safe, so an error occurs if the client attempts
one during an active transaction or while holding a table lock.

When you use LOCK TABLES, you must lock all tables that you are going to use in your statements. While the locks obtained with a
LOCK TABLES statement are in effect, you cannot access any tables that were not locked by the statement. Because LOCK TABLES
will not lock views, if the operation that you are performing uses any views, you must also lock all base tables on which those views de-
pend.

You cannot refer to a locked table multiple times in a single query using the same name. Use aliases instead, and obtain a separate lock
for the table and each alias:

mysql> LOCK TABLE t WRITE, t AS t1 READ;
mysql> INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> INSERT INTO t SELECT * FROM t AS t1;

The error occurs for the first INSERT because there are two references to the same name for a locked table. The second INSERT suc-
ceeds because the references to the table use different names.

SQL Statement Syntax

863



If your statements refer to a table by means of an alias, you must lock the table using that same alias. It does not work to lock the table
without specifying the alias:

mysql> LOCK TABLE t READ;
mysql> SELECT * FROM t AS myalias;
ERROR 1100: Table 'myalias' was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your statements using that alias:

mysql> LOCK TABLE t AS myalias READ;
mysql> SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> SELECT * FROM t AS myalias;

If a thread obtains a READ lock on a table, that thread (and all other threads) can only read from the table. If a thread obtains a WRITE
lock on a table, only the thread holding the lock can write to the table. Other threads are blocked from reading or writing the table until
the lock has been released.

The difference between READ and READ LOCAL is that READ LOCAL allows non-conflicting INSERT statements (concurrent inserts)
to execute while the lock is held. However, READ LOCAL cannot be used if you are going to manipulate the database using processes
external to the server while you hold the lock. For InnoDB tables, READ LOCAL is the same as READ.

WRITE locks normally have higher priority than READ locks to ensure that updates are processed as soon as possible. This means that if
one thread obtains a READ lock and then another thread requests a WRITE lock, subsequent READ lock requests wait until the thread
that requested the WRITE lock has obtained the lock and released it. A request for a LOW_PRIORITY WRITE lock, by contrast, allows
subsequent READ lock requests by other threads to be satisfied first if they occur while the the LOW_PRIORITY WRITE request is
waiting. You should use LOW_PRIORITY WRITE locks only if you are sure that eventually there will be a time when no threads have
a READ lock. For InnoDB tables in transactional mode (autocommit = 0), a waiting LOW_PRIORITY WRITE lock acts like a regular
WRITE lock and causes subsequent READ lock requests to wait.)

LOCK TABLES works as follows:

1. Sort all tables to be locked in an internally defined order. From the user standpoint, this order is undefined.

2. If a table is to be locked with a read and a write lock, put the write lock request before the read lock request.

3. Lock one table at a time until the thread gets all locks.

This policy ensures that table locking is deadlock free. There are, however, other things you need to be aware of about this policy: If
you are using a LOW_PRIORITY WRITE lock for a table, it means only that MySQL waits for this particular lock until there are no
threads that want a READ lock. When the thread has gotten the WRITE lock and is waiting to get the lock for the next table in the lock
table list, all other threads wait for the WRITE lock to be released. If this becomes a serious problem with your application, you should
consider converting some of your tables to transaction-safe tables.

LOCK TABLES and UNLOCK TABLES interact with the use of transactional tables as follows:

• LOCK TABLES is not transaction-safe and implicitly commits any active transaction before attempting to lock the tables. Also, be-
ginning a transaction (for example, with START TRANSACTION) implicitly performs an UNLOCK TABLES. (See Section 12.4.3,
“Statements That Cause an Implicit Commit”.)

• UNLOCK TABLES implicitly commits any active transaction, but only if any tables have been locked with LOCK TABLES.

• The correct way to use LOCK TABLES and UNLOCK TABLES with transactional tables, such as InnoDB tables, is to set AUTO-
COMMIT = 0 and not to call UNLOCK TABLES until you commit the transaction explicitly. When you call LOCK TABLES, In-
noDB internally takes its own table lock, and MySQL takes its own table lock. InnoDB releases its internal table lock at the next
commit, but for MySQL to release its table lock, you have to call UNLOCK TABLES. You should not have AUTOCOMMIT = 1,
because then InnoDB releases its internal table lock immediately after the call of LOCK TABLES, and deadlocks can very easily
happen. Note that we do not acquire the InnoDB internal table lock at all if AUTOCOMMIT=1, to help old applications avoid unne-
cessary deadlocks.

• ROLLBACK does not release MySQL's non-transactional table locks.

• FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not subject to the same behavior as

SQL Statement Syntax

864



LOCK TABLES and UNLOCK TABLES with respect to table locking and implicit commits. See Section 12.5.5.2, “FLUSH Syntax”.

You can safely use KILL to terminate a thread that is waiting for a table lock. See Section 12.5.5.3, “KILL Syntax”.

You should not lock any tables that you are using with INSERT DELAYED because in that case the INSERT is performed by a separ-
ate thread.

For some operations, system tables in the mysql database must be accessed. For example, the HELP statement requires the contents of
the server-side help tables, and CONVERT_TZ() might need to read the time zone tables. Before MySQL 5.1.17, to perform such oper-
ations while a LOCK TABLES statement is in effect, you must also lock the requisite system tables explicitly or a lock error occurs. As
of 5.1.17, the server implicitly locks the system tables for reading as necessary so that you need not lock them explicitly. These tables
are treated as just described:

mysql.help_category
mysql.help_keyword
mysql.help_relation
mysql.help_topic
mysql.proc
mysql.time_zone
mysql.time_zone_leap_second
mysql.time_zone_name
mysql.time_zone_transition
mysql.time_zone_transition_type

If you want to explicitly place a WRITE lock on any of those tables with a LOCK TABLES statement, the table must be the only one
locked; no other table can be locked with the same statement.

Normally, you do not need to lock tables, because all single UPDATE statements are atomic; no other thread can interfere with any other
currently executing SQL statement. However, there are a few cases when locking tables may provide an advantage:

• If you are going to run many operations on a set of MyISAM tables, it is much faster to lock the tables you are going to use. Locking
MyISAM tables speeds up inserting, updating, or deleting on them because MySQL does not flush the key cache for the locked
tables until UNLOCK TABLES is called. Normally, the key cache is flushed after each SQL statement.

The downside to locking the tables is that no thread can update a READ-locked table (including the one holding the lock) and no
thread can access a WRITE-locked table other than the one holding the lock.

• If you are using tables for a non-transactional storage engine, you must use LOCK TABLES if you want to ensure that no other
thread modifies the tables between a SELECT and an UPDATE. The example shown here requires LOCK TABLES to execute
safely:

LOCK TABLES trans READ, customer WRITE;
SELECT SUM(value) FROM trans WHERE customer_id=some_id;
UPDATE customer
SET total_value=sum_from_previous_statement
WHERE customer_id=some_id;

UNLOCK TABLES;

Without LOCK TABLES, it is possible that another thread might insert a new row in the trans table between execution of the SE-
LECT and UPDATE statements.

You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE customer SET
value=value+new_value) or the LAST_INSERT_ID() function. See Section 1.8.5.2, “Transactions and Atomic Operations”.

You can also avoid locking tables in some cases by using the user-level advisory lock functions GET_LOCK() and RE-
LEASE_LOCK(). These locks are saved in a hash table in the server and implemented with pthread_mutex_lock() and
pthread_mutex_unlock() for high speed. See Section 11.11.4, “Miscellaneous Functions”.

See Section 7.3.1, “Internal Locking Methods”, for more information on locking policy.

12.4.6. SET TRANSACTION Syntax
SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL
{

READ UNCOMMITTED
| READ COMMITTED
| REPEATABLE READ

SQL Statement Syntax

865



| SERIALIZABLE
}

This statement sets the transaction isolation level for the next transaction, globally, or for the current session.

The default behavior of SET TRANSACTION is to set the isolation level for the next (not yet started) transaction. If you use the GLOB-
AL keyword, the statement sets the default transaction level globally for all new connections created from that point on. Existing con-
nections are unaffected. You need the SUPER privilege to do this. Using the SESSION keyword sets the default transaction level for all
future transactions performed on the current connection.

For descriptions of each InnoDB transaction isolation level, see Section 13.5.10.3, “InnoDB and TRANSACTION ISOLATION
LEVEL”. InnoDB supports each of these levels in MySQL 5.1. The default level is REPEATABLE READ.

In MySQL 5.1, if the READ COMMITTED isolation level is used or the innodb_locks_unsafe_for_binlog system variable is
enabled, there is no InnoDB gap locking except in constraint checking. Also, record locks for non-matching rows are released after
MySQL has evaluated the WHERE condition.

To set the initial default global isolation level for mysqld, use the --transaction-isolation option. See Section 5.1.2,
“Command Options”.

A detailed list of the types supported by MySQL and the various storage engines follows:

• READ UNCOMMITTED

SELECT statements are performed in a non-locking fashion, but a possible earlier version of a record might be used. Thus, using
this isolation level, such reads are not consistent. This is also called a “dirty read.” Otherwise, this isolation level works like READ
COMMITTED.

• READ COMMITTED

A somewhat Oracle-like isolation level. All SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE state-
ments lock only the index records, not the gaps before them, and thus allow the free insertion of new records next to locked records.
UPDATE and DELETE statements using a unique index with a unique search condition lock only the index record found, not the gap
before it. In range-type UPDATE and DELETE statements, InnoDB must set next-key or gap locks and block insertions by other
users to the gaps covered by the range. This is necessary because “phantom rows” must be blocked for MySQL replication and re-
covery to work.

Consistent reads behave as in Oracle: Each consistent read, even within the same transaction, sets and reads its own fresh snapshot.
See Section 13.5.10.4, “Consistent Non-Locking Read”.

Note

As of MySQL 5.1, if you use READ COMMITTED (which is equivalent to innodb_locks_unsafe_for_binlog in
5.0), you must use row-based binary logging.

• REPEATABLE READ

This is the default isolation level of InnoDB. SELECT ... FOR UPDATE, SELECT ... LOCK IN SHARE MODE,
UPDATE, and DELETE statements that use a unique index with a unique search condition lock only the index record found, not the
gap before it. With other search conditions, these operations employ next-key locking, locking the index range scanned with next-
key or gap locks, and block new insertions by other users.

In consistent reads, there is an important difference from the READ COMMITTED isolation level: All consistent reads within the
same transaction read the same snapshot established by the first read. This convention means that if you issue several plain SELECT
statements within the same transaction, these SELECT statements are consistent also with respect to each other. See Sec-
tion 13.5.10.4, “Consistent Non-Locking Read”.

• SERIALIZABLE

This level is like REPEATABLE READ, but InnoDB implicitly converts all plain SELECT statements to SELECT ... LOCK
IN SHARE MODE.

12.4.7. XA Transactions

SQL Statement Syntax

866



Support for XA transactions is available for the InnoDB storage engine. The MySQL XA implementation is based on the X/Open CAE
document Distributed Transaction Processing: The XA Specification. This document is published by The Open Group and available at
http://www.opengroup.org/public/pubs/catalog/c193.htm. Limitations of the current XA implementation are described in Section D.5,
“Restrictions on XA Transactions”.

On the client side, there are no special requirements. The XA interface to a MySQL server consists of SQL statements that begin with
the XA keyword. MySQL client programs must be able to send SQL statements and to understand the semantics of the XA statement in-
terface. They do not need be linked against a recent client library. Older client libraries also will work.

Currently, among the MySQL Connectors, MySQL Connector/J 5.0.0 supports XA directly (by means of a class interface that handles
the XA SQL statement interface for you).

XA supports distributed transactions; that is, the ability to allow multiple separate transactional resources to participate in a global trans-
action. Transactional resources often are RDBMSs but may be other kinds of resources.

A global transaction involves several actions that are transactional in themselves, but that all must either complete successfully as a
group, or all be rolled back as a group. In essence, this extends ACID properties “up a level” so that multiple ACID transactions can be
executed in concert as components of a global operation that also has ACID properties. (However, for a distributed transaction, you
must use the SERIALIZABLE isolation level to achieve ACID properties. It is enough to use REPEATABLE READ for a non-
distributed transaction, but not for a distributed transaction.)

Some examples of distributed transactions:

• An application may act as an integration tool that combines a messaging service with an RDBMS. The application makes sure that
transactions dealing with message sending, retrieval, and processing that also involve a transactional database all happen in a global
transaction. You can think of this as “transactional email.”

• An application performs actions that involve different database servers, such as a MySQL server and an Oracle server (or multiple
MySQL servers), where actions that involve multiple servers must happen as part of a global transaction, rather than as separate
transactions local to each server.

• A bank keeps account information in an RDBMS and distributes and receives money via automated teller machines (ATMs). It is
necessary to ensure that ATM actions are correctly reflected in the accounts, but this cannot be done with the RDBMS alone. A
global transaction manager integrates the ATM and database resources to ensure overall consistency of financial transactions.

Applications that use global transactions involve one or more Resource Managers and a Transaction Manager:

• A Resource Manager (RM) provides access to transactional resources. A database server is one kind of resource manager. It must be
possible to either commit or roll back transactions managed by the RM.

• A Transaction Manager (TM) coordinates the transactions that are part of a global transaction. It communicates with the RMs that
handle each of these transactions. The individual transactions within a global transaction are “branches” of the global transaction.
Global transactions and their branches are identified by a naming scheme described later.

The MySQL implementation of XA MySQL enables a MySQL server to act as a Resource Manager that handles XA transactions within
a global transaction. A client program that connects to the MySQL server acts as the Transaction Manager.

To carry out a global transaction, it is necessary to know which components are involved, and bring each component to a point when it
can be committed or rolled back. Depending on what each component reports about its ability to succeed, they must all commit or roll
back as an atomic group. That is, either all components must commit, or all components musts roll back. To manage a global transac-
tion, it is necessary to take into account that any component or the connecting network might fail.

The process for executing a global transaction uses two-phase commit (2PC). This takes place after the actions performed by the
branches of the global transaction have been executed.

1. In the first phase, all branches are prepared. That is, they are told by the TM to get ready to commit. Typically, this means each
RM that manages a branch records the actions for the branch in stable storage. The branches indicate whether they are able to do
this, and these results are used for the second phase.

2. In the second phase, the TM tells the RMs whether to commit or roll back. If all branches indicated when they were prepared that
they will be able to commit, all branches are told to commit. If any branch indicated when it was prepared that it will not be able to

SQL Statement Syntax

867

http://www.opengroup.org/public/pubs/catalog/c193.htm


commit, all branches are told to roll back.

In some cases, a global transaction might use one-phase commit (1PC). For example, when a Transaction Manager finds that a global
transaction consists of only one transactional resource (that is, a single branch), that resource can be told to prepare and commit at the
same time.

12.4.7.1. XA Transaction SQL Syntax

To perform XA transactions in MySQL, use the following statements:

XA {START|BEGIN} xid [JOIN|RESUME]

XA END xid [SUSPEND [FOR MIGRATE]]

XA PREPARE xid

XA COMMIT xid [ONE PHASE]

XA ROLLBACK xid

XA RECOVER

For XA START, the JOIN and RESUME clauses are not supported.

For XA END the SUSPEND [FOR MIGRATE] clause is not supported.

Each XA statement begins with the XA keyword, and most of them require an xid value. An xid is an XA transaction identifier. It in-
dicates which transaction the statement applies to. xid values are supplied by the client, or generated by the MySQL server. An xid
value has from one to three parts:

xid: gtrid [, bqual [, formatID ]]

gtrid is a global transaction identifier, bqual is a branch qualifier, and formatID is a number that identifies the format used by the
gtrid and bqual values. As indicated by the syntax, bqual and formatID are optional. The default bqual value is '' if not giv-
en. The default formatID value is 1 if not given.

gtrid and bqual must be string literals, each up to 64 bytes (not characters) long. gtrid and bqual can be specified in several
ways. You can use a quoted string ('ab'), hex string (0x6162, X'ab'), or bit value (b'nnnn').

formatID is an unsigned integer.

The gtrid and bqual values are interpreted in bytes by the MySQL server's underlying XA support routines. However, while an
SQL statement containing an XA statement is being parsed, the server works with some specific character set. To be safe, write gtrid
and bqual as hex strings.

xid values typically are generated by the Transaction Manager. Values generated by one TM must be different from values generated
by other TMs. A given TM must be able to recognize its own xid values in a list of values returned by the XA RECOVER statement.

MySQL Enterprise
For expert advice on XA Distributed Transaction Support subscribe to the MySQL Enterprise Monitor. For more
information, see http://www.mysql.com/products/enterprise/advisors.html.

XA START xid starts an XA transaction with the given xid value. Each XA transaction must have a unique xid value, so the value
must not currently be used by another XA transaction. Uniqueness is assessed using the gtrid and bqual values. All following XA
statements for the XA transaction must be specified using the same xid value as that given in the XA START statement. If you use any
of those statements but specify an xid value that does not correspond to some existing XA transaction, an error occurs.

One or more XA transactions can be part of the same global transaction. All XA transactions within a given global transaction must use
the same gtrid value in the xid value. For this reason, gtrid values must be globally unique so that there is no ambiguity about
which global transaction a given XA transaction is part of. The bqual part of the xid value must be different for each XA transaction
within a global transaction. (The requirement that bqual values be different is a limitation of the current MySQL XA implementation.
It is not part of the XA specification.)

The XA RECOVER statement returns information for those XA transactions on the MySQL server that are in the PREPARED state. (See
Section 12.4.7.2, “XA Transaction States”.) The output includes a row for each such XA transaction on the server, regardless of which
client started it.

SQL Statement Syntax

868

http://www.mysql.com/products/enterprise/advisors.html


XA RECOVER output rows look like this (for an example xid value consisting of the parts 'abc', 'def', and 7):

mysql> XA RECOVER;
+----------+--------------+--------------+--------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+--------+
| 7 | 3 | 3 | abcdef |
+----------+--------------+--------------+--------+

The output columns have the following meanings:

• formatID is the formatID part of the transaction xid

• gtrid_length is the length in bytes of the gtrid part of the xid

• bqual_length is the length in bytes of the bqual part of the xid

• data is the concatenation of the gtrid and bqual parts of the xid

12.4.7.2. XA Transaction States

An XA transaction progresses through the following states:

1. Use XA START to start an XA transaction and put it in the ACTIVE state.

2. For an ACTIVE XA transaction, issue the SQL statements that make up the transaction, and then issue an XA END statement. XA
END puts the transaction in the IDLE state.

3. For an IDLE XA transaction, you can issue either an XA PREPARE statement or an XA COMMIT ... ONE PHASE statement:

• XA PREPARE puts the transaction in the PREPARED state. An XA RECOVER statement at this point will include the transac-
tion's xid value in its output, because XA RECOVER lists all XA transactions that are in the PREPARED state.

• XA COMMIT ... ONE PHASE prepares and commits the transaction. The xid value will not be listed by XA RECOVER
because the transaction terminates.

4. For a PREPARED XA transaction, you can issue an XA COMMIT statement to commit and terminate the transaction, or XA
ROLLBACK to roll back and terminate the transaction.

Here is a simple XA transaction that inserts a row into a table as part of a global transaction:

mysql> XA START 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO mytable (i) VALUES(10);
Query OK, 1 row affected (0.04 sec)

mysql> XA END 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA PREPARE 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA COMMIT 'xatest';
Query OK, 0 rows affected (0.00 sec)

Within the context of a given client connection, XA transactions and local (non-XA) transactions are mutually exclusive. For example,
if XA START has been issued to begin an XA transaction, a local transaction cannot be started until the XA transaction has been com-
mitted or rolled back. Conversely, if a local transaction has been started with START TRANSACTION, no XA statements can be used
until the transaction has been committed or rolled back.

Note that if an XA transaction is in the ACTIVE state, you cannot issue any statements that cause an implicit commit. That would viol-
ate the XA contract because you could not roll back the XA transaction. You will receive the following error if you try to execute such a
statement:

ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed
when global transaction is in the ACTIVE state

SQL Statement Syntax

869



Statements to which the preceding remark applies are listed at Section 12.4.3, “Statements That Cause an Implicit Commit”.

12.5. Database Administration Statements

12.5.1. Account Management Statements
MySQL account information is stored in the tables of the mysql database. This database and the access control system are discussed
extensively in Chapter 5, MySQL Server Administration, which you should consult for additional details.

Important

Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or features. Whenev-
er you update to a new version of MySQL, you should update your grant tables to make sure that they have the current
structure so that you can take advantage of any new capabilities. See Section 4.4.8, “mysql_upgrade — Check Tables
for MySQL Upgrade”.

MySQL Enterprise
In a production environment it is always prudent to examine any changes to users' accounts. The MySQL En-
terprise Monitor provides notification whenever users' privileges are altered. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

12.5.1.1. CREATE USER Syntax
CREATE USER user [IDENTIFIED BY [PASSWORD] 'password']

[, user [IDENTIFIED BY [PASSWORD] 'password']] ...

The CREATE USER statement creates new MySQL accounts. To use it, you must have the global CREATE USER privilege or the IN-
SERT privilege for the mysql database. For each account, CREATE USER creates a new row in the mysql.user table that has no
privileges. An error occurs if the account already exists. Each account is named using the same format as for the GRANT statement; for
example, 'jeffrey'@'localhost'. If you specify only the username part of the account name, a hostname part of '%' is used.
For additional information about specifying account names, see Section 12.5.1.3, “GRANT Syntax”.

The account can be given a password with the optional IDENTIFIED BY clause. The user value and the password are given the
same way as for the GRANT statement. In particular, to specify the password in plain text, omit the PASSWORD keyword. To specify the
password as the hashed value as returned by the PASSWORD() function, include the PASSWORD keyword. See Section 12.5.1.3,
“GRANT Syntax”.

Important

This statement may be recorded in a history file such as ~/.mysql_history, which means that plaintext passwords
may be read by anyone having read access to such files.

12.5.1.2. DROP USER Syntax
DROP USER user [, user] ...

The DROP USER statement removes one or more MySQL accounts. It removes privilege rows for the account from all grant tables. To
use this statement, you must have the global CREATE USER privilege or the DELETE privilege for the mysql database. Each account
is named using the same format as for the GRANT statement; for example, 'jeffrey'@'localhost'. If you specify only the user-
name part of the account name, a hostname part of '%' is used. For additional information about specifying account names, see Sec-
tion 12.5.1.3, “GRANT Syntax”.

With DROP USER, you can remove an account and its privileges as follows:

DROP USER user;

Important

DROP USER does not automatically close any open user sessions. Rather, in the event that a user with an open session is
dropped, the statement does not take effect until that user's session is closed. Once the session is closed, the user is

SQL Statement Syntax

870

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


dropped, and that user's next attempt to log in will fail. This is by design.

DROP USER does not automatically delete or invalidate any database objects that the user created. This applies to tables, views, stored
routines, triggers, and events.

12.5.1.3. GRANT Syntax
GRANT

priv_type [(column_list)]
[, priv_type [(column_list)]] ...

ON [object_type]
{

*
| *.*
| db_name.*
| db_name.tbl_name
| tbl_name
| db_name.routine_name

}
TO user [IDENTIFIED BY [PASSWORD] 'password']

[, user [IDENTIFIED BY [PASSWORD] 'password']] ...
[REQUIRE

NONE |
[{SSL| X509}]
[CIPHER 'cipher' [AND]]
[ISSUER 'issuer' [AND]]
[SUBJECT 'subject']]

[WITH with_option [with_option] ...]

object_type =
TABLE

| FUNCTION
| PROCEDURE

with_option =
GRANT OPTION

| MAX_QUERIES_PER_HOUR count
| MAX_UPDATES_PER_HOUR count
| MAX_CONNECTIONS_PER_HOUR count
| MAX_USER_CONNECTIONS count

The GRANT statement enables system administrators to create MySQL user accounts and to grant rights to accounts. To use GRANT,
you must have the GRANT OPTION privilege, and you must have the privileges that you are granting. The REVOKE statement is re-
lated and enables administrators to remove account privileges. See Section 12.5.1.5, “REVOKE Syntax”.

MySQL Enterprise
For automated notification of users with inappropriate privileges, subscribe to the MySQL Enterprise Monitor.
For more information see http://www.mysql.com/products/enterprise/advisors.html.

MySQL account information is stored in the tables of the mysql database. This database and the access control system are discussed
extensively in Chapter 5, MySQL Server Administration, which you should consult for additional details.

Important

Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or features. Whenev-
er you update to a new version of MySQL, you should update your grant tables to make sure that they have the current
structure so that you can take advantage of any new capabilities. See Section 4.4.8, “mysql_upgrade — Check Tables
for MySQL Upgrade”.

If the grant tables hold privilege rows that contain mixed-case database or table names and the lower_case_table_names system
variable is set to a non-zero value, REVOKE cannot be used to revoke these privileges. It will be necessary to manipulate the grant tables
directly. (GRANT will not create such rows when lower_case_table_names is set, but such rows might have been created prior to
setting the variable.)

Privileges can be granted at several levels. The examples shown here include no IDENTIFIED BY 'password' clause for brevity,
but you should include one if the account does not already exist to avoid creating an account with no password.

• Global level

Global privileges apply to all databases on a given server. These privileges are stored in the mysql.user table. GRANT ALL ON
*.* and REVOKE ALL ON *.* grant and revoke only global privileges.

GRANT ALL ON *.* TO 'someuser'@'somehost';

SQL Statement Syntax

871

http://www.mysql.com/products/enterprise/advisors.html


GRANT SELECT, INSERT ON *.* TO 'someuser'@'somehost';

• Database level

Database privileges apply to all objects in a given database. These privileges are stored in the mysql.db and mysql.host tables.
GRANT ALL ON db_name.* and REVOKE ALL ON db_name.* grant and revoke only database privileges.

GRANT ALL ON mydb.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.* TO 'someuser'@'somehost';

• Table level

Table privileges apply to all columns in a given table. These privileges are stored in the mysql.tables_priv table. GRANT
ALL ON db_name.tbl_name and REVOKE ALL ON db_name.tbl_name grant and revoke only table privileges.

GRANT ALL ON mydb.mytbl TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.mytbl TO 'someuser'@'somehost';

If you specify tbl_name rather than db_name.tbl_name, the statement applies to tbl_name in the default database.

• Column level

Column privileges apply to single columns in a given table. These privileges are stored in the mysql.columns_priv table.
When using REVOKE, you must specify the same columns that were granted. The column or columns for which the privileges are to
be granted must be enclosed within parentheses.

GRANT SELECT (col1), INSERT (col1,col2) ON mydb.mytbl TO 'someuser'@'somehost';

• Routine level

The CREATE ROUTINE, ALTER ROUTINE, EXECUTE, and GRANT privileges apply to stored routines (functions and proced-
ures). They can be granted at the global and database levels. Also, except for CREATE ROUTINE, these privileges can be granted at
the routine level for individual routines and are stored in the mysql.procs_priv table.

GRANT CREATE ROUTINE ON mydb.* TO 'someuser'@'somehost';
GRANT EXECUTE ON PROCEDURE mydb.myproc TO 'someuser'@'somehost';

The object_type clause should be specified as TABLE, FUNCTION, or PROCEDURE when the following object is a table, a stored
function, or a stored procedure.

Warning

If you specify ON * and you have not selected a default database, the privileges granted are global.

For the GRANT and REVOKE statements, priv_type can be specified as any of the following:

Privilege Meaning

ALL [PRIVILEGES] Grants all privileges at specified access level except GRANT OPTION

ALTER Enables use of ALTER TABLE

ALTER ROUTINE Enables stored routines to be altered or dropped

CREATE Enables use of CREATE TABLE

CREATE ROUTINE Enables creation of stored routines

CREATE TEMPORARY TABLES Enables use of CREATE TEMPORARY TABLE

CREATE USER Enables use of CREATE USER, DROP USER, RENAME USER, and REVOKE ALL PRIV-
ILEGES.

CREATE VIEW Enables use of CREATE VIEW

DELETE Enables use of DELETE

DROP Enables use of DROP TABLE

SQL Statement Syntax

872



EVENT Enables creation of events for the event scheduler

EXECUTE Enables the user to run stored routines

FILE Enables use of SELECT ... INTO OUTFILE and LOAD DATA INFILE

INDEX Enables use of CREATE INDEX and DROP INDEX

INSERT Enables use of INSERT

LOCK TABLES Enables use of LOCK TABLES on tables for which you have the SELECT privilege

PROCESS Enables the user to see all processes with SHOW PROCESSLIST

REFERENCES Not implemented

RELOAD Enables use of FLUSH

REPLICATION CLIENT Enables the user to ask where slave or master servers are

REPLICATION SLAVE Needed for replication slaves (to read binary log events from the master)

SELECT Enables use of SELECT

SHOW DATABASES SHOW DATABASES shows all databases

SHOW VIEW Enables use of SHOW CREATE VIEW

SHUTDOWN Enables use of mysqladmin shutdown

SUPER Enables use of CHANGE MASTER, KILL, PURGE MASTER LOGS, and SET GLOBAL
statements, the mysqladmin debug command; allows you to connect (once) even if
max_connections is reached

TRIGGER Enables the user to create or drop triggers

UPDATE Enables use of UPDATE

USAGE Synonym for “no privileges”

GRANT OPTION Enables privileges to be granted

The EVENT and TRIGGER privileges were added in MySQL 5.1.6. A trigger is associated with a table, so to create or drop a trigger,
you must have the TRIGGER privilege for the table, not the trigger. (Before MySQL 5.1.6, the SUPER privilege was required to create
or drop triggers.)

The REFERENCES privilege currently is unused.

USAGE can be specified when you want to create a user that has no privileges.

Use SHOW GRANTS to determine what privileges an account has. See Section 12.5.4.17, “SHOW GRANTS Syntax”.

You can assign global privileges by using ON *.* syntax or database-level privileges by using ON db_name.* syntax. If you spe-
cify ON * and you have selected a default database, the privileges are granted in that database.

The FILE, PROCESS, RELOAD, REPLICATION CLIENT, REPLICATION SLAVE, SHOW DATABASES, SHUTDOWN, SUPER, and
CREATE USER privileges are administrative privileges that can only be granted globally (using ON *.* syntax).

Other privileges can be granted globally or at more specific levels.

The priv_type values that you can specify for a table are SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, GRANT OP-
TION, INDEX, ALTER, CREATE VIEW, SHOW VIEW and TRIGGER.

The priv_type values that you can specify for a column (that is, when you use a column_list clause) are SELECT, INSERT, and
UPDATE.

The priv_type values that you can specify at the routine level are ALTER ROUTINE, EXECUTE, and GRANT OPTION. CREATE
ROUTINE is not a routine-level privilege because you must have this privilege to create a routine in the first place.

For the global, database, table, and routine levels, GRANT ALL assigns only the privileges that exist at the level you are granting. For
example, GRANT ALL ON db_name.* is a database-level statement, so it does not grant any global-only privileges such as FILE.

MySQL allows you to grant privileges even on database objects that do not exist. In such cases, the privileges to be granted must in-
clude the CREATE privilege. This behavior is by design, and is intended to enable the database administrator to prepare user accounts

SQL Statement Syntax

873



and privileges for database objects that are to be created at a later time.

Important

MySQL does not automatically revoke any privileges when you drop a table or database. However, if you drop a routine,
any routine-level privileges granted for that routine are revoked.

Note

The “_” and “%” wildcards are allowed when specifying database names in GRANT statements that grant privileges at the
global or database levels. This means, for example, that if you want to use a “_” character as part of a database name, you
should specify it as “\_” in the GRANT statement, to prevent the user from being able to access additional databases
matching the wildcard pattern; for example, GRANT ... ON `foo\_bar`.* TO ....

To accommodate granting rights to users from arbitrary hosts, MySQL supports specifying the user value in the form
user_name@host_name. If a user_name or host_name value is legal as an unquoted identifier, you need not quote it.
However, quotes are necessary to specify a user_name string containing special characters (such as “-”), or a host_name string
containing special characters or wildcard characters (such as “%”); for example, 'test-user'@'test-hostname'. Quote the
username and hostname separately.

You can specify wildcards in the hostname. For example, user_name@'%.loc.gov' applies to user_name for any host in the
loc.gov domain, and user_name@'144.155.166.%' applies to user_name for any host in the 144.155.166 class C sub-
net.

The simple form user_name is a synonym for user_name@'%'.

MySQL does not support wildcards in usernames. Anonymous users are defined by inserting entries with User='' into the
mysql.user table or by creating a user with an empty name with the GRANT statement:

GRANT ALL ON test.* TO ''@'localhost' ...

When specifying quoted values, quote database, table, column, and routine names as identifiers, using backticks (“`”). Quote host-
names, usernames, and passwords as strings, using single quotes (“'”).

Warning

If you allow anonymous users to connect to the MySQL server, you should also grant privileges to all local users as
user_name@localhost. Otherwise, the anonymous user account for localhost in the mysql.user table
(created during MySQL installation) is used when named users try to log in to the MySQL server from the local machine.
For details, see Section 5.4.5, “Access Control, Stage 1: Connection Verification”.

You can determine whether this applies to you by executing the following query, which lists any anonymous users:

SELECT Host, User FROM mysql.user WHERE User='';

If you want to delete the local anonymous user account to avoid the problem just described, use these statements:

DELETE FROM mysql.user WHERE Host='localhost' AND User='';
FLUSH PRIVILEGES;

GRANT supports hostnames up to 60 characters long. Database, table, column, and routine names can be up to 64 characters. Usernames
can be up to 16 characters.

Note

The allowable length for usernames cannot be changed by altering the mysql.user table, and attempting to do so res-
ults in unpredictable behavior which may even make it impossible for users to log in to the MySQL server. You should
never alter any of the tables in the mysql database in any manner whatsoever except by means of the procedure pre-
scribed by MySQL AB that is described in Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

The privileges for a table, column, or routine are formed additively as the logical OR of the privileges at each of the privilege levels. For
example, if the mysql.user table specifies that a user has a global SELECT privilege, the privilege cannot be denied by an entry at
the database, table, or column level.

The privileges for a column can be calculated as follows:

SQL Statement Syntax

874



global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges
OR routine privileges

In most cases, you grant rights to a user at only one of the privilege levels, so life is not normally this complicated. The details of the
privilege-checking procedure are presented in Section 5.4, “The MySQL Access Privilege System”.

If you grant privileges for a username/hostname combination that does not exist in the mysql.user table, an entry is added and re-
mains there until deleted with a DELETE statement. In other words, GRANT may create user table entries, but REVOKE does not re-
move them; you must do that explicitly using DROP USER or DELETE.

Warning

If you create a new user but do not specify an IDENTIFIED BY clause, the user has no password. This is very insecure.
However, you can enable the NO_AUTO_CREATE_USER SQL mode to prevent GRANT from creating a new user if it
would otherwise do so, unless IDENTIFIED BY is given to provide the new user a non-empty password.

MySQL Enterprise
The MySQL Enterprise Monitor specifically guards against user accounts with no passwords. To find out more
see http://www.mysql.com/products/enterprise/advisors.html.

If a new user is created or if you have global grant privileges, the user's password is set to the password specified by the IDENTIFIED
BY clause, if one is given. If the user already had a password, this is replaced by the new one.

Passwords can also be set with the SET PASSWORD statement. See Section 12.5.1.6, “SET PASSWORD Syntax”.

In the IDENTIFIED BY clause, the password should be given as the literal password value. It is unnecessary to use the PASSWORD()
function as it is for the SET PASSWORD statement. For example:

GRANT ... IDENTIFIED BY 'mypass';

If you do not want to send the password in clear text and you know the hashed value that PASSWORD() would return for the password,
you can specify the hashed value preceded by the keyword PASSWORD:

GRANT ...
IDENTIFIED BY PASSWORD '*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4';

In a C program, you can get the hashed value by using the make_scrambled_password() C API function.

If you grant privileges for a database, an entry in the mysql.db table is created if needed. If all privileges for the database are removed
with REVOKE, this entry is deleted.

The SHOW DATABASES privilege enables the account to see database names by issuing the SHOW DATABASE statement. Accounts
that do not have this privilege see only databases for which they have some privileges, and cannot use the statement at all if the server
was started with the --skip-show-database option.

MySQL Enterprise
The SHOW DATABASES privilege should be granted only to users who need to see all the databases on a
MySQL server. Subscribers to the MySQL Enterprise Monitor are alerted when servers are started without the
--skip-show-database option. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

If a user has no privileges for a table, the table name is not displayed when the user requests a list of tables (for example, with a SHOW
TABLES statement).

The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges the user has at the specified privilege
level. You should be careful to whom you give the GRANT OPTION privilege, because two users with different privileges may be able
to join privileges!

You cannot grant another user a privilege which you yourself do not have; the GRANT OPTION privilege enables you to assign only
those privileges which you yourself possess.

Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege level, any privileges the user possesses (or

SQL Statement Syntax

875

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


may be given in the future) at that level can also be granted by that user to other users. Suppose that you grant a user the INSERT priv-
ilege on a database. If you then grant the SELECT privilege on the database and specify WITH GRANT OPTION, that user can give to
other users not only the SELECT privilege, but also INSERT. If you then grant the UPDATE privilege to the user on the database, the
user can grant INSERT, SELECT, and UPDATE.

For a non-administrative user, you should not grant the ALTER privilege globally or for the mysql database. If you do that, the user
can try to subvert the privilege system by renaming tables!

The MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count, and MAX_CONNECTIONS_PER_HOUR count
options limit the number of queries, updates, and logins a user can perform during any given one-hour period. (Queries for which results
are served from the query cache do not count against the MAX_QUERIES_PER_HOUR limit.) If count is 0 (the default), this means
that there is no limitation for that user.

The MAX_USER_CONNECTIONS count option limits the maximum number of simultaneous connections that the account can make.
If count is 0 (the default), the max_user_connections system variable determines the number of simultaneous connections for
the account.

Note: To specify any of these resource-limit options for an existing user without affecting existing privileges, use GRANT USAGE ON
*.* ... WITH MAX_....

See Section 5.5.4, “Limiting Account Resources”.

MySQL can check X509 certificate attributes in addition to the usual authentication that is based on the username and password. To
specify SSL-related options for a MySQL account, use the REQUIRE clause of the GRANT statement. (For background information on
the use of SSL with MySQL, see Section 5.5.7, “Using Secure Connections”.)

There are a number of different possibilities for limiting connection types for a given account:

• REQUIRE NONE indicates that the account has no SSL or X509 requirements. This is the default if no SSL-related REQUIRE op-
tions are specified. Unencrypted connections are allowed if the username and password are valid. However, encrypted connections
can also be used, at the client's option, if the client has the proper certificate and key files. That is, the client need not specify any
SSL command options, in which case the connection will be unencrypted. To use an encrypted connection, the client must specify
either the --ssl-ca option, or all three of the --ssl-ca, --ssl-key, and --ssl-cert options.

• The REQUIRE SSL option tells the server to allow only SSL-encrypted connections for the account.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret' REQUIRE SSL;

To connect, the client must specify the --ssl-ca option, and may additionally specify the --ssl-key and --ssl-cert op-
tions.

• REQUIRE X509 means that the client must have a valid certificate but that the exact certificate, issuer, and subject do not matter.
The only requirement is that it should be possible to verify its signature with one of the CA certificates.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret' REQUIRE X509;

To connect, the client must specify the --ssl-ca, --ssl-key, and --ssl-cert options. This is also true for ISSUER and
SUBJECT because those REQUIRE options imply X509.

• REQUIRE ISSUER 'issuer' places the restriction on connection attempts that the client must present a valid X509 certificate
issued by CA 'issuer'. If the client presents a certificate that is valid but has a different issuer, the server rejects the connection.
Use of X509 certificates always implies encryption, so the SSL option is unnecessary in this case.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE ISSUER '/C=FI/ST=Some-State/L=Helsinki/
O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com';

Note that the 'issuer' value should be entered as a single string.

• REQUIRE SUBJECT 'subject' places the restriction on connection attempts that the client must present a valid X509 certific-
ate containing the subject subject. If the client presents a certificate that is valid but has a different subject, the server rejects the
connection.

SQL Statement Syntax

876



GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/
O=MySQL demo client certificate/
CN=Tonu Samuel/Email=tonu@example.com';

Note that the 'subject' value should be entered as a single string.

• REQUIRE CIPHER 'cipher' is needed to ensure that ciphers and key lengths of sufficient strength are used. SSL itself can be
weak if old algorithms using short encryption keys are used. Using this option, you can ask that a specific cipher method is used to
allow a connection.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause like this:

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/
O=MySQL demo client certificate/
CN=Tonu Samuel/Email=tonu@example.com'

AND ISSUER '/C=FI/ST=Some-State/L=Helsinki/
O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com'

AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

The AND keyword is optional between REQUIRE options.

The order of the options does not matter, but no option can be specified twice.

When mysqld starts, all privileges are read into memory. For details, see Section 5.4.7, “When Privilege Changes Take Effect”.

Note that if you are using table, column, or routine privileges for even one user, the server examines table, column, and routine priv-
ileges for all users and this slows down MySQL a bit. Similarly, if you limit the number of queries, updates, or connections for any
users, the server must monitor these values.

The biggest differences between the standard SQL and MySQL versions of GRANT are:

• In MySQL, privileges are associated with the combination of a hostname and username and not with only a username.

• Standard SQL does not have global or database-level privileges, nor does it support all the privilege types that MySQL supports.

• MySQL does not support the standard SQL UNDER privilege.

• Standard SQL privileges are structured in a hierarchical manner. If you remove a user, all privileges the user has been granted are
revoked. This is also true in MySQL if you use DROP USER. See Section 12.5.1.2, “DROP USER Syntax”.

• In standard SQL, when you drop a table, all privileges for the table are revoked. In standard SQL, when you revoke a privilege, all
privileges that were granted based on that privilege are also revoked. In MySQL, privileges can be dropped only with explicit RE-
VOKE statements or by manipulating values stored in the MySQL grant tables.

• In MySQL, it is possible to have the INSERT privilege for only some of the columns in a table. In this case, you can still execute
INSERT statements on the table, provided that you omit those columns for which you do not have the INSERT privilege. The omit-
ted columns are set to their implicit default values if strict SQL mode is not enabled. In strict mode, the statement is rejected if any
of the omitted columns have no default value. (Standard SQL requires you to have the INSERT privilege on all columns.) Sec-
tion 5.1.6, “SQL Modes”, discusses strict mode. Section 10.1.4, “Data Type Default Values”, discusses implicit default values.

12.5.1.4. RENAME USER Syntax
RENAME USER old_user TO new_user

[, old_user TO new_user] ...

The RENAME USER statement renames existing MySQL accounts. To use it, you must have the global CREATE USER privilege or the

SQL Statement Syntax

877



UPDATE privilege for the mysql database. An error occurs if any old account does not exist or any new account exists. Each account is
named using the same format as for the GRANT statement; for example, 'jeffrey'@'localhost'. If you specify only the user-
name part of the account name, a hostname part of '%' is used. For additional information about specifying account names, see Sec-
tion 12.5.1.3, “GRANT Syntax”.

RENAME USER does not automatically migrate any database objects that the user created, nor does it migrate any privileges that the
user had prior to the renaming. This applies to tables, views, stored routines, triggers, and events.

12.5.1.5. REVOKE Syntax
REVOKE

priv_type [(column_list)]
[, priv_type [(column_list)]] ...

ON [object_type]
{

*
| *.*
| db_name.*
| db_name.tbl_name
| tbl_name
| db_name.routine_name

}
FROM user [, user] ...

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

The REVOKE statement enables system administrators to revoke privileges from MySQL accounts. Each account is named using the
same format as for the GRANT statement; for example, 'jeffrey'@'localhost'. If you specify only the username part of the ac-
count name, a hostname part of '%' is used. For additional information about specifying account names, see Section 12.5.1.3, “GRANT
Syntax”.

To use the first REVOKE syntax, you must have the GRANT OPTION privilege, and you must have the privileges that you are revoking.

For details on the levels at which privileges exist, the allowable priv_type values, and the syntax for specifying users and passwords,
see Section 12.5.1.3, “GRANT Syntax”

If the grant tables hold privilege rows that contain mixed-case database or table names and the lower_case_table_names system
variable is set to a non-zero value, REVOKE cannot be used to revoke these privileges. It will be necessary to manipulate the grant tables
directly. (GRANT will not create such rows when lower_case_table_names is set, but such rows might have been created prior to
setting the variable.)

To revoke all privileges, use the following syntax, which drops all global, database-, table-, column-, and routine-level privileges for the
named user or users:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

To use this REVOKE syntax, you must have the global CREATE USER privilege or the UPDATE privilege for the mysql database.

REVOKE removes privileges, but does not drop user table entries. You must do that explicitly using DELETE or DROP USER (see
Section 12.5.1.2, “DROP USER Syntax”).

12.5.1.6. SET PASSWORD Syntax
SET PASSWORD [FOR user] = PASSWORD('some password')

The SET PASSWORD statement assigns a password to an existing MySQL user account.

With no FOR clause, this statement sets the password for the current user. Any client that has connected to the server using a non-
anonymous account can change the password for that account.

With a FOR clause, this statement sets the password for a specific account on the current server host. Only clients that have the UPDATE
privilege for the mysql database can do this. The user value should be given in user_name@host_name format, where
user_name and host_name are exactly as they are listed in the User and Host columns of the mysql.user table entry. For ex-
ample, if you had an entry with User and Host column values of 'bob' and '%.loc.gov', you would write the statement like
this:

SET PASSWORD FOR 'bob'@'%.loc.gov' = PASSWORD('newpass');

SQL Statement Syntax

878



That is equivalent to the following statements:

UPDATE mysql.user SET Password=PASSWORD('newpass')
WHERE User='bob' AND Host='%.loc.gov';

FLUSH PRIVILEGES;

Note

If you are connecting to a MySQL 4.1 or later server using a pre-4.1 client program, do not use the preceding SET
PASSWORD or UPDATE statement without reading Section 5.4.9, “Password Hashing as of MySQL 4.1”, first. The pass-
word format changed in MySQL 4.1, and under certain circumstances it is possible that if you change your password, you
might not be able to connect to the server afterward.

You can see which account the server authenticated you as by executing SELECT CURRENT_USER().

MySQL Enterprise
For automated notification of users without passwords, subscribe to the MySQL Enterprise Monitor. For more
information see http://www.mysql.com/products/enterprise/advisors.html.

12.5.2. Table Maintenance Statements

12.5.2.1. ANALYZE TABLE Syntax
ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

ANALYZE TABLE analyzes and stores the key distribution for a table. During the analysis, the table is locked with a read lock for My-
ISAM. For InnoDB the table is locked with a write lock. This statement works with MyISAM, and InnoDB tables. For MyISAM tables,
this statement is equivalent to using myisamchk --analyze.

For more information on how the analysis works withinInnoDB, see Section 13.5.16, “Restrictions on InnoDB Tables”.

MySQL Enterprise
For expert advice on optimizing tables subscribe to the MySQL Enterprise Monitor. For more information see
http://www.mysql.com/products/enterprise/advisors.html.

MySQL uses the stored key distribution to decide the order in which tables should be joined when you perform a join on something oth-
er than a constant. In addition, key distributions can be used when deciding which indexes to use for a specific table within a query.

This statement requires SELECT and INSERT privileges for the table.

ANALYZE TABLE returns a result set with the following columns:

Column Value

Table The table name

Op Always analyze

Msg_type One of status, error, info, or warning

Msg_text The message

You can check the stored key distribution with the SHOW INDEX statement. See Section 12.5.4.18, “SHOW INDEX Syntax”.

If the table has not changed since the last ANALYZE TABLE statement, the table is not analyzed again.

By default, ANALYZE TABLE statements are written to the binary log so that such statements used on a MySQL server acting as a rep-
lication master will be replicated to replication slaves. Logging can be suppressed with the optional NO_WRITE_TO_BINLOG keyword
or its alias LOCAL.

12.5.2.2. BACKUP TABLE Syntax
BACKUP TABLE tbl_name [, tbl_name] ... TO '/path/to/backup/directory'

SQL Statement Syntax

879

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


Note

This statement is deprecated. We are working on a better replacement for it that will provide online backup capabilities. In
the meantime, the mysqlhotcopy script can be used instead.

BACKUP TABLE copies to the backup directory the minimum number of table files needed to restore the table, after flushing any buf-
fered changes to disk. The statement works only for MyISAM tables. It copies the .frm definition and .MYD data files. The .MYI in-
dex file can be rebuilt from those two files. The directory should be specified as a full pathname. To restore the table, use RESTORE
TABLE.

During the backup, a read lock is held for each table, one at time, as they are being backed up. If you want to back up several tables as a
snapshot (preventing any of them from being changed during the backup operation), issue a LOCK TABLES statement first, to obtain a
read lock for all tables in the group.

BACKUP TABLE returns a result set with the following columns:

Column Value

Table The table name

Op Always backup

Msg_type One of status, error, info, or warning

Msg_text The message

12.5.2.3. CHECK TABLE Syntax
CHECK TABLE tbl_name [, tbl_name] ... [option] ...

option = {FOR UPGRADE | QUICK | FAST | MEDIUM | EXTENDED | CHANGED}

CHECK TABLE checks a table or tables for errors. CHECK TABLE works for MyISAM, InnoDB, and ARCHIVE tables. Starting with
MySQL 5.1.9, CHECK is also valid for CSV tables, see Section 13.11, “The CSV Storage Engine”. For MyISAM tables, the key statistics
are updated as well.

CHECK TABLE can also check views for problems, such as tables that are referenced in the view definition that no longer exist.

CHECK TABLE returns a result set with the following columns:

Column Value

Table The table name

Op Always check

Msg_type One of status, error, info, or warning

Msg_text The message

Note that the statement might produce many rows of information for each checked table. The last row has a Msg_type value of
status and the Msg_text normally should be OK. If you don't get OK, or Table is already up to date you should nor-
mally run a repair of the table. See Section 6.4, “Table Maintenance and Crash Recovery”. Table is already up to date
means that the storage engine for the table indicated that there was no need to check the table.

The FOR UPGRADE option checks whether the named tables are compatible with the current version of MySQL. This option was ad-
ded in MySQL 5.1.7. With FOR UPGRADE, the server checks each table to determine whether there have been any incompatible
changes in any of the table's data types or indexes since the table was created. If not, the check succeeds. Otherwise, if there is a pos-
sible incompatibility, the server runs a full check on the table (which might take some time). If the full check succeeds, the server marks
the table's .frm file with the current MySQL version number. Marking the .frm file ensures that further checks for the table with the
same version of the server will be fast.

Incompatibilities might occur because the storage format for a data type has changed or because its sort order has changed. Our aim is to
avoid these changes, but occasionally they are necessary to correct problems that would be worse than an incompatibility between re-
leases.

Currently, FOR UPGRADE discovers these incompatibilities:

SQL Statement Syntax

880



• The indexing order for end-space in TEXT columns for InnoDB and MyISAM tables changed between MySQL 4.1 and 5.0.

• The storage method of the new DECIMAL data type changed between MySQL 5.0.3 and 5.0.5.

The other check options that can be given are shown in the following table. These options are passed to the storage engine, which may
use them or not. MyISAM uses them; they are ignored for InnoDB tables and views.

Type Meaning

QUICK Do not scan the rows to check for incorrect links.

FAST Check only tables that have not been closed properly.

CHANGED Check only tables that have been changed since the last check or that have not been closed properly.

MEDIUM Scan rows to verify that deleted links are valid. This also calculates a key checksum for the rows and verifies this
with a calculated checksum for the keys.

EXTENDED Do a full key lookup for all keys for each row. This ensures that the table is 100% consistent, but takes a long
time.

If none of the options QUICK, MEDIUM, or EXTENDED are specified, the default check type for dynamic-format MyISAM tables is ME-
DIUM. This has the same result as running myisamchk --medium-check tbl_name on the table. The default check type also is
MEDIUM for static-format MyISAM tables, unless CHANGED or FAST is specified. In that case, the default is QUICK. The row scan is
skipped for CHANGED and FAST because the rows are very seldom corrupted.

You can combine check options, as in the following example that does a quick check on the table to determine whether it was closed
properly:

CHECK TABLE test_table FAST QUICK;

Note

In some cases, CHECK TABLE changes the table. This happens if the table is marked as “corrupted” or “not closed prop-
erly” but CHECK TABLE does not find any problems in the table. In this case, CHECK TABLE marks the table as okay.

If a table is corrupted, it is most likely that the problem is in the indexes and not in the data part. All of the preceding check types check
the indexes thoroughly and should thus find most errors.

If you just want to check a table that you assume is okay, you should use no check options or the QUICK option. The latter should be
used when you are in a hurry and can take the very small risk that QUICK does not find an error in the data file. (In most cases, under
normal usage, MySQL should find any error in the data file. If this happens, the table is marked as “corrupted” and cannot be used until
it is repaired.)

FAST and CHANGED are mostly intended to be used from a script (for example, to be executed from cron) if you want to check tables
from time to time. In most cases, FAST is to be preferred over CHANGED. (The only case when it is not preferred is when you suspect
that you have found a bug in the MyISAM code.)

EXTENDED is to be used only after you have run a normal check but still get strange errors from a table when MySQL tries to update a
row or find a row by key. This is very unlikely if a normal check has succeeded.

Use of CHECK TABLE ... EXTENDED might influence the execution plan generated by the query optimizer.

Some problems reported by CHECK TABLE cannot be corrected automatically:

• Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column contains the value 0. (It is possible to cre-
ate a row where the AUTO_INCREMENT column is 0 by explicitly setting the column to 0 with an UPDATE statement.)

This is not an error in itself, but could cause trouble if you decide to dump the table and restore it or do an ALTER TABLE on the
table. In this case, the AUTO_INCREMENT column changes value according to the rules of AUTO_INCREMENT columns, which
could cause problems such as a duplicate-key error.

To get rid of the warning, simply execute an UPDATE statement to set the column to some value other than 0.

SQL Statement Syntax

881



• If CHECK TABLE finds a problem for an InnoDB table, the server shuts down to prevent error propagation. Details of the error
will be written to the error log.

12.5.2.4. CHECKSUM TABLE Syntax
CHECKSUM TABLE tbl_name [, tbl_name] ... [ QUICK | EXTENDED ]

CHECKSUM TABLE reports a table checksum.

With QUICK, the live table checksum is reported if it is available, or NULL otherwise. This is very fast. A live checksum is enabled by
specifying the CHECKSUM=1 table option when you create the table; currently, this is supported only for MyISAM tables. See Sec-
tion 12.1.10, “CREATE TABLE Syntax”.

With EXTENDED, the entire table is read row by row and the checksum is calculated. This can be very slow for large tables.

If neither QUICK nor EXTENDED is specified, MySQL returns a live checksum if the table storage engine supports it and scans the table
otherwise.

For a non-existent table, CHECKSUM TABLE returns NULL and generates a warning.

The checksum value depends on the table row format. If the row format changes, the checksum also changes. For example, the storage
format for VARCHAR changed between MySQL 4.1 and 5.0, so if a 4.1 table is upgraded to MySQL 5.0, the checksum value may
change.

12.5.2.5. OPTIMIZE TABLE Syntax
OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

OPTIMIZE TABLE should be used if you have deleted a large part of a table or if you have made many changes to a table with vari-
able-length rows (tables that have VARCHAR, VARBINARY, BLOB, or TEXT columns). Deleted rows are maintained in a linked list and
subsequent INSERT operations reuse old row positions. You can use OPTIMIZE TABLE to reclaim the unused space and to defrag-
ment the data file.

This statement requires SELECT and INSERT privileges for the table.

In most setups, you need not run OPTIMIZE TABLE at all. Even if you do a lot of updates to variable-length rows, it is not likely that
you need to do this more than once a week or month and only on certain tables.

OPTIMIZE TABLE works only for MyISAM, InnoDB, and ARCHIVE tables. It does not work for tables created using any other stor-
age engine, including NDB Disk Data tables.

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edition
only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade Edi-
tion”.

In MySQL 5.1.23-ndb-6.3.7 and later MySQL Cluster 5.1 Carrier Grade Edition 6.3.x releases, OPTIMIZE TABLE is supported for
dynamic columns of in-memory NDB tables. The performance of OPTIMIZE on Cluster tables can be tuned by adjusting the value of
the ndb_optimization_delay system variable, which controls the number of milliseconds to wait between processing batches of
rows by OPTIMIZE TABLE. See Section 17.15.11, “Previous MySQL Cluster Issues Resolved in MySQL 5.1”, for more information.

Beginning with MySQL 5.1.23-ndb-6.3.8, OPTIMIZE TABLE can be interrupted by (for example) killing the SQL thread performing
the OPTIMIZE operation.

The following information applies to all MySQL Cluster users.

For MyISAM tables, OPTIMIZE TABLE works as follows:

1. If the table has deleted or split rows, repair the table.

2. If the index pages are not sorted, sort them.

3. If the table's statistics are not up to date (and the repair could not be accomplished by sorting the index), update them.

SQL Statement Syntax

882



For InnoDB tables, OPTIMIZE TABLE is mapped to ALTER TABLE, which rebuilds the table to update index statistics and free un-
used space in the clustered index.

You can make OPTIMIZE TABLE work on other storage engines by starting mysqld with the --skip-new or --safe-mode op-
tion. In this case, OPTIMIZE TABLE is just mapped to ALTER TABLE.

OPTIMIZE TABLE returns a result set with the following columns:

Column Value

Table The table name

Op Always optimize

Msg_type One of status, error, info, or warning

Msg_text The message

Note that MySQL locks the table during the time OPTIMIZE TABLE is running.

By default, OPTIMIZE TABLE statements are written to the binary log so that such statements used on a MySQL server acting as a
replication master will be replicated to replication slaves. Logging can be suppressed with the optional NO_WRITE_TO_BINLOG
keyword or its alias LOCAL.

OPTIMIZE TABLE does not sort R-tree indexes, such as spatial indexes on POINT columns. (Bug#23578)

12.5.2.6. REPAIR TABLE Syntax
REPAIR [LOCAL | NO_WRITE_TO_BINLOG] TABLE

tbl_name [, tbl_name] ... [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE repairs a possibly corrupted table. By default, it has the same effect as myisamchk --recover tbl_name.
REPAIR TABLE works for MyISAM and for ARCHIVE tables. Starting with MySQL 5.1.9, REPAIR is also valid for CSV tables. See
Section 13.4, “The MyISAM Storage Engine”, and Section 13.10, “The ARCHIVE Storage Engine”, and Section 13.11, “The CSV Stor-
age Engine”

This statement requires SELECT and INSERT privileges for the table.

Normally, you should never have to run this statement. However, if disaster strikes, REPAIR TABLE is very likely to get back all your
data from a MyISAM table. If your tables become corrupted often, you should try to find the reason for it, to eliminate the need to use
REPAIR TABLE. See Section B.1.4.2, “What to Do If MySQL Keeps Crashing”, and Section 13.4.4, “MyISAM Table Problems”.

Caution

It is best to make a backup of a table before performing a table repair operation; under some circumstances the operation
might cause data loss. Possible causes include but are not limited to filesystem errors.

Warning

If the server dies during a REPAIR TABLE operation, it is essential after restarting it that you immediately execute anoth-
er REPAIR TABLE statement for the table before performing any other operations on it. (It is always a good idea to start
by making a backup.) In the worst case, you might have a new clean index file without information about the data file, and
then the next operation you perform could overwrite the data file. This is an unlikely but possible scenario.

REPAIR TABLE returns a result set with the following columns:

Column Value

Table The table name

Op Always repair

Msg_type One of status, error, info, or warning

Msg_text The message

The REPAIR TABLE statement might produce many rows of information for each repaired table. The last row has a Msg_type value

SQL Statement Syntax

883

http://bugs.mysql.com/23578


of status and Msg_test normally should be OK. If you do not get OK, you should try repairing the table with myisamchk -
-safe-recover. (REPAIR TABLE does not yet implement all the options of myisamchk.) With myisamchk -
-safe-recover, you can also use options that REPAIR TABLE does not support, such as --max-record-length.

If QUICK is given, REPAIR TABLE tries to repair only the index tree. This type of repair is like that done by myisamchk -
-recover --quick.

If you use EXTENDED, MySQL creates the index row by row instead of creating one index at a time with sorting. This type of repair is
like that done by myisamchk --safe-recover.

There is also a USE_FRM mode available for REPAIR TABLE. Use this if the .MYI index file is missing or if its header is corrupted.
In this mode, MySQL re-creates the .MYI file using information from the .frm file. This kind of repair cannot be done with myis-
amchk.

Note

Use this mode only if you cannot use regular REPAIR modes. The .MYI header contains important table metadata (in par-
ticular, current AUTO_INCREMENT value and Delete link) that are lost in REPAIR ... USE_FRM. Don't use
USE_FRM if the table is compressed because this information is also stored in the .MYI file.

If USE_FRM is not used, then a REPAIR TABLE checks the table to see whether an upgrade is required and if it is necessary performs
the upgrade, following the same rules as CHECK TABLE ... FOR UPGRADE. See Section 12.5.2.3, “CHECK TABLE Syntax”, for
more information.

Caution

Do not use USE_FRM if your table was created by a different version of the MySQL server than the one you are currently
running. Doing so risks the loss of all rows in the table. It is particularly dangerous to use USE_FRM after the server re-
turns this message:

Table upgrade required. Please do
"REPAIR TABLE `tbl_name`" to fix it!

By default, REPAIR TABLE statements are written to the binary log so that such statements used on a MySQL server acting as a rep-
lication master will be replicated to replication slaves. Logging can be suppressed with the optional NO_WRITE_TO_BINLOG keyword
or its alias LOCAL.

12.5.2.7. RESTORE TABLE Syntax
RESTORE TABLE tbl_name [, tbl_name] ... FROM '/path/to/backup/directory'

RESTORE TABLE restores the table or tables from a backup that was made with BACKUP TABLE. The directory should be specified
as a full pathname.

Existing tables are not overwritten; if you try to restore over an existing table, an error occurs. Just as for BACKUP TABLE, RESTORE
TABLE currently works only for MyISAM tables. Restored tables are not replicated from master to slave.

The backup for each table consists of its .frm format file and .MYD data file. The restore operation restores those files, and then uses
them to rebuild the .MYI index file. Restoring takes longer than backing up due to the need to rebuild the indexes. The more indexes
the table has, the longer it takes.

RESTORE TABLE returns a result set with the following columns:

Column Value

Table The table name

Op Always restore

Msg_type One of status, error, info, or warning

Msg_text The message

12.5.3. SET Syntax
SET variable_assignment [, variable_assignment] ...

SQL Statement Syntax

884



variable_assignment:
user_var_name = expr

| [GLOBAL | SESSION] system_var_name = expr
| [@@global. | @@session. | @@]system_var_name = expr

The SET statement assigns values to different types of variables that affect the operation of the server or your client. Older versions of
MySQL employed SET OPTION, but this syntax is deprecated in favor of SET without OPTION.

This section describes use of SET for assigning values to system variables or user variables. For general information about these types
of variables, see Section 5.1.3, “System Variables”, and Section 8.4, “User-Defined Variables”. System variables also can be set at serv-
er startup, as described in Section 5.1.4, “Using System Variables”.

Some variants of SET syntax are used in other contexts:

• SET PASSWORD assigns account passwords. See Section 12.5.1.6, “SET PASSWORD Syntax”.

• SET TRANSACTION ISOLATION LEVEL sets the isolation level for transaction processing. See Section 12.4.6, “SET
TRANSACTION Syntax”.

• SET is used within stored routines to assign values to local routine variables. See Section 20.2.7.2, “Variable SET Statement”.

The following discussion shows the different SET syntaxes that you can use to set variables. The examples use the = assignment operat-
or, but the := operator also is allowable.

A user variable is written as @var_name and can be set as follows:

SET @var_name = expr;

Many system variables are dynamic and can be changed while the server runs by using the SET statement. For a list, see Sec-
tion 5.1.4.2, “Dynamic System Variables”. To change a system variable with SET, refer to it as var_name, optionally preceded by a
modifier:

• To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or @@global.. The SUPER privilege is re-
quired to set global variables.

• To indicate explicitly that a variable is a session variable, precede its name by SESSION, @@session., or @@. Setting a session
variable requires no special privilege, but a client can change only its own session variables, not those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.

MySQL Enterprise
The MySQL Enterprise Monitor makes extensive use of system variables to determine the state of your server.
For more information see http://www.mysql.com/products/enterprise/advisors.html.

A SET statement can contain multiple variable assignments, separated by commas. If you set several system variables, the most recent
GLOBAL or SESSION modifier in the statement is used for following variables that have no modifier specified.

Examples:

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

When you assign a value to a system variable with SET, you cannot use suffix letters in the value (as can be done with startup options).
However, the value can take the form of an expression:

SET sort_buffer_size = 10 * 1024 * 1024;

SQL Statement Syntax

885

http://www.mysql.com/products/enterprise/advisors.html


The @@var_name syntax for system variables is supported for compatibility with some other database systems.

If you change a session system variable, the value remains in effect until your session ends or until you change the variable to a differ-
ent value. The change is not visible to other clients.

If you change a global system variable, the value is remembered and used for new connections until the server restarts. (To make a
global system variable setting permanent, you should set it in an option file.) The change is visible to any client that accesses that global
variable. However, the change affects the corresponding session variable only for clients that connect after the change. The global vari-
able change does not affect the session variable for any client that is currently connected (not even that of the client that issues the SET
GLOBAL statement).

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that can only be used with SET SES-
SION or if you do not specify GLOBAL (or @@global.) when setting a global variable.

To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL default value, use the DEFAULT
keyword. For example, the following two statements are identical in setting the session value of max_join_size to the global value:

SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.

You can refer to the values of specific global or sesson system variables in expressions by using one of the @@-modifiers. For example,
you can retrieve values in a SELECT statement like this:

SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

When you refer to a system variable in an expression as @@var_name (that is, when you do not specify @@global. or
@@session.), MySQL returns the session value if it exists and the global value otherwise. (This differs from SET @@var_name =
value, which always refers to the session value.)

To display system variables names and values, use the SHOW VARIABLES statement. (See Section 12.5.4.31, “SHOW VARIABLES
Syntax”.)

The following list describes options that have non-standard syntax or that are not described in the list of system variables found in Sec-
tion 5.1.3, “System Variables”. Although the options described here are not displayed by SHOW VARIABLES, you can obtain their val-
ues with SELECT (with the exception of CHARACTER SET and SET NAMES). For example:

mysql> SELECT @@AUTOCOMMIT;
+--------------+
| @@AUTOCOMMIT |
+--------------+
| 1 |
+--------------+

The lettercase of thse options does not matter.

• AUTOCOMMIT = {0 | 1}

Set the autocommit mode. If set to 1, all changes to a table take effect immediately. If set to 0 you have to use COMMIT to accept a
transaction or ROLLBACK to cancel it. By default, client connections begin with AUTOCOMMIT set to 1. If you change AUTOCOM-
MIT mode from 0 to 1, MySQL performs an automatic COMMIT of any open transaction. Another way to begin a transaction is to
use a START TRANSACTION or BEGIN statement. See Section 12.4.1, “START TRANSACTION, COMMIT, and ROLLBACK
Syntax”.

• BIG_TABLES = {0 | 1}

If set to 1, all temporary tables are stored on disk rather than in memory. This is a little slower, but the error The table
tbl_name is full does not occur for SELECT operations that require a large temporary table. The default value for a new
connection is 0 (use in-memory temporary tables). Normally, you should never need to set this variable, because in-memory tables
are automatically converted to disk-based tables as required.

Note

This variable was formerly named SQL_BIG_TABLES.

SQL Statement Syntax

886



• CHARACTER SET {charset_name | DEFAULT}

This maps all strings from and to the client with the given mapping. You can add new mappings by editing sql/convert.cc in
the MySQL source distribution. SET CHARACTER SET sets three session system variables: character_set_client and
character_set_results are set to the given character set, and character_set_connection to the value of charac-
ter_set_database. See Section 9.1.4, “Connection Character Sets and Collations”.

The default mapping can be restored by using the value DEFAULT. The default depends on the server configuration.

ucs2 cannot be used as a client character set, which means that it does not work for SET CHARACTER SET.

Note that the syntax for SET CHARACTER SET differs from that for setting most other options.

• FOREIGN_KEY_CHECKS = {0 | 1}

If set to 1 (the default), foreign key constraints for InnoDB tables are checked. If set to 0, they are ignored. Disabling foreign key
checking can be useful for reloading InnoDB tables in an order different from that required by their parent/child relationships. See
Section 13.5.6.4, “FOREIGN KEY Constraints”.

Setting FOREIGN_KEY_CHECKS to 0 also affects data definition statements: DROP SCHEMA drops a schema even if it contains
tables that have foreign keys that are referred to by tables outside the schema, and DROP TABLE drops tables that have foreign keys
that are referred to by other tables.

Note

Setting FOREIGN_KEY_CHECKS to 1 does not trigger a scan of the existing table data. Therefore, rows added to the table
while FOREIGN_KEY_CHECKS=0 will not be verified for consistency.

• IDENTITY = value

This variable is a synonym for the LAST_INSERT_ID variable. It exists for compatibility with other database systems. You can
read its value with SELECT @@IDENTITY, and set it using SET IDENTITY.

• INSERT_ID = value

Set the value to be used by the following INSERT or ALTER TABLE statement when inserting an AUTO_INCREMENT value. This
is mainly used with the binary log.

• LAST_INSERT_ID = value

Set the value to be returned from LAST_INSERT_ID(). This is stored in the binary log when you use LAST_INSERT_ID() in a
statement that updates a table. Setting this variable does not update the value returned by the mysql_insert_id() C API func-
tion.

• NAMES {'charset_name' [COLLATE 'collation_name'} | DEFAULT}

SET NAMES sets the three session system variables character_set_client, character_set_connection, and
character_set_results to the given character set. Setting character_set_connection to charset_name also sets
collation_connection to the default collation for charset_name. The optional COLLATE clause may be used to specify a
collation explicitly. See Section 9.1.4, “Connection Character Sets and Collations”.

The default mapping can be restored by using a value of DEFAULT. The default depends on the server configuration.

ucs2 cannot be used as a client character set, which means that it does not work for SET NAMES.

Note that the syntax for SET NAMES differs from that for setting most other options.

• ONE_SHOT

This option is a modifier, not a variable. It can be used to influence the effect of variables that set the character set, the collation, and
the time zone. ONE_SHOT is primarily used for replication purposes: mysqlbinlog uses SET ONE_SHOT to modify temporarily
the values of character set, collation, and time zone variables to reflect at rollforward what they were originally. ONE_SHOT is for
internal use only and is deprecated for MySQL 5.0 and up.

You cannot use ONE_SHOT with other than the allowed set of variables; if you try, you get an error like this:

SQL Statement Syntax

887



mysql> SET ONE_SHOT max_allowed_packet = 1;
ERROR 1382 (HY000): The 'SET ONE_SHOT' syntax is reserved for purposes
internal to the MySQL server

If ONE_SHOT is used with the allowed variables, it changes the variables as requested, but only for the next non-SET statement.
After that, the server resets all character set, collation, and time zone-related system variables to their previous values. Example:

mysql> SET ONE_SHOT character_set_connection = latin5;

mysql> SET ONE_SHOT collation_connection = latin5_turkish_ci;

mysql> SHOW VARIABLES LIKE '%_connection';
+--------------------------+-------------------+
| Variable_name | Value |
+--------------------------+-------------------+
| character_set_connection | latin5 |
| collation_connection | latin5_turkish_ci |
+--------------------------+-------------------+

mysql> SHOW VARIABLES LIKE '%_connection';
+--------------------------+-------------------+
| Variable_name | Value |
+--------------------------+-------------------+
| character_set_connection | latin1 |
| collation_connection | latin1_swedish_ci |
+--------------------------+-------------------+

• SQL_AUTO_IS_NULL = {0 | 1}

If set to 1 (the default), you can find the last inserted row for a table that contains an AUTO_INCREMENT column by using the fol-
lowing construct:

WHERE auto_increment_column IS NULL

This behavior is used by some ODBC programs, such as Access.

• SQL_BIG_SELECTS = {0 | 1}

If set to 0, MySQL aborts SELECT statements that are likely to take a very long time to execute (that is, statements for which the
optimizer estimates that the number of examined rows exceeds the value of max_join_size). This is useful when an inadvisable
WHERE statement has been issued. The default value for a new connection is 1, which allows all SELECT statements.

If you set the max_join_size system variable to a value other than DEFAULT, SQL_BIG_SELECTS is set to 0.

• SQL_BUFFER_RESULT = {0 | 1}

If set to 1, SQL_BUFFER_RESULT forces results from SELECT statements to be put into temporary tables. This helps MySQL free
the table locks early and can be beneficial in cases where it takes a long time to send results to the client. The default value is 0.

• SQL_LOG_BIN = {0 | 1}

If set to 0, no logging is done to the binary log for the client. The client must have the SUPER privilege to set this option. The de-
fault value is 1.

• SQL_LOG_OFF = {0 | 1}

If set to 1, no logging is done to the general query log for this client. The client must have the SUPER privilege to set this option.
The default value is 0.

• SQL_LOG_UPDATE = {0 | 1}

This variable is deprecated, and is mapped to SQL_LOG_BIN.

• SQL_NOTES = {0 | 1}

If set to 1 (the default), warnings of Note level are recorded. If set to 0, Note warnings are suppressed. mysqldump includes out-
put to set this variable to 0 so that reloading the dump file does not produce warnings for events that do not affect the integrity of the
reload operation.

SQL Statement Syntax

888



• SQL_QUOTE_SHOW_CREATE = {0 | 1}

If set to 1 (the default), the server quotes identifiers for SHOW CREATE TABLE and SHOW CREATE DATABASE statements. If
set to 0, quoting is disabled. This option is enabled by default so that replication works for identifiers that require quoting. See Sec-
tion 12.5.4.9, “SHOW CREATE TABLE Syntax”, and Section 12.5.4.6, “SHOW CREATE DATABASE Syntax”.

• SQL_SAFE_UPDATES = {0 | 1}

If set to 1, MySQL aborts UPDATE or DELETE statements that do not use a key in the WHERE clause or a LIMIT clause. This
makes it possible to catch UPDATE or DELETE statements where keys are not used properly and that would probably change or de-
lete a large number of rows. The default value is 0.

• SQL_SELECT_LIMIT = {value | DEFAULT}

The maximum number of rows to return from SELECT statements. The default value for a new connection is “unlimited.” If you
have changed the limit, the default value can be restored by using a SQL_SELECT_LIMIT value of DEFAULT.

If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of SQL_SELECT_LIMIT.

SQL_SELECT_LIMIT does not apply to SELECT statements executed within stored routines. It also does not apply to SELECT
statements that do not produce a result set to be returned to the client. These include SELECT statements in subqueries, CREATE
TABLE ... SELECT, and INSERT INTO ... SELECT.

• SQL_WARNINGS = {0 | 1}

This variable controls whether single-row INSERT statements produce an information string if warnings occur. The default is 0. Set
the value to 1 to produce an information string.

• TIMESTAMP = {timestamp_value | DEFAULT}

Set the time for this client. This is used to get the original timestamp if you use the binary log to restore rows. timestamp_value
should be a Unix epoch timestamp, not a MySQL timestamp.

SET TIMESTAMP affects the value returned by NOW() but not by SYSDATE(). This means that timestamp settings in the binary
log have no effect on invocations of SYSDATE(). The server can be started with the --sysdate-is-now option to cause SYS-
DATE() to be an alias for NOW(), in which case SET TIMESTAMP affects both functions.

• UNIQUE_CHECKS = {0 | 1}

If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are performed. If set to 0, storage engines are al-
lowed to assume that duplicate keys are not present in input data. If you know for certain that your data does not contain uniqueness
violations, you can set this to 0 to speed up large table imports to InnoDB.

Note that setting this variable to 0 does not require storage engines to ignore duplicate keys. An engine is still allowed to check for
them and issue duplicate-key errors if it detects them.

12.5.4. SHOW Syntax
SHOW has many forms that provide information about databases, tables, columns, or status information about the server. This section
describes those following:

SHOW AUTHORS
SHOW CHARACTER SET [like_or_where]
SHOW COLLATION [like_or_where]
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [like_or_where]
SHOW CONTRIBUTORS
SHOW CREATE DATABASE db_name
SHOW CREATE EVENT event_name
SHOW CREATE FUNCTION funcname
SHOW CREATE PROCEDURE procname
SHOW CREATE TABLE tbl_name
SHOW CREATE TRIGGER trigger_name
SHOW CREATE VIEW view_name
SHOW DATABASES [like_or_where]
SHOW ENGINE engine_name {STATUS | MUTEX}
SHOW [STORAGE] ENGINES
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW [FULL] EVENTS
SHOW FUNCTION CODE sp_name
SHOW FUNCTION STATUS [like_or_where]

SQL Statement Syntax

889



SHOW GRANTS FOR user
SHOW INDEX FROM tbl_name [FROM db_name]
SHOW INNODB STATUS
SHOW OPEN TABLES [FROM db_name] [like_or_where]
SHOW PLUGINS
SHOW PROCEDURE CODE sp_name
SHOW PROCEDURE STATUS [like_or_where]
SHOW PRIVILEGES
SHOW [FULL] PROCESSLIST
SHOW SCHEDULER STATUS
SHOW [GLOBAL | SESSION] STATUS [like_or_where]
SHOW TABLE STATUS [FROM db_name] [like_or_where]
SHOW TABLES [FROM db_name] [like_or_where]
SHOW TRIGGERS [FROM db_name] [like_or_where]
SHOW [GLOBAL | SESSION] VARIABLES [like_or_where]
SHOW WARNINGS [LIMIT [offset,] row_count]

like_or_where:
LIKE 'pattern'

| WHERE expr

The SHOW statement also has forms that provide information about replication master and slave servers and are described in Sec-
tion 12.6, “Replication Statements”:

SHOW BINARY LOGS
SHOW BINLOG EVENTS
SHOW MASTER STATUS
SHOW SLAVE HOSTS
SHOW SLAVE STATUS

If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a string that can contain the SQL “%”
and “_” wildcard characters. The pattern is useful for restricting statement output to matching values.

Several SHOW statements also accept a WHERE clause that provides more flexibility in specifying which rows to display. See Sec-
tion 24.27, “Extensions to SHOW Statements”.

Many MySQL APIs (such as PHP) allow you to treat the result returned from a SHOW statement as you would a result set from a SE-
LECT; see Chapter 26, APIs and Libraries, or your API documentation for more information. In addition, you can work in SQL with
results from queries on tables in the INFORMATION_SCHEMA database, which you cannot easily do with results from SHOW state-
ments. See Chapter 24, INFORMATION_SCHEMA Tables.

12.5.4.1. SHOW AUTHORS Syntax
SHOW AUTHORS

The SHOW AUTHORS statement displays information about the people who work on MySQL. For each author, it displays Name, Loc-
ation, and Comment values.

This statement was added in MySQL 5.1.3.

12.5.4.2. SHOW CHARACTER SET Syntax
SHOW CHARACTER SET

[LIKE 'pattern' | WHERE expr]

The SHOW CHARACTER SET statement shows all available character sets. The LIKE clause, if present, indicates which character set
names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 24.27,
“Extensions to SHOW Statements”. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |
| latin7 | ISO 8859-13 Baltic | latin7_general_ci | 1 |
+---------+-----------------------------+-------------------+--------+

The Maxlen column shows the maximum number of bytes required to store one character.

12.5.4.3. SHOW COLLATION Syntax

SQL Statement Syntax

890



SHOW COLLATION
[LIKE 'pattern' | WHERE expr]

The output from SHOW COLLATION includes all available character sets. The LIKE clause, if present, indicates which collation names
to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 24.27, “Extensions to
SHOW Statements”. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
| latin1_german1_ci | latin1 | 5 | | | 0 |
| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 0 |
| latin1_danish_ci | latin1 | 15 | | | 0 |
| latin1_german2_ci | latin1 | 31 | | Yes | 2 |
| latin1_bin | latin1 | 47 | | Yes | 0 |
| latin1_general_ci | latin1 | 48 | | | 0 |
| latin1_general_cs | latin1 | 49 | | | 0 |
| latin1_spanish_ci | latin1 | 94 | | | 0 |
+-------------------+---------+----+---------+----------+---------+

The Default column indicates whether a collation is the default for its character set. Compiled indicates whether the character set is
compiled into the server. Sortlen is related to the amount of memory required to sort strings expressed in the character set.

12.5.4.4. SHOW COLUMNS Syntax
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name]

[LIKE 'pattern' | WHERE expr]

SHOW COLUMNS displays information about the columns in a given table. It also works for views. The LIKE clause, if present, indic-
ates which column names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Sec-
tion 24.27, “Extensions to SHOW Statements”.

mysql> SHOW COLUMNS FROM City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
| Id | int(11) | NO | PRI | NULL | auto_increment |
| Name | char(35) | NO | | | |
| Country | char(3) | NO | UNI | | |
| District | char(20) | YES | MUL | | |
| Population | int(11) | NO | | 0 | |
+------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

If the data types differ from what you expect them to be based on a CREATE TABLE statement, note that MySQL sometimes changes
data types when you create or alter a table. The conditions under which this occurs are described in Section 12.1.10.1, “Silent Column
Specification Changes”.

The FULL keyword causes the output to include the column collation and comments, as well as the privileges you have for each
column.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. In other words, these two state-
ments are equivalent:

mysql> SHOW COLUMNS FROM mytable FROM mydb;
mysql> SHOW COLUMNS FROM mydb.mytable;

SHOW COLUMNS displays the following values for each table column:

Field indicates the column name.

Type indicates the column data type.

Collation indicates the collation for non-binary string columns, or NULL for other columns. This value is displayed only if you use
the FULL keyword.

The Null field contains YES if NULL values can be stored in the column, NO if not.

The Key field indicates whether the column is indexed:

SQL Statement Syntax

891



• If Key is empty, the column either is not indexed or is indexed only as a secondary column in a multiple-column, non-unique index.

• If Key is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column PRIMARY KEY.

• If Key is UNI, the column is the first column of a unique-valued index that cannot contain NULL values.

• If Key is MUL, multiple occurrences of a given value are allowed within the column. The column is the first column of a non-unique
index or a unique-valued index that can contain NULL values.

If more than one of the Key values applies to a given column of a table, Key displays the one with the highest priority, in the order
PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY KEY in the table. A UNIQUE
index may display as MUL if several columns form a composite UNIQUE index; although the combination of the columns is unique,
each column can still hold multiple occurrences of a given value.

The Default field indicates the default value that is assigned to the column.

The Extra field contains any additional information that is available about a given column. In the example shown, the Extra field in-
dicates that the Id column was created with the AUTO_INCREMENT keyword.

Privileges indicates the privileges you have for the column. This value is displayed only if you use the FULL keyword.

Comment indicates any comment the column has. This value is displayed only if you use the FULL keyword.

SHOW FIELDS is a synonym for SHOW COLUMNS. You can also list a table's columns with the mysqlshow db_name tbl_name
command.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 12.3.1, “DESCRIBE Syntax”.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide information about tables. See Sec-
tion 12.5.4, “SHOW Syntax”.

12.5.4.5. SHOW CONTRIBUTORS Syntax
SHOW CONTRIBUTORS

The SHOW CONTRIBUTORS statement displays information about the people who contribute to MySQL source or to causes that
MySQL AB supports. For each contributor, it displays Name, Location, and Comment values.

This statement was added in MySQL 5.1.12.

12.5.4.6. SHOW CREATE DATABASE Syntax
SHOW CREATE {DATABASE | SCHEMA} db_name

Shows the CREATE DATABASE statement that creates the given database. SHOW CREATE SCHEMA is a synonym for SHOW CRE-
ATE DATABASE.

mysql> SHOW CREATE DATABASE test\G
*************************** 1. row ***************************

Database: test
Create Database: CREATE DATABASE `test`

/*!40100 DEFAULT CHARACTER SET latin1 */

mysql> SHOW CREATE SCHEMA test\G
*************************** 1. row ***************************

Database: test
Create Database: CREATE DATABASE `test`

/*!40100 DEFAULT CHARACTER SET latin1 */

SHOW CREATE DATABASE quotes table and column names according to the value of the SQL_QUOTE_SHOW_CREATE option. See
Section 12.5.3, “SET Syntax”.

12.5.4.7. SHOW CREATE EVENT

SQL Statement Syntax

892



SHOW CREATE EVENT event_name

This statement displays the CREATE EVENT statement needed to re-create a given event. For example (using the same event
e_daily defined and then altered in Section 12.5.4.16, “SHOW EVENTS”):

mysql> SHOW CREATE EVENT test.e_daily\G

*************************** 1. row ***************************
Event: e_daily

Create Event: CREATE EVENT e_daily
ON SCHEDULE EVERY 1 DAY
STARTS CURRENT_TIMESTAMP + INTERVAL 6 HOUR
ENABLE
COMMENT 'Saves total number of sessions and

clears the table once per day.'
DO

BEGIN
INSERT INTO site_activity.totals (when, total)
SELECT CURRENT_TIMESTAMP, COUNT(*)
FROM site_activity.sessions;

DELETE FROM site_activity.sessions;
END

character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system variable when the event was created.
collation_connection is the session value of the collation_connection system variable when the event was created.
Database Collation is the collation of the database with which the event is associated. These columns were added in MySQL
5.1.21.

Note that the output reflects the current status of the event (ENABLE) rather than the status with which it was created.

This statement was implemented in MySQL 5.1.6.

12.5.4.8. SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION Syntax
SHOW CREATE {PROCEDURE | FUNCTION} sp_name

These statements are MySQL extensions. Similar to SHOW CREATE TABLE, they return the exact string that can be used to re-create
the named routine. The statements require that you be the owner of the routine or have SELECT access to the mysql.proc table. If
you do not have privileges for the routine itself, the value displayed for the Create Procedure or Create Function field will
be NULL.

mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************

Function: hello
sql_mode:

Create Function: CREATE FUNCTION `test`.`hello`(s CHAR(20)) »
RETURNS CHAR(50)
RETURN CONCAT('Hello, ',s,'!')

character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system variable when the routine was created.
collation_connection is the session value of the collation_connection system variable when the routine was created.
Database Collation is the collation of the database with which the routine is associated. These columns were added in MySQL
5.1.21.

12.5.4.9. SHOW CREATE TABLE Syntax
SHOW CREATE TABLE tbl_name

Shows the CREATE TABLE statement that creates the given table. This statement also works with views.

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************

Table: t
Create Table: CREATE TABLE t (
id INT(11) default NULL auto_increment,
s char(60) default NULL,

SQL Statement Syntax

893



PRIMARY KEY (id)
) ENGINE=MyISAM

SHOW CREATE TABLE quotes table and column names according to the value of the SQL_QUOTE_SHOW_CREATE option. See Sec-
tion 12.5.3, “SET Syntax”.

12.5.4.10. SHOW CREATE TRIGGER Syntax
SHOW CREATE TRIGGER trigger_name

This statement shows a CREATE TRIGGER statement that creates the given trigger.

mysql> SHOW CREATE TRIGGER ins_sum\G
*************************** 1. row ***************************

Trigger: ins_sum
sql_mode:

SQL Original Statement: CREATE DEFINER=`bob`@`localhost` TRIGGER ins_sum
BEFORE INSERT ON account
FOR EACH ROW SET @sum = @sum + NEW.amount

character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci

This statement was added in MySQL 5.1.21.

You can also obtain information about trigger objects from INFORMATION_SCHEMA, which contains a TRIGGERS table. See Sec-
tion 24.16, “The INFORMATION_SCHEMA TRIGGERS Table”.

12.5.4.11. SHOW CREATE VIEW Syntax
SHOW CREATE VIEW view_name

This statement shows a CREATE VIEW statement that creates the given view.

mysql> SHOW CREATE VIEW v\G
*************************** 1. row ***************************

View: v
Create View: CREATE ALGORITHM=UNDEFINED

DEFINER=`bob`@`localhost`
SQL SECURITY DEFINER VIEW
`v` AS select 1 AS `a`,2 AS `b`

character_set_client: latin1
collation_connection: latin1_swedish_ci

character_set_client is the session value of the character_set_client system variable when the routine was created.
collation_connection is the session value of the collation_connection system variable when the routine was created.
These columns were added in MySQL 5.1.21.

Use of SHOW CREATE VIEW requires the SHOW VIEW privilege and the SELECT privilege for the view in question.

You can also obtain information about view objects from INFORMATION_SCHEMA, which contains a VIEWS table. See Section 24.15,
“The INFORMATION_SCHEMA VIEWS Table”.

12.5.4.12. SHOW DATABASES Syntax
SHOW {DATABASES | SCHEMAS}

[LIKE 'pattern' | WHERE expr]

SHOW DATABASES lists the databases on the MySQL server host. SHOW SCHEMAS is a synonym for SHOW DATABASES. The
LIKE clause, if present, indicates which database names to match. The WHERE clause can be given to select rows using more general
conditions, as discussed in Section 24.27, “Extensions to SHOW Statements”.

You see only those databases for which you have some kind of privilege, unless you have the global SHOW DATABASES privilege.
You can also get this list using the mysqlshow command.

If the server was started with the --skip-show-database option, you cannot use this statement at all unless you have the SHOW
DATABASES privilege.

SQL Statement Syntax

894



SHOW SCHEMAS can also be used.

12.5.4.13. SHOW ENGINE Syntax
SHOW ENGINE engine_name {STATUS | MUTEX}

SHOW ENGINE displays operational information about a storage engine. The following statements currently are supported:

SHOW ENGINE INNODB STATUS
SHOW ENGINE INNODB MUTEX
SHOW ENGINE {NDB | NDBCLUSTER} STATUS

Older (and now deprecated) synonyms are SHOW INNODB STATUS for SHOW ENGINE INNODB STATUS and SHOW MUTEX
STATUS for SHOW ENGINE INNODB MUTEX.

In MySQL 5.0, SHOW ENGINE INNODB MUTEX is invoked as SHOW MUTEX STATUS. The latter statement displays similar in-
formation but in a somewhat different output format.

SHOW ENGINE BDB LOGS formerly displayed status information about BDB log files. As of MySQL 5.1.12, the BDB storage engine
is not supported, and this statement produces a warning.

SHOW ENGINE INNODB STATUS displays extensive information about the state of the InnoDB storage engine.

The InnoDB Monitors provide additional information about InnoDB processing. See Section 13.5.11.1, “SHOW ENGINE INNODB
STATUS and the InnoDB Monitors”.

SHOW ENGINE INNODB MUTEX displays InnoDB mutex statistics. From MySQL 5.1.2 to 5.1.14, the statement displays the follow-
ing output fields:

• Type

Always InnoDB.

• Name

The mutex name and the source file where it is implemented. Example: &pool->mutex:mem0pool.c

The mutex name indicates its purpose. For example, the log_sys mutex is used by the InnoDB logging subsystem and indicates
how intensive logging activity is. The buf_pool mutex protects the InnoDB buffer pool.

• Status

The mutex status. The fields contains several values:

• count indicates how many times the mutex was requested.

• spin_waits indicates how many times the spinlock had to run.

• spin_rounds indicates the number of spinlock rounds. (spin_rounds divided by spin_waits provides the average
round count.)

• os_waits indicates the number of operating system waits. This occurs when the spinlock did not work (the mutex was not
locked during the spinlock and it was necessary to yield to the operating system and wait).

• os_yields indicates the number of times a the thread trying to lock a mutex gave up its timeslice and yielded to the operating
system (on the presumption that allowing other threads to run will free the mutex so that it can be locked).

• os_wait_times indicates the amount of time (in ms) spent in operating system waits, if the timed_mutexes system vari-
able is 1 (ON). If timed_mutexes is 0 (OFF), timing is disabled, so os_wait_times is 0. timed_mutexes is off by de-
fault.

From MySQL 5.1.15 on, the statement displays the following output fields:

SQL Statement Syntax

895



• Type

Always InnoDB.

• Name

The source file where the mutex is implemented, and the line number in the file where the mutex is created. The line number may
change depending on your version of MySQL.

• Status

This field displays the same values as previously described (count, spin_waits, spin_rounds, os_waits, os_yields,
os_wait_times), but only if UNIV_DEBUG was defined at MySQL compilation time (for example, in include/univ.h in
the InnoDB part of the MySQL source tree). If UNIV_DEBUG was not defined, the statement displays only the os_waits value.
In the latter case (without UNIV_DEBUG), the information on which the output is based is insufficient to distinguish regular mu-
texes and mutexes that protect rw-locks (which allow multiple readers or a single writer). Consequently, the output may appear to
contain multiple rows for the same mutex.

Information from this statement can be used to diagnose system problems. For example, large values of spin_waits and
spin_rounds may indicate scalability problems.

If the server has the NDBCLUSTER storage engine enabled, SHOW ENGINE NDB STATUS displays cluster status information such as
the number of connected data nodes, the cluster connectstring, and cluster binlog epochs, as well as counts of various Cluster API ob-
jects created by the MySQL Server when connected to the cluster. Sample output from this statement is shown here:

mysql> SHOW ENGINE NDB STATUS;
+------------+-----------------------+--------------------------------------------------+
| Type | Name | Status |
+------------+-----------------------+--------------------------------------------------+
| ndbcluster | connection | cluster_node_id=7,
connected_host=192.168.0.103, connected_port=1186, number_of_data_nodes=4,
number_of_ready_data_nodes=3, connect_count=0 |

| ndbcluster | NdbTransaction | created=6, free=0, sizeof=212 |
| ndbcluster | NdbOperation | created=8, free=8, sizeof=660 |
| ndbcluster | NdbIndexScanOperation | created=1, free=1, sizeof=744 |
| ndbcluster | NdbIndexOperation | created=0, free=0, sizeof=664 |
| ndbcluster | NdbRecAttr | created=1285, free=1285, sizeof=60 |
| ndbcluster | NdbApiSignal | created=16, free=16, sizeof=136 |
| ndbcluster | NdbLabel | created=0, free=0, sizeof=196 |
| ndbcluster | NdbBranch | created=0, free=0, sizeof=24 |
| ndbcluster | NdbSubroutine | created=0, free=0, sizeof=68 |
| ndbcluster | NdbCall | created=0, free=0, sizeof=16 |
| ndbcluster | NdbBlob | created=1, free=1, sizeof=264 |
| ndbcluster | NdbReceiver | created=4, free=0, sizeof=68 |
| ndbcluster | binlog | latest_epoch=155467, latest_trans_epoch=148126,
latest_received_binlog_epoch=0, latest_handled_binlog_epoch=0,
latest_applied_binlog_epoch=0 |

+------------+-----------------------+--------------------------------------------------+

The rows with connection and binlog in the Name column were added to the output of this statement in MySQL 5.1. The
Status column in each of these rows provides information about the MySQL server's connection to the cluster and about the cluster
binary log's status, respectively. The Status information is in the form of comma-delimited set of name/value pairs.

The connection row's Status column contains the name/value pairs described in the following table:

Name Value

cluster_node_id The node ID of the MySQL server in the cluster

connected_host The hostname or IP address of the cluster management server to which the
MySQL server is connected

connected_port The port used by the MySQL server to connect to the management server
(connected_host)

number_of_data_nodes The number of data nodes configured for the cluster (that is, the number of
[ndbd] sections in the cluster config.ini file)

number_of_ready_data_nodes The number of data nodes in the cluster that are actually running

connect_count The number of times this mysqld has connected or reconnected to cluster data
nodes

SQL Statement Syntax

896



The binlog row's Status column contains information relating to MySQL Cluster Replication. The name/value pairs it contains are
described in the following table:

Name Value

latest_epoch The most recent epoch most recently run on this MySQL server (that is, the se-
quence number of the most recent transaction run on the server)

latest_trans_epoch The most recent epoch processed by the cluster's data nodes

latest_received_binlog_epoch The most recent epoch received by the binlog thread

latest_handled_binlog_epoch The most recent epoch processed by the binlog thread (for writing to the binlog)

latest_applied_binlog_epoch The most recent epoch actually written to the binlog

See Section 17.12, “MySQL Cluster Replication”, for more information.

The remaining rows from the output of SHOW ENGINE NDB STATUS which are most likely to prove useful in monitoring the cluster
are listed here by Name:

• NdbTransaction: The number and size of NdbTransaction objects that have been created. An NdbTransaction is cre-
ated each time a table schema operation (such as CREATE TABLE or ALTER TABLE) is performed on an NDB table.

• NdbOperation: The number and size of NdbOperation objects that have been created.

• NdbIndexScanOperation: The number and size of NdbIndexScanOperation objects that have been created.

• NdbIndexOperation: The number and size of NdbIndexOperation objects that have been created.

• NdbRecAttr: The number and size of NdbRecAttr objects that have been created. In general, one of these is created each time
a data manipulation statement is performed by an SQL node.

• NdbBlob: The number and size of NdbBlob objects that have been created. An NdbBlob is created for each new operation in-
volving a BLOB column in an NDB table.

• NdbReceiver: The number and size of any NdbReceiver object that have been created. The number in the created column
is the same as the number of data nodes in the cluster to which the MySQL server has connected.

Note

SHOW ENGINE NDB STATUS returns an empty result if no operations involving NDB tables have been performed dur-
ing the current session by the MySQL client accessing the SQL node on which this statement is run.

MySQL Enterprise
The SHOW ENGINE engine_name STATUS statement provides valuable information about the state of your
server. For expert interpretation of this information, subscribe to the MySQL Enterprise Monitor. For more in-
formation see http://www.mysql.com/products/enterprise/advisors.html.

12.5.4.14. SHOW ENGINES Syntax
SHOW [STORAGE] ENGINES

SHOW ENGINES displays status information about the server's storage engines. This is particularly useful for checking whether a stor-
age engine is supported, or to see what the default engine is. SHOW TABLE TYPES is a deprecated synonym.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************

Engine: MEMORY
Support: YES
Comment: Hash based, stored in memory, useful for temporary tables

Transactions: NO
XA: NO

Savepoints: NO
*************************** 2. row ***************************

Engine: MyISAM
Support: DEFAULT
Comment: Default engine as of MySQL 3.23 with great performance

SQL Statement Syntax

897

http://www.mysql.com/products/enterprise/advisors.html


Transactions: NO
XA: NO

Savepoints: NO
*************************** 3. row ***************************

Engine: InnoDB
Support: YES
Comment: Supports transactions, row-level locking, and foreign keys

Transactions: YES
XA: YES

Savepoints: YES
*************************** 4. row ***************************

Engine: EXAMPLE
Support: YES
Comment: Example storage engine

Transactions: NO
XA: NO

Savepoints: NO
*************************** 5. row ***************************

Engine: ARCHIVE
Support: YES
Comment: Archive storage engine

Transactions: NO
XA: NO

Savepoints: NO
*************************** 6. row ***************************

Engine: CSV
Support: YES
Comment: CSV storage engine

Transactions: NO
XA: NO

Savepoints: NO
*************************** 7. row ***************************

Engine: BLACKHOLE
Support: YES
Comment: /dev/null storage engine (anything you write »

to it disappears)
Transactions: NO

XA: NO
Savepoints: NO

*************************** 8. row ***************************
Engine: FEDERATED
Support: YES
Comment: Federated MySQL storage engine

Transactions: NO
XA: NO

Savepoints: NO
*************************** 9. row ***************************

Engine: MRG_MYISAM
Support: YES
Comment: Collection of identical MyISAM tables

Transactions: NO
XA: NO

Savepoints: NO

The output from SHOW ENGINES may vary according to the MySQL version used and other factors. The values shown in the Sup-
port column indicate the server's level of support for different features, as shown here:

Value Meaning

YES The feature is supported and is active.

NO The feature is not supported.

DISABLED The feature is supported but has been disabled.

A value of NO means that the server was compiled without support for the feature, so it cannot be activated at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the feature, or because not all options
required to enable it were given. In the latter case, the error log file should contain a reason indicating why the option is disabled. See
Section 5.2.2, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was started with a --skip-en-
gine_name option. For the NDBCLUSTER storage engine, DISABLED means the server was compiled with support for MySQL
Cluster, but was not started with the --ndbcluster option.

All MySQL servers support MyISAM tables, because MyISAM is the default storage engine. It is not possible to disable MyISAM.

The Transactions, XA, and Savepoints columns were added in MySQL 5.1.2. They indicate whether the storage engine sup-
ports transactions, XA transactions, and savepoints, respectively.

SQL Statement Syntax

898



12.5.4.15. SHOW ERRORS Syntax
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW COUNT(*) ERRORS

This statement is similar to SHOW WARNINGS, except that instead of displaying errors, warnings, and notes, it displays only errors.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 12.2.7, “SELECT Syntax”.

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve this number from the error_count
variable:

SHOW COUNT(*) ERRORS;
SELECT @@error_count;

For more information, see Section 12.5.4.32, “SHOW WARNINGS Syntax”.

12.5.4.16. SHOW EVENTS

SHOW EVENTS [FROM schema_name]
[LIKE 'pattern' | WHERE expr]

In its simplest form, SHOW EVENTS lists all of the events in the current schema:

mysql> SELECT CURRENT_USER(), SCHEMA();
+----------------+----------+
| CURRENT_USER() | SCHEMA() |
+----------------+----------+
| jon@ghidora | myschema |
+----------------+----------+
1 row in set (0.00 sec)

mysql> SHOW EVENTS\G
*************************** 1. row ***************************

Db: myschema
Name: e_daily

Definer: jon@ghidora
Time zone: SYSTEM

Type: RECURRING
Execute at: NULL

Interval value: 10
Interval field: INTERVAL_SECOND

Starts: 2006-02-09 10:41:23
Ends: 0000-00-00 00:00:00

Status: ENABLED
Originator: 0

character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci

The LIKE clause, if present, indicates which event names to match. The WHERE clause can be given to select rows using more general
conditions, as discussed in Section 24.27, “Extensions to SHOW Statements”.

The columns in the output of SHOW EVENTS — which are similar to, but not identical to the columns in the INFORMA-
TION_SCHEMA.EVENTS table — are shown here:

• Db: The schema (database) on which the event is defined.

• Name: The name of the event.

• Time zone: The time zone in effect when schedule for the event was last modified. If the event's schedule has not been modified
since the event was created, then this is the time zone that was in effect at the event's creation. The default value is SYSTEM.

This column was added in MySQL 5.1.17. See Section C.1.14, “Changes in MySQL 5.1.17 (04 April 2007)”, for important informa-
tion if you are using the Event Scheduler and are upgrading from MySQL 5.1.16 (or earlier) to MySQL 5.1.17 (or later).

• Definer: The user account (username@hostname) which created the event.

• Type: One of the two values ONE TIME (transient) or RECURRING.

SQL Statement Syntax

899



• Execute At: The date and time when a transient event is set to execute. Shown as a DATETIME value.

For a recurring event, the value of this column is always NULL.

• Interval Value: For a recurring event, the number of intervals to wait between event executions.

For a transient event, the value of this column is always NULL.

• Interval Field: The time units used for the interval which a recurring event waits before repeating.

For a transient event, the value of this column is always NULL.

• Starts: The start date and time for a recurring event. This is displayed as a DATETIME value, and is empty if no start date and
time are defined for the event. (Prior to MySQL 5.1.8, it defaulted to '0000-00-00 00:00:00' in such cases.)

For a transient event, the value of this column is always NULL.

• Ends: The end date and time for a recurring event. This is displayed as a DATETIME value, and defaults to '0000-00-00
00:00:00' if no end date and time is defined for the event.

For a transient event, the value of this column is always NULL.

• Status: The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED.

SLAVESIDE_DISABLED was added in MySQL 5.1.18. This value indicates that the creation of the event occurred on another
MySQL server acting as a replication master and replicated to the current MySQL server which is acting as a slave, but the event is
not presently being executed on the slave.

• Originator: The server ID of the MySQL server on which the event was created. Defaults to 0. This column was added in
MySQL 5.1.18.

• character_set_client is the session value of the character_set_client system variable when the routine was cre-
ated. collation_connection is the session value of the collation_connection system variable when the routine was
created. Database Collation is the collation of the database with which the routine is associated. These columns were added
in MySQL 5.1.21.

For more information about SLAVE_DISABLED and the Originator column, see Section 16.3.1.5, “Replication of Invoked Fea-
tures”.

Note that the action statement is not shown in the output of SHOW EVENTS.

Prior to MySQL 5.1.17, the values displayed for Starts and Ends (other than '0000-00-00 00:00:00') were shown using
Universal Time (Bug#16420). Beginning with MySQL 5.1.17, these times are all given in terms of local time as determined by the
MySQL server's time_zone setting. See also Section 24.20, “The INFORMATION_SCHEMA EVENTS Table”.

To see events for a different schema, you can use the FROM clause. For example, if the test schema had been selected in the preceding
example, you could view events defined on myschema using the following statement:

SHOW EVENTS FROM myschema;

You can filter the list returned by this statement on the event name using LIKE plus a pattern.

This statement was added in MySQL 5.1.6.

See also Section 24.20, “The INFORMATION_SCHEMA EVENTS Table”.

Note

In MySQL 5.1.11 and earlier, SHOW EVENTS displayed only those events for which the current user was the definer, and
the SHOW FULL EVENTS statement was used for viewing events defined by all users on a given schema. SHOW FULL
EVENTS was removed in MySQL 5.1.12.

12.5.4.17. SHOW GRANTS Syntax
SHOW GRANTS [FOR user]

SQL Statement Syntax

900

http://bugs.mysql.com/16420


This statement lists the GRANT statement or statements that must be issued to duplicate the privileges that are granted to a MySQL user
account. The account is named using the same format as for the GRANT statement; for example, 'jeffrey'@'localhost'. If you
specify only the username part of the account name, a hostname part of '%' is used. For additional information about specifying ac-
count names, see Section 12.5.1.3, “GRANT Syntax”.

mysql> SHOW GRANTS FOR 'root'@'localhost';
+---------------------------------------------------------------------+
| Grants for root@localhost |
+---------------------------------------------------------------------+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---------------------------------------------------------------------+

To list the privileges granted to the account that you are using to connect to the server, you can use any of the following statements:

SHOW GRANTS;
SHOW GRANTS FOR CURRENT_USER;
SHOW GRANTS FOR CURRENT_USER();

As of MySQL 5.1.12, if SHOW GRANTS FOR CURRENT_USER (or any of the equivalent syntaxes) is used in DEFINER context,
such as within a stored procedure that is defined with SQL SECURITY DEFINER), the grants displayed are those of the definer and
not the invoker.

SHOW GRANTS displays only the privileges granted explicitly to the named account. Other privileges might be available to the account,
but they are not displayed. For example, if an anonymous account exists, the named account might be able to use its privileges, but
SHOW GRANTS will not display them.

12.5.4.18. SHOW INDEX Syntax
SHOW INDEX FROM tbl_name [FROM db_name]

SHOW INDEX returns table index information. The format resembles that of the SQLStatistics call in ODBC.

SHOW INDEX returns the following fields:

• Table

The name of the table.

• Non_unique

0 if the index cannot contain duplicates, 1 if it can.

• Key_name

The name of the index.

• Seq_in_index

The column sequence number in the index, starting with 1.

• Column_name

The column name.

• Collation

How the column is sorted in the index. In MySQL, this can have values “A” (Ascending) or NULL (Not sorted).

• Cardinality

An estimate of the number of unique values in the index. This is updated by running ANALYZE TABLE or myisamchk -a.
Cardinality is counted based on statistics stored as integers, so the value is not necessarily exact even for small tables. The
higher the cardinality, the greater the chance that MySQL uses the index when doing joins.

• Sub_part

SQL Statement Syntax

901



The number of indexed characters if the column is only partly indexed, NULL if the entire column is indexed.

• Packed

Indicates how the key is packed. NULL if it is not.

• Null

Contains YES if the column may contain NULL. If not, the column contains NO.

Contains YES if the column may contain NULL values and '' if not.

• Index_type

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• Comment

Various remarks.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. These two statements are equival-
ent:

SHOW INDEX FROM mytable FROM mydb;
SHOW INDEX FROM mydb.mytable;

SHOW KEYS is a synonym for SHOW INDEX. You can also list a table's indexes with the mysqlshow -k db_name tbl_name
command.

12.5.4.19. SHOW INNODB STATUS Syntax
SHOW INNODB STATUS

In MySQL 5.1, this is a deprecated synonym for SHOW ENGINE INNODB STATUS. See Section 12.5.4.13, “SHOW ENGINE Syn-
tax”.

12.5.4.20. SHOW OPEN TABLES Syntax
SHOW OPEN TABLES [FROM db_name]

[LIKE 'pattern' | WHERE expr]

SHOW OPEN TABLES lists the non-TEMPORARY tables that are currently open in the table cache. See Section 7.4.8, “How MySQL
Opens and Closes Tables”. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 24.27,
“Extensions to SHOW Statements”.

The FROM and LIKE clauses may be used beginning with MySQL 5.1.24. The LIKE clause, if present, indicates which table names to
match. The FROM clause, if present, restricts the tables shown to those present in the db_name database.

SHOW OPEN TABLES returns the following columns:

• Database

The database containing the table.

• Table

The table name.

• In_use

The number of table locks or lock requests there are for the table. For example, if one client acquires a lock for a table using LOCK
TABLE t1 WRITE, In_use will be 1. If another client issues LOCK TABLE t1 WRITE while the table remains locked, the

SQL Statement Syntax

902



client will block waiting for the lock, but the lock request causes In_use to be 2. If the count is zero, the table is open but not cur-
rently being used.

• Name_locked

Whether the table name is locked. Name locking is used for operations such as dropping or renaming tables.

12.5.4.21. SHOW PLUGINS Syntax
SHOW PLUGINS

SHOW PLUGINS displays information about known plugins.

mysql> SHOW PLUGINS;
+------------+--------+----------------+---------+
| Name | Status | Type | Library |
+------------+--------+----------------+---------+
| MEMORY | ACTIVE | STORAGE ENGINE | NULL |
| MyISAM | ACTIVE | STORAGE ENGINE | NULL |
| InnoDB | ACTIVE | STORAGE ENGINE | NULL |
| ARCHIVE | ACTIVE | STORAGE ENGINE | NULL |
| CSV | ACTIVE | STORAGE ENGINE | NULL |
| BLACKHOLE | ACTIVE | STORAGE ENGINE | NULL |
| FEDERATED | ACTIVE | STORAGE ENGINE | NULL |
| MRG_MYISAM | ACTIVE | STORAGE ENGINE | NULL |
+------------+--------+----------------+---------+

SHOW PLUGIN was added in MySQL 5.1.5 and renamed to SHOW PLUGINS in 5.1.9. (As of 5.1.9, SHOW PLUGIN is deprecated and
generates a warning.)

12.5.4.22. SHOW PRIVILEGES Syntax
SHOW PRIVILEGES

SHOW PRIVILEGES shows the list of system privileges that the MySQL server supports. The exact list of privileges depends on the
version of your server.

mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Alter
Context: Tables
Comment: To alter the table
*************************** 2. row ***************************
Privilege: Alter routine
Context: Functions,Procedures
Comment: To alter or drop stored functions/procedures
*************************** 3. row ***************************
Privilege: Create
Context: Databases,Tables,Indexes
Comment: To create new databases and tables
*************************** 4. row ***************************
Privilege: Create routine
Context: Functions,Procedures
Comment: To use CREATE FUNCTION/PROCEDURE
*************************** 5. row ***************************
Privilege: Create temporary tables
Context: Databases
Comment: To use CREATE TEMPORARY TABLE
...

12.5.4.23. SHOW PROCEDURE CODE and SHOW FUNCTION CODE Syntax
SHOW {PROCEDURE | FUNCTION} CODE sp_name

These statements are MySQL extensions that are available only for servers that have been built with debugging support. They display a
representation of the internal implementation of the named routine. The statements require that you be the owner of the routine or have
SELECT access to the mysql.proc table.

If the named routine is available, each statement produces a result set. Each row in the result set corresponds to one “instruction” in the
routine. The first column is Pos, which is an ordinal number beginning with 0. The second column is Instruction, which contains

SQL Statement Syntax

903



an SQL statement (usually changed from the original source), or a directive which has meaning only to the stored-routine handler.

mysql> DELIMITER //
mysql> CREATE PROCEDURE p1 ()

-> BEGIN
-> DECLARE fanta INT DEFAULT 55;
-> DROP TABLE t2;
-> LOOP
-> INSERT INTO t3 VALUES (fanta);
-> END LOOP;
-> END//

Query OK, 0 rows affected (0.00 sec)

mysql> SHOW PROCEDURE CODE p1//
+-----+----------------------------------------+
| Pos | Instruction |
+-----+----------------------------------------+
| 0 | set fanta@0 55 |
| 1 | stmt 9 "DROP TABLE t2" |
| 2 | stmt 5 "INSERT INTO t3 VALUES (fanta)" |
| 3 | jump 2 |
+-----+----------------------------------------+
4 rows in set (0.00 sec)

In this example, the non-executable BEGIN and END statements have disappeared, and for the DECLARE variable_name state-
ment, only the executable part appears (the part where the default is assigned). For each statement that is taken from source, there is a
code word stmt followed by a type (9 means DROP, 5 means INSERT, and so on). The final row contains an instruction jump 2,
meaning GOTO instruction #2.

These statements were added in MySQL 5.1.3.

12.5.4.24. SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS Syntax
SHOW {PROCEDURE | FUNCTION} STATUS

[LIKE 'pattern' | WHERE expr]

These statements are MySQL extensions. They return characteristics of routines, such as the database, name, type, creator, creation and
modification dates, and character set information. The LIKE clause, if present, indicates which procedure or function names to match.
The WHERE clause can be given to select rows using more general conditions, as discussed in Section 24.27, “Extensions to SHOW
Statements”.

mysql> SHOW FUNCTION STATUS LIKE 'hello'\G
*************************** 1. row ***************************

Db: test
Name: hello
Type: FUNCTION

Definer: testuser@localhost
Modified: 2004-08-03 15:29:37
Created: 2004-08-03 15:29:37

Security_type: DEFINER
Comment:

character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system variable when the routine was created.
collation_connection is the session value of the collation_connection system variable when the routine was created.
Database Collation is the collation of the database with which the routine is associated. These columns were added in MySQL
5.1.21.

You can also get information about stored routines from the ROUTINES table in INFORMATION_SCHEMA. See Section 24.14, “The
INFORMATION_SCHEMA ROUTINES Table”.

12.5.4.25. SHOW PROCESSLIST Syntax
SHOW [FULL] PROCESSLIST

SHOW PROCESSLIST shows you which threads are running. You can also get this information from the INFORMATION_SCHEMA
PROCESSLIST table or the mysqladmin processlist command. If you have the PROCESS privilege, you can see all threads.
Otherwise, you can see only your own threads (that is, threads associated with the MySQL account that you are using). If you do not use
the FULL keyword, only the first 100 characters of each statement are shown in the Info field.

MySQL Enterprise

SQL Statement Syntax

904



Subscribers to MySQL Enterprise Monitor receive instant notification and expert advice on resolution when
there are too many concurrent processes. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

This statement is very useful if you get the “too many connections” error message and want to find out what is going on. MySQL re-
serves one extra connection to be used by accounts that have the SUPER privilege, to ensure that administrators should always be able
to connect and check the system (assuming that you are not giving this privilege to all your users).

Threads can be killed with the KILL statement. See Section 12.5.5.3, “KILL Syntax”.

Here is an example of what SHOW PROCESSLIST output looks like:

mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
Id: 1
User: system user
Host:
db: NULL
Command: Connect
Time: 1030455
State: Waiting for master to send event
Info: NULL
*************************** 2. row ***************************
Id: 2
User: system user
Host:
db: NULL
Command: Connect
Time: 1004
State: Has read all relay log; waiting for the slave

I/O thread to update it
Info: NULL
*************************** 3. row ***************************
Id: 3112
User: replikator
Host: artemis:2204
db: NULL
Command: Binlog Dump
Time: 2144
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 4. row ***************************
Id: 3113
User: replikator
Host: iconnect2:45781
db: NULL
Command: Binlog Dump
Time: 2086
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 5. row ***************************
Id: 3123
User: stefan
Host: localhost
db: apollon
Command: Query
Time: 0
State: NULL
Info: SHOW FULL PROCESSLIST
5 rows in set (0.00 sec)

The columns have the following meaning:

• Id

The connection identifier.

• User

The MySQL user who issued the statement. If this is system user, it refers to a non-client thread spawned by the server to
handle tasks internally. This could be the I/O or SQL thread used on replication slaves or a delayed-row handler. unauthentic-
ated user refers to a thread that has become associated with a client connection but for which authentication of the client user
has not yet been done. event_scheduler refers to the thread that monitors scheduled events. For system user or
event_scheduler, there is no host specified in the Host column.

• Host

The hostname of the client issuing the statement (except for system user where there is no host). SHOW PROCESSLIST re-

SQL Statement Syntax

905

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


ports the hostname for TCP/IP connections in host_name:client_port format to make it easier to determine which client is
doing what.

• db

The default database, if one is selected, otherwise NULL.

• Command

The type of command the thread is executing. Descriptions for thread commands can be found at Section 7.5.5, “Examining Thread
Information”. The value of this column corresponds to the COM_xxx commands of the client/server protocol. See Section 5.1.5,
“Status Variables”

• Time

The time in seconds that the thread has been in its current state.

• State

An action, event, or state that indicates what the thread is doing. Descriptions for State values can be found at Section 7.5.5,
“Examining Thread Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds, there might be a problem that
needs to be investigated.

For the SHOW PROCESSLIST statement, the value of State is NULL.

• Info

The statement that the thread is executing, or NULL if it is not executing any statement. The statment might be the one sent to the
server, or an innermost statement if the statement executes other statements. For example, if a CALL p1() statement executes a
stored procedure p1(), and the procedure is executing a SELECT statement, the Info value shows the SELECT statement.

12.5.4.26. SHOW SCHEDULER STATUS Syntax
SHOW SCHEDULER STATUS

This statement provides debugging information regarding the Event Scheduler's state. It is supported only in -debug builds of MySQL
5.1.11, and was removed in 5.1.12 and subsequent releases.

Sample output is shown here:

+--------------------------------+---------------------+
| Name | Value |
+--------------------------------+---------------------+
| scheduler state | INITIALIZED |
| thread_id | NULL |
| scheduler last locked at | init_scheduler::313 |
| scheduler last unlocked at | init_scheduler::318 |
| scheduler waiting on condition | 0 |
| scheduler workers count | 0 |
| scheduler executed events | 0 |
| scheduler data locked | 0 |
| queue element count | 1 |
| queue data locked | 0 |
| queue data attempting lock | 0 |
| queue last locked at | create_event::218 |
| queue last unlocked at | create_event::222 |
| queue last attempted lock at | ::0 |
| queue waiting on condition | 0 |
| next activation at | 0-00-00 00:00:00 |
+--------------------------------+---------------------+

In MySQL 5.1.12 and later, this information can be obtained using mysqladmin debug. (See Section 4.5.2, “mysqladmin — Cli-
ent for Administering a MySQL Server”.) For more information about obtaining Event Scheduler status information, see Section 22.4,
“Event Scheduler Status”.

12.5.4.27. SHOW STATUS Syntax

SQL Statement Syntax

906



SHOW [GLOBAL | SESSION] STATUS
[LIKE 'pattern' | WHERE expr]

SHOW STATUS provides server status information. This information also can be obtained using the mysqladmin extended-
status command. The LIKE clause, if present, indicates which variable names to match. The WHERE clause can be given to select
rows using more general conditions, as discussed in Section 24.27, “Extensions to SHOW Statements”.

Partial output is shown here. The list of names and values may be different for your server. The meaning of each variable is given in
Section 5.1.5, “Status Variables”.

mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
| Aborted_clients | 0 |
| Aborted_connects | 0 |
| Bytes_received | 155372598 |
| Bytes_sent | 1176560426 |
| Connections | 30023 |
| Created_tmp_disk_tables | 0 |
| Created_tmp_tables | 8340 |
| Created_tmp_files | 60 |
...
| Open_tables | 1 |
| Open_files | 2 |
| Open_streams | 0 |
| Opened_tables | 44600 |
| Questions | 2026873 |
...
| Table_locks_immediate | 1920382 |
| Table_locks_waited | 0 |
| Threads_cached | 0 |
| Threads_created | 30022 |
| Threads_connected | 1 |
| Threads_running | 1 |
| Uptime | 80380 |
+--------------------------+------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the pattern:

mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
| Key_blocks_used | 14955 |
| Key_read_requests | 96854827 |
| Key_reads | 162040 |
| Key_write_requests | 7589728 |
| Key_writes | 3813196 |
+--------------------+----------+

With the GLOBAL modifier, SHOW STATUS displays the status values for all connections to MySQL. With SESSION, it displays the
status values for the current connection. If no modifier is present, the default is SESSION. LOCAL is a synonym for SESSION.

Some status variables have only a global value. For these, you get the same value for both GLOBAL and SESSION. The scope for each
status variable is listed at Section 5.1.5, “Status Variables”.

MySQL Enterprise
Status variables provide valuable clues to the state of your servers. For expert interpretation of the information
provided by status variables, subscribe to the MySQL Enterprise Monitor. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

12.5.4.28. SHOW TABLE STATUS Syntax
SHOW TABLE STATUS [FROM db_name]

[LIKE 'pattern' | WHERE expr]

SHOW TABLE STATUS works likes SHOW TABLES, but provides a lot of information about each table. You can also get this list us-
ing the mysqlshow --status db_name command. The LIKE clause, if present, indicates which table names to match. The
WHERE clause can be given to select rows using more general conditions, as discussed in Section 24.27, “Extensions to SHOW State-
ments”.

This statement also displays information about views.

SQL Statement Syntax

907

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


SHOW TABLE STATUS returns the following fields:

• Name

The name of the table.

• Engine

The storage engine for the table. See Chapter 13, Storage Engines.

• Version

The version number of the table's .frm file.

• Row_format

The row storage format (Fixed, Dynamic, Compressed, Redundant, Compact). The format of InnoDB tables is reported
as Redundant or Compact.

• Rows

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other storage engines, such as InnoDB,
this value is an approximation, and may vary from the actual value by as much as 40 to 50%. In such cases, use SELECT
COUNT(*) to obtain an accurate count.

The Rows value is NULL for tables in the INFORMATION_SCHEMA database.

• Avg_row_length

The average row length.

• Data_length

The length of the data file.

• Max_data_length

The maximum length of the data file. This is the total number of bytes of data that can be stored in the table, given the data pointer
size used.

• Index_length

The length of the index file.

• Data_free

The number of allocated but unused bytes. Beginning with MySQL 5.1.24, this information is also shown for InnoDB tables.
(Bug#32440)

• Auto_increment

The next AUTO_INCREMENT value.

• Create_time

When the table was created.

• Update_time

When the data file was last updated. For some storage engines, this value is NULL. For example, InnoDB stores multiple tables in
its tablespace and the data file timestamp does not apply.

• Check_time

When the table was last checked. Not all storage engines update this time, in which case the value is always NULL.

SQL Statement Syntax

908

http://bugs.mysql.com/32440


• Collation

The table's character set and collation.

• Checksum

The live checksum value (if any).

• Create_options

Extra options used with CREATE TABLE. The original options supplied when CREATE TABLE is called are retained and the op-
tions reported here may differ from the active table settings and options.

• Comment

The comment used when creating the table (or information as to why MySQL could not access the table information).

In the table comment, InnoDB tables report the free space of the tablespace to which the table belongs. For a table located in the shared
tablespace, this is the free space of the shared tablespace. If you are using multiple tablespaces and the table has its own tablespace, the
free space is for only that table. Free space means the number of completely free 1MB extents minus a safety margin. Even if free space
displays as 0, it may be possible to insert rows as long as new extents need not be allocated.

For MEMORY tables, the Data_length, Max_data_length, and Index_length values approximate the actual amount of alloc-
ated memory. The allocation algorithm reserves memory in large amounts to reduce the number of allocation operations.

For NDB Cluster tables, the output of this statement shows appropriate values for the Avg_row_length and Data_length
columns, with the exception that BLOB columns are not taken into account. In addition, the number of replicas is shown in the Com-
ment column (as number_of_replicas).

For views, all the fields displayed by SHOW TABLE STATUS are NULL except that Name indicates the view name and Comment says
view.

12.5.4.29. SHOW TABLES Syntax
SHOW [FULL] TABLES [FROM db_name]

[LIKE 'pattern' | WHERE expr]

SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list using the mysqlshow db_name
command. The LIKE clause, if present, indicates which table names to match. The WHERE clause can be given to select rows using
more general conditions, as discussed in Section 24.27, “Extensions to SHOW Statements”.

This statement also lists any views in the database. The FULL modifier is supported such that SHOW FULL TABLES displays a second
output column. Values for the second column are BASE TABLE for a table and VIEW for a view.

Note

If you have no privileges for a base table or view, it does not show up in the output from SHOW TABLES or mysqlshow
db_name.

12.5.4.30. SHOW TRIGGERS Syntax
SHOW TRIGGERS [FROM db_name]

[LIKE 'pattern' | WHERE expr]

SHOW TRIGGERS lists the triggers currently defined on the MySQL server. This statement requires the TRIGGER privilege (prior to
MySQL 5.1.22, it requires the SUPER privilege). The LIKE clause, if present, indicates which trigger names to match. The WHERE
clause can be given to select rows using more general conditions, as discussed in Section 24.27, “Extensions to SHOW Statements”.

For the trigger ins_sum as defined in Section 21.3, “Using Triggers”, the output of this statement is as shown here:

mysql> SHOW TRIGGERS LIKE 'acc%'\G
*************************** 1. row ***************************

Trigger: ins_sum
Event: INSERT
Table: account

Statement: SET @sum = @sum + NEW.amount

SQL Statement Syntax

909



Timing: BEFORE
Created: NULL

sql_mode:
Definer: myname@localhost

character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci

character_set_client is the session value of the character_set_client system variable when the trigger was created.
collation_connection is the session value of the collation_connection system variable when the trigger was created.
Database Collation is the collation of the database with which the trigger is associated. These columns were added in MySQL
5.1.21.

Note

When using a LIKE clause with SHOW TRIGGERS, the expression to be matched (expr) is compared with the name of
the table on which the trigger is declared, and not with the name of the trigger:

mysql> SHOW TRIGGERS LIKE 'ins%';
Empty set (0.01 sec)

A brief explanation of the columns in the output of this statement is shown here:

• Trigger

The name of the trigger.

• Event

The event that causes trigger activation: one of 'INSERT', 'UPDATE', or 'DELETE'.

• Table

The table for which the trigger is defined.

• Statement

The statement to be executed when the trigger is activated. This is the same as the text shown in the ACTION_STATEMENT column
of INFORMATION_SCHEMA.TRIGGERS.

• Timing

One of the two values 'BEFORE' or 'AFTER'.

• Created

Currently, the value of this column is always NULL.

• sql_mode

The SQL mode in effect when the trigger executes.

• Definer

The account that created the trigger.

See also Section 24.16, “The INFORMATION_SCHEMA TRIGGERS Table”.

12.5.4.31. SHOW VARIABLES Syntax
SHOW [GLOBAL | SESSION] VARIABLES

[LIKE 'pattern' | WHERE expr]

SHOW VARIABLES shows the values of MySQL system variables. This information also can be obtained using the mysqladmin
variables command. The LIKE clause, if present, indicates which variable names to match. The WHERE clause can be given to se-
lect rows using more general conditions, as discussed in Section 24.27, “Extensions to SHOW Statements”.

SQL Statement Syntax

910



With the GLOBAL modifier, SHOW VARIABLES displays the values that are used for new connections to MySQL. With SESSION, it
displays the values that are in effect for the current connection. If no modifier is present, the default is SESSION. LOCAL is a synonym
for SESSION.

If the default system variable values are unsuitable, you can set them using command options when mysqld starts, and most can be
changed at runtime with the SET statement. See Section 5.1.4, “Using System Variables”, and Section 12.5.3, “SET Syntax”.

Partial output is shown here. The list of names and values may be different for your server. Section 5.1.3, “System Variables”, describes
the meaning of each variable, and Section 7.5.2, “Tuning Server Parameters”, provides information about tuning them.

mysql> SHOW VARIABLES;
+---------------------------------+---------------------------+
| Variable_name | Value |
+---------------------------------+---------------------------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
| automatic_sp_privileges | ON |
| back_log | 50 |
| basedir | /home/jon/bin/mysql-5.1/ |
| binlog_cache_size | 32768 |
| bulk_insert_buffer_size | 8388608 |
| character_set_client | latin1 |
| character_set_connection | latin1 |
...
| max_user_connections | 0 |
| max_write_lock_count | 4294967295 |
| multi_range_count | 256 |
| myisam_data_pointer_size | 6 |
| myisam_max_sort_file_size | 2147483647 |
| myisam_recover_options | OFF |
| myisam_repair_threads | 1 |
| myisam_sort_buffer_size | 8388608 |
| ndb_autoincrement_prefetch_sz | 32 |
| ndb_cache_check_time | 0 |
| ndb_force_send | ON |
...
| time_zone | SYSTEM |
| timed_mutexes | OFF |
| tmp_table_size | 33554432 |
| tmpdir | |
| transaction_alloc_block_size | 8192 |
| transaction_prealloc_size | 4096 |
| tx_isolation | REPEATABLE-READ |
| updatable_views_with_limit | YES |
| version | 5.1.6-alpha-log |
| version_comment | Source distribution |
| version_compile_machine | i686 |
| version_compile_os | suse-linux |
| wait_timeout | 28800 |
+---------------------------------+---------------------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the pattern. To obtain the row for a
specific variable, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the “%” wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking, because “_” is a wildcard that
matches any single character, you should escape it as “\_” to match it literally. In practice, this is rarely necessary.

12.5.4.32. SHOW WARNINGS Syntax
SHOW WARNINGS [LIMIT [offset,] row_count]
SHOW COUNT(*) WARNINGS

SHOW WARNINGS shows the error, warning, and note messages that resulted from the last statement that generated messages. It shows
nothing if the last statement used a table and generated no messages. (That is, a statement that uses a table but generates no messages
clears the message list.) Statements that do not use tables and do not generate messages have no effect on the message list.

A related statement, SHOW ERRORS, shows only the errors. See Section 12.5.4.15, “SHOW ERRORS Syntax”.

SQL Statement Syntax

911



The SHOW COUNT(*) WARNINGS statement displays the total number of errors, warnings, and notes. You can also retrieve this num-
ber from the warning_count variable:

SHOW COUNT(*) WARNINGS;
SELECT @@warning_count;

The value of warning_count might be greater than the number of messages displayed by SHOW WARNINGS if the
max_error_count system variable is set so low that not all messages are stored. An example shown later in this section demon-
strates how this can happen.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 12.2.7, “SELECT Syntax”.

The MySQL server sends back the total number of errors, warnings, and notes resulting from the last statement. If you are using the C
API, this value can be obtained by calling mysql_warning_count(). See Section 26.2.3.72, “mysql_warning_count()”.

Warnings are generated for statements such as LOAD DATA INFILE and DML statements such as INSERT, UPDATE, CREATE TA-
BLE, and ALTER TABLE.

The following DROP TABLE statement results in a note:

mysql> DROP TABLE IF EXISTS no_such_table;
mysql> SHOW WARNINGS;
+-------+------+-------------------------------+
| Level | Code | Message |
+-------+------+-------------------------------+
| Note | 1051 | Unknown table 'no_such_table' |
+-------+------+-------------------------------+

Here is a simple example that shows a syntax warning for CREATE TABLE and conversion warnings for INSERT:

mysql> CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4)) TYPE=MyISAM;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Warning
Code: 1287

Message: 'TYPE=storage_engine' is deprecated, use
'ENGINE=storage_engine' instead

1 row in set (0.00 sec)

mysql> INSERT INTO t1 VALUES(10,'mysql'),(NULL,'test'),
-> (300,'Open Source');

Query OK, 3 rows affected, 4 warnings (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 4

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Warning
Code: 1265

Message: Data truncated for column 'b' at row 1
*************************** 2. row ***************************
Level: Warning
Code: 1263

Message: Data truncated, NULL supplied to NOT NULL column 'a' at row 2
*************************** 3. row ***************************
Level: Warning
Code: 1264

Message: Data truncated, out of range for column 'a' at row 3
*************************** 4. row ***************************
Level: Warning
Code: 1265

Message: Data truncated for column 'b' at row 3
4 rows in set (0.00 sec)

The maximum number of error, warning, and note messages to store is controlled by the max_error_count system variable. By de-
fault, its value is 64. To change the number of messages you want stored, change the value of max_error_count. In the following
example, the ALTER TABLE statement produces three warning messages, but only one is stored because max_error_count has
been set to 1:

mysql> SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_error_count | 64 |
+-----------------+-------+
1 row in set (0.00 sec)

SQL Statement Syntax

912



mysql> SET max_error_count=1;
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SELECT @@warning_count;
+-----------------+
| @@warning_count |
+-----------------+
| 3 |
+-----------------+
1 row in set (0.01 sec)

mysql> SHOW WARNINGS;
+---------+------+----------------------------------------+
| Level | Code | Message |
+---------+------+----------------------------------------+
| Warning | 1263 | Data truncated for column 'b' at row 1 |
+---------+------+----------------------------------------+
1 row in set (0.00 sec)

To disable warnings, set max_error_count to 0. In this case, warning_count still indicates how many warnings have occurred,
but none of the messages are stored.

You can set the SQL_NOTES session variable to 0 to cause Note-level warnings not to be recorded.

12.5.5. Other Administrative Statements

12.5.5.1. CACHE INDEX Syntax
CACHE INDEX
tbl_index_list [, tbl_index_list] ...
IN key_cache_name

tbl_index_list:
tbl_name [[INDEX|KEY] (index_name[, index_name] ...)]

The CACHE INDEX statement assigns table indexes to a specific key cache. It is used only for MyISAM tables.

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
| test.t1 | assign_to_keycache | status | OK |
| test.t2 | assign_to_keycache | status | OK |
| test.t3 | assign_to_keycache | status | OK |
+---------+--------------------+----------+----------+

The syntax of CACHE INDEX enables you to specify that only particular indexes from a table should be assigned to the cache. The cur-
rent implementation assigns all the table's indexes to the cache, so there is no reason to specify anything other than the table name.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a parameter setting statement or in the
server parameter settings. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

Key cache parameters can be accessed as members of a structured system variable. See Section 5.1.4.1, “Structured System Variables”.

A key cache must exist before you can assign indexes to it:

mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'

By default, table indexes are assigned to the main (default) key cache created at the server startup. When a key cache is destroyed, all
indexes assigned to it become assigned to the default key cache again.

Index assignment affects the server globally: If one client assigns an index to a given cache, this cache is used for all queries involving
the index, no matter which client issues the queries.

SQL Statement Syntax

913



12.5.5.2. FLUSH Syntax
FLUSH [LOCAL | NO_WRITE_TO_BINLOG]

flush_option [, flush_option] ...

The FLUSH statement clears or reloads various internal caches used by MySQL. To execute FLUSH, you must have the RELOAD priv-
ilege.

The RESET statement is similar to FLUSH. See Section 12.5.5.5, “RESET Syntax”.

flush_option can be any of the following:

• DES_KEY_FILE

Reloads the DES keys from the file that was specified with the --des-key-file option at server startup time.

• HOSTS

Empties the host cache tables. You should flush the host tables if some of your hosts change IP number or if you get the error mes-
sage Host 'host_name' is blocked. When more than max_connect_errors errors occur successively for a given
host while connecting to the MySQL server, MySQL assumes that something is wrong and blocks the host from further connection
requests. Flushing the host tables enables further connection attempts from the host. See Section B.1.2.6, “Host 'host_name'
is blocked”. You can start mysqld with --max_connect_errors=999999999 to avoid this error message.

• LOGS

Closes and reopens all log files. If binary logging is enabled, the sequence number of the binary log file is incremented by one relat-
ive to the previous file. On Unix, this is the same thing as sending a SIGHUP signal to the mysqld server (except on some Mac OS
X 10.3 versions where mysqld ignores SIGHUP and SIGQUIT).

If the server is writing error output to a named file (for example, if it was started with the --log-error option), FLUSH LOGS
causes it to rename the current error log file with a suffix of -old and create a new empty log file. No renaming occurs if the server
is not writing to a named file (for example, if it is writing errors to the console).

• MASTER (DEPRECATED). Deletes all binary logs, resets the binary log index file and creates a new binary log. FLUSH MASTER
is deprecated in favor of RESET MASTER, and is supported for backwards compatibility only. See Section 12.6.1.2, “RESET
MASTER Syntax”.

• PRIVILEGES

Reloads the privileges from the grant tables in the mysql database. On Unix, this also occurs if the server receives a SIGHUP sig-
nal.

• QUERY CACHE

Defragment the query cache to better utilize its memory. FLUSH QUERY CACHE does not remove any queries from the cache, un-
like FLUSH TABLES or RESET QUERY CACHE.

• SLAVE (DEPRECATED). Resets all replication slave parameters, including relay log files and replication position in the master's
binary logs. FLUSH SLAVE is deprecated in favour of RESET SLAVE, and is supported for backwards compatibility only. See
Section 12.6.2.5, “RESET SLAVE Syntax”.

• STATUS

This option adds the current thread's session status variable values to the global values and resets the session values to zero. It also
resets the counters for key caches (default and named) to zero and sets Max_used_conections to the current number of open
connections. This is something you should use only when debugging a query. See Section 1.7, “How to Report Bugs or Problems”.

• {TABLE | TABLES} [tbl_name [, tbl_name] ...]

When no tables are named, closes all open tables, forces all tables in use to be closed, and flushes the query cache. With one or more
table names, flushes only the given tables. FLUSH TABLES also removes all query results from the query cache, like the RESET
QUERY CACHE statement.

• TABLES WITH READ LOCK

SQL Statement Syntax

914



Closes all open tables and locks all tables for all databases with a read lock until you explicitly release the lock by executing UN-
LOCK TABLES. This is very convenient way to get backups if you have a filesystem such as Veritas that can take snapshots in
time.

FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not subject to the same behavior as
LOCK TABLES and UNLOCK TABLES with respect to table locking and implicit commits:

• UNLOCK TABLES implicitly commits any active transaction only if any tables currently have been locked with LOCK
TABLES. The commit does not occur for UNLOCK TABLES following FLUSH TABLES WITH READ LOCK because the lat-
ter statement does not acquire table locks.

• Beginning a transaction causes table locks acquired with LOCK TABLES to be released, as though you had executed UNLOCK
TABLES. Beginning a transaction does not release a global read lock acquired with FLUSH TABLES WITH READ LOCK.

• USER_RESOURCES

Resets all per-hour user resources to zero. This enables clients that have reached their hourly connection, query, or update limits to
resume activity immediately. FLUSH USER_RESOURCES does not apply to the limit on maximum simultaneous connections. See
Section 12.5.1.3, “GRANT Syntax”.

By default, FLUSH statements are written to the binary log. Such statements used on a MySQL server acting as a replication master will
be replicated to replication slaves. Logging can be suppressed with the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

See also Section 12.5.5.5, “RESET Syntax”, for information about how the RESET statement is used with replication.

Note

FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ LOCK are not written to the
binary log in any case because they would cause problems if replicated to a slave.

The mysqladmin utility provides a command-line interface to some flush operations, via the flush-hosts, flush-logs,
flush-privileges, flush-status, and flush-tables commands.

Note

It is not possible in MySQL 5.1 to issue FLUSH statements within stored functions or triggers. However, you may use
FLUSH in stored procedures, so long as these are not called from stored functions or triggers. See Section D.1,
“Restrictions on Stored Routines, Triggers, and Events”.

12.5.5.3. KILL Syntax
KILL [CONNECTION | QUERY] thread_id

Each connection to mysqld runs in a separate thread. You can see which threads are running with the SHOW PROCESSLIST state-
ment and kill a thread with the KILL thread_id statement.

KILL allows the optional CONNECTION or QUERY modifier:

• KILL CONNECTION is the same as KILL with no modifier: It terminates the connection associated with the given thread_id.

• KILL QUERY terminates the statement that the connection is currently executing, but leaves the connection itself intact.

If you have the PROCESS privilege, you can see all threads. If you have the SUPER privilege, you can kill all threads and statements.
Otherwise, you can see and kill only your own threads and statements.

You can also use the mysqladmin processlist and mysqladmin kill commands to examine and kill threads.

Note

You cannot use KILL with the Embedded MySQL Server library, because the embedded server merely runs inside the
threads of the host application. It does not create any connection threads of its own.

SQL Statement Syntax

915



When you use KILL, a thread-specific kill flag is set for the thread. In most cases, it might take some time for the thread to die, because
the kill flag is checked only at specific intervals:

• In SELECT, ORDER BY and GROUP BY loops, the flag is checked after reading a block of rows. If the kill flag is set, the statement
is aborted.

• During ALTER TABLE, the kill flag is checked before each block of rows are read from the original table. If the kill flag was set,
the statement is aborted and the temporary table is deleted.

• During UPDATE or DELETE operations, the kill flag is checked after each block read and after each updated or deleted row. If the
kill flag is set, the statement is aborted. Note that if you are not using transactions, the changes are not rolled back.

• GET_LOCK() aborts and returns NULL.

• An INSERT DELAYED thread quickly flushes (inserts) all rows it has in memory and then terminates.

• If the thread is in the table lock handler (state: Locked), the table lock is quickly aborted.

• If the thread is waiting for free disk space in a write call, the write is aborted with a “disk full” error message.

•
Warning

Killing a REPAIR TABLE or OPTIMIZE TABLE operation on a MyISAM table results in a table that is corrupted and
unusable. Any reads or writes to such a table fail until you optimize or repair it again (without interruption).

12.5.5.4. LOAD INDEX INTO CACHE Syntax
LOAD INDEX INTO CACHE
tbl_index_list [, tbl_index_list] ...

tbl_index_list:
tbl_name
[[INDEX|KEY] (index_name[, index_name] ...)]
[IGNORE LEAVES]

The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it has been assigned by an explicit
CACHE INDEX statement, or into the default key cache otherwise. LOAD INDEX INTO CACHE is used only for MyISAM tables. It
is not supported for tables having user-defined partitioning (see Section 18.5, “Restrictions and Limitations on Partitioning”.)

The IGNORE LEAVES modifier causes only blocks for the non-leaf nodes of the index to be preloaded.

The following statement preloads nodes (index blocks) of indexes for the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

This statement preloads all index blocks from t1. It preloads only blocks for the non-leaf nodes from t2.

The syntax of LOAD INDEX INTO CACHE enables you to specify that only particular indexes from a table should be preloaded. The
current implementation preloads all the table's indexes into the cache, so there is no reason to specify anything other than the table
name.

LOAD INDEX INTO CACHE ... IGNORE LEAVES fails unless all indexes in a table have the same block size. (Prior to MySQL
5.1.19, it fails even without IGNORE LEAVES.) You can determine index block sizes for a table by using myisamchk -dv and
checking the Blocksize column.

12.5.5.5. RESET Syntax
RESET reset_option [, reset_option] ...

SQL Statement Syntax

916



The RESET statement is used to clear the state of various server operations. You must have the RELOAD privilege to execute RESET.

RESET acts as a stronger version of the FLUSH statement. See Section 12.5.5.2, “FLUSH Syntax”.

reset_option can be any of the following:

• MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates a new binary log file.

• QUERY CACHE

Removes all query results from the query cache.

• SLAVE

Makes the slave forget its replication position in the master binary logs. Also resets the relay log by deleting any existing relay log
files and beginning a new one.

12.6. Replication Statements
This section describes SQL statements related to replication. One group of statements is used for controlling master servers. The other is
used for controlling slave servers.

12.6.1. SQL Statements for Controlling Master Servers
Replication can be controlled through the SQL interface. This section discusses statements for managing master replication servers.
Section 12.6.2, “SQL Statements for Controlling Slave Servers”, discusses statements for managing slave servers.

12.6.1.1. PURGE MASTER LOGS Syntax
PURGE {MASTER | BINARY} LOGS TO 'log_name'
PURGE {MASTER | BINARY} LOGS BEFORE 'date'

Deletes all the binary logs listed in the log index prior to the specified log or date. The logs also are removed from the list recorded in
the log index file, so that the given log becomes the first.

This statement has no effect if the --log-bin option has not been enabled.

Example:

PURGE MASTER LOGS TO 'mysql-bin.010';
PURGE MASTER LOGS BEFORE '2003-04-02 22:46:26';

The BEFORE variant's date argument can be in 'YYYY-MM-DD hh:mm:ss' format. MASTER and BINARY are synonyms.

This statement is safe to run while slaves are replicating. You do not need to stop them. If you have an active slave that currently is
reading one of the logs you are trying to delete, this statement does nothing and fails with an error. However, if a slave is dormant and
you happen to purge one of the logs it has yet to read, the slave will be unable to replicate after it comes up.

To safely purge logs, follow this procedure:

1. On each slave server, use SHOW SLAVE STATUS to check which log it is reading.

2. Obtain a listing of the binary logs on the master server with SHOW BINARY LOGS.

3. Determine the earliest log among all the slaves. This is the target log. If all the slaves are up to date, this is the last log on the list.

4. Make a backup of all the logs you are about to delete. (This step is optional, but always advisable.)

5. Purge all logs up to but not including the target log.

SQL Statement Syntax

917



You can also set the expire_logs_days system variable to expire binary log files automatically after a given number of days (see
Section 5.1.3, “System Variables”). If you are using replication, you should set the variable no lower than the maximum number of days
your slaves might lag behind the master.

Prior to MySQL 5.1.24, PURGE BINARY LOGS TO and PURGE BINARY LOGS BEFORE did not behave in the same way (and
neither one behaved correctly) when binary log files listed in the .index file had been removed from the system by some other means
(such as using rm on Linux). Beginning with MySQL 5.1.24, both variants of the statement fail with an error in such cases.
(Bug#18199, Bug#18453) You can handle such errors by editing the .index file (which is a simple text file) manually and insuring
that it lists only the binlog files that are actually present, then running again the PURGE BINARY LOGS statement that failed.

12.6.1.2. RESET MASTER Syntax
RESET MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates a new binary log file.

12.6.1.3. SET SQL_LOG_BIN Syntax
SET SQL_LOG_BIN = {0|1}

Disables or enables binary logging for the current connection (SQL_LOG_BIN is a session variable) if the client has the SUPER priv-
ilege. The statement is refused with an error if the client does not have that privilege.

12.6.1.4. SHOW BINLOG EVENTS Syntax
SHOW BINLOG EVENTS

[IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify 'log_name', the first binary log is displayed.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 12.2.7, “SELECT Syntax”.

Note

Issuing a SHOW BINLOG EVENTS with no LIMIT clause could start a very time- and resource-consuming process be-
cause the server returns to the client the complete contents of the binary log (which includes all statements executed by the
server that modify data). As an alternative to SHOW BINLOG EVENTS, use the mysqlbinlog utility to save the binary
log to a text file for later examination and analysis. See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary
Log Files”.

Note

Events relating to the setting of variables is not included in the output generated when calling SHOW BINLOG EVENTS.
To get complete coverage of events within a binary log, use mysqlbinlog.

12.6.1.5. SHOW BINARY LOGS Syntax
SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as part of the procedure described in Section 12.6.1.1, “PURGE MASTER
LOGS Syntax”, that shows how to determine which logs can be purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

SHOW MASTER LOGS is equivalent to SHOW BINARY LOGS.

12.6.1.6. SHOW MASTER STATUS Syntax

SQL Statement Syntax

918

http://bugs.mysql.com/18199
http://bugs.mysql.com/18453


SHOW MASTER STATUS

Provides status information about the binary log files of the master. Example:

mysql> SHOW MASTER STATUS;
+---------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+---------------+----------+--------------+------------------+
| mysql-bin.003 | 73 | test | manual,mysql |
+---------------+----------+--------------+------------------+

12.6.1.7. SHOW SLAVE HOSTS Syntax
SHOW SLAVE HOSTS

Displays a list of replication slaves currently registered with the master. Only slaves started with the
--report-host=slave_name option are visible in this list.

The list is displayed on any server (not just the master server). The output looks like this:

mysql> SHOW SLAVE HOSTS;
+------------+-----------+------+-----------+
| Server_id | Host | Port | Master_id |
+------------+-----------+------+-----------+
| 192168010 | iconnect2 | 3306 | 192168011 |
| 1921680101 | athena | 3306 | 192168011 |
+------------+-----------+------+-----------+

• Server_id: The unique server ID of the slave server, as configured in the server's option file, or on the command line with -
-server-id=value.

• Host: The host name of the slave server, as configured in the server's option file, or on the command line with
--report-host=value. Note that this can differ from the machine name as configured in the operating system.

• Port: The port the slave server is listening on.

• Master_id: The unique server ID of the master server that the slave server is replicating from.

Some MySQL versions report another variable, Rpl_recovery_rank. This variable was never used, and was eventually removed.

12.6.2. SQL Statements for Controlling Slave Servers
Replication can be controlled through the SQL interface. This section discusses statements for managing slave replication servers. Sec-
tion 12.6.1, “SQL Statements for Controlling Master Servers”, discusses statements for managing master servers.

12.6.2.1. CHANGE MASTER TO Syntax
CHANGE MASTER TO master_def [, master_def] ...

master_def:
MASTER_BIND = 'interface_name'

| MASTER_HOST = 'host_name'
| MASTER_USER = 'user_name'
| MASTER_PASSWORD = 'password'
| MASTER_PORT = port_num
| MASTER_CONNECT_RETRY = count
| MASTER_HEARTBEAT_PERIOD = interval
| MASTER_LOG_FILE = 'master_log_name'
| MASTER_LOG_POS = master_log_pos
| RELAY_LOG_FILE = 'relay_log_name'
| RELAY_LOG_POS = relay_log_pos
| MASTER_SSL = {0|1}
| MASTER_SSL_CA = 'ca_file_name'
| MASTER_SSL_CAPATH = 'ca_directory_name'
| MASTER_SSL_CERT = 'cert_file_name'
| MASTER_SSL_KEY = 'key_file_name'
| MASTER_SSL_CIPHER = 'cipher_list'
| MASTER_SSL_VERIFY_SERVER_CERT = {0|1}

SQL Statement Syntax

919



CHANGE MASTER TO changes the parameters that the slave server uses for connecting to and communicating with the master server.
It also updates the contents of the master.info and relay-log.info files.

MASTER_USER, MASTER_PASSWORD, MASTER_SSL, MASTER_SSL_CA, MASTER_SSL_CAPATH, MASTER_SSL_CERT, MAS-
TER_SSL_KEY, MASTER_SSL_CIPHER, and MASTER_SSL_VERIFY_SERVER_CERT provide information to the slave about how
to connect to its master. MASTER_SSL_VERIFY_SERVER_CERT was added in MySQL 5.1.18. It is used as described for the -
-ssl-verify-server-cert option in Section 5.5.7.3, “SSL Command Options”.

The SSL options (MASTER_SSL, MASTER_SSL_CA, MASTER_SSL_CAPATH, MASTER_SSL_CERT, MASTER_SSL_KEY, MAS-
TER_SSL_CIPHER), and MASTER_SSL_VERIFY_SERVER_CERT can be changed even on slaves that are compiled without SSL
support. They are saved to the master.info file, but are ignored unless you use a server that has SSL support enabled.

If you don't specify a given parameter, it keeps its old value, except as indicated in the following discussion. For example, if the pass-
word to connect to your MySQL master has changed, you just need to issue these statements to tell the slave about the new password:

STOP SLAVE; -- if replication was running
CHANGE MASTER TO MASTER_PASSWORD='new3cret';
START SLAVE; -- if you want to restart replication

There is no need to specify the parameters that do not change (host, port, user, and so forth).

MASTER_HOST and MASTER_PORT are the hostname (or IP address) of the master host and its TCP/IP port. Note that if MAS-
TER_HOST is equal to localhost, then, like in other parts of MySQL, the port number might be ignored.

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edition
only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade Edi-
tion”.

MASTER_BIND is for use on replication slaves having multiple network interfaces, and determines which of the slave's network inter-
faces is chosen for connecting to the master. It is also possible to determine which network interface is to be used in such cases by start-
ing the slave mysqld process with the --master-bind option.

The ability to bind a replication slave to specific network interface was added in MySQL 5.1.22-ndb-6.3.4.

MASTER_HEARTBEAT_PERIOD is used to set the interval in seconds between replication heartbeats. Whenever the master's binlog is
updated with an event, the waiting period for the next heartbeat is reset. interval is a decimal value having the range 0 to 4294967
seconds and a resolution to hundredths of a second; the smallest nonzero value is 0.001. Heartbeats are sent by the master only if there
are no unsent events in the binlog file for a period longer than interval.

Setting interval to 0 disables heartbeats altogether. The default value for interval is equal to the value of
slave_net_timeout divided by 2.

Note

Setting @@global.slave_net_timeout to a value less than that of the current heartbeat interval results in a warning
being issued.

Issuing RESET SLAVE resets the hearbeat interval to the default.

MASTER_HEARTBEAT_PERIOD was added in MySQL 5.1.22-ndb-6.3.4.

The following information applies to all MySQL users.

Note

Replication cannot use Unix socket files. You must be able to connect to the master MySQL server using TCP/IP.

If you specify MASTER_HOST or MASTER_PORT, the slave assumes that the master server is different from before (even if you specify
a host or port value that is the same as the current value.) In this case, the old values for the master binary log name and position are
considered no longer applicable, so if you do not specify MASTER_LOG_FILE and MASTER_LOG_POS in the statement, MAS-
TER_LOG_FILE='' and MASTER_LOG_POS=4 are silently appended to it.

MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the slave I/O thread should begin reading from the master
the next time the thread starts. If you specify either of them, you cannot specify RELAY_LOG_FILE or RELAY_LOG_POS. If neither
of MASTER_LOG_FILE or MASTER_LOG_POS are specified, the slave uses the last coordinates of the slave SQL thread before
CHANGE MASTER was issued. This ensures that there is no discontinuity in replication, even if the slave SQL thread was late com-

SQL Statement Syntax

920



pared to the slave I/O thread, when you merely want to change, say, the password to use.

CHANGE MASTER deletes all relay log files and starts a new one, unless you specify RELAY_LOG_FILE or RELAY_LOG_POS. In
that case, relay logs are kept; the relay_log_purge global variable is set silently to 0.

CHANGE MASTER is useful for setting up a slave when you have the snapshot of the master and have recorded the log and the offset
corresponding to it. After loading the snapshot into the slave, you can run CHANGE MASTER TO
MASTER_LOG_FILE='log_name_on_master', MASTER_LOG_POS=log_offset_on_master on the slave.

The following example changes the master and master's binary log coordinates. This is used when you want to set up the slave to replic-
ate the master:

CHANGE MASTER TO
MASTER_HOST='master2.mycompany.com',
MASTER_USER='replication',
MASTER_PASSWORD='bigs3cret',
MASTER_PORT=3306,
MASTER_LOG_FILE='master2-bin.001',
MASTER_LOG_POS=4,
MASTER_CONNECT_RETRY=10;

The next example shows an operation that is less frequently employed. It is used when the slave has relay logs that you want it to ex-
ecute again for some reason. To do this, the master need not be reachable. You need only use CHANGE MASTER TO and start the SQL
thread (START SLAVE SQL_THREAD):

CHANGE MASTER TO
RELAY_LOG_FILE='slave-relay-bin.006',
RELAY_LOG_POS=4025;

You can even use the second operation in a non-replication setup with a standalone, non-slave server for recovery following a crash.
Suppose that your server has crashed and you have restored a backup. You want to replay the server's own binary logs (not relay logs,
but regular binary logs), named (for example) myhost-bin.*. First, make a backup copy of these binary logs in some safe place, in
case you don't exactly follow the procedure below and accidentally have the server purge the binary logs. Use SET GLOBAL re-
lay_log_purge=0 for additional safety. Then start the server without the --log-bin option, Instead, use the -
-replicate-same-server-id, --relay-log=myhost-bin (to make the server believe that these regular binary logs are re-
lay logs) and --skip-slave-start options. After the server starts, issue these statements:

CHANGE MASTER TO
RELAY_LOG_FILE='myhost-bin.153',
RELAY_LOG_POS=410,
MASTER_HOST='some_dummy_string';

START SLAVE SQL_THREAD;

The server reads and executes its own binary logs, thus achieving crash recovery. Once the recovery is finished, run STOP SLAVE,
shut down the server, delete the master.info and relay-log.info files, and restart the server with its original options.

Specifying the MASTER_HOST option (even with a dummy value) is required to make the server think it is a slave.

12.6.2.2. LOAD DATA FROM MASTER Syntax
LOAD DATA FROM MASTER

This feature is deprecated. We recommend not using it anymore. It is subject to removal in a future version of MySQL.

Since the current implementation of LOAD DATA FROM MASTER and LOAD TABLE FROM MASTER is very limited, these state-
ments are deprecated in versions 4.1 of MySQL and above. We will introduce a more advanced technique (called “online backup”) in a
future version. That technique will have the additional advantage of working with more storage engines.

For MySQL 5.1 and earlier, the recommended alternative solution to using LOAD DATA FROM MASTER or LOAD TABLE FROM
MASTER is using mysqldump or mysqlhotcopy. The latter requires Perl and two Perl modules (DBI and DBD:mysql) and works
for MyISAM and ARCHIVE tables only. With mysqldump, you can create SQL dumps on the master and pipe (or copy) these to a
mysql client on the slave. This has the advantage of working for all storage engines, but can be quite slow, since it works using SE-
LECT.

This statement takes a snapshot of the master and copies it to the slave. It updates the values of MASTER_LOG_FILE and MAS-
TER_LOG_POS so that the slave starts replicating from the correct position. Any table and database exclusion rules specified with the -
-replicate-*-do-* and --replicate-*-ignore-* options are honored. --replicate-rewrite-db is not taken into
account because a user could use this option to set up a non-unique mapping such as --replicate-rewrite-db="db1->db3"

SQL Statement Syntax

921



and --replicate-rewrite-db="db2->db3", which would confuse the slave when loading tables from the master.

Use of this statement is subject to the following conditions:

• It works only for MyISAM tables. Attempting to load a non-MyISAM table results in the following error:

ERROR 1189 (08S01): Net error reading from master

• It acquires a global read lock on the master while taking the snapshot, which prevents updates on the master during the load opera-
tion.

If you are loading large tables, you might have to increase the values of net_read_timeout and net_write_timeout on both
the master and slave servers. See Section 5.1.3, “System Variables”.

Note that LOAD DATA FROM MASTER does not copy any tables from the mysql database. This makes it easy to have different users
and privileges on the master and the slave.

To use LOAD DATA FROM MASTER, the replication account that is used to connect to the master must have the RELOAD and SUPER
privileges on the master and the SELECT privilege for all master tables you want to load. All master tables for which the user does not
have the SELECT privilege are ignored by LOAD DATA FROM MASTER. This is because the master hides them from the user: LOAD
DATA FROM MASTER calls SHOW DATABASES to know the master databases to load, but SHOW DATABASES returns only data-
bases for which the user has some privilege. See Section 12.5.4.12, “SHOW DATABASES Syntax”. On the slave side, the user that is-
sues LOAD DATA FROM MASTER must have privileges for dropping and creating the databases and tables that are copied.

12.6.2.3. LOAD TABLE tbl_name FROM MASTER Syntax
LOAD TABLE tbl_name FROM MASTER

This feature is deprecated. We recommend not using it anymore. It is subject to removal in a future version of MySQL.

Since the current implementation of LOAD DATA FROM MASTER and LOAD TABLE FROM MASTER is very limited, these state-
ments are deprecated in versions 4.1 of MySQL and above. We will introduce a more advanced technique (called “online backup”) in a
future version. That technique will have the additional advantage of working with more storage engines.

For MySQL 5.1 and earlier, the recommended alternative solution to using LOAD DATA FROM MASTER or LOAD TABLE FROM
MASTER is using mysqldump or mysqlhotcopy. The latter requires Perl and two Perl modules (DBI and DBD:mysql) and works
for MyISAM and ARCHIVE tables only. With mysqldump, you can create SQL dumps on the master and pipe (or copy) these to a
mysql client on the slave. This has the advantage of working for all storage engines, but can be quite slow, since it works using SE-
LECT.

Transfers a copy of the table from the master to the slave. This statement is implemented mainly debugging LOAD DATA FROM
MASTER operations. To use LOAD TABLE, the account used for connecting to the master server must have the RELOAD and SUPER
privileges on the master and the SELECT privilege for the master table to load. On the slave side, the user that issues LOAD TABLE
FROM MASTER must have privileges for dropping and creating the table.

The conditions for LOAD DATA FROM MASTER apply here as well. For example, LOAD TABLE FROM MASTER works only for
MyISAM tables. The timeout notes for LOAD DATA FROM MASTER apply as well.

12.6.2.4. MASTER_POS_WAIT() Syntax
SELECT MASTER_POS_WAIT('master_log_file', master_log_pos)

This is actually a function, not a statement. It is used to ensure that the slave has read and executed events up to a given position in the
master's binary log. See Section 11.11.4, “Miscellaneous Functions”, for a full description.

12.6.2.5. RESET SLAVE Syntax
RESET SLAVE

RESET SLAVE makes the slave forget its replication position in the master's binary logs. This statement is meant to be used for a clean
start: It deletes the master.info and relay-log.info files, all the relay logs, and starts a new relay log.

SQL Statement Syntax

922



Note

All relay logs are deleted, even if they have not been completely executed by the slave SQL thread. (This is a condition
likely to exist on a replication slave if you have issued a STOP SLAVE statement or if the slave is highly loaded.)

Connection information stored in the master.info file is immediately reset using any values specified in the corresponding startup
options. This information includes values such as master host, master port, master user, and master password. If the slave SQL thread
was in the middle of replicating temporary tables when it was stopped, and RESET SLAVE is issued, these replicated temporary tables
are deleted on the slave.

12.6.2.6. SET GLOBAL SQL_SLAVE_SKIP_COUNTER Syntax
SET GLOBAL SQL_SLAVE_SKIP_COUNTER = N

This statement skips the next N events from the master. This is useful for recovering from replication stops caused by a statement.

This statement is valid only when the slave thread is not running. Otherwise, it produces an error.

12.6.2.7. SHOW SLAVE STATUS Syntax
SHOW SLAVE STATUS

This statement provides status information on essential parameters of the slave threads. If you issue this statement using the mysql cli-
ent, you can use a \G statement terminator rather than a semicolon to obtain a more readable vertical layout:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************

Slave_IO_State: Waiting for master to send event
Master_Host: localhost
Master_User: root
Master_Port: 3306

Connect_Retry: 3
Master_Log_File: gbichot-bin.005

Read_Master_Log_Pos: 79
Relay_Log_File: gbichot-relay-bin.005
Relay_Log_Pos: 548

Relay_Master_Log_File: gbichot-bin.005
Slave_IO_Running: Yes

Slave_SQL_Running: Yes
Replicate_Do_DB:

Replicate_Ignore_DB:
Last_Errno: 0
Last_Error:

Skip_Counter: 0
Exec_Master_Log_Pos: 79

Relay_Log_Space: 552
Until_Condition: None
Until_Log_File:
Until_Log_Pos: 0

Master_SSL_Allowed: No
Master_SSL_CA_File:
Master_SSL_CA_Path:

Master_SSL_Cert:
Master_SSL_Cipher:

Master_SSL_Key:
Seconds_Behind_Master: 8

Master_SSL_Verify_Server_Cert: No
Last_IO_Errno: 0
Last_IO_Error:
Last_SQL_Errno: 0
Last_SQL_Error:

SHOW SLAVE STATUS returns the following fields:

• Slave_IO_State

A copy of the State field of the output of SHOW PROCESSLIST for the slave I/O thread. This tells you what the thread is doing:
trying to connect to the master, waiting for events from the master, reconnecting to the master, and so on. Possible states are listed in
Section 16.4.1, “Replication Implementation Details”. It is necessary to check this field for older versions of MySQL which allowed
the thread to continue running while unsuccessfully trying to connect to the master. If it is running, there is no problem; if it is not,
you can find the error in the Last_Error field (described below).

SQL Statement Syntax

923



• Master_Host

The current master host.

• Master_User

The current user used to connect to the master.

• Master_Port

The current master port.

• Connect_Retry

The number of seconds between connect retries (default 60). This may be set with the CHANGE MASTER TO statement or -
-master-connect-retry option.

• Master_Log_File

The name of the master binary log file from which the I/O thread is currently reading.

• Read_Master_Log_Pos

The position up to which the I/O thread has read in the current master binary log.

• Relay_Log_File

The name of the relay log file from which the SQL thread is currently reading and executing.

• Relay_Log_Pos

The position up to which the SQL thread has read and executed in the current relay log.

• Relay_Master_Log_File

The name of the master binary log file containing the most recent event executed by the SQL thread.

• Slave_IO_Running

Whether the I/O thread is started and has connected successfully to the master. For older versions of MySQL (prior to 4.1.14 and
5.0.12) Slave_IO_Running is YES if the I/O thread is started, even if the slave hasn't connected to the master yet.

• Slave_SQL_Running

Whether the SQL thread is started.

• Replicate_Do_DB, Replicate_Ignore_DB

The lists of databases that were specified with the --replicate-do-db and --replicate-ignore-db options, if any.

• Replicate_Do_Table, Replicate_Ignore_Table, Replicate_Wild_Do_Table, Replic-
ate_Wild_Ignore_Table

The lists of tables that were specified with the --replicate-do-table, --replicate-ignore-table, -
-replicate-wild-do-table, and --replicate-wild-ignore_table options, if any.

• Last_Errno, Last_Error

As of MySQL 5.1.20, these columns are aliases for Last_SQL_Errno and Last_SQL_Error. Before 5.1.20, they indicate the
error number and error message returned by the most recently executed statement. An error number of 0 and message of the empty
string mean “no error.” If the Last_Error value is not empty, it also appears as a message in the slave's error log.

• Skip_Counter

The most recently used value for SQL_SLAVE_SKIP_COUNTER.

• Exec_Master_Log_Pos

SQL Statement Syntax

924



The position of the last event executed by the SQL thread from the master's binary log (Relay_Master_Log_File). (Re-
lay_Master_Log_File, Exec_Master_Log_Pos) in the master's binary log corresponds to (Relay_Log_File, Re-
lay_Log_Pos) in the relay log.

• Relay_Log_Space

The total combined size of all existing relay logs.

• Until_Condition, Until_Log_File, Until_Log_Pos

The values specified in the UNTIL clause of the START SLAVE statement.

Until_Condition has these values:

• None if no UNTIL clause was specified

• Master if the slave is reading until a given position in the master's binary logs

• Relay if the slave is reading until a given position in its relay logs

Until_Log_File and Until_Log_Pos indicate the log filename and position values that define the point at which the SQL
thread stops executing.

• Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Master_SSL_Cert, Mas-
ter_SSL_Cipher, Master_SSL_Key

These fields show the SSL parameters used by the slave to connect to the master, if any.

Master_SSL_Allowed has these values:

• Yes if an SSL connection to the master is permitted

• No if an SSL connection to the master is not permitted

• Ignored if an SSL connection is permitted but the slave server does not have SSL support enabled

The values of the other SSL-related fields correspond to the values of the MASTER_SSL_CA, MASTER_SSL_CAPATH, MAS-
TER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_KEY, and MASTER_SSL_VERIFY_SERVER_CERT options to the
CHANGE MASTER statement. See Section 12.6.2.1, “CHANGE MASTER TO Syntax”. MASTER_SSL_VERIFY_SERVER_CERT
was added in MySQL 5.1.18.

• Seconds_Behind_Master

This field is an indication of how “late” the slave is:

• When the slave SQL thread is actively running (processing updates), this field is the number of seconds that have elapsed since
the timestamp of the most recent event on the master executed by that thread.

• When the SQL thread has caught up to the slave I/O thread and goes idle waiting for more events from the I/O thread, this field
is zero.

In essence, this field measures the time difference in seconds between the slave SQL thread and the slave I/O thread.

If the network connection between master and slave is fast, the slave I/O thread is very close to the master, so this field is a good ap-
proximation of how late the slave SQL thread is compared to the master. If the network is slow, this is not a good approximation;
the slave SQL thread may quite often be caught up with the slow-reading slave I/O thread, so Seconds_Behind_Master often
shows a value of 0, even if the I/O thread is late compared to the master. In other words, this column is useful only for fast networks.

This time difference computation works even though the master and slave do not have identical clocks (the clock difference is com-
puted when the slave I/O thread starts, and assumed to remain constant from then on). Seconds_Behind_Master is NULL
(which means “unknown”) if the slave SQL thread is not running, or if the slave I/O thread is not running or not connected to mas-
ter. For example if the slave I/O thread is sleeping for the number of seconds given by the CHANGE MASTER TO statement or -
-master-connect-retry option (default 60) before reconnecting, NULL is shown, as the slave cannot know what the master
is doing, and so cannot say reliably how late it is.

SQL Statement Syntax

925



This field has one limitation. The timestamp is preserved through replication, which means that, if a master M1 is itself a slave of
M0, any event from M1's binlog which originates in replicating an event from M0's binlog has the timestamp of that event. This en-
ables MySQL to replicate TIMESTAMP successfully. However, the drawback for Seconds_Behind_Master is that if M1 also
receives direct updates from clients, the value randomly deviates, because sometimes the last M1's event is from M0 and sometimes
it is the most recent timestamp from a direct update.

• Last_IO_Errno, Last_IO_Error

The error number and error message of the last error that caused the I/O thread to stop. An error number of 0 and message of the
empty string mean “no error.” If the Last_IO_Error value is not empty, it also appears as a message in the slave's error log.
These columns were added in MySQL 5.1.20.

• Last_SQL_Errno, Last_SQL_Error

The error number and error message of the last error that caused the SQL thread to stop. An error number of 0 and message of the
empty string mean “no error.” If the Last_IO_Error value is not empty, it also appears as a message in the slave's error log.
These columns were added in MySQL 5.1.20.

Example:

Last_SQL_Errno: 1051
Last_SQL_Error: error 'Unknown table 'z'' on query 'drop table z'

The message indicates that the table z existed on the master and was dropped there, but it did not exist on the slave, so DROP TA-
BLE failed on the slave. (This might occur, for example, if you forget to copy the table to the slave when setting up replication.)

12.6.2.8. START SLAVE Syntax
START SLAVE [thread_type [, thread_type] ... ]
START SLAVE [SQL_THREAD] UNTIL

MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
START SLAVE [SQL_THREAD] UNTIL

RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos

thread_type: IO_THREAD | SQL_THREAD

START SLAVE with no thread_type options starts both of the slave threads. The I/O thread reads queries from the master server
and stores them in the relay log. The SQL thread reads the relay log and executes the queries. START SLAVE requires the SUPER priv-
ilege.

If START SLAVE succeeds in starting the slave threads, it returns without any error. However, even in that case, it might be that the
slave threads start and then later stop (for example, because they do not manage to connect to the master or read its binary logs, or some
other problem). START SLAVE does not warn you about this. You must check the slave's error log for error messages generated by the
slave threads, or check that they are running satisfactorily with SHOW SLAVE STATUS.

You can add IO_THREAD and SQL_THREAD options to the statement to name which of the threads to start.

An UNTIL clause may be added to specify that the slave should start and run until the SQL thread reaches a given point in the master
binary logs or in the slave relay logs. When the SQL thread reaches that point, it stops. If the SQL_THREAD option is specified in the
statement, it starts only the SQL thread. Otherwise, it starts both slave threads. If the SQL thread is running, the UNTIL clause is ig-
nored and a warning is issued.

For an UNTIL clause, you must specify both a log filename and position. Do not mix master and relay log options.

Any UNTIL condition is reset by a subsequent STOP SLAVE statement, a START SLAVE statement that includes no UNTIL clause,
or a server restart.

The UNTIL clause can be useful for debugging replication, or to cause replication to proceed until just before the point where you want
to avoid having the slave replicate a statement. For example, if an unwise DROP TABLE statement was executed on the master, you can
use UNTIL to tell the slave to execute up to that point but no farther. To find what the event is, use mysqlbinlog with the master
logs or slave relay logs, or by using a SHOW BINLOG EVENTS statement.

If you are using UNTIL to have the slave process replicated queries in sections, it is recommended that you start the slave with the -
-skip-slave-start option to prevent the SQL thread from running when the slave server starts. It is probably best to use this op-

SQL Statement Syntax

926



tion in an option file rather than on the command line, so that an unexpected server restart does not cause it to be forgotten.

The SHOW SLAVE STATUS statement includes output fields that display the current values of the UNTIL condition.

In old versions of MySQL (before 4.0.5), this statement was called SLAVE START. This usage is still accepted in MySQL 5.1 for
backward compatibility, but is deprecated.

12.6.2.9. STOP SLAVE Syntax
STOP SLAVE [thread_type [, thread_type] ... ]

thread_type: IO_THREAD | SQL_THREAD

Stops the slave threads. STOP SLAVE requires the SUPER privilege.

Like START SLAVE, this statement may be used with the IO_THREAD and SQL_THREAD options to name the thread or threads to be
stopped.

In old versions of MySQL (before 4.0.5), this statement was called SLAVE STOP. This usage is still accepted in MySQL 5.1 for back-
ward compatibility, but is deprecated.

12.7. SQL Syntax for Prepared Statements
MySQL 5.1 provides support for server-side prepared statements. This support takes advantage of the efficient client/server binary pro-
tocol implemented in MySQL 4.1, provided that you use an appropriate client programming interface. Candidate interfaces include the
MySQL C API client library (for C programs), MySQL Connector/J (for Java programs), and MySQL Connector/NET. For example,
the C API provides a set of function calls that make up its prepared statement API. See Section 26.2.4, “C API Prepared Statements”.
Other language interfaces can provide support for prepared statements that use the binary protocol by linking in the C client library, one
example being the mysqli extension, available in PHP 5.0 and later.

An alternative SQL interface to prepared statements is available. This interface is not as efficient as using the binary protocol through a
prepared statement API, but requires no programming because it is available directly at the SQL level:

• You can use it when no programming interface is available to you.

• You can use it from any program that allows you to send SQL statements to the server to be executed, such as the mysql client pro-
gram.

• You can use it even if the client is using an old version of the client library. The only requirement is that you be able to connect to a
server that is recent enough to support SQL syntax for prepared statements.

SQL syntax for prepared statements is intended to be used for situations such as these:

• You want to test how prepared statements work in your application before coding it.

• An application has problems executing prepared statements and you want to determine interactively what the problem is.

• You want to create a test case that describes a problem you are having with prepared statements, so that you can file a bug report.

• You need to use prepared statements but do not have access to a programming API that supports them.

SQL syntax for prepared statements is based on three SQL statements:

• PREPARE stmt_name FROM preparable_stmt

The PREPARE statement prepares a statement and assigns it a name, stmt_name, by which to refer to the statement later. State-
ment names are not case sensitive. preparable_stmt is either a string literal or a user variable that contains the text of the state-
ment. The text must represent a single SQL statement, not multiple statements. Within the statement, “?” characters can be used as
parameter markers to indicate where data values are to be bound to the query later when you execute it. The “?” characters should
not be enclosed within quotes, even if you intend to bind them to string values. Parameter markers can be used only where data val-
ues should appear, not for SQL keywords, identifiers, and so forth.

SQL Statement Syntax

927

http://php.net/mysqli


If a prepared statement with the given name already exists, it is deallocated implicitly before the new statement is prepared. This
means that if the new statement contains an error and cannot be prepared, an error is returned and no statement with the given name
exists.

The scope of a prepared statement is the client session within which it is created. Other clients cannot see it.

• EXECUTE stmt_name [USING @var_name [, @var_name] ...]

After preparing a statement, you execute it with an EXECUTE statement that refers to the prepared statement name. If the prepared
statement contains any parameter markers, you must supply a USING clause that lists user variables containing the values to be
bound to the parameters. Parameter values can be supplied only by user variables, and the USING clause must name exactly as
many variables as the number of parameter markers in the statement.

You can execute a given prepared statement multiple times, passing different variables to it or setting the variables to different val-
ues before each execution.

• {DEALLOCATE | DROP} PREPARE stmt_name

To deallocate a prepared statement, use the DEALLOCATE PREPARE statement. Attempting to execute a prepared statement after
deallocating it results in an error.

A prepared statement is specific to the connection in which it was created. If you terminate a client session without deallocating a previ-
ously prepared statement, the server deallocates it automatically.

A prepared statement is also global to the connection. If you create a prepared statement within a stored routine, it is not deallocated
when the stored routine ends.

To guard against too many prepared statements being created simultaneously, the max_prepared_stmt_count system variable
can be set.

The following SQL statements can be used in prepared statements: ALTER TABLE, COMMIT, CREATE INDEX, CREATE TABLE,
DELETE, DO, DROP INDEX, DROP TABLE, INSERT, RENAME TABLE, REPLACE, SELECT, SET, UPDATE, and most SHOW state-
ments.

As of MySQL 5.1.10, the following additional statements are supported:

ANALYZE TABLE
OPTIMIZE TABLE
REPAIR TABLE

As of MySQL 5.1.12, the following additional statements are supported:

CACHE INDEX
CHANGE MASTER
CHECKSUM {TABLE | TABLES}
{CREATE | DROP} DATABASE
{CREATE | RENAME | DROP} USER
FLUSH {TABLE | TABLES | TABLES WITH READ LOCK | HOSTS | PRIVILEGES
| LOGS | STATUS | MASTER | SLAVE | DES_KEY_FILE | USER_RESOURCES}

GRANT
REVOKE
KILL
LOAD INDEX INTO CACHE
RESET {MASTER | SLAVE | QUERY CACHE}
SHOW BINLOG EVENTS
SHOW CREATE {PROCEDURE | FUNCTION | EVENT | TABLE | VIEW}
SHOW {AUTHORS | CONTRIBUTORS | WARNINGS | ERRORS}
SHOW {MASTER | BINARY} LOGS
SHOW {MASTER | SLAVE} STATUS
SLAVE {START | STOP}
INSTALL PLUGIN
UNINSTALL PLUGIN

Other statements are not yet supported.

Statements not allowed in SQL prepared statements are generally also not permitted in stored routines. Any exceptions to this rule are
noted in Chapter 20, Stored Procedures and Functions.

The following examples show two equivalent ways of preparing a statement that computes the hypotenuse of a triangle given the

SQL Statement Syntax

928



lengths of the two sides.

The first example shows how to create a prepared statement by using a string literal to supply the text of the statement:

mysql> PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 5 |
+------------+
mysql> DEALLOCATE PREPARE stmt1;

The second example is similar, but supplies the text of the statement as a user variable:

mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 10 |
+------------+
mysql> DEALLOCATE PREPARE stmt2;

Here is an additional example which demonstrates how to choose the table on which to perform a query at run time, by storing the name
of the table as a user variable:

mysql> USE test;
mysql> CREATE TABLE t1 (a INT NOT NULL);
mysql> INSERT INTO t1 VALUES (4), (8), (11), (32), (80);

mysql> SET @table = 't1';
mysql> SET @s = CONCAT('SELECT * FROM ', @table);

mysql> PREPARE stmt3 FROM @s;
mysql> EXECUTE stmt3;
+----+
| a |
+----+
| 4 |
| 8 |
| 11 |
| 32 |
| 80 |
+----+

mysql> DEALLOCATE PREPARE stmt3;

Placeholders can be used for the arguments of the LIMIT clause when using prepared statements. See Section 12.2.7, “SELECT Syn-
tax”.

SQL syntax for prepared statements cannot be used in nested fashion. That is, a statement passed to PREPARE cannot itself be a PRE-
PARE, EXECUTE, or DEALLOCATE PREPARE statement.

SQL syntax for prepared statements is distinct from using prepared statement API calls. For example, you cannot use the
mysql_stmt_prepare() C API function to prepare a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.

SQL syntax for prepared statements can be used within stored procedures, but not in stored functions or triggers. However, a cursor can-
not be used for a dynamic statement that is prepared and executed with PREPARE and EXECUTE. The statement for a cursor is checked
at cursor creation time, so the statement cannot be dynamic.

SQL syntax for prepared statements does not support multi-statements (that is, multiple statements within a single string separated by
“;” characters).

Before MySQL 5.1.17, prepared statements do not use the query cache. As of 5.1.17, prepared statements use the query cache under the
conditions described in Section 7.5.4.1, “How the Query Cache Operates”.

SQL Statement Syntax

929



Chapter 13. Storage Engines
MySQL supports several storage engines that act as handlers for different table types. MySQL storage engines include both those that
handle transaction-safe tables and those that handle non-transaction-safe tables.

With MySQL 5.1, MySQL AB has introduced a new pluggable storage engine architecture that allows storage engines to be loaded into
and unloaded from a running MySQL server.

This chapter describes each of the MySQL storage engines except for NDB Cluster, which is covered in Chapter 17, MySQL Cluster.
It also contains a description of the pluggable storage engine architecture (see Section 13.1, “Overview of MySQL Storage Engine Ar-
chitecture”).

For answers to some commonly asked questions about MySQL storage engines, see Section A.2, “MySQL 5.1 FAQ — Storage En-
gines”.

13.1. Overview of MySQL Storage Engine Architecture
The MySQL pluggable storage engine architecture allows a database professional to select a specialized storage engine for a particular
application need while being completely shielded from the need to manage any specific application coding requirements. The MySQL
server architecture isolates the application programmer and DBA from all of the low-level implementation details at the storage level,
providing a consistent and easy application model and API. Thus, although there are different capabilities across different storage en-
gines, the application is shielded from these differences.

The MySQL pluggable storage engine architecture is shown in Figure 13.1, “The MySQL architecture using pluggable storage
engines”.

Figure 13.1. The MySQL architecture using pluggable storage engines

930



The pluggable storage engine architecture provides a standard set of management and support services that are common among all un-
derlying storage engines. The storage engines themselves are the components of the database server that actually perform actions on the
underlying data that is maintained at the physical server level.

This efficient and modular architecture provides huge benefits for those wishing to specifically target a particular application need —
such as data warehousing, transaction processing, or high availability situations — while enjoying the advantage of utilizing a set of in-
terfaces and services that are independent of any one storage engine.

The application programmer and DBA interact with the MySQL database through Connector APIs and service layers that are above the
storage engines. If application changes bring about requirements that demand the underlying storage engine change, or that one or more
additional storage engines be added to support new needs, no significant coding or process changes are required to make things work.
The MySQL server architecture shields the application from the underlying complexity of the storage engine by presenting a consistent
and easy-to-use API that applies across storage engines.

13.1.1. The Common Database Server Layer
A MySQL pluggable storage engine is the component in the MySQL database server that is responsible for performing the actual data I/
O operations for a database as well as enabling and enforcing certain feature sets that target a specific application need. A major benefit
of using specific storage engines is that you are only delivered the features needed for a particular application, and therefore you have
less system overhead in the database, with the end result being more efficient and higher database performance. This is one of the reas-
ons that MySQL has always been known to have such high performance, matching or beating proprietary monolithic databases in in-
dustry standard benchmarks.

From a technical perspective, what are some of the unique supporting infrastructure components that are in a storage engine? Some of
the key feature differentiations include:

• Concurrency — some applications have more granular lock requirements (such as row-level locks) than others. Choosing the right
locking strategy can reduce overhead and therefore improve overall performance. This area also includes support for capabilities
such as multi-version concurrency control or “snapshot” read.

• Transaction Support — Not every application needs transactions, but for those that do, there are very well defined requirements
such as ACID compliance and more.

• Referential Integrity — The need to have the server enforce relational database referential integrity through DDL defined foreign
keys.

• Physical Storage — This involves everything from the overall page size for tables and indexes as well as the format used for storing
data to physical disk.

• Index Support — Different application scenarios tend to benefit from different index strategies. Each storage engine generally has
its own indexing methods, although some (such as B-tree indexes) are common to nearly all engines.

• Memory Caches — Different applications respond better to some memory caching strategies than others, so although some memory
caches are common to all storage engines (such as those used for user connections or MySQL's high-speed Query Cache), others are
uniquely defined only when a particular storage engine is put in play.

• Performance Aids — This includes multiple I/O threads for parallel operations, thread concurrency, database checkpointing, bulk
insert handling, and more.

• Miscellaneous Target Features — This may include support for geospatial operations, security restrictions for certain data manipu-
lation operations, and other similar features.

Each set of the pluggable storage engine infrastructure components are designed to offer a selective set of benefits for a particular ap-
plication. Conversely, avoiding a set of component features helps reduce unnecessary overhead. It stands to reason that understanding a
particular application's set of requirements and selecting the proper MySQL storage engine can have a dramatic impact on overall sys-
tem efficiency and performance.

13.1.2. Pluggable Storage Engine Architecture
With MySQL 5.1, MySQL AB has introduced a new pluggable storage engine architecture that allows storage engines to be loaded into
and unloaded from a running MySQL server.

Plugging in a Storage Engine

Storage Engines

931



Before a storage engine can be used, the storage engine plugin shared library must be loaded into MySQL using the INSTALL PLU-
GIN statement. For example, if the EXAMPLE engine plugin is named ha_example and the shared library is named
ha_example.so, you load it with the following statement:

mysql> INSTALL PLUGIN ha_example SONAME 'ha_example.so';

To install a pluggable storage engine, the plugin file must be located in the MySQL plugin directory, and the user issuing the INSTALL
PLUGIN statement must have INSERT privileges for the mysql.plugin table.

The shared library must be located in the MySQL server plugin directory, the location of which is given by the plugin_dir system
variable.

Unplugging a Storage Engine

To unplug a storage engine, use the UNINSTALL PLUGIN statement:

mysql> UNINSTALL PLUGIN ha_example;

If you unplug a storage engine that is needed by existing tables, those tables become inaccessible, but will still be present on disk
(where applicable). Ensure that there are no tables using a storage engine before you unplug the storage engine.

13.2. Supported Storage Engines
MySQL 5.1 supports the following storage engines:

• MyISAM — The default MySQL storage engine and the one that is used the most in Web, data warehousing, and other application
environments. MyISAM is supported in all MySQL configurations, and is the default storage engine unless you have configured
MySQL to use a different one by default.

• InnoDB — Used for transaction processing applications, and sports a number of features including ACID transaction support and
foreign keys. InnoDB is included by default in all MySQL 5.1 binary distributions. In source distributions, you can enable or dis-
able either engine by configuring MySQL as you like.

• Memory — Stores all data in RAM for extremely fast access in environments that require quick lookups of reference and other like
data. This engine was formerly known as the HEAP engine.

• Merge — Allows a MySQL DBA or developer to logically group a series of identical MyISAM tables and reference them as one
object. Good for VLDB environments such as data warehousing.

• Archive — Provides the perfect solution for storing and retrieving large amounts of seldom-referenced historical, archived, or se-
curity audit information.

• Federated — Offers the ability to link separate MySQL servers to create one logical database from many physical servers. Very
good for distributed or data mart environments.

• NDB — The Clustered database engine that is particularly suited for applications with high performance lookup needs that also re-
quire the highest possible degree of uptime and availability.

• CSV — The CSV storage engine stores data in text files using comma-separated values format. You can use the CSV engine to eas-
ily exchange data between other software and applications that can import and export in CSV format.

• Blackhole — The Blackhole storage engine accepts but does not store data and retrievals always return an empty set. The func-
tionality can be used in distributed database design where data is automatically replicated, but not stored locally.

• Example — The Example storage engine is “stub” engine that does nothing. You can create tables with this engine, but no data
can be stored in them or retrieved from them. The purpose of this engine is to serve as an example in the MySQL source code that
illustrates how to begin writing new storage engines. As such, it is primarily of interest to developers.

This chapter describes each of the MySQL storage engines except for NDB Cluster, which is covered in Chapter 17, MySQL Cluster.

It is important to remember that you are not restricted to using the same storage engine for an entire server or schema: you can use a dif-
ferent storage engine for each table in your schema.

Storage Engines

932



13.2.1. Choosing a Storage Engine
The various storage engines provided with MySQL are designed with different use-cases in mind. To use the pluggable storage architec-
ture effectively, it is good to have an idea of the benefits and drawbacks of the various storage engines. The following table provides an
overview of some storage engines provided with MySQL:

Feature MyISAM Memory InnoDB Archive NDB

Storage limits 256TB Yes 64TB No 384EB a

Transactions No No Yes No Yes

Locking granularity Table Table Row Row Row

MVCC (snapshot read) No No Yes Yes No

Geospatial datatype support Yes No Yes Yes Yes

Geospatial indexing support Yes No No No No

B-tree indexes Yes Yes Yes No Yes

Hash indexes No Yes No No Yes

Full-text search indexes Yes No No No No

Clustered indexes No No Yes No No

Data caches No N/A Yes No Yes

Index caches Yes N/A Yes No Yes

Compressed data Yes b No No Yes No

Encrypted data c Yes Yes Yes Yes Yes

Cluster database support No No No No Yes

Replication support d Yes Yes Yes Yes Yes

Foreign key support No No Yes No No

Backup / point-in-time recov-
ery e

Yes Yes Yes Yes Yes

Query cache support Yes Yes Yes Yes Yes

Update statistics for data dic-
tionary

Yes Yes Yes Yes Yes

a EB = exabyte (1024 * 1024 terabyte)
b Compressed MyISAM tables are only supported when using the compressed row format. Tables using the compressed row format with MyISAM are read only.
c Implemented in the server (via encryption functions), rather than in the storage engine.
d Implemented in the server, rather than in the storage engine
e Implemented in the server, rather than in the storage engine

13.2.2. Comparing Transaction and Non-Transaction Engines
Transaction-safe tables (TSTs) have several advantages over non-transaction-safe tables (NTSTs):

• They are safer. Even if MySQL crashes or you get hardware problems, you can get your data back, either by automatic recovery or
from a backup plus the transaction log.

• You can combine many statements and accept them all at the same time with the COMMIT statement (if autocommit is disabled).

• You can execute ROLLBACK to ignore your changes (if autocommit is disabled).

• If an update fails, all of your changes are reverted. (With non-transaction-safe tables, all changes that have taken place are perman-
ent.)

• Transaction-safe storage engines can provide better concurrency for tables that get many updates concurrently with reads.

You can combine transaction-safe and non-transaction-safe tables in the same statements to get the best of both worlds. However, al-
though MySQL supports several transaction-safe storage engines, for best results, you should not mix different storage engines within a
transaction with autocommit disabled. For example, if you do this, changes to non-transaction-safe tables still are committed immedi-

Storage Engines

933



ately and cannot be rolled back. For information about this and other problems that can occur in transactions that use mixed storage en-
gines, see Section 12.4.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

Non-transaction-safe tables have several advantages of their own, all of which occur because there is no transaction overhead:

• Much faster

• Lower disk space requirements

• Less memory required to perform updates

13.2.3. Other Storage Engines
Other storage engines may be available from third parties and community members that have used the Custom Storage Engine interface.

You can find more information on the list of third party storage engines on the MySQL Forge Storage Engines page.

Note

Third party engines are not supported by MySQL. For further information, documentation, installation guides, bug report-
ing or for any help or assistance with these engines, please contact the developer of the engine directly.

Third party engines that are known to be available include the following; please see the MySQL Forge links provided for more informa-
tion:

• PrimeBase XT (PBXT) — PBXT has been designed for modern, web-based, high concurrency environments.

• RitmarkFS — RitmarkFS allows you to access and manipulate the filesystem using SQL queries. RitmarkFS also supports filesys-
tem replication and directory change tracking.

• Distributed Data Engine — The Distributed Data Engine is an Open Source project that is dedicated to provide a Storage Engine
for distributed data according to workload statistics.

• mdbtools — A pluggable storage engine that allows read-only access to Microsoft Access .mdb database files.

• solidDB for MySQL — solidDB Storage Engine for MySQL is an open source, transactional storage engine for MySQL Server. It
is designed for mission-critical implementations that require a robust, transactional database. solidDB Storage Engine for MySQL is
a multi-threaded storage engine that supports full ACID compliance with all expected transaction isolation levels, row-level locking,
and Multi-Version Concurrency Control (MVCC) with non-blocking reads and writes.

• BLOB Streaming Engine (MyBS) — The Scalable BLOB Streaming infrastructure for MySQL will transform MySQL into a scal-
able media server capable of streaming pictures, films, MP3 files and other binary and text objects (BLOBs) directly in and out of
the database.

For more information on developing a customer storage engine that can be used with the Pluggable Storage Engine Architecture, see
Writing a Custom Storage Engine on MySQL Forge.

13.3. Setting the Storage Engine
When you create a new table, you can specify which storage engine to use by adding an ENGINE table option to the CREATE TABLE
statement:

CREATE TABLE t (i INT) ENGINE = INNODB;

If you omit the ENGINE or TYPE option, the default storage engine is used. Normally, this is MyISAM, but you can change it by using
the --default-storage-engine or --default-table-type server startup option, or by setting the default-stor-
age-engine or default-table-type option in the my.cnf configuration file.

You can set the default storage engine to be used during the current session by setting the storage_engine variable:

SET storage_engine=MYISAM;

Storage Engines

934

http://forge.mysql.com/projects/search.php?t=tag&k=storage%20engine
http://forge.mysql.com/projects/view.php?id=43
http://forge.mysql.com/projects/view.php?id=82
http://forge.mysql.com/projects/view.php?id=91
http://forge.mysql.com/projects/view.php?id=98
http://forge.mysql.com/projects/view.php?id=139
http://www.blobstreaming.org/
http://forge.mysql.com/wiki/MySQL_Internals_Custom_Engine
http://forge.mysql.com/wiki


When MySQL is installed on Windows using the MySQL Configuration Wizard, the InnoDB storage engine can be selected as the de-
fault instead of MyISAM. See Section 2.3.4.6, “The Database Usage Dialog”.

To convert a table from one storage engine to another, use an ALTER TABLE statement that indicates the new engine:

ALTER TABLE t ENGINE = MYISAM;

See Section 12.1.10, “CREATE TABLE Syntax”, and Section 12.1.4, “ALTER TABLE Syntax”.

If you try to use a storage engine that is not compiled in or that is compiled in but deactivated, MySQL instead creates a table using the
default storage engine, usually MyISAM. This behavior is convenient when you want to copy tables between MySQL servers that sup-
port different storage engines. (For example, in a replication setup, perhaps your master server supports transactional storage engines for
increased safety, but the slave servers use only non-transactional storage engines for greater speed.)

This automatic substitution of the default storage engine for unavailable engines can be confusing for new MySQL users. A warning is
generated whenever a storage engine is automatically changed.

For new tables, MySQL always creates an .frm file to hold the table and column definitions. The table's index and data may be stored
in one or more other files, depending on the storage engine. The server creates the .frm file above the storage engine level. Individual
storage engines create any additional files required for the tables that they manage. If a table name contains special characters, the
names for the table files contain encoded versions of those characters as described in Section 8.2.3, “Mapping of Identifiers to File-
names”.

A database may contain tables of different types. That is, tables need not all be created with the same storage engine.

13.4. The MyISAM Storage Engine
MyISAM is the default storage engine. It is based on the older ISAM code but has many useful extensions. (Note that MySQL 5.1 does
not support ISAM.)

Each MyISAM table is stored on disk in three files. The files have names that begin with the table name and have an extension to indic-
ate the file type. An .frm file stores the table format. The data file has an .MYD (MYData) extension. The index file has an .MYI
(MYIndex) extension.

To specify explicitly that you want a MyISAM table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = MYISAM;

Normally, it is unnecessary to use ENGINE to specify the MyISAM storage engine. MyISAM is the default engine unless the default has
been changed. To ensure that MyISAM is used in situations where the default might have been changed, include the ENGINE option ex-
plicitly.

You can check or repair MyISAM tables with the mysqlcheck client or myisamchk utility. You can also compress MyISAM tables
with myisampack to take up much less space. See Section 4.5.3, “mysqlcheck — A Table Maintenance and Repair Program”, Sec-
tion 6.4.1, “Using myisamchk for Crash Recovery”, and Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyIS-
AM Tables”.

MyISAM tables have the following characteristics:

• All data values are stored with the low byte first. This makes the data machine and operating system independent. The only require-
ments for binary portability are that the machine uses two's-complement signed integers and IEEE floating-point format. These re-
quirements are widely used among mainstream machines. Binary compatibility might not be applicable to embedded systems, which
sometimes have peculiar processors.

There is no significant speed penalty for storing data low byte first; the bytes in a table row normally are unaligned and it takes little
more processing to read an unaligned byte in order than in reverse order. Also, the code in the server that fetches column values is
not time critical compared to other code.

• All numeric key values are stored with the high byte first to allow better index compression.

• Large files (up to 63-bit file length) are supported on filesystems and operating systems that support large files.

Storage Engines

935



• There is a limit of 232 (~4.295E+09) rows in a MyISAM table. If you build MySQL with the --with-big-tables option, the
row limitation is increased to (232)2 (1.844E+19) rows. See Section 2.9.2, “Typical configure Options”. Binary distributions for
Unix and Linux are built with this option.

• The maximum number of indexes per MyISAM table is 64. This can be changed by recompiling. Beginning with MySQL 5.1.4, you
can configure the build by invoking configure with the --with-max-indexes=N option, where N is the maximum number
of indexes to permit per MyISAM table. N must be less than or equal to 128. Before MySQL 5.1.4, you must change the source.

The maximum number of columns per index is 16.

• The maximum key length is 1000 bytes. This can also be changed by changing the source and recompiling. For the case of a key
longer than 250 bytes, a larger key block size than the default of 1024 bytes is used.

• When rows are inserted in sorted order (as when you are using an AUTO_INCREMENT column), the index tree is split so that the
high node only contains one key. This improves space utilization in the index tree.

• Internal handling of one AUTO_INCREMENT column per table is supported. MyISAM automatically updates this column for IN-
SERT and UPDATE operations. This makes AUTO_INCREMENT columns faster (at least 10%). Values at the top of the sequence
are not reused after being deleted. (When an AUTO_INCREMENT column is defined as the last column of a multiple-column index,
reuse of values deleted from the top of a sequence does occur.) The AUTO_INCREMENT value can be reset with ALTER TABLE or
myisamchk.

• Dynamic-sized rows are much less fragmented when mixing deletes with updates and inserts. This is done by automatically combin-
ing adjacent deleted blocks and by extending blocks if the next block is deleted.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you can INSERT new rows into it at
the same time that other threads are reading from the table. A free block can occur as a result of deleting rows or an update of a dy-
namic length row with more data than its current contents. When all free blocks are used up (filled in), future inserts become concur-
rent again. See Section 7.3.3, “Concurrent Inserts”.

• You can put the data file and index file in different directories on different physical devices to get more speed with the DATA DIR-
ECTORY and INDEX DIRECTORY table options to CREATE TABLE. See Section 12.1.10, “CREATE TABLE Syntax”.

• BLOB and TEXT columns can be indexed.

• NULL values are allowed in indexed columns. This takes 0–1 bytes per key.

• Each character column can have a different character set. See Section 9.1, “Character Set Support”.

• There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If mysqld is started with the -
-myisam-recover option, MyISAM tables are automatically checked when opened, and are repaired if the table wasn't closed
properly.

• myisamchk marks tables as checked if you run it with the --update-state option. myisamchk --fast checks only those
tables that don't have this mark.

• myisamchk --analyze stores statistics for portions of keys, as well as for entire keys.

• myisampack can pack BLOB and VARCHAR columns.

MyISAM also supports the following features:

• Support for a true VARCHAR type; a VARCHAR column starts with a length stored in one or two bytes.

• Tables with VARCHAR columns may have fixed or dynamic row length.

• The sum of the lengths of the VARCHAR and CHAR columns in a table may be up to 64KB.

• Arbitrary length UNIQUE constraints.

Additional resources

Storage Engines

936



• A forum dedicated to the MyISAM storage engine is available at http://forums.mysql.com/list.php?21.

13.4.1. MyISAM Startup Options
The following options to mysqld can be used to change the behavior of MyISAM tables. For additional information, see Section 5.1.2,
“Command Options”.

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

bulk_insert_buffer_size Yes Yes Yes Both Yes

concurrent_insert Yes Yes Yes Global Yes

delay-key-write Yes Yes Global Yes

- Variable: delay_key_write Yes Global Yes

have_rtree_keys Yes Global No

key_buffer_size Yes Yes Yes Global Yes

log-isam Yes Yes

myisam_block_size Yes Yes Yes Both Yes

myisam_data_pointer_size Yes Yes Yes Global Yes

myisam_max_sort_file_size Yes Yes Yes Global Yes

myisam-recover Yes Yes

myisam_recover_options Yes Global No

myisam_repair_threads Yes Yes Yes Both Yes

myisam_sort_buffer_size Yes Yes Yes Both Yes

myisam_stats_method Yes Yes Yes Both Yes

myisam_use_mmap Yes Yes Yes Global No

skip-concurrent-insert Yes Yes

- Variable: skip-concurrent_insert

tmp_table_size Yes Yes Yes Both Yes

• --myisam-recover=mode

Set the mode for automatic recovery of crashed MyISAM tables.

• --delay-key-write=ALL

Don't flush key buffers between writes for any MyISAM table.

Note

If you do this, you should not access MyISAM tables from another program (such as from another MySQL server or with
myisamchk) when the tables are in use. Doing so risks index corruption. Using --external-locking does not
eliminate this risk.

The following system variables affect the behavior of MyISAM tables. For additional information, see Section 5.1.3, “System
Variables”.

• bulk_insert_buffer_size

The size of the tree cache used in bulk insert optimization.

Note

Storage Engines

937

http://forums.mysql.com/list.php?21


This is a limit per thread!

• myisam_max_sort_file_size

The maximum size of the temporary file that MySQL is allowed to use while re-creating a MyISAM index (during REPAIR
TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be larger than this value, the index is created using the
key cache instead, which is slower. The value is given in bytes.

• myisam_sort_buffer_size

Set the size of the buffer used when recovering tables.

Automatic recovery is activated if you start mysqld with the --myisam-recover option. In this case, when the server opens a My-
ISAM table, it checks whether the table is marked as crashed or whether the open count variable for the table is not 0 and you are run-
ning the server with external locking disabled. If either of these conditions is true, the following happens:

• The server checks the table for errors.

• If the server finds an error, it tries to do a fast table repair (with sorting and without re-creating the data file).

• If the repair fails because of an error in the data file (for example, a duplicate-key error), the server tries again, this time re-creating
the data file.

• If the repair still fails, the server tries once more with the old repair option method (write row by row without sorting). This method
should be able to repair any type of error and has low disk space requirements.

MySQL Enterprise
Subscribers to MySQL Enterprise Monitor receive notification if the --myisam-recover option has not been
set. For more information see http://www.mysql.com/products/enterprise/advisors.html.

If the recovery wouldn't be able to recover all rows from previously completed statements and you didn't specify FORCE in the value of
the --myisam-recover option, automatic repair aborts with an error message in the error log:

Error: Couldn't repair table: test.g00pages

If you specify FORCE, a warning like this is written instead:

Warning: Found 344 of 354 rows when repairing ./test/g00pages

Note that if the automatic recovery value includes BACKUP, the recovery process creates files with names of the form
tbl_name-datetime.BAK. You should have a cron script that automatically moves these files from the database directories to
backup media.

13.4.2. Space Needed for Keys
MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as (key_length+4)/0.67, summed over
all keys. This is for the worst case when all keys are inserted in sorted order and the table doesn't have any compressed keys.

String indexes are space compressed. If the first index part is a string, it is also prefix compressed. Space compression makes the index
file smaller than the worst-case figure if a string column has a lot of trailing space or is a VARCHAR column that is not always used to
the full length. Prefix compression is used on keys that start with a string. Prefix compression helps if there are many strings with an
identical prefix.

In MyISAM tables, you can also prefix compress numbers by specifying the PACK_KEYS=1 table option when you create the table.
Numbers are stored with the high byte first, so this helps when you have many integer keys that have an identical prefix.

13.4.3. MyISAM Table Storage Formats
MyISAM supports three different storage formats. Two of them, fixed and dynamic format, are chosen automatically depending on the
type of columns you are using. The third, compressed format, can be created only with the myisampack utility (see Section 4.6.5,

Storage Engines

938

http://www.mysql.com/products/enterprise/advisors.html


myisampack — Generate Compressed, Read-Only MyISAM Tables”).

When you use CREATE TABLE or ALTER TABLE for a table that has no BLOB or TEXT columns, you can force the table format to
FIXED or DYNAMIC with the ROW_FORMAT table option.

See Section 12.1.10, “CREATE TABLE Syntax”, for information about ROW_FORMAT.

You can decompress (unpack) compressed MyISAM tables using myisamchk --unpack; see Section 4.6.3, “myisamchk — My-
ISAM Table-Maintenance Utility”, for more information.

13.4.3.1. Static (Fixed-Length) Table Characteristics

Static format is the default for MyISAM tables. It is used when the table contains no variable-length columns (VARCHAR, VARBINARY,
BLOB, or TEXT). Each row is stored using a fixed number of bytes.

Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to corruption). It is also the fastest of
the on-disk formats due to the ease with which rows in the data file can be found on disk: To look up a row based on a row number in
the index, multiply the row number by the row length to calculate the row position. Also, when scanning a table, it is very easy to read a
constant number of rows with each disk read operation.

The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-format MyISAM file. In this case, my-
isamchk can easily determine where each row starts and ends, so it can usually reclaim all rows except the partially written one. Note
that MyISAM table indexes can always be reconstructed based on the data rows.

Note

Fixed-length row format is only available for tables without BLOB or TEXT columns. Creating a table with these columns
with an explicit ROW_FORMAT clause will not raise an error or warning; the format specification will be ignored.

Static-format tables have these characteristics:

• CHAR and VARCHAR columns are space-padded to the specified column width, although the column type is not altered. BINARY
and VARBINARY columns are padded with 0x00 bytes to the column width.

• Very quick.

• Easy to cache.

• Easy to reconstruct after a crash, because rows are located in fixed positions.

• Reorganization is unnecessary unless you delete a huge number of rows and want to return free disk space to the operating system.
To do this, use OPTIMIZE TABLE or myisamchk -r.

• Usually require more disk space than dynamic-format tables.

13.4.3.2. Dynamic Table Characteristics

Dynamic storage format is used if a MyISAM table contains any variable-length columns (VARCHAR, VARBINARY, BLOB, or TEXT),
or if the table was created with the ROW_FORMAT=DYNAMIC table option.

Dynamic format is a little more complex than static format because each row has a header that indicates how long it is. A row can be-
come fragmented (stored in non-contiguous pieces) when it is made longer as a result of an update.

You can use OPTIMIZE TABLE or myisamchk -r to defragment a table. If you have fixed-length columns that you access or
change frequently in a table that also contains some variable-length columns, it might be a good idea to move the variable-length
columns to other tables just to avoid fragmentation.

Dynamic-format tables have these characteristics:

• All string columns are dynamic except those with a length less than four.

• Each row is preceded by a bitmap that indicates which columns contain the empty string (for string columns) or zero (for numeric
columns). Note that this does not include columns that contain NULL values. If a string column has a length of zero after trailing

Storage Engines

939



space removal, or a numeric column has a value of zero, it is marked in the bitmap and not saved to disk. Non-empty strings are
saved as a length byte plus the string contents.

• Much less disk space usually is required than for fixed-length tables.

• Each row uses only as much space as is required. However, if a row becomes larger, it is split into as many pieces as are required,
resulting in row fragmentation. For example, if you update a row with information that extends the row length, the row becomes
fragmented. In this case, you may have to run OPTIMIZE TABLE or myisamchk -r from time to time to improve performance.
Use myisamchk -ei to obtain table statistics.

• More difficult than static-format tables to reconstruct after a crash, because rows may be fragmented into many pieces and links
(fragments) may be missing.

• The expected row length for dynamic-sized rows is calculated using the following expression:

3
+ (number of columns + 7) / 8
+ (number of char columns)
+ (packed size of numeric columns)
+ (length of strings)
+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic row is linked whenever an update causes an enlargement of the row. Each
new link is at least 20 bytes, so the next enlargement probably goes in the same link. If not, another link is created. You can find the
number of links using myisamchk -ed. All links may be removed with OPTIMIZE TABLE or myisamchk -r.

13.4.3.3. Compressed Table Characteristics

Compressed storage format is a read-only format that is generated with the myisampack tool. Compressed tables can be uncom-
pressed with myisamchk.

Compressed tables have the following characteristics:

• Compressed tables take very little disk space. This minimizes disk usage, which is helpful when using slow disks (such as CD-
ROMs).

• Each row is compressed separately, so there is very little access overhead. The header for a row takes up one to three bytes depend-
ing on the biggest row in the table. Each column is compressed differently. There is usually a different Huffman tree for each
column. Some of the compression types are:

• Suffix space compression.

• Prefix space compression.

• Numbers with a value of zero are stored using one bit.

• If values in an integer column have a small range, the column is stored using the smallest possible type. For example, a BIGINT
column (eight bytes) can be stored as a TINYINT column (one byte) if all its values are in the range from -128 to 127.

• If a column has only a small set of possible values, the data type is converted to ENUM.

• A column may use any combination of the preceding compression types.

• Can be used for fixed-length or dynamic-length rows.

Note

While a compressed table is read only, and you cannot therefore update or add rows in the table, DDL (Data Definition
Language) operations are still valid. For example, you may still use DROP to drop the table, and TRUNCATE to empty the
table.

13.4.4. MyISAM Table Problems

Storage Engines

940



The file format that MySQL uses to store data has been extensively tested, but there are always circumstances that may cause database
tables to become corrupted. The following discussion describes how this can happen and how to handle it.

13.4.4.1. Corrupted MyISAM Tables

Even though the MyISAM table format is very reliable (all changes to a table made by an SQL statement are written before the state-
ment returns), you can still get corrupted tables if any of the following events occur:

• The mysqld process is killed in the middle of a write.

• An unexpected computer shutdown occurs (for example, the computer is turned off).

• Hardware failures.

• You are using an external program (such as myisamchk) to modify a table that is being modified by the server at the same time.

• A software bug in the MySQL or MyISAM code.

Typical symptoms of a corrupt table are:

• You get the following error while selecting data from the table:

Incorrect key file for table: '...'. Try to repair it

• Queries don't find rows in the table or return incomplete results.

You can check the health of a MyISAM table using the CHECK TABLE statement, and repair a corrupted MyISAM table with REPAIR
TABLE. When mysqld is not running, you can also check or repair a table with the myisamchk command. See Section 12.5.2.3,
“CHECK TABLE Syntax”, Section 12.5.2.6, “REPAIR TABLE Syntax”, and Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

If your tables become corrupted frequently, you should try to determine why this is happening. The most important thing to know is
whether the table became corrupted as a result of a server crash. You can verify this easily by looking for a recent restarted
mysqld message in the error log. If there is such a message, it is likely that table corruption is a result of the server dying. Otherwise,
corruption may have occurred during normal operation. This is a bug. You should try to create a reproducible test case that demon-
strates the problem. See Section B.1.4.2, “What to Do If MySQL Keeps Crashing”, and MySQL Internals: Porting.

MySQL Enterprise
Find out about problems before they occur. Subscribe to the MySQL Enterprise Monitor for expert advice about
the state of your servers. For more information see http://www.mysql.com/products/enterprise/advisors.html.

13.4.4.2. Problems from Tables Not Being Closed Properly

Each MyISAM index file (.MYI file) has a counter in the header that can be used to check whether a table has been closed properly. If
you get the following warning from CHECK TABLE or myisamchk, it means that this counter has gone out of sync:

clients are using or haven't closed the table properly

This warning doesn't necessarily mean that the table is corrupted, but you should at least check the table.

The counter works as follows:

• The first time a table is updated in MySQL, a counter in the header of the index files is incremented.

• The counter is not changed during further updates.

• When the last instance of a table is closed (because a FLUSH TABLES operation was performed or because there is no room in the
table cache), the counter is decremented if the table has been updated at any point.

• When you repair the table or check the table and it is found to be okay, the counter is reset to zero.

Storage Engines

941

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://www.mysql.com/products/enterprise/advisors.html


• To avoid problems with interaction with other processes that might check the table, the counter is not decremented on close if it was
zero.

In other words, the counter can become incorrect only under these conditions:

• A MyISAM table is copied without first issuing LOCK TABLES and FLUSH TABLES.

• MySQL has crashed between an update and the final close. (Note that the table may still be okay, because MySQL always issues
writes for everything between each statement.)

• A table was modified by myisamchk --recover or myisamchk --update-state at the same time that it was in use by
mysqld.

• Multiple mysqld servers are using the table and one server performed a REPAIR TABLE or CHECK TABLE on the table while it
was in use by another server. In this setup, it is safe to use CHECK TABLE, although you might get the warning from other servers.
However, REPAIR TABLE should be avoided because when one server replaces the data file with a new one, this is not known to
the other servers.

In general, it is a bad idea to share a data directory among multiple servers. See Section 5.6, “Running Multiple MySQL Servers on
the Same Machine”, for additional discussion.

13.5. The InnoDB Storage Engine

13.5.1. InnoDB Overview
InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine that has commit, rollback, and crash recovery cap-
abilities. InnoDB does locking on the row level and also provides an Oracle-style consistent non-locking read in SELECT statements.
These features increase multi-user concurrency and performance. There is no need for lock escalation in InnoDB because row-level
locks fit in very little space. InnoDB also supports FOREIGN KEY constraints. You can freely mix InnoDB tables with tables from
other MySQL storage engines, even within the same statement.

InnoDB has been designed for maximum performance when processing large data volumes. Its CPU efficiency is probably not
matched by any other disk-based relational database engine.

Fully integrated with MySQL Server, the InnoDB storage engine maintains its own buffer pool for caching data and indexes in main
memory. InnoDB stores its tables and indexes in a tablespace, which may consist of several files (or raw disk partitions). This is differ-
ent from, for example, MyISAM tables where each table is stored using separate files. InnoDB tables can be of any size even on operat-
ing systems where file size is limited to 2GB.

InnoDB is included in binary distributions by default. The Windows Essentials installer makes InnoDB the MySQL default storage
engine on Windows.

InnoDB is used in production at numerous large database sites requiring high performance. The famous Internet news site Slashdot.org
runs on InnoDB. Mytrix, Inc. stores over 1TB of data in InnoDB, and another site handles an average load of 800 inserts/updates per
second in InnoDB.

InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as MySQL. For more information on MySQL licens-
ing, see http://www.mysql.com/company/legal/licensing/.

Additional resources

• A forum dedicated to the InnoDB storage engine is available at http://forums.mysql.com/list.php?22.

13.5.2. InnoDB Contact Information
Contact information for Innobase Oy, producer of the InnoDB engine:

Web site: http://www.innodb.com/

Storage Engines

942

http://www.mysql.com/company/legal/licensing/
http://forums.mysql.com/list.php?22
http://www.innodb.com/


Email: innodb_sales_ww at oracle.com or use this contact form: http://www.innodb.com/contact-form

Phone:

+358-9-6969 3250 (office, Heikki Tuuri)
+358-40-5617367 (mobile, Heikki Tuuri)
+358-40-5939732 (mobile, Satu Sirén)

Address:

Innobase Oy Inc.
World Trade Center Helsinki
Aleksanterinkatu 17
P.O.Box 800
00101 Helsinki
Finland

13.5.3. InnoDB Configuration
The InnoDB storage engine is enabled by default. If you don't want to use InnoDB tables, you can add the skip-innodb option to
your MySQL option file.

Note

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine that has commit, rollback, and crash
recovery capabilities. However, it cannot do so if the underlying operating system or hardware does not work as advert-
ised. Many operating systems or disk subsystems may delay or reorder write operations to improve performance. On some
operating systems, the very system call that should wait until all unwritten data for a file has been flushed — fsync() —
might actually return before the data has been flushed to stable storage. Because of this, an operating system crash or a
power outage may destroy recently committed data, or in the worst case, even corrupt the database because of write opera-
tions having been reordered. If data integrity is important to you, you should perform some “pull-the-plug” tests before us-
ing anything in production. On Mac OS X 10.3 and up, InnoDB uses a special fcntl() file flush method. Under Linux,
it is advisable to disable the write-back cache.

On ATAPI hard disks, a command such hdparm -W0 /dev/hda may work to disable the write-back cache. Beware that some
drives or disk controllers may be unable to disable the write-back cache.

Two important disk-based resources managed by the InnoDB storage engine are its tablespace data files and its log files.

Note

If you specify no InnoDB configuration options, MySQL creates an auto-extending 10MB data file named ibdata1 and
two 5MB log files named ib_logfile0 and ib_logfile1 in the MySQL data directory. To get good performance,
you should explicitly provide InnoDB parameters as discussed in the following examples. Naturally, you should edit the
settings to suit your hardware and requirements.

Note

It is not a good idea to configure InnoDB to use datafiles or logfiles on NFS volumes. Otherwise, the files might be
locked by other processes and become unavailable for use by MySQL.

MySQL Enterprise
For advice on settings suitable to your specific circumstances, subscribe to the MySQL Enterprise Monitor. For
more information see http://www.mysql.com/products/enterprise/advisors.html.

The examples shown here are representative. See Section 13.5.4, “InnoDB Startup Options and System Variables” for additional in-
formation about InnoDB-related configuration parameters.

To set up the InnoDB tablespace files, use the innodb_data_file_path option in the [mysqld] section of the my.cnf option
file. On Windows, you can use my.ini instead. The value of innodb_data_file_path should be a list of one or more data file
specifications. If you name more than one data file, separate them by semicolon (“;”) characters:

innodb_data_file_path=datafile_spec1[;datafile_spec2]...

For example, a setting that explicitly creates a tablespace having the same characteristics as the default is as follows:

Storage Engines

943

http://www.innodb.com/contact-form
http://www.mysql.com/products/enterprise/advisors.html


[mysqld]
innodb_data_file_path=ibdata1:10M:autoextend

This setting configures a single 10MB data file named ibdata1 that is auto-extending. No location for the file is given, so by default,
InnoDB creates it in the MySQL data directory.

Sizes are specified using M or G suffix letters to indicate units of MB or GB.

A tablespace containing a fixed-size 50MB data file named ibdata1 and a 50MB auto-extending file named ibdata2 in the data
directory can be configured like this:

[mysqld]
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The full syntax for a data file specification includes the filename, its size, and several optional attributes:

file_name:file_size[:autoextend[:max:max_file_size]]

The autoextend attribute and those following can be used only for the last data file in the innodb_data_file_path line.

If you specify the autoextend option for the last data file, InnoDB extends the data file if it runs out of free space in the tablespace.
The increment is 8MB at a time by default. It can be modified by changing the innodb_autoextend_increment system variable.

If the disk becomes full, you might want to add another data file on another disk. Instructions for reconfiguring an existing tablespace
are given in Section 13.5.7, “Adding and Removing InnoDB Data and Log Files”.

InnoDB is not aware of the filesystem maximum file size, so be cautious on filesystems where the maximum file size is a small value
such as 2GB. To specify a maximum size for an auto-extending data file, use the max attribute. The following configuration allows ib-
data1 to grow up to a limit of 500MB:

[mysqld]
innodb_data_file_path=ibdata1:10M:autoextend:max:500M

InnoDB creates tablespace files in the MySQL data directory by default. To specify a location explicitly, use the in-
nodb_data_home_dir option. For example, to use two files named ibdata1 and ibdata2 but create them in the /ibdata dir-
ectory, configure InnoDB like this:

[mysqld]
innodb_data_home_dir = /ibdata
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

Note

InnoDB does not create directories, so make sure that the /ibdata directory exists before you start the server. This is
also true of any log file directories that you configure. Use the Unix or DOS mkdir command to create any necessary dir-
ectories.

InnoDB forms the directory path for each data file by textually concatenating the value of innodb_data_home_dir to the data file
name, adding a pathname separator (slash or backslash) between values if necessary. If the innodb_data_home_dir option is not
mentioned in my.cnf at all, the default value is the “dot” directory ./, which means the MySQL data directory. (The MySQL server
changes its current working directory to its data directory when it begins executing.)

If you specify innodb_data_home_dir as an empty string, you can specify absolute paths for the data files listed in the in-
nodb_data_file_path value. The following example is equivalent to the preceding one:

[mysqld]
innodb_data_home_dir =
innodb_data_file_path=/ibdata/ibdata1:50M;/ibdata/ibdata2:50M:autoextend

A simple my.cnf example. Suppose that you have a computer with 128MB RAM and one hard disk. The following example shows
possible configuration parameters in my.cnf or my.ini for InnoDB, including the autoextend attribute. The example suits most
users, both on Unix and Windows, who do not want to distribute InnoDB data files and log files onto several disks. It creates an auto-
extending data file ibdata1 and two InnoDB log files ib_logfile0 and ib_logfile1 in the MySQL data directory.

[mysqld]
# You can write your other MySQL server options here

Storage Engines

944



# ...
# Data files must be able to hold your data and indexes.
# Make sure that you have enough free disk space.
innodb_data_file_path = ibdata1:10M:autoextend
#
# Set buffer pool size to 50-80% of your computer's memory
innodb_buffer_pool_size=70M
innodb_additional_mem_pool_size=10M
#
# Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=20M
innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1

Make sure that the MySQL server has the proper access rights to create files in the data directory. More generally, the server must have
access rights in any directory where it needs to create data files or log files.

Note that data files must be less than 2GB in some filesystems. The combined size of the log files must be less than 4GB. The combined
size of data files must be at least 10MB.

When you create an InnoDB tablespace for the first time, it is best that you start the MySQL server from the command prompt. In-
noDB then prints the information about the database creation to the screen, so you can see what is happening. For example, on Win-
dows, if mysqld is located in C:\Program Files\MySQL\MySQL Server 5.1\bin, you can start it like this:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld" --console

If you do not send server output to the screen, check the server's error log to see what InnoDB prints during the startup process.

See Section 13.5.5, “Creating the InnoDB Tablespace”, for an example of what the information displayed by InnoDB should look
like.

You can place InnoDB options in the [mysqld] group of any option file that your server reads when it starts. The locations for op-
tion files are described in Section 4.2.2.2, “Using Option Files”.

If you installed MySQL on Windows using the installation and configuration wizards, the option file will be the my.ini file located in
your MySQL installation directory. See Section 2.3.4.14, “The Location of the my.ini File”.

If your PC uses a boot loader where the C: drive is not the boot drive, your only option is to use the my.ini file in your Windows dir-
ectory (typically C:\WINDOWS). You can use the SET command at the command prompt in a console window to print the value of
WINDIR:

C:\> SET WINDIR
windir=C:\WINDOWS

If you want to make sure that mysqld reads options only from a specific file, you can use the --defaults-file option as the first
option on the command line when starting the server:

mysqld --defaults-file=your_path_to_my_cnf

An advanced my.cnf example. Suppose that you have a Linux computer with 2GB RAM and three 60GB hard disks at directory
paths /, /dr2 and /dr3. The following example shows possible configuration parameters in my.cnf for InnoDB.

[mysqld]
# You can write your other MySQL server options here
# ...
innodb_data_home_dir =
#
# Data files must be able to hold your data and indexes
innodb_data_file_path = /db/ibdata1:2000M;/dr2/db/ibdata2:2000M:autoextend
#
# Set buffer pool size to 50-80% of your computer's memory,
# but make sure on Linux x86 total memory usage is < 2GB
innodb_buffer_pool_size=1G
innodb_additional_mem_pool_size=20M
innodb_log_group_home_dir = /dr3/iblogs
#
innodb_log_files_in_group = 2
#
# Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=250M
innodb_log_buffer_size=8M
#

Storage Engines

945



innodb_flush_log_at_trx_commit=1
innodb_lock_wait_timeout=50
#
# Uncomment the next lines if you want to use them
#innodb_thread_concurrency=5

In some cases, database performance improves if all the data is not placed on the same physical disk. Putting log files on a different disk
from data is very often beneficial for performance. The example illustrates how to do this. It places the two data files on different disks
and places the log files on the third disk. InnoDB fills the tablespace beginning with the first data file. You can also use raw disk parti-
tions (raw devices) as InnoDB data files, which may speed up I/O. See Section 13.5.3.2, “Using Raw Devices for the Shared Ta-
blespace”.

Warning

On 32-bit GNU/Linux x86, you must be careful not to set memory usage too high. glibc may allow the process heap to
grow over thread stacks, which crashes your server. It is a risk if the value of the following expression is close to or ex-
ceeds 2GB:

innodb_buffer_pool_size
+ key_buffer_size
+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)
+ max_connections*2MB

Each thread uses a stack (often 2MB, but only 256KB in MySQL AB binaries) and in the worst case also uses sort_buffer_size
+ read_buffer_size additional memory.

By compiling MySQL yourself, you can use up to 64GB of physical memory in 32-bit Windows. See the description for in-
nodb_buffer_pool_awe_mem_mb in Section 13.5.4, “InnoDB Startup Options and System Variables”.

How to tune other mysqld server parameters? The following values are typical and suit most users:

[mysqld]
skip-external-locking
max_connections=200
read_buffer_size=1M
sort_buffer_size=1M
#
# Set key_buffer to 5 - 50% of your RAM depending on how much
# you use MyISAM tables, but keep key_buffer_size + InnoDB
# buffer pool size < 80% of your RAM
key_buffer_size=value

13.5.3.1. Using Per-Table Tablespaces

You can store each InnoDB table and its indexes in its own file. This feature is called “multiple tablespaces” because in effect each ta-
ble has its own tablespace.

Using multiple tablespaces can be beneficial to users who want to move specific tables to separate physical disks or who wish to restore
backups of single tables quickly without interrupting the use of the remaining InnoDB tables.

You can enable multiple tablespaces by adding this line to the [mysqld] section of my.cnf:

[mysqld]
innodb_file_per_table

After restarting the server, InnoDB stores each newly created table into its own file tbl_name.ibd in the database directory where
the table belongs. This is similar to what the MyISAM storage engine does, but MyISAM divides the table into a data file
tbl_name.MYD and the index file tbl_name.MYI. For InnoDB, the data and the indexes are stored together in the .ibd file. The
tbl_name.frm file is still created as usual.

If you remove the innodb_file_per_table line from my.cnf and restart the server, InnoDB creates tables inside the shared ta-
blespace files again.

innodb_file_per_table affects only table creation, not access to existing tables. If you start the server with this option, new
tables are created using .ibd files, but you can still access tables that exist in the shared tablespace. If you remove the option and re-
start the server, new tables are created in the shared tablespace, but you can still access any tables that were created using multiple ta-
blespaces.

Storage Engines

946



Note

InnoDB always needs the shared tablespace because it puts its internal data dictionary and undo logs there. The .ibd
files are not sufficient for InnoDB to operate.

Note

You cannot freely move .ibd files between database directories as you can with MyISAM table files. This is because the
table definition that is stored in the InnoDB shared tablespace includes the database name, and because InnoDB must
preserve the consistency of transaction IDs and log sequence numbers.

To move an .ibd file and the associated table from one database to another, use a RENAME TABLE statement:

RENAME TABLE db1.tbl_name TO db2.tbl_name;

If you have a “clean” backup of an .ibd file, you can restore it to the MySQL installation from which it originated as follows:

1. Issue this ALTER TABLE statement:

ALTER TABLE tbl_name DISCARD TABLESPACE;

Caution

This statement deletes the current .ibd file.

2. Put the backup .ibd file back in the proper database directory.

3. Issue this ALTER TABLE statement:

ALTER TABLE tbl_name IMPORT TABLESPACE;

In this context, a “clean” .ibd file backup means:

• There are no uncommitted modifications by transactions in the .ibd file.

• There are no unmerged insert buffer entries in the .ibd file.

• Purge has removed all delete-marked index records from the .ibd file.

• mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.

You can make a clean backup .ibd file using the following method:

1. Stop all activity from the mysqld server and commit all transactions.

2. Wait until SHOW ENGINE INNODB STATUS shows that there are no active transactions in the database, and the main thread
status of InnoDB is Waiting for server activity. Then you can make a copy of the .ibd file.

Another method for making a clean copy of an .ibd file is to use the commercial InnoDB Hot Backup tool:

1. Use InnoDB Hot Backup to back up the InnoDB installation.

2. Start a second mysqld server on the backup and let it clean up the .ibd files in the backup.

13.5.3.2. Using Raw Devices for the Shared Tablespace

You can use raw disk partitions as data files in the shared tablespace. By using a raw disk, you can perform non-buffered I/O on Win-

Storage Engines

947



dows and on some Unix systems without filesystem overhead, which may improve performance.

When you create a new data file, you must put the keyword newraw immediately after the data file size in in-
nodb_data_file_path. The partition must be at least as large as the size that you specify. Note that 1MB in InnoDB is 1024 ×
1024 bytes, whereas 1MB in disk specifications usually means 1,000,000 bytes.

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Gnewraw;/dev/hdd2:2Gnewraw

The next time you start the server, InnoDB notices the newraw keyword and initializes the new partition. However, do not create or
change any InnoDB tables yet. Otherwise, when you next restart the server, InnoDB reinitializes the partition and your changes are
lost. (As a safety measure InnoDB prevents users from modifying data when any partition with newraw is specified.)

After InnoDB has initialized the new partition, stop the server, change newraw in the data file specification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:5Graw;/dev/hdd2:2Graw

Then restart the server and InnoDB allows changes to be made.

On Windows, you can allocate a disk partition as a data file like this:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Gnewraw

The //./ corresponds to the Windows syntax of \\.\ for accessing physical drives.

When you use raw disk partitions, be sure that they have permissions that allow read and write access by the account used for running
the MySQL server.

13.5.4. InnoDB Startup Options and System Variables
This section describes the InnoDB-related command options and system variables. System variables that are true or false can be en-
abled at server startup by naming them, or disabled by using a skip- prefix. For example, to enable or disable InnoDB checksums,
you can use --innodb_checksums or --skip-innodb_checksums on the command line, or innodb_checksums or
skip-innodb_checksums in an option file. System variables that take a numeric value can be specified as --var_name=value
on the command line or as var_name=value in option files. For more information on specifying options and system variables, see
Section 4.2.2, “Specifying Program Options”. Many of the system variables can be changed at runtime (see Section 5.1.4.2, “Dynamic
System Variables”).

MySQL Enterprise
The MySQL Enterprise Monitor provides expert advice on InnoDB start-up options and related system vari-
ables. For more information see http://www.mysql.com/products/enterprise/advisors.html.

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Com_show_innodb_status Yes Both No

Com_show_ndb_status Yes Both No

foreign_key_checks Yes Yes Session Yes

have_innodb Yes Global No

innodb Yes Yes

innodb_adaptive_hash_index Yes Yes Yes Global No

innodb_additional_mem_pool_size Yes Yes Yes Global No

innodb_autoextend_increment Yes Yes Yes Global Yes

innodb_autoinc_lock_mode Yes Yes Yes Global No

innodb_buffer_pool_awe_mem_mb Yes Yes Yes Global No

Innodb_buffer_pool_pages_data Yes Both No

Innodb_buffer_pool_pages_dirty Yes Both No

Storage Engines

948

http://www.mysql.com/products/enterprise/advisors.html


Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Innodb_buffer_pool_pages_flushed Yes Both No

Innodb_buffer_pool_pages_free Yes Both No

Innodb_buffer_pool_pages_latched Yes Both No

Innodb_buffer_pool_pages_misc Yes Both No

Innodb_buffer_pool_pages_total Yes Both No

Innodb_buffer_pool_read_ahead_rnd Yes Both No

Innodb_buffer_pool_read_ahead_seq Yes Both No

Innodb_buffer_pool_read_requests Yes Both No

Innodb_buffer_pool_reads Yes Both No

innodb_buffer_pool_size Yes Yes Yes Global No

Innodb_buffer_pool_wait_free Yes Both No

Innodb_buffer_pool_write_requests Yes Both No

innodb_checksums Yes Yes Yes Global No

innodb_commit_concurrency Yes Yes Yes Global Yes

innodb_concurrency_tickets Yes Yes Yes Global Yes

innodb_data_file_path Yes Yes Yes Global No

Innodb_data_fsyncs Yes Both No

innodb_data_home_dir Yes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Both No

Innodb_data_pending_reads Yes Both No

Innodb_data_pending_writes Yes Both No

Innodb_data_read Yes Both No

Innodb_data_reads Yes Both No

Innodb_data_writes Yes Both No

Innodb_data_written Yes Both No

Innodb_dblwr_pages_written Yes Both No

Innodb_dblwr_writes Yes Both No

innodb_doublewrite Yes Yes Yes Global No

innodb_fast_shutdown Yes Yes Yes Global Yes

innodb_file_io_threads Yes Yes Yes Global No

innodb_file_per_table Yes Yes Yes Global No

innodb_flush_log_at_trx_commit Yes Yes Yes Global Yes

innodb_flush_method Yes Yes Yes Global No

innodb_force_recovery Yes Yes Yes Global No

innodb_locks_unsafe_for_binlog Yes Yes Yes Global No

innodb_lock_wait_timeout Yes Yes Yes Global No

innodb_log_arch_dir Yes Yes Yes Global No

innodb_log_archive Yes Yes Yes Global No

innodb_log_buffer_size Yes Yes Yes Global No

innodb_log_files_in_group Yes Yes Yes Global No

innodb_log_file_size Yes Yes Yes Global No

innodb_log_group_home_dir Yes Yes Yes Global No

Innodb_log_waits Yes Both No

Innodb_log_write_requests Yes Both No

Storage Engines

949



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

Innodb_log_writes Yes Both No

innodb_max_dirty_pages_pct Yes Yes Yes Global Yes

innodb_max_purge_lag Yes Yes Yes Global Yes

innodb_mirrored_log_groups Yes Yes Yes Global No

innodb_open_files Yes Yes Yes Global No

Innodb_os_log_fsyncs Yes Both No

Innodb_os_log_pending_fsyncs Yes Both No

Innodb_os_log_pending_writes Yes Both No

Innodb_os_log_written Yes Both No

Innodb_pages_created Yes Both No

Innodb_page_size Yes Both No

Innodb_pages_read Yes Both No

Innodb_pages_written Yes Both No

innodb_rollback_on_timeout Yes Yes Yes Global No

Innodb_row_lock_current_waits Yes Both No

Innodb_row_lock_time Yes Both No

Innodb_row_lock_time_avg Yes Both No

Innodb_row_lock_time_max Yes Both No

Innodb_row_lock_waits Yes Both No

Innodb_rows_deleted Yes Both No

Innodb_rows_inserted Yes Both No

Innodb_rows_read Yes Both No

Innodb_rows_updated Yes Both No

innodb_stats_on_metadata Yes Yes Yes Global No

innodb_status_file Yes Yes Yes Global No

innodb_support_xa Yes Yes Yes Both Yes

innodb_sync_spin_loops Yes Yes Yes Global Yes

innodb_table_locks Yes Yes Yes Both Yes

innodb_thread_concurrency Yes Yes Yes Global Yes

innodb_thread_sleep_delay Yes Yes Yes Global Yes

plugin-innodb Yes Yes

plugin_innodb_additional_mem_pool_size Yes Yes Yes Both No

plugin_innodb_autoextend_increment Yes Yes Yes Both Yes

plugin_innodb_buffer_pool_awe_mem_mb Yes Yes Both No

- Variable: innodb_buffer_pool_awe_mem_mb Yes Both No

plugin_innodb_buffer_pool_size Yes Yes Yes Both No

plugin_innodb_checksums Yes Yes Yes Both Yes

plugin_innodb_commit_concurrency Yes Yes Yes Global Yes

plugin_innodb_concurrency_tickets Yes Yes Yes Global Yes

plugin_innodb_data_file_path Yes Yes Yes Global No

plugin_innodb_data_home_dir Yes Yes Yes Global No

plugin-innodb-doublewrite Yes Yes Global No

- Variable: plugin_innodb_doublewrite Yes Global No

plugin_innodb_fast_shutdown Yes Yes Yes Global No

Storage Engines

950



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

plugin_innodb_file_io_threads Yes Yes Yes Global No

plugin_innodb_file_per_table Yes Yes Yes Global No

plugin_innodb_flush_log_at_trx_commit Yes Yes Yes Global Yes

plugin_innodb_flush_method Yes Yes Yes Global No

plugin_innodb_force_recovery Yes Yes Yes Global No

plugin_innodb_locks_unsafe_for_binlog Yes Yes Yes Global No

plugin_innodb_lock_wait_timeout Yes Yes Yes Global No

plugin_innodb_log_archive Yes Yes Yes Global No

plugin_innodb_log_buffer_size Yes Yes Yes Global No

plugin_innodb_log_files_in_group Yes Yes Yes Global No

plugin_innodb_log_file_size Yes Yes Yes Global No

plugin_innodb_log_group_home_dir Yes Yes Yes Global No

plugin_innodb_max_dirty_pages_pct Yes Yes Yes Global Yes

plugin_innodb_max_purge_lag Yes Yes Yes Global Yes

plugin_innodb_mirrored_log_groups Yes Yes Yes Global No

plugin_innodb_open_files Yes Yes Yes Global No

plugin_innodb_rollback_on_timeout Yes Yes Yes No

plugin_innodb_stats_on_metadata Yes Yes Yes No

plugin_innodb_status_file Yes Yes Yes No

plugin_innodb_support_xa Yes Yes Yes Both Yes

plugin_innodb_sync_spin_loops Yes Yes Yes Global Yes

plugin_innodb_table_locks Yes Yes Yes Both Yes

plugin_innodb_thread_concurrency Yes Yes Yes Global Yes

plugin_innodb_thread_sleep_delay Yes Yes Yes Global Yes

skip-innodb Yes Yes

skip-innodb-checksums Yes Yes

skip-plugin-innodb Yes Yes

skip-plugin-innodb-checksums Yes Yes

sync-binlog Yes Yes Global Yes

- Variable: sync_binlog Yes Global Yes

timed_mutexes Yes Yes Yes Global Yes

unique_checks Yes Yes Yes Session Yes

InnoDB command options:

• --innodb

Enables the InnoDB storage engine, if the server was compiled with InnoDB support. Use --skip-innodb to disable InnoDB.

• --innodb_status_file

Causes InnoDB to create a file named <datadir>/innodb_status.<pid> in the MySQL data directory. InnoDB periodic-
ally writes the output of SHOW ENGINE INNODB STATUS to this file.

InnoDB system variables:

Storage Engines

951



• innodb_adaptive_hash_index

Whether InnoDB adaptive hash indexes are enabled or disabled. By default, this variable is enabled. Use -
-skip-innodb_adaptive_hash_index at server startup to disable it. See Section 13.5.13.3, “Adaptive Hash Indexes” This
variable was added in MySQL 5.1.24.

• innodb_additional_mem_pool_size

The size in bytes of a memory pool InnoDB uses to store data dictionary information and other internal data structures. The more
tables you have in your application, the more memory you need to allocate here. If InnoDB runs out of memory in this pool, it
starts to allocate memory from the operating system and writes warning messages to the MySQL error log. The default value is
1MB.

• innodb_autoextend_increment

The increment size (in MB) for extending the size of an auto-extending tablespace when it becomes full. The default value is 8.

• innodb_buffer_pool_awe_mem_mb

The size of the buffer pool (in MB), if it is placed in the AWE memory. This is relevant only in 32-bit Windows. If your 32-bit Win-
dows operating system supports more than 4GB memory, using so-called “Address Windowing Extensions,” you can allocate the
InnoDB buffer pool into the AWE physical memory using this variable. The maximum possible value for this variable is 63000. If
it is greater than 0, innodb_buffer_pool_size is the window in the 32-bit address space of mysqld where InnoDB maps
that AWE memory. A good value for innodb_buffer_pool_size is 500MB.

To take advantage of AWE memory, you will need to recompile MySQL yourself. The current project settings needed for doing this
can be found in the storage/innobase/os/os0proj.c source file.

• innodb_autoinc_lock_mode

The locking mode to use for generating auto-increment values. The allowable values are 0, 1, or 2, for “traditional”, “consecutive”,
or “interleaved” lock mode, respectively. The characteristics of these modes are described in Section 13.5.6.3, “How
AUTO_INCREMENT Handling Works in InnoDB”.

This variable was added in MySQL 5.1.22 with a default of 1 (“consecutive” lock mode). Before 5.1.22, InnoDB uses “traditional”
lock mode.

• innodb_buffer_pool_size

The size in bytes of the memory buffer InnoDB uses to cache data and indexes of its tables. The larger you set this value, the less
disk I/O is needed to access data in tables. On a dedicated database server, you may set this to up to 80% of the machine physical
memory size. However, do not set it too large because competition for physical memory might cause paging in the operating system.

• innodb_checksums

InnoDB can use checksum validation on all pages read from the disk to ensure extra fault tolerance against broken hardware or data
files. This validation is enabled by default. However, under some rare circumstances (such as when running benchmarks) this extra
safety feature is unneeded and can be disabled with --skip-innodb-checksums.

• innodb_commit_concurrency

The number of threads that can commit at the same time. Setting this parameter to 0 allows any number of transactions to commit
simultaneously.

• innodb_concurrency_tickets

The number of threads that can enter InnoDB concurrently is determined by the innodb_thread_concurrency variable. A
thread is placed in a queue when it tries to enter InnoDB if the number of threads has already reached the concurrency limit. When
a thread is allowed to enter InnoDB, it is given a number of “free tickets” equal to the value of in-
nodb_concurrency_tickets, and the thread can enter and leave InnoDB freely until it has used up its tickets. After that
point, the thread again becomes subject to the concurrency check (and possible queuing) the next time it tries to enter InnoDB.

• innodb_data_file_path

The paths to individual data files and their sizes. The full directory path to each data file is formed by concatenating in-
nodb_data_home_dir to each path specified here. The file sizes are specified in MB or GB (1024MB) by appending M or G to

Storage Engines

952



the size value. The sum of the sizes of the files must be at least 10MB. If you do not specify innodb_data_file_path, the de-
fault behavior is to create a single 10MB auto-extending data file named ibdata1. The size limit of individual files is determined
by your operating system. You can set the file size to more than 4GB on those operating systems that support big files. You can also
use raw disk partitions as data files. See Section 13.5.3.2, “Using Raw Devices for the Shared Tablespace”.

• innodb_data_home_dir

The common part of the directory path for all InnoDB data files. If you do not set this value, the default is the MySQL data direct-
ory. You can specify the value as an empty string, in which case you can use absolute file paths in innodb_data_file_path.

• innodb_doublewrite

By default, InnoDB stores all data twice, first to the doublewrite buffer, and then to the actual data files. This variable is enabled by
default. It can be turned off with --skip-innodb_doublewrite for benchmarks or cases when top performance is needed
rather than concern for data integrity or possible failures.

• innodb_fast_shutdown

If you set this variable to 0, InnoDB does a full purge and an insert buffer merge before a shutdown. These operations can take
minutes, or even hours in extreme cases. If you set this variable to 1, InnoDB skips these operations at shutdown. The default value
is 1. If you set it to 2, InnoDB will just flush its logs and then shut down cold, as if MySQL had crashed; no committed transaction
will be lost, but crash recovery will be done at the next startup. A value of 2 cannot be used on NetWare.

• innodb_file_io_threads

The number of file I/O threads in InnoDB. Normally, this should be left at the default value of 4, but disk I/O on Windows may be-
nefit from a larger number. On Unix, increasing the number has no effect; InnoDB always uses the default value.

• innodb_file_per_table

If this variable is enabled, InnoDB creates each new table using its own .ibd file for storing data and indexes, rather than in the
shared tablespace. The default is to create tables in the shared tablespace. See Section 13.5.3.1, “Using Per-Table Tablespaces”.

• innodb_flush_log_at_trx_commit

When innodb_flush_log_at_trx_commit is set to 0, the log buffer is written out to the log file once per second and the
flush to disk operation is performed on the log file, but nothing is done at a transaction commit. When this value is 1 (the default),
the log buffer is written out to the log file at each transaction commit and the flush to disk operation is performed on the log file.
When set to 2, the log buffer is written out to the file at each commit, but the flush to disk operation is not performed on it.
However, the flushing on the log file takes place once per second also when the value is 2. Note that the once-per-second flushing is
not 100% guaranteed to happen every second, due to process scheduling issues.

The default value of this variable is 1, which is the value that is required for ACID compliance. You can achieve better performance
by setting the value different from 1, but then you can lose at most one second worth of transactions in a crash. If you set the value
to 0, then any mysqld process crash can erase the last second of transactions. If you set the value to 2, then only an operating sys-
tem crash or a power outage can erase the last second of transactions. However, InnoDB's crash recovery is not affected and thus
crash recovery does work regardless of the value. Note that many operating systems and some disk hardware fool the flush-to-disk
operation. They may tell mysqld that the flush has taken place, even though it has not. Then the durability of transactions is not
guaranteed even with the setting 1, and in the worst case a power outage can even corrupt the InnoDB database. Using a battery-
backed disk cache in the SCSI disk controller or in the disk itself speeds up file flushes, and makes the operation safer. You can also
try using the Unix command hdparm to disable the caching of disk writes in hardware caches, or use some other command specific
to the hardware vendor.

Note: For the greatest possible durability and consistency in a replication setup using InnoDB with transactions, you should use
innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in your master server my.cnf file.

• innodb_flush_method

By default, InnoDB uses fsync() to flush both the data and log files. If innodb_flush_method option is set to O_DSYNC,
InnoDB uses O_SYNC to open and flush the log files, but uses fsync() to flush the data files. If O_DIRECT is specified
(available on some GNU/Linux versions, FreeBSD and Solaris), InnoDB uses O_DIRECT (or directio() on Solaris) to open
the data files, and uses fsync() to flush both the data and log files. Note that InnoDB uses fsync() instead of fdatasync(),
and it does not use O_DSYNC by default because there have been problems with it on many varieties of Unix. This variable is relev-
ant only for Unix. On Windows, the flush method is always async_unbuffered and cannot be changed.

Different values of this variable can have a marked effect on InnoDB performance. For example, on some systems where In-

Storage Engines

953



noDB data and log files are located on a SAN, it has been found that setting innodb_flush_method to O_DIRECT can degrade
performance of simple SELECT statements by a factor of three.

Formerly it was possible to specify a value of fdatasync to obtain the default behavior. This is no longer possible as of MySQL
5.1.24 because it can be confusing that a value of fdatasync causes use of fsync() rather than fdatasync() for flushing.

• innodb_force_recovery

The crash recovery mode.

Warning

This variable should be set greater than 0 only in an emergency situation when you want to dump your tables from a cor-
rupt database! Possible values are from 1 to 6. The meanings of these values are described in Section 13.5.8.1, “Forcing
InnoDB Recovery”. As a safety measure, InnoDB prevents any changes to its data when this variable is greater than 0.

• innodb_lock_wait_timeout

The timeout in seconds an InnoDB transaction may wait for a lock before being rolled back. InnoDB automatically detects trans-
action deadlocks in its own lock table and rolls back the transaction. The default is 50 seconds. A lock wait for a MySQL table lock
does not happen inside InnoDB, and this timeout does not apply to that wait.

• innodb_locks_unsafe_for_binlog

This variable controls next-key locking in InnoDB searches and index scans. By default, this variable is 0 (disabled), which means
that next-key locking is enabled.

Normally, InnoDB uses an algorithm called next-key locking. InnoDB performs row-level locking in such a way that when it
searches or scans a table index, it sets shared or exclusive locks on any index records it encounters. Thus, the row-level locks are ac-
tually index record locks. The locks that InnoDB sets on index records also affect the “gap” preceding that index record. If a user
has a shared or exclusive lock on record R in an index, another user cannot insert a new index record immediately before R in the or-
der of the index. Enabling this variable causes InnoDB not to use next-key locking in searches or index scans. Next-key locking is
still used to ensure foreign key constraints and duplicate key checking. Note that enabling this variable may cause phantom prob-
lems: Suppose that you want to read and lock all children from the child table with an identifier value larger than 100, with the in-
tention of updating some column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

Suppose that there is an index on the id column. The query scans that index starting from the first record where id is greater than
100. If the locks set on the index records do not lock out inserts made in the gaps, another client can insert a new row into the table.
If you execute the same SELECT within the same transaction, you see a new row in the result set returned by the query. This also
means that if new items are added to the database, InnoDB does not guarantee serializability. Therefore, if this variable is enabled,
InnoDB guarantees at most isolation level READ COMMITTED. (Conflict serializability is still guaranteed.)

Enabling this variable has an additional effect: InnoDB in an UPDATE or a DELETE only locks rows that it updates or deletes. This
greatly reduces the probability of deadlocks, but they can happen. Note that enabling this variable still does not allow operations
such as UPDATE to overtake other similar operations (such as another UPDATE) even in the case when they affect different rows.
Consider the following example, beginning with this table:

CREATE TABLE A(A INT NOT NULL, B INT) ENGINE = InnoDB;
INSERT INTO A VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;

Suppose that one client executes these statements:

SET AUTOCOMMIT = 0;
UPDATE A SET B = 5 WHERE B = 3;

Then suppose that another client executes these statements following those of the first client:

SET AUTOCOMMIT = 0;
UPDATE A SET B = 4 WHERE B = 2;

In this case, the second UPDATE must wait for a commit or rollback of the first UPDATE. The first UPDATE has an exclusive lock
on row (2,3), and the second UPDATE while scanning rows also tries to acquire an exclusive lock for the same row, which it cannot

Storage Engines

954



have. This is because UPDATE two first acquires an exclusive lock on a row and then determines whether the row belongs to the res-
ult set. If not, it releases the unnecessary lock, when the innodb_locks_unsafe_for_binlog variable is enabled.

Therefore, InnoDB executes UPDATE one as follows:

x-lock(1,2)
unlock(1,2)
x-lock(2,3)
update(2,3) to (2,5)
x-lock(3,2)
unlock(3,2)
x-lock(4,3)
update(4,3) to (4,5)
x-lock(5,2)
unlock(5,2)

InnoDB executes UPDATE two as follows:

x-lock(1,2)
update(1,2) to (1,4)
x-lock(2,3) - wait for query one to commit or rollback

• innodb_log_archive

Whether to log InnoDB archive files. This variable is present for historical reasons, but is unused. Recovery from a backup is done
by MySQL using its own log files, so there is no need to archive InnoDB log files. The default for this variable is 0.

• innodb_log_buffer_size

The size in bytes of the buffer that InnoDB uses to write to the log files on disk. Sensible values range from 1MB to 8MB. The de-
fault is 1MB. A large log buffer allows large transactions to run without a need to write the log to disk before the transactions com-
mit. Thus, if you have big transactions, making the log buffer larger saves disk I/O.

• innodb_log_file_size

The size in bytes of each log file in a log group. The combined size of log files must be less than 4GB on 32-bit computers. The de-
fault is 5MB. Sensible values range from 1MB to 1/N-th of the size of the buffer pool, where N is the number of log files in the
group. The larger the value, the less checkpoint flush activity is needed in the buffer pool, saving disk I/O. But larger log files also
mean that recovery is slower in case of a crash.

• innodb_log_files_in_group

The number of log files in the log group. InnoDB writes to the files in a circular fashion. The default (and recommended) is 2.

• innodb_log_group_home_dir

The directory path to the InnoDB log files. If you do not specify any InnoDB log variables, the default is to create two 5MB files
names ib_logfile0 and ib_logfile1 in the MySQL data directory.

• innodb_max_dirty_pages_pct

This is an integer in the range from 0 to 100. The default is 90. The main thread in InnoDB tries to write pages from the buffer pool
so that the percentage of dirty (not yet written) pages will not exceed this value.

• innodb_max_purge_lag

This variable controls how to delay INSERT, UPDATE and DELETE operations when the purge operations are lagging (see Sec-
tion 13.5.12, “Implementation of Multi-Versioning”). The default value of this variable is 0, meaning that there are no delays.

The InnoDB transaction system maintains a list of transactions that have delete-marked index records by UPDATE or DELETE op-
erations. Let the length of this list be purge_lag. When purge_lag exceeds innodb_max_purge_lag, each INSERT, UP-
DATE and DELETE operation is delayed by ((purge_lag/innodb_max_purge_lag)×10)–5 milliseconds. The delay is com-
puted in the beginning of a purge batch, every ten seconds. The operations are not delayed if purge cannot run because of an old
consistent read view that could see the rows to be purged.

A typical setting for a problematic workload might be 1 million, assuming that our transactions are small, only 100 bytes in size, and
we can allow 100MB of unpurged rows in our tables.

Storage Engines

955



• innodb_mirrored_log_groups

The number of identical copies of log groups to keep for the database. Currently, this should be set to 1.

• innodb_open_files

This variable is relevant only if you use multiple tablespaces in InnoDB. It specifies the maximum number of .ibd files that In-
noDB can keep open at one time. The minimum value is 10. The default is 300.

The file descriptors used for .ibd files are for InnoDB only. They are independent of those specified by the -
-open-files-limit server option, and do not affect the operation of the table cache.

• innodb_rollback_on_timeout

In MySQL 5.1, InnoDB rolls back only the last statement on a transaction timeout. If this option is given, a transaction timeout
causes InnoDB to abort and roll back the entire transaction (the same behavior as in MySQL 4.1). This variable was added in
MySQL 5.1.15.

• innodb_stats_on_metadata

When this variable is enabled (which is the default, as before the variable was created), InnoDB updates statistics during metadata
statements such as SHOW TABLE STATUS or SHOW INDEX, or when accessing the INFORMATION_SCHEMA tables TABLES or
STATISTICS. (These updates are similar to what happens for ANALYZE TABLE.) When disabled, InnoDB does not updates stat-
istics during these operations. Disabling this variable can improve access speed for schemas that have a large number of tables or in-
dexes. It can also improve the stability of execution plans for queries that involve InnoDB tables.

This variable was added in MySQL 5.1.17.

• innodb_support_xa

When set to ON or 1 (the default), this variable enables InnoDB support for two-phase commit in XA transactions. Enabling in-
nodb_support_xa causes an extra disk flush for transaction preparation.

If you do not wish to use XA, you can disable this variable by setting it to OFF or 0 to reduce the number of disk flushes and get
better InnoDB performance.

Setting innodb_support_xa to ON or 1 on a replication master — or on any MySQL server where binary logging is in use —
ensures that the binary log does not get out of sync compared to the table data.

• innodb_sync_spin_loops

The number of times a thread waits for an InnoDB mutex to be freed before the thread is suspended.

• innodb_table_locks

If AUTOCOMMIT=0, InnoDB honors LOCK TABLES; MySQL does not return from LOCK TABLE .. WRITE until all other
threads have released all their locks to the table. The default value of innodb_table_locks is 1, which means that LOCK
TABLES causes InnoDB to lock a table internally if AUTOCOMMIT=0.

• innodb_thread_concurrency

InnoDB tries to keep the number of operating system threads concurrently inside InnoDB less than or equal to the limit given by
this variable. Once the number of threads reaches this limit, additional threads are placed into a wait state within a FIFO queue for
execution. Threads waiting for locks are not counted in the number of concurrently executing threads.

The correct value for this variable is dependent on environment and workload. You will need to try a range of different values to de-
termine what value works for your application.

The range of this variable is 0 to 1000. A value of 20 or higher is interpreted as infinite concurrency before MySQL 5.1.12. From
5.1.12 on, you can disable thread concurrency checking by setting the value to 0, which allows InnoDB to create as many threads as
it needs.

The default value is 20 before MySQL 5.1.11, and 8 from 5.1.11 on.

• innodb_thread_sleep_delay

Storage Engines

956



How long InnoDB threads sleep before joining the InnoDB queue, in microseconds. The default value is 10,000. A value of 0 dis-
ables sleep.

• sync_binlog

If the value of this variable is positive, the MySQL server synchronizes its binary log to disk (fdatasync()) after every
sync_binlog writes to this binary log. Note that there is one write to the binary log per statement if in autocommit mode, and
otherwise one write per transaction. The default value is 0 which does no synchronizing to disk. A value of 1 is the safest choice, be-
cause in the event of a crash you lose at most one statement/transaction from the binary log; however, it is also the slowest choice
(unless the disk has a battery-backed cache, which makes synchronization very fast).

13.5.5. Creating the InnoDB Tablespace
Suppose that you have installed MySQL and have edited your option file so that it contains the necessary InnoDB configuration para-
meters. Before starting MySQL, you should verify that the directories you have specified for InnoDB data files and log files exist and
that the MySQL server has access rights to those directories. InnoDB does not create directories, only files. Check also that you have
enough disk space for the data and log files.

It is best to run the MySQL server mysqld from the command prompt when you first start the server with InnoDB enabled, not from
the mysqld_safe wrapper or as a Windows service. When you run from a command prompt you see what mysqld prints and what
is happening. On Unix, just invoke mysqld. On Windows, use the --console option.

When you start the MySQL server after initially configuring InnoDB in your option file, InnoDB creates your data files and log files,
and prints something like this:

InnoDB: The first specified datafile /home/heikki/data/ibdata1
did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file /home/heikki/data/ibdata1 size to 134217728
InnoDB: Database physically writes the file full: wait...
InnoDB: datafile /home/heikki/data/ibdata2 did not exist:
new to be created
InnoDB: Setting file /home/heikki/data/ibdata2 size to 262144000
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file /home/heikki/data/logs/ib_logfile0 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile0 size
to 5242880
InnoDB: Log file /home/heikki/data/logs/ib_logfile1 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile1 size
to 5242880
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: Creating foreign key constraint system tables
InnoDB: Foreign key constraint system tables created
InnoDB: Started
mysqld: ready for connections

At this point InnoDB has initialized its tablespace and log files. You can connect to the MySQL server with the usual MySQL client
programs like mysql. When you shut down the MySQL server with mysqladmin shutdown, the output is like this:

010321 18:33:34 mysqld: Normal shutdown
010321 18:33:34 mysqld: Shutdown Complete
InnoDB: Starting shutdown...
InnoDB: Shutdown completed

You can look at the data file and log directories and you see the files created there. When MySQL is started again, the data files and log
files have been created already, so the output is much briefer:

InnoDB: Started
mysqld: ready for connections

If you add the innodb_file_per_table option to my.cnf, InnoDB stores each table in its own .ibd file in the same MySQL
database directory where the .frm file is created. See Section 13.5.3.1, “Using Per-Table Tablespaces”.

13.5.5.1. Dealing with InnoDB Initialization Problems

Storage Engines

957



If InnoDB prints an operating system error during a file operation, usually the problem has one of the following causes:

• You did not create the InnoDB data file directory or the InnoDB log directory.

• mysqld does not have access rights to create files in those directories.

• mysqld cannot read the proper my.cnf or my.ini option file, and consequently does not see the options that you specified.

• The disk is full or a disk quota is exceeded.

• You have created a subdirectory whose name is equal to a data file that you specified, so the name cannot be used as a filename.

• There is a syntax error in the innodb_data_home_dir or innodb_data_file_path value.

If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, you should delete all files created by In-
noDB. This means all ibdata files and all ib_logfile files. In case you have already created some InnoDB tables, delete the cor-
responding .frm files for these tables (and any .ibd files if you are using multiple tablespaces) from the MySQL database directories
as well. Then you can try the InnoDB database creation again. It is best to start the MySQL server from a command prompt so that you
see what is happening.

13.5.6. Creating and Using InnoDB Tables
To create an InnoDB table, specify an ENGINE = InnoDB option in the CREATE TABLE statement:

CREATE TABLE customers (a INT, b CHAR (20), INDEX (a)) ENGINE=InnoDB;

The statement creates a table and an index on column a in the InnoDB tablespace that consists of the data files that you specified in
my.cnf. In addition, MySQL creates a file customers.frm in the test directory under the MySQL database directory. Internally,
InnoDB adds an entry for the table to its own data dictionary. The entry includes the database name. For example, if test is the data-
base in which the customers table is created, the entry is for 'test/customers'. This means you can create a table of the same
name customers in some other database, and the table names do not collide inside InnoDB.

You can query the amount of free space in the InnoDB tablespace by issuing a SHOW TABLE STATUS statement for any InnoDB ta-
ble. The amount of free space in the tablespace appears in the Comment section in the output of SHOW TABLE STATUS. For ex-
ample:

SHOW TABLE STATUS FROM test LIKE 'customers'

Note that the statistics SHOW displays for InnoDB tables are only approximate. They are used in SQL optimization. Table and index re-
served sizes in bytes are accurate, though.

13.5.6.1. How to Use Transactions in InnoDB with Different APIs

By default, each client that connects to the MySQL server begins with autocommit mode enabled, which automatically commits every
SQL statement as you execute it. To use multiple-statement transactions, you can switch autocommit off with the SQL statement SET
AUTOCOMMIT = 0 and use COMMIT and ROLLBACK to commit or roll back your transaction. If you want to leave autocommit on,
you can enclose your transactions within START TRANSACTION and either COMMIT or ROLLBACK. The following example shows
two transactions. The first is committed; the second is rolled back.

shell> mysql test

mysql> CREATE TABLE CUSTOMER (A INT, B CHAR (20), INDEX (A))
-> ENGINE=InnoDB;

Query OK, 0 rows affected (0.00 sec)
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO CUSTOMER VALUES (10, 'Heikki');
Query OK, 1 row affected (0.00 sec)
mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)
mysql> SET AUTOCOMMIT=0;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO CUSTOMER VALUES (15, 'John');
Query OK, 1 row affected (0.00 sec)
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM CUSTOMER;

Storage Engines

958



+------+--------+
| A | B |
+------+--------+
| 10 | Heikki |
+------+--------+
1 row in set (0.00 sec)
mysql>

In APIs such as PHP, Perl DBI, JDBC, ODBC, or the standard C call interface of MySQL, you can send transaction control statements
such as COMMIT to the MySQL server as strings just like any other SQL statements such as SELECT or INSERT. Some APIs also offer
separate special transaction commit and rollback functions or methods.

13.5.6.2. Converting MyISAM Tables to InnoDB

Important: Do not convert MySQL system tables in the mysql database (such as user or host) to the InnoDB type. This is an un-
supported operation. The system tables must always be of the MyISAM type.

If you want all your (non-system) tables to be created as InnoDB tables, you can simply add the line default-stor-
age-engine=innodb to the [mysqld] section of your server option file.

InnoDB does not have a special optimization for separate index creation the way the MyISAM storage engine does. Therefore, it does
not pay to export and import the table and create indexes afterward. The fastest way to alter a table to InnoDB is to do the inserts dir-
ectly to an InnoDB table. That is, use ALTER TABLE ... ENGINE=INNODB, or create an empty InnoDB table with identical
definitions and insert the rows with INSERT INTO ... SELECT * FROM ....

If you have UNIQUE constraints on secondary keys, you can speed up a table import by turning off the uniqueness checks temporarily
during the import operation:

SET UNIQUE_CHECKS=0;
... import operation ...
SET UNIQUE_CHECKS=1;

For big tables, this saves a lot of disk I/O because InnoDB can then use its insert buffer to write secondary index records as a batch. Be
certain that the data contains no duplicate keys. UNIQUE_CHECKS allows but does not require storage engines to ignore duplicate keys.

To get better control over the insertion process, it might be good to insert big tables in pieces:

INSERT INTO newtable SELECT * FROM oldtable
WHERE yourkey > something AND yourkey <= somethingelse;

After all records have been inserted, you can rename the tables.

During the conversion of big tables, you should increase the size of the InnoDB buffer pool to reduce disk I/O. Do not use more than
80% of the physical memory, though. You can also increase the sizes of the InnoDB log files.

Make sure that you do not fill up the tablespace: InnoDB tables require a lot more disk space than MyISAM tables. If an ALTER TA-
BLE operation runs out of space, it starts a rollback, and that can take hours if it is disk-bound. For inserts, InnoDB uses the insert buf-
fer to merge secondary index records to indexes in batches. That saves a lot of disk I/O. For rollback, no such mechanism is used, and
the rollback can take 30 times longer than the insertion.

In the case of a runaway rollback, if you do not have valuable data in your database, it may be advisable to kill the database process
rather than wait for millions of disk I/O operations to complete. For the complete procedure, see Section 13.5.8.1, “Forcing InnoDB
Recovery”.

13.5.6.3. How AUTO_INCREMENT Handling Works in InnoDB

Beginning with MySQL 5.1.22, InnoDB provides a locking strategy that significantly improves scalability and performance of SQL
statements that add rows to tables with AUTO_INCREMENT columns. This section provides background information on the original
(“traditional”) implementation of auto-increment locking in InnoDB, explains the configurable locking mechanism, documents the
parameter for configuring the mechanism, and describes its behavior and interaction with replication.

13.5.6.3.1. “Traditional” InnoDB Auto-Increment Locking

The original implementation of auto-increment handling in InnoDB uses the following strategy to prevent problems when using the
binary log for statement-based replication or for certain recovery scenarios.

If you specify an AUTO_INCREMENT column for an InnoDB table, the table handle in the InnoDB data dictionary contains a special

Storage Engines

959



counter called the auto-increment counter that is used in assigning new values for the column. This counter is stored only in main
memory, not on disk.

InnoDB uses the following algorithm to initialize the auto-increment counter for a table t that contains an AUTO_INCREMENT
column named ai_col: After a server startup, for the first insert into a table t, InnoDB executes the equivalent of this statement:

SELECT MAX(ai_col) FROM t FOR UPDATE;

InnoDB increments by one the value retrieved by the statement and assigns it to the column and to the auto-increment counter for the
table. If the table is empty, InnoDB uses the value 1. If a user invokes a SHOW TABLE STATUS statement that displays output for the
table t and the auto-increment counter has not been initialized, InnoDB initializes but does not increment the value and stores it for use
by later inserts. This initialization uses a normal exclusive-locking read on the table and the lock lasts to the end of the transaction.

InnoDB follows the same procedure for initializing the auto-increment counter for a freshly created table.

After the auto-increment counter has been initialized, if a user does not explicitly specify a value for an AUTO_INCREMENT column,
InnoDB increments the counter by one and assigns the new value to the column. If the user inserts a row that explicitly specifies the
column value, and the value is bigger than the current counter value, the counter is set to the specified column value.

When accessing the auto-increment counter, InnoDB uses a special table-level AUTO-INC lock that it keeps to the end of the current
SQL statement, not to the end of the transaction. The special lock release strategy was introduced to improve concurrency for inserts in-
to a table containing an AUTO_INCREMENT column. Nevertheless, two transactions cannot have the AUTO-INC lock on the same ta-
ble simultaneously, which can have a performance impact if the AUTO-INC lock is held for a long time. That might be the case for a
statement such as INSERT INTO t1 ... SELECT ... FROM t2 that inserts all rows from one table into another.

InnoDB uses the in-memory auto-increment counter as long as the server runs. When the server is stopped and restarted, InnoDB rein-
itializes the counter for each table for the first INSERT to the table, as described earlier.

You may see gaps in the sequence of values assigned to the AUTO_INCREMENT column if you roll back transactions that have gener-
ated numbers using the counter.

If a user specifies NULL or 0 for the AUTO_INCREMENT column in an INSERT, InnoDB treats the row as if the value had not been
specified and generates a new value for it.

The behavior of the auto-increment mechanism is not defined if a user assigns a negative value to the column or if the value becomes
bigger than the maximum integer that can be stored in the specified integer type.

An AUTO_INCREMENT column must be the first column listed if it is part of a multiple-column index in an InnoDB table.

InnoDB supports the AUTO_INCREMENT = N table option in CREATE TABLE and ALTER TABLE statements, to set the initial
counter value or alter the current counter value. The effect of this option is canceled by a server restart, for reasons discussed earlier in
this section.

13.5.6.3.2. Configurable InnoDB Auto-Increment Locking

As described in the previous section, InnoDB uses a special lock called the AUTO-INC table-level lock for inserts into tables with
AUTO_INCREMENT columns. This lock is normally held to the end of the statement (not to the end of the transaction), to ensure that
auto-increment numbers are assigned in a predictable and repeatable order for a given sequence of INSERT statements.

In the case of statement-based replication, this means that when a SQL statement is replicated on a slave server, the same values are
used for the auto-increment column as on the master server. The result of execution of multiple INSERT statements is deterministic,
and the slave reproduces the same data as on the master. If auto-increment values generated by multiple INSERT statements were inter-
leaved, the result of two concurrent INSERT statements would be non-deterministic, and could not reliably be propagated to a slave
server using statement-based replication.

To make this clear, consider an example that uses this table:

CREATE TABLE t1 (
c1 INT(11) NOT NULL AUTO_INCREMENT,
c2 VARCHAR(10) DEFAULT NULL,
PRIMARY KEY (c1)

) ENGINE=InnoDB;

Suppose that there are two transactions running, each inserting rows into a table with an AUTO_INCREMENT column. One transaction
is using an INSERT ... SELECT statement that inserts 1000 rows, and another is using a simple INSERT statement that inserts one
row:

Storage Engines

960



Tx1: INSERT INTO t1 (c2) SELECT 1000 rows from another table ...
Tx2: INSERT INTO t1 (c2) VALUES ('xxx');

InnoDB cannot tell in advance how many rows will be retrieved from the SELECT in the INSERT statement in Tx1, and it assigns the
auto-increment values one at a time as the statement proceeds. With a table-level lock, held to the end of the statement, only one IN-
SERT statement referring to table t1 can execute at a time, and the generation of auto-increment numbers by different statements is not
interleaved. The auto-increment value generated by the Tx1 INSERT ... SELECT statement will be consecutive, and the (single)
auto-increment value used by the INSERT statement in Tx2 will either be smaller or larger than all those used for Tx1, depending on
which statement executes first.

As long as the SQL statements execute in the same order when replayed from the binary log (when using statement-based replication, or
in recovery scenarios), the results will be the same as they were when Tx1 and Tx2 first ran. Thus, table-level locks held until the end of
a statement make INSERT statements using auto-increment safe for use with statement-based replication. However, those locks limit
concurrency and scalability when multiple transactions are executing insert statements at the same time.

In the preceding example, if there were no table-level lock, the value of the auto-increment column used for the INSERT in Tx2 de-
pends on precisely when the statement executes. If the INSERT of Tx2 executes while the INSERT of Tx1 is running (rather than be-
fore it starts or after it completes), the specific auto-increment values assigned by the two INSERT statements are non-deterministic,
and may vary from run to run.

As of MySQL 5.1.22, InnoDB can avoid using the table-level AUTO-INC lock for a class of INSERT statements where the number of
rows is known in advance, and still preserve deterministic execution and safety for statement-based replication. Further, if you are not
using the binary log to replay SQL statements as part of recovery or replication, you can entirely eliminate use of the AUTO-INC table-
level lock for even greater concurrency and performance—at the cost of permitting gaps in auto-increment numbers assigned by a state-
ment and potentially having the numbers assigned by concurrently executing statements interleaved.

For INSERT statements where the number of rows to be inserted is known at the beginning of processing the statement, InnoDB
quickly allocates the required number of auto-increment values without taking any lock, but only if there is no concurrent session
already holding the table-level lock AUTO-INC lock (because that other statement will be allocating auto-increment values one-by-one
as it proceeds). More precisely, such an INSERT statement obtains auto-increment values under the control of a mutex (a light-weight
lock) that is not held until the statement completes, but only for the duration of the allocation process.

This new locking scheme allows much greater scalability, but it does introduce some subtle differences in how auto-increment values
are assigned compared to the original mechanism. To describe the way auto-increment works in InnoDB, the following discussion
defines some terms, and explains how InnoDB behaves using different settings of the new innodb_autoinc_lock_mode config-
uration parameter. Additional considerations are described following the explanation of auto-increment locking behavior.

First, some definitions:

• “INSERT-like” statements

All statements that generate new rows in a table, including INSERT, INSERT ... SELECT, REPLACE, REPLACE ... SE-
LECT, and LOAD DATA.

• “Simple inserts”

Statements for which the number of rows to be inserted can be determined in advance (when the statement is initially processed).
This includes single-row and multiple-row INSERT and REPLACE statements that do not have a nested subquery, but not INSERT
... ON DUPLICATE KEY UPDATE.

• “Bulk inserts”

Statements for which the number of rows to be inserted (and the number of required auto-increment values) is not known in ad-
vance. This includes INSERT ... SELECT, REPLACE ... SELECT, and LOAD DATA statements. InnoDB will assign new
values for the AUTO_INCREMENT column one at a time as each row is processed.

• “Mixed-mode inserts”

These are “simple insert” statements that specify the auto-increment value for some (but not all) of the new rows. An example fol-
lows, where c1 is an AUTO_INCREMENT column of table t1:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

Another type of “mixed-mode insert” is INSERT ... ON DUPLICATE KEY UPDATE, which in the worst case is in effect an

Storage Engines

961



INSERT followed by a UPDATE, where the allocated value for the the AUTO_INCREMENT column may or may not be used during
the update phase.

Beginning with MySQL 5.1.22, there is a new configuration parameter that controls how InnoDB uses locking when generating values
for AUTO_INCREMENT columns. This parameter can be set using the --innodb-autoinc-lock-mode option at mysqld star-
tup.

In general, if you encounter problems with the way auto-increment works (which will most likely involve replication), you can force use
of the original behavior by setting the lock mode to 0.

There are three possible settings for the innodb_autoinc_lock_mode parameter:

• innodb_autoinc_lock_mode = 0 (“traditional” lock mode)

This lock mode provides the same behavior as before innodb_autoinc_lock_mode existed. For all “INSERT-like” state-
ments, a special AUTO-INC table-level lock is obtained and held to the end of the statement. This assures that the auto-increment
values assigned by any given statement are consecutive (although “gaps” can exist within a table if a transaction that generated auto-
increment values is rolled back, as discussed later).

This lock mode is provided only for backward compatibility and performance testing. There is little reason to use this lock mode un-
less you use “mixed-mode inserts” and care about the important difference in semantics described later.

• innodb_autoinc_lock_mode = 1 (“consecutive” lock mode)

This is the default lock mode. In this mode, “bulk inserts” use the special table-level AUTIONC table-level lock and holds it until
the end of the statement. This applies to all INSERT ... SELECT, REPLACE ... SELECT, and LOAD DATA statements.
Only one statement holding the AUTO-INC lock can execute at a time.

With this lock mode, “simple inserts” (only) use a new locking model where a light-weight mutex is used during the allocation of
auto-increment values, and no AUTO-INC table-level lock is used, unless an AUTO-INC lock is held by another transaction. If an-
other transaction does hold an AUTO-INC lock, a “simple insert” waits for the AUTO-INC lock, as if it too were a “bulk insert.”

This lock mode ensures that, in the presence of INSERT statements where the number of rows is not known in advance (and where
auto-increment numbers are assigned as the statement progresses), all auto-increment values assigned by any “INSERT-like” state-
ment are consecutive, and operations are safe for statement-based replication.

Simply put, the important impact of this lock mode is significantly better scalability. This mode is safe for use with statement-based
replication. Further, as with “traditional” lock mode, auto-increment numbers assigned by any given statement are consecutive. In
this mode, there is no change in semantics compared to “traditional” mode for any statement that uses auto-increment, with one im-
portant exception.

The exception is for “mixed-mode inserts”, where the user provides explicit values for an AUTO_INCREMENT column for some,
but not all, rows in a multiple-row “simple insert.” For such inserts, InnoDB will allocate more auto-increment values than the
number of rows to be inserted. However, all values automatically assigned are consecutively generated (and thus higher than) the
auto-increment value generated by the most recently executed previous statement. “Excess” numbers are lost.

A similar situation exists if you use INSERT ... ON DUPLICATE KEY UPDATE. This statement is also classified as a
“mixed-mode insert” since an auto-increment value is not necessarily generated for each row. Because InnoDB allocates the auto-
increment value before the insert is actually attempted, it cannot know whether an inserted value will be a duplicate of an existing
value and thus cannot know whether the auto-increment value it generates will be used for a new row. Therefore, if you are using
statement-based replication, you must either avoid INSERT ... ON DUPLICATE KEY UPDATE or use in-
nodb_autoinc_lock_mode = 0 (“traditional” lock mode).

• innodb_autoinc_lock_mode = 2 (“interleaved” lock mode)

In this lock mode, no “INSERT-like” statements use the table-level AUTO-INC lock, and multiple statements can execute at the
same time. This is the fastest and most scalable lock mode, but it is not safe when using statement-based replication or recovery
scenarios when SQL statements are replayed from the binary log.

In this lock mode, auto-increment values are guaranteed to be unique and monotonically increasing across all concurrently executing
“INSERT-like” statements. However, because multiple statements can be generating numbers at the same time (that is, allocation of
numbers is interleaved across statements), the values generated for the rows inserted by any given statement may not be consecut-
ive.

Storage Engines

962



If the only statements executing are “simple inserts” where the number of rows to be inserted is known ahead of time, there will be
no gaps in the numbers generated for a single statement, except for “mixed-mode inserts.” However, when “bulk inserts” are ex-
ecuted, there may be gaps in the auto-increment values assigned by any given statement.

The auto-increment locking modes provided by innodb_autoinc_lock_mode have several usage implications:

• Using auto-increment with replication

If you are using statement-based replication, you should set innodb_autoinc_lock_mode to 0 or 1 and use the same value on
the master and its slaves. Auto-increment values are not ensured to be the same on the slaves as on the master if you use in-
nodb_autoinc_lock_mode = 2 (“interleaved”) or configurations where the master and slaves do not use the same lock mode.

If you are using row-based replication, all of the auto-increment lock modes are safe. Row-based replication is not sensitive to the
order of execution of the SQL statements.

• “Lost” auto-increment values and sequence gaps

In all lock modes (0, 1, and 2), if a transaction that generated auto-increment values rolls back, those auto-increment values are
“lost.” Once a value is generated for an auto-increment column, it cannot be rolled back, whether or not the “INSERT-like” state-
ment is completed, and whether or not the containing transaction is rolled back. Such lost values are not reused. Thus, there may be
gaps in the values stored in an AUTO_INCREMENT column of a table.

• Auto-increment values assigned by “mixed-mode inserts”

Consider a “mixed-mode insert,” where a “simple insert” specifies the auto-increment value for some (but not all) resulting rows.
Such a statement will behave differently in lock modes 0, 1, and 2. For example, assume c1 is an AUTO_INCREMENT column of
table t1, and that the most recent automatically generated sequence number is 100. Consider the following “mixed-mode insert”
statement:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

With innodb_autoinc_lock_mode set to 0 (“traditional”), the four new rows will be:

+-----+------+
| c1 | c2 |
+-----+------+
| 1 | a |
| 101 | b |
| 5 | c |
| 102 | d |
+-----+------+

The next available auto-increment value will be 103 because the auto-increment values are allocated one at a time, not all at once at
the beginning of statement execution. This result is true whether or not there are concurrently executing “INSERT-like” statements
(of any type).

With innodb_autoinc_lock_mode set to 1 (“consecutive”), the four new rows will also be:

+-----+------+
| c1 | c2 |
+-----+------+
| 1 | a |
| 101 | b |
| 5 | c |
| 102 | d |
+-----+------+

However, in this case, the next available auto-increment value will be 105, not 103 because four auto-increment values are allocated
at the time the statement is processed, but only two are used. This result is true whether or not there are concurrently executing
“INSERT-like” statements (of any type).

With innodb_autoinc_lock_mode set to mode 2 (“interleaved”), the four new rows will be:

+-----+------+
| c1 | c2 |
+-----+------+
| 1 | a |

Storage Engines

963



| x | b |
| 5 | c |
| y | d |
+-----+------+

The values of x and y will be unique and larger than any previously generated rows. However, the specific values of x and y will
depend on the number of auto-increment values generated by concurrently executing statements.

Finally, consider the following statement, issued when the most-recently generated sequence number was the value 4:

INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');

With any innodb_autoinc_lock_mode setting, this statement will generate a duplicate-key error 23000 (Can't write;
duplicate key in table) because 5 will be allocated for the row (NULL, 'b') and insertion of the row (5, 'c') will
fail.

• Gaps in auto-increment values for “bulk inserts”

With innodb_autoinc_lock_mode set to 0 (“traditional”) or 1 (“consecutive”), the auto-increment values generated by any
given statement will be consecutive, without gaps, because the table-level AUTO-INC lock is held until the end of the statement,
and only one such statement can execute at a time.

With innodb_autoinc_lock_mode set to 2 (“interleaved”), there may be gaps in the auto-increment values generated by
“bulk inserts,” but only if there are concurrently executing “INSERT-like” statements.

13.5.6.4. FOREIGN KEY Constraints

InnoDB also supports foreign key constraints. The syntax for a foreign key constraint definition in InnoDB looks like this:

[CONSTRAINT symbol] FOREIGN KEY [index_name] (index_col_name, ...)
REFERENCES tbl_name (index_col_name, ...)
[ON DELETE {RESTRICT | CASCADE | SET NULL | NO ACTION}]
[ON UPDATE {RESTRICT | CASCADE | SET NULL | NO ACTION}]

index_name represents a foreign key ID. If given, this is ignored if an index for the foreign key is defined explicitly. Otherwise, if
InnoDB creates an index for the foreign key, it uses index_name for the index name.

Foreign keys definitions are subject to the following conditions:

• Both tables must be InnoDB tables and they must not be TEMPORARY tables.

• Corresponding columns in the foreign key and the referenced key must have similar internal data types inside InnoDB so that they
can be compared without a type conversion. The size and sign of integer types must be the same. The length of string types need not
be the same. For non-binary (character) string columns, the character set and collation must be the same.

• In the referencing table, there must be an index where the foreign key columns are listed as the first columns in the same order. Such
an index is created on the referencing table automatically if it does not exist. index_name, if given, is used as described previ-
ously.

• In the referenced table, there must be an index where the referenced columns are listed as the first columns in the same order.

• Index prefixes on foreign key columns are not supported. One consequence of this is that BLOB and TEXT columns cannot be in-
cluded in a foreign key, because indexes on those columns must always include a prefix length.

• If the CONSTRAINT symbol clause is given, the symbol value must be unique in the database. If the clause is not given, In-
noDB creates the name automatically.

InnoDB rejects any INSERT or UPDATE operation that attempts to create a foreign key value in a child table if there is no a matching
candidate key value in the parent table. The action InnoDB takes for any UPDATE or DELETE operation that attempts to update or de-
lete a candidate key value in the parent table that has some matching rows in the child table is dependent on the referential action spe-
cified using ON UPDATE and ON DELETE subclauses of the FOREIGN KEY clause. When the user attempts to delete or update a row
from a parent table, and there are one or more matching rows in the child table, InnoDB supports five options regarding the action to be

Storage Engines

964



taken:

• CASCADE: Delete or update the row from the parent table and automatically delete or update the matching rows in the child table.
Both ON DELETE CASCADE and ON UPDATE CASCADE are supported. Between two tables, you should not define several ON
UPDATE CASCADE clauses that act on the same column in the parent table or in the child table.

• SET NULL: Delete or update the row from the parent table and set the foreign key column or columns in the child table to NULL.
This is valid only if the foreign key columns do not have the NOT NULL qualifier specified. Both ON DELETE SET NULL and
ON UPDATE SET NULL clauses are supported.

If you specify a SET NULL action, make sure that you have not declared the columns in the child table as NOT NULL.

• NO ACTION: In standard SQL, NO ACTION means no action in the sense that an attempt to delete or update a primary key value is
not allowed to proceed if there is a related foreign key value in the referenced table. InnoDB rejects the delete or update operation
for the parent table.

• RESTRICT: Rejects the delete or update operation for the parent table. NO ACTION and RESTRICT are the same as omitting the
ON DELETE or ON UPDATE clause. (Some database systems have deferred checks, and NO ACTION is a deferred check. In
MySQL, foreign key constraints are checked immediately, so NO ACTION and RESTRICT are the same.)

• SET DEFAULT: This action is recognized by the parser, but InnoDB rejects table definitions containing ON DELETE SET DE-
FAULT or ON UPDATE SET DEFAULT clauses.

Note that InnoDB supports foreign key references within a table. In these cases, “child table records” really refers to dependent records
within the same table.

InnoDB requires indexes on foreign keys and referenced keys so that foreign key checks can be fast and not require a table scan. The
index on the foreign key is created automatically. This is in contrast to some older versions, in which indexes had to be created expli-
citly or the creation of foreign key constraints would fail.

If MySQL reports an error number 1005 from a CREATE TABLE statement, and the error message refers to errno 150, table creation
failed because a foreign key constraint was not correctly formed. Similarly, if an ALTER TABLE fails and it refers to errno 150, that
means a foreign key definition would be incorrectly formed for the altered table. You can use SHOW ENGINE INNODB STATUS to
display a detailed explanation of the most recent InnoDB foreign key error in the server.

Note

InnoDB does not check foreign key constraints on those foreign key or referenced key values that contain a NULL
column.

Note

Currently, triggers are not activated by cascaded foreign key actions.

You cannot create a table with a column name that matches the name of an internal InnoDB column (including DB_ROW_ID,
DB_TRX_ID, DB_ROLL_PTR and DB_MIX_ID). In versions of MySQL before 5.1.10 this would cause a crash, since 5.1.10 the serv-
er will report error 1005 and refers to errno -1 in the error message.

Deviation from SQL standards: If there are several rows in the parent table that have the same referenced key value, InnoDB acts in
foreign key checks as if the other parent rows with the same key value do not exist. For example, if you have defined a RESTRICT type
constraint, and there is a child row with several parent rows, InnoDB does not allow the deletion of any of those parent rows.

InnoDB performs cascading operations through a depth-first algorithm, based on records in the indexes corresponding to the foreign
key constraints.

Deviation from SQL standards: A FOREIGN KEY constraint that references a non-UNIQUE key is not standard SQL. It is an In-
noDB extension to standard SQL.

Deviation from SQL standards: If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has
previously updated during the cascade, it acts like RESTRICT. This means that you cannot use self-referential ON UPDATE CASCADE
or ON UPDATE SET NULL operations. This is to prevent infinite loops resulting from cascaded updates. A self-referential ON DE-
LETE SET NULL, on the other hand, is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not be
nested more than 15 levels deep.

Deviation from SQL standards: Like MySQL in general, in an SQL statement that inserts, deletes, or updates many rows, InnoDB

Storage Engines

965



checks UNIQUE and FOREIGN KEY constraints row-by-row. According to the SQL standard, the default behavior should be deferred
checking. That is, constraints are only checked after the entire SQL statement has been processed. Until InnoDB implements deferred
constraint checking, some things will be impossible, such as deleting a record that refers to itself via a foreign key.

Here is a simple example that relates parent and child tables through a single-column foreign key:

CREATE TABLE parent (id INT NOT NULL,
PRIMARY KEY (id)

) ENGINE=INNODB;
CREATE TABLE child (id INT, parent_id INT,

INDEX par_ind (parent_id),
FOREIGN KEY (parent_id) REFERENCES parent(id)
ON DELETE CASCADE

) ENGINE=INNODB;

A more complex example in which a product_order table has foreign keys for two other tables. One foreign key references a two-
column index in the product table. The other references a single-column index in the customer table:

CREATE TABLE product (category INT NOT NULL, id INT NOT NULL,
price DECIMAL,
PRIMARY KEY(category, id)) ENGINE=INNODB;

CREATE TABLE customer (id INT NOT NULL,
PRIMARY KEY (id)) ENGINE=INNODB;

CREATE TABLE product_order (no INT NOT NULL AUTO_INCREMENT,
product_category INT NOT NULL,
product_id INT NOT NULL,
customer_id INT NOT NULL,
PRIMARY KEY(no),
INDEX (product_category, product_id),
FOREIGN KEY (product_category, product_id)
REFERENCES product(category, id)
ON UPDATE CASCADE ON DELETE RESTRICT,

INDEX (customer_id),
FOREIGN KEY (customer_id)
REFERENCES customer(id)) ENGINE=INNODB;

InnoDB allows you to add a new foreign key constraint to a table by using ALTER TABLE:

ALTER TABLE tbl_name
ADD [CONSTRAINT symbol] FOREIGN KEY [index_name] (index_col_name, ...)
REFERENCES tbl_name (index_col_name, ...)
[ON DELETE {RESTRICT | CASCADE | SET NULL | NO ACTION}]
[ON UPDATE {RESTRICT | CASCADE | SET NULL | NO ACTION}]

Remember to create the required indexes first. You can also add a self-referential foreign key constraint to a table using ALTER
TABLE.

InnoDB also supports the use of ALTER TABLE to drop foreign keys:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

If the FOREIGN KEY clause included a CONSTRAINT name when you created the foreign key, you can refer to that name to drop the
foreign key. Otherwise, the fk_symbol value is internally generated by InnoDB when the foreign key is created. To find out the
symbol value when you want to drop a foreign key, use the SHOW CREATE TABLE statement. For example:

mysql> SHOW CREATE TABLE ibtest11c\G
*************************** 1. row ***************************

Table: ibtest11c
Create Table: CREATE TABLE `ibtest11c` (
`A` int(11) NOT NULL auto_increment,
`D` int(11) NOT NULL default '0',
`B` varchar(200) NOT NULL default '',
`C` varchar(175) default NULL,
PRIMARY KEY (`A`,`D`,`B`),
KEY `B` (`B`,`C`),
KEY `C` (`C`),
CONSTRAINT `0_38775` FOREIGN KEY (`A`, `D`)

REFERENCES `ibtest11a` (`A`, `D`)
ON DELETE CASCADE ON UPDATE CASCADE,
CONSTRAINT `0_38776` FOREIGN KEY (`B`, `C`)

REFERENCES `ibtest11a` (`B`, `C`)
ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=INNODB CHARSET=latin1
1 row in set (0.01 sec)

mysql> ALTER TABLE ibtest11c DROP FOREIGN KEY `0_38775`;

Storage Engines

966



You cannot add a foreign key and drop a foreign key in separate clauses of a single ALTER TABLE statement. Separate statements are
required.

If ALTER TABLE for an InnoDB table results in changes to column values (for example, because a column is truncated), InnoDB's
FOREIGN KEY constraint checks do not notice possible violations caused by changing the values.

The InnoDB parser allows table and column identifiers in a FOREIGN KEY ... REFERENCES ... clause to be quoted within
backticks. (Alternatively, double quotes can be used if the ANSI_QUOTES SQL mode is enabled.) The InnoDB parser also takes into
account the setting of the lower_case_table_names system variable.

InnoDB returns a table's foreign key definitions as part of the output of the SHOW CREATE TABLE statement:

SHOW CREATE TABLE tbl_name;

mysqldump also produces correct definitions of tables to the dump file, and does not forget about the foreign keys.

You can also display the foreign key constraints for a table like this:

SHOW TABLE STATUS FROM db_name LIKE 'tbl_name';

The foreign key constraints are listed in the Comment column of the output.

When performing foreign key checks, InnoDB sets shared row-level locks on child or parent records it has to look at. InnoDB checks
foreign key constraints immediately; the check is not deferred to transaction commit.

To make it easier to reload dump files for tables that have foreign key relationships, mysqldump automatically includes a statement in
the dump output to set FOREIGN_KEY_CHECKS to 0. This avoids problems with tables having to be reloaded in a particular order
when the dump is reloaded. It is also possible to set this variable manually:

mysql> SET FOREIGN_KEY_CHECKS = 0;
mysql> SOURCE dump_file_name;
mysql> SET FOREIGN_KEY_CHECKS = 1;

This allows you to import the tables in any order if the dump file contains tables that are not correctly ordered for foreign keys. It also
speeds up the import operation. Setting FOREIGN_KEY_CHECKS to 0 can also be useful for ignoring foreign key constraints during
LOAD DATA and ALTER TABLE operations. However, even if FOREIGN_KEY_CHECKS=0, InnoDB does not allow the creation of a
foreign key constraint where a column references a non-matching column type. Also, if an InnoDB table has foreign key constraints,
ALTER TABLE cannot be used to change the table to use another storage engine. To alter the storage engine, you must drop any for-
eign key constraints first.

InnoDB does not allow you to drop a table that is referenced by a FOREIGN KEY constraint, unless you do SET FOR-
EIGN_KEY_CHECKS=0. When you drop a table, the constraints that were defined in its create statement are also dropped.

If you re-create a table that was dropped, it must have a definition that conforms to the foreign key constraints referencing it. It must
have the right column names and types, and it must have indexes on the referenced keys, as stated earlier. If these are not satisfied,
MySQL returns error number 1005 and refers to errno 150 in the error message.

13.5.6.5. InnoDB and MySQL Replication

MySQL replication works for InnoDB tables as it does for MyISAM tables. It is also possible to use replication in a way where the stor-
age engine on the slave is not the same as the original storage engine on the master. For example, you can replicate modifications to an
InnoDB table on the master to a MyISAM table on the slave.

To set up a new slave for a master, you have to make a copy of the InnoDB tablespace and the log files, as well as the .frm files of the
InnoDB tables, and move the copies to the slave. If the innodb_file_per_table variable is enabled, you must also copy the
.ibd files as well. For the proper procedure to do this, see Section 13.5.8, “Backing Up and Recovering an InnoDB Database”.

If you can shut down the master or an existing slave, you can take a cold backup of the InnoDB tablespace and log files and use that to
set up a slave. To make a new slave without taking down any server you can also use the commercial InnoDB Hot Backup tool.

You cannot set up replication for InnoDB using the LOAD TABLE FROM MASTER statement, which works only for MyISAM tables.
There are two possible workarounds:

• Dump the table on the master and import the dump file into the slave.

Storage Engines

967

http://www.innodb.com/hot-backup


• Use ALTER TABLE tbl_name ENGINE=MyISAM on the master before setting up replication with LOAD TABLE tbl_name
FROM MASTER, and then use ALTER TABLE to convert the master table back to InnoDB afterward. However, this should not be
done for tables that have foreign key definitions because the definitions will be lost.

Transactions that fail on the master do not affect replication at all. MySQL replication is based on the binary log where MySQL writes
SQL statements that modify data. A transaction that fails (for example, because of a foreign key violation, or because it is rolled back) is
not written to the binary log, so it is not sent to slaves. See Section 12.4.1, “START TRANSACTION, COMMIT, and ROLLBACK Syn-
tax”.

Replication and CASCADE. Cascading actions for InnoDB tables on the master are replicated to the slave only if both the master's
and slave' versions of the tables sharing the foreign key relation use InnoDB. This is true whether you are using statement-based or
row-based replication. For example, suppose you have started replication, and then create two tables on the master using the following
CREATE TABLE statements:

CREATE TABLE fc1 (
i INT PRIMARY KEY,
j INT

) ENGINE = InnoDB;

CREATE TABLE fc2 (
m INT PRIMARY KEY,
n INT,
FOREIGN KEY ni (n) REFERENCES fc1 (i)

ON DELETE CASCADE
) ENGINE = InnoDB;

Suppose that the slave does not have InnoDB support enabled. If this is the case, then the tables on the slave are created, but they use
the MyISAM storage engine, and the FOREIGN KEY option is ignored. Now we insert some rows into the tables on the master:

master> INSERT INTO fc1 VALUES (1, 1), (2, 2);
Query OK, 2 rows affected (0.09 sec)
Records: 2 Duplicates: 0 Warnings: 0

master> INSERT INTO fc2 VALUES (1, 1), (2, 2), (3, 1);
Query OK, 3 rows affected (0.19 sec)
Records: 3 Duplicates: 0 Warnings: 0

At this point, on both the master and the slave, table fc1 contains 2 rows, and table fc2 contains 3 rows, as shown here:

master> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

master> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
| 1 | 1 |
| 2 | 2 |
| 3 | 1 |
+---+------+
3 rows in set (0.00 sec)

slave> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

slave> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
| 1 | 1 |
| 2 | 2 |
| 3 | 1 |
+---+------+
3 rows in set (0.00 sec)

Now suppose that you perform the following DELETE statement on the master:

master> DELETE FROM fc1 WHERE i=1;
Query OK, 1 row affected (0.09 sec)

Storage Engines

968



Due to the cascade, table fc2 on the master now contains only 1 row:

master> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 2 | 2 |
+---+---+
1 row in set (0.00 sec)

However, the cascade does not propagate to the slave. The slave's copy of fc2 still contains all of the rows that were originally inser-
ted:

slave> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 1 | 1 |
| 3 | 1 |
| 2 | 2 |
+---+---+
3 rows in set (0.00 sec)

This difference is due to the fact that the cascading deletes are handled internally by the InnoDB storage engine, which means that
none of the changes are logged.

13.5.7. Adding and Removing InnoDB Data and Log Files
This section describes what you can do when your InnoDB tablespace runs out of room or when you want to change the size of the log
files.

The easiest way to increase the size of the InnoDB tablespace is to configure it from the beginning to be auto-extending. Specify the
autoextend attribute for the last data file in the tablespace definition. Then InnoDB increases the size of that file automatically in
8MB increments when it runs out of space. The increment size can be changed by setting the value of the in-
nodb_autoextend_increment system variable, which is measured in MB.

Alternatively, you can increase the size of your tablespace by adding another data file. To do this, you have to shut down the MySQL
server, change the tablespace configuration to add a new data file to the end of innodb_data_file_path, and start the server
again.

If your last data file was defined with the keyword autoextend, the procedure for reconfiguring the tablespace must take into ac-
count the size to which the last data file has grown. Obtain the size of the data file, round it down to the closest multiple of 1024 × 1024
bytes (= 1MB), and specify the rounded size explicitly in innodb_data_file_path. Then you can add another data file. Remem-
ber that only the last data file in the innodb_data_file_path can be specified as auto-extending.

As an example, assume that the tablespace has just one auto-extending data file ibdata1:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:10M:autoextend

Suppose that this data file, over time, has grown to 988MB. Here is the configuration line after modifying the original data file to not be
auto-extending and adding another auto-extending data file:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

When you add a new file to the tablespace configuration, make sure that it does not exist. InnoDB will create and initialize the file
when you restart the server.

Currently, you cannot remove a data file from the tablespace. To decrease the size of your tablespace, use this procedure:

1. Use mysqldump to dump all your InnoDB tables.

2. Stop the server.

3. Remove all the existing tablespace files, including the ibdata and ib_log files. If you want to keep a backup copy of the in-
formation, then copy all the ib* files to another location before the removing the files in your MySQL installation.

4. Remove any .frm files for InnoDB tables.

Storage Engines

969



5. Configure a new tablespace.

6. Restart the server.

7. Import the dump files.

If you want to change the number or the size of your InnoDB log files, use the following instructions. The procedure to use depends on
the value of innodb_fast_shutdown:

• If innodb_fast_shutdown is not set to 2: You must stop the MySQL server and make sure that it shuts down without errors (to
ensure that there is no information for outstanding transactions in the logs). Then copy the old log files into a safe place just in case
something went wrong in the shutdown and you need them to recover the tablespace. Delete the old log files from the log file direct-
ory, edit my.cnf to change the log file configuration, and start the MySQL server again. mysqld sees that no log files exist at
startup and tells you that it is creating new ones.

• If innodb_fast_shutdown is set to 2: You should shut down the server, set innodb_fast_shutdown to 1, and restart the
server. The server should be allowed to recover. Then you should shut down the server again and follow the procedure described in
the preceding item to change InnoDB log file size. Set innodb_fast_shutdown back to 2 and restart the server.

13.5.8. Backing Up and Recovering an InnoDB Database
The key to safe database management is making regular backups.

InnoDB Hot Backup is an online backup tool you can use to backup your InnoDB database while it is running. InnoDB Hot
Backup does not require you to shut down your database and it does not set any locks or disturb your normal database processing. In-
noDB Hot Backup is a non-free (commercial) add-on tool with an annual license fee of €390 per computer on which the MySQL
server is run. See the InnoDB Hot Backup home page for detailed information and screenshots.

If you are able to shut down your MySQL server, you can make a binary backup that consists of all files used by InnoDB to manage its
tables. Use the following procedure:

1. Shut down your MySQL server and make sure that it shuts down without errors.

2. Copy all your data files (ibdata files and .ibd files) into a safe place.

3. Copy all your ib_logfile files to a safe place.

4. Copy your my.cnf configuration file or files to a safe place.

5. Copy all the .frm files for your InnoDB tables to a safe place.

Replication works with InnoDB tables, so you can use MySQL replication capabilities to keep a copy of your database at database sites
requiring high availability.

In addition to making binary backups as just described, you should also regularly make dumps of your tables with mysqldump. The
reason for this is that a binary file might be corrupted without you noticing it. Dumped tables are stored into text files that are human-
readable, so spotting table corruption becomes easier. Also, because the format is simpler, the chance for serious data corruption is
smaller. mysqldump also has a --single-transaction option that you can use to make a consistent snapshot without locking
out other clients.

To be able to recover your InnoDB database to the present from the binary backup just described, you have to run your MySQL server
with binary logging turned on. Then you can apply the binary log to the backup database to achieve point-in-time recovery:

mysqlbinlog yourhostname-bin.123 | mysql

To recover from a crash of your MySQL server, the only requirement is to restart it. InnoDB automatically checks the logs and per-
forms a roll-forward of the database to the present. InnoDB automatically rolls back uncommitted transactions that were present at the
time of the crash. During recovery, mysqld displays output something like this:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...

Storage Engines

970

http://www.innodb.com/hot-backup


InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

If your database gets corrupted or your disk fails, you have to do the recovery from a backup. In the case of corruption, you should first
find a backup that is not corrupted. After restoring the base backup, do the recovery from the binary log files using mysqlbinlog and
mysql to restore the changes performed after the backup was made.

In some cases of database corruption it is enough just to dump, drop, and re-create one or a few corrupt tables. You can use the CHECK
TABLE SQL statement to check whether a table is corrupt, although CHECK TABLE naturally cannot detect every possible kind of cor-
ruption. You can use innodb_tablespace_monitor to check the integrity of the file space management inside the tablespace
files.

In some cases, apparent database page corruption is actually due to the operating system corrupting its own file cache, and the data on
disk may be okay. It is best first to try restarting your computer. Doing so may eliminate errors that appeared to be database page cor-
ruption.

13.5.8.1. Forcing InnoDB Recovery

If there is database page corruption, you may want to dump your tables from the database with SELECT INTO OUTFILE. Usually,
most of the data obtained in this way is intact. Even so, the corruption may cause SELECT * FROM tbl_name statements or In-
noDB background operations to crash or assert, or even to cause InnoDB roll-forward recovery to crash. However, you can force the
InnoDB storage engine to start up while preventing background operations from running, so that you are able to dump your tables. For
example, you can add the following line to the [mysqld] section of your option file before restarting the server:

[mysqld]
innodb_force_recovery = 4

The allowable non-zero values for innodb_force_recovery follow. A larger number includes all precautions of smaller numbers.
If you are able to dump your tables with an option value of at most 4, then you are relatively safe that only some data on corrupt indi-
vidual pages is lost. A value of 6 is more drastic because database pages are left in an obsolete state, which in turn may introduce more
corruption into B-trees and other database structures.

• 1 (SRV_FORCE_IGNORE_CORRUPT)

Let the server run even if it detects a corrupt page. Try to make SELECT * FROM tbl_name jump over corrupt index records
and pages, which helps in dumping tables.

• 2 (SRV_FORCE_NO_BACKGROUND)

Prevent the main thread from running. If a crash would occur during the purge operation, this recovery value prevents it.

• 3 (SRV_FORCE_NO_TRX_UNDO)

Do not run transaction rollbacks after recovery.

• 4 (SRV_FORCE_NO_IBUF_MERGE)

Prevent also insert buffer merge operations. If they would cause a crash, do not do them. Do not calculate table statistics.

• 5 (SRV_FORCE_NO_UNDO_LOG_SCAN)

Do not look at undo logs when starting the database: InnoDB treats even incomplete transactions as committed.

Storage Engines

971



• 6 (SRV_FORCE_NO_LOG_REDO)

Do not do the log roll-forward in connection with recovery.

You can SELECT from tables to dump them, or DROP or CREATE tables even if forced recovery is used. If you know that a given table
is causing a crash on rollback, you can drop it. You can also use this to stop a runaway rollback caused by a failing mass import or AL-
TER TABLE. You can kill the mysqld process and set innodb_force_recovery to 3 to bring the database up without the roll-
back, then DROP the table that is causing the runaway rollback.

The database must not otherwise be used with any non-zero value of innodb_force_recovery. As a safety measure, InnoDB
prevents users from performing INSERT, UPDATE, or DELETE operations when innodb_force_recovery is greater than 0.

13.5.8.2. Checkpoints

InnoDB implements a checkpoint mechanism known as “fuzzy” checkpointing. InnoDB flushes modified database pages from the
buffer pool in small batches. There is no need to flush the buffer pool in one single batch, which would in practice stop processing of
user SQL statements during the checkpointing process.

During crash recovery, InnoDB looks for a checkpoint label written to the log files. It knows that all modifications to the database be-
fore the label are present in the disk image of the database. Then InnoDB scans the log files forward from the checkpoint, applying the
logged modifications to the database.

InnoDB writes to its log files on a rotating basis. All committed modifications that make the database pages in the buffer pool different
from the images on disk must be available in the log files in case InnoDB has to do a recovery. This means that when InnoDB starts to
reuse a log file, it has to make sure that the database page images on disk contain the modifications logged in the log file that InnoDB
is going to reuse. In other words, InnoDB must create a checkpoint and this often involves flushing of modified database pages to disk.

The preceding description explains why making your log files very large may save disk I/O in checkpointing. It often makes sense to set
the total size of the log files as big as the buffer pool or even bigger. The drawback of using large log files is that crash recovery can
take longer because there is more logged information to apply to the database.

13.5.9. Moving an InnoDB Database to Another Machine
On Windows, InnoDB always stores database and table names internally in lowercase. To move databases in a binary format from
Unix to Windows or from Windows to Unix, you should have all table and database names in lowercase. A convenient way to accom-
plish this is to add the following line to the [mysqld] section of your my.cnf or my.ini file before creating any databases or
tables:

[mysqld]
lower_case_table_names=1

Like MyISAM data files, InnoDB data and log files are binary-compatible on all platforms having the same floating-point number
format. You can move an InnoDB database simply by copying all the relevant files listed in Section 13.5.8, “Backing Up and Recover-
ing an InnoDB Database”. If the floating-point formats differ but you have not used FLOAT or DOUBLE data types in your tables, then
the procedure is the same: simply copy the relevant files. If the formats differ and your tables contain floating-point data, you must use
mysqldump to dump your tables on one machine and then import the dump files on the other machine.

One way to increase performance is to switch off autocommit mode when importing data, assuming that the tablespace has enough
space for the big rollback segment that the import transactions generate. Do the commit only after importing a whole table or a segment
of a table.

13.5.10. InnoDB Transaction Model and Locking
In the InnoDB transaction model, the goal is to combine the best properties of a multi-versioning database with traditional two-phase
locking. InnoDB does locking on the row level and runs queries as non-locking consistent reads by default, in the style of Oracle. The
lock table in InnoDB is stored so space-efficiently that lock escalation is not needed: Typically several users are allowed to lock every
row in the database, or any random subset of the rows, without InnoDB running out of memory.

13.5.10.1. InnoDB Lock Modes

InnoDB implements standard row-level locking where there are two types of locks:

Storage Engines

972



• A shared (S) lock allows a transaction to read a row (tuple).

• An exclusive (X) lock allows a transaction to update or delete a row.

If transaction T1 holds a shared (S) lock on tuple t, then

• A request from some distinct transaction T2 for an S lock on t can be granted immediately. As a result, both T1 and T2 hold an S
lock on t.

• A request from some distinct transaction T2 for an X lock on t cannot be granted immediately.

If a transaction T1 holds an exclusive (X) lock on tuple t, then a request from some distinct transaction T2 for a lock of either type on t
cannot be granted immediately. Instead, transaction T2 has to wait for transaction T1 to release its lock on tuple t.

Additionally, InnoDB supports multiple granularity locking which allows coexistence of record locks and locks on entire tables. To
make locking at multiple granularity levels practical, additional types of locks called intention locks are used. Intention locks are table
locks in InnoDB. The idea behind intention locks is for a transaction to indicate which type of lock (shared or exclusive) it will require
later for a row in that table. There are two types of intention locks used in InnoDB (assume that transaction T has requested a lock of
the indicated type on table R):

• Intention shared (IS): Transaction T intends to set S locks on individual rows in table R.

• Intention exclusive (IX): Transaction T intends to set X locks on those rows.

The intention locking protocol is as follows:

• Before a given transaction can acquire an S lock on a given row, it must first acquire an IS or stronger lock on the table containing
that row.

• Before a given transaction can acquire an X lock on a given row, it must first acquire an IX lock on the table containing that row.

These rules can be conveniently summarized by means of a lock type compatibility matrix:

X IX S IS

X Conflict Conflict Conflict Conflict

IX Conflict Compatible Conflict Compatible

S Conflict Conflict Compatible Compatible

IS Conflict Compatible Compatible Compatible

A lock is granted to a requesting transaction if it is compatible with existing locks. A lock is not granted to a requesting transaction if it
conflicts with existing locks. A transaction waits until the conflicting existing lock is released. If a lock request conflicts with an exist-
ing lock and cannot be granted because it would cause deadlock, an error occurs.

Thus, intention locks do not block anything except full table requests (for example, LOCK TABLES ... WRITE). The main purpose
of IX and IS locks is to show that someone is locking a row, or going to lock a row in the table.

The following example illustrates how an error can occur when a lock request would cause a deadlock. The example involves two cli-
ents, A and B.

First, client A creates a table containing one row, and then begins a transaction. Within the transaction, A obtains an S lock on the row
by selecting it in share mode:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
Query OK, 0 rows affected (1.07 sec)

mysql> INSERT INTO t (i) VALUES(1);
Query OK, 1 row affected (0.09 sec)

Storage Engines

973



mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t WHERE i = 1 LOCK IN SHARE MODE;
+------+
| i |
+------+
| 1 |
+------+
1 row in set (0.10 sec)

Next, client B begins a transaction and attempts to delete the row from the table:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> DELETE FROM t WHERE i = 1;

The delete operation requires an X lock. The lock cannot be granted because it is incompatible with the S lock that client A holds, so the
request goes on the queue of lock requests for the row and client B blocks.

Finally, client A also attempts to delete the row from the table:

mysql> DELETE FROM t WHERE i = 1;
ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

Deadlock occurs here because client A needs an X lock to delete the row. However, that lock request cannot be granted because client B
already has a request for an X lock and is waiting for client A to release its S lock. Nor can the S lock held by A be upgraded to an X
lock because of the prior request by B for an X lock. As a result, InnoDB generates an error for client A and releases its locks. At that
point, the lock request for client B can be granted and B deletes the row from the table.

13.5.10.2. InnoDB and AUTOCOMMIT

In InnoDB, all user activity occurs inside a transaction. If the autocommit mode is enabled, each SQL statement forms a single transac-
tion on its own. By default, MySQL starts new connections with autocommit enabled.

If the autocommit mode is switched off with SET AUTOCOMMIT = 0, then we can consider that a user always has a transaction open.
An SQL COMMIT or ROLLBACK statement ends the current transaction and a new one starts. A COMMIT means that the changes made
in the current transaction are made permanent and become visible to other users. A ROLLBACK statement, on the other hand, cancels all
modifications made by the current transaction. Both statements release all InnoDB locks that were set during the current transaction.

If the connection has autocommit enabled, the user can still perform a multiple-statement transaction by starting it with an explicit
START TRANSACTION or BEGIN statement and ending it with COMMIT or ROLLBACK.

13.5.10.3. InnoDB and TRANSACTION ISOLATION LEVEL

In terms of the SQL:1992 transaction isolation levels, the InnoDB default is REPEATABLE READ. InnoDB offers all four transaction
isolation levels described by the SQL standard. You can set the default isolation level for all connections by using the -
-transaction-isolation option on the command line or in an option file. For example, you can set the option in the
[mysqld] section of an option file like this:

[mysqld]
transaction-isolation = {READ-UNCOMMITTED | READ-COMMITTED

| REPEATABLE-READ | SERIALIZABLE}

A user can change the isolation level for a single session or for all new incoming connections with the SET TRANSACTION statement.
Its syntax is as follows:

SET [SESSION | GLOBAL] TRANSACTION ISOLATION LEVEL
{READ UNCOMMITTED | READ COMMITTED
| REPEATABLE READ | SERIALIZABLE}

Note that there are hyphens in the level names for the --transaction-isolation option, but not for the SET TRANSACTION
statement.

The default behavior is to set the isolation level for the next (not started) transaction. If you use the GLOBAL keyword, the statement
sets the default transaction level globally for all new connections created from that point on (but not for existing connections). You need

Storage Engines

974



the SUPER privilege to do this. Using the SESSION keyword sets the default transaction level for all future transactions performed on
the current connection.

Any client is free to change the session isolation level (even in the middle of a transaction), or the isolation level for the next transac-
tion.

You can determine the global and session transaction isolation levels by checking the value of the tx_isolation system variable
with these statements:

SELECT @@global.tx_isolation;
SELECT @@tx_isolation;

In row-level locking, InnoDB uses next-key locking. That means that besides index records, InnoDB can also lock the “gap” preced-
ing an index record to block insertions by other users immediately before the index record. A next-key lock refers to a lock that locks an
index record and the gap before it. A gap lock refers to a lock that only locks a gap before some index record. Next-key locking for
searches or index scans can be disabled by enabling the innodb_locks_unsafe_for_binlog system variable.

For a detailed description of isolated levels, see Section 12.4.6, “SET TRANSACTION Syntax”.

In MySQL 5.1, if the READ COMMITTED isolation level is used or the innodb_locks_unsafe_for_binlog system variable is
enabled, there is no InnoDB gap locking except in constraint checking. Also, record locks for non-matching rows are released after
MySQL has evaluated the WHERE condition.

13.5.10.4. Consistent Non-Locking Read

A consistent read means that InnoDB uses multi-versioning to present to a query a snapshot of the database at a point in time. The
query sees the changes made by those transactions that committed before that point of time, and no changes made by later or uncommit-
ted transactions. The exception to this rule is that the query sees the changes made by earlier statements within the same transaction.
Note that the exception to the rule causes the following anomaly: if you update some rows in a table, a SELECT will see the latest ver-
sion of the updated rows, but it might also see older versions of any rows. If other users simultaneously update the same table, the an-
omaly means that you may see the table in a state that never existed in the database.

If you are running with the default REPEATABLE READ isolation level, all consistent reads within the same transaction read the snap-
shot established by the first such read in that transaction. You can get a fresher snapshot for your queries by committing the current
transaction and after that issuing new queries.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED and REPEATABLE
READ isolation levels. A consistent read does not set any locks on the tables it accesses, and therefore other users are free to modify
those tables at the same time a consistent read is being performed on the table.

Note that consistent read does not work over DROP TABLE and over ALTER TABLE. Consistent read does not work over DROP TA-
BLE because MySQL can't use a table that has been dropped and InnoDB destroys the table. Consistent read does not work over AL-
TER TABLE because ALTER TABLE works by making a temporary copy of the original table and deleting the original table when the
temporary copy is built. When you reissue a consistent read within a transaction, rows in the new table are not visible because those
rows did not exist when the transaction's snapshot was taken.

InnoDB uses a consistent read for select in clauses like INSERT INTO ... SELECT and UPDATE ... (SELECT) that do not
specify FOR UPDATE or IN SHARE MODE if the innodb_locks_unsafe_for_binlog option is set and the isolation level of
the transaction is not set to serializable. Thus no locks are set to rows read from selected table. Otherwise, InnoDB uses stronger locks
and the SELECT part acts like READ COMMITTED, where each consistent read, even within the same transaction, sets and reads its
own fresh snapshot.

13.5.10.5. SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE Locking Reads

In some circumstances, a consistent read is not convenient. For example, you might want to add a new row into your table child, and
make sure that the child has a parent in table parent. The following example shows how to implement referential integrity in your ap-
plication code.

Suppose that you use a consistent read to read the table parent and indeed see the parent of the child in the table. Can you safely add
the child row to table child? No, because it may happen that meanwhile some other user deletes the parent row from the table par-
ent without you being aware of it.

The solution is to perform the SELECT in a locking mode using LOCK IN SHARE MODE:

SELECT * FROM parent WHERE NAME = 'Jones' LOCK IN SHARE MODE;

Storage Engines

975



Performing a read in share mode means that we read the latest available data, and set a shared mode lock on the rows we read. A shared
mode lock prevents others from updating or deleting the row we have read. Also, if the latest data belongs to a yet uncommitted transac-
tion of another client connection, we wait until that transaction commits. After we see that the preceding query returns the parent
'Jones', we can safely add the child record to the child table and commit our transaction.

Let us look at another example: We have an integer counter field in a table child_codes that we use to assign a unique identifier to
each child added to table child. Obviously, using a consistent read or a shared mode read to read the present value of the counter is
not a good idea because two users of the database may then see the same value for the counter, and a duplicate-key error occurs if two
users attempt to add children with the same identifier to the table.

Here, LOCK IN SHARE MODE is not a good solution because if two users read the counter at the same time, at least one of them ends
up in deadlock when attempting to update the counter.

In this case, there are two good ways to implement the reading and incrementing of the counter: (1) update the counter first by incre-
menting it by 1 and only after that read it, or (2) read the counter first with a lock mode FOR UPDATE, and increment after that. The
latter approach can be implemented as follows:

SELECT counter_field FROM child_codes FOR UPDATE;
UPDATE child_codes SET counter_field = counter_field + 1;

A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row it reads. Thus, it sets the same
locks a searched SQL UPDATE would set on the rows.

The preceding description is merely an example of how SELECT ... FOR UPDATE works. In MySQL, the specific task of generat-
ing a unique identifier actually can be accomplished using only a single access to the table:

UPDATE child_codes SET counter_field = LAST_INSERT_ID(counter_field + 1);
SELECT LAST_INSERT_ID();

The SELECT statement merely retrieves the identifier information (specific to the current connection). It does not access any table.

Locks set by IN SHARE MODE and FOR UPDATE reads are released when the transaction is committed or rolled back.

Note

Locking of rows for update using SELECT FOR UPDATE only applies when AUTOCOMMIT is switched off. If AUTO-
COMMIT is on, then the rows matching the specification are not locked.

13.5.10.6. Next-Key Locking: Avoiding the Phantom Problem

In row-level locking, InnoDB uses an algorithm called next-key locking. InnoDB performs the row-level locking in such a way that
when it searches or scans an index of a table, it sets shared or exclusive locks on the index records it encounters. Thus, the row-level
locks are actually index record locks.

The next-key locks that InnoDB sets on index records also affect the “gap” before that index record. If a user has a shared or exclusive
lock on record R in an index, another user cannot insert a new index record immediately before R in the index order. (A gap lock refers
to a lock that only locks a gap before some index record.)

This next-key locking of gaps is done to prevent the so-called “phantom problem.” Suppose that you want to read and lock all children
from the child table having an identifier value greater than 100, with the intention of updating some column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

Suppose that there is an index on the id column. The query scans that index starting from the first record where id is bigger than 100.
If the locks set on the index records would not lock out inserts made in the gaps, a new row might meanwhile be inserted to the table. If
you execute the same SELECT within the same transaction, you would see a new row in the result set returned by the query. This is
contrary to the isolation principle of transactions: A transaction should be able to run so that the data it has read does not change during
the transaction. If we regard a set of rows as a data item, the new “phantom” child would violate this isolation principle.

When InnoDB scans an index, it can also lock the gap after the last record in the index. Just that happens in the previous example: The
locks set by InnoDB prevent any insert to the table where id would be bigger than 100.

You can use next-key locking to implement a uniqueness check in your application: If you read your data in share mode and do not see
a duplicate for a row you are going to insert, then you can safely insert your row and know that the next-key lock set on the successor of

Storage Engines

976



your row during the read prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking allows you to
“lock” the non-existence of something in your table.

In MySQL 5.1, if the READ COMMITTED isolation level is used or the innodb_locks_unsafe_for_binlog system variable is
enabled, there is no InnoDB gap locking except in constraint checking. Also, record locks for non-matching rows are released after
MySQL has evaluated the WHERE condition.

13.5.10.7. An Example of Consistent Read in InnoDB

Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a consistent read (that is, an ordinary
SELECT statement), InnoDB gives your transaction a timepoint according to which your query sees the database. If another transaction
deletes a row and commits after your timepoint was assigned, you do not see the row as having been deleted. Inserts and updates are
treated similarly.

You can advance your timepoint by committing your transaction and then doing another SELECT.

This is called multi-versioned concurrency control.

User A User B

SET AUTOCOMMIT=0; SET AUTOCOMMIT=0;
time
| SELECT * FROM t;
| empty set
| INSERT INTO t VALUES (1, 2);
|
v SELECT * FROM t;

empty set
COMMIT;

SELECT * FROM t;
empty set

COMMIT;

SELECT * FROM t;
---------------------
| 1 | 2 |
---------------------
1 row in set

In this example, user A sees the row inserted by B only when B has committed the insert and A has committed as well, so that the
timepoint is advanced past the commit of B.

If you want to see the “freshest” state of the database, you should use either the READ COMMITTED isolation level or a locking read:

SELECT * FROM t LOCK IN SHARE MODE;

13.5.10.8. Locks Set by Different SQL Statements in InnoDB

A locking read, an UPDATE, or a DELETE generally set record locks on every index record that is scanned in the processing of the SQL
statement. It does not matter if there are WHERE conditions in the statement that would exclude the row. InnoDB does not remember
the exact WHERE condition, but only knows which index ranges were scanned. The record locks are normally next-key locks that also
block inserts to the “gap” immediately before the record.

If the locks to be set are exclusive, InnoDB always retrieves also the clustered index record and sets a lock on it.

If you do not have indexes suitable for your statement and MySQL has to scan the whole table to process the statement, every row of
the table becomes locked, which in turn blocks all inserts by other users to the table. It is important to create good indexes so that your
queries do not unnecessarily need to scan many rows.

For SELECT ... FOR UPDATE or SELECT ... IN SHARE MODE, locks are acquired for scanned rows, and expected to be re-
leased for rows that do not qualify for inclusion in the result set (for example, if they do not meet the criteria given in the WHERE
clause). However, in some cases, rows might not be unlocked immediately because the relationship between a result row and its original
source is lost during query execution. For example, in a UNION, scanned (and locked) rows from a table might be inserted into a tem-
porary table before evaluation whether they qualify for the result set. In this circumstance, the relationship of the rows in the temporary
table to the rows in the original table is lost and the latter rows are not unlocked until the end of query execution.

InnoDB sets specific types of locks as follows:

Storage Engines

977



• SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no locks unless the transaction isolation
level is set to SERIALIZABLE. For SERIALIZABLE level, this sets shared next-key locks on the index records it encounters.

• SELECT ... FROM ... LOCK IN SHARE MODE sets shared next-key locks on all index records the read encounters.

• SELECT ... FROM ... FOR UPDATE sets exclusive next-key locks on all index records the read encounters and also on the
corresponding clustered index records if a secondary index is used in the search.

• UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search encounters.

• DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search encounters.

• INSERT INTO ... VALUES (...) sets an exclusive lock on the inserted row. Note that this lock is not a next-key lock and
does not prevent other users from inserting to the gap before the inserted row. If a duplicate-key error occurs, a shared lock on the
duplicate index record is set.

• REPLACE is done like an INSERT if there is no collision on a unique key. Otherwise, an exclusive next-key lock is placed on the
row that has to be updated.

• While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an exclusive lock on the end of the
index associated with the AUTO_INCREMENT column. In accessing the auto-increment counter, InnoDB uses a specific table lock
mode AUTO-INC where the lock lasts only to the end of the current SQL statement, not to the end of the entire transaction. Note
that other clients cannot insert into the table while the AUTO-INC table lock is held; see Section 13.5.10.2, “InnoDB and AUTO-
COMMIT”.

InnoDB fetches the value of a previously initialized AUTO_INCREMENT column without setting any locks.

• INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive (non-next-key) lock on each row inserted into T.
InnoDB sets shared next-key locks on S, unless innodb_locks_unsafe_for_binlog is enabled, in which case it does the
search on S as a consistent read. InnoDB has to set locks in the latter case: In roll-forward recovery from a backup, every SQL
statement has to be executed in exactly the same way it was done originally.

• CREATE TABLE ... SELECT ... performs the SELECT as a consistent read or with shared locks, as in the previous item.

• If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires the constraint condition to be checked
sets shared record-level locks on the records that it looks at to check the constraint. InnoDB also sets these locks in the case where
the constraint fails.

• LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that sets these locks. InnoDB is aware
of table locks if innodb_table_locks=1 (the default) and AUTOCOMMIT=0, and the MySQL layer above InnoDB knows
about row-level locks. Otherwise, InnoDB's automatic deadlock detection cannot detect deadlocks where such table locks are in-
volved. Also, because the higher MySQL layer does not know about row-level locks, it is possible to get a table lock on a table
where another user currently has row-level locks. However, this does not endanger transaction integrity, as discussed in Sec-
tion 13.5.10.10, “Deadlock Detection and Rollback”. See also Section 13.5.16, “Restrictions on InnoDB Tables”.

• In MySQL 5.1, if the READ COMMITTED isolation level is used or the innodb_locks_unsafe_for_binlog system vari-
able is enabled, there is no InnoDB gap locking except in constraint checking. Also, record locks for non-matching rows are re-
leased after MySQL has evaluated the WHERE condition.

13.5.10.9. Implicit Transaction Commit and Rollback

By default, MySQL begins each client connection with autocommit mode enabled. When autocommit is enabled, MySQL does a com-
mit after each SQL statement if that statement did not return an error. If an SQL statement returns an error, the commit or rollback beha-
vior depends on the error. See Section 13.5.15, “InnoDB Error Handling”.

If you have the autocommit mode off and close a connection without explicitly committing the final transaction, MySQL rolls back that
transaction.

For details about which statements implicitly end a transaction, as if you had done a COMMIT before executing the statement, see Sec-
tion 12.4.3, “Statements That Cause an Implicit Commit”.

13.5.10.10. Deadlock Detection and Rollback

InnoDB automatically detects a deadlock of transactions and rolls back a transaction or transactions to break the deadlock. InnoDB

Storage Engines

978



tries to pick small transactions to roll back, where the size of a transaction is determined by the number of rows inserted, updated, or de-
leted.

InnoDB is aware of table locks if innodb_table_locks=1 (the default) and AUTOCOMMIT=0, and the MySQL layer above it
knows about row-level locks. Otherwise, InnoDB cannot detect deadlocks where a table lock set by a MySQL LOCK TABLES state-
ment or a lock set by a storage engine other than InnoDB is involved. You must resolve these situations by setting the value of the in-
nodb_lock_wait_timeout system variable.

When InnoDB performs a complete rollback of a transaction, all locks set by the transaction are released. However, if just a single
SQL statement is rolled back as a result of an error, some of the locks set by the statement may be preserved. This happens because In-
noDB stores row locks in a format such that it cannot know afterward which lock was set by which statement.

13.5.10.11. How to Cope with Deadlocks

Deadlocks are a classic problem in transactional databases, but they are not dangerous unless they are so frequent that you cannot run
certain transactions at all. Normally, you must write your applications so that they are always prepared to re-issue a transaction if it gets
rolled back because of a deadlock.

InnoDB uses automatic row-level locking. You can get deadlocks even in the case of transactions that just insert or delete a single row.
That is because these operations are not really “atomic”; they automatically set locks on the (possibly several) index records of the row
inserted or deleted.

You can cope with deadlocks and reduce the likelihood of their occurrence with the following techniques:

• Use SHOW ENGINE INNODB STATUS to determine the cause of the latest deadlock. That can help you to tune your application
to avoid deadlocks.

• Always be prepared to re-issue a transaction if it fails due to deadlock. Deadlocks are not dangerous. Just try again.

• Commit your transactions often. Small transactions are less prone to collision.

• If you are using locking reads (SELECT ... FOR UPDATE or ... LOCK IN SHARE MODE), try using a lower isolation level
such as READ COMMITTED.

• Access your tables and rows in a fixed order. Then transactions form well-defined queues and do not deadlock.

• Add well-chosen indexes to your tables. Then your queries need to scan fewer index records and consequently set fewer locks. Use
EXPLAIN SELECT to determine which indexes the MySQL server regards as the most appropriate for your queries.

• Use less locking. If you can afford to allow a SELECT to return data from an old snapshot, do not add the clause FOR UPDATE or
LOCK IN SHARE MODE to it. Using the READ COMMITTED isolation level is good here, because each consistent read within the
same transaction reads from its own fresh snapshot.

• If nothing else helps, serialize your transactions with table-level locks. The correct way to use LOCK TABLES with transactional
tables, such as InnoDB tables, is to set AUTOCOMMIT = 0 and not to call UNLOCK TABLES until after you commit the transac-
tion explicitly. For example, if you need to write to table t1 and read from table t2, you can do this:

SET AUTOCOMMIT=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

Table-level locks make your transactions queue nicely, and deadlocks are avoided.

• Another way to serialize transactions is to create an auxiliary “semaphore” table that contains just a single row. Have each transac-
tion update that row before accessing other tables. In that way, all transactions happen in a serial fashion. Note that the InnoDB in-
stant deadlock detection algorithm also works in this case, because the serializing lock is a row-level lock. With MySQL table-level
locks, the timeout method must be used to resolve deadlocks.

13.5.11. InnoDB Performance Tuning Tips

• In InnoDB, having a long PRIMARY KEY wastes a lot of disk space because its value must be stored with every secondary index
record. (See Section 13.5.13, “InnoDB Table and Index Structures”.) Create an AUTO_INCREMENT column as the primary key if

Storage Engines

979



your primary key is long.

• If the Unix top tool or the Windows Task Manager shows that the CPU usage percentage with your workload is less than 70%,
your workload is probably disk-bound. Maybe you are making too many transaction commits, or the buffer pool is too small. Mak-
ing the buffer pool bigger can help, but do not set it equal to more than 80% of physical memory.

• Wrap several modifications into one transaction. InnoDB must flush the log to disk at each transaction commit if that transaction
made modifications to the database. The rotation speed of a disk is typically at most 167 revolutions/second, which constrains the
number of commits to the same 167th of a second if the disk does not “fool” the operating system.

• If you can afford the loss of some of the latest committed transactions if a crash occurs, you can set the in-
nodb_flush_log_at_trx_commit parameter to 0. InnoDB tries to flush the log once per second anyway, although the flush
is not guaranteed. You should also set the value of innodb_support_xa to 0 which will reduce the number of disk flushes due
to synchronizing on disk data and the binary log.

• Make your log files big, even as big as the buffer pool. When InnoDB has written the log files full, it has to write the modified con-
tents of the buffer pool to disk in a checkpoint. Small log files cause many unnecessary disk writes. The drawback of big log files is
that the recovery time is longer.

• Make the log buffer quite large as well (on the order of 8MB).

• Use the VARCHAR data type instead of CHAR if you are storing variable-length strings or if the column may contain many NULL
values. A CHAR(N) column always takes N characters to store data, even if the string is shorter or its value is NULL. Smaller tables
fit better in the buffer pool and reduce disk I/O.

When using row_format=compact (the default InnoDB record format in MySQL 5.1) and variable-length character sets, such
as utf8 or sjis, CHAR(N) will occupy a variable amount of space, at least N bytes.

• In some versions of GNU/Linux and Unix, flushing files to disk with the Unix fsync() call (which InnoDB uses by default) and
other similar methods is surprisingly slow. If you are dissatisfied with database write performance, you might try setting the in-
nodb_flush_method parameter to O_DSYNC. Although O_DSYNC seems to be slower on most systems, yours might not be one
of them.

• When using the InnoDB storage engine on Solaris 10 for x86_64 architecture (AMD Opteron), it is important to mount any filesys-
tems used for storing InnoDB-related files using the forcedirectio option. (The default on Solaris 10/x86_64 is not to use this
option.) Failure to use forcedirectio causes a serious degradation of InnoDB's speed and performance on this platform.

When using the InnoDB storage engine with a large innodb_buffer_pool_size value on any release of Solaris 2.6 and up
and any platform (sparc/x86/x64/amd64), a significant performance gain can be achieved by placing InnoDB data files and log files
on raw devices or on a separate direct I/O UFS filesystem (using mount option forcedirectio; see mount_ufs(1M)). Users
of the Veritas filesystem VxFS should use the mount option convosync=direct.

Other MySQL data files, such as those for MyISAM tables, should not be placed on a direct I/O filesystem. Executables or libraries
must not be placed on a direct I/O filesystem.

• When importing data into InnoDB, make sure that MySQL does not have autocommit mode enabled because that requires a log
flush to disk for every insert. To disable autocommit during your import operation, surround it with SET AUTOCOMMIT and COM-
MIT statements:

SET AUTOCOMMIT=0;
... SQL import statements ...
COMMIT;

If you use the mysqldump option --opt, you get dump files that are fast to import into an InnoDB table, even without wrapping
them with the SET AUTOCOMMIT and COMMIT statements.

• Beware of big rollbacks of mass inserts: InnoDB uses the insert buffer to save disk I/O in inserts, but no such mechanism is used in
a corresponding rollback. A disk-bound rollback can take 30 times as long to perform as the corresponding insert. Killing the data-
base process does not help because the rollback starts again on server startup. The only way to get rid of a runaway rollback is to in-
crease the buffer pool so that the rollback becomes CPU-bound and runs fast, or to use a special procedure. See Section 13.5.8.1,
“Forcing InnoDB Recovery”.

• Beware also of other big disk-bound operations. Use DROP TABLE and CREATE TABLE to empty a table, not DELETE FROM
tbl_name.

• Use the multiple-row INSERT syntax to reduce communication overhead between the client and the server if you need to insert

Storage Engines

980



many rows:

INSERT INTO yourtable VALUES (1,2), (5,5), ...;

This tip is valid for inserts into any table, not just InnoDB tables.

• If you have UNIQUE constraints on secondary keys, you can speed up table imports by temporarily turning off the uniqueness
checks during the import session:

SET UNIQUE_CHECKS=0;
... import operation ...
SET UNIQUE_CHECKS=1;

For big tables, this saves a lot of disk I/O because InnoDB can use its insert buffer to write secondary index records in a batch. Be
certain that the data contains no duplicate keys. UNIQUE_CHECKS allows but does not require storage engines to ignore duplicate
keys.

• If you have FOREIGN KEY constraints in your tables, you can speed up table imports by turning the foreign key checks off for the
duration of the import session:

SET FOREIGN_KEY_CHECKS=0;
... import operation ...
SET FOREIGN_KEY_CHECKS=1;

For big tables, this can save a lot of disk I/O.

• If you often have recurring queries for tables that are not updated frequently, use the query cache:

[mysqld]
query_cache_type = ON
query_cache_size = 10M

• Unlike MyISAM, InnoDB does not store an index cardinality value in its tables. Instead, InnoDB computes a cardinality for a table
the first time it accesses it after startup. With a large number of tables, this might take significant time. It is the initial table open op-
eration that is important, so to “warm up” a table for later use, you might want to use it immediately after start up by issuing a state-
ment such as SELECT 1 FROM tbl_name LIMIT 1.

MySQL Enterprise
For optimization recommendations geared to your specific circumstances subscribe to the MySQL Enterprise
Monitor. For more information see http://www.mysql.com/products/enterprise/advisors.html.

13.5.11.1. SHOW ENGINE INNODB STATUS and the InnoDB Monitors

InnoDB includes InnoDB Monitors that print information about the InnoDB internal state. You can use the SHOW ENGINE IN-
NODB STATUS SQL statement at any time to fetch the output of the standard InnoDB Monitor to your SQL client. This information is
useful in performance tuning. (If you are using the mysql interactive SQL client, the output is more readable if you replace the usual
semicolon statement terminator with \G.) For a discussion of InnoDB lock modes, see Section 13.5.10.1, “InnoDB Lock Modes”.

mysql> SHOW ENGINE INNODB STATUS\G

Another way to use InnoDB Monitors is to let them periodically write data to the standard output of the mysqld server. In this case,
no output is sent to clients. When switched on, InnoDB Monitors print data about every 15 seconds. Server output usually is directed to
the .err log in the MySQL data directory. This data is useful in performance tuning. On Windows, you must start the server from a
command prompt in a console window with the --console option if you want to direct the output to the window rather than to the er-
ror log.

Monitor output includes the following types of information:

• Table and record locks held by each active transaction

• Lock waits of a transactions

• Semaphore waits of threads

Storage Engines

981

http://www.mysql.com/products/enterprise/advisors.html


• Pending file I/O requests

• Buffer pool statistics

• Purge and insert buffer merge activity of the main InnoDB thread

To cause the standard InnoDB Monitor to write to the standard output of mysqld, use the following SQL statement:

CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;

The monitor can be stopped by issuing the following statement:

DROP TABLE innodb_monitor;

The CREATE TABLE syntax is just a way to pass a command to the InnoDB engine through MySQL's SQL parser: The only things
that matter are the table name innodb_monitor and that it be an InnoDB table. The structure of the table is not relevant at all for
the InnoDB Monitor. If you shut down the server, the monitor does not restart automatically when you restart the server. You must
drop the monitor table and issue a new CREATE TABLE statement to start the monitor. (This syntax may change in a future release.)

You can use innodb_lock_monitor in a similar fashion. This is the same as innodb_monitor, except that it also provides a
great deal of lock information. A separate innodb_tablespace_monitor prints a list of created file segments existing in the ta-
blespace and validates the tablespace allocation data structures. In addition, there is innodb_table_monitor with which you can
print the contents of the InnoDB internal data dictionary.

A sample of InnoDB Monitor output:

mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
Status:
=====================================
030709 13:00:59 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 18 seconds
----------
SEMAPHORES
----------
OS WAIT ARRAY INFO: reservation count 413452, signal count 378357
--Thread 32782 has waited at btr0sea.c line 1477 for 0.00 seconds the
semaphore: X-lock on RW-latch at 41a28668 created in file btr0sea.c line 135
a writer (thread id 32782) has reserved it in mode wait exclusive
number of readers 1, waiters flag 1
Last time read locked in file btr0sea.c line 731
Last time write locked in file btr0sea.c line 1347
Mutex spin waits 0, rounds 0, OS waits 0
RW-shared spins 108462, OS waits 37964; RW-excl spins 681824, OS waits
375485
------------------------
LATEST FOREIGN KEY ERROR
------------------------
030709 13:00:59 Transaction:
TRANSACTION 0 290328284, ACTIVE 0 sec, process no 3195, OS thread id 34831
inserting
15 lock struct(s), heap size 2496, undo log entries 9
MySQL thread id 25, query id 4668733 localhost heikki update
insert into ibtest11a (D, B, C) values (5, 'khDk' ,'khDk')
Foreign key constraint fails for table test/ibtest11a:
,
CONSTRAINT `0_219242` FOREIGN KEY (`A`, `D`) REFERENCES `ibtest11b` (`A`,
`D`) ON DELETE CASCADE ON UPDATE CASCADE

Trying to add in child table, in index PRIMARY tuple:
0: len 4; hex 80000101; asc ....;; 1: len 4; hex 80000005; asc ....;; 2:
len 4; hex 6b68446b; asc khDk;; 3: len 6; hex 0000114e0edc; asc ...N..;; 4:
len 7; hex 00000000c3e0a7; asc .......;; 5: len 4; hex 6b68446b; asc khDk;;
But in parent table test/ibtest11b, in index PRIMARY,
the closest match we can find is record:
RECORD: info bits 0 0: len 4; hex 8000015b; asc ...[;; 1: len 4; hex
80000005; asc ....;; 2: len 3; hex 6b6864; asc khd;; 3: len 6; hex
0000111ef3eb; asc ......;; 4: len 7; hex 800001001e0084; asc .......;; 5:
len 3; hex 6b6864; asc khd;;
------------------------
LATEST DETECTED DEADLOCK
------------------------
030709 12:59:58
*** (1) TRANSACTION:
TRANSACTION 0 290252780, ACTIVE 1 sec, process no 3185, OS thread id 30733
inserting
LOCK WAIT 3 lock struct(s), heap size 320, undo log entries 146
MySQL thread id 21, query id 4553379 localhost heikki update

Storage Engines

982



INSERT INTO alex1 VALUES(86, 86, 794,'aA35818','bb','c79166','d4766t',
'e187358f','g84586','h794',date_format('2001-04-03 12:54:22','%Y-%m-%d
%H:%i'),7
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290252780 lock mode S waiting
Record lock, heap no 324 RECORD: info bits 0 0: len 7; hex 61613335383138;
asc aa35818;; 1:
*** (2) TRANSACTION:
TRANSACTION 0 290251546, ACTIVE 2 sec, process no 3190, OS thread id 32782
inserting
130 lock struct(s), heap size 11584, undo log entries 437
MySQL thread id 23, query id 4554396 localhost heikki update
REPLACE INTO alex1 VALUES(NULL, 32, NULL,'aa3572','','c3572','d6012t','',
NULL,'h396', NULL, NULL, 7.31,7.31,7.31,200)
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290251546 lock_mode X locks rec but not gap
Record lock, heap no 324 RECORD: info bits 0 0: len 7; hex 61613335383138;
asc aa35818;; 1:
*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290251546 lock_mode X locks gap before rec insert intention
waiting
Record lock, heap no 82 RECORD: info bits 0 0: len 7; hex 61613335373230;
asc aa35720;; 1:
*** WE ROLL BACK TRANSACTION (1)
------------
TRANSACTIONS
------------
Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
Total number of lock structs in row lock hash table 70
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0 0, not started, process no 3491, OS thread id 42002
MySQL thread id 32, query id 4668737 localhost heikki
show innodb status
---TRANSACTION 0 290328384, ACTIVE 0 sec, process no 3205, OS thread id
38929 inserting
1 lock struct(s), heap size 320
MySQL thread id 29, query id 4668736 localhost heikki update
insert into speedc values (1519229,1, 'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgjg
jlhhgghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjfh
---TRANSACTION 0 290328383, ACTIVE 0 sec, process no 3180, OS thread id
28684 committing
1 lock struct(s), heap size 320, undo log entries 1
MySQL thread id 19, query id 4668734 localhost heikki update
insert into speedcm values (1603393,1, 'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgj
gjlhhgghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjf
---TRANSACTION 0 290328327, ACTIVE 0 sec, process no 3200, OS thread id
36880 starting index read
LOCK WAIT 2 lock struct(s), heap size 320
MySQL thread id 27, query id 4668644 localhost heikki Searching rows for
update
update ibtest11a set B = 'kHdkkkk' where A = 89572
------- TRX HAS BEEN WAITING 0 SEC FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 65556 n bits 232 table test/ibtest11a index
PRIMARY trx id 0 290328327 lock_mode X waiting
Record lock, heap no 1 RECORD: info bits 0 0: len 9; hex 73757072656d756d00;
asc supremum.;;
------------------
---TRANSACTION 0 290328284, ACTIVE 0 sec, process no 3195, OS thread id
34831 rollback of SQL statement
ROLLING BACK 14 lock struct(s), heap size 2496, undo log entries 9
MySQL thread id 25, query id 4668733 localhost heikki update
insert into ibtest11a (D, B, C) values (5, 'khDk' ,'khDk')
---TRANSACTION 0 290327208, ACTIVE 1 sec, process no 3190, OS thread id
32782
58 lock struct(s), heap size 5504, undo log entries 159
MySQL thread id 23, query id 4668732 localhost heikki update
REPLACE INTO alex1 VALUES(86, 46, 538,'aa95666','bb','c95666','d9486t',
'e200498f','g86814','h538',date_format('2001-04-03 12:54:22','%Y-%m-%d
%H:%i'),
---TRANSACTION 0 290323325, ACTIVE 3 sec, process no 3185, OS thread id
30733 inserting
4 lock struct(s), heap size 1024, undo log entries 165
MySQL thread id 21, query id 4668735 localhost heikki update
INSERT INTO alex1 VALUES(NULL, 49, NULL,'aa42837','','c56319','d1719t','',
NULL,'h321', NULL, NULL, 7.31,7.31,7.31,200)
--------
FILE I/O
--------
I/O thread 0 state: waiting for i/o request (insert buffer thread)
I/O thread 1 state: waiting for i/o request (log thread)
I/O thread 2 state: waiting for i/o request (read thread)
I/O thread 3 state: waiting for i/o request (write thread)
Pending normal aio reads: 0, aio writes: 0,
ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
Pending flushes (fsync) log: 0; buffer pool: 0
151671 OS file reads, 94747 OS file writes, 8750 OS fsyncs
25.44 reads/s, 18494 avg bytes/read, 17.55 writes/s, 2.33 fsyncs/s

Storage Engines

983



-------------------------------------
INSERT BUFFER AND ADAPTIVE HASH INDEX
-------------------------------------
Ibuf for space 0: size 1, free list len 19, seg size 21,
85004 inserts, 85004 merged recs, 26669 merges
Hash table size 207619, used cells 14461, node heap has 16 buffer(s)
1877.67 hash searches/s, 5121.10 non-hash searches/s
---
LOG
---
Log sequence number 18 1212842764
Log flushed up to 18 1212665295
Last checkpoint at 18 1135877290
0 pending log writes, 0 pending chkp writes
4341 log i/o's done, 1.22 log i/o's/second
----------------------
BUFFER POOL AND MEMORY
----------------------
Total memory allocated 84966343; in additional pool allocated 1402624
Buffer pool size 3200
Free buffers 110
Database pages 3074
Modified db pages 2674
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages read 171380, created 51968, written 194688
28.72 reads/s, 20.72 creates/s, 47.55 writes/s
Buffer pool hit rate 999 / 1000
--------------
ROW OPERATIONS
--------------
0 queries inside InnoDB, 0 queries in queue
Main thread process no. 3004, id 7176, state: purging
Number of rows inserted 3738558, updated 127415, deleted 33707, read 755779
1586.13 inserts/s, 50.89 updates/s, 28.44 deletes/s, 107.88 reads/s
----------------------------
END OF INNODB MONITOR OUTPUT
============================

Some notes on the output:

• If the TRANSACTIONS section reports lock waits, your applications may have lock contention. The output can also help to trace the
reasons for transaction deadlocks.

• The SEMAPHORES section reports threads waiting for a semaphore and statistics on how many times threads have needed a spin or
a wait on a mutex or a rw-lock semaphore. A large number of threads waiting for semaphores may be a result of disk I/O, or conten-
tion problems inside InnoDB. Contention can be due to heavy parallelism of queries or problems in operating system thread
scheduling. Setting innodb_thread_concurrency smaller than the default value can help in such situations.

• The BUFFER POOL AND MEMORY section gives you statistics on pages read and written. You can calculate from these numbers
how many data file I/O operations your queries currently are doing.

• The ROW OPERATIONS section shows what the main thread is doing.

InnoDB sends diagnostic output to stderr or to files rather than to stdout or fixed-size memory buffers, to avoid potential buffer
overflows. As a side effect, the output of SHOW ENGINE INNODB STATUS is written to a status file in the MySQL data directory
every fifteen seconds. The name of the file is innodb_status.pid, where pid is the server process ID. InnoDB removes the file
for a normal shutdown. If abnormal shutdowns have occurred, instances of these status files may be present and must be removed
manually. Before removing them, you might want to examine them to see whether they contain useful information about the cause of
abnormal shutdowns. The innodb_status.pid file is created only if the configuration option innodb_status_file=1 is set.

13.5.12. Implementation of Multi-Versioning
Because InnoDB is a multi-versioned storage engine, it must keep information about old versions of rows in the tablespace. This in-
formation is stored in a data structure called a rollback segment (after an analogous data structure in Oracle).

Internally, InnoDB adds two fields to each row stored in the database. A 6-byte field indicates the transaction identifier for the last
transaction that inserted or updated the row. Also, a deletion is treated internally as an update where a special bit in the row is set to
mark it as deleted. Each row also contains a 7-byte field called the roll pointer. The roll pointer points to an undo log record written to
the rollback segment. If the row was updated, the undo log record contains the information necessary to rebuild the content of the row
before it was updated.

InnoDB uses the information in the rollback segment to perform the undo operations needed in a transaction rollback. It also uses the

Storage Engines

984



information to build earlier versions of a row for a consistent read.

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs are needed only in transaction rollback
and can be discarded as soon as the transaction commits. Update undo logs are used also in consistent reads, but they can be discarded
only after there is no transaction present for which InnoDB has assigned a snapshot that in a consistent read could need the information
in the update undo log to build an earlier version of a database row.

You must remember to commit your transactions regularly, including those transactions that issue only consistent reads. Otherwise,
InnoDB cannot discard data from the update undo logs, and the rollback segment may grow too big, filling up your tablespace.

The physical size of an undo log record in the rollback segment is typically smaller than the corresponding inserted or updated row. You
can use this information to calculate the space need for your rollback segment.

In the InnoDB multi-versioning scheme, a row is not physically removed from the database immediately when you delete it with an
SQL statement. Only when InnoDB can discard the update undo log record written for the deletion can it also physically remove the
corresponding row and its index records from the database. This removal operation is called a purge, and it is quite fast, usually taking
the same order of time as the SQL statement that did the deletion.

In a scenario where the user inserts and deletes rows in smallish batches at about the same rate in the table, it is possible that the purge
thread starts to lag behind, and the table grows bigger and bigger, making everything disk-bound and very slow. Even if the table carries
just 10MB of useful data, it may grow to occupy 10GB with all the “dead” rows. In such a case, it would be good to throttle new row
operations, and allocate more resources to the purge thread. The innodb_max_purge_lag system variable exists for exactly this
purpose. See Section 13.5.4, “InnoDB Startup Options and System Variables”, for more information.

13.5.13. InnoDB Table and Index Structures
MySQL stores its data dictionary information for tables in .frm files in database directories. This is true for all MySQL storage en-
gines. But every InnoDB table also has its own entry in the InnoDB internal data dictionary inside the tablespace. When MySQL
drops a table or a database, it has to delete both an .frm file or files, and the corresponding entries inside the InnoDB data dictionary.
This is the reason why you cannot move InnoDB tables between databases simply by moving the .frm files.

Every InnoDB table has a special index called the clustered index where the data for the rows is stored. If you define a PRIMARY KEY
on your table, the index of the primary key is the clustered index.

If you do not define a PRIMARY KEY for your table, MySQL picks the first UNIQUE index that has only NOT NULL columns as the
primary key and InnoDB uses it as the clustered index. If there is no such index in the table, InnoDB internally generates a clustered
index where the rows are ordered by the row ID that InnoDB assigns to the rows in such a table. The row ID is a 6-byte field that in-
creases monotonically as new rows are inserted. Thus, the rows ordered by the row ID are physically in insertion order.

Accessing a row through the clustered index is fast because the row data is on the same page where the index search leads. If a table is
large, the clustered index architecture often saves a disk I/O when compared to the traditional solution. (In many database systems, data
storage uses a different page from the index record.)

In InnoDB, the records in non-clustered indexes (also called secondary indexes) contain the primary key value for the row. InnoDB
uses this primary key value to search for the row from the clustered index. Note that if the primary key is long, the secondary indexes
use more space.

InnoDB compares CHAR and VARCHAR strings of different lengths such that the remaining length in the shorter string is treated as if
padded with spaces.

13.5.13.1. Physical Structure of an Index

All InnoDB indexes are B-trees where the index records are stored in the leaf pages of the tree. The default size of an index page is
16KB. When new records are inserted, InnoDB tries to leave 1/16 of the page free for future insertions and updates of the index re-
cords.

If index records are inserted in a sequential order (ascending or descending), the resulting index pages are about 15/16 full. If records
are inserted in a random order, the pages are from 1/2 to 15/16 full. If the fill factor of an index page drops below 1/2, InnoDB tries to
contract the index tree to free the page.

13.5.13.2. Insert Buffering

It is a common situation in database applications that the primary key is a unique identifier and new rows are inserted in the ascending
order of the primary key. Thus, the insertions to the clustered index do not require random reads from a disk.

Storage Engines

985



On the other hand, secondary indexes are usually non-unique, and insertions into secondary indexes happen in a relatively random or-
der. This would cause a lot of random disk I/O operations without a special mechanism used in InnoDB.

If an index record should be inserted to a non-unique secondary index, InnoDB checks whether the secondary index page is in the buf-
fer pool. If that is the case, InnoDB does the insertion directly to the index page. If the index page is not found in the buffer pool, In-
noDB inserts the record to a special insert buffer structure. The insert buffer is kept so small that it fits entirely in the buffer pool, and
insertions can be done very fast.

Periodically, the insert buffer is merged into the secondary index trees in the database. Often it is possible to merge several insertions to
the same page of the index tree, saving disk I/O operations. It has been measured that the insert buffer can speed up insertions into a ta-
ble up to 15 times.

The insert buffer merging may continue to happen after the inserting transaction has been committed. In fact, it may continue to happen
after a server shutdown and restart (see Section 13.5.8.1, “Forcing InnoDB Recovery”).

The insert buffer merging may take many hours, when many secondary indexes must be updated, and many rows have been inserted.
During this time, disk I/O will be increased, which can cause significant slowdown on disk-bound queries. Another significant back-
ground I/O operation is the purge thread (see Section 13.5.12, “Implementation of Multi-Versioning”).

13.5.13.3. Adaptive Hash Indexes

If a table fits almost entirely in main memory, the fastest way to perform queries on it is to use hash indexes. InnoDB has a mechanism
that monitors index searches made to the indexes defined for a table. If InnoDB notices that queries could benefit from building a hash
index, it does so automatically.

Note that the hash index is always built based on an existing B-tree index on the table. InnoDB can build a hash index on a prefix of
any length of the key defined for the B-tree, depending on the pattern of searches that InnoDB observes for the B-tree index. A hash in-
dex can be partial: It is not required that the whole B-tree index is cached in the buffer pool. InnoDB builds hash indexes on demand
for those pages of the index that are often accessed.

In a sense, InnoDB tailors itself through the adaptive hash index mechanism to ample main memory, coming closer to the architecture
of main-memory databases.

13.5.13.4. Physical Row Structure

The physical record structure for InnoDB tables is dependent on the row format specified when the table was created. For MySQL 5.1,
by default InnoDB uses the COMPACT format, but the REDUNDANT format is available to retain compatibility with older versions of
MySQL.

Records in InnoDB ROW_FORMAT=REDUNDANT tables have the following characteristics:

• Each index record contains a six-byte header. The header is used to link together consecutive records, and also in row-level locking.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a six-byte field for the transaction ID
and a seven-byte field for the roll pointer.

• If no primary key was defined for a table, each clustered index record also contains a six-byte row ID field.

• Each secondary index record contains also all the fields defined for the clustered index key.

• A record contains also a pointer to each field of the record. If the total length of the fields in a record is less than 128 bytes, the
pointer is one byte; otherwise, two bytes. The array of these pointers is called the record directory. The area where these pointers
point is called the data part of the record.

• Internally, InnoDB stores fixed-length character columns such as CHAR(10) in a fixed-length format. InnoDB truncates trailing
spaces from VARCHAR columns.

• An SQL NULL value reserves 1 or 2 bytes in the record directory. Besides that, an SQL NULL value reserves zero bytes in the data
part of the record if stored in a variable length column. In a fixed-length column, it reserves the fixed length of the column in the
data part of the record. The motivation behind reserving the fixed space for NULL values is that it enables an update of the column
from NULL to a non-NULL value to be done in place without causing fragmentation of the index page.

Records in InnoDB ROW_FORMAT=COMPACT tables have the following characteristics:

Storage Engines

986



• Each index record contains a five-byte header that may be preceded by a variable-length header. The header is used to link together
consecutive records, and also in row-level locking.

• The record header contains a bit vector for indicating NULL columns. The bit vector occupies (n_nullable+7)/8 bytes. Columns
that are NULL will not occupy other space than the bit in this vector.

• For each non-NULL variable-length field, the record header contains the length of the column in one or two bytes. Two bytes will
only be needed if part of the column is stored externally or the maximum length exceeds 255 bytes and the actual length exceeds
127 bytes.

• The record header is followed by the data contents of the columns. Columns that are NULL are omitted.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a six-byte field for the transaction ID
and a seven-byte field for the roll pointer.

• If no primary key was defined for a table, each clustered index record also contains a six-byte row ID field.

• Each secondary index record contains also all the fields defined for the clustered index key.

• Internally, InnoDB stores fixed-length, fixed-width character columns such as CHAR(10) in a fixed-length format. InnoDB trun-
cates trailing spaces from VARCHAR columns.

• Internally, InnoDB attempts to store UTF-8 CHAR(n) columns in n bytes by trimming trailing spaces. In
ROW_FORMAT=REDUNDANT, such columns occupy 3*n bytes. The motivation behind reserving the minimum space n is that it in
many cases enables an update of the column to be done in place without causing fragmentation of the index page.

The presence of the compact row format decreases row storage space by about 20% at the cost of increasing CPU use for some opera-
tions. If your workload is a typical one that is limited by cache hit rates and disk speed it is likely to be faster. If it is a rare case that is
limited by CPU speed, it might be slower.

13.5.14. InnoDB File Space Management and Disk I/O

13.5.14.1. InnoDB Disk I/O

InnoDB uses simulated asynchronous disk I/O: InnoDB creates a number of threads to take care of I/O operations, such as read-ahead.

There are two read-ahead heuristics in InnoDB:

• In sequential read-ahead, if InnoDB notices that the access pattern to a segment in the tablespace is sequential, it posts in advance a
batch of reads of database pages to the I/O system.

• In random read-ahead, if InnoDB notices that some area in a tablespace seems to be in the process of being fully read into the buf-
fer pool, it posts the remaining reads to the I/O system.

InnoDB uses a novel file flush technique called doublewrite. It adds safety to recovery following an operating system crash or a power
outage, and improves performance on most varieties of Unix by reducing the need for fsync() operations.

Doublewrite means that before writing pages to a data file, InnoDB first writes them to a contiguous tablespace area called the double-
write buffer. Only after the write and the flush to the doublewrite buffer has completed does InnoDB write the pages to their proper po-
sitions in the data file. If the operating system crashes in the middle of a page write, InnoDB can later find a good copy of the page
from the doublewrite buffer during recovery.

13.5.14.2. File Space Management

The data files that you define in the configuration file form the tablespace of InnoDB. The files are simply concatenated to form the ta-
blespace. There is no striping in use. Currently, you cannot define where within the tablespace your tables are allocated. However, in a
newly created tablespace, InnoDB allocates space starting from the first data file.

The tablespace consists of database pages with a default size of 16KB. The pages are grouped into extents of 64 consecutive pages. The
“files” inside a tablespace are called segments in InnoDB. The term “rollback segment” is somewhat confusing because it actually con-
tains many tablespace segments.

Storage Engines

987



Two segments are allocated for each index in InnoDB. One is for non-leaf nodes of the B-tree, the other is for the leaf nodes. The idea
here is to achieve better sequentiality for the leaf nodes, which contain the data.

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it individually. After that InnoDB starts to alloc-
ate whole extents to the segment. InnoDB can add to a large segment up to 4 extents at a time to ensure good sequentiality of data.

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an InnoDB tablespace cannot be allocated
to segments as a whole, but only as individual pages.

When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS statement, InnoDB reports the extents
that are definitely free in the tablespace. InnoDB always reserves some extents for cleanup and other internal purposes; these reserved
extents are not included in the free space.

When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. Whether the freed space becomes available for
other users depends on whether the pattern of deletes frees individual pages or extents to the tablespace. Dropping a table or deleting all
rows from it is guaranteed to release the space to other users, but remember that deleted rows are physically removed only in an
(automatic) purge operation after they are no longer needed for transaction rollbacks or consistent reads. (See Section 13.5.12,
“Implementation of Multi-Versioning”.)

13.5.14.3. Defragmenting a Table

If there are random insertions into or deletions from the indexes of a table, the indexes may become fragmented. Fragmentation means
that the physical ordering of the index pages on the disk is not close to the index ordering of the records on the pages, or that there are
many unused pages in the 64-page blocks that were allocated to the index.

A symptom of fragmentation is that a table takes more space than it “should” take. How much that is exactly, is difficult to determine.
All InnoDB data and indexes are stored in B-trees, and their fill factor may vary from 50% to 100%. Another symptom of fragmenta-
tion is that a table scan such as this takes more time than it “should” take:

SELECT COUNT(*) FROM t WHERE a_non_indexed_column <> 12345;

(In the preceding query, we are “fooling” the SQL optimizer into scanning the clustered index, rather than a secondary index.) Most
disks can read 10 to 50MB/s, which can be used to estimate how fast a table scan should run.

It can speed up index scans if you periodically perform a “null” ALTER TABLE operation:

ALTER TABLE tbl_name ENGINE=INNODB

That causes MySQL to rebuild the table. Another way to perform a defragmentation operation is to use mysqldump to dump the table
to a text file, drop the table, and reload it from the dump file.

If the insertions to an index are always ascending and records are deleted only from the end, the InnoDB filespace management al-
gorithm guarantees that fragmentation in the index does not occur.

13.5.15. InnoDB Error Handling
Error handling in InnoDB is not always the same as specified in the SQL standard. According to the standard, any error during an SQL
statement should cause the rollback of that statement. InnoDB sometimes rolls back only part of the statement, or the whole transac-
tion. The following items describe how InnoDB performs error handling:

• If you run out of file space in the tablespace, a MySQL Table is full error occurs and InnoDB rolls back the SQL statement.

• A transaction deadlock causes InnoDB to roll back the entire transaction. In the case of a lock wait timeout, InnoDB rolls back
only the most recent SQL statement.

When a transaction rollback occurs due to a deadlock or lock wait timeout, it cancels the effect of the statements within the transac-
tion. But if the start-transaction statement was START TRANSACTION or BEGIN statement, rollback does not cancel that state-
ment. Further SQL statements become part of the transaction until the occurrence of COMMIT, ROLLBACK, or some SQL statement
that causes an implicit commit.

• A duplicate-key error rolls back the SQL statement, if you have not specified the IGNORE option in your statement.

• A row too long error rolls back the SQL statement.

Storage Engines

988



• Other errors are mostly detected by the MySQL layer of code (above the InnoDB storage engine level), and they roll back the cor-
responding SQL statement. Locks are not released in a rollback of a single SQL statement.

During implicit rollbacks, as well as during the execution of an explicit ROLLBACK SQL statement, SHOW PROCESSLIST displays
Rolling back in the State column for the relevant connection.

13.5.15.1. InnoDB Error Codes

The following is a non-exhaustive list of common InnoDB-specific errors that you may encounter, with information about why each
occurs and how to resolve the problem.

• 1005 (ER_CANT_CREATE_TABLE)

Cannot create table. If the error message refers to errno 150, table creation failed because a foreign key constraint was not cor-
rectly formed. If the error message refers to errno -1, table creation probably failed because the table includes a column name that
matched the name of an internal InnoDB table.

• 1016 (ER_CANT_OPEN_FILE)

Cannot find the InnoDB table from the InnoDB data files, although the .frm file for the table exists. See Section 13.5.17.1,
“Troubleshooting InnoDB Data Dictionary Operations”.

• 1114 (ER_RECORD_FILE_FULL)

InnoDB has run out of free space in the tablespace. You should reconfigure the tablespace to add a new data file.

• 1205 (ER_LOCK_WAIT_TIMEOUT)

Lock wait timeout expired. Transaction was rolled back.

• 1213 (ER_LOCK_DEADLOCK)

Transaction deadlock. You should rerun the transaction.

• 1216 (ER_NO_REFERENCED_ROW)

You are trying to add a row but there is no parent row, and a foreign key constraint fails. You should add the parent row first.

• 1217 (ER_ROW_IS_REFERENCED)

You are trying to delete a parent row that has children, and a foreign key constraint fails. You should delete the children first.

13.5.15.2. Operating System Error Codes

To print the meaning of an operating system error number, use the perror program that comes with the MySQL distribution.

The following table provides a list of some common Linux system error codes. For a more complete list, see Linux source code.

• 1 (EPERM)

Operation not permitted

• 2 (ENOENT)

No such file or directory

• 3 (ESRCH)

No such process

• 4 (EINTR)

Storage Engines

989

http://www.iglu.org.il/lxr/source/include/asm-i386/errno.h


Interrupted system call

• 5 (EIO)

I/O error

• 6 (ENXIO)

No such device or address

• 7 (E2BIG)

Arg list too long

• 8 (ENOEXEC)

Exec format error

• 9 (EBADF)

Bad file number

• 10 (ECHILD)

No child processes

• 11 (EAGAIN)

Try again

• 12 (ENOMEM)

Out of memory

• 13 (EACCES)

Permission denied

• 14 (EFAULT)

Bad address

• 15 (ENOTBLK)

Block device required

• 16 (EBUSY)

Device or resource busy

• 17 (EEXIST)

File exists

• 18 (EXDEV)

Cross-device link

• 19 (ENODEV)

No such device

• 20 (ENOTDIR)

Not a directory

Storage Engines

990



• 21 (EISDIR)

Is a directory

• 22 (EINVAL)

Invalid argument

• 23 (ENFILE)

File table overflow

• 24 (EMFILE)

Too many open files

• 25 (ENOTTY)

Inappropriate ioctl for device

• 26 (ETXTBSY)

Text file busy

• 27 (EFBIG)

File too large

• 28 (ENOSPC)

No space left on device

• 29 (ESPIPE)

Illegal seek

• 30 (EROFS)

Read-only file system

• 31 (EMLINK)

Too many links

The following table provides a list of some common Windows system error codes. For a complete list see the Microsoft Web site.

• 1 (ERROR_INVALID_FUNCTION)

Incorrect function.

• 2 (ERROR_FILE_NOT_FOUND)

The system cannot find the file specified.

• 3 (ERROR_PATH_NOT_FOUND)

The system cannot find the path specified.

• 4 (ERROR_TOO_MANY_OPEN_FILES)

The system cannot open the file.

• 5 (ERROR_ACCESS_DENIED)

Access is denied.

Storage Engines

991

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/system_error_codes.asp


• 6 (ERROR_INVALID_HANDLE)

The handle is invalid.

• 7 (ERROR_ARENA_TRASHED)

The storage control blocks were destroyed.

• 8 (ERROR_NOT_ENOUGH_MEMORY)

Not enough storage is available to process this command.

• 9 (ERROR_INVALID_BLOCK)

The storage control block address is invalid.

• 10 (ERROR_BAD_ENVIRONMENT)

The environment is incorrect.

• 11 (ERROR_BAD_FORMAT)

An attempt was made to load a program with an incorrect format.

• 12 (ERROR_INVALID_ACCESS)

The access code is invalid.

• 13 (ERROR_INVALID_DATA)

The data is invalid.

• 14 (ERROR_OUTOFMEMORY)

Not enough storage is available to complete this operation.

• 15 (ERROR_INVALID_DRIVE)

The system cannot find the drive specified.

• 16 (ERROR_CURRENT_DIRECTORY)

The directory cannot be removed.

• 17 (ERROR_NOT_SAME_DEVICE)

The system cannot move the file to a different disk drive.

• 18 (ERROR_NO_MORE_FILES)

There are no more files.

• 19 (ERROR_WRITE_PROTECT)

The media is write protected.

• 20 (ERROR_BAD_UNIT)

The system cannot find the device specified.

• 21 (ERROR_NOT_READY)

The device is not ready.

• 22 (ERROR_BAD_COMMAND)

The device does not recognize the command.

Storage Engines

992



• 23 (ERROR_CRC)

Data error (cyclic redundancy check).

• 24 (ERROR_BAD_LENGTH)

The program issued a command but the command length is incorrect.

• 25 (ERROR_SEEK)

The drive cannot locate a specific area or track on the disk.

• 26 (ERROR_NOT_DOS_DISK)

The specified disk or diskette cannot be accessed.

• 27 (ERROR_SECTOR_NOT_FOUND)

The drive cannot find the sector requested.

• 28 (ERROR_OUT_OF_PAPER)

The printer is out of paper.

• 29 (ERROR_WRITE_FAULT)

The system cannot write to the specified device.

• 30 (ERROR_READ_FAULT)

The system cannot read from the specified device.

• 31 (ERROR_GEN_FAILURE)

A device attached to the system is not functioning.

• 32 (ERROR_SHARING_VIOLATION)

The process cannot access the file because it is being used by another process.

• 33 (ERROR_LOCK_VIOLATION)

The process cannot access the file because another process has locked a portion of the file.

• 34 (ERROR_WRONG_DISK)

The wrong diskette is in the drive. Insert %2 (Volume Serial Number: %3) into drive %1.

• 36 (ERROR_SHARING_BUFFER_EXCEEDED)

Too many files opened for sharing.

• 38 (ERROR_HANDLE_EOF)

Reached the end of the file.

• 39 (ERROR_HANDLE_DISK_FULL)

The disk is full.

• 87 (ERROR_INVALID_PARAMETER)

The parameter is incorrect. (If this error occurs on Windows and you have enabled innodb_file_per_table in a server option
file, add the line innodb_flush_method=unbuffered to the file as well.)

• 112 (ERROR_DISK_FULL)

Storage Engines

993



The disk is full.

• 123 (ERROR_INVALID_NAME)

The filename, directory name, or volume label syntax is incorrect.

• 1450 (ERROR_NO_SYSTEM_RESOURCES)

Insufficient system resources exist to complete the requested service.

13.5.16. Restrictions on InnoDB Tables

•
Warning

Do not convert MySQL system tables in the mysql database from MyISAM to InnoDB tables! This is an unsupported
operation. If you do this, MySQL does not restart until you restore the old system tables from a backup or re-generate them
with the mysql_install_db script.

•
Warning

It is not a good idea to configure InnoDB to use datafiles or logfiles on NFS volumes. Otherwise, the files might be
locked by other processes and become unavailable for use by MySQL.

• A table cannot contain more than 1000 columns.

• The internal maximum key length is 3500 bytes, but MySQL itself restricts this to 3072 bytes.

• The maximum row length, except for VARBINARY, VARCHAR, BLOB and TEXT columns, is slightly less than half of a database
page. That is, the maximum row length is about 8000 bytes. LONGBLOB and LONGTEXT columns must be less than 4GB, and the
total row length, including also BLOB and TEXT columns, must be less than 4GB. InnoDB stores the first 768 bytes of a VARBIN-
ARY, VARCHAR, BLOB, or TEXT column in the row, and the rest into separate pages.

• Although InnoDB supports row sizes larger than 65535 internally, you cannot define a row containing VARBINARY or VARCHAR
columns with a combined size larger than 65535:

mysql> CREATE TABLE t (a VARCHAR(8000), b VARCHAR(10000),
-> c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
-> f VARCHAR(10000), g VARCHAR(10000)) ENGINE=InnoDB;

ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

• On some older operating systems, files must be less than 2GB. This is not a limitation of InnoDB itself, but if you require a large
tablespace, you will need to configure it using several smaller data files rather than one or a file large data files.

• The combined size of the InnoDB log files must be less than 4GB.

• The minimum tablespace size is 10MB. The maximum tablespace size is four billion database pages (64TB). This is also the max-
imum size for a table.

• InnoDB tables do not support FULLTEXT indexes.

• InnoDB tables support spatial types, but not indexes on them.

• ANALYZE TABLE determines index cardinality (as displayed in the Cardinality column of SHOW INDEX output) by doing
ten random dives to each of the index trees and updating index cardinality estimates accordingly. Note that because these are only
estimates, repeated runs of ANALYZE TABLE may produce different numbers. This makes ANALYZE TABLE fast on InnoDB
tables but not 100% accurate as it doesn't take all rows into account.

MySQL uses index cardinality estimates only in join optimization. If some join is not optimized in the right way, you can try using
ANALYZE TABLE. In the few cases that ANALYZE TABLE doesn't produce values good enough for your particular tables, you can

Storage Engines

994



use FORCE INDEX with your queries to force the use of a particular index, or set the max_seeks_for_key system variable to
ensure that MySQL prefers index lookups over table scans. See Section 5.1.3, “System Variables”, and Section B.1.6,
“Optimizer-Related Issues”.

• SHOW TABLE STATUS does not give accurate statistics on InnoDB tables, except for the physical size reserved by the table. The
row count is only a rough estimate used in SQL optimization.

• InnoDB does not keep an internal count of rows in a table. (In practice, this would be somewhat complicated due to multi-ver-
sioning.) To process a SELECT COUNT(*) FROM t statement, InnoDB must scan an index of the table, which takes some time
if the index is not entirely in the buffer pool. To get a fast count, you have to use a counter table you create yourself and let your ap-
plication update it according to the inserts and deletes it does. If your table does not change often, using the MySQL query cache is a
good solution. SHOW TABLE STATUS also can be used if an approximate row count is sufficient. See Section 13.5.11, “InnoDB
Performance Tuning Tips”.

• On Windows, InnoDB always stores database and table names internally in lowercase. To move databases in binary format from
Unix to Windows or from Windows to Unix, you should always use explicitly lowercase names when creating databases and tables.

• For an AUTO_INCREMENT column, you must always define an index for the table, and that index must contain just the
AUTO_INCREMENT column. In MyISAM tables, the AUTO_INCREMENT column may be part of a multi-column index.

• While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an exclusive lock on the end of the
index associated with the AUTO_INCREMENT column. In accessing the auto-increment counter, InnoDB uses a specific table lock
mode AUTO-INC where the lock lasts only to the end of the current SQL statement, not to the end of the entire transaction. Note
that other clients cannot insert into the table while the AUTO-INC table lock is held; see Section 13.5.10.2, “InnoDB and AUTO-
COMMIT”.

• When you restart the MySQL server, InnoDB may reuse an old value that was generated for an AUTO_INCREMENT column but
never stored (that is, a value that was generated during an old transaction that was rolled back).

• When an AUTO_INCREMENT column runs out of values, InnoDB wraps a BIGINT to -9223372036854775808 and BIGINT
UNSIGNED to 1. However, BIGINT values have 64 bits, so do note that if you were to insert one million rows per second, it would
still take nearly three hundred thousand years before BIGINT reached its upper bound. With all other integer type columns, a du-
plicate-key error results. This is similar to how MyISAM works, because it is mostly general MySQL behavior and not about any
storage engine in particular.

• DELETE FROM tbl_name does not regenerate the table but instead deletes all rows, one by one.

• Under some conditions, TRUNCATE tbl_name for an InnoDB table is mapped to DELETE FROM tbl_name and doesn't reset
the AUTO_INCREMENT counter. See Section 12.2.9, “TRUNCATE Syntax”.

• In MySQL 5.1, the MySQL LOCK TABLES operation acquires two locks on each table if innodb_table_locks=1 (the de-
fault). In addition to a table lock on the MySQL layer, it also acquires an InnoDB table lock. Older versions of MySQL did not ac-
quire InnoDB table locks; the old behavior can be selected by setting innodb_table_locks=0. If no InnoDB table lock is ac-
quired, LOCK TABLES completes even if some records of the tables are being locked by other transactions.

• All InnoDB locks held by a transaction are released when the transaction is committed or aborted. Thus, it does not make much
sense to invoke LOCK TABLES on InnoDB tables in AUTOCOMMIT=1 mode, because the acquired InnoDB table locks would be
released immediately.

• Sometimes it would be useful to lock further tables in the course of a transaction. Unfortunately, LOCK TABLES in MySQL per-
forms an implicit COMMIT and UNLOCK TABLES. An InnoDB variant of LOCK TABLES has been planned that can be executed
in the middle of a transaction.

• The LOAD TABLE FROM MASTER statement for setting up replication slave servers does not work for InnoDB tables. A work-
around is to alter the table to MyISAM on the master, then do the load, and after that alter the master table back to InnoDB. Do not
do this if the tables use InnoDB-specific features such as foreign keys.

• The default database page size in InnoDB is 16KB. By recompiling the code, you can set it to values ranging from 8KB to 64KB.
You must update the values of UNIV_PAGE_SIZE and UNIV_PAGE_SIZE_SHIFT in the univ.i source file.

• Currently, triggers are not activated by cascaded foreign key actions.

• InnoDB has a limit of 1023 concurrent transactions that have created undo records by modifying data. Workarounds include keep-
ing transactions as small and fast as possible, delaying changes until near the end of the transaction, and using stored routines to re-
duce client-server latency delays. Applications should commit transactions before doing time-consuming client-side operations.

Storage Engines

995



13.5.17. InnoDB Troubleshooting
The following general guidelines apply to troubleshooting InnoDB problems:

• When an operation fails or you suspect a bug, you should look at the MySQL server error log, which is the file in the data directory
that has a suffix of .err.

• When troubleshooting, it is usually best to run the MySQL server from the command prompt, rather than through the
mysqld_safe wrapper or as a Windows service. You can then see what mysqld prints to the console, and so have a better grasp
of what is going on. On Windows, you must start the server with the --console option to direct the output to the console win-
dow.

• Use the InnoDB Monitors to obtain information about a problem (see Section 13.5.11.1, “SHOW ENGINE INNODB STATUS and
the InnoDB Monitors”). If the problem is performance-related, or your server appears to be hung, you should use in-
nodb_monitor to print information about the internal state of InnoDB. If the problem is with locks, use in-
nodb_lock_monitor. If the problem is in creation of tables or other data dictionary operations, use in-
nodb_table_monitor to print the contents of the InnoDB internal data dictionary.

• If you suspect that a table is corrupt, run CHECK TABLE on that table.

MySQL Enterprise
The MySQL Enterprise Monitor provides a number of advisors specifically designed for monitoring InnoDB
tables. In some cases, these advisors can anticipate potential problems. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

13.5.17.1. Troubleshooting InnoDB Data Dictionary Operations

A specific issue with tables is that the MySQL server keeps data dictionary information in .frm files it stores in the database director-
ies, whereas InnoDB also stores the information into its own data dictionary inside the tablespace files. If you move .frm files around,
or if the server crashes in the middle of a data dictionary operation, the locations of the .frm files may end up out of synchrony with
the locations recorded in the InnoDB internal data dictionary.

A symptom of an out-of-sync data dictionary is that a CREATE TABLE statement fails. If this occurs, you should look in the server's
error log. If the log says that the table already exists inside the InnoDB internal data dictionary, you have an orphaned table inside the
InnoDB tablespace files that has no corresponding .frm file. The error message looks like this:

InnoDB: Error: table test/parent already exists in InnoDB internal
InnoDB: data dictionary. Have you deleted the .frm file
InnoDB: and not used DROP TABLE? Have you used DROP DATABASE
InnoDB: for InnoDB tables in MySQL version <= 3.23.43?
InnoDB: See the Restrictions section of the InnoDB manual.
InnoDB: You can drop the orphaned table inside InnoDB by
InnoDB: creating an InnoDB table with the same name in another
InnoDB: database and moving the .frm file to the current database.
InnoDB: Then MySQL thinks the table exists, and DROP TABLE will
InnoDB: succeed.

You can drop the orphaned table by following the instructions given in the error message. If you are still unable to use DROP TABLE
successfully, the problem may be due to name completion in the mysql client. To work around this problem, start the mysql client
with the --skip-auto-rehash option and try DROP TABLE again. (With name completion on, mysql tries to construct a list of
table names, which fails when a problem such as just described exists.)

Another symptom of an out-of-sync data dictionary is that MySQL prints an error that it cannot open a .InnoDB file:

ERROR 1016: Can't open file: 'child2.InnoDB'. (errno: 1)

In the error log you can find a message like this:

InnoDB: Cannot find table test/child2 from the internal data dictionary
InnoDB: of InnoDB though the .frm file for the table exists. Maybe you
InnoDB: have deleted and recreated InnoDB data files but have forgotten
InnoDB: to delete the corresponding .frm files of InnoDB tables?

This means that there is an orphaned .frm file without a corresponding table inside InnoDB. You can drop the orphaned .frm file by
deleting it manually.

Storage Engines

996

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


If MySQL crashes in the middle of an ALTER TABLE operation, you may end up with an orphaned temporary table inside the In-
noDB tablespace. Using innodb_table_monitor you can see listed a table whose name is #sql-.... You can perform SQL
statements on tables whose name contains the character “#” if you enclose the name within backticks. Thus, you can drop such an
orphaned table like any other orphaned table using the method described earlier. Note that to copy or rename a file in the Unix shell,
you need to put the file name in double quotes if the file name contains “#”.

13.6. The MERGE Storage Engine
The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyISAM tables that can be used as one.
“Identical” means that all tables have identical column and index information. You cannot merge MyISAM tables in which the columns
are listed in a different order, do not have exactly the same columns, or have the indexes in different order. However, any or all of the
MyISAM tables can be compressed with myisampack. See Section 4.6.5, “myisampack — Generate Compressed, Read-Only My-
ISAM Tables”. Differences in table options such as AVG_ROW_LENGTH, MAX_ROWS, or PACK_KEYS do not matter.

When you create a MERGE table, MySQL creates two files on disk. The files have names that begin with the table name and have an ex-
tension to indicate the file type. An .frm file stores the table format, and an .MRG file contains the names of the tables that should be
used as one. The tables do not have to be in the same database as the MERGE table itself.

You can use SELECT, DELETE, UPDATE, and INSERT on MERGE tables. You must have SELECT, UPDATE, and DELETE privileges
on the MyISAM tables that you map to a MERGE table.

Note

The use of MERGE tables entails the following security issue: If a user has access to MyISAM table t, that user can create a
MERGE table m that accesses t. However, if the user's privileges on t are subsequently revoked, the user can continue to
access t by doing so through m. If this behavior is undesirable, you can start the server with the new --skip-merge op-
tion to disable the MERGE storage engine. This option is available as of MySQL 5.1.12.

If you DROP the MERGE table, you are dropping only the MERGE specification. The underlying tables are not affected.

To create a MERGE table, you must specify a UNION=(list-of-tables) clause that indicates which MyISAM tables you want to
use as one. You can optionally specify an INSERT_METHOD option if you want inserts for the MERGE table to take place in the first or
last table of the UNION list. Use a value of FIRST or LAST to cause inserts to be made in the first or last table, respectively. If you do
not specify an INSERT_METHOD option or if you specify it with a value of NO, attempts to insert rows into the MERGE table result in
an error.

The following example shows how to create a MERGE table:

mysql> CREATE TABLE t1 (
-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> message CHAR(20)) ENGINE=MyISAM;

mysql> CREATE TABLE t2 (
-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> message CHAR(20)) ENGINE=MyISAM;

mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');
mysql> CREATE TABLE total (

-> a INT NOT NULL AUTO_INCREMENT,
-> message CHAR(20), INDEX(a))
-> ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

Note that the a column is indexed as a PRIMARY KEY in the underlying MyISAM tables, but not in the MERGE table. There it is in-
dexed but not as a PRIMARY KEY because a MERGE table cannot enforce uniqueness over the set of underlying tables.

In MySQL 5.1.15 and later, when a table that is part of a MERGE table is opened, the following checks are applied before opening each
table. If any table fails the conformance checks, then the operation that triggered the opening of the table will fail. The conformance
checks applied to each table are:

• Table must have exactly the same amount of columns that MERGE table has.

• Column order in the MERGE table must match the column order in the underlying tables.

• Additionally, the specification for each column in the parent MERGE table and the underlying table are compared. For each column,
MySQL checks:

• Column type in the underlying table equals the column type of MERGE table.

Storage Engines

997



• Column length in the underlying table equals the column length of MERGE table.

• Column of underlying table and column of MERGE table can be NULL.

• Underlying table must have at least the same amount of keys that merge table has. The underlying table may have morekeys than the
MERGE table, but cannot have less.

Note

A known issue exists that keys on the some columns must be identical in order in both the MERGE table and the underlying
MyISAM table. See Bug#33653.

For each key:

• Check if the key type of underlying table equals the key type of merge table.

• Check if number of key parts (i.e. multiple columns within a compound key) in the underlying table key definition equals the
number of key parts in merge table key definition.

• For each key part:

• Check if key part lengths are equal.

• Check if key part types are equal.

• Check if key part languages are equal.

• Check if key part can be NULL.

After creating the MERGE table, you can issue queries that operate on the group of tables as a whole:

mysql> SELECT * FROM total;
+---+---------+
| a | message |
+---+---------+
| 1 | Testing |
| 2 | table |
| 3 | t1 |
| 1 | Testing |
| 2 | table |
| 3 | t2 |
+---+---------+

To remap a MERGE table to a different collection of MyISAM tables, you can use one of the following methods:

• DROP the MERGE table and re-create it.

• Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.

Beginning with MySQL 5.1.24, it is also possible to use ALTER TABLE ... UNION=() (that is, with an empty UNION clause)
to remove all of the underlying tables. (Bug#28248)

MERGE tables can help you solve the following problems:

• Easily manage a set of log tables. For example, you can put data from different months into separate tables, compress some of them
with myisampack, and then create a MERGE table to use them as one.

• Obtain more speed. You can split a big read-only table based on some criteria, and then put individual tables on different disks. A
MERGE table on this could be much faster than using the big table.

• Perform more efficient searches. If you know exactly what you are looking for, you can search in just one of the split tables for
some queries and use a MERGE table for others. You can even have many different MERGE tables that use overlapping sets of tables.

• Perform more efficient repairs. It is easier to repair individual tables that are mapped to a MERGE table than to repair a single large

Storage Engines

998

http://bugs.mysql.com/33653
http://bugs.mysql.com/28248


table.

• Instantly map many tables as one. A MERGE table need not maintain an index of its own because it uses the indexes of the individual
tables. As a result, MERGE table collections are very fast to create or remap. (Note that you must still specify the index definitions
when you create a MERGE table, even though no indexes are created.)

• If you have a set of tables from which you create a large table on demand, you should instead create a MERGE table on them on de-
mand. This is much faster and saves a lot of disk space.

• Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit, but a collection of MyISAM tables is
not.

• You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to that single table. There should be
no really notable performance impact from doing this (only a couple of indirect calls and memcpy() calls for each read).

The disadvantages of MERGE tables are:

• You can use only identical MyISAM tables for a MERGE table.

• You cannot use a number of MyISAM features in MERGE tables. For example, you cannot create FULLTEXT indexes on MERGE
tables. (You can, of course, create FULLTEXT indexes on the underlying MyISAM tables, but you cannot search the MERGE table
with a full-text search.)

• If the MERGE table is non-temporary, all underlying MyISAM tables must be non-temporary, too. If the MERGE table is temporary,
the MyISAM tables can be any mix of temporary and non-temporary.

• MERGE tables use more file descriptors. If 10 clients are using a MERGE table that maps to 10 tables, the server uses (10 × 10) + 10
file descriptors. (10 data file descriptors for each of the 10 clients, and 10 index file descriptors shared among the clients.)

• Key reads are slower. When you read a key, the MERGE storage engine needs to issue a read on all underlying tables to check which
one most closely matches the given key. To read the next key, the MERGE storage engine needs to search the read buffers to find the
next key. Only when one key buffer is used up does the storage engine need to read the next key block. This makes MERGE keys
much slower on eq_ref searches, but not much slower on ref searches. See Section 12.3.2, “EXPLAIN Syntax”, for more in-
formation about eq_ref and ref.

Additional resources

• A forum dedicated to the MERGE storage engine is available at http://forums.mysql.com/list.php?93.

13.6.1. MERGE Table Problems
The following are known problems with MERGE tables:

• If you use ALTER TABLE to change a MERGE table to another storage engine, the mapping to the underlying tables is lost. Instead,
the rows from the underlying MyISAM tables are copied into the altered table, which then uses the specified storage engine.

• REPLACE does not work as expected because the MERGE engine cannot enforce uniqueness over the set of underlying tables. The
two key facts are:

• REPLACE can detect unique key violations only in the underlying table to which it is going to write (which is determined by
INSERT_METHOD). This differs from violations in the MERGE table itself.

• If REPLACE detects such a violation, it will only change the corresponding row in the first underlying table in which the row is
present, whereas a row with the same unique key value may present in all underlying tables.

Similar considerations apply for INSERT ... ON DUPLICATE KEY UPDATE.

• MERGE tables do not support partitioning. That is, you cannot partition a MERGE table, nor can any of a MERGE table's underlying
MyISAM tables be partitioned.

Storage Engines

999

http://forums.mysql.com/list.php?93


• You cannot use REPAIR TABLE, OPTIMIZE TABLE, DROP TABLE, ALTER TABLE, DELETE without a WHERE clause,
TRUNCATE TABLE, or ANALYZE TABLE on any of the tables that are mapped into an open MERGE table. If you do so, the
MERGE table may still refer to the original table, which yields unexpected results. The easiest way to work around this deficiency is
to ensure that no MERGE tables remain open by issuing a FLUSH TABLES statement prior to performing any of those operations.

The unexpected results include the possibility that the operation on the MERGE table will report table corruption. However, if this
occurs after operations on the underlying MyISAM tables such as those listed in the previous paragraph (REPAIR TABLE, OPTIM-
IZE TABLE, and so forth), the corruption message is spurious. To deal with this, issue a FLUSH TABLES statement after modify-
ing the MyISAM tables.

• DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the MERGE storage engine's table
mapping is hidden from the upper layer of MySQL. Windows does not allow open files to be deleted, so you first must flush all
MERGE tables (with FLUSH TABLES) or drop the MERGE table before dropping the table.

• A MERGE table cannot maintain uniqueness constraints over the entire table. When you perform an INSERT, the data goes into the
first or last MyISAM table (depending on the value of the INSERT_METHOD option). MySQL ensures that unique key values re-
main unique within that MyISAM table, but not across all the tables in the collection.

• In MySQL 5.1.15 and later, the definition of the MyISAM tables and the MERGE table are checked when the tables are accessed (for
example, as part of a SELECT or INSERT statement). The checks ensure that the definitions of the tables and the parent MERGE ta-
ble definition match by comparing column order, types, sizes and associated indexes. If there is a difference between the tables then
an error will be returned and the statement will fail.

Because these checks take place when the tables are opened, any changes to the definition of a single table, including column
changes, column ordering and engine alterations will cause the statement to fail.

In MySQL 5.1.14 and earlier:

• When you create or alter MERGE table, there is no check to ensure that the underlying tables are existing MyISAM tables and
have identical structures. When the MERGE table is used, MySQL checks that the row length for all mapped tables is equal, but
this is not foolproof. If you create a MERGE table from dissimilar MyISAM tables, you are very likely to run into strange prob-
lems.

• Similarly, if you create a MERGE table from non-MyISAM tables, or if you drop an underlying table or alter it to be a non-My-
ISAM table, no error for the MERGE table occurs until later when you attempt to use it.

• Because the underlying MyISAM tables need not exist when the MERGE table is created, you can create the tables in any order,
as long as you do not use the MERGE table until all of its underlying tables are in place. Also, if you can ensure that a MERGE ta-
ble will not be used during a given period, you can perform maintenance operations on the underlying tables, such as backing up
or restoring them, altering them, or dropping and recreating them. It is not necessary to redefine the MERGE table temporarily to
exclude the underlying tables while you are operating on them.

• The order of indexes in the MERGE table and its underlying tables should be the same. If you use ALTER TABLE to add a UNIQUE
index to a table used in a MERGE table, and then use ALTER TABLE to add a non-unique index on the MERGE table, the index or-
dering is different for the tables if there was already a non-unique index in the underlying table. (This happens because ALTER
TABLE puts UNIQUE indexes before non-unique indexes to facilitate rapid detection of duplicate keys.) Consequently, queries on
tables with such indexes may return unexpected results.

• If you encounter an error message similar to ERROR 1017 (HY000): Can't find file: 'mm.MRG' (errno: 2) it
generally indicates that some of the base tables are not using the MyISAM storage engine. Confirm that all tables are MyISAM.

• There is a limit of 232 (~4.295E+09) rows to a MERGE table, just as there is with a MyISAM, it is therefore not possible to merge
multiple MyISAM tables that exceed this limitation. However, you build MySQL with the --with-big-tables option then the
row limitation is increased to (232)2 (1.844E+19) rows. See Section 2.9.2, “Typical configure Options”. Beginning with MySQL
5.0.4 all standard binaries are built with this option.

• The MERGE storage engine does not support INSERT DELAYED statements.

• Using different underlying row formats in MyISAM tables with a parent MERGE table is currently known to fail. See Bug#32364

• As of MySQL 5.1.20, if a MERGE table cannot be opened or used because of a problem with an underlying table, CHECK TABLE
displays information about which table caused the problem.

• Starting with MySQL 5.1.23, you cannot change the union list of a non-temporary MERGE table when LOCK TABLES is in effect.
The following does not work:

Storage Engines

1000

http://bugs.mysql.com/32364


CREATE TABLE m1 ... ENGINE=MRG_MYISAM ...;
LOCK TABLES t1 WRITE, t2 WRITE, m1 WRITE;
ALTER TABLE m1 ... UNION=(t1,t2) ...;

However, you can do this with a temporary MERGE table.

• Starting with MySQL 5.1.23, you cannot create a MERGE table with CREATE ... SELECT, neither as a temporary MERGE table,
nor as a non-temporary MERGE table. For example:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ... SELECT ...;

Gives error message: table is not BASE TABLE.

13.7. The MEMORY (HEAP) Storage Engine
The MEMORY storage engine creates tables with contents that are stored in memory. Formerly, these were known as HEAP tables.
MEMORY is the preferred term, although HEAP remains supported for backward compatibility.

Each MEMORY table is associated with one disk file. The filename begins with the table name and has an extension of .frm to indicate
that it stores the table definition.

To specify explicitly that you want to create a MEMORY table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = MEMORY;

As indicated by the name, MEMORY tables are stored in memory. They use hash indexes by default, which makes them very fast, and
very useful for creating temporary tables. However, when the server shuts down, all rows stored in MEMORY tables are lost. The tables
themselves continue to exist because their definitions are stored in .frm files on disk, but they are empty when the server restarts.

This example shows how you might create, use, and remove a MEMORY table:

mysql> CREATE TABLE test ENGINE=MEMORY
-> SELECT ip,SUM(downloads) AS down
-> FROM log_table GROUP BY ip;

mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;

MEMORY tables have the following characteristics:

• Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts. No overflow area or extra key
space is needed. No extra space is needed for free lists. Deleted rows are put in a linked list and are reused when you insert new data
into the table. MEMORY tables also have none of the problems commonly associated with deletes plus inserts in hashed tables.

• MEMORY tables can have up to 32 indexes per table, 16 columns per index and a maximum key length of 500 bytes.

• The MEMORY storage engine implements both HASH and BTREE indexes. You can specify one or the other for a given index by
adding a USING clause as shown here:

CREATE TABLE lookup
(id INT, INDEX USING HASH (id))
ENGINE = MEMORY;

CREATE TABLE lookup
(id INT, INDEX USING BTREE (id))
ENGINE = MEMORY;

General characteristics of B-tree and hash indexes are described in Section 7.4.5, “How MySQL Uses Indexes”.

• You can have non-unique keys in a MEMORY table. (This is an uncommon feature for implementations of hash indexes.)

• If you have a hash index on a MEMORY table that has a high degree of key duplication (many index entries containing the same
value), updates to the table that affect key values and all deletes are significantly slower. The degree of this slowdown is proportion-
al to the degree of duplication (or, inversely proportional to the index cardinality). You can use a BTREE index to avoid this prob-
lem.

• Columns that are indexed can contain NULL values.

Storage Engines

1001



• MEMORY tables use a fixed-length row storage format.

• MEMORY tables cannot contain BLOB or TEXT columns.

• MEMORY includes support for AUTO_INCREMENT columns.

• You can use INSERT DELAYED with MEMORY tables. See Section 12.2.4.2, “INSERT DELAYED Syntax”.

• MEMORY tables are shared among all clients (just like any other non-TEMPORARY table).

• MEMORY table contents are stored in memory, which is a property that MEMORY tables share with internal tables that the server cre-
ates on the fly while processing queries. However, the two types of tables differ in that MEMORY tables are not subject to storage
conversion, whereas internal tables are:

• If an internal table becomes too large, the server automatically converts it to an on-disk table. The size limit is determined by the
value of the tmp_table_size system variable.

• MEMORY tables are never converted to disk tables.

• The maximum size of MEMORY tables is limited by the max_heap_table_size system variable, which has a default value
of 16MB. To have larger MEMORY tables, you must increase the value of this variable. For individual tables, you can also spe-
cify a MAX_ROWS table option in the CREATE TABLE statement.

• The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.

• Memory used by a MEMORY table is not reclaimed if you delete individual rows from the table. Memory is only reclaimed when the
entire table is deleted. Memory that was previously used for rows that have been deleted will be re-used for new rows only within
the same table. To free up the memory used by rows that have been deleted you should use ALTER TABLE ENGINE=MEMORY to
force a table rebuild.

To free all the memory used by a MEMORY table when you no longer require its contents, you should execute DELETE or TRUN-
CATE TABLE, or remove the table altogether using DROP TABLE.

• If you want to populate a MEMORY table when the MySQL server starts, you can use the --init-file option. For example, you
can put statements such as INSERT INTO ... SELECT or LOAD DATA INFILE into this file to load the table from a persist-
ent data source. See Section 5.1.2, “Command Options”, and Section 12.2.5, “LOAD DATA INFILE Syntax”.

• If you are using replication, the master server's MEMORY tables become empty when it is shut down and restarted. However, a slave
is not aware that these tables have become empty, so it returns out-of-date content if you select data from them. When a MEMORY ta-
ble is used on the master for the first time since the master was started, a DELETE statement is written to the master's binary log
automatically, thus synchronizing the slave to the master again. Note that even with this strategy, the slave still has outdated data in
the table during the interval between the master's restart and its first use of the table. However, if you use the --init-file option
to populate the MEMORY table on the master at startup, it ensures that this time interval is zero.

• The memory needed for one row in a MEMORY table is calculated using the following expression:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) × 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) × 2)
+ ALIGN(length_of_row+1, sizeof(char*))

ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the char pointer size. sizeof(char*)
is 4 on 32-bit machines and 8 on 64-bit machines.

Additional resources

• A forum dedicated to the MEMORY storage engine is available at http://forums.mysql.com/list.php?92.

13.8. The EXAMPLE Storage Engine
The EXAMPLE storage engine is a stub engine that does nothing. Its purpose is to serve as an example in the MySQL source code that
illustrates how to begin writing new storage engines. As such, it is primarily of interest to developers.

Storage Engines

1002

http://forums.mysql.com/list.php?92


To enable the EXAMPLE storage engine if you build MySQL from source, invoke configure with the -
-with-example-storage-engine option.

To examine the source for the EXAMPLE engine, look in the storage/example directory of a MySQL source distribution.

When you create an EXAMPLE table, the server creates a table format file in the database directory. The file begins with the table name
and has an .frm extension. No other files are created. No data can be stored into the table. Retrievals return an empty result.

mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;
Query OK, 0 rows affected (0.78 sec)

mysql> INSERT INTO test VALUES(1),(2),(3);
ERROR 1031 (HY000): Table storage engine for 'test' doesn't »

have this option

mysql> SELECT * FROM test;
Empty set (0.31 sec)

The EXAMPLE storage engine does not support indexing.

13.9. The FEDERATED Storage Engine
The FEDERATED storage engine enables data to be accessed from a remote MySQL database on a local server without using replication
or cluster technology. When using a FEDERATED table, queries on the local server are automatically executed on the remote (federated)
tables. No data is stored on the local tables.

To enable the FEDERATED storage engine if you build MySQL from source, invoke configure with the -
-with-federated-storage-engine option.

To examine the source for the FEDERATED engine, look in the storage/federated directory of a MySQL source distribution.

MySQL Enterprise
MySQL Enterprise subscribers will find MySQL Knowledge Base articles about the FEDERATED storage engine
at FEDERATED Storage Engine. Access to the Knowledge Base collection of articles is one of the advantages
of subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

13.9.1. FEDERATED Storage Engine Overview
When you create a table using one of the standard storage engines (such as MyISAM, CSV or InnoDB), the table consists of the table
definition and the associated data. When you create a FEDERATED table, the table definition is the same, but the physical storage of the
data is handled on a remote server.

A FEDERATED table consists of two elements:

• A remote server with a database table, which in turn consists of the table definition (stored in the .frm file) and the associated ta-
ble. The table type of the remote table may be any type supported by the remote mysqld server, including MyISAM or InnoDB.

• A local server with a database table, where the table definition matches that of the corresponding table on the remote server. The ta-
ble definition is stored within the .frm file. However, there is no data file on the local server. Instead, the table definition includes a
connection string that points to the remote table.

When executing queries and statements on a FEDERATED table on the local server, the operations that would normally insert, update or
delete information from a local data file are instead sent to the remote server for execution, where they update the data file on the re-
mote server or return matching rows from the remote server.

The basic structure of a FEDERATED table setup is shown in Figure 13.2, “FEDERATED table structure”.

Figure 13.2. FEDERATED table structure

Storage Engines

1003

https://kb.mysql.com/search.php?cat=search&category=272
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


When a client issues a SQL statement that refers to a FEDERATED table, the flow of information between the local server (where the
SQL statement is executed) and the remote server (where the data is physically stored) is as follows:

1. The storage engine looks through each column that the FEDERATED table has and constructs an appropriate SQL statement that
refers to the remote table.

2. The statement is sent to the remote server using the MySQL client API.

3. The remote server processes the statement and the the local server retrieves any result that the statement produces (an affected-
rows count or a result set).

4. If the statement produces a result set, each column is converted to internal storage engine format that the FEDERATED engine ex-
pects and can use to display the result to the client that issued the original statement.

The local server communicates with the remote server using MySQL client C API functions. It invokes mysql_real_query() to
send the statement. To read a result set, it uses mysql_store_result() and fetches rows one at a time using
mysql_fetch_row().

13.9.2. How to Create FEDERATED Tables
To create a FEDERATED table you should follow these steps:

1. Create the table on the remote server. Alternatively, make a note of the table definition of an existing table, perhaps using the
SHOW CREATE TABLE statement.

2. Create the table on the local server with an identical table definition, but adding the connection information that links the local ta-
ble to the remote table.

For example, you could create the following table on the remote server:

CREATE TABLE test_table (
id INT(20) NOT NULL AUTO_INCREMENT,
name VARCHAR(32) NOT NULL DEFAULT '',
other INT(20) NOT NULL DEFAULT '0',

Storage Engines

1004



PRIMARY KEY (id),
INDEX name (name),
INDEX other_key (other)

)
ENGINE=MyISAM
DEFAULT CHARSET=latin1;

To create the local table that will be federated to the remote table, there are two options available. You can either create the local table
and specify the connection string (containing the server name, login, password) to be used to connect to the remote table using the
CONNECTION, or you can use an existing connection that you have previously created using the CREATE SERVER statement.

Note

When you create the local table it must have an identical definition to the remote table.

13.9.2.1. Creating a FEDERATED Table Using CONNECTION

To use the first method, you must specify the CONNECTION string after the engine type in a CREATE TABLE statement. For example:

CREATE TABLE federated_table (
id INT(20) NOT NULL AUTO_INCREMENT,
name VARCHAR(32) NOT NULL DEFAULT '',
other INT(20) NOT NULL DEFAULT '0',
PRIMARY KEY (id),
INDEX name (name),
INDEX other_key (other)

)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

Note

CONNECTION replaces the COMMENT used in some previous versions of MySQL.

The CONNECTION string contains the information required to connect to the remote server containing the table that will be used to
physically store the data. The connection string specifies the server name, login credentials, port number and database/table information.
In the example, the remote table is on the server remote_host, using port 9306. The name and port number should match the host-
name (or IP address) and port number of the remote MySQL server instance you want to use as your remote table.

The format the connection string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Where:

• scheme — is a recognized connection protocol. Only mysql is supported as the scheme value at this point.

• user_name — the username for the connection. This user must have been created on the remote server, and must have suitable
privileges to perform the required actions (SELECT, INSERT, UPDATE, and so forth) on the remote table.

• password — (optional) the corresponding password for username.

• host_name — the hostname or IP address of the remote server.

• port_num — (optional) the port number for the remote server. The default is 3306.

• db_name — the name of the database holding the remote table.

• tbl_name — the name of the remote table. The name of the local and the remote table do not have to match.

Sample connection strings:

CONNECTION='mysql://username:password@hostname:port/database/tablename'
CONNECTION='mysql://username@hostname/database/tablename'
CONNECTION='mysql://username:password@hostname/database/tablename'

Storage Engines

1005



13.9.2.2. Creating a FEDERATED Table Using CREATE SERVER

If you are creating a number of FEDERATED tables on the same server, or if you want to simplify the process of creating FEDERATED
tables, you can use the CREATE SERVER statement to define the server connection parameters, just as you would with the CONNEC-
TION string.

The format of the CREATE SERVER statement is:

CREATE SERVER
server_name
FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)

The server_name is used in the connection string when creating a new FEDERATED table.

For example, to create a server connection identical to the CONNECTION string:

CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

You would use the following statement:

CREATE SERVER fedlink
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'fed_user', HOST 'remote_host', PORT 9306, DATABASE 'federated');

To create a FEDERATED table that uses this connection, you still use the CONNECTION keyword, but specify the name you used in the
CREATE SERVER statement.

CREATE TABLE test_table (
id INT(20) NOT NULL AUTO_INCREMENT,
name VARCHAR(32) NOT NULL DEFAULT '',
other INT(20) NOT NULL DEFAULT '0',
PRIMARY KEY (id),
INDEX name (name),
INDEX other_key (other)

)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='fedlink/test_table';

The connection name in this example contains the name of the connection (fedlink) and the name of the table (test_table) to
link to, separated by a slash. If you specify only the connection name without a table name, the table name of the local table is used in-
stead.

For more information on CREATE SERVER, see Section 12.1.9, “CREATE SERVER Syntax”.

The CREATE SERVER statement accepts the same arguments as the CONNECTION string. The CREATE SERVER statement updates
the rows in the mysql.servers table. See the following table for information on the correspondence between parameters in a con-
nection string, options in the CREATE SERVER statement, and the columns in the mysql.servers table. For reference, the format
of the CONNECTION string is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Description CONNECTION string CREATE SERVER option mysql.servers column

Connection scheme scheme wrapper_name Wrapper

Remote user user_name USER Username

Remote password password PASSWORD Password

Remote host host_name HOST Host

Remote port port_num PORT Port

Remote database db_name DATABASE Db

13.9.3. FEDERATED Storage Engine Notes and Tips

Storage Engines

1006



You should be aware of the following points when using the FEDERATED storage engine:

• FEDERATED tables may be replicated to other slaves, but you must ensure that the slave servers are able to use the user/password
combination that is defined in the CONNECTION string (or the row in the mysql.servers table) to connect to the remote server.

The following items indicate features that the FEDERATED storage engine does and does not support:

• The remote server must be a MySQL server. Support by FEDERATED for other database engines may be added in the future.

• The remote table that a FEDERATED table points to must exist before you try to access the table through the FEDERATED table.

• It is possible for one FEDERATED table to point to another, but you must be careful not to create a loop.

• A FEDERATED table does not support indexes per se. Because access to the table is handled remotely, it is the remote table that
supports the indexes. Care should be taken when creating a FEDERATED table since the index definition from an equivalent MyIS-
AM or other table may not be supported. For example, creating a FEDERATED table with an index prefix on VARCHAR, TEXT or
BLOB columns will fail. The following definition in MyISAM is valid:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=MYISAM;

The key prefix in this example is incompatible with the FEDERATED engine, and the equivalent statement will fail:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=FEDERATED
CONNECTION='MYSQL://127.0.0.1:3306/TEST/T1';

If possible, you should try to separate the column and index definition when creating tables on both the remote server and the local
server to avoid these index issues.

• Internally, the implementation uses SELECT, INSERT, UPDATE, and DELETE, but not HANDLER.

• The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, TRUNCATE, and indexes. It does not support
ALTER TABLE, or any Data Definition Language statements that directly affect the structure of the table, other than DROP
TABLE. The current implementation does not use prepared statements.

• FEDERATED accepts INSERT ... ON DUPLICATE KEY UPDATE statements, but if a duplicate-key violation occurs, the
statement fails with an error.

• Performance on a FEDERATED table when performing bulk inserts (for example, on a INSERT INTO ... SELECT ... state-
ment) is slower than with other table types because each selected row is treated as an individual INSERT statement on the FEDER-
ATED table.

• Transactions are not supported.

• Before MySQL 5.1.21, for a multiple-row insert into a FEDERATED table that refers to a remote transactional table, if the insert
failed for a row due to constraint failure, the remote table would contain a partial commit (the rows preceding the failed one) instead
of rolling back the statement completely. This occurred because the rows were treated as individual inserts.

As of MySQL 5.1.21, FEDERATED performs bulk-insert handling such that multiple rows are sent to the remote table in a batch.
This provides a performance improvement and enables the the remote table to perform improvement. Also, if the remote table is
transactional, it enables the remote storage engine to perform statement rollback properly should an error occur. This capability has
the following limitations:

• The size of the insert cannot exceed the maximum packet size between servers. If the insert exceeds this size, it is broken into
multiple packets and the rollback problem can occur.

• Bulk-insert handling does not occur for INSERT ... ON DUPLICATE KEY UPDATE.

• There is no way for the FEDERATED engine to know if the remote table has changed. The reason for this is that this table must
work like a data file that would never be written to by anything other than the database system. The integrity of the data in the local
table could be breached if there was any change to the remote database.

• When using a CONNECTION string, you cannot use an '@' character in the password. You can get round this limitation by using the

Storage Engines

1007



CREATE SERVER statement to create a server connection.

• The INSERT_ID and TIMESTAMP options are not propagated to the data provider.

• Any DROP TABLE statement issued against a FEDERATED table drops only the local table, not the remote table.

• FEDERATED tables do not work with the query cache.

• User-defined partitioning is not supported for FEDERATED tables. Beginning with MySQL 5.1.15, it is no longer possible to create
such tables at all.

Some of these limitations may be lifted in future versions of the FEDERATED handler.

13.9.4. FEDERATED Storage Engine Resources
The following additional resources are available for the FEDERATED storage engine:

• A forum dedicated to the FEDERATED storage engine is available at http://forums.mysql.com/list.php?105.

13.10. The ARCHIVE Storage Engine
The ARCHIVE storage engine is used for storing large amounts of data without indexes in a very small footprint.

The ARCHIVE storage engine is included in MySQL binary distributions. To enable this storage engine if you build MySQL from
source, invoke configure with the --with-archive-storage-engine option.

To examine the source for the ARCHIVE engine, look in the storage/archive directory of a MySQL source distribution.

You can check whether the ARCHIVE storage engine is available with this statement:

mysql> SHOW VARIABLES LIKE 'have_archive';

When you create an ARCHIVE table, the server creates a table format file in the database directory. The file begins with the table name
and has an .frm extension. The storage engine creates other files, all having names beginning with the table name. The data and
metadata files have extensions of .ARZ and .ARM, respectively. An .ARN file may appear during optimization operations.

The ARCHIVE engine supports INSERT and SELECT, but not DELETE, REPLACE, or UPDATE. It does support ORDER BY opera-
tions, BLOB columns, and basically all but spatial data types (see Section 19.4.1, “MySQL Spatial Data Types”). The ARCHIVE engine
uses row-level locking.

As of MySQL 5.1.6, the ARCHIVE engine supports the AUTO_INCREMENT column attribute. The AUTO_INCREMENT column can
have either a unique or non-unique index. Attempting to create an index on any other column results in an error. The ARCHIVE engine
also supports the AUTO_INCREMENT table option in CREATE TABLE and ALTER TABLE statements to specify the initial sequence
value for a new table or reset the sequence value for an existing table, respectively.

As of MySQL 5.1.6, the ARCHIVE engine ignores BLOB columns if they are not requested and scans past them while reading.
Formerly, the following two statements had the same cost, but as of 5.1.6, the second is much more efficient than the first:

SELECT a, b, blob_col FROM archive_table;
SELECT a, b FROM archive_table;

Storage: Rows are compressed as they are inserted. The ARCHIVE engine uses zlib lossless data compression (see ht-
tp://www.zlib.net/). You can use OPTIMIZE TABLE to analyze the table and pack it into a smaller format (for a reason to use OP-
TIMIZE TABLE, see later in this section). The engine also supports CHECK TABLE. There are several types of insertions that are
used:

• An INSERT statement just pushes rows into a compression buffer, and that buffer flushes as necessary. The insertion into the buffer
is protected by a lock. A SELECT forces a flush to occur, unless the only insertions that have come in were INSERT DELAYED
(those flush as necessary). See Section 12.2.4.2, “INSERT DELAYED Syntax”.

Storage Engines

1008

http://forums.mysql.com/list.php?105
http://www.zlib.net/
http://www.zlib.net/


• A bulk insert is visible only after it completes, unless other inserts occur at the same time, in which case it can be seen partially. A
SELECT never causes a flush of a bulk insert unless a normal insert occurs while it is loading.

Retrieval: On retrieval, rows are uncompressed on demand; there is no row cache. A SELECT operation performs a complete table
scan: When a SELECT occurs, it finds out how many rows are currently available and reads that number of rows. SELECT is performed
as a consistent read. Note that lots of SELECT statements during insertion can deteriorate the compression, unless only bulk or delayed
inserts are used. To achieve better compression, you can use OPTIMIZE TABLE or REPAIR TABLE. The number of rows in
ARCHIVE tables reported by SHOW TABLE STATUS is always accurate. See Section 12.5.2.5, “OPTIMIZE TABLE Syntax”, Sec-
tion 12.5.2.6, “REPAIR TABLE Syntax”, and Section 12.5.4.28, “SHOW TABLE STATUS Syntax”.

Additional resources

• A forum dedicated to the ARCHIVE storage engine is available at http://forums.mysql.com/list.php?112.

13.11. The CSV Storage Engine
The CSV storage engine stores data in text files using comma-separated values format.

To enable the CSV storage engine if you build MySQL from source, invoke configure with the -
-with-csv-storage-engine option.

To examine the source for the CSV engine, look in the storage/csv directory of a MySQL source distribution.

When you create a CSV table, the server creates a table format file in the database directory. The file begins with the table name and has
an .frm extension. The storage engine also creates a data file. Its name begins with the table name and has a .CSV extension. The data
file is a plain text file. When you store data into the table, the storage engine saves it into the data file in comma-separated values
format.

mysql> CREATE TABLE test (i INT NOT NULL, c CHAR(10) NOT NULL)
-> ENGINE = CSV;

Query OK, 0 rows affected (0.12 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
+------+------------+
| i | c |
+------+------------+
| 1 | record one |
| 2 | record two |
+------+------------+
2 rows in set (0.00 sec)

Starting with MySQL 5.1.9, creating a CSV table also creates a corresponding Meta-file that stores the state of the table and the number
of rows that exist in the table. The name of this file is the same as the name of the table with the extension CSM.

If you examine the test.CSV file in the database directory created by executing the preceding statements, its contents should look like
this:

"1","record one"
"2","record two"

This format can be read, and even written, by spreadsheet applications such as Microsoft Excel or StarOffice Calc.

13.11.1. Repairing and Checking CSV Tables
Functionality introduced in version 5.1.9

The CSV storage engines supports the CHECK and REPAIR commands to verify and if possible repair a damaged CSV table.

When running the CHECK command, the CSV file will be checked for validity by looking for the correct field separators, escaped fields
(matching quotes and/or missing quotes), the correct number of fields compared to the table definition and the existence of a corres-
ponding CSV metafile. The first invalid row discovered will report an error. Checking a valid table produces output like that shown be-

Storage Engines

1009

http://forums.mysql.com/list.php?112


low:

mysql> check table csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | status | OK |
+--------------+-------+----------+----------+
1 row in set (0.00 sec)

A check on a corrupted table returns a fault:

mysql> check table csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | error | Corrupt |
+--------------+-------+----------+----------+
1 row in set (0.01 sec)

If the check fails, the table is marked as crashed (corrupt). Once a table has been marked as corrupt, it is automatically repaired when
you next run CHECK or execute a SELECT statement. The corresponding corrupt status and new status will be displayed when running
CHECK:

mysql> check table csvtest;
+--------------+-------+----------+----------------------------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------------------------+
| test.csvtest | check | warning | Table is marked as crashed |
| test.csvtest | check | status | OK |
+--------------+-------+----------+----------------------------+
2 rows in set (0.08 sec)

To repair a table you can use REPAIR, this copies as many valid rows from the existing CSV data as possible, and then replaces the ex-
isting CSV file with the recovered rows. Any rows beyond the corrupted data are lost.

mysql> repair table csvtest;
+--------------+--------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+--------+----------+----------+
| test.csvtest | repair | status | OK |
+--------------+--------+----------+----------+
1 row in set (0.02 sec)

Warning

Note that during repair, only the rows from the CSV file up to the first damaged row are copied to the new table. All other
rows from the first damaged row to the end of the table are removed, even valid rows.

13.11.2. CSV Limitations

Important

The CSV storage engine does not support indexing.

Partitioning is not supported for tables using the CSV storage engine. Beginning with MySQL 5.1.12, it is no longer possible to create
partitioned CSV tables. (See Bug#19307)

Beginning with MySQL 5.1.23, tables using the CSV storage engine can no longer be created with NULL columns. However, for back-
wards compatibility, you can continue to use such tables that were created in previous MySQL releases. (Bug#32050)

13.12. The BLACKHOLE Storage Engine
The BLACKHOLE storage engine acts as a “black hole” that accepts data but throws it away and does not store it. Retrievals always re-
turn an empty result:

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = BLACKHOLE;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

Storage Engines

1010

http://bugs.mysql.com/19307
http://bugs.mysql.com/32050


mysql> SELECT * FROM test;
Empty set (0.00 sec)

To enable the BLACKHOLE storage engine if you build MySQL from source, invoke configure with the -
-with-blackhole-storage-engine option.

To examine the source for the BLACKHOLE engine, look in the sql directory of a MySQL source distribution.

When you create a BLACKHOLE table, the server creates a table format file in the database directory. The file begins with the table
name and has an .frm extension. There are no other files associated with the table.

The BLACKHOLE storage engine supports all kinds of indexes. That is, you can include index declarations in the table definition.

You can check whether the BLACKHOLE storage engine is available with this statement:

mysql> SHOW VARIABLES LIKE 'have_blackhole_engine';

Inserts into a BLACKHOLE table do not store any data, but if the binary log is enabled, the SQL statements are logged (and replicated to
slave servers). This can be useful as a repeater or filter mechanism. For example, suppose that your application requires slave-side filter-
ing rules, but transferring all binary log data to the slave first results in too much traffic. In such a case, it is possible to set up on the
master host a “dummy” slave process whose default storage engine is BLACKHOLE, depicted as follows:

The master writes to its binary log. The “dummy” mysqld process acts as a slave, applying the desired combination of replicate-
do-* and replicate-ignore-* rules, and writes a new, filtered binary log of its own. (See Section 16.1.3, “Replication Options
and Variables”.) This filtered log is provided to the slave.

The dummy process does not actually store any data, so there is little processing overhead incurred by running the additional mysqld
process on the replication master host. This type of setup can be repeated with additional replication slaves.

INSERT triggers for BLACKHOLE tables work as expected. However, because the BLACKHOLE table does not actually store any data,
UPDATE and DELETE triggers are not activated: The FOR EACH ROW clause in the trigger definition does not apply because there are
no rows.

Other possible uses for the BLACKHOLE storage engine include:

• Verification of dump file syntax.

• Measurement of the overhead from binary logging, by comparing performance using BLACKHOLE with and without binary logging
enabled.

Storage Engines

1011



• BLACKHOLE is essentially a “no-op” storage engine, so it could be used for finding performance bottlenecks not related to the stor-
age engine itself.

The BLACKHOLE storage engine does not support INSERT DELAYED, LOCK TABLES, or UNLOCK TABLES statements prior to
MySQL 5.1.19.

As of MySQL 5.1.4, the BLACKHOLE engine is transaction-aware, in the sense that committed transactions are written to the binary log
and rolled-back transactions are not.

Storage Engines

1012



Chapter 14. High Availability and Scalability
When using MySQL you may need to ensure the availability or scalability of your MySQL installation. Availability refers to the ability
to cope with, and if necessary recover from, failures on the host, including failures of MySQL, the operating system, or the hardware.
Scalability refers to the ability to spread the load of your application queries across multiple MySQL servers. As your application and
usage increases, you may need to spread the queries for the application across multiple servers to improve response times.

There are a number of solutions available for solving issues of availability and scalability. The two primary solutions supported by
MySQL are MySQL Replication and MySQL Cluster. Further options are available using third-party solutions such as DRBD
(Distributed Replicated Block Device) and Heartbeat, and more complex scenarios can be solved through a combination of these tech-
nologies. These tools work in different ways:

• MySQL Replication enables statements and data from one MySQL server instance to be replicated to another MySQL server in-
stance. Without using more complex setups, data can only be replicated from a single master server to any number of slaves. The
replication is asynchronous, so the synchronization does not take place in real time, and there is no guarantee that data from the mas-
ter will have been replicated to the slaves.

• Advantages

• MySQL Replication is available on all platforms supported by MySQL, and since it isn't operating system-specific it can op-
erate across different platforms.

• Replication is asynchronous and can be stopped and restarted at any time, making it suitable for replicating over slower
links, partial links and even across geographical boundaries.

• Data can be replicated from one master to any number of slaves, making replication suitable in environments with heavy
reads, but light writes (for example, many web applications), by spreading the load across multiple slaves.

• Disadvantages

• Data can only be written to the master. In advanced configurations, though, you can set up a multiple-master configuration
where the data is replicated around a ring configuration.

• There is no guarantee that data on master and slaves will be consistent at a given point in time. Because replication is asyn-
chronous there may be a small delay between data being written to the master and it being available on the slaves. This can
cause problems in applications where a write to the master must be available for a read on the slaves (for example a web ap-
plication).

• Recommended uses

• Scale-out solutions that require a large number of reads but fewer writes (for example, web serving).

• Logging/data analysis of live data. By replicating live data to a slave you can perform queries on the slave without affecting
the operation of the master.

• Online backup (availability), where you need an active copy of the data available. You need to combine this with other tools,
such as custom scripts or Heartbeat. However, because of the asynchronous architecture, the data may be incomplete.

• Offline backup. You can use replication to keep a copy of the data. By replicating the data to a slave, you take the slave
down and get a reliable snapshot of the data (without MySQL running), then restart MySQL and replication to catch up. The
master (and any other slaves) can be kept running during this period.

For information on setting up and configuring replication, see Chapter 16, Replication.

• MySQL Cluster is a synchronous solution that enables multiple MySQL instances to share database information. Unlike replication,
data in a cluster can be read from or written to any node within the cluster, and information will be distributed to the other nodes.

• Advantages

• Offers multiple read and write nodes for data storage.

• Provides automatic failover between nodes. Only transaction information for the active node being used is lost in the event
of a failure.

1013



• Data on nodes is instantaneously distributed to the other data nodes.

• Disadvantages

• Available on a limited range of platforms.

• Nodes within a cluster should be connected via a LAN; geographically separate nodes are not supported. However, you can
replicate from one cluster to another using MySQL Replication, although the replication in this case is still asynchronous.

• Recommended uses

• Applications that need very high availability, such as telecoms and banking.

• Applications that require an equal or higher number of writes compared to reads.

For information on MySQL Cluster, see Chapter 17, MySQL Cluster.

• DRBD (Distributed Replicated Block Device) is a solution from Linbit supported only on Linux. DRBD creates a virtual block
device (which is associated with an underlying physical block device) that can be replicated from the primary server to a secondary
server. You create a filesystem on the virtual block device, and this information is then replicated, at the block level, to the second-
ary server.

Because the block device, not the data you are storing on it, is being replicated the validity of the information is more reliable than
with data-only replication solutions. DRBD can also ensure data integrity by only returning from a write operation on the primary
server when the data has been written to the underlying physical block device on both the primary and secondary servers.

• Advantages

• Provides high availability and data integrity across two servers in the event of hardware or system failure.

• Ensures data integrity by enforcing write consistency on the primary and secondary nodes.

• Disadvantages

• Only provides a method for duplicating data across the nodes. Secondary nodes cannot use the DRBD device while data is
being replicated, and so the MySQL on the secondary node cannot be simultaneously active.

• Cannot provide scalability, since secondary nodes don't have access to the secondary data.

• Recommended uses

• High availability situations where concurrent access to the data is not required, but instant access to the active data in the
event of a system or hardware failure is required.

For information on configuring DRBD and configuring MySQL for use with a DRBD device, see Section 14.1, “Using MySQL
with DRBD for High Availability”.

• Heartbeat is a software solution for Linux. It is not a data replication or synchronization solution, but a solution for monitoring serv-
ers and switching active MySQL servers automatically in the event of failure. Heartbeat needs to be combined with MySQL Replic-
ation or DRBD to provide automatic failover.

The information and suitability of the various technologies and different scenarios is summarized in the table below.

Requirements MySQL Replication MySQL Replication +
Heartbeat

MySQL Heartbeat +
DRBD

MySQL Cluster

Availability

Automated IP failover No Yes Yes No

Automated database fail-
over

No No Yes Yes

Typical failover time User/script-dependent Varies < 30 seconds < 3 seconds

Automatic resynchroniza- No No Yes Yes

High Availability and Scalability

1014



Requirements MySQL Replication MySQL Replication +
Heartbeat

MySQL Heartbeat +
DRBD

MySQL Cluster

tion of data

Geographic redundancy
support

Yes Yes Yes, when combined with
MySQL Replication

Yes, when combined with
MySQL Replication

Scalability

Built-in load balancing No No No Yes

Supports Read-intensive
applications

Yes Yes Yes, when combined with
MySQL Replication

Yes

Supports Write-intensive
applications

No No Yes Yes

Maximum number of
nodes per group

One master, multiple
slaves

One master, multiple
slaves

One active (primary), one
passive (secondary) node

255

Maximum number of
slaves

Unlimited (reads only) Unlimited (reads only) One (failover only) Unlimited (reads only)

14.1. Using MySQL with DRBD for High Availability
The Distributed Replicated Block Device (DRBD) is a Linux Kernel module that constitutes a distributed storage system. You can use
DRBD to share block devices between Linux servers and, in turn, share filesystems and data.

DRBD implements a block device which can be used for storage and which is replicated from a primary server to one or more second-
ary servers. The distributed block device is handled by the DRBD service. Writes to the DRBD block device are distributed among the
servers. Each DRBD service writes the information from the DRBD block device to a local physical block device (hard disk).

On the primary, for example, the data writes are written both to the underlying physical block device and distributed to the secondary
DRBD services. On the secondary, the writes received through DRBD and written to the local physical block device. On both the
primary and the secondary, reads from the DRBD block device are handled by the underlying physical block device. The information is
shared between the primary DRBD server and the secondary DRBD server synchronously and at a block level, and this means that
DRBD can be used in high-availability solutions where you need failover support.

Figure 14.1. DRBD Architecture

High Availability and Scalability

1015



When used with MySQL, DRBD can be used to ensure availability in the event of a failure. MySQL is configured to store information
on the DRBD block device, with one server acting as the primary and a second machine available to operate as an immediate replace-
ment in the event of a failure.

For automatic failover support you can combine DRBD with the Linux Heartbeat project, which will manage the interfaces on the two
servers and automatically configure the secondary (passive) server to replace the primary (active) server in the event of a failure. You
can also combine DRBD with MySQL Replication to provide both failover and scalability within your MySQL environment.

For information on how to configure DRBD and MySQL, including Heartbeat support, see Section 14.1.1, “Configuring the DRBD En-
vironment”.

An FAQ for using DRBD and MySQL is available. See Section A.14, “MySQL 5.1 FAQ — MySQL, DRBD, and Heartbeat”.

Note

Because DRBD is a Linux Kernel module it is currently not supported on platforms other than Linux.

14.1.1. Configuring the DRBD Environment
To set up DRBD, MySQL and Heartbeat you need to follow a number of steps that affect the operating system, DRBD and your
MySQL installation.

Before starting the installation process, you should be aware of the following information, terms and requirements on using DRBD:

• DRBD is a solution for enabling high-availability, and therefore you need to ensure that the two machines within your DRBD setup
are as identically configured as possible so that the secondary machine can act as a direct replacement for the primary machine in
the event of system failure.

• DRBD works through two (or more) servers, each called a node

• The node that contains the primary data, has read/write access to the data, and in an HA environment is the currently active node is
called the primary.

• The server to which the data is replicated is referred as secondary.

• A collection of nodes that are sharing information are referred to as a DRBD cluster.

• For DRBD to operate you must have a block device on which the information can be stored on each DRBD node. The lower level
block device can be a physical disk partition, a partition from a volume group or RAID device or any other block device.

Typically you use a spare partition on which the physical data will be stored . On the primary node, this disk will hold the raw data
that you want replicated. On the secondary nodes, the disk will hold the data replicated to the secondary server by the DRBD ser-
vice. Ideally, the size of the partition on the two DRBD servers should be identical, but this is not necessary as long as there is
enough space to hold the data that you want distributed between the two servers.

• For the distribution of data to work, DRBD is used to create a logical block device that uses the lower level block device for the ac-
tual storage of information. To store information on the distributed device, a filesystem is created on the DRBD logical block
device.

• When used with MySQL, once the filesystem has been created, you move the MySQL data directory (including InnoDB data files
and binary logs) to the new filesystem.

• When you set up the secondary DRBD server, you set up the physical block device and the DRBD logical block device that will
store the data. The block device data is then copied from the primary to the secondary server.

The overview for the installation and configuration sequence is as follows:

1. First you need to set up your operating system and environment. This includes setting the correct hostname, updating the system
and preparing the available packages and software required by DRBD, and configuring a physical block device to be used with the
DRBD block device. See Section 14.1.1.1, “Setting Up the OS for DRBD”.

2. Installing DRBD requires installing or compiling the DRBD source code and then configuring the DRBD service to set up the

High Availability and Scalability

1016



block devices that will be shared. See Section 14.1.1.2, “Installing and Configuring DRBD”.

3. Once DRBD has been configured, you must alter the configuration and storage location of the MySQL data. See Section 14.1.2,
“Configuring MySQL for DRBD”.

14.1.1.1. Setting Up the OS for DRBD

To set your Linux environment for using DRBD there are a number of system configuration steps that you must follow.

• Make sure that the primary and secondary DRBD servers have the correct hostname, and that the hostnames are unique. You can
verify this by using the uname command:

$ uname -n
drbd-one

If the hostname is not set correctly then edit the appropriate file (usually /etc/sysconfig/network, /etc/hostname, or /
etc/conf.d/hostname) and set the name correctly.

• Each DRBD node must have a unique IP address. Make sure that the IP address information is set correctly within the network con-
figuration and that the hostname and IP address has been set correctly within the /etc/hosts file.

• Although you can rely on the DNS or NIS system for host resolving, in the event of a major network failure these services may not
be available. If possible, add the IP address and hostname of each DRBD node into the /etc/hosts file for each machine. This will en-
sure that the node information can always be determined even if the DNS/NIS servers are unavailable.

• As a general rule, the faster your network connection the better. Because the block device data is exchanged over the network,
everything that will be written to the local disk on the DRBD primary will also be written to the network for distribution to the
DRBD secondary.

• You must have a spare disk or disk partition that you can use as the physical storage location for the DRBD data that will be replic-
ated. You do not have to have a complete disk available, a partition on an existing disk is acceptable.

If the disk is unpartitioned, partition the disk using fdisk, cfdisk or other partitioning solution.. Do not create a filesystem on
the new partition.

Remember that you must have a physical disk available for the storage of the replicated information on each DRBD node. Ideally
the partitions that will be used on each node should be of an identical size, although this is not strictly necessary. Do, however, en-
sure that the physical partition on the DRBD secondary is at least as big as the partitions on the DRBD primary node.

• If possible, upgrade your system to the latest available Linux kernel for your distribution. Once the kernel has been installed, you
must reboot to make the kernel active. To use DRBD you will also need to install the relevant kernel development and header files
that are required for building kernel modules. Platform specification information for this is available later in this section.

Before you compile or install DRBD, you must make sure the following tools and files are in place:

• Kernel header files

• Kernel source files

• GCC Compiler

• glib 2

• flex

Here are some operating system specific tips for setting up your installation:

• Tips for Red Hat (including CentOS and Fedora):

Use up2date or yum to update and install the latest kernel and kernel header files:

High Availability and Scalability

1017



# up2date kernel-smp-devel kernel-smp

Reboot. If you are going to build DRBD from source, then update your system with the required development packages

# up2date glib-devel openssl-devel libgcrypt-devel glib2-devel \
pkgconfig ncurses-devel rpm-build rpm-devel redhat-rpm-config gcc \
gcc-c++ bison flex gnutls-devel lm_sensors-devel net-snmp-devel \
python-devel bzip2-devel libselinux-devel perl-DBI

If you are going to use the pre-built DRBD RPMs:

# up2date gnutls lm_sensors net-snmp ncurses libgcrypt glib2 openssl glib

• Tips for Debian, Ubuntu, Kubuntu:

Use apt-get to install the kernel packages

# apt-get install linux-headers linux-image-server

If you are going to use the pre-built Debian packages for DRBD then you should not need any additional packages.

If you want to build DRBD from source, you will need to use the following command to install the required components:

# apt-get install devscripts flex bison build-essential \
dpkg-dev kernel-package debconf-utils dpatch debhelper \
libnet1-dev e2fslibs-dev libglib2.0-dev automake1.9 \
libgnutls-dev libtool libltdl3 libltdl3-dev

• Tips for Gentoo:

Gentoo is a source based Linux distribution and therefore many of the source files and components that you will need are either
already installed or will be installed automatically by emerge.

To install DRBD 0.8.x, you must unmask the sys-cluster/drbd build by adding the following line to /
etc/portage/package.keywords:

sys-cluster/drbd ~x86
sys-cluster/drbd-kernel ~x86

If your kernel does not already have the userspace to kernelspace linker enabled, then you will need to rebuild the kernel with this
option. The best way to do this is to use genkernel with the --menuconfig option to select the option and then rebuild the
kernel. For example, at the command line as root:

# genkernel --menuconfig all

Then through the menu options, select DEVICE DRIVERS, CONNECTOR - UNIFIED USERSPACE <-> KERNELSPACE LINKER and finally
press 'y' or 'space' to select the CONNECTOR - UNIFIED USERSPACE <-> KERNELSPACE LINKER option. Then exit the menu configura-
tion. The kernel will be rebuilt and installed. If this is a new kernel, make sure you update your bootloader accordingly. Now reboot
to enable the new kernel.

You can now emerge DRBD 0.8.x into your Gentoo installation:

# emerge drbd

Once drbd has been downloaded and installed, you need to decompress and copy the default configuration file from /
usr/share/doc/drbd-8.0.7/drbd.conf.bz2 into /etc/drbd.conf.

14.1.1.2. Installing and Configuring DRBD

To install DRBD you can choose either the pre-built binary installation packages or you can use the source packages and build from
source. If you want to build from source you must have installed the source and development packages.

High Availability and Scalability

1018



If you are installing using a binary distribution then you must ensure that the kernel version number of the binary package matches your
currently active kernel. You can use uname to find out this information:

$ uname -r
2.6.20-gentoo-r6

To build from the sources, download the source tar.gz package, extract the contents and then follow the instructions within the IN-
STALL file.

Once DRBD has been built and installed, you need to edit the /etc/drbd.conf file and then run a number of commands to build the
block device and set up the replication.

Although the steps below are split into those for the primary node and the secondary node, it should be noted that the configuration files
for all nodes should be identical, and many of the same steps have to be repeated on each node to enable the DRBD block device.

14.1.1.3. Setting Up a DRBD Primary Node

To set up a DRBD primary node you need to configure the DRBD service, create the first DRBD block device and then create a filesys-
tem on the device so that you can store files and data.

The DRBD configuration file (/etc/drbd.conf) defined a number of parameters for your DRBD configuration, including the fre-
quency of updates and block sizes, security information and the definition of the DRBD devices that you want to create.

The key elements to configure are the on sections which specify the configuration of each node.

To follow the configuration, the sequence below shows only the changes from the default drbd.conf file. Configurations within the
file can be both global or tied to specific resource.

1. Set the synchronization rate between the two nodes. This is the rate at which devices are synchronized in the background after a
disk failure, device replacement or during the initial setup. You should keep this in check compared to the speed of your network
connection. Gigabit Ethernet can support up to 125 MB/second, 100Mbps Ethernet slightly less than a tenth of that (12MBps). If
you are using a shared network connection, rather than a dedicated, then you should gauge accordingly.

For more detailed information on synchronization, the effects of the synchronization rate and the effects on network performance,
see Section 14.1.3.2, “Optimizing the Synchronization Rate”.

To set the synchronization rate, edit the rate setting within the syncer block:

syncer {
rate 10M;

}

2. Set up some basic authentication. DRBD supports a simple password hash exchange mechanism. This helps to ensure that only
those hosts with the same shared secret are able to join the DRBD node group.

cram-hmac-alg “sha1”;
shared-secret "shared-string";

3. Now you must configure the host information. Remember that you must have the node information for the primary and secondary
nodes in the drbd.conf file on each host. You need to configure the following information for each node:

• device — the path of the logical block device that will be created by DRBD.

• disk — the block device that will be used to store the data.

• address — the IP address and port number of the host that will hold this DRBD device.

• meta-disk — the location where the metadata about the DRBD device will be stored. You can set this to internal and
DRBD will use the physical block device to store the information, by recording the metadata within the last sections of the
disk. The exact size will depend on the size of the logical block device you have created, but it may involve up to 128MB.

A sample configuration for our primary server might look like this:

on drbd-one {
device /dev/drbd0;

High Availability and Scalability

1019



disk /dev/hdd1;
address 192.168.0.240:8888;
meta-disk internal;
}

The on configuration block should be repeated for the secondary node (and any further) nodes:

on drbd-two {
device /dev/drbd0;
disk /dev/hdd1;
address 192.168.0.241:8888;
meta-disk internal;
}

The IP address of each on block must match the IP address of the corresponding host. Do not set this value to the IP address of the
corresponding primary or secondary in each case.

4. Before starting the primary node, you should create the metadata for the devices:

# drbdadm create-md all

5. You are now ready to start DRBD:

# /etc/init.d/drbd start

DRBD should now start and initialize, creating the DRBD devices that you have configured.

6. DRBD creates a standard block device - to make it usable, you must create a filesystem on the block device just as you would with
any standard disk partition. Before you can create the filesystem, you must mark the new device as the primary device (i.e. where
the data will be written and stored), and initialize the device. Because this is a destructive operation, you must specify the com-
mand line option to overwrite the raw data:

# drbdadm -- --overwrite-data-of-peer primary all

If you are using a version of DRBD 0.7.x or earlier, then you need to use a different command-line option:

# drbdadm -- --do-what-I-say primary all

Now create a filesystem using your chosen filesystem type:

# mkfs.ext3 /dev/drbd0

7. You can now mount the filesystem and if necessary copy files to the mount point:

# mkdir /mnt/drbd
# mount /dev/drbd0 /mnt/drbd
# echo "DRBD Device" >/mnt/drbd/samplefile

Your primary node is now ready to use. You should now configure your secondary node or nodes.

14.1.1.4. Setting Up a DRBD Secondary Node

The configuration process for setting up a secondary node is the same as for the primary node, except that you do not have to create the
filesystem on the secondary node device, as this information will automatically be transferred from the primary node.

To set up a secondary node:

1. Copy the /etc/drbd.conf file from your primary node to your secondary node. It should already contain all the information
and configuration that you need, since you had to specify the secondary node IP address and other information for the primary
node configuration.

2. Create the DRBD metadata on the underlying disk device:

High Availability and Scalability

1020



# drbdadm create-md all

3. Start DRBD:

# /etc/init.d/drbd start

Once DRBD has started, it will start the copy the data from the primary node to the secondary node. Even with an empty filesystem this
will take some time, since DRBD is copying the block information from a block device, not simply copying the filesystem data.

You can monitor the progress of the copy between the primary and secondary nodes by viewing the output of /proc/drbd:

# cat /proc/drbd
version: 8.0.4 (api:86/proto:86)
SVN Revision: 2947 build by root@drbd-one, 2007-07-30 16:43:05
0: cs:SyncSource st:Primary/Secondary ds:UpToDate/Inconsistent C r---

ns:252284 nr:0 dw:0 dr:257280 al:0 bm:15 lo:0 pe:7 ua:157 ap:0
[==>.................] sync'ed: 12.3% (1845088/2097152)K
finish: 0:06:06 speed: 4,972 (4,580) K/sec
resync: used:1/31 hits:15901 misses:16 starving:0 dirty:0 changed:16
act_log: used:0/257 hits:0 misses:0 starving:0 dirty:0 changed:0

14.1.1.5. Monitoring and Managing Your DRBD Device

Once the primary and secondary machines are configured and synchronized, you can get the status information about your DRBD
device by viewing the output from /proc/drbd:

# cat /proc/drbd
version: 8.0.4 (api:86/proto:86)
SVN Revision: 2947 build by root@drbd-one, 2007-07-30 16:43:05
0: cs:Connected st:Primary/Secondary ds:UpToDate/UpToDate C r---

ns:2175704 nr:0 dw:99192 dr:2076641 al:33 bm:128 lo:0 pe:0 ua:0 ap:0
resync: used:0/31 hits:134841 misses:135 starving:0 dirty:0 changed:135
act_log: used:0/257 hits:24765 misses:33 starving:0 dirty:0 changed:33

The first line provides the version/revision and build information.

The second line starts the detailed status information for an individual resource. The individual field headings are as follows:

• cs — connection state

• st — node state (local/remote)

• ld — local data consistency

• ds — data consistency

• ns — network send

• nr — network receive

• dw — disk write

• dr — disk read

• pe — pending (waiting for ack)

• ua — unack'd (still need to send ack)

• al — access log write count

In the previous example, the information shown indicates that the nodes are connected, the local node is the primary (because it is listed
first), and the local and remote data is up to date with each other. The remainder of the information is statistical data about the device,
and the data exchanged that kept the information up to date.

High Availability and Scalability

1021



For administration, the main command is drbdadm. There are a number of commands supported by this tool the control the connectiv-
ity and status of the DRBD devices.

The most common commands are those to set the primary/secondary status of the local device. You can manually set this information
for a number of reasons, including when you want to check the physical status of the secondary device (since you cannot mount a
DRBD device in primary mode), or when you are temporarily moving the responsibility of keeping the data in check to a different ma-
chine (for example, during an upgrade or physical move of the normal primary node). You can set state of all local device to be the
primary using this command:

# drbdadm primary all

Or switch the local device to be the secondary using:

# drbdadm secondary all

To change only a single DRBD resource, specify the resource name instead of all.

You can temporarily disconnect the DRBD nodes:

# drbdadm disconnect all

Reconnect them using connect:

# drbdadm connect all

For other commands and help with drbdadm see the DRBD documentation.

14.1.1.6. Additional DRBD Configuration Options

Additional options you may want to configure:

• protocol — specifies the level of consistency to be used when information is written to the block device. The option is similar in
principle to the innodb_flush_log_at_trx_commit option within MySQL. Three levels are supported:

• A — data is considered written when the information reaches the TCP send buffer and the local physical disk. There is no guar-
antee that the data has been written to the remote server or the remote physical disk.

• B — data is considered written when the data has reached the local disk and the remote node's network buffer. The data has
reached the remote server, but there is no guarantee it has reached the remote server's physical disk.

• C — data is considered written when the data has reached the local disk and the remote node's physical disk.

The preferred and recommended protocol is C, as it is the only protocol which ensures the consistency of the local and remote phys-
ical storage.

• size — if you do not want to use the entire partition space with your DRBD block device then you can specify the size of the
DRBD device to be created. The size specification can include a quantifier. For example, to set the maximum size of the DRBD par-
tition to 1GB you would use:

size 1G;

With the configuration file suitably configured and ready to use, you now need to populate the lower-level device with the metadata in-
formation, and then start the DRBD service.

14.1.2. Configuring MySQL for DRBD
Once you have configured DRBD and have an active DRBD device and filesystem, you can configure MySQL to use the chosen device
to store the MySQL data.

When performing a new installation of MySQL, you can either select to install MySQL entirely onto the DRBD device, or just config-
ure the data directory to be located on the new filesystem.

High Availability and Scalability

1022



In either case, the files and installation must take place on the primary node, because that is the only DRBD node on which you can
mount the DRBD device filesystem as read/write.

You should store the following files and information on your DRBD device:

• MySQL data files, including the binary log, and InnoDB data files.

• MySQL configuration file (my.cnf).

To set up MySQL to use your new DRBD device and filesystem:

1. If you are migrating an existing MySQL installation, stop MySQL:

$ mysqladmin shutdown

2. Copy the my.cnf onto the DRBD device. If you are not already using a configuration file, copy one of the sample configuration
files from the MySQL distribution.

# mkdir /mnt/drbd/mysql
# cp /etc/my.cnf /mnt/drbd/mysql

3. Copy your MySQL data directory to the DRBD device and mounted filesystem.

# cp -R /var/lib/mysql /drbd/mysql/data

4. Edit the configuration file to reflect the change of directory by setting the value of the datadir option. If you have not already
enabled the binary log, also set the value of the log-bin option.

datadir = /drbd/mysql/data
log-bin = mysql-bin

5. Create a symbolic link from /etc/my.cnf to the new configuration file on the DRBD device filesystem.

# ln -s /drbd/mysql/my.cnf /etc/my.cnf

6. Now start MySQL and check that the data that you copied to the DRBD device filesystem is present.

# /etc/init.d/mysql start

Your MySQL data should now be located on the filesystem running on your DRBD device. The data will be physically stored on the
underlying device that you configured for the DRBD device. Meanwhile, the content of your MySQL databases will be copied to the
secondary DRBD node.

Note that you cannot access the information on your secondary node, as a DRBD device working in secondary mode is not available for
use.

14.1.3. Optimizing Performance and Reliability
Because of the nature of the DRBD system, the critical requirements are for a very fast exchange of the information between the two
hosts. To ensure that your DRBD setup is available to switch over in the event of a failure as quickly as possible, you must transfer the
information between the two hosts using the fastest method available.

Typically, a dedicated network circuit should be used for exchanging DRBD data between the two hosts. You should then use a separ-
ate, additional, network interface for your standard network connection. For an example of this layout, see Figure 14.2, “DRBD Archi-
tecture”.

Figure 14.2. DRBD Architecture

High Availability and Scalability

1023



The dedicated DRBD network interfaces should be configured to use a non-routed TCP/IP network configuration. For example, you
might want to set the primary to use 192.168.0.1 and the secondary 192.168.0.2. These networks and IP addresses should not be part of
normal network subnet.

Note

The preferred setup, whenever possible, is to use a direct cable connection (using a crossover cable with Ethernet, for ex-
ample) between the two machines. This eliminates the risk of loss of connectivity due to switch failures.

14.1.3.1. Using Bonded Ethernet Network Interfaces

For a set-up where there is a high-throughput of information being written, you may want to use bonded network interfaces. This is
where you combine the connectivity of more than one network port, increasing the throughput linearly according to the number of bon-
ded connections.

Bonding also provides an additional benefit in that with multiple network interfaces effectively supporting the same communications
channel, a fault within a single network interface in a bonded group does not stop communication. For example, imagine you have a
bonded setup with four network interfaces providing a single interface channel between two DRBD servers. If one network interface
fails, communication can continue on the other three without interruption, although it will be at a lower speed

To enable bonded connections you must enable bonding within the kernel. You then need to configure the module to specify the bonded
devices and then configure each new bonded device just as you would a standard network device:

• To configure the bonded devices, you need to edit the /etc/modprobe.conf file (RedHat) or add a file to the /
etc/modprobe.d directory.. In each case you will define the parameters for the kernel module. First, you need to specify each
bonding device:

alias bond0 bonding

You can then configure additional parameters for the kernel module. Typical parameters are the mode option and the miimon op-
tion.

The mode option specifies how the network interfaces are used. The default setting is 0, which means that each network interface is
used in a round-robin fashion (this supports aggregation and fault tolerance). Using setting 1 sets the bonding mode to active-
backup. This means that only one network interface is used as a time, but that the link will automatically failover to a new interface
if the primary interface fails. This settings only supports fault-tolerance.

High Availability and Scalability

1024



The miimon option enables the MII link monitoring. A positive value greater than zero indicates the monitoring frequency in milli-
seconds for checking each slave network interface that is configured as part of the bonded interface. A typical value is 100.

You set th options within the module parameter file, and you must set the options for each bonded device individually:

options bond0 miimon=100 mode=1

• Reboot your server to enable the bonded devices.

• Configure the network device parameters. There are two parts to this, you need to setup the bonded device configuration, and then
configure the original network interfaces as 'slaves' of the new bonded interface.

• For RedHat Linux:

Edit the configuration file for the bonded device. For device bond0 this would be /
etc/sysconfig/network-scripts/ifcfg-bond0:

DEVICE=bond0
BOOTPROTO=none
ONBOOT=yes
GATEWAY=192.168.0.254
NETWORK=192.168.0.0
NETMASK=255.255.255.0
IPADDR=192.168.0.1
USERCTL=no

Then for each network interface that you want to be part of the bonded device, configure the interface as a slave to the 'master'
bond. For example, the configuration of eth0 in /etc/sysconfig/network-scripts/ifcfg-eth0 might look like
this::

DEVICE=eth0
BOOTPROTO=none
HWADDR=00:11:22:33:44:55
ONBOOT=yes
TYPE=Ethernet
MASTER=bond0
SLAVE=yes

• For Debian Linux:

Edit the /etc/iftab file and configure the logical name and MAC address for each devices. For example:

eth0 mac 00:11:22:33:44:55

Now you need to set the configuration of the devices in /etc/network/interfaces:

auto bond0
iface bond0 inet static
address 192.168.0.1
netmask 255.255.255.0
network 192.168.0.0
gateway 192.168.0.254
up /sbin/ifenslave bond0 eth0
up /sbin/ifenslave bond0 eth1

• For Gentoo:

Use emerge to add the net-misc/ifenslave package to your system.

Edit the /etc/conf.d/net file and specify the network interface slaves in a bond, the dependencies and then the configura-
tion for the bond itself. A sample configuration might look like this:

slaves_bond0="eth0 eth1 eth2"

config_bond0=( "192.168.0.1 netmask 255.255.255.0" )

depend_bond0() {
need net.eth0 net.eth1 net.eth2
}

High Availability and Scalability

1025



Then make sure that you add the new network interface to list of interfaces configured during boot:

# rc-update add default net.bond0

Once the bonded devices are configured you should reboot your systems.

You can monitor the status of a bonded connection using the /proc filesystem:

# cat /proc/net/bonding/bond0
Bonding Mode: fault-tolerance (active-backup)
Primary Slave: None
Currently Active Slave: eth1
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 200
Down Delay (ms): 200
Slave Interface: eth1
MII Status: up
Link Failure Count: 0
Permanent HW addr: 00:11:22:33:44:55
Slave Interface: eth2
MII Status: up
Link Failure Count: 0
Permanent HW addr: 00:11:22:33:44:56

14.1.3.2. Optimizing the Synchronization Rate

The syncer rate configuration parameter should be configured with care as the synchronization rate can have a significant effect on
the performance of the DRBD setup in the event of a node or disk failure where the information is being synchronized from the Primary
to the Secondary node.

In DRBD, there are two distinct ways of data being transferred between peer nodes:

• Replication refers to the transfer of modified blocks being transferred from the primary to the secondary node. This happens auto-
matically when the block is modified on the primary node, and the replication process uses whatever bandwidth is available over the
replication link. The replication process cannot be throttled, because you want to transfer of the block information to happen as
quickly as possible during normal operation.

• Synchronization refers to the process of bringing peers back in sync after some sort of outage, due to manual intervention, node fail-
ure, disk swap, or the initial setup. Synchronization is limited to the syncer rate configured for the DRBD device.

Both replication and synchronization can take place at the same time. For example, the block devices can be being synchronized while
they are actively being used by the primary node. Any I/O that updates on the primary node will automatically trigger replication of the
modified block. In the event of a failure within an HA environment, it is highly likely that synchronization and replication will take
place at the same time.

Unfortunately, if the synchronization rate is set too high, then the synchronization process will use up all the available network band-
width between the primary and secondary nodes. In turn, the bandwidth available for replication of changed blocks is zero, which
means replication will stall and I/O will block, and ultimately the application will fail or degrade.

To avoid enabling the syncer rate to consume the available network bandwidth and prevent the replication of changed blocks you
should set the syncer rate to less than the maximum network bandwidth.

Depending on the application, you may wish to limit the synchronization rate. For example, on a busy server you may wish to configure
a significantly slower synchronization rate to ensure the replication rate is not affected.

14.2. Using Linux HA Heartbeat
The Heartbeat program provides a basis for verifying the availability of resources on one or more systems within a cluster. In this con-
text a resource includes MySQL, the filesystems on which the MySQL data is being stored and, if you are using DRBD, the DRBD
device being used for the filesystem. Heartbeat also manages a virtual IP address, and the virtual IP address should be used for all com-
munication to the MySQL instance.

High Availability and Scalability

1026



A cluster within the context of Heartbeat is defined as two computers notionally providing the same service. By definition, each com-
puter in the cluster is physically capable of providing the same services as all the others in the cluster. However, because the cluster is
designed for high-availability, only one of the servers is actively providing the service at any one time. Each additional server within the
cluster is a 'hot-spare' that can be brought into service in the event of a failure of the master, it's next connectivity or the connectivity of
the network in general.

The basics of Heartbeat are very simple. Within the Heartbeat cluster (see Figure 14.3, “DRBD Architecture”, each machine sends a
'heartbeat' signal to the other hosts in the cluster. The other cluster nodes monitor this heartbeat. The heartbeat can be transmitted over
many different systems, including shared network devices, dedicated network interfaces and serial connections. Failure to get a heart-
beat from a node is treated as failure of the node. Although we don't know the reason for the failure (it could be an OS failure, a hard-
ware failure in the server, or a failure in the network switch), it is safe to assume that if no heartbeat is produced there is a fault.

Figure 14.3. DRBD Architecture

In addition to checking the heartbeat from the server, the system can also check the connectivity (using ping) to another host on the
network, such as the network router. This allows Heartbeat to detect a failure of communication between a server and the router (and
therefore failure of the server, since it is no longer capable of providing the necessary service), even if the heartbeat between the servers
in the clusters is working fine.

In the event of a failure, the resources on the failed host are disabled, and the resources on one of the replacement hosts is enabled in-
stead. In addition, the Virtual IP address for the cluster is redirected to the new host in place of the failed device.

High Availability and Scalability

1027



When used with MySQL and DRBD, the MySQL data is replicated from the master to the slave using the DRBD device, but MySQL is
only running on the master. When the master fails, the slave switches the DRBD devices to be primary, the filesystems on those devices
are mounted, and MySQL is started. The original master (if still available) has it's resources disabled, which means shutting down
MySQL and unmounting the filesystems and switching the DRBD device to secondary.

14.2.1. Heartbeat Configuration
Heartbeat configuration requires three files located in /etc/ha.d. The ha.cf contains the main heartbeat configuration, including
the list of the nodes and times for identifying failures. haresources contains the list of resources to be managed within the cluster.
The authkeys file contains the security information for the cluster.

The contents of these files should be identical on each host within the Heartbeat cluster. It's important that you keep these files in sync
across all the hosts. Any changes in the information on one host should be copied to the all the others.

For these examples n example of the ha.cf file is shown below:

logfacility local0
keepalive 500ms
deadtime 10
warntime 5
initdead 30
mcast bond0 225.0.0.1 694 2 0
mcast bond1 225.0.0.2 694 1 0
auto_failback off
node drbd1
node drbd2

The individual lines in the file can be identified as follows:

• logfacility — sets the logging, in this case setting the logging to use syslog.

• keepalive — defines how frequently the heartbeat signal is sent to the other hosts.

• deadtime— the delay in seconds before other hosts in the cluster are considered 'dead' (failed).

• warntime — the delay in seconds before a warning is written to the log that a node cannot be contacted.

• initdead — the period in seconds to wait during system startup before the other host is considered to be down.

• mcast — defines a method for sending a heartbeat signal. In the above example, a multicast network address is being used over a
bonded network device. If you have multiple clusters then the multicast address for each cluster should be unique on your network.
Other choices for the heartbeat exchange exist, including a serial connection.

If you are using multiple network interfaces (for example, one interface for your server connectivity and a secondary and/or bonded
interface for your DRBD data exchange) then you should use both interfaces for your heartbeat connection. This decreases the
chance of a transient failure causing a invalid failure event.

• auto_failback — sets whether the original (preferred) server should be enabled again if it becomes available. Switching this to
on may cause problems if the preferred went offline and then comes back on line again. If the DRBD device has not been synced
properly, or if the problem with the original server happens again you may end up with two different datasets on the two servers, or
with a continually changing environment where the two servers flip-flop as the preferred server reboots and then starts again.

• node — sets the nodes within the Heartbeat cluster group. There should be one node for each server.

An optional additional set of information provides the configuration for a ping test that will check the connectivity to another host. You
should use this to ensure that you have connectivity on the public interface for your servers, so the ping test should be to a reliable host
such as a router or switch. The additional lines specify the destination machine for the ping, which should be specified as an IP ad-
dress, rather than a hostname; the command to run when a failure occurs, the authority for the failure and the timeout before an non-
response triggers a failure. A sample configure is shown below:

ping 10.0.0.1
respawn hacluster /usr/lib64/heartbeat/ipfail
apiauth ipfail gid=haclient uid=hacluster
deadping 5

In the above example, the ipfail command, which is part of the Heartbeat solution, is called on a failure and 'fakes' a fault on the cur-

High Availability and Scalability

1028



rently active server. You need to configure the user and group ID under which the command should be executed (using the apiauth).
The failure will be triggered after 5 seconds.

Note

The deadping value must be less than the deadtime value.

The auth_keys file holds the authorization information for the Heartbeat cluster. The authorization relies on a single unique 'key' that
is used to verify the two machines in the Heartbeat cluster. It is used only to confirm that the two machines are in the same cluster and is
used to ensure that the

14.2.2. Using Heartbeat with MySQL and DRBD
To use Heartbeat in combination with MySQL you should be using DRBD (see Section 14.1, “Using MySQL with DRBD for High
Availability”) or another solution that allows for sharing of the MySQL database files in event of a system failure. In these examples,
DRBD is used as the data sharing solution.

Heartbeat manages the configuration of different resources to manage the switching between two servers in the event of a failure. The
resource configuration defines the individual services that should be brought up (or taken down) in the event of a failure.

The haresources file within /etc/ha.d defines the resources that should be managed, and the individual resource mentioned in
this file in turn relates to scripts located within /etc/ha.d/resource.d. The resource definition is defined all on one line:

drbd1 drbddisk Filesystem::/dev/drbd0::/drbd::ext3 mysql 10.0.0.100

The line is notionally split by whitespace. The first entry (drbd1) is the name of the preferred host, i.e. the server that is normally re-
sponsible for handling the service. The last field is virtual IP address or name that should be used to share the service. This is the IP ad-
dress that should be used to connect to the MySQL server. It will automatically be allocated to the server that is active when Heartbeat
starts.

The remaining fields between these two fields define the resources that should be managed. Each Field should contain the name of the
resource (and each name should refer to a script within /etc/ha.d/resource.d). In the event of a failure, these resources are star-
ted on the backup server by calling the corresponding script (with a single argument, start), in order from left to right. If there are ad-
ditional arguments to the script, you can use a double colon to separate each additional argument.

In the above example, we manage the following resources:

• drbddisk — the DRBD resource script, this will switch the DRBD disk on the secondary host into primary mode, making the
device read/write.

• Filesystem — manages the Filesystem resource. In this case we have supplied additional arguments to specify the DRBD
device, mount point and filesystem type. When executed this should mount the specified filesystem.

• mysql — manages the MySQL instances and starts the MySQL server. You should copy the mysql.resource file from the
support-files directory from any MySQL release into the /etc/ha.d/resources.d directory.

If you want to be notified of the failure by email, you can add another line to the haresources file with the address for warnings and
the warning text:

MailTo::youremail@address.com::DRBDFailure

With the Heartbeat configuration in place, copy the haresources, authkeys and ha.cf files from your primary and secondary
servers to make sure that the configuration is identical. Then start the Heartbeat service, either by calling /
etc/init.d/heartbeat start or by rebooting both primary and secondary servers.

You can test the configuration by running a manual failover, connect to the primary node and run:

# /usr/lib64/heartbeat/hb_standby

This will cause the current node to relinquish its resources cleanly to the other node.

14.2.3. Using Heartbeat with DRBD and dopd

High Availability and Scalability

1029



As a further extension to using DRBD and Heartbeat together, you can enable dopd. The dopd daemon handles the situation where a
DRBD node is out of date compared to the master and prevents the slave from being promoted to master in the event of a failure. This
stops a situation where you have two machines that have been masters ending up different data on the underlying device.

For example, imagine that you have a two server DRBD setup, master and slave. If the DRBD connectivity between master and slave
fails then the slave would be out of the sync with the master. If Heartbeat identifies a connectivity issue for master and then switches
over to the slave, the slave DRBD device will be promoted to the primary device, even though the data on the slave and the master is
not in synchronization.

In this situation, with dopd enabled, the connectivity failure between the master and slave would be identified and the metadata on the
slave wold be set to Outdated. Heartbeat will then refuse to switch over to the slave even if the master failed. In a dual-host solution
this would effectively render the cluster out of action, as there is no additional fail over server. In an HA cluster with three or more serv-
ers, control would be passed to the slave that has an up to date version of the DRBD device data.

To enable dopd, you need to modify the Heartbeat configuration and specify dopd as part of the commands executed during the mon-
itoring process. Add the following lines to your ha.cf file:

respawn hacluster /usr/lib/heartbeat/dopd
apiauth dopd gid=haclient uid=hacluster

Make sure you make the same modification on both your primary and secondary nodes.

You will need to reload the Heartbeat configuration:

# /etc/init.d/heartbeat reload

You will also need to modify your DRBD configuration by configuration the outdate-peer option. You will need to add the config-
uration line into the common section of /etc/drbd.conf on both hosts. An example of the full block is shown below:

common {
handlers {
outdate-peer "/usr/lib/heartbeat/drbd-peer-outdater";

}
}

Finally, set the fencing option on your DRBD configured resources:

resource my-resource {
disk {
fencing resource-only;

}
}

Now reload your DRBD configuration:

# drbdadmin adjust all

You can test the system by unplugging your DRBD link and monitoring the output from /proc/drbd.

14.2.4. Dealing with System Level Errors
Because a kernel panic or oops may indicate potential problem with your server, you should configure your server to remove itself from
the cluster in the event of a problem. Typically on a kernel panic your system will automatically trigger a hard reboot. For a kernel oops
a reboot may not happen automatically, but the issue that caused that oops may still lead to potential problems.

You can force a reboot by setting the kernel.panic and kernel.panic_on_oops parameters of the kernel control file /
etc/sysctl.conf. For example:

kernel.panic_on_oops = 1
kernel.panic = 1

You can also set these parameters during runtime by using the sysctl command. You can either specify the parameters on the com-
mand line:

$ sysctl -w kernel.panic=1

High Availability and Scalability

1030



Or you can edit your sysctl.conf file and then reload the configuration information:

$ sysctl -p

By setting both these parameters to a positive value (actually the number of seconds to wait before triggering the reboot), the system
will reboot. Your second heartbeat node should then detect that the server is down and then switch over to the failover host.

High Availability and Scalability

1031



Chapter 15. MySQL Load Balancer
The MySQL Load Balancer is an application that communicates with one or more MySQL servers and provides connectivity to those
servers for multiple clients. The MySQL Load Balancer is logically placed between the clients and the MySQL server; instead of clients
connecting directly to each MySQL server, all clients connect to the MySQL Load Balancer, and the MySQL Load Balancer forwards
the connection on to one of the MySQL servers.

The initial release of the MySQL Load Balancer provides read-only load balancing over a number of MySQL servers. Initially, you
populate the MySQL Load Balancer configuration with the list of available MySQL servers to use when distributing work. The MySQL
Load Balancer automatically and evenly distributes connections from clients to each server. Distribution is handled by a simple count
for the number connections distributed to each server - new connections are automatically sent to the server with the lowest count.

When used in combination with a replication setup, the MySQL Load Balancer also monitors the replication status. The master and
slaves within the replication setup are monitored and additional decisions about the routing of incoming connections to MySQL servers
are made based on the replication status:

• If MySQL Load Balancer identifies that the slave is lagging behind the master for it's replication threads, then the slave is automat-
ically taken out of the list of available servers. Work will therefore be distributed to other MySQL servers within the slave replica-
tion group.

• If the replication thread on a slave is identified as no longer running, the slave is also automatically removed from the list of avail-
able servers.

• If either situation changes, such as the replication delay decreases to an acceptable level, or the replication thread on the failed slave
is restarted and the replication process catches up, then the slave will be brought back in to the list of available MySQL servers.

The MySQL Load Balancer is based on the MySQL Proxy, and consists of two modules which work together to achieve its goal:

• The proxy, which uses Lua scripts to customize the handling of connections and query execution. The `proxy` connects to several
backend MySQL instances to which it can send queries.

• The monitor plugin connects to each of the backends the proxy knows about and executes queries on each one in regular intervals.
The results of those queries are used to determine the state of each backend.

For more information on MySQL Proxy, see Chapter 28, MySQL Proxy.

15.1. Installing MySQL Load Balancer
MySQL Load Balancer is provided as a TAR/GZipped package. To install, extract the package:

$ gzip -cd load-balancer mysql-load-balancer-0.7.0-438-linux-fc4-x86-32bit.tar.gz | tar xf -

The standard package contents are organized into four directories:

/bin
/lib
/sbin
/share

The bin contains wrapper scripts around the dynamically linked binaries in sbin. The lib directory contains the required libraries,
and the share directory contains the scripts and support files used by the MySQL Load Balancer during execution.

You can run MySQL Load Balancer directly from this directory, or you can copy the contents to a a global directory, such as /
usr/local:

$ cp -R * /usr/local/

15.2. Getting Started

1032



The easiest way to understand MySQL Load Balancer is to look at a typical example of how MySQL Load Balancer can be used to im-
prove the distribution of work to multiple MySQL servers.

Given an existing setup of several replicating MySQL servers, you can set up the MySQL Load Balancer to provide you with replica-
tion-aware load distribution.

Suppose you have three slaves replicating from one master, the slaves running on the machines slave-1, slave-2, and slave-3, the master
being on master-1. Each MySQL server listens on the default port of 3306.

For client connectivity, typical configurations are in one of two topologies. The first topology uses applications that are aware of mul-
tiple clients and choose a MySQL server based either on a random selection or by choosing a slave based on a known quantity, such as
user ID.

Figure 15.1. Replication architecture with clients using multiple MySQL slaves

In this scenario, it is possible for a client application to choose a slave that is unavailable, or in a replication situation, a slave that is not
up to date compared to the master, or lagging behind the master in terms of processing replication data such that queries accessing the
information would fail to return data, or return data that was out of date. In all these cases, the client would be unable to determine the
issue (without checking the situation itself). In the event of a failed server, the connection would timeout and another server could be
chosen, but the delay could cause problems in the application.

In this scenario, it is also possible for a single MySQL server to become overloaded with requests. For example, if the application was
using an ID-based decision model to choose a MySQL server, then a high number of requests for a given ID could produce a very high
load on the chosen server. This could affect the replication thread and place the server further behind compared to the master.

The second topology uses a model where each client has a dedicated MySQL server.

Figure 15.2. Replication architecture with clients using dedicated MySQL slaves

MySQL Load Balancer

1033



In this scenario, a problem with the MySQL server for an individual client could render the client useless. If the MySQL server is signi-
ficantly behind the master, you would get out of date or incorrect information. If the MySQL server has failed, the client will be unable
to access any information.

Using the MySQL Load Balancer, you can replace the individual connections from the clients to the slaves and instead route the con-
nections through the MySQL Load Balancer. This will distribute the requests over the individual slave servers, automatically taking ac-
count of the load, and accounting for problems or delays in the replication of the data from the master.

Figure 15.3. Replication architecture with clients using MySQL Load Balancer

MySQL Load Balancer

1034



In the scenario using MySQL Load Balancer, any failure of a single MySQL server automatically removes it from the pool of available
servers and distributes the incoming client connection to one of the other, available, servers. Problems with replication are addressed in
the same way, redirecting the connection to a server that is up to date with the master. The possibility of overloading a single MySQL
server should also be reduced, since the connections would be distributed evenly among each server.

To start the MySQL Load Balancer in this scenario you would specify the configuration of the master and slave servers on the com-
mand line when starting mysql-lb:

$ bin/mysql-lb --proxy-backend-addresses=master-1 \
--proxy-read-only-backend-addresses=slave-1:3306 \
--proxy-read-only-backend-addresses=slave-2:3306 \
--proxy-read-only-backend-addresses=slave-3:3306 \
--proxy-lua-script=share/mysql-load-balancer/monitored-ro-balance.lua \
--monitor-lua-script=share/mysql-load-balancer/monitor-backends.lua

This will start the load balancer, which listens for incoming client connections on port 4040. The monitor component will connect to
each backend MySQL server with the MySQL user monitor and no password, to be able to execute queries on them. If you do not
have a MySQL user with that name or have a password set for the user, you can specify those using the options `--monitor-username`
and `--monitor-password`.

The options in this example set the following options:

• --proxy-backend-addresses – sets the address and port number of the MySQL master server in the replication structure.
This is required so that MySQL Load Balancer can monitor the status of the server and replication and use this to compare against

MySQL Load Balancer

1035



the status of the slave servers. In the event of a problem, the information gained will be used to prioritse connections to the slaves
according to which slave is the most up to date.

• --proxy-read-only-backend-addresses – each one of these options sets the address and port number (separated by a
colon), of a backend MySQL server. You can specify as many servers as you like on the command line simply by adding further op-
tions.

• --proxy-lua-script – specifies the Lua script that will be used to manage to the distribution of requests.

• --monitor-lua-script – specifies the Lua script that will be used to monitor the backends.

To get a list of all the available options, run

$ mysql-lb --help-all

15.3. Using MySQL Load Balancer
When using the

When using the MySQL Load Balancer, you must adapt your application to work with the connections provided by the MySQL Load
Balancer interface, rather than directly to MySQL servers. The MySQL Load Balancer supports the same MySQL network protocol -
you do not need to change the method that you use to communicate with MySQL. You can continue to use the standard MySQL inter-
face appropriate for your application environment.

On each client, you should configure your application to connect to port 4040 on the machine on which you started the MySQL Load
Balancer. All MySQL connections for read queries should be sent to the MySQL Load Balancer connection. When a client connects,
the connection is routed by MySQL Load Balancer to an appropriate MySQL server. All subsequent queries on that connection will run
be executed on the same backed MySQL server. The backend will not be changed after the connection has been established.

If MySQL Load Balancer identifies an issue with the backend MySQL server, then connections to the backend server are closed. Your
application should be adapted so that it can re-open a connection if it closes during execution, re-executing the query again if there is
failure. MySQL Load Balancer will then choose a different MySQL server for the new connection.

The thresholds with which the monitor considers a slave to be too far behind are specified in the monitor-backends.lua file. By
default it checks for information obtained by SHOW SLAVE STATUS, namely Seconds_Behind_Master and tries to calculate the
amount of data (in bytes) the slave has to read from the master. The default values for those metrics are 10 seconds and 10 kilobytes, re-
spectively.

Note

You need to restart the MySQL Load Balancer if you change the monitor-backends.lua script while it is running.
This is different from MySQL Proxy, which automatically reloads a script if you modify the script during execution.

The load balancing algorithm is specified in the monitored-ro-balance.lua script. For this release, it keeps a counter of how
many queries each backend has executed and always picks the backend with the least number of queries. Look at con-
nect_server() and pick_ro_backend_least_queries() for the code.

15.4. Known Issues
For this alpha release, there are the following known issues:

• Sometimes an assertion in libevent fails when shutting down mysql-lb. The assertion failure occurs after all client and server
connections have been closed already, thus is does not affect the normal operation of the program.

• When using UNIX domain sockets to specify backends, it logs errors like: network-mysqld.c.1648: can't convert
addr-type 1 into a string This is recorded as a Bug#35216 and will be fixed in the next release. The implication is that
the backend address is not available in the Lua scripts, it does not impair normal operations of the program.

15.5. MySQL Load Balancer FAQ

MySQL Load Balancer

1036

http://bugs.mysql.com/35216


The following section includes some common questions and answers for MySQL Load Balancer:

Questions

• 16.5.1: The current description says that the load balancer is for read-only operation. Does that mean that MySQL Load Balancer
will not accept update statements for the slaves?

• 16.5.2: The MSQL Load Balancer is listed as being 'slave state aware'. Do you check the status of both threads in the replication
process.

• 16.5.3: Is it possible to set the amount of acceptable lag?

• 16.5.4: Does MySQL Load Balancer handle load balancing based on CPU load, memory load or I/O load?

Questions and Answers

16.5.1: The current description says that the load balancer is for read-only operation. Does that mean that MySQL Load Balan-
cer will not accept update statements for the slaves?

No. Currently, the MySQL Load Balancer doesn't prevent you from making modifications on the slaves. The read-only description is
being used to indicate that you should only use this solution for sending quries to existing slave hosts.

16.5.2: The MSQL Load Balancer is listed as being 'slave state aware'. Do you check the status of both threads in the replication
process.

Yes. the monitor module runs SHOW SLAVE STATUS and checkes the status of the replication process. If there is a problem, either
because the slave has lagged too far behind the master, or because the query thread has stopped, then the slave will be taken out of the
list of available slaves for distributing queries.

16.5.3: Is it possible to set the amount of acceptable lag?

Yes, you can set the lag time by editing the time within the load balancer Lua script. Edit the file share/
mysql-load-balancer/ro-balance.lua and change the line:

max_seconds_lag = 10, -- 10 seconds

Altering the 10 seconds to the lag time that you want to support.

16.5.4: Does MySQL Load Balancer handle load balancing based on CPU load, memory load or I/O load?

Currently we use indirect measurements and balance the distribution of queries by looking at the replication status of the slave nodes.
Since the disrribution is written using Lua, it is possible to use a number of different criteria. Using more complex criteria will be pos-
sible in the future.

MySQL Load Balancer

1037



Chapter 16. Replication
Replication enables data from one MySQL database server (called the master) to be replicated to one or more MySQL database servers
(slaves). Replication is asynchronous - your replication slaves do not need to be connected permanently to receive updates from the
master, which means that updates can occur over long-distance connections and even temporary solutions such as a dial-up service. De-
pending on the configuration, you can replicate all databases, selected databases and even selected tables within a database.

The target uses for replication in MySQL include:

• Scale-out solutions - spreading the load among multiple slaves to improve performance. In this environment, all writes and updates
must take place on the master server. Reads, however, may take place on one or more slaves. This model can improve the perform-
ance of writes (since the master is dedicated to updates), while dramatically increasing read speed across an increasing number of
slaves.

• Data security - because data is replicated to the slave, and the slave can pause the replication process, it is possible to run backup
services on the slave without corrupting the corresponding master data.

• Analytics - live data can be created on the master, while the analysis of the information can take place on the slave without affecting
the performance of the master.

• Long-distance data distribution - if a branch office would like to work with a copy of your main data, you can use replication to cre-
ate a local copy of the data for their use without requiring permanent access to the master.

Replication in MySQL features support for one-way, asynchronous replication, in which one server acts as the master, while one or
more other servers act as slaves. This is in contrast to the synchronous replication which is a characteristic of MySQL Cluster (see
Chapter 17, MySQL Cluster).

There are a number of solutions available for setting up replication between two servers, but the best method to use depends on the pres-
ence of data and the engine types you are using. For more information on the available options, see Section 16.1.1, “How to Set Up
Replication”.

There are two core types of replication format, Statement Based Replication (SBR), which replicates entire SQL statements, and Row
Based Replication (RBR), which replicates only the changed rows. You may also use a third variety, Mixed Based Replication (MBR),
which is the default mode within MySQL 5.1.14 and later. For more information on the different replication formats, see Section 16.1.2,
“Replication Formats”.

Replication is controlled through a number of different options and variables. These control the core operation of the replication,
timeouts and the databases and filters that can be applied on databases and tables. For more information on the available options, see
Section 16.1.3, “Replication Options and Variables”.

You can use replication to solve a number of different problems, including problems with performance, supporting the backup of differ-
ent databases and for use as part of a larger solution to alleviate system failures. For information on how to address these issues, see
Section 16.2, “Replication Solutions”.

For notes and tips on how different data types and statements are treated during replication, including details of replication features, ver-
sion compatibility, upgrades, and problems and their resolution, including an FAQ, see Section 16.3, “Replication Notes and Tips”.

Detailed information on the implementation of replication, how replication works, the process and contents of the binary log, back-
ground threads and the rules used to decide how statements are recorded and replication, see Section 16.4, “Replication Implementa-
tion”.

MySQL Enterprise
The MySQL Enterprise Monitor provides numerous advisors that provide immediate feedback about replication-re-
lated problems. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

16.1. Replication Configuration
Replication between servers in MySQL works through the use of the binary logging mechanism. The MySQL instance operating as the
master (the source of the database changes) writes updates and changes to the database to the binary log. The information in the binary
log is stored in different logging formats according to the database changes being recorded. Slaves are configured to read the binary log
from the master and to execute the events in the binary log on the slave's local database.

1038

http://www.mysql.com/products/enterprise/advisors.html


The Master is dumb in this scenario. Once binary logging has been enabled, all statements are recorded in the binary log. Each slave
will receive a copy of the entire contents of the binary log. It is the responsibility of the slave to decide which statements in the binary
log should be executed; you cannot configure the master to log only certain events. If you do not specify otherwise, all events in the
master binary log are executed on the slave. If required, you can configure the slave to only process events that apply to particular data-
bases or tables.

Slaves keep a record of the binary log file and position within the log file that they have read and processed from the master. This means
that multiple slaves can be connected to the master and executing different parts of the same binary log. Because the slaves control this
process, individual slaves can be connected and disconnected from the server without affecting the master's operation. Also, because
each slave remembers the position within the binary log, it is possible for slaves to be disconnected, reconnect and then 'catch up' by
continuing from the recorded position.

Both the master and each slave must be configured with a unique id (using the server-id option). In addition, the slave must be con-
figured with information about the master host name, log file name and position within that file. These details can be controlled from
within a MySQL session using the CHANGE MASTER statement. The details are stored within the master.info file.

In this section the setup and configuration required for a replication environment is described, including step-by-step instructions for
creating a new replication environment. The major components of this section are:

• For a guide to setting up two or more servers for replication see Section 16.1.1, “How to Set Up Replication”. This section deals
with the setup of the systems and provides methods for copying data between the master and slaves.

• Events in the binary log are recorded using a number of formats. These are referred to as statement based replication (SBR) or row
based replication (RBR). A third type, mixed-format replication (MIXED), uses SBR or RBR replication automatically to take ad-
vantage of the benefits of both SBR and RBR formats when appropriate. The different formats are discussed in Section 16.1.2,
“Replication Formats”.

• Detailed information on the different configuration options and variables that apply to replication is provided in Section 16.1.3,
“Replication Options and Variables”.

• Once started, the replication process should require little administration or monitoring. However, for advice on common tasks that
you may want to executed, see Section 16.1.4, “Common Replication Administration Tasks”.

16.1.1. How to Set Up Replication
This section describes how to set up complete replication of a MySQL server. There are a number of different methods for setting up
replication, and the exact method that you use will depend on how you are setting up replication, and whether you already have data
within your master database.

There are some generic tasks which may be required for all replication setups:

• You may want to create a separate user that will be used by your slaves to authenticate with the master to read the binary log for rep-
lication. The step is optional. See Section 16.1.1.1, “Creating a User for Replication”.

• You must configure the master to support the binary log and configure a unique ID. See Section 16.1.1.2, “Setting the Replication
Master Configuration”.

• You must configure a unique ID for each slave that you want to connect to the Master. See Section 16.1.1.3, “Setting the Replica-
tion Slave Configuration”.

• Before starting a data snapshot or the replication process, you should record the position of the binary log on the master. You will
need this information when configuring the slave so that the slave knows where within the binary log to start executing events. See
Section 16.1.1.4, “Obtaining the Master Replication Information”.

• If you already have data on your Master and you want to synchronize your slave with this base data, then you will need to create a
data snapshot of your database. You can create a snapshot using mysqldump (see Section 16.1.1.5, “Creating a Data Snapshot Us-
ing mysqldump”) or by copying the data files directly (see Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”).

• You will need to configure the slave with the Master settings, such as the hostname, login credentials and binary log name and posi-
tions. See Section 16.1.1.10, “Setting the Master Configuration on the Slave”.

Replication

1039



Once you have configured the basic options, you will need to follow the instructions for your replication setup. A number of alternatives
are provided:

• If you are setting up a new MySQL master and one or more slaves, then you need only set up the configuration, as you have no data
to exchange. For guidance on setting up replication in this situation, see Section 16.1.1.7, “Setting Up Replication with New Master
and Slaves”.

• If you are already running a MySQL server, and therefore already have data that will need to be transferred to your slaves before
replication starts, have not previously configured the binary log and are able to shut down your MySQL server for a short period
during the process, see Section 16.1.1.8, “Setting Up Replication with Existing Data”.

• If you are setting up additional slaves to an existing replication environment then you can set up the slaves without affecting the
master. See Section 16.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”.

If you want to administer a MySQL replication setup, we suggest that you read this entire chapter through and try all statements men-
tioned in Section 12.6.1, “SQL Statements for Controlling Master Servers”, and Section 12.6.2, “SQL Statements for Controlling Slave
Servers”. You should also familiarize yourself with the replication startup options described in Section 16.1.3, “Replication Options and
Variables”.

Note

Note that certain steps within the setup process require the SUPER privilege. If you do not have this privilege then en-
abling replication may not be possible.

16.1.1.1. Creating a User for Replication

Each Slave must connect to the Master using a standard username and password. The user that you use for this operation can be any
user, providing they have been granted the REPLICATION SLAVE privilege.

You do not need to create a specific user for replication. However, you should be aware that the username and password will be stored
in plain text within the master.info file. Therefore you may want to create a user that only has privileges for the replication process.

To create a user or grant an existing user the privileges required for replication use the GRANT statement. If you create a user solely for
the purposes of replication then that user only needs the REPLICATION SLAVE privilege. For example, to create a user, repl, that
allows all hosts within the domain mydomain.com to connect for replication:

mysql> GRANT REPLICATION SLAVE ON *.*
-> TO 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';

See Section 12.5.1.3, “GRANT Syntax”, for more information on the GRANT statement.

You may wish to create a different user for each slave, or use the same user for each slave that needs to connect. As long as each user
that you want to use for the replication process has the REPLICATION SLAVE privilege you can create as many users as you require.

16.1.1.2. Setting the Replication Master Configuration

For replication to work you must enable binary logging on the master. If binary logging is not enabled, replication will not be possible
as it is the binary log that is used to exchange data between the master and slaves.

Each server within a replication group must have a unique server-id. The server-id is used to identify individual servers within the
group, and must be positive integer between 1 and (232)-1). How you organize and select the numbers is entirely up to you.

To configure both these options you will need to shut down your MySQL server and edit the configuration of the my.cnf or my.ini
file.

You will need to add the following options to the configuration file within the [mysqld] section. If these options already exist, but are
commented out, uncomment the options and alter them according to your needs. For example, to enable binary logging, using a log file-
name prefix of mysql-bin, and setting a server ID of 1:

[mysqld]
log-bin=mysql-bin
server-id=1

Replication

1040



Note

For the greatest possible durability and consistency in a replication setup using InnoDB with transactions, you should use
innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in the master my.cnf file.

Note

Ensure that the skip-networking option has not been enabled on your replication master. If networking has been dis-
abled, then your slave will not able to communicate with the master and replication will fail.

16.1.1.3. Setting the Replication Slave Configuration

The only option you must configure on the slave is to set the unique server ID. If this option is not already set, or the current value con-
flicts with the value that you have chosen for the master server, then you should shut down your slave server, and edit the configuration
to specify the server id. For example:

[mysqld]
server-id=2

If you are setting up multiple slaves, each one must have a unique server-id value that differs from that of the master and from each
of the other slaves. Think of server-id values as something similar to IP addresses: These IDs uniquely identify each server instance
in the community of replication partners.

If you do not specify a server-id value, it is set to 1 if you have not defined master-host; otherwise it is set to 2. Note that in the
case of server-id omission, a master refuses connections from all slaves, and a slave refuses to connect to a master. Thus, omitting
server-id is good only for backup with a binary log.

You do not have to enable binary logging on the slave for replication to be enabled. However, if you enable binary logging on the slave
then you can use the binary log for data backups and crash recovery on the slave, and also use the slave as part of a more complex rep-
lication topology.

16.1.1.4. Obtaining the Master Replication Information

To configure replication on the slave you must determine the masters current point within the master binary log. You will need this in-
formation so that when the slave starts the replication process, it is able to start processing events from the binary log at the correct
point.

If you have existing data on your master that you want to synchronize on your slaves before starting the replication process, then you
must stop processing statements on the master, obtain the current position, and then dump the data, before allowing the master to contin-
ue executing statements. If you do not stop the execution of statements then the data dump, the master status information that you use
will not match and you will end up with inconsistent or corrupted databases on the slaves.

To get the master status information, follow these steps:

1. Start the command line client and flush all tables and block write statements by executing the FLUSH TABLES WITH READ
LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

For InnoDB tables, note that FLUSH TABLES WITH READ LOCK also blocks COMMIT operations.

Warning

Leave the client from which you issued the FLUSH TABLES statement running so that the read lock remains in effect. If
you exit the client, the lock is released.

2. Use the SHOW MASTER STATUS statement to determine the current binary log name and offset on the master:

mysql > SHOW MASTER STATUS;
+---------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+---------------+----------+--------------+------------------+
| mysql-bin.003 | 73 | test | manual,mysql |
+---------------+----------+--------------+------------------+

Replication

1041



The File column shows the name of the log and Position shows the offset within the file. In this example, the binary log file
is mysql-bin.003 and the offset is 73. Record these values. You need them later when you are setting up the slave. They rep-
resent the replication coordinates at which the slave should begin processing new updates from the master.

If the master has been running previously without binary logging enabled, the log name and position values displayed by SHOW
MASTER STATUS or mysqldump --master-data will be empty. In that case, the values that you need to use later when
specifying the slave's log file and position are the empty string ('') and 4.

You now have the information you need to enable the slave to start reading from the binary log in the correct place to start replication.

If you have existing data that needs be to synchronized with the slave before you start replication, leave the client running so that the
lock remains in place and then proceed to Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”, or Section 16.1.1.6,
“Creating a Data Snapshot Using Raw Data Files”.

If you are setting up a brand new master and slave replication group, then you can exit the client and release the locks.

16.1.1.5. Creating a Data Snapshot Using mysqldump

One way to create a snapshot of the data in an existing master database is to use the mysqldump tool. Once the data dump has been
completed, you then import this data into the slave before starting the replication process.

To obtain a snapshot of the data using mysqldump:

• If you haven't already locked the tables on the server to prevent queries that update data from executing:

Start the command line client and flush all tables and block write statements by executing the FLUSH TABLES WITH READ
LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

Remember to use SHOW MASTER STATUS and record the binary log details for use when starting up the slave. The point in time
of your snapshot and the binary log position must match. See Section 16.1.1.4, “Obtaining the Master Replication Information”.

• In another session, use mysqldump to create a dump either of all the databases you want to replicate, or by selecting specific data-
bases individually. For example:

shell> mysqldump --all-databases --lock-all-tables >dbdump.db

• An alternative to using a bare dump, is to use the --master-data option, which will automatically append the CHANGE MAS-
TER statement required on the slave to start the replication process.

shell> mysqldump --all-databases --master-data >dbdump.db

When choosing databases to include in the dump, remember that you will need to filter out databases on each slave that you do not want
to include in the replication process.

You will need either to copy the dump file to the slave, or to use the file from the master when connecting remotely to the slave to im-
port the data.

16.1.1.6. Creating a Data Snapshot Using Raw Data Files

If your database is particularly large then copying the raw data files may be more efficient than using mysqldump and importing the
file on each slave.

However, using this method with tables in storage engines with complex caching or logging algorithms may not give you a perfect “in
time” snapshot as cache information and logging updates may not have been applied, even if you have acquired a global read lock. How
the storage engine responds to this depends on its crash recovery abilities.

For example, if you are using InnoDB tables, you should use the InnoDB Hot Backup tool to obtain a consistent snapshot. This
tool records the log name and offset corresponding to the snapshot to be later used on the slave. Hot Backup is a non-free

Replication

1042



(commercial) tool that is not included in the standard MySQL distribution. See the InnoDB Hot Backup home page at ht-
tp://www.innodb.com/hot-backup for detailed information.

Otherwise, you can obtain a reliable binary snapshot of InnoDB tables only after shutting down the MySQL Server.

To create a raw data snapshot of MyISAM tables you can use standard copy tools such as cp or copy, a remote copy tool such as scp
or rsync an archiving tool such as zip or tar, or a file system snapshot tool such as dump, providing that your MySQL data files ex-
ist on a single filesystem. If you are only replicating certain databases then make sure you only copy those files that related to those
tables. (For InnoDB, all tables in all databases are stored in a single file unless you have the innodb_file_per_table option en-
abled.)

You may want to specifically exclude the following files from your archive:

• Files relating to the mysql database.

• The master.info file.

• The master's binary log files.

• Any relay log files.

To get the most consistent results with a raw data snapshot you should shut down the server during the process, as below:

1. Acquire a read lock and get the master's status. See Section 16.1.1.4, “Obtaining the Master Replication Information”.

2. In a separate session, shut down the MySQL server:

shell> mysqladmin shutdown

3. Take a copy of the MySQL data files. Examples are shown below for common solutions - you need to choose only one of these
solutions:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

4. Start up the MySQL instance on the master.

If you are not using InnoDB tables, you can get a snapshot of the system from a master without shutting down the server as described
in the following steps:

1. Acquire a read lock and get the master's status. See Section 16.1.1.4, “Obtaining the Master Replication Information”.

2. Take a copy of the MySQL data files. Examples are shown below for common solutions - you need to choose only one of these
solutions:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

3. In the client where you acquired the read lock, free the lock:

mysql> UNLOCK TABLES;

Once you have created the archive or copy of the database, you will need to copy the files to each slave before starting the slave replica-
tion process.

16.1.1.7. Setting Up Replication with New Master and Slaves

Setting up replication with a new Master and Slaves (i.e. with no existing data) is the easiest and most straightforward method for set-

Replication

1043

http://www.innodb.com/hot-backup
http://www.innodb.com/hot-backup


ting up replication.

You can also use this method if you are setting up new servers and have an existing dump of the databases that you want to load into
your replication configuration. By loading the data onto a new master, the data will be automatically replicated to the slaves.

To set up replication between a new master and slave:

1. Configure the MySQL master with the necessary configuration properties. See Section 16.1.1.2, “Setting the Replication Master
Configuration”.

2. Start up the MySQL master.

3. Setup a user, see Section 16.1.1.1, “Creating a User for Replication”.

4. Obtain the master status information. See Section 16.1.1.4, “Obtaining the Master Replication Information”.

5. Free the read lock:

mysql> UNLOCK TABLES;

6. On the slave, edit the MySQL configuration. See Section 16.1.1.3, “Setting the Replication Slave Configuration”.

7. Start up the MySQL slave.

8. Execute the CHANGE MASTER command to set the master replication server configuration.

Because there is no data to load or exchange on a new server configuration you do not need to copy or import any information.

If you are setting up a new replication environment using the data from an existing database server, you will now need to run the dump
file on the master. The database updates will automatically be propagated to the slaves:

shell> mysql -h master < fulldb.dump

16.1.1.8. Setting Up Replication with Existing Data

When setting up replication with existing data, you will need to decide how best to get the data from the master to the slave before start-
ing the replication service.

The basic process for setting up replication with existing data is as follows:

1. If you have not already configured the server-id and binary logging, you will need to shut down your master to configure these
options. See Section 16.1.1.2, “Setting the Replication Master Configuration”.

If you have to shut down your master database, then this is a good opportunity to take a snapshot of the database. You should ob-
tain the master status (see Section 16.1.1.4, “Obtaining the Master Replication Information”) before taking the database down, up-
dating the configuration and taking a snapshot. For information on how to create a snapshot using raw data files, see Sec-
tion 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”.

2. If your server is already correctly configured, obtain the master status (see Section 16.1.1.4, “Obtaining the Master Replication In-
formation”) and then use mysqldump to take a snapshot (see Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”)
or take a raw snapshot of the live database using the guide in Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”.

3. With the MySQL master running, create a user to be used by the slave when connecting to the master during replication. See Sec-
tion 16.1.1.1, “Creating a User for Replication”.

4. Update the configuration of the slave, see Section 16.1.1.3, “Setting the Replication Slave Configuration”.

5. The next step depends on how you created the snapshot of data on the master.

If you used mysqldump:

a. Startup the slave, skipping replication by using the --skip-slave option.

Replication

1044



b. Import the dump file:

shell> mysql < fulldb.dump

If you created a snapshot using the raw data files:

a. Extract the data files into your slave data directory. For example:

shell> tar xvf dbdump.tar

You may need to set permissions and ownership on the files to match the configuration of your slave.

b. Startup the slave, skipping replication by using the --skip-slave option.

6. Configure the slave with the master status information. This will tell the slave the binary log file and position within the file where
replication needs to start, and configure the login credentials and hostname of the master. For more information on the statement
required, see Section 16.1.1.10, “Setting the Master Configuration on the Slave”.

7. Start the slave threads:

mysql> START SLAVE;

After you have performed this procedure, the slave should connect to the master and catch up on any updates that have occurred since
the snapshot was taken.

If you have forgotten to set the server-id option for the master, slaves cannot connect to it.

If you have forgotten to set the server-id option for the slave, you get the following error in the slave's error log:

Warning: You should set server-id to a non-0 value if master_host
is set; we will force server id to 2, but this MySQL server will
not act as a slave.

You also find error messages in the slave's error log if it is not able to replicate for any other reason.

Once a slave is replicating, you can find in its data directory one file named master.info and another named relay-log.info.
The slave uses these two files to keep track of how much of the master's binary log it has processed. Do not remove or edit these files
unless you know exactly what you are doing and fully understand the implications. Even in that case, it is preferred that you use the
CHANGE MASTER TO statement to change replication parameters. The slave will use the values specified in the statement to update
the status files automatically.

Note

The content of master.info overrides some of the server options specified on the command line or in my.cnf. See
Section 16.1.3, “Replication Options and Variables”, for more details.

Once you have a snapshot of the master, you can use it to set up other slaves by following the slave portion of the procedure just de-
scribed. You do not need to take another snapshot of the master; you can use the same one for each slave.

16.1.1.9. Introducing Additional Slaves to an Existing Replication Environment

If you want to add another slave to the existing replication configuration then you can do so without stopping the master. Instead, you
duplicate the settings on the slaves.

To duplicate the slave:

1. Shut down the existing slave:

shell> mysqladmin shutdown

2. Copy the data directory from the existing slave to the new slave. You can do this by creating an archive using tar or WinZip, or

Replication

1045



by performing a direct copy using a tool such as cp or rsync. Ensure you also copy the log files and relay log files.

Note

A common problem that is encountered when adding new replication slaves is that the new slave fails with a series of
warning and error messages like these:

071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so
replication may break when this MySQL server acts as a slave and has his hostname
changed!! Please use '--relay-log=new_slave_hostname-relay-bin' to avoid this problem.
071118 16:44:10 [ERROR] FAILED TO OPEN THE RELAY LOG './OLD_SLAVE_HOSTNAME-RELAY-BIN.003525'
(RELAY_LOG_POS 22940879)
071118 16:44:10 [ERROR] COULD NOT FIND TARGET LOG DURING RELAY LOG INITIALIZATION
071118 16:44:10 [ERROR] FAILED TO INITIALIZE THE MASTER INFO STRUCTURE

This is due to the fact that, if the --relay-log option is not specified, the relay log files contain the hostname as part of
their filenames. (This is also true of the relay log index file if the --relay-log-index option is not used. See Sec-
tion 16.1.3, “Replication Options and Variables”, for more information about these options.)

To avoid this problem, use the same value for --relay-log on the new slave that was used on the existing slave. (If
this option was not set explicitly on the existing slave, use existing_slave_hostname-relay-bin.) If this is not
feasible, then copy the existing slave's relay log index file to the new slave and set the --relay-log-index option on
the new slave to match what was used on the existing slave. (If this option was not set explicitly on the existing slave, use
existing_slave_hostname-relay-bin.index.) Alternatively — if you have already tried to start the new
slave (after following the remaining steps in this section) and have encountered errors like those described previously —
then perform the following steps:

a. If you have not already done so, issue a STOP SLAVE on the new slave.

If you have already started the existing slave again, issue a STOP SLAVE on the existing slave as well.

b. Copy the contents of the existing slave's relay log index file into the the new slave's relay log index file, making sure
to overwrite any content already in the file.

c. Proceed with the remaining steps in this section.

3. Copy the master.info and relay.info files from the existing slave to the new slave. These files hold the current log posi-
tions.

4. Start the existing slave.

5. On the new slave, edit the configuration and the give the new slave a new unique server-id.

6. Start the new slave; the master.info file options will be used to start the replication process.

16.1.1.10. Setting the Master Configuration on the Slave

To set up the slave to communicate with the master for replication, you must tell the slave the necessary connection information. To do
this, execute the following statement on the slave, replacing the option values with the actual values relevant to your system:

mysql> CHANGE MASTER TO
-> MASTER_HOST='master_host_name',
-> MASTER_USER='replication_user_name',
-> MASTER_PASSWORD='replication_password',
-> MASTER_LOG_FILE='recorded_log_file_name',
-> MASTER_LOG_POS=recorded_log_position;

Note

Replication cannot use Unix socket files. You must be able to connect to the master MySQL server using TCP/IP.

The following table shows the maximum allowable length for the string-valued options:

MASTER_HOST 60

MASTER_USER 16

MASTER_PASSWORD 32

Replication

1046



MASTER_LOG_FILE 255

16.1.2. Replication Formats
Replication works because events written to the binary log are read from the master and then processed on the slave. The events are re-
corded within the binary log in different formats according the type of event being recorded. The different replication formats used cor-
respond to the binary logging format used when the events were recorded in the master's binary log. The correlation between binary log-
ging formats and the terms used during replication are:

• Replication capabilities in MySQL originally were based on propagation of SQL statements from master to slave. This is called
statement-based replication (SBR) and this correlates to the standard statement-based binary logging format. Binary logging and
replication in MySQL 5.1.4 and earlier, and all previous versions of MySQL, used this format.

• Row-based binary logging logs the physical changes to individual table rows. In replication terms this is row-based replication
(RBR), the master writes events to the binary log that indicate how individual table rows are affected. Support for RBR was added
in MySQL 5.1.5.

• As of MySQL 5.1.8, the binary logging format can be altered on the fly according to the event being logged. With mixed-based log-
ging (and the associated mixed-based replication (MBR)), statement-based logging is used by default, but automatically switches to
row-based logging in particular cases as described below. See Section 5.2.4.3, “Mixed Binary Logging Format”.

Starting with MySQL 5.1.12, mixed-based replication (that is, mixed-based logging) is the default format for all replication environ-
ment unless you specify otherwise.

Starting with MySQL 5.1.20, the binary logging format used is partially determined by the storage engine being used and the statement
being executed. For more information on mixed-based logging and the rules governing the support of different logging formatsion, see
Section 5.2.4.3, “Mixed Binary Logging Format”.

There are some known limitations and issues between the different replication formats. For a comparison that shows the advantages and
disadvantages of statement-based and row-based replication, see Section 16.1.2.1, “Comparison of Statement-Based Versus Row-Based
Replication”.

MySQL Cluster Replication makes use of row-based replication. The NDB storage engine is incompatible with statement-based replica-
tion, and NDB sets row-based logging format automatically. For more information, see Section 17.12, “MySQL Cluster Replication”.

With MySQL's classic statement-based replication, there may be issues with replicating stored routines or triggers. You can avoid these
issues by using MySQL's row-based replication instead. For a detailed list of issues, see Section 20.4, “Binary Logging of Stored
Routines and Triggers”.

If you build MySQL from source, row-based replication is available by default unless you invoke configure with the -
-without-row-based-replication option.

For MySQL 5.1.20 and later (and MySQL 5.0.46 for backwards compatibility), the following session variables are written to the binary
log and honoured by the replication slave when parsing the binary log:

• SQL_MODE

• FOREIGN_KEY_CHECKS

• UNIQUE_CHECKS

• CHARACTER_SET_CLIENT

• COLLATION_CONNECTION

• COLLATION_DATABASE

• COLLATION_SERVER

• SQL_AUTO_IS_NULL

Replication

1047



Important

Even though session variables relating to character sets and collations are written to the binary log, replication between
different character sets is not supported.

16.1.2.1. Comparison of Statement-Based Versus Row-Based Replication

Each binary logging format has advantages and disadvantages. For most users, the mixed-based replication format should be fine and
should provide the best combination of data integrity and performance. If, however, you want to take advantage of the differences in the
replication format when performing specific updates or large data inserts, then the information in this section summarizes the advant-
ages and disadvantages of the row and statement based formats.

Advantages of statement-based replication:

• Proven technology that has existed in MySQL since 3.23.

• Smaller log files. When updates or deletes affect many rows, much smaller log files. Smaller log files require less storage space and
are faster to back up.

• Log files contain all statements that made any changes, so they can be used to audit the database.

• Log files can be used for point-in-time recovery, not just for replication purposes. See Section 6.3, “Point-in-Time Recovery”.

• You can use a slave with a higher version than that used on the master, even when there is a different row structure in the table. This
can be useful if you are unable to upgrade the master but want to take advantage of features in a recent slave version, perhaps for
testing and evaluation purposes.

Disadvantages of statement-based replication:

• Not all UPDATE statements can be replicated: Any non-deterministic behavior (for example, when using random functions in an
SQL statement) is hard to replicate when using statement-based replication. For statements that use a non-deterministic user-defined
function (UDF), it is not possible to replicate the result using statement-based replication, whereas row-based replication will just
replicate the value returned by the UDF.

• Statements cannot be replicated properly if they use a UDF that is non-deterministic (its value depends on other factors than the giv-
en parameters).

• Statements that use one of the following functions cannot be replicated properly:

• LOAD_FILE()

• UUID()

• USER()

• FOUND_ROWS()

• SYSDATE() (unless the server is started with the --sysdate-is-now option)

All other functions are replicated correctly (including RAND(), NOW(), LOAD DATA INFILE, and so forth).

• INSERT ... SELECT requires a greater number of row-level locks than with row-based replication.

• UPDATE statements that require a table scan (because no index is used in the WHERE clause) must lock a greater number of rows
than with row-based replication.

• For InnoDB: An INSERT statement that uses AUTO_INCREMENT blocks other non-conflicting INSERT statements.

• For complex queries, the statement must be evaluated and executed on the slave before the rows are updated or inserted. With row-
based replication, the slave only has to run the statement to apply the differences, not the full query.

• Stored functions (not stored procedures) will execute with the same NOW() value as the calling statement. (This may be regarded
both as a bad thing and a good thing.)

Replication

1048



• Deterministic UDFs must be applied on the slaves.

• If there is an error in evaluation on the slave, particularly when executing complex queries, then using statement based replication
may slowly increase the margin of error across the affected rows over time.

• Tables have to be (almost) identical on master and slave.

Advantages of row-based replication:

• Everything can be replicated. This is the safest form of replication.

For MySQL versions earlier than 5.1.14, DDL (data definition language) statements such as CREATE TABLE are replicated using
statement-based replication, while DML (data manipulation language) statements, as well as GRANT and REVOKE statements, are
replicated using row-based-replication.

For MySQL 5.1.14 and later, the mysql database is not replicated. The mysql database is instead seen as a node specific database.
Row-based replication is not supported on this table. Instead, statements that would normally update this information (including
GRANT, REVOKE and the manipulation of triggers, stored routines/procedures and views are all replicated to slaves using Statement
based replication.

For statements like CREATE ... SELECT, a CREATE statement is generated from the table definition and replicated statement-
based, while the row insertions are replicated row-based.

• The technology is the same as most other database management systems; knowledge about other systems transfers to MySQL.

• In many cases, it is faster to apply data on the slave for tables that have primary keys.

• Fewer locks needed (and thus higher concurrency) on the master for the following types of statements:

• INSERT ... SELECT

• INSERT statements with AUTO_INCREMENT

• UPDATE or DELETE statements with WHERE clauses that don't use keys or don't change most of the examined rows.

• Fewer locks on the slave for any INSERT, UPDATE, or DELETE statement.

• It's possible to add multiple threads to apply data on the slave in the future (works better on SMP machines).

Disadvantages of row-based replication:

• Larger log files (much larger in some cases).

• Binary log will contain data for large statements that were rolled back.

• When using row-based replication to replicate a statement (for example, an UPDATE or DELETE statement), each changed row
must be written to the binary log. In contrast, when using statement-based replication, only the statement is written to the binary log.
If the statement changes many rows, row-based replication may write significantly more data to the binary log. In these cases the
binary log will be locked for a longer time to write the data, which may cause concurrency problems.

• Deterministic UDFs that generate large BLOB values will be notably slower to replicate.

• You cannot examine the logs to see what statements were executed.

• You cannot see on the slave what statements were received from the master and executed.

• When making a bulk operation that includes non-transactional storage engines, changes are applied as the statement executes. With
row-based replication logging, this means that the binary log is written while the statement is running. On the master, this doesn't
provide any problems with concurrency, because tables are locked until the bulk operation terminates. On the slave server, however,
tables aren't locked while the slave applies changes, because it doesn't know that those changes are part of a bulk operation.

In that scenario, if you retrieve data from a table on the master (for example, SELECT * FROM table_name), the server will
wait for the bulk operation to complete before executing the SELECT statement, because the table is read-locked. On the slave, the

Replication

1049



server won't wait (because there is no lock). This means that until the “bulk operation” on the slave has completed you will get dif-
ferent results for the same SELECT query on the master and on the slave.

This behavior will eventually change, but until it does, you should probably use statement-based replication in a scenario like this.

16.1.3. Replication Options and Variables
This section describes the options that you can use on slave replication servers. You can specify these options either on the command
line or in an option file.

On the master and each slave, you must use the server-id option to establish a unique replication ID. For each server, you should
pick a unique positive integer in the range from 1 to 232 – 1, and each ID must be different from every other ID. Example: server-
id=3

Options that you can use on the master server for controlling binary logging are described in Section 5.2.4, “The Binary Log”.

Important

Certain options are handled in a special way in order to ensure that the active replication configuration is not inadvertently
altered or affected:

• In MySQL 5.1.16 and earlier, these options are ignored if the master.info file exists (i.e. when the MySQL server
has already previously been configured for replication). If the file exists and these options are present in the my.cnf
or as options on the command line to mysqld, they will be silently ignored and the information in master.info
used instead.

• As of MySQL 5.1.17 and later the use of these options is deprecated and will be removed in MySQL 5.2. The settings
they alter are ignored when mysqld is started and a warning will be provided in the mysqld log. To configure the
replication parameters associated with these you must use the CHANGE MASTER TO ... statement (see Sec-
tion 12.6.2.1, “CHANGE MASTER TO Syntax”).

The options affected are shown in this list:

• --master-host

• --master-user

• --master-password

• --master-port

• --master-connect-retry

• --master-ssl

• --master-ssl-ca

• --master-ssl-capath

• --master-ssl-cert

• --master-ssl-cipher

• --master-ssl-key

The master.info file format in MySQL 5.1 includes values corresponding to the SSL options. In addition, the file format includes
as its first line the number of lines in the file. (See Section 16.4.2, “Replication Relay and Status Files”.) If you upgrade an older server
(before MySQL 4.1.1) to a newer version, the new server upgrades the master.info file to the new format automatically when it
starts. However, if you downgrade a newer server to an older version, you should remove the first line manually before starting the
older server for the first time.

Replication

1050



If no master.info file exists when the slave server starts, it uses the values for those options that are specified in option files or on
the command line. This occurs when you start the server as a replication slave for the very first time, or when you have run RESET
SLAVE and then have shut down and restarted the slave.

If the master.info file exists when the slave server starts, the server uses its contents and ignores any options that correspond to the
values listed in the file. Thus, if you start the slave server with different values of the startup options that correspond to values in the
master.info file, the different values have no effect, because the server continues to use the master.info file. To use different
values, you must either restart after removing the master.info file or (preferably) use the CHANGE MASTER TO statement to reset
the values while the slave is running.

Suppose that you specify this option in your my.cnf file:

[mysqld]
master-host=some_host

The first time you start the server as a replication slave, it reads and uses that option from the my.cnf file. The server then records the
value in the master.info file. The next time you start the server, it reads the master host value from the master.info file only
and ignores the value in the option file. If you modify the my.cnf file to specify a different master host of some_other_host, the
change still has no effect. You should use CHANGE MASTER TO instead.

Because the server gives an existing master.info file precedence over the startup options just described, you might prefer not to use
startup options for these values at all, and instead specify them by using the CHANGE MASTER TO statement. See Section 12.6.2.1,
“CHANGE MASTER TO Syntax”.

This example shows a more extensive use of startup options to configure a slave server:

[mysqld]
server-id=2
master-host=db-master.mycompany.com
master-port=3306
master-user=pertinax
master-password=freitag
master-connect-retry=60
report-host=db-slave.mycompany.com

The following list describes the options and variables used for controlling replication. Many of these options can be reset while the serv-
er is running by using the CHANGE MASTER TO statement. Others, such as the --replicate-* options, can be set only when the
slave server starts.

• --log-slave-updates

Normally, a slave does not log to its own binary log any updates that are received from a master server. This option tells the slave to
log the updates performed by its SQL thread to its own binary log. For this option to have any effect, the slave must also be started
with the --log-bin option to enable binary logging. --log-slave-updates is used when you want to chain replication
servers. For example, you might want to set up replication servers using this arrangement:

A -> B -> C

Here, A serves as the master for the slave B, and B serves as the master for the slave C. For this to work, B must be both a master
and a slave. You must start both A and B with --log-bin to enable binary logging, and B with the --log-slave-updates
option so that updates received from A are logged by B to its binary log.

• --log-warnings[=level]

This option causes a server to print more messages to the error log about what it is doing. With respect to replication, the server gen-
erates warnings that it succeeded in reconnecting after a network/connection failure, and informs you as to how each slave thread
started. This option is enabled by default; to disable it, use --skip-log-warnings. Aborted connections are not logged to the
error log unless the value is greater than 1.

• --master-connect-retry=seconds

The number of seconds that the slave thread sleeps before trying to reconnect to the master in case the master goes down or the con-
nection is lost. The value in the master.info file takes precedence if it can be read. If not set, the default is 60. Connection re-
tries are not invoked until the slave times out reading data from the master according to the value of --slave-net-timeout.
The number of reconnection attempts is limited by the --master-retry-count option.

Replication

1051



• --master-host=host_name

The hostname or IP number of the master replication server. The value in master.info takes precedence if it can be read. If no
master host is specified, the slave thread does not start.

• --master-info-file=file_name

The name to use for the file in which the slave records information about the master. The default name is master.info in the
data directory.

• --master-password=password

The password of the account that the slave thread uses for authentication when it connects to the master. The value in the mas-
ter.info file takes precedence if it can be read. If not set, an empty password is assumed.

• --master-port=port_number

The TCP/IP port number that the master is listening on. The value in the master.info file takes precedence if it can be read. If
not set, the compiled-in setting is assumed (normally 3306).

• --master-retry-count=count

The number of times that the slave tries to connect to the master before giving up. Reconnects are attempted at intervals set by -
-master-connect-retry and reconnects are triggered when data reads by the slave time out according to the -
-slave-net-timeout option. The default value is 86400.

• --master-ssl, --master-ssl-ca=file_name, --master-ssl-capath=directory_name, -
-master-ssl-cert=file_name, --master-ssl-cipher=cipher_list, --master-ssl-key=file_name

These options are used for setting up a secure replication connection to the master server using SSL. Their meanings are the same as
the corresponding --ssl, --ssl-ca, --ssl-capath, --ssl-cert, --ssl-cipher, --ssl-key options that are de-
scribed in Section 5.5.7.3, “SSL Command Options”. The values in the master.info file take precedence if they can be read.

• --master-user=user_name

The username of the account that the slave thread uses for authentication when it connects to the master. This account must have the
REPLICATION SLAVE privilege. The value in the master.info file takes precedence if it can be read. If the master username
is not set, the name test is assumed.

• --max-relay-log-size=size

The size at which the server rotates relay log files automatically. For more information, see Section 16.4.2, “Replication Relay and
Status Files”. The default size is 1GB.

• --read-only

Cause the slave to allow no updates except from slave threads or from users having the SUPER privilege. This enables you to ensure
that a slave server accepts no updates from clients. This option does not apply to TEMPORARY tables.

• --relay-log=file_name

The basename for the relay log. The default basename is host_name-relay-bin. The server creates relay log files in sequence
by adding a numeric suffix to the basename. You can specify the option to create hostname-independent relay log names, or if your
relay logs tend to be big (and you don't want to decrease max_relay_log_size) and you need to put them in some area differ-
ent from the data directory, or if you want to increase speed by balancing load between disks.

• --relay-log-index=file_name

The name to use for the relay log index file. The default name is host_name-relay-bin.index in the data directory, where
host_name is the name of the slave server.

• --relay-log-info-file=file_name

The name to use for the file in which the slave records information about the relay logs. The default name is relay-log.info in
the data directory.

Replication

1052



• --relay-log-purge={0|1}

Disable or enable automatic purging of relay logs as soon as they are not needed any more. The default value is 1 (enabled). This is
a global variable that can be changed dynamically with SET GLOBAL relay_log_purge = N.

• --relay-log-space-limit=size

This option places an upper limit on the total size in bytes of all relay logs on the slave. A value of 0 means “no limit.” This is useful
for a slave server host that has limited disk space. When the limit is reached, the I/O thread stops reading binary log events from the
master server until the SQL thread has caught up and deleted some unused relay logs. Note that this limit is not absolute: There are
cases where the SQL thread needs more events before it can delete relay logs. In that case, the I/O thread exceeds the limit until it
becomes possible for the SQL thread to delete some relay logs, because not doing so would cause a deadlock. You should not set -
-relay-log-space-limit to less than twice the value of --max-relay-log-size (or --max-binlog-size if -
-max-relay-log-size is 0). In that case, there is a chance that the I/O thread waits for free space because -
-relay-log-space-limit is exceeded, but the SQL thread has no relay log to purge and is unable to satisfy the I/O thread.
This forces the I/O thread to temporarily ignore --relay-log-space-limit.

• --replicate-do-db=db_name

The effects of this option depend on whether statement-based or row-based replication is in use.

Statement-based replication. Tell the slave to restrict replication to statements where the default database (that is, the one selected
by USE) is db_name. To specify more than one database, use this option multiple times, once for each database. Note that this does
not replicate cross-database statements such as UPDATE some_db.some_table SET foo='bar' while having selected a
different database or no database.

Warning

To specify multiple databases you must use multiple instances of this option. Because database names can contain com-
mas, if you supply a comma separated list then the list will be treated as the name of a single database.

An example of what does not work as you might expect when using statement-based replication: If the slave is started with -
-replicate-do-db=sales and you issue the following statements on the master, the UPDATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “just check the default database” behavior is that it is difficult from the statement alone to know whether it
should be replicated (for example, if you are using multiple-table DELETE statements or multiple-table UPDATE statements that act
across multiple databases). It is also faster to check only the default database rather than all databases if there is no need.

Row-based replication. Tell the slave to restrict replication to database db_name. Only tables belonging to db_name are
changed; the current database has no effect on this. For example, suppose that the slave is started with -
-replicate-do-db=sales and row-based replication is in effect; then the following statements are run on the master:

USE prices;
UPDATE sales.february SET amount=amount+100;

The february table in the sales database on the slave is changed in accordance with the UPDATE statement, and this takes
place whether or not the USE statement was issued. However, issuing the following statements on the master has no effect on the
slave when using row-based replication and --replicate-do-db=sales:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the statement USE prices were changed to USE sales, the UPDATE statement's effects would still not be replicated.

Another importance difference in how --replicate-do-db is handled in statement-based replication as opposed to row-based
replication occurs with regard to statements that refer to multiple databases. Suppose the slave is started with -
-replicate-do-db=db1, and the following statements are executed on the master:

USE db1;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

If you are using statement-based replication, then both tables are updated on the slave. However, when using row-based replication,
only table1 is effected on the slave; since table2 is in a different database, it is not changed by the UPDATE. Now suppose that,
instead of the USE db1 statement, a USE db4 statement was used:

USE db4;

Replication

1053



UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

In this case, the UPDATE statement would have no effect on the slave when using statement-based replication. However, if using
row-based replication, the UPDATE would change table1 on the slave, but not table2 — in other words, only tables in the data-
base named by --replicate-do-db are changed, and the choice of current database has no effect on this behavior.

If you need cross-database updates to work, use --replicate-wild-do-table=db_name.% instead. See Section 16.4.3,
“How Servers Evaluate Replication Rules”.

• --replicate-do-table=db_name.tbl_name

Tell the slave thread to restrict replication to the specified table. To specify more than one table, use this option multiple times, once
for each table. This works for cross-database updates, in contrast to --replicate-do-db. See Section 16.4.3, “How Servers
Evaluate Replication Rules”.

• --replicate-ignore-db=db_name

As with --replicate-do-db, the effects of this option depend on whether statement-based or row-based replication is in use.

Statement-based replication. Tells the slave to not replicate any statement where the default database (that is, the one selected by
USE) is db_name.

Row-based replication. Tells the slave not to update any tables in the database db_name. The current database has no effect.

When using statement-based replication, the following example does not work as you might expect. Suppose that the slave is started
with --replicate-ignore-db=sales and you issue the following statements on the master:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is replicated in such a case because --replicate-ignore-db applies only to the default database
(determined by the USE statement). Because the sales database was specified explicitly in the statement, the statement has not
been filtered. However, when using row-based replication, the UPDATE statement's effects are not propagated to the slave, and the
slave's copy of the sales.january table is unchanged; in this instance, --replicate-ignore-db=sales causes all
changes made to tables in the master's copy of the sales database to be ignored by the slave.

To specify more than one database to ignore, use this option multiple times, once for each database. Because database names can
contain commas, if you supply a comma separated list then the list will be treated as the name of a single database.

You should not use this option if you are using cross-database updates and you do not want these updates to be replicated. See Sec-
tion 16.4.3, “How Servers Evaluate Replication Rules”.

If you need cross-database updates to work, use --replicate-wild-ignore-table=db_name.% instead. See Sec-
tion 16.4.3, “How Servers Evaluate Replication Rules”.

• --replicate-ignore-table=db_name.tbl_name

Tells the slave thread to not replicate any statement that updates the specified table, even if any other tables might be updated by the
same statement. To specify more than one table to ignore, use this option multiple times, once for each table. This works for cross-
database updates, in contrast to --replicate-ignore-db. See Section 16.4.3, “How Servers Evaluate Replication Rules”.

• --replicate-rewrite-db=from_name->to_name

Tells the slave to translate the default database (that is, the one selected by USE) to to_name if it was from_name on the master.
Only statements involving tables are affected (not statements such as CREATE DATABASE, DROP DATABASE, and ALTER
DATABASE), and only if from_name is the default database on the master. This does not work for cross-database updates. To spe-
cify multiple rewrites, use this option multiple times. The server uses the first one with a from_name value that matches. The data-
base name translation is done before the --replicate-* rules are tested.

If you use this option on the command line and the “>” character is special to your command interpreter, quote the option value. For
example:

shell> mysqld --replicate-rewrite-db="olddb->newdb"

• --replicate-same-server-id

Replication

1054



To be used on slave servers. Usually you should use the default setting of 0, to prevent infinite loops caused by circular replication.
If set to 1, the slave does not skip events having its own server ID. Normally, this is useful only in rare configurations. Cannot be set
to 1 if --log-slave-updates is used. Note that by default the slave I/O thread does not even write binary log events to the re-
lay log if they have the slave's server id (this optimization helps save disk usage). So if you want to use -
-replicate-same-server-id, be sure to start the slave with this option before you make the slave read its own events that
you want the slave SQL thread to execute.

• --replicate-wild-do-table=db_name.tbl_name

Tells the slave thread to restrict replication to statements where any of the updated tables match the specified database and table
name patterns. Patterns can contain the “%” and “_” wildcard characters, which have the same meaning as for the LIKE pattern-
matching operator. To specify more than one table, use this option multiple times, once for each table. This works for cross-database
updates. See Section 16.4.3, “How Servers Evaluate Replication Rules”.

Example: --replicate-wild-do-table=foo%.bar% replicates only updates that use a table where the database name
starts with foo and the table name starts with bar.

If the table name pattern is %, it matches any table name and the option also applies to database-level statements (CREATE DATA-
BASE, DROP DATABASE, and ALTER DATABASE). For example, if you use --replicate-wild-do-table=foo%.%,
database-level statements are replicated if the database name matches the pattern foo%.

To include literal wildcard characters in the database or table name patterns, escape them with a backslash. For example, to replicate
all tables of a database that is named my_own%db, but not replicate tables from the my1ownAABCdb database, you should escape
the “_” and “%” characters like this: --replicate-wild-do-table=my\_own\%db. If you're using the option on the com-
mand line, you might need to double the backslashes or quote the option value, depending on your command interpreter. For ex-
ample, with the bash shell, you would need to type --replicate-wild-do-table=my\\_own\\%db.

• --replicate-wild-ignore-table=db_name.tbl_name

Tells the slave thread not to replicate a statement where any table matches the given wildcard pattern. To specify more than one ta-
ble to ignore, use this option multiple times, once for each table. This works for cross-database updates. See Section 16.4.3, “How
Servers Evaluate Replication Rules”.

Example: --replicate-wild-ignore-table=foo%.bar% does not replicate updates that use a table where the database
name starts with foo and the table name starts with bar.

For information about how matching works, see the description of the --replicate-wild-do-table option. The rules for in-
cluding literal wildcard characters in the option value are the same as for --replicate-wild-ignore-table as well.

• --report-host=slave_name

The hostname or IP number of the slave to be reported to the master during slave registration. This value appears in the output of
SHOW SLAVE HOSTS on the master server. Leave the value unset if you do not want the slave to register itself with the master.
Note that it is not sufficient for the master to simply read the IP number of the slave from the TCP/IP socket after the slave connects.
Due to NAT and other routing issues, that IP may not be valid for connecting to the slave from the master or other hosts.

• --report-port=slave_port_num

The TCP/IP port number for connecting to the slave, to be reported to the master during slave registration. Set this only if the slave
is listening on a non-default port or if you have a special tunnel from the master or other clients to the slave. If you are not sure, do
not use this option.

• --report-password=password

The account password of the slave to be reported to the master during slave registration. This value appears in the output of SHOW
SLAVE HOSTS on the master server if the --show-slave-auth-info option is given.

• --report-user=user_name

The account username of the slave to be reported to the master during slave registration. This value appears in the output of SHOW
SLAVE HOSTS on the master server if the --show-slave-auth-info option is given.

• --show-slave-auth-info

Display slave usernames and passwords in the output of SHOW SLAVE HOSTS on the master server for slaves started with the -

Replication

1055



-report-user and --report-password options.

• --skip-slave-start

Tells the slave server not to start the slave threads when the server starts. To start the threads later, use a START SLAVE statement.

• --slave_compressed_protocol={0|1}

If this option is set to 1, use compression for the slave/master protocol if both the slave and the master support it. The default is 0
(no compression).

• --slave-load-tmpdir=file_name

The name of the directory where the slave creates temporary files. This option is by default equal to the value of the tmpdir sys-
tem variable. When the slave SQL thread replicates a LOAD DATA INFILE statement, it extracts the file to be loaded from the re-
lay log into temporary files, and then loads these into the table. If the file loaded on the master is huge, the temporary files on the
slave are huge, too. Therefore, it might be advisable to use this option to tell the slave to put temporary files in a directory located in
some filesystem that has a lot of available space. In that case, the relay logs are huge as well, so you might also want to use the -
-relay-log option to place the relay logs in that filesystem.

The directory specified by this option should be located in a disk-based filesystem (not a memory-based filesystem) because the
temporary files used to replicate LOAD DATA INFILE must survive machine restarts. The directory also should not be one that is
cleared by the operating system during the system startup process.

• --slave-net-timeout=seconds

The number of seconds to wait for more data from the master before the slave considers the connection broken, aborts the read, and
tries to reconnect. The first retry occurs immediately after the timeout. The interval between retries is controlled by the CHANGE
MASTER TO statement or --master-connect-retry option and the number of reconnection attempts is limited by the -
-master-retry-count option. The default is 3600 seconds (one hour).

• --slave-skip-errors=[err_code1,err_code2,...|all]

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to resolve the inconsistency in the data
manually. This option tells the slave SQL thread to continue replication when a statement returns any of the errors listed in the op-
tion value.

Do not use this option unless you fully understand why you are getting errors. If there are no bugs in your replication setup and cli-
ent programs, and no bugs in MySQL itself, an error that stops replication should never occur. Indiscriminate use of this option res-
ults in slaves becoming hopelessly out of synchrony with the master, with you having no idea why this has occurred.

For error codes, you should use the numbers provided by the error message in your slave error log and in the output of SHOW
SLAVE STATUS. Appendix B, Errors, Error Codes, and Common Problems, lists server error codes.

You can also (but should not) use the very non-recommended value of all to cause the slave to ignore all error messages and keeps
going regardless of what happens. Needless to say, if you use all, there are no guarantees regarding the integrity of your data.
Please do not complain (or file bug reports) in this case if the slave's data is not anywhere close to what it is on the master. You have
been warned.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all

16.1.4. Common Replication Administration Tasks
Once replication has been started it should execute without requiring much regular administration. Depending on your replication envir-
onment, you will want to check the replication status of each slave either periodically, daily, or even more frequently.

MySQL Enterprise
For regular reports regarding the status of your slaves, subscribe to the MySQL Enterprise Monitor. For more
information see http://www.mysql.com/products/enterprise/advisors.html.

16.1.4.1. Checking Replication Status

Replication

1056

http://www.mysql.com/products/enterprise/advisors.html


The most common task when managing a replication process is to ensure that replication is taking place and that there have been no er-
rors between the slave and the master.

The primary command for this is SHOW SLAVE STATUS which you must execute on each slave:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************

Slave_IO_State: Waiting for master to send event
Master_Host: master1
Master_User: root
Master_Port: 3306

Connect_Retry: 60
Master_Log_File: mysql-bin.000004

Read_Master_Log_Pos: 931
Relay_Log_File: slave1-relay-bin.000056
Relay_Log_Pos: 950

Relay_Master_Log_File: mysql-bin.000004
Slave_IO_Running: Yes

Slave_SQL_Running: Yes
Replicate_Do_DB:

Replicate_Ignore_DB:
Replicate_Do_Table:

Replicate_Ignore_Table:
Replicate_Wild_Do_Table:

Replicate_Wild_Ignore_Table:
Last_Errno: 0
Last_Error:

Skip_Counter: 0
Exec_Master_Log_Pos: 931

Relay_Log_Space: 1365
Until_Condition: None
Until_Log_File:
Until_Log_Pos: 0

Master_SSL_Allowed: No
Master_SSL_CA_File:
Master_SSL_CA_Path:

Master_SSL_Cert:
Master_SSL_Cipher:

Master_SSL_Key:
Seconds_Behind_Master: 0

1 row in set (0.01 sec)

The key fields from the status report to examine are:

• Slave_IO_State — indicates the current status of the slave. See Section 7.5.5.5, “Replication Slave I/O Thread States”, and
Section 7.5.5.6, “Replication Slave SQL Thread States”, for more information.

• Slave_IO_Running — shows whether the IO thread for the reading the master's binary log is running.

• Slave_SQL_Running — shows whether the SQL thread for the executing events in the relay log is running.

• Last_Error — shows the last error registered when processing the relay log. Ideally this should be blank, indicating no errors.

• Seconds_Behind_Master — shows the number of seconds that the slave SQL thread is behind processing the master binary
log. A high number (or an increasing one) can indicate that the slave is unable to cope with the large number of queries from the
master.

A value of 0 for Seconds_Behind_Master can usually be interpreted as meaning that the slave has caught up with the master,
but there are some cases where this is not strictly true. For example, this can occur if the network connection between master and
slave is broken but the slave I/O thread has not yet noticed this — that is, slave_net_timeout has not yet elapsed.

It is also possible that transient values for Seconds_Behind_Master may not reflect the situation accurately. When the slave
SQL thread has caught up on I/O, Seconds_Behind_Master displays 0; but when the slave I/O thread is still queuing up a new
event, Seconds_Behind_Master may show a large value until the SQL thread finishes executing the new event. This is espe-
cially likely when the events have old timestamps; in such cases, if you execute SHOW SLAVE STATUS several times in a relat-
ively short peiod, you may see this value change back and forth repeatedly between 0 and a relatively large value.

On the master, you can check the status of slaves by examining the list of running processes. Slaves execute the Binlog Dump com-
mand:

mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************

Id: 10
User: root

Replication

1057



Host: slave1:58371
db: NULL

Command: Binlog Dump
Time: 777
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL

Because it is the slave that drives the core of the replication process, very little information is available in this report.

If you have used the --report-host option, then the SHOW SLAVE HOSTS statement will show basic information about connec-
ted slaves:

mysql> SHOW SLAVE HOSTS;
+-----------+--------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+--------+------+-------------------+-----------+
| 10 | slave1 | 3306 | 0 | 1 |
+-----------+--------+------+-------------------+-----------+
1 row in set (0.00 sec)

The output includes the ID of the slave server, the value of the --report-host option, the connecting port, master ID and the prior-
ity of the slave for receiving binary log updates.

16.1.4.2. Pausing Replication on the Slave

You can stop and start the replication of statements on the slave using the STOP SLAVE and START SLAVE commands.

To stop execution of the binary log from the master, use STOP SLAVE:

mysql> STOP SLAVE;

When execution is stopped, the slave does not read the binary log from the master (the IO_THREAD) and stops processing events from
the relay log that have not yet been executed (the SQL_THREAD). You can pause either the IO or SQL threads individually by specify-
ing the thread type. For example:

mysql> STOP SLAVE IO_THREAD;

Stopping the SQL thread can be useful if you want to perform a backup or other task on a slave that only processes events from the mas-
ter. The IO thread will continue to be read from the master, but not executed, which will make it easier for the slave to catch up when
you start slave operations again.

Stopping the IO thread will allow the statements in the relay log to be executed up until the point where the relay log has ceased to re-
ceive new events. Using this option can be useful when you want to pause execution to allow the slave to catch up with events from the
master, when you want to perform administration on the slave but also ensure you have the latest updates to a specific point. This meth-
od can also be used to pause execution on the slave while you conduct administration on the master while ensuring that there is not a
massive backlog of events to be executed when replication is started again.

To start execution again, use the START SLAVE statement:

mysql> START SLAVE;

If necessary, you can start either the IO_THREAD or SQL_THREAD threads individually.

16.2. Replication Solutions
Replication can be used in many different environments for a range of purposes. In this section you will find general notes and advice
on using replication for specific solution types.

For information on using replication in a backup environment, including notes on the setup, backup procedure, and files to back up, see
Section 16.2.1, “Using Replication for Backups”.

For advice and tips on using different storage engines on the master and slaves, see Section 16.2.2, “Using Replication with Different
Master and Slave Storage Engines”.

Using replication as a scale-out solution requires some changes in the logic and operation of applications that use the solution. See Sec-

Replication

1058



tion 16.2.3, “Using Replication for Scale-Out”.

For performance or data distribution reasons you may want to replicate different databases to different replication slaves. See Sec-
tion 16.2.4, “Replicating Different Databases to Different Slaves”

As the number of replication slaves increases, the load on the master can increase (because of the need to replicate the binary log to
each slave) and lead to a reduction in performance of the master. For tips on improving your replication performance, including using a
single secondary server as an replication master, see Section 16.2.5, “Improving Replication Performance”.

For guidance on switching masters, or converting slaves into masters as part of an emergency failover solution, see Section 16.2.6,
“Switching Masters During Failover”.

To secure your replication communication you can encrypt the communication channel by using SSL to exchange data. Step-by-step in-
structions can be found in Section 16.2.7, “Setting Up Replication Using SSL”.

16.2.1. Using Replication for Backups
You can use replication as a backup solution by replicating data from the master to a slave, and then backing up the data slave. Because
the slave can be paused and shut down without affecting the running operation of the master you can produce an effective snapshot of
'live' data that would otherwise require a shutdown of the master database.

How you back up the database will depend on the size of the database and whether you are backing up only the data, or the data and the
replication slave state so that you can rebuild the slave in the event of failure. There are therefore two choices:

If you are using replication as a solution to enable you to back up the data on the master, and the size of your database is not too large,
then the mysqldump tool may be suitable. See Section 16.2.1.1, “Backing Up a Slave Using mysqldump”.

For larger databases, where mysqldump would be impractical or inefficient, you can back up the raw data files instead. Using the raw
data files option also means that you can back up the binary and relay logs that will enable you to recreate the slave in the event of a
slave failure. For more information, see Section 16.2.1.2, “Backing Up Raw Data from a Slave”.

Another backup strategy, which can be used for either master or slave servers, is to put the server in a read-only state. The backup is
performed against the read-only server, which then is changed back to its usual read/write operational status. See Section 16.2.1.3,
“Backing Up a Master or Slave by Making It Read Only”.

16.2.1.1. Backing Up a Slave Using mysqldump

Using mysqldump to create a copy of the database enables you to capture all of the data in the database in a format that allows the in-
formation to be imported into another instance of MySQL. Because the format of the information is SQL statements the file can easily
be distributed and applied to running servers in the event that you need access to the data in an emergency. However, if the size of your
data set is very large then mysqldump may be impractical.

When using mysqldump you should stop the slave before starting the dump process to ensure that the dump contains a consistent set
of data:

1. Stop the slave from processing requests. You can either stop the slave completely using mysqladmin:

shell> mysqladmin stop-slave

Alternatively, you can stop processing the relay log files by stopping the replication SQL thread. Using this method will allow the
binary log data to be transferred. Within busy replication environments this may speed up the catch-up process when you start the
slave processing again:

shell> mysql -e 'STOP SLAVE SQL_THREAD;'

2. Run mysqldump to dump your databases. You may either select databases to be dumped, or dump all databases. For more in-
formation see Section 4.5.4, “mysqldump — A Database Backup Program”. For example, to dump all databases:

shell> mysqldump --all-databases >fulldb.dump

3. Once the dump has completed, start slave operations again:

shell> mysqladmin start-slave

Replication

1059



In the preceding example you may want to add login credentials (username, password) to the commands, and bundle the process up into
a script that you can run automatically each day.

If you use this approach, make sure you monitor the slave replication process to ensure that the time taken to run the backup in this way
is not affecting the slave's ability to keep up with events from the master. See Section 16.1.4.1, “Checking Replication Status”. If the
slave is unable to keep up you may want to add another server and distribute the backup process. For an example of how to configure
this scenario, see Section 16.2.4, “Replicating Different Databases to Different Slaves”.

16.2.1.2. Backing Up Raw Data from a Slave

To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL replication slave should take place
while your slave server is shut down. If the MySQL server is still running then background tasks, particularly with storage engines with
background processes such as InnoDB, may still be updating the database files. With InnoDB, these problems should be resolved during
crash recovery, but since the slave server can be shut down during the backup process without affecting the execution of the master it
makes sense to take advantage of this facility.

To shut down the server and back up the files:

1. Shut down the slave MySQL server:

shell> mysqladmin shutdown

2. Copy the data files. You can use any suitable copying or archive utility, including cp, tar or WinZip:

shell> tar cf /tmp/dbbackup.tar ./data

3. Start up the mysqld process again:

shell> mysqld_safe &

Under Windows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld"

Normally you should back up the entire data folder for the slave MySQL server. If you want to be able to restore the data and operate as
a slave (for example, in the event of failure of the slave), then when you back up the slave's data, you should back up the slave status
files, master.info and relay.info, along with the relay log files. These files are needed to resume replication after you restore
the slave's data.

If you lose the relay logs but still have the relay-log.info file, you can check it to determine how far the SQL thread has executed
in the master binary logs. Then you can use CHANGE MASTER TO with the MASTER_LOG_FILE and MASTER_LOG_POS options to
tell the slave to re-read the binary logs from that point. Of course, this requires that the binary logs still exist on the master server.

If your slave is subject to replicating LOAD DATA INFILE statements, you should also back up any SQL_LOAD-* files that exist in
the directory that the slave uses for this purpose. The slave needs these files to resume replication of any interrupted LOAD DATA IN-
FILE operations. The directory location is specified using the --slave-load-tmpdir option. If this option is not specified, the
directory location is the value of the tmpdir system variable.

16.2.1.3. Backing Up a Master or Slave by Making It Read Only

It is possible to back up either master or slave servers in a replication setup by acquiring a global read lock and manipulating the
read_only system variable to change the read-only state of the server to be backed up:

1. Make the server read-only, so that it processes only retrievals and blocks updates

2. Perform the backup

3. Change the server back to its normal read/write state

The following instructions describe how to do this for a master server and for a slave server.

Replication

1060



These instructions require MySQL 5.1.15 or higher. For earlier versions, setting read_only did not block while table locks or out-
standing transactions were pending, so that some data changes could still occur during the backup.

Note

The instructions in this section place the server to be backed up in a state that is safe for backup methods that get the data
from the server, such as mysqldump (see Section 4.5.4, “mysqldump — A Database Backup Program”). You should
not attempt to use these instructions to make a binary backup by copying files directly because the server may still have
modified data cached in memory and not flushed to disk.

For both scenarios discussed here, suppose that you have the following replication setup:

• A master server M1

• A slave server S1 that has M1 as its master

• A client C1 connected to M1

• A client C2 connected to S1

Scenario 1: Backup with a Read-Only Master

Put the master M1 in a read-only state by executing these statements on it:

FLUSH TABLES WITH READ LOCK;
SET GLOBAL read_only = ON;

While M1 is in a read-only state, the following properties are true:

• Requests for updates sent by C1 to M1 will fail because the server is in read-only mode

• Requests for retrievals sent by C1 to M1 will succeed

• Making a backup on M1 is safe

• Making a backup on S1 is not safe: this server is still running, and might be processing the binary log or update requests coming
from client C2 (S1 might not be in a read-only state)

While M1 is read only, perform the backup. For example, you can use mysqldump.

After the backup on M1 has been done, restore M1 to its normal operational state by executing these statements:

SET GLOBAL read_only = OFF;
UNLOCK TABLES;

Although performing the backup on M1 is safe (as far as the backup is concerned), it is not optimal because clients of M1 are blocked
from executing updates.

This strategy also applies to backing up a single server in a non-replication setting.

Scenario 2: Backup with a Read-Only Slave

Put the slave S1 in a read-only state by executing these statements on it:

FLUSH TABLES WITH READ LOCK;
SET GLOBAL read_only = ON;

While S1 is in a read-only state, the following properties are true:

• The master M1 will continue to operate

Replication

1061



• Making a backup on the master is not safe

• The slave S1 is stopped

• Making a backup on the slave S1 is safe

These properties provide the basis for a popular backup scenario: Having one slave busy performing a backup for a while is not a prob-
lem because it does not affect the entire network, and the system is still running during the backup. (For example, clients can still per-
form updates on the master server.)

While S1 is read only, perform the backup.

After the backup on S1 has been done, restore S1 to its normal operational state by executing these statements:

SET GLOBAL read_only = OFF;
UNLOCK TABLES;

After the slave is restored to normal operation, it again synchronizes to the master by catching up with any outstanding updates in the
binary log from the master.

In either scenario, the statements to acquire the global read lock and manipulate the read_only variable are performed on the server
to be backed up and do not propagate to any slaves of that server.

16.2.2. Using Replication with Different Master and Slave Storage Engines
The replication process does not care if the source table on the master and the replicated table on the slave use different engine types. In
fact, the system variables storage_engine and table_type are not replicated.

This provides a number of advantages in the replication process in that you can take advantage of different engine types for different
replication scenarios. For example, in a typical scaleout scenario (see Section 16.2.3, “Using Replication for Scale-Out”), you want to
use InnoDB tables on the master to take advantage of the transactional functionality, but use MyISAM on the slaves where transaction
support is not required because the data is only read. When using replication in a data logging environment you may want to use the
Archive storage engine on the slave.

Setting up different engines on the master and slave depends on how you set up the initial replication process:

• If you used mysqldump to create the database snapshot on your master then you could edit the dump text to change the engine type
used on each table.

Another alternative for mysqldump is to disable engine types that you do not want to use on the slave before using the dump to
build the data on the slave. For example, you can add the --skip-innodb option on your slave to disable the InnoDB engine. If
a specific engine does not exist, MySQL will use the default engine type, usually MyISAM. If you want to disable further engines in
this way, you may want to consider building a special binary to be used on the slave that only supports the engines you want.

• If you are using raw data files for the population of the slave, you will be unable to change the initial table format. Instead, use AL-
TER TABLE to change the table types after the slave has been started.

• For new master/slave replication setups where there are currently no tables on the master, avoid specifying the engine type when
creating new tables.

If you are already running a replication solution and want to convert your existing tables to another engine type, follow these steps:

1. Stop the slave from running replication updates:

mysql> STOP SLAVE;

This will enable you to change engine types without interruptions.

2. Execute an ALTER TABLE ... Engine='enginetype' for each table where you want to change the engine type.

3. Start the slave replication process again:

Replication

1062



mysql> START SLAVE;

Although the storage_engine and table_type variables are not replicated, be aware that CREATE TABLE and ALTER TA-
BLE statements that include the engine specification will be correctly replicated to the slave. For example, if you have a CSV table and
you execute:

mysql> ALTER TABLE csvtable Engine='MyISAM';

The above statement will be replicated to the slave and the engine type on the slave will be converted to MyISAM, even if you have pre-
viously changed the table type on the slave to an engine other than CSV. If you want to retain engine differences on the master and
slave, you should be careful to use the storage_engine variable on the master when creating a new table. For example, instead of:

mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;

Use this format:

mysql> SET storage_engine=MyISAM;
mysql> CREATE TABLE tablea (columna int);

When replicated, the storage_engine variable will be ignored, and the CREATE TABLE statement will be executed with the
slave's default engine type.

16.2.3. Using Replication for Scale-Out
You can use replication as a scale-out solution, i.e. where you want to split up the load of database queries across multiple database
servers, within some reasonable limitations.

Because replication works from the distribution of one master to one or more slaves, using replication for scaleout works best in an en-
vironment where you have a high number of reads and low number of writes/updates. Most websites fit into this category, where users
are browsing the website, reading articles, posts, or viewing products. Updates only occur during session management, or when making
a purchase or adding a comment/message to a forum.

Replication in this situation enables you to distribute the reads over the replication slaves, while still allowing your web servers to com-
municate with the replication master when a write is required. You can see a sample replication layout for this scenario in Figure 16.1,
“Using replication to improve the performance during scaleout”.

Figure 16.1. Using replication to improve the performance during scaleout

Replication

1063



If the part of your code that is responsible for database access has been properly abstracted/modularized, converting it to run with a rep-
licated setup should be very smooth and easy. Change the implementation of your database access to send all writes to the master, and
to send reads to either the master or a slave. If your code does not have this level of abstraction, setting up a replicated system gives you
the opportunity and motivation to clean it up. Start by creating a wrapper library or module that implements the following functions:

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all error conditions. You can use different names for the
functions. The important thing is to have a unified interface for connecting for reads, connecting for writes, doing a read, and doing a
write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at first, but it pays off in the long run.
All applications that use the approach just described are able to take advantage of a master/slave configuration, even one involving mul-
tiple slaves. The code is much easier to maintain, and adding troubleshooting options is trivial. You need modify only one or two func-
tions; for example, to log how long each statement took, or which statement among those issued gave you an error.

If you have written a lot of code, you may want to automate the conversion task by using the replace utility that comes with standard
MySQL distributions, or write your own conversion script. Ideally, your code uses consistent programming style conventions. If not,
then you are probably better off rewriting it anyway, or at least going through and manually regularizing it to use a consistent style.

16.2.4. Replicating Different Databases to Different Slaves
There may be situations where you have a single master and want to replicate different databases to different slaves. For example, you
may want to distribute different sales data to different departments to help spread the load during data analysis. A sample of this layout
is shown in Figure 16.2, “Using replication to replicate separate DBs to multiple hosts”.

Figure 16.2. Using replication to replicate separate DBs to multiple hosts

Replication

1064



You can achieve this separation by configuring the master and slaves as normal, and then limiting the binary log statements that each
slave processes by using the replicate-wild-do-table configuration option on each slave.

For example, to support the separation as shown in Figure 16.2, “Using replication to replicate separate DBs to multiple hosts”, you
would configure each slave as follows before enabling replication using START SLAVE:

• MySQL Slave 1 should have the following configuration options:

replicate-wild-do-table=sales.%
replicate-wild-do-table=finance.%

• MySQL Slave 2 should have the following configuration option:

replicate-wild-do-table=support.%

• MySQL Slave 3 should have the following configuration option:

replicate-wild-do-table=service.%

If you have data that needs to be synchronized to the slaves before replication starts, you have a number of options:

• Synchronize all the data to each slave, and delete the databases and/or tables that you do not want to keep.

• Use mysqldump to create a separate dump file for each database and load the appropriate dump file on each slave.

• Use a raw data file dump and include only the specific files and databases that you need for each slave. This option will not work
with InnoDB databases unless you use the innodb_file_per_table option.

Each slave in this configuration will transfer to the entire binary log from the master, but will only execute the events within the binary
log that apply to the configured databases and tables.

16.2.5. Improving Replication Performance
As the number of slaves connecting to a master increases, the load, although minimal, also increases, as each slave uses up a client con-
nection to the master. Also, as each slave must receive a full copy of the master binary log, the network load on the master may also in-
crease and start to create a bottleneck.

If you are using a large number of slaves connected to one master, and that master is also busy processing requests (for example, as part
of a scaleout solution), then you may want to improve the performance of the replication process.

One way to improve the performance of the replication process is to create a deeper replication structure that enables the master to rep-

Replication

1065



licate to only one slave, and for the remaining slaves to connect to this primary slave for their individual replication requirements. A
sample of this structure is shown in Figure 16.3, “Using an additional replication host to improve performance”.

Figure 16.3. Using an additional replication host to improve performance

For this to work, you must configure the MySQL instances as follows:

• Master 1 is the primary master where all changes and updates are written to the database. Binary logging should be enabled on this
machine.

• Master 2 is the slave to the Master 1 that provides the replication functionality to the remainder of the slaves in the replication struc-
ture. Master 2 is the only machine allowed to connect to Master 1. Master 2 also has binary logging enabled, and the -
-log-slave-updates option so that replication instructions from Master 1 are also written to Master 2's binary log so that they
can then be replicated to the true slaves.

• Slave 1, Slave 2, and Slave 3 act as slaves to Master 2, and replicate the information from Master 2, which is really the data logged
on Master 1.

The above solution reduces the client load and the network interface load on the primary master, which should improve the overall per-
formance of the primary master when used as a direct database solution.

If your slaves are having trouble keeping up with the replication process on the master then there are a number of options available:

• If possible, you should put the relay logs and the data files on different physical drives. To do this, use the --relay-log option to
specify the location of the relay log.

• If the slaves are significantly slower than the master, then you may want to divide up the responsibility for replicating different data-
bases to different slaves. See Section 16.2.4, “Replicating Different Databases to Different Slaves”.

• If your master makes use of transactions and you are not concerned about transaction support on your slaves, then use MyISAM or
another non-transactional engine. See Section 16.2.2, “Using Replication with Different Master and Slave Storage Engines”.

• If your slaves are not acting as masters, and you have a potential solution in place to ensure that you can bring up a master in the
event of failure, then you can switch off --log-slave-updates. This prevents 'dumb' slaves from also logging events they
have executed into their own binary log.

16.2.6. Switching Masters During Failover
There is currently no official solution for providing failover between master and slaves in the event of a failure. With the currently
available features, you would have to set up a master and a slave (or several slaves), and to write a script that monitors the master to
check whether it is up. Then instruct your applications and the slaves to change master in case of failure.

Replication

1066



Remember that you can tell a slave to change its master at any time, using the CHANGE MASTER TO statement. The slave will not
check whether the databases on the master are compatible with the slave, it will just start executing events from the specified log and
postition on the new master. In a failover situation all the servers in the group are probably executing the same events from the same
binary log, so changing the source of the events should not affect the database structure or integrity providing you are careful.

Run your slaves with the --log-bin option and without --log-slave-updates. In this way, the slave is ready to become a
master as soon as you issue STOP SLAVE; RESET MASTER, and CHANGE MASTER TO statement on the other slaves. For example,
assume that you have the structure shown in Figure 16.4, “Redundancy using replication, initial structure”.

Figure 16.4. Redundancy using replication, initial structure

In this diagram, the MySQL Master holds the master database, the MySQL Slave computers are replication slaves, and the Web
Client machines are issuing database reads and writes. Web clients that issue only reads (and would normally be connected to the
slaves) are not shown, as they do not need to switch to a new server in the event of failure. For a more detailed example of a read/write
scaleout replication structure, see Section 16.2.3, “Using Replication for Scale-Out”.

Each MySQL Slave (Slave 1, Slave 2, and Slave 3) are slaves running with --log-bin and without -
-log-slave-updates. Because updates received by a slave from the master are not logged in the binary log unless -
-log-slave-updates is specified, the binary log on each slave is empty initially. If for some reason MySQL Master becomes
unavailable, you can pick one of the slaves to become the new master. For example, if you pick Slave 1, all Web Clients should
be redirected to Slave 1, which will log updates to its binary log. Slave 2 and Slave 3 should then replicate from Slave 1.

The reason for running the slave without --log-slave-updates is to prevent slaves from receiving updates twice in case you
cause one of the slaves to become the new master. Suppose that Slave 1 has --log-slave-updates enabled. Then it will write
updates that it receives from Master to its own binary log. When Slave 2 changes from Master to Slave 1 as its master, it may
receive updates from Slave 1 that it has already received from Master

Replication

1067



Make sure that all slaves have processed any statements in their relay log. On each slave, issue STOP SLAVE IO_THREAD, then
check the output of SHOW PROCESSLIST until you see Has read all relay log. When this is true for all slaves, they can be
reconfigured to the new setup. On the slave Slave 1 being promoted to become the master, issue STOP SLAVE and RESET MAS-
TER.

On the other slaves Slave 2 and Slave 3, use STOP SLAVE and CHANGE MASTER TO MASTER_HOST='Slave1' (where
'Slave1' represents the real hostname of Slave 1). To CHANGE MASTER, add all information about how to connect to Slave 1
from Slave 2 or Slave 3 (user, password, port). In CHANGE MASTER, there is no need to specify the name of Slave 1's
binary log or binary log position to read from: We know it is the first binary log and position 4, which are the defaults for CHANGE
MASTER. Finally, use START SLAVE on Slave 2 and Slave 3.

Once the new replication is in place, you will then need to instruct each Web Client to direct their statements to Slave 1. From
that point on, all updates statements sent by Web Client to Slave 1 are written to the binary log of Slave 1, which then contains
every update statement sent to Slave 1 since Master died.

The resulting server structure is shown in Figure 16.5, “Redundancy using replication, after master failure”.

Figure 16.5. Redundancy using replication, after master failure

When Master is up again, you must issue on it the same CHANGE MASTER as that issued on Slave 2 and Slave 3, so that Mas-
ter becomes a slave of S1 and picks up each Web Client writes that it missed while it was down.

Replication

1068



To make Master a master again (because it is the most powerful machine, for example), use the preceding procedure as if Slave 1
was unavailable and Master was to be the new master. During this procedure, do not forget to run RESET MASTER on Master be-
fore making Slave 1, Slave 2, and Slave 3 slaves of Master. Otherwise, they may pick up old Web Client writes from be-
fore the point at which Master became unavailable.

Note that there is no synchronization between the different slaves to a master. Some slaves might be ahead of others. This means that
the concept outlined in the previous example might not work. In practice, however, the relay logs of different slaves will most likely not
be far behind the master, so it would work, anyway (but there is no guarantee).

A good way to keep your applications informed as to the location of the master is by having a dynamic DNS entry for the master. With
bind you can use nsupdate to dynamically update your DNS.

16.2.7. Setting Up Replication Using SSL
Setting up replication using an SSL connection is similar to setting up a server and client using SSL. You will need to obtain (or create)
a suitable security certificate that you can use on the master, and a similar certificate (from the same certificate authority) on each slave.

To use SSL for encrypting the transfer of the binary log required during replication you must first set up the master to support SSL net-
work connections. If the master does not support SSL connections (because it has not been compiled or configured for SSL), then rep-
lication through an SSL connection will not be possible.

For more information on setting up a server and client for SSL connectivity, see Section 5.5.7.2, “Using SSL Connections”.

To enable SSL on the master you will need to create or obtain suitable certficates and then add the following configuration options to
the master's configuration within the mysqld section:

ssl-ca=cacert.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem

Note

You should use full path to specify the location of your certificate files.

The options are as follows:

• ssl-ca identifies the Certificate Authority (CA) certificate.

• ssl-cert identifies the server public key. This can be sent to the client and authenticated against the CA certificate that it has.

• ssl-key identifies the server private key.

On the slave, you have two options available for setting the SSL information. You can either add the slaves certificates to the client
section of the slave configuration file, or you can explicitly specify the SSL information using the CHANGE MASTER statement.

Using the former option, add the following lines to the client section of the slave configuration file:

[client]
ssl-ca=cacert.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem

Restart the slave server, using the --skip-slave to prevent the slave from connecting to the master. Use CHANGE MASTER to spe-
cify the master configuration, using the master_ssl option to enable SSL connectivity:

mysql> CHANGE MASTER TO \
MASTER_HOST='master_hostname', \
MASTER_USER='replicate', \
MASTER_PASSWORD='password', \
MASTER_SSL=1;

To specify the SSL certificate options during the CHANGE MASTER command, append the SSL options:

CHANGE MASTER TO \
MASTER_HOST='master_hostname', \

Replication

1069



MASTER_USER='replicate', \
MASTER_PASSWORD='password', \
MASTER_SSL=1, \
MASTER_SSL_CA = 'ca_file_name', \
MASTER_SSL_CAPATH = 'ca_directory_name', \
MASTER_SSL_CERT = 'cert_file_name', \
MASTER_SSL_KEY = 'key_file_name';

Once the master information has been updated, start the slave replication process:

mysql> START SLAVE;

You can use the SHOW SLAVE STATUS to confirm that SSL connection has been completed.

For more information on the CHANGE MASTER TO syntax, see Section 12.6.2.1, “CHANGE MASTER TO Syntax”.

If you want to enforce SSL connections to be used during replication, then create a user with the REPLICATION SLAVE privilege and
use the REQUIRE_SSL option for that user. For example:

mysql> GRANT REPLICATION SLAVE ON *.*
-> TO 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass' REQUIRE SSL;

16.3. Replication Notes and Tips

16.3.1. Replication Features and Issues
In general, replication compatibility at the SQL level requires that any features used be supported by both the master and the slave serv-
ers. If you use a feature on a master server that is available only as of a given version of MySQL, you cannot replicate to a slave that is
older than that version. Such incompatibilities are likely to occur between series, so that, for example, you cannot replicate from
MySQL 5.1 to 5.0. However, these incompatibilities also can occur for within-series replication. For example, the SLEEP() function is
available in MySQL 5.0.12 and up. If you use this function on the master server, you cannot replicate to a slave server that is older than
MySQL 5.0.12.

If you are planning to use replication between 5.1 and a previous version of MySQL you should consult the edition of the MySQL Ref-
erence Manual corresponding to the earlier release series for information regarding the replication characteristics of that series.

The following sections provide details about what is supported and what is not, and about specific issues and situations that may occur
when replicating certain statements. Additional InnoDB-specific information about replication is given in Section 13.5.6.5, “InnoDB
and MySQL Replication”.

With MySQL's classic statement-based replication, there may be issues with replicating stored routines or triggers. You can avoid these
issues by using MySQL's row-based replication instead. For a detailed list of issues, see Section 20.4, “Binary Logging of Stored
Routines and Triggers”. For a description of row-based replication, see Section 16.1.2, “Replication Formats”.

16.3.1.1. Replication and AUTO_INCREMENT

Replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is done correctly, subject to the following excep-
tions.

A stored procedure that uses LAST_INSERT_ID() does not replicate properly using statement-based binary logging. This limitation
is lifted in MySQL 5.1.12.

Prior to MySQL 5.1.12, when a stored routine or trigger caused an INSERT into an AUTO_INCREMENT column, the generated
AUTO_INCREMENT value was not written into the binary log, so a different value could in some cases be inserted on the slave.

An insert into an AUTO_INCREMENT column caused by a stored routine or trigger running on a master that uses MySQL 5.0.60 or
earlier does not replicate correctly to a slave running MySQL 5.1.12 through 5.1.23 (inclusive). (Bug#33029)

Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same ordering of the rows on the slave
and the master. This occurs because the order in which the rows are numbered depends on the specific storage engine used for the table
and the order in which the rows were inserted. If it is important to have the same order on the master and slave, the rows must be
ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an AUTO_INCREMENT column to the table
t1, the following statements produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;

Replication

1070

http://bugs.mysql.com/33029


ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

This assumes that the table t1 has columns col1 and col2.

Important

To guarantee the same ordering on both master and slave, all columns of t1 must be referenced in the ORDER BY clause.

The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign key definitions are ignored, as are
the DATA DIRECTORY and INDEX DIRECTORY table options. If a table definition includes any of those characteristics, create t2
using a CREATE TABLE statement that is identical to the one used to create t1, but with the addition of the AUTO_INCREMENT
column.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column, the final step is to drop the ori-
ginal table and then rename the copy:

DROP t1;
ALTER TABLE t2 RENAME t1;

See also Section B.1.7.1, “Problems with ALTER TABLE”.

16.3.1.2. Replication and Character Sets

The following applies to replication between MySQL servers that use different character sets:

1. If the master uses MySQL 4.1, you must always use the same global character set and collation on the master and the slave, regard-
less of the MySQL version running on the slave. (These are controlled by the --character-set-server and -
-collation-server options.) Otherwise, you may get duplicate-key errors on the slave, because a key that is unique in the
master character set might not be unique in the slave character set. Note that this is not a cause for concern when master and slave
are both MySQL 5.0 or later.

2. If the master is older than MySQL 4.1.3, the character set of any client should never be made different from its global value be-
cause this character set change is not known to the slave. In other words, clients should not use SET NAMES, SET CHARACTER
SET, and so forth. If both the master and the slave are 4.1.3 or newer, clients can freely set session values for character set vari-
ables because these settings are written to the binary log and so are known to the slave. That is, clients can use SET NAMES or
SET CHARACTER SET or can set variables such as collation_client or collation_server. However, clients are
prevented from changing the global value of these variables; as stated previously, the master and slave must always have identical
global character set values. This is true wther you are using statement-based or row-based replication.

3. If you have databases on the master with character sets that differ from the global character_set_server value, you should
design your CREATE TABLE statements so that tables in those databases do not implicitly rely on the database default character
set. A good workaround is to state the character set and collation explicitly in CREATE TABLE statements.

16.3.1.3. Replication of CREATE TABLE ... SELECT Statements

The following rules and decisions are applied when a CREATE TABLE ... SELECT statement is replicated:

• All CREATE TABLE ... SELECT statements do implicit commit.

• If there are no failures, then all CREATE TABLE ... SELECT statements are replicated as follows:

• For STATEMENT and MIXED format, as the CREATE TABLE ... SELECT statement itself.

• For ROW format, as a CREATE TABLE statement followed by binwrite events.

• Requirements for CREATE TABLE t2 SELECT ... using both transactional and non-transactional tables:

• For STATEMENT, MIXED, and ROW formats:

• If the table already exists, then the statement does nothing on the master, and only the implicit commit is logged.

Replication

1071



• If other execution failure (and thus t2 did not exist), then the table is never created on master and only the implicit commit
is logged.

• Requirements for CREATE TABLE IF NOT EXISTS t2 SELECT ...

• For STATEMENT and MIXED format:

If execution failure, then statement is logged with error code.

• For ROW format when t2 is transactional:

• If table already exists, then

• The CREATE TABLE part of the statement is not logged.

• All applied rows are logged.

• The implicit commit is logged.

• If other failure in creating table, then only the implicit commit is logged.

• If failure in selecting or inserting (but create succeeded), then the table is dropped on master and only the implicit commit is
logged.

• For ROW format when t2 is non-transactional:

• If table already exists, then:

• the CREATE TABLE part of the statement is not logged.

• All applied rows are logged.

• The implicit commit is logged.

• If other failure in creating table, then only the implicit commit is logged.

• If failure in selecting or inserting (but create succeeded), then:

• The CREATE TABLE part of the statement is logged.

• All applied rows are logged.

• The implicit commit is logged.

16.3.1.4. Replication and DIRECTORY Statements

If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE statement on the master server, the table
option is also used on the slave. This can cause problems if no corresponding directory exists in the slave host filesystem or if it exists
but is not accessible to the slave server. MySQL supports an sql_mode option called NO_DIR_IN_CREATE. If the slave server is run
with this SQL mode enabled, it ignores the DATA DIRECTORY and INDEX DIRECTORY table options when replicating CREATE
TABLE statements. The result is that MyISAM data and index files are created in the table's database directory.

16.3.1.5. Replication of Invoked Features

Replication of invoked features such as scheduled events, user-defined functions (UDFs), stored routines (including both stored proced-
ures and stored functions), and triggers was re-implemented in MySQL 5.1.18 to provide the following characteristics:

• The effects of the feature are always replicated.

• The following statements are replicated using statement-based replication:

• CREATE EVENT

Replication

1072



• ALTER EVENT

• DROP EVENT

• CREATE PROCEDURE

• DROP PROCEDURE

• CREATE FUNCTION

• DROP FUNCTION

• CREATE TRIGGER

• DROP TRIGGER

However, the effects of features created, modified, or dropped using these statements are replicated using row-based replication.

• In the case of CREATE EVENT and ALTER EVENT:

• The status of the event is set to SLAVESIDE_DISABLED on the slave regardless of the state specified (this does not apply to
DROP EVENT).

• The master on which the event was created is identified on the slave by its server ID. The ORIGINATOR column in INFORMA-
TION_SCHEMA.EVENTS and the originator column in mysql.event were added to these tables in MySQL 5.1.18 to
store this information. (See Section 24.20, “The INFORMATION_SCHEMA EVENTS Table”, and Section 12.5.4.16, “SHOW
EVENTS”.)

• The feature implementation resides on the slave in a renewable state so that if the master fails, the slave can be used as the master
without loss of event processing.

To determine whether there are any scheduled events on a MySQL server that were created on a different server (that was acting as a
replication master), use SHOW EVENTS, like this:

SHOW EVENTS
WHERE STATUS = 'SLAVESIDE_DISABLED';

Alternatively, you might wish to query the INFORMATION_SCHEMA.EVENTS table as shown here:

SELECT EVENT_SCHEMA, EVENT_NAME, ORIGINATOR
FROM INFORMATION_SCHEMA.EVENTS
WHERE STATUS = 'SLAVESIDE_DISABLED';

When promoting a replication slave having such events to a replication master, use the following query to enable the events:

UPDATE mysql.event
SET STATUS = 'ENABLED'
WHERE STATUS = 'SLAVESIDE_DISABLED';

If more than one master was involved in creating events on this slave, and you wish to enable events that were created only on a given
master having the server ID master_id, use the following query instead:

UPDATE mysql.event
SET STATUS = 'ENABLED'
WHERE ORIGINATOR = master_id
AND STATUS = 'SLAVESIDE_DISABLED';

Important

Before executing either of the previous two UPDATE statements, you should disable the Event Scheduler on the slave
(using SET GLOBAL EVENT_SCHEDULER = OFF;), run the UPDATE, restart the server, then re-enable the Event
Scheduler afterwards (using SET GLOBAL EVENT_SCHEDULER = ON;).

If you later demote the new master back to being a replication slave, you must disable manually all events enabled by the
UPDATE statement. You can do this by storing in a separate table the event names from the SELECT statement shown pre-
viously, or using an UPDATE statement to rename the events with a common prefix to identify them, as shown in this ex-

Replication

1073



ample:

UPDATE mysql.event
SET name = CONCAT('replicated_', name)
WHERE status = 'SLAVESIDE_DISABLED';

When demoting this server back to being a replication slave, you can then rename and disable the events like this:

UPDATE mysql.event
SET name = REPLACE(name, 'replicated_', ''),

status = 'SLAVESIDE_DISABLED'
WHERE INSTR(name, 'replicated_') = 1;

16.3.1.6. Replication with Floating-Point Values

Floating-point values are approximate, so comparisons involving them are inexact. This is true for operations that use floating-point val-
ues explicitly, or values that are converted to floating-point implicitly. Comparisons of floating-point values might yield different results
on master and slave servers due to differences in computer architecture, the compiler used to build MySQL, and so forth. See Sec-
tion 11.2.2, “Type Conversion in Expression Evaluation”, and Section B.1.5.8, “Problems with Floating-Point Comparisons”.

16.3.1.7. Replication and FLUSH

Some forms of the FLUSH statement are not logged because they could cause problems if replicated to a slave: FLUSH LOGS, FLUSH
MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ LOCK. For a syntax example, see Section 12.5.5.2, “FLUSH Syntax”.
The FLUSH TABLES, ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements are written to the binary log and
thus replicated to slaves. This is not normally a problem because these statements do not modify table data. However, this can cause dif-
ficulties under certain circumstances. If you replicate the privilege tables in the mysql database and update those tables directly
without using GRANT, you must issue a FLUSH PRIVILEGES on the slaves to put the new privileges into effect. In addition, if you
use FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue FLUSH TABLES manually on the
slaves. These statements are written to the binary log unless you specify NO_WRITE_TO_BINLOG or its alias LOCAL.

16.3.1.8. Replication and System Functions

Certain functions do not replicate well under some conditions:

• The USER(), CURRENT_USER(), UUID(), VERSION(), and LOAD_FILE() functions are replicated without change and thus
do not work reliably on the slave unless row-based replication is enabled. This is also true for CURRENT_USER. (See Sec-
tion 16.1.2, “Replication Formats”.)

For early implementations of mixed-format logging, stored functions, triggers, and views that use these functions in their body do
not replicate reliably in mixed-format logging mode because the logging did not switch from statement-based to row-based format.
For example, INSERT INTO t SELECT FROM v, where v is a view that selects UUID() could cause problems. This limita-
tion is lifted in MySQL 5.1.12.

Beginning with MySQL 5.1.23, USER(), CURRENT_USER(), and CURRENT_USER are automatically replicated using row-based
replication when using MIXED mode, and generate a warning in STATEMENT mode. (Bug#28086)

• Unlike NOW(), the SYSDATE() function is not replication-safe because it is not affected by SET TIMESTAMP statements in the
binary log and is non-deterministic if statement-based logging is used. This is not a problem if row-based logging is used. Another
option is to start the server with the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW().

• The following restriction applies to statement-based replication only, not to row-based replication. The GET_LOCK(), RE-
LEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions that handle user-level locks are replicated without the
slave knowing the concurrency context on master. Therefore, these functions should not be used to insert into a master's table be-
cause the content on the slave would differ. (For example, do not issue a statement such as INSERT INTO mytable VAL-
UES(GET_LOCK(...)).)

As a workaround for the preceding limitations when statement-based replication is in effect, you can use the strategy of saving the prob-
lematic function result in a user variable and referring to the variable in a later statement. For example, the following single-row IN-
SERT is problematic due to the reference to the UUID() function:

INSERT INTO t VALUES(UUID());

To work around the problem, do this instead:

Replication

1074

http://bugs.mysql.com/28086


SET @my_uuid = UUID();
INSERT INTO t VALUES(@my_uuid);

That sequence of statements replicates because the value of @my_uuid is stored in the binary log as a user-variable event prior to the
INSERT statement and is available for use in the INSERT.

The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert, you can do this:

SET @my_uuid1 = UUID(); @my_uuid2 = UUID();
INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);

However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For example, you cannot convert the
following statement to one in which a given individual user variable is associated with each row:

INSERT INTO t2 SELECT UUID(), * FROM t1;

The FOUND_ROWS() and ROW_COUNT() functions are not replicated reliably using statement-based replication. A workaround is to
store the result of the function call in a user variable, and then use that in the INSERT statement. For example, if you wish to store the
result in a table named mytable, you might normally do so like this:

SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1;
INSERT INTO mytable VALUES( FOUND_ROWS() );

However, if you are replicating mytable, then you should use SELECT INTO, and then store the variable in the table, like this:

SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(@found_rows);

In this way, the user variable is replicated as part of the context, and applied on the slave correctly.

Beginning with MySQL 5.1.23, these functions are automatically replicated using row-based replication when using MIXED mode, and
generate a warning in STATEMENT mode. (Bug#12092, Bug#30244)

16.3.1.9. Replication and LIMIT

Statement-based replication of LIMIT clauses in DELETE, UPDATE, and INSERT ... SELECT statements is unsafe since the order
of the rows affected is not defined. Beginning with MySQL 5.1.24, when such a statement is encountered:

• when using STATEMENT mode, a warning that the statement is not safe for statement-based replication is now issued

• when using MIXED mode, the statement is now automatically replicated using row-based mode

16.3.1.10. Replication and LOAD DATA

The LOAD DATA statement is not replicated correctly to a slave running MySQL 5.1 or later from a master running MySQL 4.0 or
earlier.

When using statement-based replication, the LOAD DATA INFILE statement's CONCURRENT option is not replicated; that is, LOAD
DATA CONCURRENT INFILE is replicated as LOAD DATA INFILE, and LOAD DATA CONCURRENT LOCAL INFILE is rep-
licated as LOAD DATA LOCAL INFILE. The CONCURRENT option is replicated when using row-based replication. (Bug#34628)

16.3.1.11. Replication During a Master Crash

A crash on the master side can result in the master's binary log having a final position less than the most recent position read by the
slave, due to the master's binary log file not being flushed. This can cause the slave not to be able to replicate when the master comes
back up. Setting sync_binlog=1 in the master my.cnf file helps to minimize this problem because it causes the master to flush its
binary log more frequently.

16.3.1.12. Replication During a Master Shutdown

It is safe to shut down a master server and restart it later. When a slave loses its connection to the master, the slave tries to reconnect im-
mediately and retries periodically if that fails. The default is to retry every 60 seconds. This may be changed with the CHANGE MAS-

Replication

1075

http://bugs.mysql.com/12092
http://bugs.mysql.com/30244
http://bugs.mysql.com/34628


TER TO statement or --master-connect-retry option. A slave also is able to deal with network connectivity outages. However,
the slave notices the network outage only after receiving no data from the master for slave_net_timeout seconds. If your outages
are short, you may want to decrease slave_net_timeout. See Section 5.1.3, “System Variables”.

16.3.1.13. Replication with MEMORY Tables

When a server shuts down and restarts, its MEMORY tables become empty. The master replicates this effect to slaves as follows: The first
time that the master uses each MEMORY table after startup, it logs an event that notifies the slaves that the table needs to be emptied by
writing a DELETE statement for that table to the binary log. See Section 13.7, “The MEMORY (HEAP) Storage Engine”, for more in-
formation about MEMORY tables.

16.3.1.14. Replication of the System mysql Database

For MySQL 5.1.14 and later, the mysql database is not replicated. The mysql database is instead seen as a node specific database.
Row-based replication is not supported on this table. Instead, statements that would normally update this information (including
GRANT, REVOKE and the manipulation of triggers, stored routines/procedures, and views) are all replicated to slaves using Statement
based replication.

For MySQL 5.1.13 and earlier, user privileges are replicated only if the mysql database is replicated. That is, the GRANT, REVOKE,
SET PASSWORD, CREATE USER, and DROP USER statements take effect on the slave only if the replication setup includes the
mysql database.

If you're replicating all databases, but don't want statements that affect user privileges to be replicated, set up the slave to not replicate
the mysql database, using the --replicate-wild-ignore-table=mysql.% option. The slave will recognize that issuing
privilege-related SQL statements won't have an effect, and thus not execute those statements.

16.3.1.15. Replication and Reserved Words

You can encounter problems when you are attempting to replicate from an older master to a newer slave and you make use of identifiers
on the master that are reserved words in the newer MySQL version running on the slave. An example of this is using a table column
named current_user on a 4.0 master that is replicating to a 4.1 or higher slave, because CURRENT_USER is a reserved word begin-
ning in MySQL 4.1. Replication can fail in such cases with Error 1064 YOU HAVE AN ERROR IN YOUR SQL SYNTAX..., even if a
database or table named using the reserved word or a table having a column named using the reserved word is excluded from replica-
tion. This is due to the fact that each SQL statement must be parsed by the slave prior to execution, so that the slave knows which data-
base object or objects would be effected by the statement; only after the statement is parsed can the slave apply any filtering rules
defined by --replicate-do-db, --replicate-do-table, --replicate-ignore-db, and -
-replicate-ignore-ignore.

To work around the problem of database, table, or column names on the master which would be regarded as reserved words by the
slave, do one of the following:

• Use one or more ALTER TABLE statements on the master to change the names of any database objects where these names would
be considered reserved words on the slave, and change any SQL statements that use the old names to use the new names instead.

• In any SQL statements using these database object names, set the names off using backtick characters (`).

For listings of reserved words by MySQL version, see Reserved Words,.in the MySQL Server Version Reference.

16.3.1.16. Slave Errors during Replication

If a statement on a slave produces an error, the slave SQL thread terminates, and the slave writes a message to its error log. You should
then connect to the slave manually and determine the cause of the problem. (SHOW SLAVE STATUS is useful for this.) Then fix the
problem (for example, you might need to create a non-existent table) and run START SLAVE.

MySQL Enterprise
For instant notification when a slave thread terminates subscribe to the MySQL Enterprise Monitor. For more
information see http://www.mysql.com/products/enterprise/advisors.html.

16.3.1.17. Replication during a Slave Shutdown

Shutting down the slave (cleanly) is also safe because it keeps track of where it left off. Unclean shutdowns might produce problems,
especially if the disk cache was not flushed to disk before the system went down. Your system fault tolerance is greatly increased if you
have a good uninterruptible power supply. Unclean shutdowns of the master may cause inconsistencies between the content of tables
and the binary log in master; this can be avoided by using InnoDB tables and the --innodb-safe-binlog option on the master.

Replication

1076

http://dev.mysql.com/doc/mysqld-version-reference/en/mysqld-version-reference-optvar.html
http://www.mysql.com/products/enterprise/advisors.html


See Section 5.2.4, “The Binary Log”.

16.3.1.18. Replication and Temporary Tables

This item does not apply when row-based replication is in use because in that case temporary tables are not replicated (see Sec-
tion 16.1.2, “Replication Formats”).

Temporary tables are replicated except in the case where you shut down the slave server (not just the slave threads) and you have replic-
ated temporary tables that are used in updates that have not yet been executed on the slave. If you shut down the slave server, the tem-
porary tables needed by those updates are no longer available when the slave is restarted. To avoid this problem, do not shut down the
slave while it has temporary tables open. Instead, use the following procedure:

1. Issue a STOP SLAVE statement.

2. Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.

3. If the value is 0, issue a mysqladmin shutdown command to stop the slave.

4. If the value is not 0, restart the slave threads with START SLAVE.

5. Repeat the procedure later until the Slave_open_temp_tables variable is 0 and you can stop the slave.

16.3.1.19. Replication Retries and Timeouts

The global system variable slave_transaction_retries affects replication as follows: If the replication slave SQL thread fails
to execute a transaction because of an InnoDB deadlock or because it exceeded the InnoDB innodb_lock_wait_timeout
value, or the NDBCluster TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout value, the
transaction is automatically retried slave_transaction_retries times before stopping with an error. The default value is 10.
The total retry count can be seen in the output of SHOW STATUS; see Section 5.1.5, “Status Variables”.

16.3.1.20. Replication and Time Zones

If the master uses MySQL 4.1, the same system time zone should be set for both master and slave. Otherwise some statements will not
be replicated properly, such as statements that use the NOW() or FROM_UNIXTIME() functions. You can set the time zone in which
MySQL server runs by using the --timezone=timezone_name option of the mysqld_safe script or by setting the TZ environ-
ment variable. Both master and slave should also have the same default connection time zone setting; that is, the -
-default-time-zone parameter should have the same value for both master and slave. Note that this is not necessary when the
master is MySQL 5.0 or later.

CONVERT_TZ(...,...,@@session.time_zone) is properly replicated only if both master and slave are running MySQL 5.0.4
or newer.

16.3.1.21. Replication and Transactions

It is possible to replicate transactional tables on the master using non-transactional tables on the slave. For example, you can replicate an
InnoDB master table as a MyISAM slave table. However, if you do this, there are problems if the slave is stopped in the middle of a
BEGIN/COMMIT block because the slave restarts at the beginning of the BEGIN block.

In situations where transactions mix updates to transactional and non-transactional tables, the order of statements in the binary log is
correct, and all needed statements are written to the binary log even in case of a ROLLBACK. However, when a second connection up-
dates the non-transactional table before the first connection's transaction is complete, statements can be logged out of order, because the
second connection's update is written immediately after it is performed, regardless of the state of the transaction being performed by the
first connection.

Due to the non-transactional nature of MyISAM tables, it is possible to have a statement that only partially updates a table and returns an
error code. This can happen, for example, on a multiple-row insert that has one row violating a key constraint, or if a long update state-
ment is killed after updating some of the rows. If that happens on the master, the slave thread exits and waits for the database adminis-
trator to decide what to do about it unless the error code is legitimate and execution of the statement results in the same error code on
the slave. If this error code validation behavior is not desirable, some or all errors can be masked out (ignored) with the -
-slave-skip-errors option.

Caution

Replication

1077



You should not use transactions in a replication environment that update both transactional and non-transactional tables.

When the storage engine type of the slave is non-transactional, transactions on the master that mix updates of transactional and non-
transactional tables should be avoided because they can cause inconsistency of the data between the master's transactional table and the
slave's non-transactional table. That is, such transactions can lead to master storage engine-specific behavior with the possible effect of
replication going out of synchrony. MySQL does not issue a warning about this currently, so extra care should be taken when replicat-
ing transactional tables from the master to non-transactional ones on the slaves.

16.3.1.22. Replication with Differing Tables on Master and Slave

Starting with MySQL 5.1.21, source and target tables for replication do not have to be identical. A table on the master can have more or
fewer columns than the slave's copy of the table. In addition — subject to certain conditions — corresponding table columns on the
master and the slave can use different data types.

In all cases where the source and target tables do not have identical definitions, the following must be true in order for replication to
work:

• You must be using row-based replication. (Using MIXED for the binary logging format does not work.)

• The database and table names must be the same on both the master and the slave.

Additional conditions are discussed (and examples provided) in the following two sections.

16.3.1.22.1. Replication with More Columns on Master or Slave

Starting with MySQL 5.1.21, you can replicate a table from the master to the slave such that the master's copy of the table and the
slave's copy of the table do not have the same number of columns, subject to the following conditions:

• Each “extra” column in the version of the table having more columns must have a default value.

Note

A column's default value is determined by a number of factors, including its type, whether it is defined with a DEFAULT
option, whether it is declared as NULL, and the server SQL mode in effect at the time of its creation; see Section 10.1.4,
“Data Type Default Values”), for more information.

• Matching columns must be defined in the same order on both the master and the slave.

• Any additional columns must be defined following the matching columns.

In addition, when the slave's copy of the table has more columns than the master's copy, then each matching column must use the same
data type.

Examples. The following examples illustrate some valid and invalid table definitions:

• More columns on the master. The following table definitions are valid:

master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT);

The following table definitions would raise Error 1532 (ER_BINLOG_ROW_RBR_TO_SBR) because the definitions of the columns
common to both versions of the table are in a different order on the slave than they are on the master:

master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave> CREATE TABLE t1 (c2 INT, c1 INT);

The following table definitions would also raise Error 1532, because the definition of the extra column on the master appears before
the definitions of the columns common to both versions of the table:

master> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT);

• More columns on the slave. The following definitions replicate correctly:

Replication

1078



master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

The following definitions raise Error 1532 because the columns common to both versions of the table are not defined in the same or-
der on both the master and the slave:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c2 INT, c1 INT, c3 INT);

The following table definitions also raise Error 1532 because the definition for the extra column in the slave's version of the table
appears before the definitions for the columns which are common to both versions of the table:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);

The following table definitions fail, because the slave's version of the table has additional columns compared to the master's version,
and the two versions of the table define column c2 as a different data type.

master> CREATE TABLE t1 (c1 INT, c2 BIGINT);
slave> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

16.3.1.22.2. Replication with Columns Having Different Data Types

Corresponding columns on the master's and the slave's copies of the same table should have the same type. However, beginning with
MySQL 5.1.21, this is not always strictly enforced, as long as certain conditions are met. These conditions are listed here:

• The slave's copy of the table cannot contain more columns than the master's copy.

• For columns holding numeric data types the sizes may differ, as long as the size of the the slave's version of the column is equal or
greater to the size of the master's version of the column. For example, the following table definitions are allowed:

master> CREATE TABLE t1 (c1 TINYINT, c2 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT);

The slave's versions of both columns c1 and c2 are the same size as or larger than the master's versions of these columns. However,
the following definitions would fail:

master> CREATE TABLE t1 (c1 INT, c2 FLOAT(8,3));
slave> CREATE TABLE t1 (c1 INT, c2 FLOAT(7,3));

In this case, Error 1532 would be raised because the master's copy of column c2 is larger than its counterpart on the slave — that is,
the master's copy of c2 on the master can hold more digits than the slave's copy of the column.

• There is no conversion between numeric data types, and so the following definitions would fail with Error 1532:

master> CREATE TABLE t1 (c1 INT, c2 FLOAT(8,3));
slave> CREATE TABLE t1 (c1 INT, c2 BIGINT);

• For columns storing CHAR and BINARY data, the size of the slave's copy of the column must be equal to or greater than the size of
the master's copy. For example, the following table definitions would replicate successfully:

master> CREATE TABLE t1 (c1 INT, c2 CHAR(30));
slave> CREATE TABLE t1 (c1 INT, c2 CHAR(50));

If the size of the master's version of the column is greater than that of the slave's version of the column, replication fails with Error
1532.

• The replication process can convert freely between BINARY, VARBINARY, CHAR and VARCHAR columns. For example, the fol-
lowing table definitions can be used successfully:

master> CREATE TABLE t1 (c1 INT, c2 VARBINARY(30));
slave> CREATE TABLE t1 (c1 INT, c2 CHAR(30));

Note

Replication

1079



Since replication is currently not supported between different character sets, it is sufficient when comparing sizes of
columns containing character data to count the number of characters rather than the number of bytes.

16.3.1.23. Replication and Variables

The FOREIGN_KEY_CHECKS, UNIQUE_CHECKS, and SQL_AUTO_IS_NULL variables are all replicated.

SQL_MODE is also replicated except for the NO_DIR_IN_CREATE mode. However, when mysqlbinlog parses a SET
@@SQL_MODE = value statement, the full value, including NO_DIR_IN_CREATE, is passed to the receiving server.

The storage_engine system variable is not replicated, which is a good thing for replication between different storage engines.

Session variables are not replicated properly when used in statements that update tables. For example, SET MAX_JOIN_SIZE=1000
followed by INSERT INTO mytable VALUES(@@MAX_JOIN_SIZE) will not insert the same data on the master and the slave.
This does not apply to the common sequence of SET TIME_ZONE=... followed by INSERT INTO mytable VAL-
UES(CONVERT_TZ(...,...,@@time_zone)).

Replication of session variables is not a problem when row-based replication is being used. See Section 16.1.2, “Replication Formats”.

16.3.1.24. Replication and Views

Views are always replicated to slaves. Views are filtered by their own name, not by the tables they refer to. This means that a view can
be replicated to the slave even if the view contains a table that would normally be filtered out by replication-ignore-table
rules. Care should therefore be taken to ensure that views do not replicate table data that would normally be filtered for security reasons.

16.3.2. Replication Compatibility Between MySQL Versions
The binary log format as implemented in MySQL 5.1 is considerably different from that used in previous versions, especially with re-
gard to handling of character sets, LOAD DATA INFILE, and time zones.

As a general rule, you should set up replication only between masters and slaves running the same major versions (5.1, 5.0 or 4.1) of
MySQL. If you must execute replication between different major versions, ensure that your client is at a version equal to or higher than
that of the master. For example, a master of 4.1.23 and a slave of 5.0.24 should work together.

We recommend using the most recent MySQL version available because replication capabilities are continually being improved. We
also recommend using the same version for both the master and the slave. We recommend upgrading masters and slaves running alpha
or beta versions to new (production) versions. In many cases, replication from a newer master to an older slave will fail.

In general (but not always), slaves running MySQL 5.1.x can be used with older masters, but not the reverse. However, there are known
issues with trying to replicate from a 4.0 or earlier master to a 5.1 or later slave (Bug#31240). For more information on potential issues,
see Section 16.3.1, “Replication Features and Issues”.

Note

You cannot replicate from a master that uses a newer binary log format to a slave that uses an older format (for example,
from MySQL 5.0 to MySQL 4.1.) This has significant implications for upgrading replication servers, as described in Sec-
tion 16.3.3, “Upgrading a Replication Setup”.

The preceding information pertains to replication compatibility at the protocol level. However, there can be other constraints, such as
SQL-level compatibility issues. For example, a 5.1 master cannot replicate to a 5.0 slave if the replicated statements use SQL features
available in 5.1 but not in 5.0. These and other issues are discussed in Section 16.3.1, “Replication Features and Issues”.

16.3.3. Upgrading a Replication Setup
When you upgrade servers that participate in a replication setup, the procedure for upgrading depends on the current server versions and
the version to which you are upgrading.

This section applies to upgrading replication from MySQL 3.23, 4.0, or 4.1 to MySQL 5.1. A 4.0 server should be 4.0.3 or newer.

When you upgrade a master to 5.1 from an earlier MySQL release series, you should first ensure that all the slaves of this master are us-
ing the same 5.1.x release. If this is not the case, you should first upgrade the slaves. To upgrade each slave, shut it down, upgrade it to
the appropriate 5.1.x version, restart it, and restart replication. The 5.1 slave is able to read the old relay logs written prior to the upgrade

Replication

1080

http://bugs.mysql.com/31240


and to execute the statements they contain. Relay logs created by the slave after the upgrade are in 5.1 format.

After the slaves have been upgraded, shut down the master, upgrade it to the same 5.1.x release as the slaves, and restart it. The 5.1 mas-
ter is able to read the old binary logs written prior to the upgrade and to send them to the 5.1 slaves. The slaves recognize the old format
and handle it properly. Binary logs created by the master following the upgrade are in 5.1 format. These too are recognized by the 5.1
slaves.

In other words, there are no measures to take when upgrading to MySQL 5.1, except that the slaves must be MySQL 5.1 before you can
upgrade the master to 5.1. Note that downgrading from 5.1 to older versions does not work so simply: You must ensure that any 5.1 bin-
ary logs or relay logs have been fully processed, so that you can remove them before proceeding with the downgrade.

Downgrading a replication setup to a previous version cannot be done once you've switched from statement-based to row-based replica-
tion, and after the first row-based statement has been written to the binlog. See Section 16.1.2, “Replication Formats”.

16.3.4. Replication FAQ

MySQL Enterprise
For expert advice on replication subscribe to the MySQL Enterprise Monitor. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

Questions

• 17.3.4.1: Does the slave need to be connected to the master all the time?

• 17.3.4.2: Do I have to enable networking on my master to enable replication?

• 17.3.4.3: How do I know how late a slave is compared to the master? In other words, how do I know the date of the last statement
replicated by the slave?

• 17.3.4.4: How do I force the master to block updates until the slave catches up?

• 17.3.4.5: What issues should I be aware of when setting up two-way replication?

• 17.3.4.6: How can I use replication to improve performance of my system?

• 17.3.4.7: What should I do to prepare client code in my own applications to use performance-enhancing replication?

• 17.3.4.8: When and how much can MySQL replication improve the performance of my system?

• 17.3.4.9: How can I use replication to provide redundancy or high availability?

• 17.3.4.10: How do I tell whether a master server is using statement-based or row-based binary logging format?

• 17.3.4.11: How do I tell a slave to use row-based replication?

• 17.3.4.12: How do I prevent GRANT and REVOKE statements from replicating to slave machines?

• 17.3.4.13: Does replication work on mixed operating systems (for example, the master runs on Linux while slaves run on Mac OS X
and Windows)?

• 17.3.4.14: Does replication work on mixed hardware architectures (for example, the master runs on a 64-bit machine while slaves
run on 32-bit machines)?

Questions and Answers

17.3.4.1: Does the slave need to be connected to the master all the time?

No, it does not. The slave can go down or stay disconnected for hours or even days, and then reconnect and catch up on updates. For ex-
ample, you can set up a master/slave relationship over a dial-up link where the link is up only sporadically and for short periods of time.
The implication of this is that, at any given time, the slave is not guaranteed to be in sync with the master unless you take some special
measures.

To ensure that this is the case, you must not remove binary logs from the master, where the information has not been replicated to the
slaves. Asynchronous replication can only work if the slave is able to read the binary log from the last point in the binary logs where it

Replication

1081

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


had read the replication statements.

17.3.4.2: Do I have to enable networking on my master to enable replication?

Networking must be enabled on the master. If networking is not enabled, then the slave is unable to connect to the master and transfer
the binary log. Check that the skip-networking option has not been enabled in your configuration file.

17.3.4.3: How do I know how late a slave is compared to the master? In other words, how do I know the date of the last state-
ment replicated by the slave?

You can read the Seconds_Behind_Master column in SHOW SLAVE STATUS. See Section 16.4.1, “Replication Implementation
Details”.

When the slave SQL thread executes an event read from the master, it modifies its own time to the event timestamp. (This is why
TIMESTAMP is well replicated.) In the Time column in the output of SHOW PROCESSLIST, the number of seconds displayed for the
slave SQL thread is the number of seconds between the timestamp of the last replicated event and the real time of the slave machine.
You can use this to determine the date of the last replicated event. Note that if your slave has been disconnected from the master for one
hour, and then reconnects, you may immediately see Time values like 3600 for the slave SQL thread in SHOW PROCESSLIST. This is
because the slave is executing statements that are one hour old.

17.3.4.4: How do I force the master to block updates until the slave catches up?

Use the following procedure:

1. On the master, execute these statements:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Record the replication coordinates (the log filename and offset) from the output of the SHOW statement.

2. On the slave, issue the following statement, where the arguments to the MASTER_POS_WAIT() function are the replication co-
ordinate values obtained in the previous step:

mysql> SELECT MASTER_POS_WAIT('log_name', log_offset);

The SELECT statement blocks until the slave reaches the specified log file and offset. At that point, the slave is in synchrony with
the master and the statement returns.

3. On the master, issue the following statement to allow the master to begin processing updates again:

mysql> UNLOCK TABLES;

17.3.4.5: What issues should I be aware of when setting up two-way replication?

MySQL replication currently does not support any locking protocol between master and slave to guarantee the atomicity of a distributed
(cross-server) update. In other words, it is possible for client A to make an update to co-master 1, and in the meantime, before it propag-
ates to co-master 2, client B could make an update to co-master 2 that makes the update of client A work differently than it did on co-
master 1. Thus, when the update of client A makes it to co-master 2, it produces tables that are different from what you have on co-
master 1, even after all the updates from co-master 2 have also propagated. This means that you should not chain two servers together in
a two-way replication relationship unless you are sure that your updates can safely happen in any order, or unless you take care of mis-
ordered updates somehow in the client code.

You should also realize that two-way replication actually does not improve performance very much (if at all) as far as updates are con-
cerned. Each server must do the same number of updates, just as you would have a single server do. The only difference is that there is a
little less lock contention, because the updates originating on another server are serialized in one slave thread. Even this benefit might
be offset by network delays.

17.3.4.6: How can I use replication to improve performance of my system?

You should set up one server as the master and direct all writes to it. Then configure as many slaves as you have the budget and rack-
space for, and distribute the reads among the master and the slaves. You can also start the slaves with the --skip-innodb, -
-low-priority-updates, and --delay-key-write=ALL options to get speed improvements on the slave end. In this case,

Replication

1082



the slave uses non-transactional MyISAM tables instead of InnoDB tables to get more speed by eliminating transactional overhead.

17.3.4.7: What should I do to prepare client code in my own applications to use performance-enhancing replication?

See the guide to using replication as a scale-out solution, Section 16.2.3, “Using Replication for Scale-Out”.

17.3.4.8: When and how much can MySQL replication improve the performance of my system?

MySQL replication is most beneficial for a system that processes frequent reads and infrequent writes. In theory, by using a single-
master/multiple-slave setup, you can scale the system by adding more slaves until you either run out of network bandwidth, or your up-
date load grows to the point that the master cannot handle it.

To determine how many slaves you can use before the added benefits begin to level out, and how much you can improve performance
of your site, you need to know your query patterns, and to determine empirically by benchmarking the relationship between the through-
put for reads (reads per second, or reads) and for writes (writes) on a typical master and a typical slave. The example here shows a
rather simplified calculation of what you can get with replication for a hypothetical system.

Let's say that system load consists of 10% writes and 90% reads, and we have determined by benchmarking that reads is 1200 – 2 ×
writes. In other words, the system can do 1,200 reads per second with no writes, the average write is twice as slow as the average
read, and the relationship is linear. Let us suppose that the master and each slave have the same capacity, and that we have one master
and N slaves. Then we have for each server (master or slave):

reads = 1200 – 2 × writes

reads = 9 × writes / (N + 1) (reads are split, but writes go to all servers)

9 × writes / (N + 1) + 2 × writes = 1200

writes = 1200 / (2 + 9/(N+1))

The last equation indicates the maximum number of writes for N slaves, given a maximum possible read rate of 1,200 per minute and a
ratio of nine reads per write.

This analysis yields the following conclusions:

• If N = 0 (which means we have no replication), our system can handle about 1200/11 = 109 writes per second.

• If N = 1, we get up to 184 writes per second.

• If N = 8, we get up to 400 writes per second.

• If N = 17, we get up to 480 writes per second.

• Eventually, as N approaches infinity (and our budget negative infinity), we can get very close to 600 writes per second, increasing
system throughput about 5.5 times. However, with only eight servers, we increase it nearly four times.

Note that these computations assume infinite network bandwidth and neglect several other factors that could be significant on your sys-
tem. In many cases, you may not be able to perform a computation similar to the one just shown that accurately predicts what will hap-
pen on your system if you add N replication slaves. However, answering the following questions should help you decide whether and by
how much replication will improve the performance of your system:

• What is the read/write ratio on your system?

• How much more write load can one server handle if you reduce the reads?

• For how many slaves do you have bandwidth available on your network?

17.3.4.9: How can I use replication to provide redundancy or high availability?

How you implement redundancy is entirely dependent on your application and circumstances. High-availability solutions (with auto-
matic failover) require active monitoring and either custom scripts or third party tools to provide the failover support from the original
MySQL server to the slave.

Replication

1083



To handle the process manually, you should be able to switch from a failed master to a pre-configured slave by altering your application
to talk to the new server or by adjusting the DNS for the MySQL server from the failed server to the new server.

For more information and some example solutions, see Section 16.2.6, “Switching Masters During Failover”.

17.3.4.10: How do I tell whether a master server is using statement-based or row-based binary logging format?

Check the value of the binlog_format system variable:

mysql> SHOW VARIABLES LIKE 'binlog_format';

The value will be either STATEMENT or ROW.

17.3.4.11: How do I tell a slave to use row-based replication?

Slaves automatically know which format to use.

17.3.4.12: How do I prevent GRANT and REVOKE statements from replicating to slave machines?

Start the server with the --replicate-wild-ignore-table=mysql.% option.

17.3.4.13: Does replication work on mixed operating systems (for example, the master runs on Linux while slaves run on Mac
OS X and Windows)?

Yes.

17.3.4.14: Does replication work on mixed hardware architectures (for example, the master runs on a 64-bit machine while
slaves run on 32-bit machines)?

Yes.

16.3.5. Troubleshooting Replication
If you have followed the instructions, and your replication setup is not working, the first thing to do is check the error log for messages.
Many users have lost time by not doing this soon enough after encountering problems.

If you cannot tell from the error log what the problem was, try the following techniques:

• Verify that the master has binary logging enabled by issuing a SHOW MASTER STATUS statement. If logging is enabled, Posi-
tion is non-zero. If binary logging is not enabled, verify that you are running the master with the --log-bin and -
-server-id options.

• Verify that the slave is running. Use SHOW SLAVE STATUS to check whether the Slave_IO_Running and
Slave_SQL_Running values are both Yes. If not, verify the options that were used when starting the slave server. For example,
--skip-slave-start prevents the slave threads from starting until you issue a START SLAVE statement.

• If the slave is running, check whether it established a connection to the master. Use SHOW PROCESSLIST, find the I/O and SQL
threads and check their State column to see what they display. See Section 16.4.1, “Replication Implementation Details”. If the I/
O thread state says Connecting to master, check the following:

• Verify the privileges for the user being used for replication on the master.

• Check that the hostname of the master is correct and that you are using the correct port to connect to the master. The port used
for replication is the same as used for client network communication (the default is 3306). For the hostname, ensure that the
name resolves to the correct IP address.

• Check that networking on the master and slave have not been disabled. Look for the skip-networking option in the config-
uration file. It should either be commented out or deleted entirely.

• If the master has a firewall or IP filtering configuration, ensure that the network port being used for MySQL is not being filtered.

• Check that you can reach the master by using ping or traceroute/tracert to reach the host.

• If the slave was running previously but has stopped, the reason usually is that some statement that succeeded on the master failed on

Replication

1084



the slave. This should never happen if you have taken a proper snapshot of the master, and never modified the data on the slave out-
side of the slave thread. If the slave stops unexpectedly, it is a bug or you have encountered one of the known replication limitations
described in Section 16.3.1, “Replication Features and Issues”. If it is a bug, see Section 16.3.6, “How to Report Replication Bugs or
Problems”, for instructions on how to report it.

• If a statement that succeeded on the master refuses to run on the slave, try the following procedure if it is not feasible to do a full
database resynchronization by deleting the slave's databases and copying a new snapshot from the master:

1. Determine whether the affected table on the slave is different from the master table. Try to understand how this happened. Then
make the slave's table identical to the master's and run START SLAVE.

2. If the preceding step does not work or does not apply, try to understand whether it would be safe to make the update manually
(if needed) and then ignore the next statement from the master.

3. If you decide that you can skip the next statement from the master, issue the following statements:

mysql> SET GLOBAL SQL_SLAVE_SKIP_COUNTER = N;
mysql> START SLAVE;

The value of N should be 1 if the next statement from the master does not use AUTO_INCREMENT or LAST_INSERT_ID().
Otherwise, the value should be 2. The reason for using a value of 2 for statements that use AUTO_INCREMENT or
LAST_INSERT_ID() is that they take two events in the binary log of the master.

4. If you are sure that the slave started out perfectly synchronized with the master, and that no one has updated the tables involved
outside of the slave thread, then presumably the discrepancy is the result of a bug. If you are running the most recent version of
MySQL, please report the problem. If you are running an older version, try upgrading to the latest production release to de-
termine whether the problem persists.

16.3.6. How to Report Replication Bugs or Problems
When you have determined that there is no user error involved, and replication still either does not work at all or is unstable, it is time to
send us a bug report. We need to obtain as much information as possible from you to be able to track down the bug. Please spend some
time and effort in preparing a good bug report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database using the instructions given in Sec-
tion 1.7, “How to Report Bugs or Problems”. If you have a “phantom” problem (one that you cannot duplicate at will), use the follow-
ing procedure:

1. Verify that no user error is involved. For example, if you update the slave outside of the slave thread, the data goes out of syn-
chrony, and you can have unique key violations on updates. In this case, the slave thread stops and waits for you to clean up the
tables manually to bring them into synchrony. This is not a replication problem. It is a problem of outside interference causing
replication to fail.

2. Run the slave with the --log-slave-updates and --log-bin options. These options cause the slave to log the updates that
it receives from the master into its own binary logs.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy information, it becomes difficult
or impossible for us to track down the problem. The evidence you should collect is:

• All binary logs from the master

• All binary logs from the slave

• The output of SHOW MASTER STATUS from the master at the time you discovered the problem

• The output of SHOW SLAVE STATUS from the slave at the time you discovered the problem

• Error logs from the master and the slave

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the problem statement. log_pos and
log_file are the Master_Log_File and Read_Master_Log_Pos values from SHOW SLAVE STATUS.

shell> mysqlbinlog -j log_pos log_file | head

Replication

1085



After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then enter the problem with as much
information as possible into our bugs database using the instructions at Section 1.7, “How to Report Bugs or Problems”.

16.4. Replication Implementation
The basic mechanics of replication is based on the master server keeping track of all changes to your databases (updates, deletes, and so
on) in its binary logs. The binary log serves as a written record of each to the database from the moment the database was started. The
binary log contains records of all the statements which edit or modify either the database structure or the data that the structure contains.
Typically SELECT statements are not recorded, as they do not modify the database data or structure.

Each slave that connects to the master receives a copy of the binary log, and executes the events within the binary log. This has the ef-
fect of repeating the original statements and changes just as they were made on the master. Tables are created or their structure modi-
fied, and data is inserted, deleted and updated according to the statements that were originally executed on the master.

Because each slave is independent, the replaying of the statements in the masters binary log can occur on each slave that is connected to
the master. In addition, because each slave only receives a copy of the binary log by requesting it from the master (it pulls the data from
the master, rather than the master pushing the data to the slave), the slave is able to read and update the copy of the database at it's own
pace and rate and can start and stop the replication process at will without affecting the master or the slaves ability to update to the latest
database status.

For more information on the specifics of the replication implementation, see Section 16.4.1, “Replication Implementation Details”.

Slaves and masters report their status in respect of the replication process regularly so that you can monitor the situation. For informa-
tion on slave states, see Section 7.5.5.5, “Replication Slave I/O Thread States”, and Section 7.5.5.6, “Replication Slave SQL Thread
States”. For master states, see Section 7.5.5.4, “Replication Master Thread States”.

The master binary log is written to a local relay log on the slave before it is processed. The slave also records information about the cur-
rent position with the master's binary log and the local relayed log. See Section 16.4.2, “Replication Relay and Status Files”.

Databases and tables are updated on the slave according to a set of rules that are applied according to the various configuration options
and variables that control statement evaluation. For details on how these rules are applied, see Section 16.4.3, “How Servers Evaluate
Replication Rules”.

16.4.1. Replication Implementation Details
MySQL replication capabilities are implemented using three threads (one on the master server and two on the slave). When a START
SLAVE statement is issued on a slave server, the slave creates an I/O thread, which connects to the master and asks it to send the up-
dates recorded in its binary logs. The master creates a thread to send the binary log contents to the slave. This thread can be identified as
the Binlog Dump thread in the output of SHOW PROCESSLIST on the master. The slave I/O thread reads the updates that the master
Binlog Dump thread sends and copies them to local files, known as relay logs, in the slave's data directory. The third thread is the
SQL thread, which the slave creates to read the relay logs and to execute the updates they contain.

MySQL Enterprise
For constant monitoring of the status of slaves subscribe to the MySQL Enterprise Monitor. For more informa-
tion see http://www.mysql.com/products/enterprise/advisors.html.

In the preceding description, there are three threads per master/slave connection. A master that has multiple slaves creates one thread for
each currently-connected slave, and each slave has its own I/O and SQL threads.

The slave uses two threads so that reading updates from the master and executing them can be separated into two independent tasks.
Thus, the task of reading statements is not slowed down if statement execution is slow. For example, if the slave server has not been
running for a while, its I/O thread can quickly fetch all the binary log contents from the master when the slave starts, even if the SQL
thread lags far behind. If the slave stops before the SQL thread has executed all the fetched statements, the I/O thread has at least
fetched everything so that a safe copy of the statements is stored locally in the slave's relay logs, ready for execution the next time that
the slave starts. This enables the master server to purge its binary logs sooner because it no longer needs to wait for the slave to fetch
their contents.

The SHOW PROCESSLIST statement provides information that tells you what is happening on the master and on the slave regarding
replication. See Section 7.5.5, “Examining Thread Information”, for descriptions of all replicated-related states.

The following example illustrates how the three threads show up in the output from SHOW PROCESSLIST.

On the master server, the output from SHOW PROCESSLIST looks like this:

Replication

1086

http://www.mysql.com/products/enterprise/advisors.html


mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 2
User: root
Host: localhost:32931
db: NULL

Command: Binlog Dump
Time: 94
State: Has sent all binlog to slave; waiting for binlog to

be updated
Info: NULL

Here, thread 2 is a Binlog Dump replication thread for a connected slave. The State information indicates that all outstanding up-
dates have been sent to the slave and that the master is waiting for more updates to occur. If you see no Binlog Dump threads on a
master server, this means that replication is not running — that is, that no slaves are currently connected.

On the slave server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 10
User: system user
Host:
db: NULL

Command: Connect
Time: 11
State: Waiting for master to send event
Info: NULL

*************************** 2. row ***************************
Id: 11

User: system user
Host:
db: NULL

Command: Connect
Time: 11
State: Has read all relay log; waiting for the slave I/O

thread to update it
Info: NULL

This information indicates that thread 10 is the I/O thread that is communicating with the master server, and thread 11 is the SQL thread
that is processing the updates stored in the relay logs. At the time that the SHOW PROCESSLIST was run, both threads were idle, wait-
ing for further updates.

The value in the Time column can show how late the slave is compared to the master. See Section 16.3.4, “Replication FAQ”.

16.4.2. Replication Relay and Status Files
During replication the MySQL server creates a number of files that are used to hold the relayed binary log from the master, and record
information about the current status and location within the relayed log. There are three file types used in the process:

• The relay log consists of the events read from the binary log of the master. Events in this binary log are executed on the slave as part
of the replication thread.

• The master.info file contains the status and current configuration information for the slave's connectivity to the master. The file
holds information on the master hostname, login credentials, and the current position within the master's binary log.

• The relay.info file holds the status information about the execution point within the slave's relay log files.

The relationship between the three files and the replication process is as follows. The master.info file retains the point within the
master binary log that has been read from the master. These read events are written to the relay log. The relay.info file records the
position within the relay log of the statements that have been executed.

16.4.2.1. The Slave Relay Log

By default, relay logs filenames have the form host_name-relay-bin.nnnnnn, where host_name is the name of the slave
server host and nnnnnn is a sequence number. Successive relay log files are created using successive sequence numbers, beginning
with 000001. The slave uses an index file to track the relay log files currently in use. The default relay log index filename is
host_name-relay-bin.index.

By default, the slave server creates relay log files in its data directory. The default filenames can be overridden with the -

Replication

1087



-relay-log and --relay-log-index server options. See Section 16.1.3, “Replication Options and Variables”.

Relay logs have the same format as binary logs and can be read using mysqlbinlog. The SQL thread automatically deletes each relay
log file as soon as it has executed all events in the file and no longer needs it. There is no explicit mechanism for deleting relay logs be-
cause the SQL thread takes care of doing so. However, FLUSH LOGS rotates relay logs, which influences when the SQL thread deletes
them.

A slave server creates a new relay log file under the following conditions:

• Each time the I/O thread starts.

• When the logs are flushed; for example, with FLUSH LOGS or mysqladmin flush-logs.

• When the size of the current relay log file becomes too large. The meaning of “too large” is determined as follows:

• If the value of max_relay_log_size is greater than 0, that is the maximum relay log file size.

• If the value of max_relay_log_size is 0, max_binlog_size determines the maximum relay log file size.

16.4.2.2. The Slave Status Files

A slave replication server creates two small files in the data directory. These status files are named master.info and relay-
log.info by default. Their names can be changed by using the --master-info-file and --relay-log-info-file op-
tions. See Section 16.1.3, “Replication Options and Variables”.

The two status files contain information like that shown in the output of the SHOW SLAVE STATUS statement, which is discussed in
Section 12.6.2, “SQL Statements for Controlling Slave Servers”. Because the status files are stored on disk, they survive a slave server's
shutdown. The next time the slave starts up, it reads the two files to determine how far it has proceeded in reading binary logs from the
master and in processing its own relay logs.

The I/O thread updates the master.info file. The following table shows the correspondence between the lines in the file and the
columns displayed by SHOW SLAVE STATUS.

Line Status Column Description

1 Number of lines in the file

2 Master_Log_File The name of the master binary log currently being read from the
master.

3 Read_Master_Log_Pos The current position within the master binary log that have been
read from the master.

4 Master_Host The hostname of the master.

5 Master_User The username used to connect to the master.

6 Password (not shown by SHOW SLAVE
STATUS)

The password used to connect to the master.

7 Master_Port The network port used to connect to the master.

8 Connect_Retry The period (in seconds) that the slave will wait before trying to re-
connect to the master.

9 Master_SSL_Allowed Indicates whether the server supports SSL connections.

10 Master_SSL_CA_File The file used for the Certificate Authority (CA) certificate.

11 Master_SSL_CA_Path The path to the Certificate Authority (CA) certificates.

12 Master_SSL_Cert The name of the SSL certificate file.

13 Master_SSL_Cipher The name of the cipher in use for the SSL connection.

14 Master_SSL_Key The name of the SSL key file.

15 Master_SSL_Verify_Server_Cert Whether to verify the server certificate.

Master_SSL_Verify_Server_Cert is present in master.info as of MySQL 5.1.18. It is used as described for the -
-ssl-verify-server-cert option in Section 5.5.7.3, “SSL Command Options”.

Replication

1088



The SQL thread updates the relay-log.info file. The following table shows the correspondence between the lines in the file and
the columns displayed by SHOW SLAVE STATUS.

Line Status Column Description

1 Relay_Log_File The name of the current relay log file.

2 Relay_Log_Pos The current position within the relay log file. Events up to this po-
sition have been executed on the slave database.

3 Relay_Master_Log_File The name of the master binary log file from which the events in
the relay log file were read.

4 Exec_Master_Log_Pos The equivalent position within the master's binary log file of
events that have already been executed.

The contents of the relay-log.info file and the states shown by the SHOW SLAVE STATES command may not match if the re-
lay-log.info file has not been flushed to disk. Ideally, you should only view relay-log.info on a slave that is offline (i.e.
mysqld is not running). For a running system, SHOW SLAVE STATUS should be used.

16.4.3. How Servers Evaluate Replication Rules
If a master server does not write a statement to its binary log, the statement is not replicated. If the server does log the statement, the
statement is sent to all slaves and each slave determines whether to execute it or ignore it.

On the master you can control which databases write events to the binary log using the --binlog-do-db and -
-binlog-ignore-db options to control binary logging. For a description of the rules that servers use in evaluating these options,
see Section 5.2.4, “The Binary Log”. You should not use these options to control the databases and tables that are replicated, instead,
use filtering on the slave to control the events that are executed on the slave.

On the slave side, decisions about whether to execute or ignore statements received from the master are made according to the -
-replicate-* options that the slave was started with. (See Section 16.1.3, “Replication Options and Variables”.) The slave evalu-
ates these options using the following procedure, which first checks the database-level options and then the table-level options.

In the simplest case, when there are no --replicate-* options, the procedure yields the result that the slave executes all statements
that it receives from the master. Otherwise, the result depends on the particular options given. In general, to make it easier to determine
what effect an option set will have, it is recommended that you avoid mixing “do” and “ignore” options, or wildcard and non-wildcard
options.

Stage 1. Check the database options.

At this stage, the slave checks whether there are any --replicate-do-db or --replicate-ignore-db options that specify
database-specific conditions:

• No: Permit the statement and proceed to the table-checking stage.

• Yes: Test the options using the same rules as for the --binlog-do-db and --binlog-ignore-db options to determine
whether to permit or ignore the statement. What is the result of the test?

• Permit: Do not execute the statement immediately. Defer the decision and proceed to the table-checking stage.

• Ignore: Ignore the statement and exit.

This stage can permit a statement for further option-checking, or cause it to be ignored. However, statements that are permitted at this
stage are not actually executed yet. Instead, they pass to the following stage that checks the table options.

Stage 2. Check the table options.

First, as a preliminary condition, the slave checks whether statement-based replication is enabled. If so and the statement occurs within
a stored function, execute the statement and exit. (If row-based replication is enabled, the slave does not know whether a statement oc-
curred within a stored function on the master, so this condition does not apply.)

Next, the slave checks for table options and evaluates them. If the server reaches this point, it executes all statements if there are no ta-
ble options. If there are “do” table options, the statement must match one of them if it is to be executed; otherwise, it is ignored. If there

Replication

1089



are any “ignore” options, all statements are executed except those that match any “ignore” option. The following steps describe how this
evaluation occurs in more detail.

1. Are there any --replicate-*-table options?

• No: There are no table restrictions, so all statements match. Execute the statement and exit.

• Yes: There are table restrictions. Evaluate the tables to be updated against them. There might be multiple tables to update, so
loop through the following steps for each table looking for a matching option. In this case, the behavior depends on whether
statement-based replication or row-based replication is enabled:

• Statement-based replication: Proceed to the next step and begin evaluating the table options in the order shown (first the
non-wild options, and then the wild options). Only tables that are to be updated are compared to the options. For example,
if the statement is INSERT INTO sales SELECT * FROM prices, only sales is compared to the options). If
several tables are to be updated (multiple-table statement), the first table that matches “do” or “ignore” wins. That is, the
server checks the first table against the options. If no decision could be made, it checks the second table against the options,
and so on.

• Row-based replication: All table row changes are filtered individually. For multiple-table updates, each table is filtered sep-
arately according to the options. Some updates may be executed and some not, depending on the options and the changes to
be made. Row-based replication correctly handles cases that would not replicate correctly with statement-based replication,
as in this example which assumes that tables in the foo database should be replicated:

mysql> USE bar;
mysql> INSERT INTO foo.sometable VALUES (1);

2. Are there any --replicate-do-table options?

• No: Proceed to the next step.

• Yes: Does the table match any of them?

• No: Proceed to the next step.

• Yes: Execute the statement and exit.

3. Are there any --replicate-ignore-table options?

• No: Proceed to the next step.

• Yes: Does the table match any of them?

• No: Proceed to the next step.

• Yes: Ignore the statement and exit.

4. Are there any --replicate-wild-do-table options?

• No: Proceed to the next step.

• Yes: Does the table match any of them?

• No: Proceed to the next step.

• Yes: Execute the statement and exit.

5. Are there any --replicate-wild-ignore-table options?

• No: Proceed to the next step.

• Yes: Does the table match any of them?

• No: Proceed to the next step.

• Yes: Ignore the statement and exit.

Replication

1090



6. No --replicate-*-table option was matched. Is there another table to test against these options?

• No: We have now tested all tables to be updated and could not match any option. Are there --replicate-do-table or -
-replicate-wild-do-table options?

• No: There were no “do” table options, so no explicit “do” match is required. Execute the statement and exit.

• Yes: There were “do” table options, so the statement is executed only with an explicit match to one of them. Ignore the
statement and exit.

• Yes: Loop.

Examples:

• No --replicate-* options at all

The slave executes all statements that it receives from the master.

• --replicate-*-db options, but no table options

The slave permits or ignores statements using the database options. Then it executes all statements permitted by those options be-
cause there are no table restrictions.

• --replicate-*-table options, but no database options

All statements are permitted at the database-checking stage because there are no database conditions. The slave executes or ignores
statements based on the table options.

• A mix of database and table options

The slave permits or ignores statements using the database options. Then it evaluates all statements permitted by those options ac-
cording to the table options. In some cases, this process can yield what might seem a counterintuitive result. Consider the following
set of options:

[mysqld]
replicate-do-db = db1
replicate-do-table = db2.mytbl2

Suppose that db1 is the default database and the slave receives this statement:

INSERT INTO mytbl1 VALUES(1,2,3);

The database is db1, which matches the --replicate-do-db option at the database-checking stage. The algorithm then pro-
ceeds to the table-checking stage. If there were no table options, the statement would be executed. However, because the options in-
clude a “do” table option, the statement must match if it is to be executed. The statement does not match, so it is ignored. (The same
would happen for any table in db1.)

Replication

1091



Chapter 17. MySQL Cluster
MySQL Cluster is a high-availability, high-redundancy version of MySQL adapted for the distributed computing environment. It uses
the NDB Cluster storage engine to enable running several MySQL servers in a cluster. This storage engine is available in MySQL
5.1 binary releases and in RPMs compatible with most modern Linux distributions.

Note

Binary releases and RPMs are not available for MySQL Cluster 5.1 Carrier Grade Edition, which must be built from
source.

MySQL Cluster is currently available and supported on a number of platforms, including Linux, Solaris, Mac OS X, HP-UX, and other
Unix-style operating systems on a variety of hardware. For exact levels of support available for on specific combinations of operating
system versions, operating system distributions, and hardware platforms, please refer to the Cluster Supported Platforms list maintained
by the MySQL Support Team on the MySQL AB Web site.

MySQL Cluster is not currently supported on Microsoft Windows. We are working to make Cluster available on all operating systems
supported by MySQL, including Windows, and will update the information provided here as this work continues.

This chapter represents a work in progress, and its contents are subject to revision as MySQL Cluster continues to evolve. Additional in-
formation regarding MySQL Cluster can be found on the MySQL AB Web site at http://www.mysql.com/products/cluster/.

Information about MySQL MySQL Cluster 5.1 Carrier Grade Edition can be found in Section 17.2, “MySQL Cluster 5.1 Carrier Grade
Edition” as well as on the MySQL AB web site at http://www.mysql.com/why-mysql/telecom/.

Additional resources. More information may be found in the following places:

• Answers to some commonly asked questions about Cluster may be found in the Section A.10, “MySQL 5.1 FAQ — MySQL
Cluster”.

• The MySQL Cluster mailing list: http://lists.mysql.com/cluster.

• The MySQL Cluster Forum: http://forums.mysql.com/list.php?25.

• Many MySQL Cluster users and some of the MySQL Cluster developers blog about their experiences with Cluster, and make feeds
of these available through PlanetMySQL.

• If you are new to MySQL Cluster, you may find our Developer Zone article How to set up a MySQL Cluster for two servers to be
helpful.

17.1. MySQL Cluster Overview
MySQL Cluster is a technology that enables clustering of in-memory databases in a shared-nothing system. The shared-nothing architec-
ture allows the system to work with very inexpensive hardware, and with a minimum of specific requirements for hardware or software.

MySQL Cluster is designed not to have any single point of failure. For this reason, each component is expected to have its own memory
and disk, and the use of shared storage mechanisms such as network shares, network filesystems, and SANs is not recommended or sup-
ported.

MySQL Cluster integrates the standard MySQL server with an in-memory clustered storage engine called NDB. In our documentation,
the term NDB refers to the part of the setup that is specific to the storage engine, whereas “MySQL Cluster” refers to the combination of
MySQL and the NDB storage engine.

A MySQL Cluster consists of a set of computers, each running a one or more processes which may include a MySQL server, a data
node, a management server, and (possibly) a specialized data access programs. The relationship of these components in a cluster is
shown here:

1092

http://www.mysql.com/support/supportedplatforms/cluster.html
http://www.mysql.com/products/cluster/
http://www.mysql.com/why-mysql/telecom/
http://lists.mysql.com/cluster
http://forums.mysql.com/list.php?25
http://www.planetmysql.org/
http://dev.mysql.com/tech-resources/articles/mysql-cluster-for-two-servers.html


All these programs work together to form a MySQL Cluster. When data is stored in the NDB Cluster storage engine, the tables are
stored in the data nodes. Such tables are directly accessible from all other MySQL servers in the cluster. Thus, in a payroll application
storing data in a cluster, if one application updates the salary of an employee, all other MySQL servers that query this data can see this
change immediately.

The data stored in the data nodes for MySQL Cluster can be mirrored; the cluster can handle failures of individual data nodes with no
other impact than that a small number of transactions are aborted due to losing the transaction state. Because transactional applications
are expected to handle transaction failure, this should not be a source of problems.

17.1.1. MySQL Cluster Core Concepts
NDB is an in-memory storage engine offering high-availability and data-persistence features.

The NDB storage engine can be configured with a range of failover and load-balancing options, but it is easiest to start with the storage
engine at the cluster level. MySQL Cluster's NDB storage engine contains a complete set of data, dependent only on other data within
the cluster itself.

The cluster portion of MySQL Cluster is currently configured independently of the MySQL servers. In a MySQL Cluster, each part of
the cluster is considered to be a node.

Note

In many contexts, the term “node” is used to indicate a computer, but when discussing MySQL Cluster it means a process.
It is possible to run any number of nodes on a single computer, for which we use the term cluster host.

(However, it should be noted MySQL does not currently support the use of multiple data nodes on a single computer in a production
setting. See Section 17.15.10, “Limitations Relating to Multiple Cluster Nodes”.)

There are three types of cluster nodes, and in a minimal MySQL Cluster configuration, there will be at least three nodes, one of each of
these types:

MySQL Cluster

1093



• Management node (MGM node): The role of this type of node is to manage the other nodes within the MySQL Cluster, performing
such functions as providing configuration data, starting and stopping nodes, running backup, and so forth. Because this node type
manages the configuration of the other nodes, a node of this type should be started first, before any other node. An MGM node is
started with the command ndb_mgmd.

• Data node: This type of node stores cluster data. There are as many data nodes as there are replicas, times the number of fragments.
For example, with two replicas, each having two fragments, you will need four data nodes. It is not necessary to have more than one
replica. A data node is started with the command ndbd.

• SQL node: This is a node that accesses the cluster data. In the case of MySQL Cluster, an SQL node is a traditional MySQL server
that uses the NDB Cluster storage engine. An SQL node is typically started with the command mysqld --ndbcluster or by
using mysqld with the ndbcluster option added to my.cnf.

An SQL node is actually just a specialised type of API node, which designates any application which accesses Cluster data. One ex-
ample of an API node is the ndb_restore utility that is used to restore a cluster backup. It is possible to write such applications
using the NDB API.

Important

It is not realistic to expect to employ a three-node setup in a production environment. Such a configuration provides no re-
dundancy; in order to benefit from MySQL Cluster's high-availability features, you must use multiple data and SQL nodes.
The use of multiple management nodes is also highly recommended.

For a brief introduction to the relationships between nodes, node groups, replicas, and partitions in MySQL Cluster, see Section 17.1.2,
“MySQL Cluster Nodes, Node Groups, Replicas, and Partitions”.

Configuration of a cluster involves configuring each individual node in the cluster and setting up individual communication links
between nodes. MySQL Cluster is currently designed with the intention that data nodes are homogeneous in terms of processor power,
memory space, and bandwidth. In addition, to provide a single point of configuration, all configuration data for the cluster as a whole is
located in one configuration file.

The management server (MGM node) manages the cluster configuration file and the cluster log. Each node in the cluster retrieves the
configuration data from the management server, and so requires a way to determine where the management server resides. When inter-
esting events occur in the data nodes, the nodes transfer information about these events to the management server, which then writes the
information to the cluster log.

In addition, there can be any number of cluster client processes or applications. These are of two types:

• Standard MySQL clients. These are no different for MySQL Cluster than they are for standard (non-Cluster) MySQL. In other
words, MySQL Cluster can be accessed from existing MySQL applications written in PHP, Perl, C, C++, Java, Python, Ruby, and
so on.

• Management clients. These clients connect to the management server and provide commands for starting and stopping nodes
gracefully, starting and stopping message tracing (debug versions only), showing node versions and status, starting and stopping
backups, and so on.

17.1.2. MySQL Cluster Nodes, Node Groups, Replicas, and Partitions
This section discusses the manner in which MySQL Cluster divides and duplicates data for storage.

Central to an understanding of this topic are the following concepts, listed here with brief definitions:

• (Data) Node. An ndbd process, which stores a replica —that is, a copy of the partition (see below) assigned to the node group of
which the node is a member.

Each data node should be located on a separate computer. While it is also possible to host multiple ndbd processes on a single com-
puter, such a configuration is not supported.

It is common for the terms “node” and “data node” to be used interchangeably when referring to an ndbd process; where men-
tioned, management (MGM) nodes (ndb_mgmd processes) and SQL nodes (mysqld processes) are specified as such in this dis-
cussion.

MySQL Cluster

1094

http://dev.mysql.com/doc/ndbapi/en/index.html


• Node Group. A node group consists of one or more nodes, and stores partitions, or sets of replicas (see next item).

Note

All node groups in a cluster must have the same number of nodes.

• Partition. This is a portion of the data stored by the cluster. There are as many cluster partitions as nodes participating in the
cluster. Each node is responsible for keeping at least one copy of any partitions assigned to it (that is, at least one replica) available
to the cluster.

A replica belongs entirely to a single node; a node can (and usually does) store several replicas.

• Replica. This is a copy of a cluster partition. Each node in a node group stores a replica. Also sometimes known as a partition rep-
lica. The number of replicas is equal to the number of nodes per node group.

The following diagram illustrates a MySQL Cluster with four data nodes, arranged in two node groups of two nodes each; nodes 1 and 2
belong to node group 0, and nodes 3 and 4 belong to node group 1. Note that only data (ndbd) nodes are shown here; although a work-
ing cluster requires an ndb_mgm process for cluster management and at least one SQL node to access the data stored by the cluster,
these have been omitted in the figure for clarity.

MySQL Cluster

1095



The data stored by the cluster is divided into four partitions, numbered 0, 1, 2, and 3. Each partition is stored — in multiple copies — on
the same node group. Partitions are stored on alternate node groups:

• Partition 0 is stored on node group 0; a primary replica (primary copy) is stored on node 1, and a backup replica (backup copy of
the partition) is stored on node 2.

• Partition 1 is stored on the other node group (node group 1); this partition's primary replica is on node 3, and its backup replica is on
node 4.

• Partition 2 is stored on node group 0. However, the placing of its two replicas is reversed from that of Partition 0; for Partition 2, the
primary replica is stored on node 2, and the backup on node 1.

• Partition 3 is stored on node group 1, and the placement of its two replicas are reversed from those of partition 1. That is, its primary

MySQL Cluster

1096



replica is located on node 4, with the backup on node 3.

What this means regarding the continued operation of a MySQL Cluster is this: so long as each node group participating in the cluster
has at least one node operating, the cluster has a complete copy of all data and remains viable. This is illustrated in the next diagram.

In this example, where the cluster consists of two node groups of two nodes each, any combination of at least one node in node group 0
and at least one node in node group 1 is sufficient to keep the cluster “alive” (indicated by arrows in the diagram). However, if both
nodes from either node group fail, the remaining two nodes are not sufficient (shown by the arrows marked out with an X); in either
case, the cluster has lost an entire partition and so can no longer provide access to a complete set of all cluster data.

17.2. MySQL Cluster 5.1 Carrier Grade Edition
MySQL Cluster 5.1 Carrier Grade Edition is a branch of MySQL 5.1 using advanced versions of the NDB storage engine and NDB API,
created as a direct response to customer needs. It is intended for use in the telcommunications industry, and is normally available in
source form only; however, MCCGE binaries can also be built by MySQL for commercial customers by special arrangement.

Source archives for MySQL Cluster 5.1 Carrier Grade Edition 6.2.x and 6.3.x releases beginning with MySQL 5.1.22-ndb-6.2.8 and
MySQL 5.1.22-ndb-6.3.6 can be found on MySQL AB's public FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. Sep-
arate commercial and GPL versions of these archives are available.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition source archives contain non-GPL libraries and headers and

MySQL Cluster

1097

ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/


must not be used without the proper license from MySQL AB. See http://www.mysql.com/why-mysql/telecom/ to obtain
information about licensing MySQL Cluster 5.1 Carrier Grade Edition for commerical use.

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files, and must not be used
in applications that are not available under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of licenses that qualify applications for use
with GPL versions of MySQL.

Three development trees can also be accessed via http://mysql.bkbits.net/:

• mysql-5.1-telco-6.1

• mysql-5.1-telco-6.2

• mysql-5.1-telco (currently used for MySQL Cluster 5.1 Carrier Grade Edition 6.3.x releases)

The MySQL Cluster 5.1 Carrier Grade Edition development sources maintained at http://mysql.bkbits.net/ are GPL-licensed. For in-
formation about obtaining and building MySQL sources from BitKeeper, see Section 2.9.3, “Installing from the Development Source
Tree”.

Important

This chapter of the MySQL Manual covers both MySQL 5.1 and MySQL Cluster 5.1 Carrier Grade Edition.

Information which applies to MySQL Cluster 5.1 Carrier Grade Edition releases but not to mainline 5.1 releases is indic-
ated with a warning such as this one:

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier
Grade Edition only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL
Cluster 5.1 Carrier Grade Edition”.

Information which applies to mainline MySQL 5.1 releases but not to MySQL Cluster 5.1 Carrier Grade Edition releases
is indicated with a warning such as this one:

MySQL Cluster 5.1 Carrier Grade Edition. The following information does not apply to users of MySQL Cluster 5.1
Carrier Grade Edition. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL
Cluster 5.1 Carrier Grade Edition”.

(Similar warnings are displayed where appropriate in The MySQL Cluster API Developers' Guide.)

Currently, the ndb-6.2.x and ndb-6.3.x series are under active development. ndb-6.4.x is currently being developed internally and is in-
tended for testing purposes. The ndb-6.1.x series is no longer in active development. Differences between the mainline MySQL 5.1
series and MySQL Cluster 5.1 Carrier Grade Edition are higlighted in Section 17.2.1, “Major Differences Between MySQL 5.1 and
MySQL Cluster 5.1 Carrier Grade Edition”.

MySQL Cluster 5.1 Carrier Grade Edition versioning. MySQL Cluster 5.1 Carrier Grade Edition — sometimes also referred to as
“CGE” — follows a somewhat different release pattern from the mainline MySQL 5.1 Cluster series of releases. Each MySQL Cluster
5.1 Carrier Grade Edition release is identified by a two-part version string which identifies the mainline MySQL version from which the
CGE release was branched and the version of the NDB storage engine used. For example, the first CGE release was mysql-
5.1.14-ndb-6.1.0 (shown as “MySQL 5.1.14-ndb-6.1.0” in this Manual). The version string tells us that this version:

• Derives from MySQL 5.1.14, and contains all feature enhancement and bugfixes from MySQL 5.1, up to and including MySQL
5.1.14.

• Uses version 6.1.0 of the NDB storage engine.

Listings of available MySQL Cluster 5.1 Carrier Grade Edition releases in the ndb-6.1.x, ndb-6.2.x, and ndb-6.3.x series can be found
in Section 17.2.2, “MySQL Cluster 5.1 Carrier Grade Edition Releases”.

Additional information about obtaining MySQL Cluster 5.1 Carrier Grade Edition binaries can be found on the MySQL AB web site at
http://www.mysql.com/why-mysql/telecom/, or by contacting <sales@mysql.com>.

17.2.1. Major Differences Between MySQL 5.1 and MySQL Cluster 5.1 Carrier

MySQL Cluster

1098

http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://mysql.bkbits.net/
http://mysql.bkbits.net:8080/mysql-5.1-telco-6.1
http://mysql.bkbits.net:8080/mysql-5.1-telco-6.2
http://mysql.bkbits.net:8080/mysql-5.1-telco
http://mysql.bkbits.net/
http://dev.mysql.com/doc/ndbapi/en/index.html
http://www.mysql.com/why-mysql/telecom/


Grade Edition
This section lists the most prominent feature differences between mainline releases of MySQL 5.1 and MySQL Cluster 5.1 Carrier
Grade Edition releases.

Note

MySQL Cluster 5.1 Carrier Grade Edition also fixes many MySQL Cluster bugs before the fixes appear in MySQL 5.1.
The MySQL Cluster 5.1 Carrier Grade Edition changelogs have complete listings of these — see Section 17.2.2, “MySQL
Cluster 5.1 Carrier Grade Edition Releases”.

In some cases, important fixes made first in MySQL Cluster 5.1 Carrier Grade Edition have also been made available
earlier MySQL release series; for example, Bug#28443 was fixed initially in MySQL 5.1.15-ndb-6.1.9; this fix was then
merged into the mainline MySQL 5.1 tree in MySQL 5.1.19 and later backported to MySQL 5.0.44 and 4.1.23 as well.

More detailed information about these features can be found in the changelogs for the indicated MySQL Cluster 5.1 Carrier Grade Edi-
tion releases; see Section 17.2.2, “MySQL Cluster 5.1 Carrier Grade Edition Releases”, for a current changelog listing.

17.2.1.1. ndb-6.1.x Features

• Enhanced backup status reporting, aided in part by the introduction of a BackupReportFrequency configuration parameter
(MySQL 5.1.14-ndb-6.1.0).

• Maximum number of all nodes in a cluster increased to 255 (MySQL 5.1.14-ndb-6.1.1).

• Addition of the NDB API Dictionary::listEvents() method (MySQL 5.1.15-ndb-6.1.3).

• Ability to disable arbitration, by setting ArbitrationRank=0 on all nodes (MySQL 5.1.15-ndb-6.1.3).

• Inclusion of the ndbd_redo_log_reader utility in the default build (MySQL 5.1.15-ndb-6.1.3).

• New methods of the Ndb_cluster_connection class, making it possible to iterate over all existing Ndb objects (MySQL
5.1.15-ndb-6.1.4).

• --ndb-wait-connected option for mysqld, causing mysqld wait a specified amount of time to be connected to the cluster
before starting to accept client connections (MySQL 5.1.15-ndb-6.1.4).

• Improved data node memory allocation (MySQL 5.1.15-ndb-6.1.4).

• Ability to pipe output of ndb_restore to CSV file (MySQL 5.1.15-ndb-6.1.5).

• A new FragmentLogFileSize configuration parameter makes it possible to set the size of redo log files (MySQL
5.1.15-ndb-6.1.11).

• MaxAllocate configuration parameter makes it possible to set the maximum size of the allocation unit used for table memory
(MySQL 5.1.15-ndb-6.1.12).

• New management client DUMP commands providing help with tracking transactions, scan operations, and locks (MySQL
5.1.15-ndb-6.1.12).

• Improvements in backups of Disk Data tables resulted in a 10 to 15% increase in backup speed of Disk Data tables (MySQL
5.1.15-ndb-6.1.13).

• Batching of updates on cluster replication slaves, enabled using the --slave-allow-batching option for mysqld (MySQL
5.1.15-ndb-6.1.17).

17.2.1.2. ndb-6.2.x Features

The following improvements are available in ndb-6.2.x releases:

• Mutliple cluster connections by a single MySQL server using the --ndb-cluster-connection-pool startup option for
mysqld (MySQL 5.1.18-ndb-6.2.2).

MySQL Cluster

1099

http://bugs.mysql.com/28443


• New management client DUMP commands providing help with tracking transactions, scan operations, and locks (MySQL
5.1.18-ndb-6.2.2).

• The addition of the NdbRecord interface and handler for the NDB API (MySQL 5.1.19-ndb-6.2.3).

• Enhanced reporting, aided in part by the introduction of a BackupReportFrequency configuration parameter as well as new
management client REPORT BackupStatus and REPORT MemoryUsage commands (MySQL 5.1.19-ndb-6.2.3).

• In-progress status reporting by ndb_restore (MySQL 5.1.19-ndb-6.2.3).

• Batching of updates on cluster replication slaves, enabled using the --slave-allow-batching option for mysqld (MySQL
5.1.19-ndb-6.2.3).

• Improved memory allocation in the NDB kernel (MySQL 5.1.19-ndb-6.2.3).

• Improvements in backups of Disk Data tables resulted in a 10 to 15% increase in backup speed of Disk Data tables (MySQL
5.1.19-ndb-6.2.3).

• MaxAllocate configuration parameter makes it possible to set the maximum size of the allocation unit used for table memory
(MySQL 5.1.19-ndb-6.2.3).

• The ability to control whether fixed-width or variable-width storage is used for a given column of an NDB table by means of the
COLUMN_FORMAT specifier as part of the column's definition in a CREATE TABLE or ALTER TABLE statement. In addition, the
ability to control whether a given column of an NDB table is stored in memory or on disk, using the STORAGE specifier as part of
the column's definition in a CREATE TABLE or ALTER TABLE statement. (MySQL 5.1.19-ndb-6.2.5)

• The --bind-address cluster management server startup option makes it possible to restrict management client connections to
ndb_mgmd to a single host (IP address or hostname) and port. (MySQL 5.1.19-ndb-6.2.5)

• Due to a change in the protocol for handling of global checkpoints (GCPs handled in this manner sometimes being referred to as
“micro-GCPs”), it is now possible to control how often the GCI number is updated, and how often global checkpoints are written to
disk, using the TimeBetweenEpochs configuration parameter. This improves the reliability and performance of MySQL Cluster
Replication. (MySQL 5.1.22-ndb-6.2.5)

Additional fine-tuning of micro-GCPs is made possible using the TimeBetweenEpochsTimeout confiuration parameter.
(MySQL 5.1.22-ndb-6.2.7)

• Support for the online ALTER TABLE operations ADD COLUMN, ADD INDEX, and DROP INDEX is available. When the ON-
LINE keyword is used, the ALTER TABLE is non-copying, which means that indexes do not have to be re-created, which provides
these benefits:

• Single user mode is no longer required for ALTER TABLE operations that can be performed online.

• Transactions can continue during ALTER TABLE operations that can be performed online.
Online CREATE INDEX and DROP INDEX statements are also supported. Online changes can be suppressed using the OFFLINE
key word. See Section 12.1.4, “ALTER TABLE Syntax”, Section 12.1.7, “CREATE INDEX Syntax”, and Section 12.1.13, “DROP
INDEX Syntax”, for more detailed information. (MySQL 5.1.22-ndb-6.2.5)

Additional checks against unsupported ONLINE operations were implemented, and unnecessary checks were removed. (MySQL
5.1.22-ndb-6.2.7)

• More information has been added to the mysql.ndb_binlog_index table so that it is possible to determine which originating
epochs have been applied inside an epoch. This is useful in 3-way replication. (MySQL 5.1.22-ndb-6.2.6)

• DUMP 8011 provides subscription data in the cluster log. (MySQL 5.1.22-ndb-6.2.9)

• The MaxBufferedEpochs data node configuration parameter provides control over the maximum number of unprocessed
epochs by which a subscribing node can lag. Subscribers which exceed this number are disconnected and forced to reconnect.
(MySQL 5.1.23-ndb-6.2.14)

17.2.1.3. ndb-6.3.x Features

The following improvements are available in ndb-6.3.x releases:

MySQL Cluster

1100



• Enhanced reporting, aided in part by the introduction of a BackupReportFrequency configuration parameter as well as new
management client REPORT BackupStatus and REPORT MemoryUsage commands (MySQL 5.1.19-ndb-6.3.0).

• Implementation of conflict resolution for use in multi-master replication (MySQL 5.1.19-ndb-6.3.0).

Improvements in conflict resolution for handling simultaneous updates (MySQL-5.1.22-ndb-6.3.4).

• More information has been added to the mysql.ndb_binlog_index table so that it is possible to determine which originating
epochs have been applied inside an epoch. This is useful in 3-way replication. (MySQL 5.1.22-ndb-6.3.2)

• The ability to control whether fixed-width or variable-width storage is used for a given column of an NDB table by means of the
COLUMN_FORMAT specifier as part of the column's definition in a CREATE TABLE or ALTER TABLE statement. In addition, the
ability to control whether a given column of an NDB table is stored in memory or on disk, using the STORAGE specifier as part of
the column's definition in a CREATE TABLE or ALTER TABLE statement. (MySQL 5.1.22-ndb-6.3.2)

• The --bind-address cluster management server startup option makes it possible to restrict management client connections to
ndb_mgmd to a single host (IP address or hostname) and port. (MySQL 5.1.22-ndb-6.3.2)

• Due to a change in the protocol for handling of global checkpoints (GCPs handled in this manner sometimes being referred to as
“micro-GCPs”), it is now possible to control how often the GCI number is updated, and how often global checkpoints are written to
disk, using the TimeBetweenEpochs configuration parameter. This improves the reliability and performance of MySQL Cluster
Replication. (MySQL 5.1.22-ndb-6.3.2)

Additional fine-tuning of micro-GCPs is made possible using the TimeBetweenEpochsTimeout confiuration parameter.
(MySQL 5.1.22-ndb-6.3.4)

• Support for the online ALTER TABLE operations ADD COLUMN, ADD INDEX, and DROP INDEX is available. When the ON-
LINE keyword is used, the ALTER TABLE is non-copying, which means that indexes do not have to be re-created, which provides
these benefits:

• Single user mode is no longer required for ALTER TABLE operations that can be performed online.

• Transactions can continue during ALTER TABLE operations that can be performed online.
Online CREATE INDEX and DROP INDEX statements are also supported. Online changes can be suppressed using the OFFLINE
key word. See Section 12.1.4, “ALTER TABLE Syntax”, Section 12.1.7, “CREATE INDEX Syntax”, and Section 12.1.13, “DROP
INDEX Syntax”, for more detailed information. (MySQL 5.1.22-ndb-6.3.2)

• Recovery of multi-way replication setups (one master, many slaves) is now supported via the --ndb-log-orig server option and
changes in the mysql.ndb_binlog_index table. (MySQL 5.1.22-ndb-6.3.2)

• New values and behaviors are introduced for --ndb_optimized_node_selection allowing for greater flexibility when an
SQL node chooses a transaction coordinator. (MySQL 5.1.22-ndb-6.3.4)

• A --bind-address option has been added to a number of MySQL client programs for use on computers having multiple net-
work interfaces. The option allows you to choose which interface (IP address or hostname) is used to connect to the MySQL server.
(MySQL 5.1.22-ndb-6.3.4)

• A --master-bind option has been added to mysqld. This makes it possible to specify the network interface to use for connect-
ing to the master by a replication slave having multiple network addresses. This can also be set at run time using the MAS-
TER_BIND = 'interface' clause in a CHANGE MASTER TO statement.(MySQL 5.1.22-ndb-6.3.4)

• Replication heartbeats facilitate the task of monitoring and detecting failures in master-slave connections in real time. This feature is
implemented via a new MASTER_HEARTBEAT_PERIOD = value clause for the CHANGE MASTER TO statement and the ad-
dition of two status variables Slave_heartbeat_period and Slave_received_heartbeats. (MySQL
5.1.22-ndb-6.3.4)

• It is possible to lock NDB execution threads and maintenance threads (such as filesystem and other operating system threads) to spe-
cific CPUs on multiprocessor data node hosts, and to leverage real-time scheduling using configuration parameters introduced in
MySQL 5.1.22-ndb-6.3.4.

• The number of unnecessary reads when performing a primary key or unique key update has been greatly reduced. Since it is seldom
necessary to read a record prior to an update, this can yield a considerable improvement in performance. In addition, primary key
columns are no longer written to when not needed during update operations. (MySQL 5.1.22-ndb-6.3.6)

• Batched operations are better supported for DELETE and UPDATE; UPDATE WHERE... and multiple DELETE operations are
now correctly implemented. (MySQL 5.1.22-ndb-6.3.6)

MySQL Cluster

1101



• Introduced the Ndb_execute_count system status variable, which measures the number of round trips made by SQL statements
to the NDB kernel. (MySQL 5.1.22-ndb-6.3.6)

• Compressed local checkpoints and backups can save 50% or more of the disk space used by uncompressed LCPs and backups.
These can be enabled using the two new data node configuration parameters CompressedLCP and CompressedBackup, re-
spectively. (MySQL 5.1.23-ndb-6.3.7)

• OPTIMIZE TABLE is supported for dynamic columns of in-memory NDB tables. In such cases, it is no longer necessary to drop
(and possibly to re-create) a table, or to perform a rolling restart, in order to recover memory from deleted rows for general re-use by
Cluster. The performance of OPTIMIZE on Cluster tables can be tuned by adjusting the value of the
ndb_optimization_delay system variable, which controls the number of milliseconds to wait between processing batches of
rows by OPTIMIZE TABLE. (MySQL 5.1.23-ndb-6.3.7)

OPTIMIZE TABLE can now be interrupted. This can be done, for example, by killing the SQL thread performing the OPTIMIZE
operation. (MySQL 5.1.23-ndb-6.3.8)

• It is possible to cause statements occurring within the same transaction to be run as a batch by setting the session variable trans-
action_allow_batching to 1 or ON. To use this feature, AUTOCOMMIT must be set to 0 or OFF. (MySQL 5.1.23-ndb-6.3.7)

Batch sizes can be controlled using the --ndb-batch-size option for mysqld. (MySQL 5.1.23-ndb-6.3.8)

• It is possible using ndb_restore to restore data reliably from a column of a given type to a column that uses a “larger” type.
(This is also referred to as attribute promotion.) For example, MySQL Cluster backup data that originated in a SMALLINT column
can be restored to a MEDIUMINT, INT, or BIGINT column. (MySQL 5.1.23-ndb-6.3.8)

• NDB_LE_MemoryUsage.page_size_kb has been renamed to NDB_LE_MemoryUsage.page_size_bytes. (MySQL
5.1.23-ndb-6.3.8)

• Recovery of multiple data nodes can be done in parallel, rather than sequentially, which can result in much faster recovery times.
(MySQL 5.1.23-ndb-6.3.8)

• Only 2 local checkpoints are stored, rather than 3, lowering disk space requirements and the size and number of redo log files.
(MySQL 5.1.23-ndb-6.3.8)

• Persistence of NDB tables can be controlled using the session variables ndb_table_temporary and
ndb_table_no_logging. ndb_table_no_logging causes NDB tables not to be checkpointed to disk;
ndb_table_temporary does the same, and in addition, no schema files are created. (MySQL 5.1.23-ndb-6.3.8)

17.2.2. MySQL Cluster 5.1 Carrier Grade Edition Releases
Changelogs and source code download locations for MySQL Cluster 5.1 Carrier Grade Edition releases may be found in Section C.1,
“Changes in release 5.1.x (Development)”; these are grouped together according to the mainline MySQL 5.1 version from which they
derive, as shown in the list that follows:

• Section C.1.20, “Changes in MySQL 5.1.14 Carrier Grade Edition”:

Includes Section C.1.20.1, “Changes in MySQL 5.1.14-ndb-6.1.0 (20 December 2006)”.

This release includes all feature enhancements and bugfixes made in MySQL 5.1 up to and including the 5.1.14 release.

• Section C.1.18, “Changes in MySQL 5.1.15 Carrier Grade Edition”:

Includes these changelogs:

• Section C.1.18.23, “Changes in MySQL 5.1.15-ndb-6.1.1 (01 February 2007)”

• Section C.1.18.22, “Changes in MySQL 5.1.15-ndb-6.1.2 (07 February 2007)”

• Section C.1.18.21, “Changes in MySQL 5.1.15-ndb-6.1.3 (25 February 2007)”

• Section C.1.18.20, “Changes in MySQL 5.1.15-ndb-6.1.4 (09 March 2007))”

• Section C.1.18.19, “Changes in MySQL 5.1.15-ndb-6.1.5 (15 March 2007)”

MySQL Cluster

1102



• Section C.1.18.18, “Changes in MySQL 5.1.15-ndb-6.1.6 (Not released)”

• Section C.1.18.17, “Changes in MySQL 5.1.15-ndb-6.1.7 (05 May 2007)”

• Section C.1.18.16, “Changes in MySQL 5.1.15-ndb-6.1.8 (05 May 2007)”

• Section C.1.18.15, “Changes in MySQL 5.1.15-ndb-6.1.9 (24 May 2007)”

• Section C.1.18.14, “Changes in MySQL 5.1.15-ndb-6.1.10 (30 May 2007)”

• Section C.1.18.13, “Changes in MySQL 5.1.15-ndb-6.1.11 (06 June 2007)”

• Section C.1.18.12, “Changes in MySQL 5.1.15-ndb-6.1.12 (13 June 2007)”

• Section C.1.18.11, “Changes in MySQL 5.1.15-ndb-6.1.13 (15 June 2007)”

• Section C.1.18.10, “Changes in MySQL 5.1.15-ndb-6.1.14 (19 June 2007)”

• Section C.1.18.9, “Changes in MySQL 5.1.15-ndb-6.1.15 (20 June 2007)”

• Section C.1.18.8, “Changes in MySQL 5.1.15-ndb-6.1.16 (29 June 2007)”

• Section C.1.18.7, “Changes in MySQL 5.1.15-ndb-6.1.17 (03 July 2007)”

• Section C.1.18.5, “Changes in MySQL 5.1.15-ndb-6.1.19 (01 August 2007)”

• Section C.1.18.4, “Changes in MySQL 5.1.15-ndb-6.1.20 (14 September 2007)”

• Section C.1.18.3, “Changes in MySQL 5.1.15-ndb-6.1.21 (01 October 2007)”

• Section C.1.18.2, “Changes in MySQL 5.1.15-ndb-6.1.22 (19 October 2007)”

These releases include all feature enhancements and bugfixes made in MySQL 5.1 up to and including 5.1.15, as well as those en-
hancements specific to MySQL Cluster 5.1 Carrier Grade Edition made in MySQL-5.1.14-ndb-6.1.0.

• Section C.1.16, “Changes in MySQL 5.1.16 Carrier Grade Edition”:

Includes Section C.1.16.1, “Changes in MySQL 5.1.16-ndb-6.2.0 (03 March 2007)”.

This release includes all feature enhancements and bugfixes made in MySQL 5.1 up to and including 5.1.16, as well as those en-
hancements specific to MySQL Cluster 5.1 Carrier Grade Edition that were made in ndb-6.1.x releases.

• Section C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”:

Includes these changelogs:

• Section C.1.13.2, “Changes in MySQL 5.1.18-ndb-6.2.1 (30 April 2007)” and

• Section C.1.13.1, “Changes in MySQL 5.1.18-ndb-6.2.2 (07 May 2007)”.

These releases include all feature enhancements and bugfixes made in MySQL 5.1 up to and including 5.1.18, as well as those en-
hancements specific to MySQL Cluster 5.1 Carrier Grade Edition that were made in ndb-6.2.1 and ndb-6.2.2.

Note

MySQL 5.1.18-ndb-6.2.1 was withdrawn after release, and is no longer available.

• Section C.1.11, “Changes in MySQL 5.1.19 Carrier Grade Edition”:

Includes these changelogs:

• Section C.1.11.4, “Changes in MySQL 5.1.19-ndb-6.2.3 (02 July 2007)”

• Section C.1.11.3, “Changes in MySQL 5.1.19-ndb-6.2.4 (04 July 2007)”

• Section C.1.11.2, “Changes in MySQL 5.1.19-ndb-6.3.0 (02 July 2007)”

MySQL Cluster

1103



• Section C.1.11.1, “Changes in MySQL 5.1.19-ndb-6.3.1 (04 July 2007)”

These releases include all feature enhancements and bugfixes made in MySQL 5.1 up to and including 5.1.19, as well as those en-
hancements specific to MySQL Cluster 5.1 Carrier Grade Edition that were made in ndb-6.2.x releases beginning with MySQL
5.1.19-ndb-6.2.3, as well as those that were made in ndb-6.2.1 and ndb-6.2.2.

• Section C.1.7, “Changes in MySQL 5.1.22 Carrier Grade Edition”:

Includes these changelogs:

• Section C.1.7.10, “Changes in MySQL 5.1.22-ndb-6.2.5 (06 September 2007)”

• Section C.1.7.9, “Changes in MySQL 5.1.22-ndb-6.2.6 (20 September 2007)”

• Section C.1.7.8, “Changes in MySQL 5.1.22-ndb-6.2.7 (10 October 2008)”

• Section C.1.7.7, “Changes in MySQL 5.1.22-ndb-6.2.8 (08 November 2007)”

• Section C.1.7.6, “Changes in MySQL 5.1.22-ndb-6.2.9 (22 November 2007)”

• Section C.1.7.5, “Changes in MySQL 5.1.22-ndb-6.3.2 (07 September 2007)”

• Section C.1.7.4, “Changes in MySQL 5.1.22-ndb-6.3.3 (20 September 2007)”

• Section C.1.7.3, “Changes in MySQL 5.1.22-ndb-6.3.4 (15 October 2007)”

• Section C.1.7.2, “Changes in MySQL 5.1.22-ndb-6.3.5 (17 October 2007)”

• Section C.1.7.1, “Changes in MySQL 5.1.22-ndb-6.3.6 (08 November 2007)”

These releases include all feature enhancements and bugfixes made in MySQL 5.1 up to and including 5.1.22. MySQL
5.1.22-ndb-6.2.5 and later ndb-6.2.x releases based on MySQL 5.1.22 include those enhancements made in MySQL
5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2, MySQL 5.1.19-ndb-6.2.3, and MySQL 5.1.19-ndb-6.2.4; MySQL 5.1.22-based ndb-
6.3.x releases include those enhancements made in MySQL 5.1.19-ndb-6.3.0 and MySQL 5.1.19-ndb-6.3.1; ndb-6.3.x releases be-
ginning with MySQL 5.1.22-ndb-6.3.2 include those enhancements made in the ndb-6.2.x series through and including MySQL
5.1.22-ndb-6.2.5.

• Section C.1.5, “Changes in MySQL 5.1.23 Carrier Grade Edition”:

Includes these changelogs:

• Section C.1.5.12, “Changes in MySQL 5.1.23-ndb-6.2.10 (19 December 2007)”

• Section C.1.5.11, “Changes in MySQL 5.1.23-ndb-6.2.11 (28 January 2008)”

• Section C.1.5.10, “Changes in MySQL 5.1.23-ndb-6.2.12 (12 February 2008)”

• Section C.1.5.9, “Changes in MySQL 5.1.23-ndb-6.2.13 (22 February 2008)”

• Section C.1.5.8, “Changes in MySQL 5.1.23-ndb-6.2.14 (05 March 2008)”

• Section C.1.5.6, “Changes in MySQL 5.1.23-ndb-6.3.7 (19 December 2007)”

• Section C.1.5.5, “Changes in MySQL 5.1.23-ndb-6.3.8 (29 January 2008)”

These releases include all feature enhancements and bugfixes made in MySQL 5.1 up to and including 5.1.22. MySQL
5.1.22-ndb-6.2.5 and later ndb-6.2.x releases based on MySQL 5.1.22 include those enhancements made in MySQL
5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2, MySQL 5.1.19-ndb-6.2.3, and MySQL 5.1.19-ndb-6.2.4; MySQL 5.1.22-based ndb-
6.3.x releases include those enhancements made in MySQL 5.1.19-ndb-6.3.0 and MySQL 5.1.19-ndb-6.3.1; ndb-6.3.x releases be-
ginning with MySQL 5.1.22-ndb-6.3.2 include those enhancements made in the ndb-6.2.x series through and including MySQL
5.1.22-ndb-6.2.5.

Each of the MySQL Cluster 5.1 Carrier Grade Edition includes enhancements that do not appear in the mainline MySQL 5.1 tree. Most
of these are specific to the NDB storage engine, although some additional minor enhancements have been made with regard to replica-
tion and other parts of the MySQL server. We plan to port some of these to mainline MySQL 5.1 releases; the remainder should appear

MySQL Cluster

1104



in MySQL 6.0.

Some fixes may be listed more than once in Section C.1, “Changes in release 5.1.x (Development)”, due to the fact that they were ap-
plied first in MySQL Cluster 5.1 Carrier Grade Edition and then ported to MySQL 5.1, because they were applied in more than one
branch of MySQL Cluster 5.1 Carrier Grade Edition, or both.

17.3. Simple Multi-Computer How-To
This section is a “How-To” that describes the basics for how to plan, install, configure, and run a MySQL Cluster. Whereas the ex-
amples in Section 17.4, “MySQL Cluster Configuration” provide more in-depth information on a variety of clustering options and con-
figuration, the result of following the guidelines and procedures outlined here should be a usable MySQL Cluster which meets the min-
imum requirements for availability and safeguarding of data.

This section covers hardware and software requirements; networking issues; installation of MySQL Cluster; configuration issues; start-
ing, stopping, and restarting the cluster; loading of a sample database; and performing queries.

Basic assumptions. This How-To makes the following assumptions:

1. The cluster setup has four nodes, each on a separate host, and each with a fixed network address on a typical Ethernet as shown
here:

Node IP Address

Management (MGM) node 192.168.0.10

MySQL server (SQL) node 192.168.0.20

Data (NDBD) node "A" 192.168.0.30

Data (NDBD) node "B" 192.168.0.40

This may be made clearer in the following diagram:

MySQL Cluster

1105



In the interest of simplicity (and reliability), this How-To uses only numeric IP addresses. However, if DNS resolution is available
on your network, it is possible to use hostnames in lieu of IP addresses in configuring Cluster. Alternatively, you can use the /
etc/hosts file or your operating system's equivalent for providing a means to do host lookup if such is available.

Note

A common problem when trying to use hostnames for Cluster nodes arises because of the way in which some operating
systems (including some Linux distributions) set up the system's own hostname in the /etc/hosts during installation.
Consider two machines with the hostnames ndb1 and ndb2, both in the cluster network domain. Red Hat Linux
(including some derivatives such as CentOS and Fedora) places the following entries in these machines' /etc/hosts
files:

# ndb1 /etc/hosts:
127.0.0.1 ndb1.cluster ndb1 localhost.localdomain localhost

# ndb2 /etc/hosts:
127.0.0.1 ndb2.cluster ndb2 localhost.localdomain localhost

SuSE Linux (including OpenSuSE) places these entries in the machines' /etc/hosts files:

# ndb1 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb1.cluster ndb1

# ndb2 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb2.cluster ndb2

MySQL Cluster

1106



In both instances, ndb1 routes ndb1.cluster to a loopback IP address, but gets a public IP address from DNS for
ndb2.cluster, while ndb2 routes ndb2.cluster to a loopback address and obtains a public address for
ndb1.cluster. The result is that each data node connects to the management server, but cannot tell when any other
data nodes have connected, and so the data nodes appear to hang while starting.

You should also be aware that you cannot mix localhost and other hostnames or IP addresses in config.ini. For
these reasons, the solution in such cases (other than to use IP addresses for all config.ini HostName entries) is to re-
move the fully qualified hostnames from /etc/hosts and use these in config.ini for all cluster hosts.

2. Each host in our scenario is an Intel-based desktop PC running a common, generic Linux distribution installed to disk in a standard
configuration, and running no unnecessary services. The core OS with standard TCP/IP networking capabilities should be suffi-
cient. Also for the sake of simplicity, we also assume that the filesystems on all hosts are set up identically. In the event that they
are not, you will need to adapt these instructions accordingly.

3. Standard 100 Mbps or 1 gigabit Ethernet cards are installed on each machine, along with the proper drivers for the cards, and that
all four hosts are connected via a standard-issue Ethernet networking appliance such as a switch. (All machines should use network
cards with the same throughout. That is, all four machines in the cluster should have 100 Mbps cards or all four machines should
have 1 Gbps cards.) MySQL Cluster will work in a 100 Mbps network; however, gigabit Ethernet will provide better performance.

Note that MySQL Cluster is not intended for use in a network for which throughput is less than 100 Mbps. For this reason (among
others), attempting to run a MySQL Cluster over a public network such as the Internet is not likely to be successful, and is not re-
commended.

4. For our sample data, we will use the world database which is available for download from the MySQL AB Web site. As this
database takes up a relatively small amount of space, we assume that each machine has 256MB RAM, which should be sufficient
for running the operating system, host NDB process, and (for the data nodes) for storing the database.

Although we refer to a Linux operating system in this How-To, the instructions and procedures that we provide here should be easily
adaptable to other supported operating systems. We also assume that you already know how to perform a minimal installation and con-
figuration of the operating system with networking capability, or that you are able to obtain assistance in this elsewhere if needed.

We discuss MySQL Cluster hardware, software, and networking requirements in somewhat greater detail in the next section. (See Sec-
tion 17.3.1, “Hardware, Software, and Networking”.)

17.3.1. Hardware, Software, and Networking
One of the strengths of MySQL Cluster is that it can be run on commodity hardware and has no unusual requirements in this regard,
other than for large amounts of RAM, due to the fact that all live data storage is done in memory. (Note that this is not the case with
Disk Data tables — see Section 17.13, “MySQL Cluster Disk Data Tables”, for more information about these.) Naturally, multiple and
faster CPUs will enhance performance. Memory requirements for other Cluster processes are relatively small.

The software requirements for Cluster are also modest. Host operating systems do not require any unusual modules, services, applica-
tions, or configuration to support MySQL Cluster. For supported operating systems, a standard installation should be sufficient. The
MySQL software requirements are simple: all that is needed is a production release of MySQL 5.1 to have Cluster support. It is not ne-
cessary to compile MySQL yourself merely to be able to use Cluster. In this How-To, we assume that you are using the server binary
appropriate to your operating system, available via the MySQL software downloads page at http://dev.mysql.com/downloads/.

For inter-node communication, Cluster supports TCP/IP networking in any standard topology, and the minimum expected for each host
is a standard 100 Mbps Ethernet card, plus a switch, hub, or router to provide network connectivity for the cluster as a whole. We
strongly recommend that a MySQL Cluster be run on its own subnet which is not shared with non-Cluster machines for the following
reasons:

• Security. Communications between Cluster nodes are not encrypted or shielded in any way. The only means of protecting trans-
missions within a MySQL Cluster is to run your Cluster on a protected network. If you intend to use MySQL Cluster for Web ap-
plications, the cluster should definitely reside behind your firewall and not in your network's De-Militarized Zone (DMZ) or else-
where.

See Section 17.9.1, “MySQL Cluster Security and Networking Issues”, for more information.

• Efficiency. Setting up a MySQL Cluster on a private or protected network allows the cluster to make exclusive use of bandwidth
between cluster hosts. Using a separate switch for your MySQL Cluster not only helps protect against unauthorized access to Cluster
data, it also ensures that Cluster nodes are shielded from interference caused by transmissions between other computers on the net-
work. For enhanced reliability, you can use dual switches and dual cards to remove the network as a single point of failure; many

MySQL Cluster

1107

http://dev.mysql.com/downloads/
http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm


device drivers support failover for such communication links.

It is also possible to use the high-speed Scalable Coherent Interface (SCI) with MySQL Cluster, but this is not a requirement. See Sec-
tion 17.14, “Using High-Speed Interconnects with MySQL Cluster”, for more about this protocol and its use with MySQL Cluster.

17.3.2. Multi-Computer Installation
Each MySQL Cluster host computer running SQL nodes must have installed on it a MySQL binary. For management nodes and data
nodes, it is not necessary to install the MySQL server binary, but management nodes require the management server daemon
(ndb_mgmd) and data nodes require the data node daemon (ndbd). It is also a good idea to install the management client (ndb_mgm)
on the management server host. This section covers the steps necessary to install the correct binaries for each type of Cluster node.

MySQL AB provides precompiled binaries that support Cluster, and there is generally no need to compile these yourself. (However, we
also include information relating to installing a MySQL Cluster after building MySQL from source.) For setting up a cluster using
MySQL's binaries, the first step in the installation process for each cluster host is to download the file mysql-
5.1.25-rc-pc-linux-gnu-i686.tar.gz from the MySQL downloads area. We assume that you have placed it in each ma-
chine's /var/tmp directory. (If you do require a custom binary, see Section 2.9.3, “Installing from the Development Source Tree”.)

RPMs are also available for both 32-bit and 64-bit Linux platforms. For a MySQL Cluster, three RPMs are required:

• The Server RPM (for example, MySQL-Server-5.1.25-rc-0.glibc23.i386.rpm), which supplies the core files needed
to run a MySQL Server.

• The NDB Cluster - Storage engine RPM (for example, MySQL-ndb-storage-5.1.25-rc-0.glibc23.i386.rpm),
which supplies the MySQL Cluster data node binary (ndbd).

• The NDB Cluster - Storage engine management RPM (for example, MySQL-
ndb-management-5.1.25-rc-0.glibc23.i386.rpm), which provides the MySQL Cluster management server binary
(ndb_mgmd).

In addition, you should also obtain the NDB Cluster - Storage engine basic tools RPM (for example, MySQL-
ndb-tools-5.1.25-rc-0.glibc23.i386.rpm), which supplies several useful applications for working with a MySQL
Cluster. The most important of the these is the MySQL Cluster management client (ndb_mgm). The NDB Cluster - Storage engine ex-
tra tools RPM (for example, MySQL-ndb-extra-5.1.25-rc-0.glibc23.i386.rpm) contains some additional testing and
monitoring programs, but is not required to install a MySQL Cluster. (For more information about these additional programs, see Sec-
tion 17.11, “Cluster Utility Programs”.)

The MySQL version number in the RPM filenames (shown here as 5.1.25-rc) can vary according to the version which you are actu-
ally using. It is very important that all of the Cluster RPMs to be installed have the same MySQL version number. The glibc version
number (if present — shown here as glibc23), and architecture designation (shown here as i386) should be appropriate to the ma-
chine on which the RPM is to be installed.

See Section 2.4, “Installing MySQL from RPM Packages on Linux”, for general information about installing MySQL using RPMs sup-
plied by MySQL AB.

After installing from RPM, you still need to configure the cluster as discussed in Section 17.3.3, “Multi-Computer Configuration”.

Note

After completing the installation, do not yet start any of the binaries. We show you how to do so following the configura-
tion of all nodes.

Data and SQL Node Installation — .tar.gz Binary. On each of the machines designated to host data or SQL nodes, perform the
following steps as the system root user:

1. Check your /etc/passwd and /etc/group files (or use whatever tools are provided by your operating system for managing
users and groups) to see whether there is already a mysql group and mysql user on the system. Some OS distributions create
these as part of the operating system installation process. If they are not already present, create a new mysql user group, and then
add a mysql user to this group:

shell> groupadd mysql
shell> useradd -g mysql mysql

MySQL Cluster

1108

http://dev.mysql.com/downloads/


The syntax for useradd and groupadd may differ slightly on different versions of Unix, or they may have different names such
as adduser and addgroup.

2. Change location to the directory containing the downloaded file, unpack the archive, and create a symlink to the mysql directory
named mysql. Note that the actual file and directory names will vary according to the MySQL version number.

shell> cd /var/tmp
shell> tar -C /usr/local -xzvf mysql-5.1.25-rc-pc-linux-gnu-i686.tar.gz
shell> ln -s /usr/local/mysql-5.1.25-rc-pc-linux-gnu-i686 /usr/local/mysql

3. Change location to the mysql directory and run the supplied script for creating the system databases:

shell> cd mysql
shell> scripts/mysql_install_db --user=mysql

4. Set the necessary permissions for the MySQL server and data directories:

shell> chown -R root .
shell> chown -R mysql data
shell> chgrp -R mysql .

Note that the data directory on each machine hosting a data node is /usr/local/mysql/data. This piece of information is
essential when configuring the management node. (See Section 17.3.3, “Multi-Computer Configuration”.)

5. Copy the MySQL startup script to the appropriate directory, make it executable, and set it to start when the operating system is
booted up:

shell> cp support-files/mysql.server /etc/rc.d/init.d/
shell> chmod +x /etc/rc.d/init.d/mysql.server
shell> chkconfig --add mysql.server

(The startup scripts directory may vary depending on your operating system and version — for example, in some Linux distribu-
tions, it is /etc/init.d.)

Here we use Red Hat's chkconfig for creating links to the startup scripts; use whatever means is appropriate for this purpose on
your operating system and distribution, such as update-rc.d on Debian.

Remember that the preceding steps must be performed separately on each machine where an SQL node is to reside.

SQL node installation — RPM files. On each machine to be used for hosting a cluster SQL node, install the MySQL Server RPM by
executing the following command as the system root user, replacing the name shown for the RPM as necessary to match the name of the
RPM downloaded from the MySQL AB web site:

shell> rpm -Uhv MySQL-server-5.1.25-rc-0.glibc23.i386.rpm

This installs the MySQL server binary (mysqld) in the /usr/sbin directory, as well as all needed MySQL Server support files. It
also installs the mysql.server and mysqld_safe startup scripts in /usr/share/mysql and /usr/bin, respectively. The
RPM installer should take care of general configuration issues (such as creating the mysql user and group, if needed) automatically.

SQL node installation — building from source. If you compile MySQL with clustering support (for example, by using the BUILD/
compile-platform_name-max script appropriate to your platform), and perform the default installation (using make install
as the root user), mysqld is placed in /usr/local/mysql/bin. Follow the steps given in Section 2.9, “MySQL Installation Using
a Source Distribution” to make mysqld ready for use. If you want to run multiple SQL nodes, you can use a copy of the same mysqld
executable and its associated support files on several machines. The easiest way to do this is to copy the entire /usr/local/mysql
directory and all directories and files contained within it to the other SQL node host or hosts, then repeat the steps from Section 2.9,
“MySQL Installation Using a Source Distribution” on each machine. If you configure the build with a non-default --prefix, you
need to adjust the directory accordingly.

Data node installation — RPM Files. On a computer that is to host a cluster data node it is necessary to install only the NDB Cluster
- Storage engine RPM. To do so, copy this RPM to the data node host, and run the following command as the system root user, repla-
cing the name shown for the RPM as necessary to match that of the RPM downloaded from the MySQL AB web site:

shell> rpm -Uhv MySQL-ndb-storage-5.1.25-rc-0.glibc23.i386.rpm

The previous command installs the MySQL Cluster data node binary (ndbd) in the /usr/sbin directory.

MySQL Cluster

1109



Data node installation — building from source. The only executable required on a data node host is ndbd (mysqld, for example,
does not have to be present on the host machine). By default when doing a source build, this file is placed in the directory /
usr/local/mysql/libexec. For installing on multiple data node hosts, only ndbd need be copied to the other host machine or
machines. (This assumes that all data node hosts use the same architecture and operating system; otherwise you may need to compile
separately for each different platform.) ndbd need not be in any particular location on the host's filesystem, as long as the location is
known.

Management node installation — .tar.gz binary. Installation of the management node does not require the mysqld binary. Only
the binary for the management server is required, which can be found in the downloaded archive. You most likely want to install the
management client as well; this can also be found in the .tar.gz archive. Again, we assume that you have placed this archive in /
var/tmp.

As system root (that is, after using sudo, su root, or your system's equivalent for temporarily assuming the system administrator
account's privileges), perform the following steps to install ndb_mgmd and ndb_mgm on the Cluster management node host:

1. Change location to the /var/tmp directory, and extract the ndb_mgm and ndb_mgmd from the archive into a suitable directory
such as /usr/local/bin:

shell> cd /var/tmp
shell> tar -zxvf mysql-5.1.25-rc-pc-linux-gnu-i686.tar.gz
shell> cd mysql-5.1.25-rc-pc-linux-gnu-i686
shell> cp /bin/ndb_mgm* /usr/local/bin

(You can safely delete the directory created by unpacking the downloaded archive, and the files it contains, from /var/tmp once
ndb_mgm and ndb_mgmd have been copied to the executables directory.)

2. Change location to the directory into which you copied the files, and then make both of them executable:

shell> cd /usr/local/bin
shell> chmod +x ndb_mgm*

Management node installation — RPM file. To install the MySQL Cluster management server, it is necessary only to use the NDB
Cluster - Storage engine management RPM. Copy this RPM to the computer intended to host the management node, and then install
it by running the following command as the system root user (replace the name shown for the RPM as necessary to match that of the
Storage engine management RPM downloaded from the MySQL AB web site):

shell> rpm -Uhv MySQL-ndb-management-5.1.25-rc-0.glibc23.i386.rpm

This installs the management server binary (ndb_mgmd) to the /usr/sbin directory.

You should also install the NDB management client, which is supplied by the Storage engine basic tools RPM. Copy this RPM to the
same computer as the management node, and then install it by running the following command as the system root user (again, replace
the name shown for the RPM as necessary to match that of the Storage engine basic tools RPM downloaded from the MySQL AB web
site):

shell> rpm -Uhv MySQL-ndb-tools-5.1.25-rc-0.glibc23.i386.rpm

The Storage engine basic tools RPM installs the MySQL Cluster management client (ndb_mgm) to the /usr/bin directory.

Management node installation — building from source. When building from source and running the default make install, the
management server binary (ndb_mgmd) is placed in /usr/local/mysql/libexec, while the management client binary
(ndb_mgm) can be found in /usr/local/mysql/bin. Only ndb_mgmd is required to be present on a management node host;
however, it is also a good idea to have ndb_mgm present on the same host machine. Neither of these executables requires a specific loc-
ation on the host machine's filesystem.

In Section 17.3.3, “Multi-Computer Configuration”, we create configuration files for all of the nodes in our example Cluster.

17.3.3. Multi-Computer Configuration
For our four-node, four-host MySQL Cluster, it is necessary to write four configuration files, one per node host.

• Each data node or SQL node requires a my.cnf file that provides two pieces of information: a connectstring that tells the node
where to find the MGM node, and a line telling the MySQL server on this host (the machine hosting the data node) to run in NDB

MySQL Cluster

1110



mode.

For more information on connectstrings, see Section 17.4.4.2, “The Cluster Connectstring”.

• The management node needs a config.ini file telling it how many replicas to maintain, how much memory to allocate for data
and indexes on each data node, where to find the data nodes, where to save data to disk on each data node, and where to find any
SQL nodes.

Configuring the Storage and SQL Nodes

The my.cnf file needed for the data nodes is fairly simple. The configuration file should be located in the /etc directory and can be
edited using any text editor. (Create the file if it does not exist.) For example:

shell> vi /etc/my.cnf

We show vi being used here to create the file, but any text editor should work just as well.

For each data node and SQL node in our example setup, my.cnf should look like this:

# Options for mysqld process:
[mysqld]
ndbcluster # run NDB storage engine
ndb-connectstring=192.168.0.10 # location of management server

# Options for ndbd process:
[mysql_cluster]
ndb-connectstring=192.168.0.10 # location of management server

After entering the preceding information, save this file and exit the text editor. Do this for the machines hosting data node “A”, data
node “B”, and the SQL node.

Important

Once you have started a mysqld process with the ndbcluster and ndb-connectstring parameters in the
[mysqld] in the my.cnf file as shown previously, you cannot execute any CREATE TABLE or ALTER TABLE state-
ments without having actually started the cluster. Otherwise, these statements will fail with an error. This is by design.

Configuring the management node. The first step in configuring the MGM node is to create the directory in which the configuration
file can be found and then to create the file itself. For example (running as root):

shell> mkdir /var/lib/mysql-cluster
shell> cd /var/lib/mysql-cluster
shell> vi config.ini

For our representative setup, the config.ini file should read as follows:

# Options affecting ndbd processes on all data nodes:
[ndbd default]
NoOfReplicas=2 # Number of replicas
DataMemory=80M # How much memory to allocate for data storage
IndexMemory=18M # How much memory to allocate for index storage

# For DataMemory and IndexMemory, we have used the
# default values. Since the "world" database takes up
# only about 500KB, this should be more than enough for
# this example Cluster setup.

# TCP/IP options:
[tcp default]
portnumber=2202 # This the default; however, you can use any

# port that is free for all the hosts in the cluster
# Note: It is recommended that you do not specify the
# portnumber at all and allow the default value to be
# used instead

# Management process options:
[ndb_mgmd]
hostname=192.168.0.10 # Hostname or IP address of MGM node
datadir=/var/lib/mysql-cluster # Directory for MGM node log files

# Options for data node "A":
[ndbd]

# (one [ndbd] section per data node)
hostname=192.168.0.30 # Hostname or IP address

MySQL Cluster

1111



datadir=/usr/local/mysql/data # Directory for this data node's data files

# Options for data node "B":
[ndbd]
hostname=192.168.0.40 # Hostname or IP address
datadir=/usr/local/mysql/data # Directory for this data node's data files

# SQL node options:
[mysqld]
hostname=192.168.0.20 # Hostname or IP address

# (additional mysqld connections can be
# specified for this node for various
# purposes such as running ndb_restore)

Note

The world database can be downloaded from http://dev.mysql.com/doc/, where it can be found listed under “Examples”.

After all the configuration files have been created and these minimal options have been specified, you are ready to proceed with starting
the cluster and verifying that all processes are running. We discuss how this is done in Section 17.3.4, “Initial Startup”.

For more detailed information about the available MySQL Cluster configuration parameters and their uses, see Section 17.4.4,
“Configuration File”, and Section 17.4, “MySQL Cluster Configuration”. For configuration of MySQL Cluster as relates to making
backups, see Section 17.10.4, “Configuration for Cluster Backup”.

Note

The default port for Cluster management nodes is 1186; the default port for data nodes is 2202. However, the cluster can
automatically allocate ports for data nodes from those that are already free.

17.3.4. Initial Startup
Starting the cluster is not very difficult after it has been configured. Each cluster node process must be started separately, and on the
host where it resides. The management node should be started first, followed by the data nodes, and then finally by any SQL nodes:

1. On the management host, issue the following command from the system shell to start the management node process:

shell> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

Note

ndb_mgmd must be told where to find its configuration file, using the -f or --config-file option. (See Sec-
tion 17.7.3, “ndb_mgmd — The Management Server Process”, for details.)

For additional options which can be used with ndb_mgmd, see Section 17.7.5, “Command Options for MySQL Cluster
Processes”.

2. On each of the data node hosts, run this command to start the ndbd process:

shell> ndbd

3. MySQL Cluster 5.1 Carrier Grade Edition. The following information does not apply to users of MySQL Cluster 5.1 Carrier
Grade Edition. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Car-
rier Grade Edition”.

If you used RPM files to install MySQL on the cluster host where the SQL node is to reside, you can (and should) use the supplied
startup script to start the MySQL server process on the SQL node.

The following information applies to all MySQL Cluster users.

If all has gone well, and the cluster has been set up correctly, the cluster should now be operational. You can test this by invoking the
ndb_mgm management node client. The output should look like that shown here, although you might see some slight differences in the
output depending upon the exact version of MySQL that you are using:

shell> ndb_mgm
-- NDB Cluster -- Management Client --

MySQL Cluster

1112

http://dev.mysql.com/doc/


ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration
---------------------
[ndbd(NDB)] 2 node(s)
id=2 @192.168.0.30 (Version: 5.1.25-rc, Nodegroup: 0, Master)
id=3 @192.168.0.40 (Version: 5.1.25-rc, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @192.168.0.10 (Version: 5.1.25-rc)

[mysqld(SQL)] 1 node(s)
id=4 (Version: 5.1.25-rc)

Note

The SQL node is referenced here as [mysqld(API)]. This is perfectly normal, and reflects the fact that the mysqld
process is acting as a cluster API node.

You should now be ready to work with databases, tables, and data in MySQL Cluster. See Section 17.3.5, “Loading Sample Data and
Performing Queries”, for a brief discussion.

17.3.5. Loading Sample Data and Performing Queries
Working with data in MySQL Cluster is not much different from doing so in MySQL without Cluster. There are two points to keep in
mind:

• For a table to be replicated in the cluster, it must use the NDB Cluster storage engine. To specify this, use the ENGINE=NDB or
ENGINE=NDBCLUSTER table option. You can add this option when creating the table:

CREATE TABLE tbl_name (col_name column_definitions) ENGINE=NDBCLUSTER;

Alternatively, for an existing table that uses a different storage engine, use ALTER TABLE to change the table to use NDB
Cluster:

ALTER TABLE tbl_name ENGINE=NDBCLUSTER;

• Each NDB table must have a primary key. If no primary key is defined by the user when a table is created, the NDB Cluster stor-
age engine automatically generates a hidden one.

Note

This hidden key takes up space just as does any other table index. It is not uncommon to encounter problems due to insuf-
ficient memory for accommodating these automatically created indexes.)

If you are importing tables from an existing database using the output of mysqldump, you can open the SQL script in a text editor and
add the ENGINE option to any table creation statements, or replace any existing ENGINE (or TYPE) options. Suppose that you have the
world sample database on another MySQL server that does not support MySQL Cluster, and you want to export the City table:

shell> mysqldump --add-drop-table world City > city_table.sql

The resulting city_table.sql file will contain this table creation statement (and the INSERT statements necessary to import the ta-
ble data):

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
`ID` int(11) NOT NULL auto_increment,
`Name` char(35) NOT NULL default '',
`CountryCode` char(3) NOT NULL default '',
`District` char(20) NOT NULL default '',
`Population` int(11) NOT NULL default '0',
PRIMARY KEY (`ID`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

MySQL Cluster

1113



You need to make sure that MySQL uses the NDB storage engine for this table. There are two ways that this can be accomplished. One
of these is to modify the table definition before importing it into the Cluster database. Using the City table as an example, modify the
ENGINE option of the definition as follows:

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
`ID` int(11) NOT NULL auto_increment,
`Name` char(35) NOT NULL default '',
`CountryCode` char(3) NOT NULL default '',
`District` char(20) NOT NULL default '',
`Population` int(11) NOT NULL default '0',
PRIMARY KEY (`ID`)

) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

This must be done for the definition of each table that is to be part of the clustered database. The easiest way to accomplish this is to do
a search-and-replace on the file that contains the definitions and replace all instances of TYPE=engine_name or ENGINE=en-
gine_name with ENGINE=NDBCLUSTER. If you do not want to modify the file, you can use the unmodified file to create the tables,
and then use ALTER TABLE to change their storage engine. The particulars are given later in this section.

Assuming that you have already created a database named world on the SQL node of the cluster, you can then use the mysql com-
mand-line client to read city_table.sql, and create and populate the corresponding table in the usual manner:

shell> mysql world < city_table.sql

It is very important to keep in mind that the preceding command must be executed on the host where the SQL node is running (in this
case, on the machine with the IP address 192.168.0.20).

To create a copy of the entire world database on the SQL node, use mysqldump on the non-cluster server to export the database to a
file named world.sql; for example, in the /tmp directory. Then modify the table definitions as just described and import the file in-
to the SQL node of the cluster like this:

shell> mysql world < /tmp/world.sql

If you save the file to a different location, adjust the preceding instructions accordingly.

It is important to note that NDB Cluster in MySQL 5.1 does not support autodiscovery of databases. (See Section 17.15, “Known
Limitations of MySQL Cluster”.) This means that, once the world database and its tables have been created on one data node, you
need to issue the CREATE DATABASE world statement (or you may use CREATE SCHEMA world instead), followed by FLUSH
TABLES on each SQL node in the cluster. This causes the node to recognize the database and read its table definitions.

Running SELECT queries on the SQL node is no different from running them on any other instance of a MySQL server. To run queries
from the command line, you first need to log in to the MySQL Monitor in the usual way (specify the root password at the Enter
password: prompt):

shell> mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.1.25-rc

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

We simply use the MySQL server's root account and assume that you have followed the standard security precautions for installing a
MySQL server, including setting a strong root password. For more information, see Section 2.10.3, “Securing the Initial MySQL Ac-
counts”.

It is worth taking into account that Cluster nodes do not make use of the MySQL privilege system when accessing one another. Setting
or changing MySQL user accounts (including the root account) effects only applications that access the SQL node, not interaction
between nodes. See Section 17.9.2, “MySQL Cluster and MySQL Privileges”, for more information.

If you did not modify the ENGINE clauses in the table definitions prior to importing the SQL script, you should run the following state-
ments at this point:

mysql> USE world;

MySQL Cluster

1114



mysql> ALTER TABLE City ENGINE=NDBCLUSTER;
mysql> ALTER TABLE Country ENGINE=NDBCLUSTER;
mysql> ALTER TABLE CountryLanguage ENGINE=NDBCLUSTER;

Selecting a database and running a SELECT query against a table in that database is also accomplished in the usual manner, as is exiting
the MySQL Monitor:

mysql> USE world;
mysql> SELECT Name, Population FROM City ORDER BY Population DESC LIMIT 5;
+-----------+------------+
| Name | Population |
+-----------+------------+
| Bombay | 10500000 |
| Seoul | 9981619 |
| São Paulo | 9968485 |
| Shanghai | 9696300 |
| Jakarta | 9604900 |
+-----------+------------+
5 rows in set (0.34 sec)

mysql> \q
Bye

shell>

Applications that use MySQL can employ standard APIs to access NDB tables. It is important to remember that your application must
access the SQL node, and not the management or data nodes. This brief example shows how we might execute the SELECT statement
just shown by using the PHP 5.X mysqli extension running on a Web server elsewhere on the network:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>
<head>
<meta http-equiv="Content-Type"

content="text/html; charset=iso-8859-1">
<title>SIMPLE mysqli SELECT</title>

</head>
<body>
<?php
# connect to SQL node:
$link = new mysqli('192.168.0.20', 'root', 'root_password', 'world');
# parameters for mysqli constructor are:
# host, user, password, database

if( mysqli_connect_errno() )
die("Connect failed: " . mysqli_connect_error());

$query = "SELECT Name, Population
FROM City
ORDER BY Population DESC
LIMIT 5";

# if no errors...
if( $result = $link->query($query) )
{

?>
<table border="1" width="40%" cellpadding="4" cellspacing ="1">
<tbody>
<tr>
<th width="10%">City</th>
<th>Population</th>

</tr>
<?

# then display the results...
while($row = $result->fetch_object())
printf(<tr>\n <td align=\"center\">%s</td><td>%d</td>\n</tr>\n",

$row->Name, $row->Population);
?>
</tbody

</table>
<?
# ...and verify the number of rows that were retrieved
printf("<p>Affected rows: %d</p>\n", $link->affected_rows);

}
else
# otherwise, tell us what went wrong
echo mysqli_error();

# free the result set and the mysqli connection object
$result->close();
$link->close();

?>
</body>
</html>

MySQL Cluster

1115



We assume that the process running on the Web server can reach the IP address of the SQL node.

In a similar fashion, you can use the MySQL C API, Perl-DBI, Python-mysql, or MySQL AB's own Connectors to perform the tasks of
data definition and manipulation just as you would normally with MySQL.

17.3.6. Safe Shutdown and Restart
To shut down the cluster, enter the following command in a shell on the machine hosting the management node:

shell> ndb_mgm -e shutdown

The -e option here is used to pass a command to the ndb_mgm client from the shell. (See Section 17.7.5, “Command Options for
MySQL Cluster Processes”, for more information about this option.) The command causes the ndb_mgm, ndb_mgmd, and any ndbd
processes to terminate gracefully. Any SQL nodes can be terminated using mysqladmin shutdown and other means.

To restart the cluster, run these commands:

• On the management host (192.168.0.10 in our example setup):

shell> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

• On each of the data node hosts (192.168.0.30 and 192.168.0.40):

shell> ndbd

• On the SQL host (192.168.0.20):

shell> mysqld_safe &

In a production setting, it is usually not desirable to shut down the cluster completely. In many cases, even when making configuration
changes, or performing upgrades to the cluster hardware or software (or both), which require shutting down individual host machines, it
is possible to do so without shutting down the cluster as a whole by performing a rolling restart of the cluster. For more information
about doing this, see Section 17.6.1, “Performing a Rolling Restart of the Cluster”.

17.4. MySQL Cluster Configuration
A MySQL server that is part of a MySQL Cluster differs in only one respect from a normal (non-clustered) MySQL server, in that it
employs the NDB Cluster storage engine. This engine is also referred to simply as NDB, and the two forms of the name are syn-
onymous.

To avoid unnecessary allocation of resources, the server is configured by default with the NDB storage engine disabled. To enable NDB,
you must modify the server's my.cnf configuration file, or start the server with the --ndbcluster option.

For more information about --ndbcluster and other MySQL server options specific to MySQL Cluster, see Section 17.5.2,
“MySQL Cluster-Related Command Options for mysqld”.

The MySQL server is a part of the cluster, so it also must know how to access an MGM node to obtain the cluster configuration data.
The default behavior is to look for the MGM node on localhost. However, should you need to specify that its location is elsewhere,
this can be done in my.cnf or on the MySQL server command line. Before the NDB storage engine can be used, at least one MGM
node must be operational, as well as any desired data nodes.

17.4.1. Building MySQL Cluster from Source Code
NDB, the Cluster storage engine, is available in binary distributions for Linux, Mac OS X, and Solaris. We are working to make Cluster
run on all operating systems supported by MySQL, including Windows.

If you choose to build from a source tarball or the MySQL 5.1 BitKeeper tree, be sure to use the --with-ndbcluster option when
running configure. You can also use the BUILD/compile-pentium-max build script. Note that this script includes OpenSSL,
so you must either have or obtain OpenSSL to build successfully, or else modify compile-pentium-max to exclude this require-
ment. Of course, you can also just follow the standard instructions for compiling your own binaries, and then perform the usual tests and

MySQL Cluster

1116



installation procedure. See Section 2.9.3, “Installing from the Development Source Tree”.

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edition
only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade Edi-
tion”.

Warning

BUILD/compile-pentium-max by default builds the MySQL Server with support for the InnoDB storage engine.
You must not deploy or make use of MySQL Cluster 5.1 Carrier Grade Edition employing the InnoDB storage engine
without prior written permission to do so from MySQL AB.

If you wish to use InnoDB technology in conjunction with your use of MySQL Cluster 5.1 Carrier Grade Edition and do
not already have authorization to do so as part of your MySQL Server license, contact your MySQL AB salesperson or
other authorized MySQL AB representative for assistance in upgrading your MySQL Server license.

The following information applies to all MySQL Cluster users.

BUILD/compile-pentium-max also includes OpenSSL, so you must either have or obtain OpenSSL to build successfully, or else
modify compile-pentium-max to exclude this requirement. Of course, you can also just follow the standard instructions for com-
piling your own binaries, and then perform the usual tests and installation procedure. See Section 2.9.3, “Installing from the Develop-
ment Source Tree”.

You should also note that compile-pentium-max installs MySQL to the directory /usr/local/mysql, placing all MySQL
Cluster executables, scripts, databases, and support files in subdirectories under this directory. If this is not what you desire, be sure to
modify the script accordingly.

17.4.2. Installing the Cluster Software
In the next few sections, we assume that you are already familiar with installing MySQL, and here we cover only the differences
between configuring MySQL Cluster and configuring MySQL without clustering. (See Chapter 2, Installing and Upgrading MySQL, if
you require more information about the latter.)

You will find Cluster configuration easiest if you have already have all management and data nodes running first; this is likely to be the
most time-consuming part of the configuration. Editing the my.cnf file is fairly straightforward, and this section will cover only any
differences from configuring MySQL without clustering.

17.4.3. Quick Test Setup of MySQL Cluster
To familiarize you with the basics, we will describe the simplest possible configuration for a functional MySQL Cluster. After this, you
should be able to design your desired setup from the information provided in the other relevant sections of this chapter.

First, you need to create a configuration directory such as /var/lib/mysql-cluster, by executing the following command as the
system root user:

shell> mkdir /var/lib/mysql-cluster

In this directory, create a file named config.ini that contains the following information. Substitute appropriate values for Host-
Name and DataDir as necessary for your system.

# file "config.ini" - showing minimal setup consisting of 1 data node,
# 1 management server, and 3 MySQL servers.
# The empty default sections are not required, and are shown only for
# the sake of completeness.
# Data nodes must provide a hostname but MySQL Servers are not required
# to do so.
# If you don't know the hostname for your machine, use localhost.
# The DataDir parameter also has a default value, but it is recommended to
# set it explicitly.
# Note: [db], [api], and [mgm] are aliases for [ndbd], [mysqld], and [ndb_mgmd],
# respectively. [db] is deprecated and should not be used in new installations.

[ndbd default]
NoOfReplicas= 1

[mysqld default]
[ndb_mgmd default]
[tcp default]

[ndb_mgmd]
HostName= myhost.example.com

MySQL Cluster

1117



[ndbd]
HostName= myhost.example.com
DataDir= /var/lib/mysql-cluster

[mysqld]
[mysqld]
[mysqld]

You can now start the ndb_mgmd management server. By default, it attempts to read the config.ini file in its current working dir-
ectory, so change location into the directory where the file is located and then invoke ndb_mgmd:

shell> cd /var/lib/mysql-cluster
shell> ndb_mgmd

Then start a single data node by running ndbd:

shell> ndbd

For command-line options which can be used when starting ndbd, see Section 17.7.5, “Command Options for MySQL Cluster Pro-
cesses”.

By default, ndbd looks for the management server at localhost on port 1186.

Note

If you have installed MySQL from a binary tarball, you will need to specify the path of the ndb_mgmd and ndbd servers
explicitly. (Normally, these will be found in /usr/local/mysql/bin.)

Finally, change location to the MySQL data directory (usually /var/lib/mysql or /usr/local/mysql/data), and make sure
that the my.cnf file contains the option necessary to enable the NDB storage engine:

[mysqld]
ndbcluster

You can now start the MySQL server as usual:

shell> mysqld_safe --user=mysql &

Wait a moment to make sure the MySQL server is running properly. If you see the notice mysql ended, check the server's .err file
to find out what went wrong.

If all has gone well so far, you now can start using the cluster. Connect to the server and verify that the NDBCLUSTER storage engine is
enabled:

shell> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.1.25-rc

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW ENGINES\G
...
*************************** 12. row ***************************
Engine: NDBCLUSTER
Support: YES
Comment: Clustered, fault-tolerant, memory-based tables
*************************** 13. row ***************************
Engine: NDB
Support: YES
Comment: Alias for NDBCLUSTER
...

The row numbers shown in the preceding example output may be different from those shown on your system, depending upon how your
server is configured.

Try to create an NDBCLUSTER table:

shell> mysql
mysql> USE test;
Database changed

MySQL Cluster

1118



mysql> CREATE TABLE ctest (i INT) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (0.09 sec)

mysql> SHOW CREATE TABLE ctest \G
*************************** 1. row ***************************

Table: ctest
Create Table: CREATE TABLE `ctest` (
`i` int(11) default NULL

) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

To check that your nodes were set up properly, start the management client:

shell> ndb_mgm

Use the SHOW command from within the management client to obtain a report on the cluster's status:

ndb_mgm> SHOW
Cluster Configuration
---------------------
[ndbd(NDB)] 1 node(s)
id=2 @127.0.0.1 (Version: 3.5.3, Nodegroup: 0, Master)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @127.0.0.1 (Version: 3.5.3)

[mysqld(API)] 3 node(s)
id=3 @127.0.0.1 (Version: 3.5.3)
id=4 (not connected, accepting connect from any host)
id=5 (not connected, accepting connect from any host)

At this point, you have successfully set up a working MySQL Cluster. You can now store data in the cluster by using any table created
with ENGINE=NDBCLUSTER or its alias ENGINE=NDB.

17.4.4. Configuration File
Configuring MySQL Cluster requires working with two files:

• my.cnf: Specifies options for all MySQL Cluster executables. This file, with which you should be familiar with from previous
work with MySQL, must be accessible by each executable running in the cluster.

• config.ini: This file is read only by the MySQL Cluster management server, which then distributes the information contained
therein to all processes participating in the cluster. config.ini contains a description of each node involved in the cluster. This
includes configuration parameters for data nodes and configuration parameters for connections between all nodes in the cluster. For
a quick reference to the sections that can appear in this file, and what sorts of configuration parameters may be placed in each sec-
tion, see Sections of the config.ini File.

We are continuously making improvements in Cluster configuration and attempting to simplify this process. Although we strive to
maintain backward compatibility, there may be times when introduce an incompatible change. In such cases we will try to let Cluster
users know in advance if a change is not backward compatible. If you find such a change and we have not documented it, please report
it in the MySQL bugs database using the instructions given in Section 1.7, “How to Report Bugs or Problems”.

17.4.4.1. Basic Example Configuration

To support MySQL Cluster, you will need to update my.cnf as shown in the following example. Note that the options shown here
should not be confused with those that are used in config.ini files. You may also specify these parameters on the command line
when invoking the executables.

# my.cnf
# example additions to my.cnf for MySQL Cluster
# (valid in MySQL 5.1)

# enable ndbcluster storage engine, and provide connectstring for
# management server host (default port is 1186)
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com

# provide connectstring for management server host (default port: 1186)
[ndbd]

MySQL Cluster

1119



connect-string=ndb_mgmd.mysql.com

# provide connectstring for management server host (default port: 1186)
[ndb_mgm]
connect-string=ndb_mgmd.mysql.com

# provide location of cluster configuration file
[ndb_mgmd]
config-file=/etc/config.ini

(For more information on connectstrings, see Section 17.4.4.2, “The Cluster Connectstring”.)

# my.cnf
# example additions to my.cnf for MySQL Cluster
# (will work on all versions)

# enable ndbcluster storage engine, and provide connectstring for management
# server host to the default port 1186
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com:1186

Important

Once you have started a mysqld process with the ndbcluster and ndb-connectstring parameters in the
[mysqld] in the my.cnf file as shown previously, you cannot execute any CREATE TABLE or ALTER TABLE state-
ments without having actually started the cluster. Otherwise, these statements will fail with an error. This is by design.

You may also use a separate [mysql_cluster] section in the cluster my.cnf file for settings to be read and used by all execut-
ables:

# cluster-specific settings
[mysql_cluster]
ndb-connectstring=ndb_mgmd.mysql.com:1186

For additional NDB variables that can be set in the my.cnf file, see Section 5.1.3, “System Variables”.

The configuration file is named config.ini by default. It is read by ndb_mgmd at startup and can be placed anywhere. Its location
and name are specified by using --config-file=path_name on the ndb_mgmd command line. If the configuration file is not
specified, ndb_mgmd by default tries to read a file named config.ini located in the current working directory.

Currently, the configuration file is in INI format, which consists of sections preceded by section headings (surrounded by square brack-
ets), followed by the appropriate parameter names and values. One deviation from the standard INI format is that the parameter name
and value can be separated by a colon (“:”) as well as the equals sign (“=”); however, the equals sign is preferred. Another deviation is
that sections are not uniquely identified by section name. Instead, unique sections (such as two different nodes of the same type) are
identified by a unique ID specified as a parameter within the section.

Default values are defined for most parameters, and can also be specified in config.ini. To create a default value section, simply
add the word default to the section name. For example, an [ndbd] section contains parameters that apply to a particular data node,
whereas an [ndbd default] section contains parameters that apply to all data nodes. Suppose that all data nodes should use the
same data memory size. To configure them all, create an [ndbd default] section that contains a DataMemory line to specify the
data memory size.

At a minimum, the configuration file must define the computers and nodes involved in the cluster and on which computers these nodes
are located. An example of a simple configuration file for a cluster consisting of one management server, two data nodes and two
MySQL servers is shown here:

# file "config.ini" - 2 data nodes and 2 SQL nodes
# This file is placed in the startup directory of ndb_mgmd (the
# management server)
# The first MySQL Server can be started from any host. The second
# can be started only on the host mysqld_5.mysql.com

[ndbd default]
NoOfReplicas= 2
DataDir= /var/lib/mysql-cluster

[ndb_mgmd]
Hostname= ndb_mgmd.mysql.com
DataDir= /var/lib/mysql-cluster

[ndbd]
HostName= ndbd_2.mysql.com

MySQL Cluster

1120



[ndbd]
HostName= ndbd_3.mysql.com

[mysqld]
[mysqld]
HostName= mysqld_5.mysql.com

Each node has its own section in the config.ini file. For example, this cluster has two data nodes, so the preceding configuration
file contains two [ndbd] sections defining these nodes.

Note

Do not place comments on the same line as a section heading in the config.ini file; this causes the management server
not to start because it cannot parse the configuration file in such cases.

Sections of the config.ini File

There are six different sections that you can use in the config.ini configuration file, as described in the following list:

• [computer]: Defines cluster hosts. This is not required to configure a viable MySQL Cluster, but be may used as a convenience
when setting up a large cluster. See Section 17.4.4.3, “Defining Cluster Computers”, for more information.

• [ndbd]: Defines a cluster data node (ndbd process). See Section 17.4.4.5, “Defining Data Nodes”, for details.

• [mysqld]: Defines the cluster's MySQL server nodes (also called SQL or API nodes). For a discussion of SQL node configura-
tion, see Section 17.4.4.6, “Defining SQL and Other API Nodes”.

• [mgm] or [ndb_mgmd]: Defines a cluster management server (MGM) node. For information concerning the configuration of
MGM nodes, see Section 17.4.4.4, “Defining the Management Server”.

• [tcp]: Defines a TCP/IP connection between cluster nodes, with TCP/IP being the default connection protocol. Normally, [tcp]
or [tcp default] sections are not required to set up a MySQL Cluster, as the cluster handles this automatically; however, it
may be necessary in some situations to override the defaults provided by the cluster. See Section 17.4.4.7, “Cluster TCP/IP Connec-
tions”, for information about available TCP/IP configuration parameters and how to use them. (You may also find Section 17.4.4.8,
“TCP/IP Connections Using Direct Connections” to be of interest in some cases.)

• [shm]: Defines shared-memory connections between nodes. In MySQL 5.1, it is enabled by default, but should still be considered
experimental. For a discussion of SHM interconnects, see Section 17.4.4.9, “Shared-Memory Connections”.

• [sci]:Defines Scalable Coherent Interface connections between cluster data nodes. Such connections require software which,
while freely available, is not part of the MySQL Cluster distribution, as well as specialised hardware. See Section 17.4.4.10, “SCI
Transport Connections” for detailed information about SCI interconnects.

You can define default values for each section. All Cluster parameter names are case-insensitive, which differs from parameters spe-
cified in my.cnf or my.ini files.

17.4.4.2. The Cluster Connectstring

With the exception of the MySQL Cluster management server (ndb_mgmd), each node that is part of a MySQL Cluster requires a con-
nectstring that points to the management server's location. This connectstring is used in establishing a connection to the management
server as well as in performing other tasks depending on the node's role in the cluster. The syntax for a connectstring is as follows:

<connectstring> :=
[<nodeid-specification>,]<host-specification>[,<host-specification>]

<nodeid-specification> := node_id

<host-specification> := host_name[:port_num]

node_id is an integer larger than 1 which identifies a node in config.ini. host_name is a string representing a valid Internet
host name or IP address. port_num is an integer referring to a TCP/IP port number.

example 1 (long): "nodeid=2,myhost1:1100,myhost2:1100,192.168.0.3:1200"
example 2 (short): "myhost1"

MySQL Cluster

1121



All nodes will use localhost:1186 as the default connectstring value if none is provided. If port_num is omitted from the con-
nectstring, the default port is 1186. This port should always be available on the network because it has been assigned by IANA for this
purpose (see http://www.iana.org/assignments/port-numbers for details).

By listing multiple <host-specification> values, it is possible to designate several redundant management servers. A cluster
node will attempt to contact successive management servers on each host in the order specified, until a successful connection has been
established.

There are a number of different ways to specify the connectstring:

• Each executable has its own command-line option which enables specifying the management server at startup. (See the documenta-
tion for the respective executable.)

• It is also possible to set the connectstring for all nodes in the cluster at once by placing it in a [mysql_cluster] section in the
management server's my.cnf file.

• For backward compatibility, two other options are available, using the same syntax:

1. Set the NDB_CONNECTSTRING environment variable to contain the connectstring.

2. Write the connectstring for each executable into a text file named Ndb.cfg and place this file in the executable's startup dir-
ectory.

However, these are now deprecated and should not be used for new installations.

The recommended method for specifying the connectstring is to set it on the command line or in the my.cnf file for each executable.

The maximum length of a connectstring is 1024 characters.

17.4.4.3. Defining Cluster Computers

The [computer] section has no real significance other than serving as a way to avoid the need of defining host names for each node
in the system. All parameters mentioned here are required.

• Id

This is an integer value, used to refer to the host computer elsewhere in the configuration file. This is not the same as the node ID.

• HostName

This is the computer's hostname or IP address.

17.4.4.4. Defining the Management Server

The [ndb_mgmd] section is used to configure the behavior of the management server. [mgm] can be used as an alias; the two section
names are equivalent. All parameters in the following list are optional and assume their default values if omitted.

Note

If neither the ExecuteOnComputer nor the HostName parameter is present, the default value localhost will be as-
sumed for both.

•
Id

Each node in the cluster has a unique identity, which is represented by an integer value in the range 1 to 63 inclusive. This ID is
used by all internal cluster messages for addressing the node.

•
ExecuteOnComputer

MySQL Cluster

1122

http://www.iana.org/assignments/port-numbers


This refers to the Id set for one of the computers defined in a [computer] section of the config.ini file.

•
PortNumber

This is the port number on which the management server listens for configuration requests and management commands.

•
HostName

Specifying this parameter defines the hostname of the computer on which the management node is to reside. To specify a hostname
other than localhost, either this parameter or ExecuteOnComputer is required.

•
LogDestination

This parameter specifies where to send cluster logging information. There are three options in this regard — CONSOLE, SYSLOG,
and FILE — with FILE being the default:

• CONSOLE outputs the log to stdout:

CONSOLE

• SYSLOG sends the log to a syslog facility, possible values being one of auth, authpriv, cron, daemon, ftp, kern,
lpr, mail, news, syslog, user, uucp, local0, local1, local2, local3, local4, local5, local6, or local7.

Note

Not every facility is necessarily supported by every operating system.

SYSLOG:facility=syslog

• FILE pipes the cluster log output to a regular file on the same machine. The following values can be specified:

• filename: The name of the log file.

• maxsize: The maximum size (in bytes) to which the file can grow before logging rolls over to a new file. When this oc-
curs, the old log file is renamed by appending .N to the filename, where N is the next number not yet used with this name.

• maxfiles: The maximum number of log files.

FILE:filename=cluster.log,maxsize=1000000,maxfiles=6

The default value for the FILE parameter is
FILE:filename=ndb_node_id_cluster.log,maxsize=1000000,maxfiles=6, where node_id is the ID of
the node.

It is possible to specify multiple log destinations separated by semicolons as shown here:

CONSOLE;SYSLOG:facility=local0;FILE:filename=/var/log/mgmd

•
ArbitrationRank

This parameter is used to define which nodes can act as arbitrators. Only management nodes and SQL nodes can be arbitrators. Ar-
bitrationRank can take one of the following values:

• 0: The node will never be used as an arbitrator.

• 1: The node has high priority; that is, it will be preferred as an arbitrator over low-priority nodes.

• 2: Indicates a low-priority node which be used as an arbitrator only if a node with a higher priority is not available for that pur-
pose.

MySQL Cluster

1123



Normally, the management server should be configured as an arbitrator by setting its ArbitrationRank to 1 (the default value)
and that of all SQL nodes to 0.

Beginning with MySQL 5.1.16 (MySQL Cluster 5.1 Carrier Grade Edition: MySQL 5.1.15-ndb-6.1.3), it is possible to disable ar-
bitration completely by setting ArbitrationRank to 0 on all management and SQL nodes.

•
ArbitrationDelay

An integer value which causes the management server's responses to arbitration requests to be delayed by that number of milli-
seconds. By default, this value is 0; it is normally not necessary to change it.

•
DataDir

This specifies the directory where output files from the management server will be placed. These files include cluster log files, pro-
cess output files, and the daemon's process ID (PID) file. (For log files, this location can be overridden by setting the FILE paramet-
er for LogDestination as discussed previously in this section.)

The default value for this parameter is the directory in which ndb_mgmd is located.

17.4.4.5. Defining Data Nodes

The [ndbd] and[ndbd default]sections are used to configure the behavior of the cluster's data nodes. There are many parameters
which control buffer sizes, pool sizes, timeouts, and so forth. The only mandatory parameters are:

• Either ExecuteOnComputer or HostName, which must be defined in the local [ndbd] section.

• The parameter NoOfReplicas, which must be defined in the[ndbd default]section, as it is common to all Cluster data
nodes.

Most data node parameters are set in the [ndbd default] section. Only those parameters explicitly stated as being able to set local
values are allowed to be changed in the [ndbd] section. Where present, HostName, Id and ExecuteOnComputer must be
defined in the local [ndbd] section, and not in any other section of config.ini. In other words, settings for these parameters are
specific to one data node.

For those parameters affecting memory usage or buffer sizes, it is possible to use K, M, or G as a suffix to indicate units of 1024,
1024×1024, or 1024×1024×1024. (For example, 100K means 100 × 1024 = 102400.) Parameter names and values are currently case-
sensitive.

Identifying data nodes. The Id value (that is, the data node identifier) can be allocated on the command line when the node is started
or in the configuration file.

•
Id

This is the node ID used as the address of the node for all cluster internal messages. For data nodes, this is an integer in the range 1
to 49 inclusive. Each node in the cluster must have a unique identity.

•
ExecuteOnComputer

This refers to the Id set for one of the computers defined in a [computer] section.

•
HostName

Specifying this parameter defines the hostname of the computer on which the data node is to reside. To specify a hostname other
than localhost, either this parameter or ExecuteOnComputer is required.

•

MySQL Cluster

1124



ServerPort (OBSOLETE)

Each node in the cluster uses a port to connect to other nodes. This port is used also for non-TCP transporters in the connection
setup phase. The default port is allocated dynamically in such a way as to ensure that no two nodes on the same computer receive
the same port number, so it should not normally be necessary to specify a value for this parameter.

• MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

TcpBind_INADDR_ANY

Setting this parameter to TRUE or 1 binds IP_ADDR_ANY so that connections can be made from anywhere (for autogenerated con-
nections). The default is FALSE (0).

This parameter was added in MySQL 5.1.16-ndb-6.2.0.

The following information applies to all MySQL Cluster users.

•
NoOfReplicas

This global parameter can be set only in the [ndbd default] section, and defines the number of replicas for each table stored in
the cluster. This parameter also specifies the size of node groups. A node group is a set of nodes all storing the same information.

Node groups are formed implicitly. The first node group is formed by the set of data nodes with the lowest node IDs, the next node
group by the set of the next lowest node identities, and so on. By way of example, assume that we have 4 data nodes and that NoO-
fReplicas is set to 2. The four data nodes have node IDs 2, 3, 4 and 5. Then the first node group is formed from nodes 2 and 3,
and the second node group by nodes 4 and 5. It is important to configure the cluster in such a manner that nodes in the same node
groups are not placed on the same computer because a single hardware failure would cause the entire cluster to crash.

If no node IDs are provided, the order of the data nodes will be the determining factor for the node group. Whether or not explicit
assignments are made, they can be viewed in the output of the management client's SHOW statement.

There is no default value for NoOfReplicas; the maximum possible value is 4. For production clusters, it is recommended that
this parameter be set to 1 or 2.

Important

The value for this parameter must divide evenly into the number of data nodes in the cluster. For example, if there are two
data nodes, then NoOfReplicas must be equal to either 1 or 2, since 2/3 and 2/4 both yield fractional values; if there are
four data nodes, then NoOfReplicas must be equal to 1, 2, or 4.

•
DataDir

This parameter specifies the directory where trace files, log files, pid files and error logs are placed.

•
FileSystemPath

This parameter specifies the directory where all files created for metadata, REDO logs, UNDO logs (for Disk Data tables) and data
files are placed. The default is the directory specified by DataDir.

Note

This directory must exist before the ndbd process is initiated.

The recommended directory hierarchy for MySQL Cluster includes /var/lib/mysql-cluster, under which a directory for
the node's filesystem is created. The name of this subdirectory contains the node ID. For example, if the node ID is 2, this subdirect-
ory is named ndb_2_fs.

•
BackupDataDir

MySQL Cluster

1125



This parameter specifies the directory in which backups are placed. If omitted, the default backup location is the directory named
BACKUP under the location specified by the FileSystemPath parameter. (See above.)

Data Memory, Index Memory, and String Memory

DataMemory and IndexMemory are [ndbd] parameters specifying the size of memory segments used to store the actual records
and their indexes. In setting values for these, it is important to understand how DataMemory and IndexMemory are used, as they
usually need to be updated to reflect actual usage by the cluster:

•
DataMemory

This parameter defines the amount of space (in bytes) available for storing database records. The entire amount specified by this
value is allocated in memory, so it is extremely important that the machine has sufficient physical memory to accommodate it.

The memory allocated by DataMemory is used to store both the actual records and indexes. There is a 16-byte overhead on each
record; an additional amount for each record is incurred because it is stored in a 32KB page with 128 byte page overhead (see be-
low). There is also a small amount wasted per page due to the fact that each record is stored in only one page.

For variable-size table attributes in MySQL 5.1, the data is stored on separate datapages, allocated from DataMemory. Variable-
length records use a fixed-size part with an extra overhead of 4 bytes to reference the variable-size part. The variable-size part has 2
bytes overhead plus 2 bytes per attribute.

The maximum record size is currently 8052 bytes.

The memory space defined by DataMemory is also used to store ordered indexes, which use about 10 bytes per record. Each table
row is represented in the ordered index. A common error among users is to assume that all indexes are stored in the memory alloc-
ated by IndexMemory, but this is not the case: Only primary key and unique hash indexes use this memory; ordered indexes use
the memory allocated by DataMemory. However, creating a primary key or unique hash index also creates an ordered index on the
same keys, unless you specify USING HASH in the index creation statement. This can be verified by running ndb_desc -d
db_name table_name in the management client.

The memory space allocated by DataMemory consists of 32KB pages, which are allocated to table fragments. Each table is nor-
mally partitioned into the same number of fragments as there are data nodes in the cluster. Thus, for each node, there are the same
number of fragments as are set in NoOfReplicas.

In addition, due to the way in which new pages are allocated when the capacity of the current page is exhausted, there is an addition-
al overhead of approximately 18.75%. When more DataMemory is required, more than one new page is allocated, according to the
following formula:

number of new pages = FLOOR(number of current pages × 0.1875) + 1

For example, if 15 pages are currently allocated to a given table and an insert to this table requires additional storage space, the
number of new pages allocated to the table is FLOOR(15 × 0.1875) + 1 = FLOOR(2.8125) + 1 = 2 + 1 = 3. Now
15 + 3 = 18 memory pages are allocated to the table. When the last of these 18 pages becomes full, FLOOR(18 × 0.1875) + 1
= FLOOR(3.3750) + 1 = 3 + 1 = 4 new pages are allocated, so the total number of pages allocated to the table is now 22.

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

Note

The “18.75% + 1” overhead is no longer required in MySQL Cluster 5.1 Carrier Grade Edition 6.2.x and 6.3.x releases,
beginning with MySQL 5.1.19-ndb-6.2.3 and MySQL 5.1.19-ndb-6.3.0.

The following information applies to all MySQL Cluster users.

Once a page has been allocated, it is currently not possible to return it to the pool of free pages, except by deleting the table. (This
also means that DataMemory pages, once allocated to a given table, cannot be used by other tables.) Performing a node recovery
also compresses the partition because all records are inserted into empty partitions from other live nodes.

The DataMemory memory space also contains UNDO information: For each update, a copy of the unaltered record is allocated in

MySQL Cluster

1126



the DataMemory. There is also a reference to each copy in the ordered table indexes. Unique hash indexes are updated only when
the unique index columns are updated, in which case a new entry in the index table is inserted and the old entry is deleted upon com-
mit. For this reason, it is also necessary to allocate enough memory to handle the largest transactions performed by applications us-
ing the cluster. In any case, performing a few large transactions holds no advantage over using many smaller ones, for the following
reasons:

• Large transactions are not any faster than smaller ones

• Large transactions increase the number of operations that are lost and must be repeated in event of transaction failure

• Large transactions use more memory

The default value for DataMemory is 80MB; the minimum is 1MB. There is no maximum size, but in reality the maximum size
has to be adapted so that the process does not start swapping when the limit is reached. This limit is determined by the amount of
physical RAM available on the machine and by the amount of memory that the operating system may commit to any one process.
32-bit operating systems are generally limited to 2–4GB per process; 64-bit operating systems can use more. For large databases, it
may be preferable to use a 64-bit operating system for this reason.

•
IndexMemory

This parameter controls the amount of storage used for hash indexes in MySQL Cluster. Hash indexes are always used for primary
key indexes, unique indexes, and unique constraints. Note that when defining a primary key and a unique index, two indexes will be
created, one of which is a hash index used for all tuple accesses as well as lock handling. It is also used to enforce unique con-
straints.

The size of the hash index is 25 bytes per record, plus the size of the primary key. For primary keys larger than 32 bytes another 8
bytes is added.

The default value for IndexMemory is 18MB. The minimum is 1MB.

•
StringMemory

This parameter determines how much memory is allocated for strings such as table names, and is specified in an [ndbd] or [ndbd
default] section of the config.ini file. A value between 0 and 100 inclusive is interpreted as a percent of the maximum de-
fault value, which is calculated based on a number of factors including the number of tables, maximum table name size, maximum
size of .FRM files, MaxNoOfTriggers, maximum column name size, and maximum default column value. In general it is safe to
assume that the maximum default value is approximately 5 MB for a MySQL Cluster having 1000 tables.

A value greater than 100 is interpreted as a number of bytes.

The default value is 5 — that is, 5 percent of the default maximum, or roughly 5 KB. (Note that this is a change from previous ver-
sions of MySQL Cluster.)

Under most circumstances, the default value should be sufficient, but when you have a great many Cluster tables (1000 or more), it
is possible to get Error 773 OUT OF STRING MEMORY, PLEASE MODIFY STRINGMEMORY CONFIG PARAMETER: PERMANENT ERROR:
SCHEMA ERROR, in which case you should increase this value. 25 (25 percent) is not excessive, and should prevent this error from re-
curring in all but the most extreme conditions.

The following example illustrates how memory is used for a table. Consider this table definition:

CREATE TABLE example (
a INT NOT NULL,
b INT NOT NULL,
c INT NOT NULL,
PRIMARY KEY(a),
UNIQUE(b)

) ENGINE=NDBCLUSTER;

For each record, there are 12 bytes of data plus 12 bytes overhead. Having no nullable columns saves 4 bytes of overhead. In addition,
we have two ordered indexes on columns a and b consuming roughly 10 bytes each per record. There is a primary key hash index on
the base table using roughly 29 bytes per record. The unique constraint is implemented by a separate table with b as primary key and a
as a column. This other table consumes an additional 29 bytes of index memory per record in the example table as well 8 bytes of re-
cord data plus 12 bytes of overhead.

MySQL Cluster

1127



Thus, for one million records, we need 58MB for index memory to handle the hash indexes for the primary key and the unique con-
straint. We also need 64MB for the records of the base table and the unique index table, plus the two ordered index tables.

You can see that hash indexes takes up a fair amount of memory space; however, they provide very fast access to the data in return.
They are also used in MySQL Cluster to handle uniqueness constraints.

Currently, the only partitioning algorithm is hashing and ordered indexes are local to each node. Thus, ordered indexes cannot be used
to handle uniqueness constraints in the general case.

An important point for both IndexMemory and DataMemory is that the total database size is the sum of all data memory and all in-
dex memory for each node group. Each node group is used to store replicated information, so if there are four nodes with two replicas,
there will be two node groups. Thus, the total data memory available is 2 × DataMemory for each data node.

It is highly recommended that DataMemory and IndexMemory be set to the same values for all nodes. Data distribution is even over
all nodes in the cluster, so the maximum amount of space available for any node can be no greater than that of the smallest node in the
cluster.

DataMemory and IndexMemory can be changed, but decreasing either of these can be risky; doing so can easily lead to a node or
even an entire MySQL Cluster that is unable to restart due to there being insufficient memory space. Increasing these values should be
acceptable, but it is recommended that such upgrades are performed in the same manner as a software upgrade, beginning with an up-
date of the configuration file, and then restarting the management server followed by restarting each data node in turn.

Updates do not increase the amount of index memory used. Inserts take effect immediately; however, rows are not actually deleted until
the transaction is committed.

Transaction parameters. The next three [ndbd] parameters that we discuss are important because they affect the number of parallel
transactions and the sizes of transactions that can be handled by the system. MaxNoOfConcurrentTransactions sets the number
of parallel transactions possible in a node. MaxNoOfConcurrentOperations sets the number of records that can be in update
phase or locked simultaneously.

Both of these parameters (especially MaxNoOfConcurrentOperations) are likely targets for users setting specific values and not
using the default value. The default value is set for systems using small transactions, to ensure that these do not use excessive memory.

•
MaxNoOfConcurrentTransactions

Each cluster data node requires a transaction record for each active transaction in the cluster. The task of coordinating transactions is
distributed among all of the data nodes. The total number of transaction records in the cluster is the number of transactions in any
given node times the number of nodes in the cluster.

Transaction records are allocated to individual MySQL servers. Each connection to a MySQL server requires at least one transaction
record, plus an additional transaction object per table accessed by that connection. This means that a reasonable minimum for this
parameter is

MaxNoOfConcurrentTransactions =
(maximum number of tables accessed in any single transaction + 1)
* number of cluster SQL nodes

For example, suppose that there are 4 SQL nodes using the cluster. A single join involving 5 tables requires 6 transaction records; if
there are 5 such joins in a transaction, then 5 * 6 = 30 transaction records are required for this transaction, per MySQL server, or 30
* 4 = 120 transaction records total.

This parameter must be set to the same value for all cluster data nodes. This is due to the fact that, when a data node fails, the oldest
surviving node re-creates the transaction state of all transactions that were ongoing in the failed node.

Changing the value of MaxNoOfConcurrentTransactions requires a complete shutdown and restart of the cluster.

The default value is 4096.

•
MaxNoOfConcurrentOperations

It is a good idea to adjust the value of this parameter according to the size and number of transactions. When performing transac-
tions of only a few operations each and not involving a great many records, there is no need to set this parameter very high. When
performing large transactions involving many records need to set this parameter higher.

MySQL Cluster

1128



Records are kept for each transaction updating cluster data, both in the transaction coordinator and in the nodes where the actual up-
dates are performed. These records contain state information needed to find UNDO records for rollback, lock queues, and other pur-
poses.

This parameter should be set to the number of records to be updated simultaneously in transactions, divided by the number of cluster
data nodes. For example, in a cluster which has four data nodes and which is expected to handle 1,000,000 concurrent updates using
transactions, you should set this value to 1000000 / 4 = 250000.

Read queries which set locks also cause operation records to be created. Some extra space is allocated within individual nodes to ac-
commodate cases where the distribution is not perfect over the nodes.

When queries make use of the unique hash index, there are actually two operation records used per record in the transaction. The
first record represents the read in the index table and the second handles the operation on the base table.

The default value is 32768.

This parameter actually handles two values that can be configured separately. The first of these specifies how many operation re-
cords are to be placed with the transaction coordinator. The second part specifies how many operation records are to be local to the
database.

A very large transaction performed on an eight-node cluster requires as many operation records in the transaction coordinator as
there are reads, updates, and deletes involved in the transaction. However, the operation records of the are spread over all eight
nodes. Thus, if it is necessary to configure the system for one very large transaction, it is a good idea to configure the two parts sep-
arately. MaxNoOfConcurrentOperations will always be used to calculate the number of operation records in the transaction
coordinator portion of the node.

It is also important to have an idea of the memory requirements for operation records. These consume about 1KB per record.

•
MaxNoOfLocalOperations

By default, this parameter is calculated as 1.1 × MaxNoOfConcurrentOperations. This fits systems with many simultaneous
transactions, none of them being very large. If there is a need to handle one very large transaction at a time and there are many
nodes, it is a good idea to override the default value by explicitly specifying this parameter.

Transaction temporary storage. The next set of [ndbd] parameters is used to determine temporary storage when executing a state-
ment that is part of a Cluster transaction. All records are released when the statement is completed and the cluster is waiting for the
commit or rollback.

The default values for these parameters are adequate for most situations. However, users with a need to support transactions involving
large numbers of rows or operations may need to increase these values to enable better parallelism in the system, whereas users whose
applications require relatively small transactions can decrease the values to save memory.

•
MaxNoOfConcurrentIndexOperations

For queries using a unique hash index, another temporary set of operation records is used during a query's execution phase. This
parameter sets the size of that pool of records. Thus, this record is allocated only while executing a part of a query. As soon as this
part has been executed, the record is released. The state needed to handle aborts and commits is handled by the normal operation re-
cords, where the pool size is set by the parameter MaxNoOfConcurrentOperations.

The default value of this parameter is 8192. Only in rare cases of extremely high parallelism using unique hash indexes should it be
necessary to increase this value. Using a smaller value is possible and can save memory if the DBA is certain that a high degree of
parallelism is not required for the cluster.

•
MaxNoOfFiredTriggers

The default value of MaxNoOfFiredTriggers is 4000, which is sufficient for most situations. In some cases it can even be de-
creased if the DBA feels certain the need for parallelism in the cluster is not high.

A record is created when an operation is performed that affects a unique hash index. Inserting or deleting a record in a table with
unique hash indexes or updating a column that is part of a unique hash index fires an insert or a delete in the index table. The result-

MySQL Cluster

1129



ing record is used to represent this index table operation while waiting for the original operation that fired it to complete. This opera-
tion is short-lived but can still require a large number of records in its pool for situations with many parallel write operations on a
base table containing a set of unique hash indexes.

•
TransactionBufferMemory

The memory affected by this parameter is used for tracking operations fired when updating index tables and reading unique indexes.
This memory is used to store the key and column information for these operations. It is only very rarely that the value for this para-
meter needs to be altered from the default.

The default value for TransactionBufferMemory is 1MB.

Normal read and write operations use a similar buffer, whose usage is even more short-lived. The compile-time parameter ZAT-
TRBUF_FILESIZE (found in ndb/src/kernel/blocks/Dbtc/Dbtc.hpp) set to 4000 × 128 bytes (500KB). A similar
buffer for key information, ZDATABUF_FILESIZE (also in Dbtc.hpp) contains 4000 × 16 = 62.5KB of buffer space. Dbtc is
the module that handles transaction coordination.

Scans and buffering. There are additional [ndbd] parameters in the Dblqh module (in ndb/
src/kernel/blocks/Dblqh/Dblqh.hpp) that affect reads and updates. These include ZATTRINBUF_FILESIZE, set by de-
fault to 10000 × 128 bytes (1250KB) and ZDATABUF_FILE_SIZE, set by default to 10000*16 bytes (roughly 156KB) of buffer
space. To date, there have been neither any reports from users nor any results from our own extensive tests suggesting that either of
these compile-time limits should be increased.

•
MaxNoOfConcurrentScans

This parameter is used to control the number of parallel scans that can be performed in the cluster. Each transaction coordinator can
handle the number of parallel scans defined for this parameter. Each scan query is performed by scanning all partitions in parallel.
Each partition scan uses a scan record in the node where the partition is located, the number of records being the value of this para-
meter times the number of nodes. The cluster should be able to sustain MaxNoOfConcurrentScans scans concurrently from all
nodes in the cluster.

Scans are actually performed in two cases. The first of these cases occurs when no hash or ordered indexes exists to handle the
query, in which case the query is executed by performing a full table scan. The second case is encountered when there is no hash in-
dex to support the query but there is an ordered index. Using the ordered index means executing a parallel range scan. The order is
kept on the local partitions only, so it is necessary to perform the index scan on all partitions.

The default value of MaxNoOfConcurrentScans is 256. The maximum value is 500.

•
MaxNoOfLocalScans

Specifies the number of local scan records if many scans are not fully parallelized. If the number of local scan records is not
provided, it is calculated as the product of MaxNoOfConcurrentScans and the number of data nodes in the system. The minim-
um value is 32.

•
BatchSizePerLocalScan

This parameter is used to calculate the number of lock records used to handle concurrent scan operations.

The default value is 64; this value has a strong connection to the ScanBatchSize defined in the SQL nodes.

•
LongMessageBuffer

This is an internal buffer used for passing messages within individual nodes and between nodes. Although it is highly unlikely that
this would need to be changed, it is configurable. By default, it is set to 1MB.

Memory Allocation

MySQL Cluster

1130



MaxAllocate

This is the maximum size of the memory unit to use when allocating memory for tables. In cases where NDB gives OUT OF MEMORY er-
rors, but it is evident by examining the cluster logs or the output of DUMP 1000 (see DUMP 1000) that all available memory has not
yet been used, you can increase the value of this parameter (or MaxNoOfTables, or both) in order to cause NDB to make sufficient
memory available.

This parameter was introduced in MySQL 5.1.20, and in MySQL Cluster 5.1 Carrier Grade Edition, in MySQL 5.1.15-ndb-6.1.12 and
MySQL 5.1.19-ndb-6.2.3.

Logging and checkpointing. These [ndbd] parameters control log and checkpoint behavior.

•
NoOfFragmentLogFiles

This parameter sets the number of REDO log files for the node, and thus the amount of space allocated to REDO logging. Because
the REDO log files are organized in a ring, it is extremely important that the first and last log files in the set (sometimes referred to
as the “head” and “tail” log files, respectively) do not meet. When these approach one another too closely, the node begins aborting
all transactions encompassing updates due to a lack of room for new log records.

A REDO log record is not removed until three local checkpoints have been completed since that log record was inserted. Check-
pointing frequency is determined by its own set of configuration parameters discussed elsewhere in this chapter.

How these parameters interact and proposals for how to configure them are discussed in Section 17.4.6, “Configuring Parameters
for Local Checkpoints”.

The default parameter value is 16, which means 16 sets of 4 16MB files for a total of 1024MB. In other words, REDO log space
must be allocated in blocks of 64MB. In scenarios requiring a great many updates, the value for NoOfFragmentLogFiles may
need to be set as high as 300 or even higher to provide sufficient space for REDO logs.

If the checkpointing is slow and there are so many writes to the database that the log files are full and the log tail cannot be cut
without jeopardizing recovery, all updating transactions are aborted with internal error code 410 (Out of log file space
temporarily). This condition prevails until a checkpoint has completed and the log tail can be moved forward.

Important

This parameter cannot be changed “on the fly”; you must restart the node using --initial. If you wish to change this
value for a running cluster, you can do so via a rolling node restart.

•
MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

FragmentLogFileSize

Setting this parameter allows you to control directly the size of redo log files. The default is 16M. This parameter was added in
MySQL 5.1.15-ndb-6.1.11.

The following information applies to all MySQL Cluster users.

•
MaxNoOfOpenFiles

This parameter sets a ceiling on how many internal threads to allocate for open files. Any situation requiring a change in this para-
meter should be reported as a bug.

The default value is 40.

•
InitialNoOfOpenFiles

This parameter sets the initial number of internal threads to allocate for open files.

The default value is 27.

MySQL Cluster

1131

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-dump-command-1000.html


•
MaxNoOfSavedMessages

This parameter sets the maximum number of trace files that are kept before overwriting old ones. Trace files are generated when, for
whatever reason, the node crashes.

The default is 25 trace files.

Metadata objects. The next set of [ndbd] parameters defines pool sizes for metadata objects, used to define the maximum number of
attributes, tables, indexes, and trigger objects used by indexes, events, and replication between clusters. Note that these act merely as
“suggestions” to the cluster, and any that are not specified revert to the default values shown.

•
MaxNoOfAttributes

Defines the number of attributes that can be defined in the cluster.

The default value is 1000, with the minimum possible value being 32. The maximum is 4294967039. Each attribute consumes
around 200 bytes of storage per node due to the fact that all metadata is fully replicated on the servers.

When setting MaxNoOfAttributes, it is important to prepare in advance for any ALTER TABLE statements that you might
want to perform in the future. This is due to the fact, during the execution of ALTER TABLE on a Cluster table, 3 times the number
of attributes as in the original table are used. For example, if a table requires 100 attributes, and you want to be able to alter it later,
you need to set the value of MaxNoOfAttributes to 300. Assuming that you can create all desired tables without any problems,
a good rule of thumb is to add two times the number of attributes in the largest table to MaxNoOfAttributes to be sure. You
should also verify that this number is sufficient by trying an actual ALTER TABLE after configuring the parameter. If this is not
successful, increase MaxNoOfAttributes by another multiple of the original value and test it again.

•
MaxNoOfTables

A table object is allocated for each table, unique hash index, and ordered index. This parameter sets the maximum number of table
objects for the cluster as a whole.

For each attribute that has a BLOB data type an extra table is used to store most of the BLOB data. These tables also must be taken
into account when defining the total number of tables.

The default value of this parameter is 128. The minimum is 8 and the maximum is 1600. Each table object consumes approximately
20KB per node.

•
MaxNoOfOrderedIndexes

For each ordered index in the cluster, an object is allocated describing what is being indexed and its storage segments. By default,
each index so defined also defines an ordered index. Each unique index and primary key has both an ordered index and a hash in-
dex.

The default value of this parameter is 128. Each object consumes approximately 10KB of data per node.

•
MaxNoOfUniqueHashIndexes

For each unique index that is not a primary key, a special table is allocated that maps the unique key to the primary key of the in-
dexed table. By default, an ordered index is also defined for each unique index. To prevent this, you must specify the USING HASH
option when defining the unique index.

The default value is 64. Each index consumes approximately 15KB per node.

•
MaxNoOfTriggers

Internal update, insert, and delete triggers are allocated for each unique hash index. (This means that three triggers are created for
each unique hash index.) However, an ordered index requires only a single trigger object. Backups also use three trigger objects for
each normal table in the cluster.

MySQL Cluster

1132



Replication between clusters also makes use of internal triggers.

This parameter sets the maximum number of trigger objects in the cluster.

The default value is 768.

•
MaxNoOfIndexes

This parameter is deprecated in MySQL 5.1; you should use MaxNoOfOrderedIndexes and MaxNoOfUnique-
HashIndexes instead.

This parameter is used only by unique hash indexes. There needs to be one record in this pool for each unique hash index defined in
the cluster.

The default value of this parameter is 128.

Boolean parameters. The behavior of data nodes is also affected by a set of [ndbd] parameters taking on boolean values. These
parameters can each be specified as TRUE by setting them equal to 1 or Y, and as FALSE by setting them equal to 0 or N.

•
LockPagesInMainMemory

For a number of operating systems, including Solaris and Linux, it is possible to lock a process into memory and so avoid any swap-
ping to disk. This can be used to help guarantee the cluster's real-time characteristics.

Beginning with MySQL 5.1.15 (MySQL Cluster 5.1 Carrier Grade Edition: MySQL 5.1.15-ndb-6.1.1), this parameter takes one of
the integer values 0, 1, or 2, which act as follows:

• 0: Disables locking. This is the default value.

• 1: Performs the lock after allocating memory for the process.

• 2: Performs the lock before memory for the process is allocated.

Previously, this parameter was a Boolean. 0 or false was the default setting, and disabled locking. 1 or true enabled locking of
the process after its memory was allocated.

Important

Beginning with MySQL 5.1.15 (MySQL Cluster 5.1 Carrier Grade Edition: MySQL 5.1.15-ndb-6.1.1), it is no longer pos-
sible to use true or false for the value of this parameter; when upgrading from a previous version, you must change
the value to 0, 1, or 2.

•
StopOnError

This parameter specifies whether an ndbd process should exit or perform an automatic restart when an error condition is en-
countered.

This feature is enabled by default.

•
Diskless

It is possible to specify MySQL Cluster tables as diskless, meaning that tables are not checkpointed to disk and that no logging oc-
curs. Such tables exist only in main memory. A consequence of using diskless tables is that neither the tables nor the records in
those tables survive a crash. However, when operating in diskless mode, it is possible to run ndbd on a diskless computer.

Important

This feature causes the entire cluster to operate in diskless mode.

When this feature is enabled, Cluster online backup is disabled. In addition, a partial start of the cluster is not possible.

MySQL Cluster

1133



Diskless is disabled by default.

•
ODirect

Enabling this parameter causes NDB to attempt using O_DIRECT writes for LCP, backups, and redo logs, often lowering kswapd
and CPU usage.

Warning

When using MySQL Cluster or MySQL Cluster 5.1 Carrier Grade Edition on Linux, ODirect should be enabled for 2.6
or newer kernels.

This parameter was added in the following releases:

• MySQL 5.1.20

• MySQL 5.1.15-ndb-6.1.11

• MySQL 5.1.19-ndb-6.2.3

• MySQL 5.1.19-ndb-6.3.0

ODirect is disabled by default.

•
RestartOnErrorInsert

This feature is accessible only when building the debug version where it is possible to insert errors in the execution of individual
blocks of code as part of testing.

This feature is disabled by default.

•
CompressedBackup

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

Setting this parameter to 1 causes backup files to be compressed. The compression used is equivalent to gzip --fast, and can
save 50% or more of the space required on the data node to store uncompressed backup files. Compressed backups can be enabled
for individual data nodes, or for all data nodes (by setting this parameter in the [ndbd default] section of the config.ini
file).

Important

You cannot restore a compressed backup to a cluster running a MySQL version that does not support this feature.

The default value is 0 (disabled).

This parameter was introduced in MySQL 5.1.23-ndb-6.3.7.

•
CompressedLCP

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

Setting this parameter to 1 causes local checkpoint files to be compressed. The compression used is equivalent to gzip --fast,
and can save 50% or more of the space required on the data node to store uncompressed checkpoint files. Compressed LCPs can be
enabled for individual data nodes, or for all data nodes (by setting this parameter in the [ndbd default] section of the con-
fig.ini file).

MySQL Cluster

1134



Important

You cannot restore a compressed local checkpoint to a cluster running a MySQL version that does not support this feature.

The default value is 0 (disabled).

This parameter was introduced in MySQL 5.1.23-ndb-6.3.7.

The following information applies to all MySQL Cluster users.

Controlling Timeouts, Intervals, and Disk Paging

There are a number of [ndbd] parameters specifying timeouts and intervals between various actions in Cluster data nodes. Most of the
timeout values are specified in milliseconds. Any exceptions to this are mentioned where applicable.

•
TimeBetweenWatchDogCheck

To prevent the main thread from getting stuck in an endless loop at some point, a “watchdog” thread checks the main thread. This
parameter specifies the number of milliseconds between checks. If the process remains in the same state after three checks, the
watchdog thread terminates it.

This parameter can easily be changed for purposes of experimentation or to adapt to local conditions. It can be specified on a per-
node basis although there seems to be little reason for doing so.

The default timeout is 6000 milliseconds (6 seconds).

•
TimeBetweenWatchDogCheckInitial

This is similar to the TimeBetweenWatchDogCheck parameter, except that TimeBetweenWatchDogCheckInitial con-
trols the amount of time that passes between execution checks inside a database node in the early start phases during which memory
is allocated.

The default timeout is 6000 milliseconds (6 seconds).

This parameter was added in MySQL 5.1.20.

•
StartPartialTimeout

This parameter specifies how long the Cluster waits for all data nodes to come up before the cluster initialization routine is invoked.
This timeout is used to avoid a partial Cluster startup whenever possible.

The default value is 30000 milliseconds (30 seconds). 0 disables the timeout, in which case the cluster may start only if all nodes are
available.

•
StartPartitionedTimeout

If the cluster is ready to start after waiting for StartPartialTimeout milliseconds but is still possibly in a partitioned state, the
cluster waits until this timeout has also passed.

The default timeout is 60000 milliseconds (60 seconds).

•
StartFailureTimeout

If a data node has not completed its startup sequence within the time specified by this parameter, the node startup fails. Setting this
parameter to 0 (the default value) means that no data node timeout is applied.

For nonzero values, this parameter is measured in milliseconds. For data nodes containing extremely large amounts of data, this
parameter should be increased. For example, in the case of a data node containing several gigabytes of data, a period as long as
10–15 minutes (that is, 600000 to 1000000 milliseconds) might be required to perform a node restart.

MySQL Cluster

1135



•
HeartbeatIntervalDbDb

One of the primary methods of discovering failed nodes is by the use of heartbeats. This parameter states how often heartbeat sig-
nals are sent and how often to expect to receive them. After missing three heartbeat intervals in a row, the node is declared dead.
Thus, the maximum time for discovering a failure through the heartbeat mechanism is four times the heartbeat interval.

The default heartbeat interval is 1500 milliseconds (1.5 seconds). This parameter must not be changed drastically and should not
vary widely between nodes. If one node uses 5000 milliseconds and the node watching it uses 1000 milliseconds, obviously the
node will be declared dead very quickly. This parameter can be changed during an online software upgrade, but only in small incre-
ments.

•
HeartbeatIntervalDbApi

Each data node sends heartbeat signals to each MySQL server (SQL node) to ensure that it remains in contact. If a MySQL server
fails to send a heartbeat in time it is declared “dead,” in which case all ongoing transactions are completed and all resources re-
leased. The SQL node cannot reconnect until all activities initiated by the previous MySQL instance have been completed. The
three-heartbeat criteria for this determination are the same as described for HeartbeatIntervalDbDb.

The default interval is 1500 milliseconds (1.5 seconds). This interval can vary between individual data nodes because each data
node watches the MySQL servers connected to it, independently of all other data nodes.

•
TimeBetweenLocalCheckpoints

This parameter is an exception in that it does not specify a time to wait before starting a new local checkpoint; rather, it is used to
ensure that local checkpoints are not performed in a cluster where relatively few updates are taking place. In most clusters with high
update rates, it is likely that a new local checkpoint is started immediately after the previous one has been completed.

The size of all write operations executed since the start of the previous local checkpoints is added. This parameter is also exceptional
in that it is specified as the base-2 logarithm of the number of 4-byte words, so that the default value 20 means 4MB (4 × 220) of
write operations, 21 would mean 8MB, and so on up to a maximum value of 31, which equates to 8GB of write operations.

All the write operations in the cluster are added together. Setting TimeBetweenLocalCheckpoints to 6 or less means that
local checkpoints will be executed continuously without pause, independent of the cluster's workload.

•
TimeBetweenGlobalCheckpoints

When a transaction is committed, it is committed in main memory in all nodes on which the data is mirrored. However, transaction
log records are not flushed to disk as part of the commit. The reasoning behind this behavior is that having the transaction safely
committed on at least two autonomous host machines should meet reasonable standards for durability.

It is also important to ensure that even the worst of cases — a complete crash of the cluster — is handled properly. To guarantee that
this happens, all transactions taking place within a given interval are put into a global checkpoint, which can be thought of as a set of
committed transactions that has been flushed to disk. In other words, as part of the commit process, a transaction is placed in a glob-
al checkpoint group. Later, this group's log records are flushed to disk, and then the entire group of transactions is safely committed
to disk on all computers in the cluster.

This parameter defines the interval between global checkpoints. The default is 2000 milliseconds.

•
MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

TimeBetweenEpochs

This parameter defines the interval between synchronisation epochs for MySQL Cluster Replication. The default value is 100 milli-
seconds.

TimeBetweenEpochs is part of the implementation of “micro-GCPs”, which can be used to improve the performance of MySQL
Cluster Replication. This parameter was introduced in MySQL-5.1.22-ndb-6.2.5 and MySQL 5.1.22-ndb-6.3.2.

The following information applies to all MySQL Cluster users.

MySQL Cluster

1136



•
MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

TimeBetweenEpochsTimeout

This parameter defines a timeout for synchronisation epochs for MySQL Cluster Replication. If a node fails to participate in a global
checkpoint within the time determined by this parameter, the node is shut down. The default value is 4000 milliseconds.

TimeBetweenEpochsTimeout is part of the implementation of “micro-GCPs”, which can be used to improve the performance
of MySQL Cluster Replication. This parameter was introduced in MySQL-5.1.22-ndb-6.2.7 and MySQL 5.1.22-ndb-6.3.4.

The following information applies to all MySQL Cluster users.

•
MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

MaxBufferedEpochs

The number of unprocessed epochs by which a subscribing node can lag behind. Exceeding this number causes a lagging subscriber
to be disconnected.

The default value of 100 is sufficient for most normal operations. If a subscribing node does lag enough to cause disconnections, it
is usually due to network or scheduling issues with regard to processes or threads. (In rare circumstances, the problem may be due to
a bug in the NDB client.) It may be desirable to set the value lower than the default when epochs are longer.

Disconnection prevents client issues from affecting the data node service, running out of memory to buffer data, and eventually
shutting down. Instead, only the client is affected as a result of the disconnect (by, for example gap events in the binlog), forcing the
client to reconnect or restart the process.

The following information applies to all MySQL Cluster users.

•
TimeBetweenInactiveTransactionAbortCheck

Timeout handling is performed by checking a timer on each transaction once for every interval specified by this parameter. Thus, if
this parameter is set to 1000 milliseconds, every transaction will be checked for timing out once per second.

The default value is 1000 milliseconds (1 second).

•
TransactionInactiveTimeout

This parameter states the maximum time that is permitted to lapse between operations in the same transaction before the transaction
is aborted.

The default for this parameter is zero (no timeout). For a real-time database that needs to ensure that no transaction keeps locks for
too long, this parameter should be set to a relatively small value. The unit is milliseconds.

•
TransactionDeadlockDetectionTimeout

When a node executes a query involving a transaction, the node waits for the other nodes in the cluster to respond before continuing.
A failure to respond can occur for any of the following reasons:

• The node is “dead”

• The operation has entered a lock queue

• The node requested to perform the action could be heavily overloaded.

This timeout parameter states how long the transaction coordinator waits for query execution by another node before aborting the
transaction, and is important for both node failure handling and deadlock detection. In MySQL 5.1.10 and earlier versions, setting it

MySQL Cluster

1137



too high could cause undesirable behavior in situations involving deadlocks and node failure. Beginning with MySQL 5.1.11, active
transactions occurring during node failures are actively aborted by the Cluster Transaction Coordinator, and so high settings are no
longer an issue with this parameter.

The default timeout value is 1200 milliseconds (1.2 seconds).

•
DiskSyncSize

This is the maximum number of bytes to store before flushing data to a local checkpoint file.

The default value is 4M (4 megabytes).

This parameter was added in MySQL 5.1.12.

•
DiskCheckpointSpeed

The amount of data,in bytes per second, that is sent to disk during a local checkpoint.

The default value is 10M (10 megabytes per second).

This parameter was added in MySQL 5.1.12.

•
DiskCheckpointSpeedInRestart

The amount of data,in bytes per second, that is sent to disk during a local checkpoint as part of a restart operation.

The default value is 100M (100 megabytes per second).

This parameter was added in MySQL 5.1.12.

•
NoOfDiskPagesToDiskAfterRestartTUP

When executing a local checkpoint, the algorithm flushes all data pages to disk. Merely doing so as quickly as possible without any
moderation is likely to impose excessive loads on processors, networks, and disks. To control the write speed, this parameter spe-
cifies how many pages per 100 milliseconds are to be written. In this context, a “page” is defined as 8KB. This parameter is spe-
cified in units of 80KB per second, so setting NoOfDiskPagesToDiskAfterRestartTUP to a value of 20 entails writing
1.6MB in data pages to disk each second during a local checkpoint. This value includes the writing of UNDO log records for data
pages. That is, this parameter handles the limitation of writes from data memory. (See the entry for IndexMemory for information
about index pages.)

In short, this parameter specifies how quickly to execute local checkpoints. It operates in conjunction with NoOfFragmentLog-
Files, DataMemory, and IndexMemory.

For more information about the interaction between these parameters and possible strategies for choosing appropriate values for
them, see Section 17.4.6, “Configuring Parameters for Local Checkpoints”.

The default value is 40 (3.2MB of data pages per second).

Note

This parameter is deprecated as of MySQL 5.1.6. For MySQL 5.1.12 and later versions, use DiskCheckpointSpeed and
DiskSyncSize instead.

•
NoOfDiskPagesToDiskAfterRestartACC

This parameter uses the same units as NoOfDiskPagesToDiskAfterRestartTUP and acts in a similar fashion, but limits the
speed of writing index pages from index memory.

The default value of this parameter is 20 (1.6MB of index memory pages per second).

MySQL Cluster

1138



Note

This parameter is deprecated as of MySQL 5.1.6. For MySQL 5.1.12 and later versions, use DiskCheckpointSpeed and
DiskSyncSize.

•
NoOfDiskPagesToDiskDuringRestartTUP

This parameter is used in a fashion similar to NoOfDiskPagesToDiskAfterRestartTUP and NoOf-
DiskPagesToDiskAfterRestartACC, only it does so with regard to local checkpoints executed in the node when a node is
restarting. A local checkpoint is always performed as part of all node restarts. During a node restart it is possible to write to disk at a
higher speed than at other times, because fewer activities are being performed in the node.

This parameter covers pages written from data memory.

The default value is 40 (3.2MB per second).

Note

This parameter is deprecated as of MySQL 5.1.6. For MySQL 5.1.12 and later versions, use DiskCheckpointSpeedInRe-
start and DiskSyncSize.

•
NoOfDiskPagesToDiskDuringRestartACC

Controls the number of index memory pages that can be written to disk during the local checkpoint phase of a node restart.

As with NoOfDiskPagesToDiskAfterRestartTUP and NoOfDiskPagesToDiskAfterRestartACC, values for this
parameter are expressed in terms of 8KB pages written per 100 milliseconds (80KB/second).

The default value is 20 (1.6MB per second).

Note

This parameter is deprecated as of MySQL 5.1.6. For MySQL 5.1.12 and later versions, use DiskCheckpointSpeedInRe-
start and DiskSyncSize.

•
ArbitrationTimeout

This parameter specifies how long data nodes wait for a response from the arbitrator to an arbitration message. If this is exceeded,
the network is assumed to have split.

The default value is 1000 milliseconds (1 second).

Buffering and logging. Several [ndbd] configuration parameters enable the advanced user to have more control over the resources
used by node processes and to adjust various buffer sizes at need.

These buffers are used as front ends to the file system when writing log records to disk. If the node is running in diskless mode, these
parameters can be set to their minimum values without penalty due to the fact that disk writes are “faked” by the NDB storage engine's
filesystem abstraction layer.

•
UndoIndexBuffer

The UNDO index buffer, whose size is set by this parameter, is used during local checkpoints. The NDB storage engine uses a recov-
ery scheme based on checkpoint consistency in conjunction with an operational REDO log. To produce a consistent checkpoint
without blocking the entire system for writes, UNDO logging is done while performing the local checkpoint. UNDO logging is ac-
tivated on a single table fragment at a time. This optimization is possible because tables are stored entirely in main memory.

The UNDO index buffer is used for the updates on the primary key hash index. Inserts and deletes rearrange the hash index; the
NDB storage engine writes UNDO log records that map all physical changes to an index page so that they can be undone at system
restart. It also logs all active insert operations for each fragment at the start of a local checkpoint.

MySQL Cluster

1139



Reads and updates set lock bits and update a header in the hash index entry. These changes are handled by the page-writing al-
gorithm to ensure that these operations need no UNDO logging.

This buffer is 2MB by default. The minimum value is 1MB, which is sufficient for most applications. For applications doing ex-
tremely large or numerous inserts and deletes together with large transactions and large primary keys, it may be necessary to in-
crease the size of this buffer. If this buffer is too small, the NDB storage engine issues internal error code 677 (Index UNDO
buffers overloaded).

Important

It is not safe to decrease the value of this parameter during a rolling restart.

•
UndoDataBuffer

This parameter sets the size of the UNDO data buffer, which performs a function similar to that of the UNDO index buffer, except
the UNDO data buffer is used with regard to data memory rather than index memory. This buffer is used during the local checkpoint
phase of a fragment for inserts, deletes, and updates.

Because UNDO log entries tend to grow larger as more operations are logged, this buffer is also larger than its index memory coun-
terpart, with a default value of 16MB.

This amount of memory may be unnecessarily large for some applications. In such cases, it is possible to decrease this size to a min-
imum of 1MB.

It is rarely necessary to increase the size of this buffer. If there is such a need, it is a good idea to check whether the disks can actu-
ally handle the load caused by database update activity. A lack of sufficient disk space cannot be overcome by increasing the size of
this buffer.

If this buffer is too small and gets congested, the NDB storage engine issues internal error code 891 (DATA UNDO BUFFERS OVER-

LOADED).

Important

It is not safe to decrease the value of this parameter during a rolling restart.

•
RedoBuffer

All update activities also need to be logged. The REDO log makes it possible to replay these updates whenever the system is restar-
ted. The NDB recovery algorithm uses a “fuzzy” checkpoint of the data together with the UNDO log, and then applies the REDO
log to play back all changes up to the restoration point.

RedoBuffer sets the size of the buffer inwhich the REDO log is written, and is 8MB by default. The minimum value is 1MB.

If this buffer is too small, the NDB storage engine issues error code 1221 (REDO log buffers overloaded).

Important

It is not safe to decrease the value of this parameter during a rolling restart.

Controlling log messages. In managing the cluster, it is very important to be able to control the number of log messages sent for vari-
ous event types to stdout. For each event category, there are 16 possible event levels (numbered 0 through 15). Setting event report-
ing for a given event category to level 15 means all event reports in that category are sent to stdout; setting it to 0 means that there
will be no event reports made in that category.

By default, only the startup message is sent to stdout, with the remaining event reporting level defaults being set to 0. The reason for
this is that these messages are also sent to the management server's cluster log.

An analogous set of levels can be set for the management client to determine which event levels to record in the cluster log.

•
LogLevelStartup

MySQL Cluster

1140



The reporting level for events generated during startup of the process.

The default level is 1.

•
LogLevelShutdown

The reporting level for events generated as part of graceful shutdown of a node.

The default level is 0.

•
LogLevelStatistic

The reporting level for statistical events such as number of primary key reads, number of updates, number of inserts, information re-
lating to buffer usage, and so on.

The default level is 0.

•
LogLevelCheckpoint

The reporting level for events generated by local and global checkpoints.

The default level is 0.

•
LogLevelNodeRestart

The reporting level for events generated during node restart.

The default level is 0.

•
LogLevelConnection

The reporting level for events generated by connections between cluster nodes.

The default level is 0.

•
LogLevelError

The reporting level for events generated by errors and warnings by the cluster as a whole. These errors do not cause any node failure
but are still considered worth reporting.

The default level is 0.

•
LogLevelCongestion

The reporting level for events generated by congestion. These errors do not cause node failure but are still considered worth report-
ing.

The default level is 0.

•
LogLevelInfo

The reporting level for events generated for information about the general state of the cluster.

The default level is 0.

•
MemReportFrequency

MySQL Cluster

1141



This parameter controls how often data node memory usage reports are recorded in the cluster log; it is an integer value representing
the number of seconds between reports.

Each data node's data memory and index memory usage is logged as both a percentage and a number of 32 KB pages of the
DataMemory and IndexMemory, respectively, set in the config.ini file. For example, if DataMemory is equal to 100 MB,
and a given data node is using 50 MB for data memory storage, the corresponding line in the cluster log might look like this:

2006-12-24 01:18:16 [MgmSrvr] INFO -- Node 2: Data usage is 50%(1280 32K pages of total 2560)

MemReportFrequency is not a required parameter. If used, it can be set for all cluster data nodes in the [ndbd default]
section of config.ini, and can also be set or overridden for individual data nodes in the corresponding [ndbd] sections of the
configuration file. The minimum value — which is also the default value — is 0, in which case memory reports are logged only
when memory usage reaches certain percentages (80%, 90%, and 100%), as mentioned in the discussion of statistics events in Sec-
tion 17.8.3.2, “Log Events”.

This parameter was added in MySQL Cluster 5.1.16. (MySQL Cluster 5.1 Carrier Grade Edition: MySQL Cluster 5.1.14-ndb-6.1.0).

Backup parameters. The [ndbd] parameters discussed in this section define memory buffers set aside for execution of online
backups.

•
BackupDataBufferSize

In creating a backup, there are two buffers used for sending data to the disk. The backup data buffer is used to fill in data recorded
by scanning a node's tables. Once this buffer has been filled to the level specified as BackupWriteSize (see below), the pages
are sent to disk. While flushing data to disk, the backup process can continue filling this buffer until it runs out of space. When this
happens, the backup process pauses the scan and waits until some disk writes have completed freed up memory so that scanning
may continue.

The default value is 2MB.

•
BackupLogBufferSize

The backup log buffer fulfills a role similar to that played by the backup data buffer, except that it is used for generating a log of all
table writes made during execution of the backup. The same principles apply for writing these pages as with the backup data buffer,
except that when there is no more space in the backup log buffer, the backup fails. For that reason, the size of the backup log buffer
must be large enough to handle the load caused by write activities while the backup is being made. See Section 17.10.4,
“Configuration for Cluster Backup”.

The default value for this parameter should be sufficient for most applications. In fact, it is more likely for a backup failure to be
caused by insufficient disk write speed than it is for the backup log buffer to become full. If the disk subsystem is not configured for
the write load caused by applications, the cluster is unlikely to be able to perform the desired operations.

It is preferable to configure cluster nodes in such a manner that the processor becomes the bottleneck rather than the disks or the net-
work connections.

The default value is 2MB.

•
BackupMemory

This parameter is simply the sum of BackupDataBufferSize and BackupLogBufferSize.

The default value is 2MB + 2MB = 4MB.

Important

If BackupDataBufferSize and BackupLogBufferSize taken together exceed 4MB, then this parameter must be
set explicitly in the config.ini file to their sum.

•
MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-

MySQL Cluster

1142



tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

This parameter controls how often backup status reports are issued in the management client during a backup, as well as how often
such reports are written to the cluster log (provided cluster event logging is configured to allow it — see Section 17.4.4.5, “Defining
Data Nodes” [] ). BackupReportFrequency represents the time in seconds between backup status reports.

The default value is 0.

This parameter was added in MySQL 5.1.19-ndb-6.2.3.

The following information applies to all MySQL Cluster users.

•
BackupWriteSize

This parameter specifies the default size of messages written to disk by the backup log and backup data buffers.

The default value is 32KB.

•
BackupMaxWriteSize

This parameter specifies the maximum size of messages written to disk by the backup log and backup data buffers.

The default value is 256KB.

Important

When specifying these parameters, the following relationships must hold true. Otherwise, the data node will be unable to
start:

• BackupDataBufferSize >= BackupWriteSize + 188KB

• BackupLogBufferSize >= BackupWriteSize + 16KB

• BackupMaxWriteSize >= BackupWriteSize

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edition
only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade Edi-
tion”.

Realtime Performance Parameters

The [ndbd] parameters discussed in this section are used in scheduling and locking of threads to specific CPUs on multiprocessor data
node hosts. They were introduced in MySQL 5.1.22-ndb-6.3.4.

•
LockExecuteThreadToCPU

This parameter specifies the ID of the CPU assigned to handle the NDBCluster execution thread.

The value of this parameter is an integer in the range 0 to 65535 (inclusive). The default is 65535.

•
LockMaintThreadsToCPU

This parameter specifies the ID of the CPU assigned to handle NDBCluster maintenance threads.

The value of this parameter is an integer in the range 0 to 65535 (inclusive). The default is 65535.

•
RealtimeScheduler

MySQL Cluster

1143



Setting this parameter to 1 enables real-time scheduling of NDBCluster threads.

The default is 0 (scheduling disabled).

•
SchedulerExecutionTimer

This parameter specifies the time in microseconds for threads to be executed in the scheduler before being sent.

The default is 50 µsec.

•
SchedulerSpinTimer

This parameter specifies the time in microseconds for threads to be executed in the scheduler before sleeping.

The default value is 0.

17.4.4.6. Defining SQL and Other API Nodes

The [mysqld] and [api] sections in the config.ini file define the behavior of the MySQL servers (SQL nodes) and other ap-
plications (API nodes) used to access cluster data. None of the parameters shown is required. If no computer or host name is provided,
any host can use this SQL or API node.

Generally speaking, a [mysqld] section is used to indicate a MySQL server providing an SQL interface to the cluster, and an [api]
section is used for applications other than mysqld processes accessing cluster data, but the two designations are actually synonomous;
you can, for instance, list parameters for a MySQL server acting as an SQL node in an [api] section.

Note

For a discussion of MySQL server options for MySQL Cluster, see Section 17.5.2, “MySQL Cluster-Related Command
Options for mysqld”; for information about MySQL server system variables relating to MySQL Cluster, see Sec-
tion 17.5.3, “MySQL Cluster System Variables”.

•
Id

The Id value is used to identify the node in all cluster internal messages. It must be an integer in the range 1 to 63 inclusive, and
must be unique among all node IDs within the cluster.

•
ExecuteOnComputer

This refers to the Id set for one of the computers (hosts) defined in a [computer] section of the configuration file.

•
HostName

Specifying this parameter defines the hostname of the computer on which the SQL node (API node) is to reside. To specify a host-
name, either this parameter or ExecuteOnComputer is required.

If no HostName or ExecuteOnComputer is specified in a given [mysql] or [api] section of the config.ini file, then an
SQL or API node may connect using the corresponding “slot” from any host which can establish a network connection to the man-
agement server host machine. This differs from the default behavior for data nodes, where localhost is assumed for HostName
unless otherwise specified.

•
ArbitrationRank

This parameter defines which nodes can act as arbitrators. Both MGM nodes and SQL nodes can be arbitrators. A value of 0 means
that the given node is never used as an arbitrator, a value of 1 gives the node high priority as an arbitrator, and a value of 2 gives it
low priority. A normal configuration uses the management server as arbitrator, setting its ArbitrationRank to 1 (the default)
and those for all SQL nodes to 0.

MySQL Cluster

1144



Beginning with MySQL 5.1.16 (MySQL Cluster 5.1 Carrier Grade Edition: MySQL 5.1.15-ndb-6.1.3), it is possible to disable ar-
bitration completely by setting ArbitrationRank to 0 on all management and SQL nodes.

•
ArbitrationDelay

Setting this parameter to any other value than 0 (the default) means that responses by the arbitrator to arbitration requests will be
delayed by the stated number of milliseconds. It is usually not necessary to change this value.

•
BatchByteSize

For queries that are translated into full table scans or range scans on indexes, it is important for best performance to fetch records in
properly sized batches. It is possible to set the proper size both in terms of number of records (BatchSize) and in terms of bytes
(BatchByteSize). The actual batch size is limited by both parameters.

The speed at which queries are performed can vary by more than 40% depending upon how this parameter is set. In future releases,
MySQL Server will make educated guesses on how to set parameters relating to batch size, based on the query type.

This parameter is measured in bytes and by default is equal to 32KB.

•
BatchSize

This parameter is measured in number of records and is by default set to 64. The maximum size is 992.

•
MaxScanBatchSize

The batch size is the size of each batch sent from each data node. Most scans are performed in parallel to protect the MySQL Server
from receiving too much data from many nodes in parallel; this parameter sets a limit to the total batch size over all nodes.

The default value of this parameter is set to 256KB. Its maximum size is 16MB.

You can obtain some information from a MySQL server running as a Cluster SQL node using SHOW STATUS in the mysql client, as
shown here:

mysql> SHOW STATUS LIKE 'ndb%';
+-----------------------------+---------------+
| Variable_name | Value |
+-----------------------------+---------------+
| Ndb_cluster_node_id | 5 |
| Ndb_config_from_host | 192.168.0.112 |
| Ndb_config_from_port | 1186 |
| Ndb_number_of_storage_nodes | 4 |
+-----------------------------+---------------+
4 rows in set (0.02 sec)

For information about these Cluster system status variables, see Section 5.1.5, “Status Variables”.

17.4.4.7. Cluster TCP/IP Connections

TCP/IP is the default transport mechanism for establishing connections in MySQL Cluster. It is normally not necessary to define con-
nections because Cluster automatically set ups a connection between each of the data nodes, between each data node and all MySQL
server nodes, and between each data node and the management server. (For one exception to this rule, see Section 17.4.4.8, “TCP/IP
Connections Using Direct Connections”.) [tcp] sections in the config.ini file explicitly define TCP/IP connections between
nodes in the cluster.

It is necessary to define a connection only to override the default connection parameters. In that case, it is necessary to define at least
NodeId1, NodeId2, and the parameters to change.

Important

Any [tcp] sections in the config.ini file should be listed last, following any other sections in the file. This is not re-
quired for a [tcp default] section. This is a known issue with the way in which the config.ini file is read by the
cluster management server.

MySQL Cluster

1145



It is also possible to change the default values for these parameters by setting them in the [tcp default] section.

• NodeId1, NodeId2

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp] section of the configuration file.
These are the same unique Id values for each of these nodes as described in Section 17.4.4.6, “Defining SQL and Other API
Nodes”.

•
SendBufferMemory

TCP transporters use a buffer to store all messages before performing the send call to the operating system. When this buffer reaches
64KB its contents are sent; these are also sent when a round of messages have been executed. To handle temporary overload situ-
ations it is also possible to define a bigger send buffer.

The default size of the send buffer is 256 KB; 2MB is recommended in most situations in which it is necessary to set this parameter.
The minimum size is 64 KB; the theoretical maximum is 4 GB.

•
SendSignalId

To be able to retrace a distributed message datagram, it is necessary to identify each message. When this parameter is set to Y, mes-
sage IDs are transported over the network. This feature is disabled by default in production builds, and enabled in -debug builds.

•
Checksum

This parameter is a boolean parameter (enabled by setting it to Y or 1, disabled by setting it to N or 0). It is disabled by default.
When it is enabled, checksums for all messages are calculated before they placed in the send buffer. This feature ensures that mes-
sages are not corrupted while waiting in the send buffer, or by the transport mechanism.

•
PortNumber (OBSOLETE)

This formerly specified the port number to be used for listening for connections from other nodes. This parameter should no longer
be used.

•
ReceiveBufferMemory

Specifies the size of the buffer used when receiving data from the TCP/IP socket.

The default value of this parameter from its of 64 KB; 1M is recommended in most situations where the size of the receive buffer
needs to be set. The minimum possible value is 16K; the theoretical maximum is 4G.

17.4.4.8. TCP/IP Connections Using Direct Connections

Setting up a cluster using direct connections between data nodes requires specifying explicitly the crossover IP addresses of the data
nodes so connected in the [tcp] section of the cluster config.ini file.

In the following example, we envision a cluster with at least four hosts, one each for a management server, an SQL node, and two data
nodes. The cluster as a whole resides on the 172.23.72.* subnet of a LAN. In addition to the usual network connections, the two
data nodes are connected directly using a standard crossover cable, and communicate with one another directly using IP addresses in the
1.1.0.* address range as shown:

# Management Server
[ndb_mgmd]
Id=1
HostName=172.23.72.20

# SQL Node
[mysqld]
Id=2
HostName=172.23.72.21

# Data Nodes
[ndbd]
Id=3

MySQL Cluster

1146



HostName=172.23.72.22

[ndbd]
Id=4
HostName=172.23.72.23

# TCP/IP Connections
[tcp]
NodeId1=3
NodeId2=4
HostName1=1.1.0.1
HostName2=1.1.0.2

The HostNameN parameter, where N is an integer, is used only when specifying direct TCP/IP connections.

The use of direct connections between data nodes can improve the cluster's overall efficiency by allowing the data nodes to bypass an
Ethernet device such as a switch, hub, or router, thus cutting down on the cluster's latency. It is important to note that to take the best
advantage of direct connections in this fashion with more than two data nodes, you must have a direct connection between each data
node and every other data node in the same node group.

17.4.4.9. Shared-Memory Connections

MySQL Cluster attempts to use the shared memory transporter and configure it automatically where possible. [shm] sections in the
config.ini file explicitly define shared-memory connections between nodes in the cluster. When explicitly defining shared memory
as the connection method, it is necessary to define at least NodeId1, NodeId2 and ShmKey. All other parameters have default values
that should work well in most cases.

Important

SHM functionality is considered experimental only. It is not officially supported in any MySQL release series up to and in-
cluding 5.1. This means that you must determine for yourself or by using our free resources (forums, mailing lists) whether
it can be made to work correctly in your specific case.

•
NodeId1, NodeId2

To identify a connection between two nodes it is necessary to provide node identifiers for each of them, as NodeId1 and
NodeId2.

•
ShmKey

When setting up shared memory segments, a node ID, expressed as an integer, is used to identify uniquely the shared memory seg-
ment to use for the communication. There is no default value.

•
ShmSize

Each SHM connection has a shared memory segment where messages between nodes are placed by the sender and read by the read-
er. The size of this segment is defined by ShmSize. The default value is 1MB.

•
SendSignalId

To retrace the path of a distributed message, it is necessary to provide each message with a unique identifier. Setting this parameter
to Y causes these message IDs to be transported over the network as well. This feature is disabled by default in production builds,
and enabled in -debug builds.

•
Checksum

This parameter is a boolean (Y/N) parameter which is disabled by default. When it is enabled, checksums for all messages are calcu-
lated before being placed in the send buffer.

This feature prevents messages from being corrupted while waiting in the send buffer. It also serves as a check against data being
corrupted during transport.

MySQL Cluster

1147



17.4.4.10. SCI Transport Connections

[sci] sections in the config.ini file explicitly define SCI (Scalable Coherent Interface) connections between cluster nodes. Using
SCI transporters in MySQL Cluster is supported only when the MySQL binaries are built using --with-ndb-sci=/
your/path/to/SCI. The path should point to a directory that contains at a minimum lib and include directories containing
SISCI libraries and header files. (See Section 17.14, “Using High-Speed Interconnects with MySQL Cluster” for more information
about SCI.)

In addition, SCI requires specialized hardware.

It is strongly recommended to use SCI Transporters only for communication between ndbd processes. Note also that using SCI Trans-
porters means that the ndbd processes never sleep. For this reason, SCI Transporters should be used only on machines having at least
two CPUs dedicated for use by ndbd processes. There should be at least one CPU per ndbd process, with at least one CPU left in re-
serve to handle operating system activities.

•
NodeId1, NodeId2

To identify a connection between two nodes it is necessary to provide node identifiers for each of them, as NodeId1 and
NodeId2.

•
Host1SciId0

This identifies the SCI node ID on the first Cluster node (identified by NodeId1).

• Host1SciId1

It is possible to set up SCI Transporters for failover between two SCI cards which then should use separate networks between the
nodes. This identifies the node ID and the second SCI card to be used on the first node.

• Host2SciId0

This identifies the SCI node ID on the second Cluster node (identified by NodeId2).

• Host2SciId1

When using two SCI cards to provide failover, this parameter identifies the second SCI card to be used on the second node.

•
SharedBufferSize

Each SCI transporter has a shared memory segment used for communication between the two nodes. Setting the size of this segment
to the default value of 1MB should be sufficient for most applications. Using a smaller value can lead to problems when performing
many parallel inserts; if the shared buffer is too small, this can also result in a crash of the ndbd process.

•
SendLimit

A small buffer in front of the SCI media stores messages before transmitting them over the SCI network. By default, this is set to
8KB. Our benchmarks show that performance is best at 64KB but 16KB reaches within a few percent of this, and there was little if
any advantage to increasing it beyond 8KB.

•
SendSignalId

To trace a distributed message it is necessary to identify each message uniquely. When this parameter is set to Y, message IDs are
transported over the network. This feature is disabled by default in production builds, and enabled in -debug builds.

•
Checksum

This parameter is a boolean value, and is disabled by default. When Checksum is enabled, checksums are calculated for all mes-
sages before they are placed in the send buffer. This feature prevents messages from being corrupted while waiting in the send buf-
fer. It also serves as a check against data being corrupted during transport.

MySQL Cluster

1148



17.4.5. Overview of Cluster Configuration Parameters
The next three sections provide summary tables of MySQL Cluster configuration parameters used in the config.ini file to govern
the cluster's functioning. Each table lists the parameters for one of the Cluster node process types (ndbd, ndb_mgmd, and mysqld),
and includes the parameter's type as well as its default, minimum, and maximum values as applicable.

It is also stated what type of restart is required (node restart or system restart) — and whether the restart must be done with -
-initial — to change the value of a given configuration parameter. This information is provided in each table's Restart Type
column, which contains one of the values shown in this list:

• N: Node Restart

• IN: Initial Node Restart

• S: System Restart

• IS: Initial System Restart

When performing a node restart or an initial node restart, all of the cluster's data nodes must be restarted in turn (also referred to as a
rolling restart). It is possible to update cluster configuration parameters marked N or IN online — that is, without shutting down the
cluster — in this fashion. An initial node restart requires restarting each ndbd process with the --initial option.

A system restart requires a complete shutdown and restart of the entire cluster. An initial system restart requires taking a backup of the
cluster, wiping the cluster filesystem after shutdown, and then restoring from the backup following the restart.

In any cluster restart, all of the cluster's management servers must be restarted in order for them to read the updated configuration para-
meter values.

Important

Values for numeric cluster parameters can generally be increased without any problems, although it is advisable to do so
progressively, making such adjustments in relatively small increments. However, decreasing the values of such parameters
— particularly those relating to memory usage and disk space — is not to be undertaken lightly, and it is recommended
that you do so only following careful planning and testing. In addition, it is the generally the case that parameters relating
to memory and disk usage which can be raised using a simple node restart require an initial node restart to be lowered.

Because some of these parameters can be used for configuring more than one type of cluster node, they may appear in more than one of
the tables.

(Note that 4294967039 — which often appears as a maximum value in these tables — is equal to 232 – 28 – 1.)

17.4.5.1. Data Node Configuration Parameters

The following table provides information about parameters used in the [ndbd] or [ndbd default] sections of a config.ini
file for configuring MySQL Cluster data nodes. For detailed descriptions and other additional information about each of these paramet-
ers, see Section 17.4.4.5, “Defining Data Nodes”.

Restart Type Column Values

• N: Node Restart

• IN: Initial Node Restart

• S: System Restart

• IS: Initial System Restart

See Section 17.4.5, “Overview of Cluster Configuration Parameters”, for additional explanations of these abbreviations.

Parameter Name Type
/
Unit

Default Value Minimum Value Maximum Value Re-
start
Type

MySQL Cluster

1149



s

ArbitrationTimeout milli-
seco
nds

3000 10 4294967039 N

BackupDataBufferSize bytes 2M 0 4294967039 N

BackupDataDir strin
g

FileSystemPath/
BACKUP

N/A N/A IN

BackupLogBufferSize bytes 2M 0 4294967039 N

BackupMemory bytes 4M 0 4294967039 N

BackupReportFrequency (Added
in MySQL 5.1.19-ndb-6.2.3)

seco
nds

0 0 4294967039 N

BackupWriteSize bytes 32K 2K 4294967039 N

BackupMaxWriteSize bytes 256K 2K 4294967039 N

BatchSizePerLocalScan in-
teger

64 1 992 N

CompressedBackup (Added in
MySQL 5.1.23-ndb-6.3.7)

boole
an

0 0 1 N

CompressedLCP (Added in MySQL
5.1.23-ndb-6.3.7)

boole
an

0 0 1 N

DataDir strin
g

/
var/
lib/mysql-cluster

N/A N/A IN

DataMemory bytes 80M 1M 1024G (subject to avail-
able system RAM and
size of IndexMemory)

N

DiskCheckpointSpeed (added in
MySQL 5.1.12)

in-
teger
(num
ber
of
bytes
per
seco
nd)

10M 1M 4294967039 N

DiskCheckpointSpeedInRe-
start (added in MySQL 5.1.12)

in-
teger
(num
ber
of
bytes
per
seco
nd)

100M 1M 4294967039 N

Diskless true|f
alse
(1|0)

0 0 1 IS

DiskPageBufferMemory (added
in MySQL 5.1.6)

bytes 64M 4M 1024G N

DiskSyncSize (added in MySQL
5.1.12)

in-
teger
(num
ber
of
bytes
)

4M 32K 4294967039 N

ExecuteOnComputer in-

MySQL Cluster

1150



teger

FileSystemPath (Added in
MySQL-5.1.15-ndb-6.1.11)

strin
g

value specified for
DataDir

N/A N/A IN

FragmentLogFileSize in-
teger

16M 4M 1G IS

HeartbeatIntervalDbApi milli-
seco
nds

1500 100 4294967039 N

HeartbeatIntervalDbDb milli-
seco
nds

1500 10 4294967039 N

HostName strin
g

localhost N/A N/A S

Id in-
teger

None 1 49 N

IndexMemory bytes 18M 1M 1024G (subject to avail-
able system RAM and
size of DataMemory)

N

InitialNoOfOpenFiles in-
teger

27 20 4294967039 N

LockExecuteThreadToCPU
(Added in MySQL-5.1.22-ndb-6.3.4)

in-
teger

65535 0 65535 N

LockMaintThreadsToCPU (Added
in MySQL-5.1.22-ndb-6.3.4)

in-
teger

65535 0 65535 N

LockPagesInMainMemory As of
MyS
QL
5.1.1
5
(MyS
QL
Clust
er
5.1
Car-
rier
Grad
e
Edi-
tion:
MyS
QL
5.1.1
5-nd
b-
6.1.1
): in-
teger
; pre-
vi-

0 0 1 N

MySQL Cluster

1151



:
true|f
alse
(1|0)

LogLevelCheckpoint in-
teger

0 0 15 IN

LogLevelCongestion in-
teger

0 0 15 N

LogLevelConnection in-
teger

0 0 15 N

LogLevelError in-
teger

0 0 15 N

LogLevelInfo in-
teger

0 0 15 N

LogLevelNodeRestart in-
teger

0 0 15 N

LogLevelShutdown in-
teger

0 0 15 N

LogLevelStartup in-
teger

1 0 15 N

LogLevelStatistic in-
teger

0 0 15 N

LongMessageBuffer bytes 1M 512K 4294967039 N

MaxAllocate (Added in MySQL
5.1.15-ndb-6.1.12 and MySQL
5.1.19-ndb-6.2.3)

in-
teger

32M 1M 1G N

MaxBufferedEpochs (Added in
MySQL 5.1.15-ndb-6.2.14)

in-
teger

100 0 100000 N

MaxNoOfAttributes in-
teger

1000 32 4294967039 N

MaxNoOfConcurrentIndexOp-
erations

in-
teger

8K 0 4294967039 N

MaxNoOfConcurrentOpera-
tions

in-
teger

32768 32 4294967039 N

MaxNoOfConcurrentScans in-
teger

256 2 500 N

MaxNoOfConcurrentTransac-
tions

in-
teger

4096 32 4294967039 N

MaxNoOfFiredTriggers in-
teger

4000 0 4294967039 N

MaxNoOfIndexes (DEPRECATED
— use MaxNoOfOrderedIndexes
or MaxNoOfUniqueHashIndexes
instead)

in-
teger

128 0 4294967039 N

MaxNoOfLocalOperations in-
teger

UNDEFINED 32 4294967039 N

MaxNoOfLocalScans in-
teger

UNDEFINED (see de-
scription)

32 4294967039 N

MaxNoOfOpenFiles in-
teger

40 20 4294967039 N

MaxNoOfOrderedIndexes in-
teger

128 0 4294967039 N

MaxNoOfSavedMessages in-
teger

25 0 4294967039 N

MySQL Cluster

1152



MaxNoOfTables in-
teger

128 8 4294967039 N

MaxNoOfTriggers in-
teger

768 0 4294967039 N

MaxNoOfUniqueHashIndexes in-
teger

64 0 4294967039 N

MemReportFrequency (added in
MySQL 5.1.16; MySQL Cluster 5.1
Carrier Grade Edition: added in
MySQL 5.1.14-ndb-6.1.0)

in-
teger
(seco
nds)

0 0 4294967039 N

NoOfDiskPagesToDiskAfter-
RestartACC (DEPRECATED as of
MySQL 5.1.6)

in-
teger
(num
ber
of
8KB
page
s per
100
milli-
seco
nds)

20 (= 20 * 80KB =
1.6MB/second)

1 4294967039 N

NoOfDiskPagesToDiskAfter-
RestartTUP (DEPRECATED as of
MySQL 5.1.6)

in-
teger
(num
ber
of
8KB
page
s per
100
milli-
seco
nds)

40 (= 40 * 80KB =
3.2MB/second)

1 4294967039 N

NoOfDiskPagesToDiskDurin-
gRestartACC (DEPRECATED as of
MySQL 5.1.6)

in-
teger
(num
ber
of
8KB
page
s per
100
milli-
seco
nds)

20 (= 20 * 80KB =
1.6MB/second)

1 4294967039 N

NoOfDiskPagesToDiskDurin-
gRestartTUP (DEPRECATED as of
MySQL 5.1.6)

in-
teger
(num
ber
of
8KB
page
s per
100
milli-
seco
nds)

40 (= 40 * 80KB =
3.2MB/second)

1 4294967039 N

NoOfFragmentLogFiles in-
teger

16 3 4294967039 IS

MySQL Cluster

1153



NoOfReplicas in-
teger

None 1 4 IS

ODirect boole
an

0 0 1 N

RealTimeScheduler (Added in
MySQL 5.1.22-ndb-6.3.4)

boole
an

0 0 1 N

RedoBuffer bytes 8M 1M 4294967039 N

RestartOnErrorInsert (DE-
BUG BUILDS ONLY)

true|f
alse
(1|0)

0 0 1 N

SchedulerExecutionTimer
(added in MySQL 5.1.22-ndb-6.3.4)

µsec
onds
(inte
ger)

50 0 11000 N

SchedulerSpinTimer (added in
MySQL 5.1.22-ndb-6.3.4)

µsec
onds
(inte
ger)

0 0 500 N

ServerPort (OBSOLETE) in-
teger

1186 0 4294967039 N

SharedGlobalmemory (added in
MySQL 5.1.6)

bytes 20M 0 65536G N

StartFailureTimeout milli-
seco
nds

0 0 4294967039 N

StartPartialTimeout milli-
seco
nds

30000 0 4294967039 N

StartPartitionedTimeout milli-
seco
nds

60000 0 4294967039 N

StopOnError true|f
alse
(1|0)

1 0 1 N

StringMemory in-
teger
or
per-
centa
ge
(see
de-
script
ion
for
de-
tails)

0 0 4294967039 S

TcpBind_INADDR_ANY (MySQL
Cluster 5.1 Carrier Grade Edition
only: added in MySQL
5.1.16-ndb-6.2.0)

true|f
alse
(1|0)

1 0 0 N

TimeBetweenEpochs (MySQL
Cluster 5.1 Carrier Grade Edition
only: added in MySQL
5.1.22-ndb-6.2.5 and MySQL
5.1.22-ndb-6.3.2)

milli-
seco
nds

100 0 32000 N

TimeBetweenEpochsTimeout milli- 4000 0 32000 N

MySQL Cluster

1154



MySQL Cluster 5.1 Carrier Grade Edi-
tion only: added in MySQL
5.1.22-ndb-6.2.7 and MySQL
5.1.22-ndb-6.3.4)

seco
nds

TimeBetweenGlobalCheck-
points

milli-
seco
nds

2000 10 32000 N

TimeBetweenInactiveTrans-
actionAbortCheck

milli-
seco
nds

1000 1000 4294967039 N

TimeBetweenLocalCheck-
points

in-
teger
(num
ber
of
4-byt
e
word
s as a
base-
2
log-
arith
m)

20 (= 4 * 220 = 4MB
write operations)

0 31 N

TimeBetweenWatchDogCheck milli-
seco
nds

6000 70 4294967039 N

TimeBetweenWatchDo-
gCheckInitial (added in MySQL
5.1.20)

milli-
seco
nds

6000 70 4294967039 N

TransactionBufferMemory bytes 1M 1K 4294967039 N

TransactionDeadlockDetec-
tionTimeout

milli-
seco
nds

1200 50 4294967039 N

TransactionInactiveTimeout milli-
seco
nds

0 0 4294967039 N

UndoDataBuffer (OBSOLETE) bytes 16M 1M 4294967039 N

UndoIndexBuffer (OBSOLETE) bytes 2M 1M 4294967039 N

17.4.5.2. Management Node Configuration Parameters

The following table provides information about parameters used in the [ndb_mgmd] or [mgm] sections of a config.ini file for
configuring MySQL Cluster management nodes. For detailed descriptions and other additional information about each of these paramet-
ers, see Section 17.4.4.4, “Defining the Management Server”.

Restart Type Column Values

• N: Node Restart

• IN: Initial Node Restart

• S: System Restart

• IS: Initial System Restart

See Section 17.4.5, “Overview of Cluster Configuration Parameters”, for additional explanations of these abbreviations.

MySQL Cluster

1155



Parameter Name Type
/
Unit
s

Default Value Minimum Value Maximum Value Re-
start
Type

ArbitrationDelay milli-
seco
nds

0 0 4294967039 N

ArbitrationRank in-
teger

1 0 2 N

DataDir strin
g

./ (ndb_mgmd direct-
ory)

N/A N/A IN

ExecuteOnComputer in-
teger

HostName strin
g

localhost N/A N/A IN

Id in-
teger

None 1 63 IN

LogDestination CON
SOL
E,
SYS
LOG,
or
FIL
E

FILE (see Sec-
tion 17.4.4.4, “Defining
the Management Server”)

N/A N/A N

PortNumber in-
teger

1186 1 65535 S

17.4.5.3. SQL Node and API Node Configuration Parameters

The following table provides information about parameters used in the [SQL] and [api] sections of a config.ini file for config-
uring MySQL Cluster SQL nodes and API nodes. For detailed descriptions and other additional information about each of these para-
meters, see Section 17.4.4.6, “Defining SQL and Other API Nodes”.

Note

For a discussion of MySQL server options for MySQL Cluster, see Section 17.5.2, “MySQL Cluster-Related Command
Options for mysqld”; for information about MySQL server system variables relating to MySQL Cluster, see Sec-
tion 17.5.3, “MySQL Cluster System Variables”.

Restart Type Column Values

• N: Node Restart

• IN: Initial Node Restart

• S: System Restart

• IS: Initial System Restart

See Section 17.4.5, “Overview of Cluster Configuration Parameters”, for additional explanations of these abbreviations.

Parameter Name Type
/
Unit
s

Default Value Minimum Value Maximum Value Re-
start
Type

ArbitrationDelay milli- 0 0 4294967039 N

MySQL Cluster

1156



seco
nds

ArbitrationRank in-
teger

0 0 2 N

BatchByteSize bytes 32K 1K 1M N

BatchSize in-
teger

64 1 992 N

ExecuteOnComputer in-
teger

HostName strin
g

none N/A N/A IN

Id in-
teger

None 1 63 IN

MaxScanBatchSize bytes 256K 32K 16M N

17.4.6. Configuring Parameters for Local Checkpoints
The parameters discussed in Logging and Checkpointing and in Data Memory, Index Memory, and String Memory that are used to con-
figure local checkpoints for a MySQL Cluster do not exist in isolation, but rather are very much interdepedent on each other. In this sec-
tion, we illustrate how these parameters — including DataMemory, IndexMemory, NoOfDiskPagesToDiskAfterRe-
startTUP, NoOfDiskPagesToDiskAfterRestartACC, and NoOfFragmentLogFiles — relate to one another in a work-
ing Cluster.

Important

The parameters NoOfDiskPagesToDiskAfterRestartTUP and NoOfDiskPagesToDiskAfterRestartACC
were deprecated in MySQL 5.1.6. From MySQL 5.1.6 through 5.1.11, disk writes during LCPs took place at the maximum
speed possible. Beginning with MySQL 5.1.12, the speed and throughput for LCPs are controlled using the parameters
DiskSyncSize, DiskCheckpointSpeed, and DiskCheckpointSpeedInRestart. See Section 17.4.4.5,
“Defining Data Nodes”.

In this example, we assume that our application performs the following numbers of types of operations per hour:

• 50000 selects

• 15000 inserts

• 15000 updates

• 15000 deletes

We also make the following assumptions about the data used in the application:

• We are working with a single table having 40 columns.

• Each column can hold up to 32 bytes of data.

• A typical UPDATE run by the application affects the values of 5 columns.

• No NULL values are inserted by the application.

A good starting point is to determine the amount of time that should elapse between local checkpoints (LCPs). It worth noting that, in
the event of a system restart, it takes 40-60 percent of this interval to execute the REDO log — for example, if the time between LCPs is
5 minutes (300 seconds), then it should take 2 to 3 minutes (120 to 180 seconds) for the REDO log to be read.

The maximum amount of data per node can be assumed to be the size of the DataMemory parameter. In this example, we assume that
this is 2 GB. The NoOfDiskPagesToDiskAfterRestartTUP parameter represents the amount of data to be checkpointed per

MySQL Cluster

1157



unit time — however, this parameter is actually expressed as the number of 8K memory pages to be checkpointed per 100 milliseconds.
2 GB per 300 seconds is approximately 6.8 MB per second, or 700 KB per 100 milliseconds, which works out to roughly 85 pages per
100 milliseconds.

Similarly, we can calculate NoOfDiskPagesToDiskAfterRestartACC in terms of the time for local checkpoints and the amount
of memory required for indexes — that is, the IndexMemory. Assuming that we allow 512 MB for indexes, this works out to approx-
imately 20 8-KB pages per 100 milliseconds for this parameter.

Next, we need to determine the number of REDO log files required — that is, fragment log files — the corresponding parameter being
NoOfFragmentLogFiles. We need to make sure that there are sufficient REDO log files for keeping records for at least 3 local
checkpoints. In a production setting, there are always uncertainties — for instance, we cannot be sure that disks always operate at top
speed or with maximum throughput. For this reason, it is best to err on the side of caution, so we double our requirement and calculate a
number of fragment log files which should be enough to keep records covering 6 local checkpoints.

It is also important to remember that the disk also handles writes to the REDO log, so if you find that the amount of data being written
to disk as detemined by the values of NoOfDiskPagesToDiskAfterRestartACC and NoOfDiskPagesToDiskAfterRe-
startTUP is approaching the amount of disk bandwidth available, you may wish to increase the time between local checkpoints.

Given 5 minutes (300 seconds) per local checkpoint, this means that we need to support writing log records at maximum speed for 6 *
300 = 1800 seconds. The size of a REDO log record is 72 bytes plus 4 bytes per updated column value plus the maximum size of the
updated column, and there is one REDO log record for each table record updated in a transaction, on each node where the data reside.
Using the numbers of operations set out previously in this section, we derive the following:

• 50000 select operations per hour yields 0 log records (and thus 0 bytes), since SELECT statements are not recorded in the REDO
log.

• 15000 DELETE statements per hour is approximately 5 delete operations per second. (Since we wish to be conservative in our es-
timate, we round up here and in the following calculations.) No columns are updated by deletes, so these statements consume only 5
operations * 72 bytes per operation = 360 bytes per second.

• 15000 UPDATE statements per hour is roughly the same as 5 updates per second. Each update uses 72 bytes, plus 4 bytes per
column * 5 columns updated, plus 32 bytes per column * 5 columns — this works out to 72 + 20 + 160 = 252 bytes per operation,
and multiplying this by 5 operation per second yields 1260 bytes per second.

• 15000 INSERT statements per hour is equivalent to 5 insert operations per second. Each insert requires REDO log space of 72
bytes, plus 4 bytes per record * 40 columns, plus 32 bytes per column * 40 columns, which is 72 + 160 + 1280 = 1512 bytes per op-
eration. This times 5 operations per second yields 7560 bytes per second.

So the total number of REDO log bytes being written per second is approximately 0 + 360 + 1260 + 7560 = 9180 bytes. Multiplied by
1800 seconds, this yields 16524000 bytes required for REDO logging, or approximately 15.75 MB. The unit used for NoOfFrag-
mentLogFiles represents a set of 4 16-MB log files — that is, 64 MB. Thus, the minimum value (3) for this parameter is sufficient
for the scenario envisioned in this example, since 3 times 64 = 192 MB, or about 12 times what is required; the default value of 8 (or
512 MB) is more than ample in this case.

17.5. MySQL Cluster Options and Variables
This section provides information about MySQL server options, server and status variables that are specific to MySQL Cluster. For gen-
eral information on using these, and for other options and variables not specific to MySQL Cluster, see Section 5.1, “The MySQL Serv-
er”.

For MySQL Cluster configuration parameters used in the cluster configuration file (usually named config.ini), see Section 17.4,
“MySQL Cluster Configuration”.

17.5.1. MySQL Cluster Server Option and Variable Reference
The following table provides a list of the command line options, server and status variables applicable within mysqld when it is run-
ning as an SQL node in a MySQL Cluster. For a table showing all command line options, server and status variables available for use
with mysqld, see Section 5.1.1, “Option and Variable Reference”.

Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

engine_condition_pushdown Yes Yes Yes Both Yes

Handler_discover Yes Both No

MySQL Cluster

1158



Name Cmd-Line Option file System Var Status Var Var Scope Dynamic

have_ndbcluster Yes Global No

ndb_autoincrement_prefetch_sz Yes Yes Yes Both Yes

ndb_cache_check_time Yes Yes Yes Global Yes

ndbcluster Yes Yes Yes Both Yes

ndb-cluster-connection-pool Yes Yes Yes Global No

Ndb_cluster_node_id Yes Both No

Ndb_config_from_host Yes Both No

Ndb_config_from_port Yes Both No

Ndb_conflict_fn_max Yes Both No

Ndb_conflict_fn_old Yes Both No

ndb-connectstring Yes Yes

ndb_execute_count Yes Global No

ndb_extra_logging Yes Yes Yes Global Yes

ndb_force_send Yes Yes Yes Both Yes

ndb_index_stat_cache_entries Yes Yes

ndb_index_stat_enable Yes Yes

ndb_index_stat_update_freq Yes Yes

ndb_log_orig Yes Global No

ndb_log_update_as_write Yes Yes Yes Global Yes

ndb_log_updated_only Yes Yes Yes Global Yes

Ndb_number_of_data_nodes Yes Both No

ndb_optimized_node_selection Yes Yes

ndb_report_thresh_binlog_epoch_slip Yes Yes

ndb_report_thresh_binlog_mem_usage Yes Yes

ndb_use_copying_alter_table Yes Both No

ndb_use_exact_count Yes Both Yes

ndb_use_transactions Yes Yes

ndb_wait_connected Yes Yes Yes No

skip-ndbcluster Yes Yes

slave-allow-batching Yes Global Yes

- Variable: slave_allow_batching Yes Global Yes

17.5.2. MySQL Cluster-Related Command Options for mysqld
This section provides descriptions of mysqld server options relating to MySQL Cluster. For information about mysqld options not
specific to MySQL Cluster, and for general information about the use of options with mysqld, see Section 5.1.2, “Command Options”.

For information about command line options used with other MySQL Cluster processes (ndbd, ndb_mgmd, and ndb_mgm), see Sec-
tion 17.7.5, “Command Options for MySQL Cluster Processes”. For information about command line options used with NDB utility
programs (such as ndb_desc, ndb_size.pl, and ndb_show_tables), see Section 17.11, “Cluster Utility Programs”.

• --ndb-cluster-connection-pool=#

By setting this option to a value greater than 1 (the default), a mysqld process can use multiple connections to the cluster, effect-
ively mimicking several SQL nodes. Each connection requires its own [api] or [mysqld] section in the cluster configuration
(config.ini) file, and counts against the maximum number of API connections supported by the cluster. For example, suppose
that you have 2 cluster host computers, each running an SQL node whose mysqld process was started with -

MySQL Cluster

1159



-ndb-cluster-connection-pool=4; this means that the cluster must have 8 API slots available for these connections
(instead of 2). All of these connections are set up when the SQL node connects to the cluster, and are allocated to threads in a round-
robin fashion.

Important

This option is useful only when running mysqld on host machines having multiple CPUs, multiple cores, or both. For
best results, the value should be smaller than the total number of cores available on the host machine. Setting it to a value
greater than this is likely to degrade performance severely.

Beginning with MySQL 5.1.24-ndb-6.2.16 and MySQL 5.1.24-ndb-6.3.13, the value used for this option is available as a global
status variable. (Bug#35573)

• --ndb-connectstring=connect_string

When using the NDB storage engine, this option specifies the management server that distributes cluster configuration data.

• --ndbcluster

The NDB storage engine is necessary for using MySQL Cluster. If a mysqld binary includes support for the NDB storage engine,
the engine is disabled by default. Use the --ndbcluster option to enable it. Use --skip-ndbcluster to explicitly disable
the engine.

• --skip-ndbcluster

Disable the NDB storage engine. This is the default for binaries that were built with NDB storage engine support; the server allocates
memory and other resources for this storage engine only if the --ndbcluster option is given explicitly. See Section 17.4.3,
“Quick Test Setup of MySQL Cluster”, for an example of usage.

17.5.3. MySQL Cluster System Variables
This section provides detailed information about MySQL server system variables that are specific to MySQL Cluster and the NDB stor-
age engine. For system variables not specific to MySQL Cluster, see Section 5.1.3, “System Variables”. For general information on us-
ing system variables, see Section 5.1.4, “Using System Variables”.

• engine_condition_pushdown

Option Sets Variable Yes, engine_condition_pushdown

Variable Name engine_condition_pushdown

Variable Scope Both

Dynamic Variable Yes

Value Set (>= 5.1.0) Type boolean

Default ON

This variable applies to NDB. By default its value is 0 (OFF): If you execute a query such as SELECT * FROM t WHERE
mycol = 42, where mycol is a non-indexed column, the query is executed as a full table scan on every NDB node. Each node
sends every row to the MySQL server, which applies the WHERE condition. If engine_condition_pushdown is set to 1 (ON),
the condition is “pushed down” to the storage engine and sent to the NDB nodes. Each node uses the condition to perform the scan,
and only sends back to the MySQL server the rows that match the condition.

• have_ndbcluster

Variable Name have_ndbcluster

Variable Scope Global

Dynamic Variable No

Value Set Type boolean

MySQL Cluster

1160

http://bugs.mysql.com/35573


YES if mysqld supports NDB tables. DISABLED if --skip-ndbcluster is used.

• multi_range_count

Option Sets Variable Yes, multi_range_count

Variable Name multi_range_count

Variable Scope Both

Dynamic Variable Yes

Value Set Type numeric

Default 256

Range 1-4294967295

The maximum number of ranges to send to a table handler at once during range selects. The default value is 256. Sending multiple
ranges to a handler at once can improve the performance of certain selects dramatically. This especially true for the NDB table hand-
ler, which needs to send the range requests to all nodes. Sending a batch of those requests at once reduces communication costs sig-
nificantly.

This variable is deprecated in MySQL 5.1, and is no longer supported in MySQL 6.0, in which arbitrarily long lists of ranges can be
processed.

• ndb_autoincrement_prefetch_sz

Option Sets Variable Yes, ndb_autoincrement_prefetch_sz

Variable Name ndb_autoincrement_prefetch_sz

Variable Scope Both

Dynamic Variable Yes

Value Set (<= 5.1.22) Type numeric

Default 32

Range 1-256

Value Set (>= 5.1.23) Type numeric

Default 1

Range 1-256

Determines the probability of gaps in an autoincremented column. Set it to 1 to minimize this. Setting it to a high value for optimiz-
ation — makes inserts faster, but decreases the likelihood that consecutive autoincrement numbers will be used in a batch of inserts.
Default value: 32. Minimum value: 1.

Beginning with MySQL 5.1.23-ndb-6.2.10, MySQL 5.1.23-ndb-6.3.7, and MySQL 5.1.23, this variable affects the number of
AUTO_INCREMENT IDs that are fetched between statements only. Within a statement, at least 32 IDs are now obtained at a time.
The default value for ndb_autoincrement_prefetch_sz is now 1, to increase the speed of statements inserting single rows.
(Bug#31956)

• ndb_cache_check_time

Option Sets Variable Yes, ndb_cache_check_time

Variable Name ndb_cache_check_time

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 0

MySQL Cluster

1161

http://bugs.mysql.com/31956


The number of milliseconds that elapse between checks of MySQL Cluster SQL nodes by the MySQL query cache. Setting this to 0
(the default and minimum value) means that the query cache checks for validation on every query.

The recommended maximum value for this variable is 1000, which means that the check is performed once per second. A larger
value means that the check is performed and possibly invalidated due to updates on different SQL nodes less often. It is generally
not desirable to set this to a value greater than 2000.

• ndb_extra_logging

Version Introduced 5.1.6

Variable Name ndb_extra_logging

Variable Scope Global

Dynamic Variable Yes

Value Set Type numeric

Default 0

This variable can be set to a non-zero value to enable extra NDB logging for debugging or troubleshooting purposes. The default
value is 0.

This variable was added in MySQL 5.1.6.

• ndb_force_send

Option Sets Variable Yes, ndb_force_send

Variable Name ndb_force_send

Variable Scope Both

Dynamic Variable Yes

Value Set Type boolean

Default TRUE

Forces sending of buffers to NDB immediately, without waiting for other threads. Defaults to ON.

• ndb_index_stat_cache_entries

Value Set Type numeric

Default 32

Range 0-4294967295

Sets the granularity of the statistics by determining the number of starting and ending keys to store in the statistics memory cache.
Zero means no caching takes place; in this case, the data nodes are always queried directly. Default value: 32.

• ndb_index_stat_enable

Value Set Type boolean

Default ON

Use NDB index statistics in query optimization. Defaults to ON.

• ndb_index_stat_update_freq

Value Set Type numeric

MySQL Cluster

1162



Default 20

Range 0-4294967295

How often to query data nodes instead of the statistics cache. For example, a value of 20 (the default) means to direct every 20th

query to the data nodes.

• ndb_optimized_node_selection

Value Set Type boolean

Default ON

Causes an SQL node to use a data node on the same host machine as transaction coordinator. Enabled by default. Set to 0 or OFF to
disable, in which case the SQL node uses each data node in the cluster in succession. When this option is disabled, or if there is no
data node process running on the same host as the SQL node, the SQL node attempts to use a given data node 8 times before pro-
ceeding to the next one.

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

In MySQL 5.1.22-ndb-6.3.4 and later MySQL Cluster 5.1 Carrier Grade Edition 6.3.x releases, this option takes one of the integer
values 0, 1, 2, or 3, with 1 being the default. These values affect node selection as follows:

• 0: Each data node is employed as the transaction coordinator 8 times before the SQL node proceeds to the next data node. (This
is the same behavior as caused by setting this option to 0 or OFF in previous MySQL versions.)

• 1: If a data node process is running on the the same host as the SQL node, this data node is used as the transaction coordinator.
(This is the same behavior as caused by setting this option to 1 or ON in previous MySQL versions.)

• 2: The SQL node follows the same behavior as if this option had been set to 1; however, the setting is global.

• 3: The data node housing the cluster partition accessed by the first statement of a given transaction is used as the transaction co-
ordinator for the entire transaction. This is effective only if the first statement of the transaction accesses no more than one
cluster partition; otherwise, the SQL node reverts to the round-robin behavior seen when this option is set to 0.

Important

In MySQL 5.1.22-ndb-6.3.4 and later MySQL Cluster 5.1 Carrier Grade Edition 6.3.x versions, it is no longer possible to
set --ndb_optimized_node_selection to ON or OFF; attempting to do so causes mysqld to abort with an error.

The following information applies to all MySQL Cluster users.

• ndb_report_thresh_binlog_epoch_slip

Value Set Type numeric

Default 3

Range 0-256

This is a threshold on the number of epochs to be behind before reporting binlog status. For example, a value of 3 (the default)
means that if the difference between which epoch has been received from the storage nodes and which epoch has been applied to the
binlog is 3 or more, a status message will be sent to the cluster log.

• ndb_report_thresh_binlog_mem_usage

Value Set Type numeric

Default 10

Range 0-10

MySQL Cluster

1163



This is a threshold on the percentage of free memory remaining before reporting binlog status. For example, a value of 10 (the de-
fault) means that if the amount of available memory for receiving binlog data from the data nodes falls below 10%, a status message
will be sent to the cluster log.

• ndb_use_copying_alter_table

Version Introduced 5.1.12

Variable Name ndb_use_copying_alter_table

Variable Scope Both

Dynamic Variable No

Forces NDB to use copying of tables in the event of problems with online ALTER TABLE operations. The default value is OFF.

This variable was added in MySQL 5.1.12.

• ndb_use_exact_count

Variable Name ndb_use_exact_count

Variable Scope Both

Dynamic Variable Yes

Value Set Type boolean

Default OFF

Forces NDB to use a count of records during SELECT COUNT(*) query planning to speed up this type of query. The default value
is ON. For faster queries overall, disable this feature by setting the value of ndb_use_exact_count to OFF.

• ndb_use_transactions

Value Set Type boolean

Default ON

You can disable NDB transaction support by setting this variable's values to OFF (not recommended). The default is ON.

• ndb_wait_connected

Version Introduced 5.1.16-ndb-6.2.0

Option Sets Variable Yes, ndb_wait_connected

Variable Name ndb_wait_connected

Variable Scope

Dynamic Variable No

Value Set Type numeric

Default 0

MySQL Cluster 5.1 Carrier Grade Edition
This variable is available in MySQL Cluster 5.1 Carrier Grade Edition only. For more information about MySQL
Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade Edition”.

This variable can be used to cause the MySQL server to wait a given period of time for connections to MySQL Cluster management
and data nodes to be established before accepting MySQL client connections. The time is specified in seconds. The default value is
0.

MySQL Cluster

1164



17.5.4. MySQL Cluster Status Variables
This section provides detailed information about MySQL server status variables that relate to MySQL Cluster and the NDB storage en-
gine. For status variables not specific to MySQL Cluster, and for general information on using status variables, see Section 5.1.5,
“Status Variables”.

• Handler_discover

The MySQL server can ask the NDB Cluster storage engine if it knows about a table with a given name. This is called discovery.
Handler_discover indicates the number of times that tables have been discovered via this mechanism.

• Ndb_cluster_node_id

If the server is acting as a MySQL Cluster node, then the value of this variable its node ID in the cluster.

If the server is not part of a MySQL Cluster, then the value of this variable is 0.

• Ndb_config_from_host

If the server is part of a MySQL Cluster, the value of this variable is the hostname or IP address of the Cluster management server
from which it gets its configuration data.

If the server is not part of a MySQL Cluster, then the value of this variable is an empty string.

Prior to MySQL 5.1.12, this variable was named Ndb_connected_host.

• Ndb_config_from_port

If the server is part of a MySQL Cluster, the value of this variable is the number of the port through which it is connected to the
Cluster management server from which it gets its configuration data.

If the server is not part of a MySQL Cluster, then the value of this variable is 0.

Prior to MySQL 5.1.12, this variable was named Ndb_connected_port.

• Ndb_execute_count

Provides the number of round trips to the NDB kernel made by operations. Added in MySQL 5.1.22-ndb-6.3.6.

• Ndb_number_of_data_nodes

If the server is part of a MySQL Cluster, the value of this variable is the number of data nodes in the cluster.

If the server is not part of a MySQL Cluster, then the value of this variable is 0.

Prior to MySQL 5.1.12, this variable was named Ndb_number_of_storage_nodes.

• MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

Slave_heartbeat_period

Shows the replication heartbeat interval (in seconds) on a replication slave.

This variable was added in MySQL 5.1.22-ndb-6.3.4.

The following information applies to all MySQL users.

• MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

Slave_received_heartbeats

This counter increments with each replication heartbeat received by a replication slave since the last time that the slave was restarted

MySQL Cluster

1165



or reset, or a CHANGE MASTER statement was issued.

This variable was added in MySQL 5.1.22-ndb-6.3.4.

The following information applies to all MySQL Cluster users.

17.6. Upgrading and Downgrading MySQL Cluster
This portion of the MySQL Cluster chapter covers upgrading and downgrading a MySQL Cluster from one MySQL release to another.
It discusses different types of Cluster upgrades and downgrades, and provides a Cluster upgrade/downgrade compatibility matrix (see
Section 17.6.2, “Cluster Upgrade and Downgrade Compatibility”). You are expected already to be familiar with installing and configur-
ing a MySQL Cluster prior to attempting an upgrade or downgrade. See Section 17.4, “MySQL Cluster Configuration”.

For information about upgrading or downgrading between MySQL Cluster 5.1 Carrier Grade Edition releases, or between MySQL
Cluster 5.1 Carrier Grade Edition releases and mainline MySQL releases, see the changelogs relating to MySQL Cluster 5.1 Carrier
Grade Edition.

This section remains in development, and continues to be updated and expanded.

17.6.1. Performing a Rolling Restart of the Cluster
This section discusses how to perform a rolling restart of a MySQL Cluster installation, so called because it involves stopping and start-
ing (or restarting) each node in turn, so that the cluster itself remains operational. This is often done as part of a rolling upgrade or
rolling downgrade, where high availability of the cluster is mandatory and no downtime of the cluster as a whole is permissible. Where
we refer to upgrades, the information provided here also generally applies to downgrades as well.

There are a number of reasons why a rolling restart might be desirable:

• Cluster configuration change. To make a change in the cluster's configuration, such as adding an SQL node to the cluster, or set-
ting a configuration parameter to a new value.

• Cluster software upgrade/downgrade. To upgrade the cluster to a newer version of the MySQL Cluster software (or to down-
grade it to an older version). This is usually referred to as a “rolling upgrade” (or “rolling downgrade”, when reverting to an older
version of MySQL Cluster).

• Change on node host. To make changes in the hardware or operating system on which one or more cluster nodes are running

• Cluster reset. To reset the cluster because it has reached an undesirable state

• Freeing of resources. To allow memory allocated to a table by successive INSERT and DELETE operations to be freed for re-use
by other Cluster tables

The process for performing a rolling restart may be generalised as follows:

1. Stop all cluster management nodes (ndb_mgmd processes), reconfigure them, then restart them

2. Stop, reconfigure, then restart each cluster data node (ndbd process) in turn

3. Stop, reconfigure, then restart each cluster SQL node (mysqld process) in turn

The specifics for implementing a particular rolling upgrade depend upon the actual changes being made. A more detailed view of the
process is presented here:

MySQL Cluster

1166



In the previous diagram, Stop and Start steps indicate that the process must be stopped completely using a shell command (such as
kill on most Unix systems) or the management client STOP command, then started again from a system shell by invoking the ndbd
or ndb_mgmd executable as appropriate. Restart indicates the process may be restarted using the ndb_mgm management client RE-
START command.

Important

When performing an upgrade or downgrade of the cluster software, you must upgrade or downgrade the management
nodes first, then the data nodes, and finally the SQL nodes. Doing so in any other order may leave the cluster in an unus-

MySQL Cluster

1167



able state.

17.6.2. Cluster Upgrade and Downgrade Compatibility
This section provides information regarding Cluster software and table file compatibility between differing versions of the MySQL
Server for purposes of performing upgrades and downgrades.

Important

Only compatibility between MySQL versions with regard to NDB Cluster is taken into account in this section, and
there are likely other issues to be considered. As with any other MySQL software upgrade or downgrade, you are strongly
encouraged to review the relevant portions of the MySQL Manual for the MySQL versions from which and to which you
intend to migrate, before attempting an upgrade or downgrade of the MySQL Cluster software. See Section 2.11,
“Upgrading MySQL”.

The following table shows Cluster upgrade and downgrade compatibility between different versions of the MySQL Server.

MySQL Cluster

1168



MySQL Cluster

1169



Notes:

• 4.1 Series:

You cannot upgrade directly from 4.1.8 to 4.1.10 (or newer); you must first upgrade from 4.1.8 to 4.1.9, then upgrade to 4.1.10.
Similarly, you cannot downgrade directly from 4.1.10 (or newer) to 4.1.8; you must first downgrade from 4.1.10 to 4.1.9, then
downgrade from 4.1.9 to 4.1.8.

If you wish to upgrade a MySQL Cluster to 4.1.15, you must upgrade to 4.1.14 first, and you must upgrade to 4.1.15 before upgrad-
ing to 4.1.16 or newer.

Cluster downgrades from 4.1.15 to 4.1.14 (or earlier versions) are not supported.

Cluster upgrades from MySQL Server versions previous to 4.1.8 are not supported; when upgrading from these, you must dump all
NDB tables, install the new version of the software, and then reload the tables from the dump.

• 5.0 Series:

MySQL 5.0.2 was the first public release in this series.

Cluster downgrades from MySQL 5.0 to MySQL 4.1 are not supported.

Cluster downgrades from 5.0.12 to 5.0.11 (or earlier) are not supported.

You cannot restore with ndb_restore to a MySQL 5.0 Cluster using a backup made from a Cluster running MySQL 5.1. You
must use mysqldump in such cases.

There was no public release for MySQL 5.0.23.

• 5.1 Series:

MySQL 5.1.3 was the first public release in this series.

You cannot downgrade a MySQL 5.1.6 or later Cluster using Disk Data tables to MySQL 5.1.5 or earlier unless you convert all such
tables to in-memory Cluster tables first.

MySQL 5.1.8, MySQL 5.1.10, and MySQL 5.1.13 were not released.

Online cluster upgrades and downgrades between MySQL 5.1.11 (or an earlier version) and 5.1.12 (or a later version) are not pos-
sible due to major changes in the cluster filesystem. In such cases, you must perform a backup or dump, upgrade (or downgrade) the
software, start each data node with --initial, and then restore from the backup or dump. You can use NDB backup/restore or
mysqldump for this purpose.

• Online downgrades from MySQL 5.1.14 or later to versions previous to 5.1.14 are not supported due to incompatible changes in the
cluster system tables.

• Online upgrades from MySQL 5.1.17 and earlier to 5.1.18 and later are not supported for clusters using replication due to incompat-
ible changes in the mysql.ndb_apply_status table. However, it should not be necessary to shut down the cluster entirely, if
you follow this modified rolling restart procedure:

1. Stop the management server, update the ndb_mgmd binary, then start it again. For multiple management servers, repeat this
step for each management server in turn.

2. For each data node in turn: Stop the data node, replace the ndbd binary with the new version, then restart the data node. It is
not necessary to use --initial when restarting any of the data nodes.

3. Stop all SQL nodes. Replace the mysqld binary with the new version for all SQL nodes, then restart them. It is not necessary
to start them one at a time, but they must all be shut down at the same time before starting any of them again using the 5.1.18
(or later) mysqld. Otherwise — due to the fact that mysql.ndb_apply_status uses the NDB storage engine and is thus
shared between all SQL nodes — there may be conflicts between MySQL servers using the old and new versions of the table.

You can find more information about the changes to ndb_apply_status in Section 17.12.4, “Cluster Replication Schema and
Tables”.

• The internal specifications for columns in NDB tables changed in MySQL 5.1.18 to allow compatibility with future MySQL Cluster
releases that are expected to implement online adding and dropping of columns. This change is not backwards compatible with earli-

MySQL Cluster

1170



er MySQL versions.

In order to make tables created in MySQL 5.1.17 and earlier compatible with online adding and dropping of columns when this fea-
tures becomes available, it is necessary force MySQL 5.1.18 and later to convert the tables to the new format by following this pro-
cedure:

1. Upgrade the MySQL Cluster software on all data, management, and SQL nodes

2. Back up all NDB tables

3. Shut down the cluster (all data, management, and SQL nodes)

4. Restart the cluster, starting all data nodes with the --initial option (to clear and rebuild the data node filesystems)

5. Restore the tables from backup

This is not necessary for NDB tables created in MySQL 5.1.18 and later; such tables will automatically be compatible with online
adding and dropping of columns when this feature is introduced.

In order to minimise possible later difficulties, it is strongly advised that the procedure outlined above be followed as soon as pos-
sible after to upgrading from MySQL 5.1.17 or earlier to MySQL 5.1.18 or later.

For users of MySQL Cluster 5.1 Carrier Grade Edition the relevant versions are as follows:

• ndb-6.1.x series. The new table format is implemented beginning with MySQL 5.1.15-ndb-6.1.7.

• ndb-6.2.x series. The new table format is implemented beginning with MySQL 5.1.16-ndb-6.2.1.

17.7. Process Management in MySQL Cluster
Understanding how to manage MySQL Cluster requires a knowledge of four essential processes. In the next few sections of this
chapter, we cover the roles played by these processes in a cluster, how to use them, and what startup options are available for each of
them:

• Section 17.7.1, “MySQL Server Process Usage for MySQL Cluster”

• Section 17.7.2, “ndbd — The Storage Engine Node Process”

• Section 17.7.3, “ndb_mgmd — The Management Server Process”

• Section 17.7.4, “ndb_mgm — The Management Client Process”

17.7.1. MySQL Server Process Usage for MySQL Cluster
mysqld is the traditional MySQL server process. To be used with MySQL Cluster, mysqld needs to be built with support for the NDB
Cluster storage engine, as it is in the precompiled binaries available from http://dev.mysql.com/downloads/. If you build MySQL
from source, you must invoke configure with the --with-ndbcluster option to enable NDB Cluster storage engine sup-
port.

If the mysqld binary has been built with Cluster support, the NDB Cluster storage engine is still disabled by default. You can use
either of two possible options to enable this engine:

• Use --ndbcluster as a startup option on the command line when starting mysqld.

• Insert a line containing ndbcluster in the [mysqld] section of your my.cnf file.

An easy way to verify that your server is running with the NDB Cluster storage engine enabled is to issue the SHOW ENGINES
statement in the MySQL Monitor (mysql). You should see the value YES as the Support value in the row for NDBCLUSTER. If you
see NO in this row or if there is no such row displayed in the output, you are not running an NDB-enabled version of MySQL. If you see
DISABLED in this row, you need to enable it in either one of the two ways just described.

MySQL Cluster

1171

http://dev.mysql.com/downloads/


To read cluster configuration data, the MySQL server requires at a minimum three pieces of information:

• The MySQL server's own cluster node ID

• The hostname or IP address for the management server (MGM node)

• The number of the TCP/IP port on which it can connect to the management server

Node IDs can be allocated dynamically, so it is not strictly necessary to specify them explicitly.

The mysqld parameter ndb-connectstring is used to specify the connectstring either on the command line when starting
mysqld or in my.cnf. The connectstring contains the hostname or IP address where the management server can be found, as well as
the TCP/IP port it uses.

In the following example, ndb_mgmd.mysql.com is the host where the management server resides, and the management server
listens for cluster messages on port 1186:

shell> mysqld --ndbcluster --ndb-connectstring=ndb_mgmd.mysql.com:1186

See Section 17.4.4.2, “The Cluster Connectstring”, for more information on connectstrings.

Given this information, the MySQL server will be a full participant in the cluster. (We often refer to a mysqld process running in this
manner as an SQL node.) It will be fully aware of all cluster data nodes as well as their status, and will establish connections to all data
nodes. In this case, it is able to use any data node as a transaction coordinator and to read and update node data.

You can see in the mysql client whether a MySQL server is connected to the cluster using SHOW PROCESSLIST. If the MySQL
server is connected to the cluster, and you have the PROCESS privilege, then the first row of the output is as shown here:

mysql> SHOW PROCESSLIST \G
*************************** 1. row ***************************

Id: 1
User: system user
Host:
db:

Command: Daemon
Time: 1
State: Waiting for event from ndbcluster
Info: NULL

Important

To participate in a MySQL Cluster, the mysqld process must be started with both the options --ndbcluster and -
-ndb-connectstring (or their equivalents in my.cnf). If mysqld is started with only the --ndbcluster option,
or if it is unable to contact the cluster, it is not possible to work with NDB tables, nor is it possible to create any new tables
regardless of storage engine. The latter restriction is a safety measure intended to prevent the creation of tables having the
same names as NDB tables while the SQL node is not connected to the cluster. If you wish to create tables using a different
storage engine while the mysqld process is not participating in a MySQL Cluster, you must restart the server without the
--ndbcluster option.

17.7.2. ndbd — The Storage Engine Node Process
ndbd is the process that is used to handle all the data in tables using the NDB Cluster storage engine. This is the process that empowers
a data node to accomplish distributed transaction handling, node recovery, checkpointing to disk, online backup, and related tasks.

In a MySQL Cluster, a set of ndbd processes cooperate in handling data. These processes can execute on the same computer (host) or
on different computers. The correspondences between data nodes and Cluster hosts is completely configurable.

ndbd generates a set of log files which are placed in the directory specified by DataDir in the config.ini configuration file.

These log files are listed below. node_id is the node's unique identifier. Note that node_id represents the node's unique identifier.
For example, ndb_2_error.log is the error log generated by the data node whose node ID is 2.

•
ndb_node_id_error.log is a file containing records of all crashes which the referenced ndbd process has encountered. Each

MySQL Cluster

1172



record in this file contains a brief error string and a reference to a trace file for this crash. A typical entry in this file might appear as
shown here:

Date/Time: Saturday 30 July 2004 - 00:20:01
Type of error: error
Message: Internal program error (failed ndbrequire)
Fault ID: 2341
Problem data: DbtupFixAlloc.cpp
Object of reference: DBTUP (Line: 173)
ProgramName: NDB Kernel
ProcessID: 14909
TraceFile: ndb_2_trace.log.2
***EOM***

Listings of possible ndbd exit codes and messages generated when a data node process shuts down prematurely can be found in
ndbd Error Messages.

Important

The last entry in the error log file is not necessarily the newest one (nor is it likely to be). Entries in the error log are not
listed in chronological order; rather, they correspond to the order of the trace files as determined in the
ndb_node_id_trace.log.next file (see below). Error log entries are thus overwritten in a cyclical and not sequen-
tial fashion.

•
ndb_node_id_trace.log.trace_id is a trace file describing exactly what happened just before the error occurred. This in-
formation is useful for analysis by the MySQL Cluster development team.

It is possible to configure the number of these trace files that will be created before old files are overwritten. trace_id is a num-
ber which is incremented for each successive trace file.

• ndb_node_id_trace.log.next is the file that keeps track of the next trace file number to be assigned.

• ndb_node_id_out.log is a file containing any data output by the ndbd process. This file is created only if ndbd is started as
a daemon, which is the default behavior.

• ndb_node_id.pid is a file containing the process ID of the ndbd process when started as a daemon. It also functions as a lock
file to avoid the starting of nodes with the same identifier.

• ndb_node_id_signal.log is a file used only in debug versions of ndbd, where it is possible to trace all incoming, outgoing,
and internal messages with their data in the ndbd process.

It is recommended not to use a directory mounted through NFS because in some environments this can cause problems whereby the
lock on the .pid file remains in effect even after the process has terminated.

To start ndbd, it may also be necessary to specify the hostname of the management server and the port on which it is listening. Option-
ally, one may also specify the node ID that the process is to use.

shell> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

See Section 17.4.4.2, “The Cluster Connectstring”, for additional information about this issue. Section 17.7.5, “Command Options for
MySQL Cluster Processes”, describes other options for ndbd.

When ndbd starts, it actually initiates two processes. The first of these is called the “angel process”; its only job is to discover when the
execution process has been completed, and then to restart the ndbd process if it is configured to do so. Thus, if you attempt to kill nd-
bd via the Unix kill command, it is necessary to kill both processes, beginning with the angel process. The preferred method of ter-
minating an ndbd process is to use the management client and stop the process from there.

The execution process uses one thread for reading, writing, and scanning data, as well as all other activities. This thread is implemented
asynchronously so that it can easily handle thousands of concurrent activites. In addition, a watch-dog thread supervises the execution
thread to make sure that it does not hang in an endless loop. A pool of threads handles file I/O, with each thread able to handle one open
file. Threads can also be used for transporter connections by the transporters in the ndbd process. In a multi-processor system perform-
ing a large number of operations (including updates), the ndbd process can consume up to 2 CPUs if permitted to do so.

For a machine with many CPUs it is possible to use several ndbd processes which belong to different node groups; however, such a
configuration is still considered experimental and is not supported for MySQL 5.1 in a production setting. See Section 17.15, “Known

MySQL Cluster

1173

http://dev.mysql.com/doc/ndbapi/en/ndbd-error-messages.html


Limitations of MySQL Cluster”.

17.7.3. ndb_mgmd — The Management Server Process
The management server is the process that reads the cluster configuration file and distributes this information to all nodes in the cluster
that request it. It also maintains a log of cluster activities. Management clients can connect to the management server and check the
cluster's status.

It is not strictly necessary to specify a connectstring when starting the management server. However, if you are using more than one
management server, a connectstring should be provided and each node in the cluster should specify its node ID explicitly.

See Section 17.4.4.2, “The Cluster Connectstring”, for information about using connectstrings. Section 17.7.5, “Command Options for
MySQL Cluster Processes”, describes other options for ndb_mgmd.

The following files are created or used by ndb_mgmd in its starting directory, and are placed in the DataDir as specified in the con-
fig.ini configuration file. In the list that follows, node_id is the unique node identifier.

•
config.ini is the configuration file for the cluster as a whole. This file is created by the user and read by the management server.
Section 17.4, “MySQL Cluster Configuration”, discusses how to set up this file.

• ndb_node_id_cluster.log is the cluster events log file. Examples of such events include checkpoint startup and completion,
node startup events, node failures, and levels of memory usage. A complete listing of cluster events with descriptions may be found
in Section 17.8, “Management of MySQL Cluster”.

When the size of the cluster log reaches one million bytes, the file is renamed to ndb_node_id_cluster.log.seq_id,
where seq_id is the sequence number of the cluster log file. (For example: If files with the sequence numbers 1, 2, and 3 already
exist, the next log file is named using the number 4.)

• ndb_node_id_out.log is the file used for stdout and stderr when running the management server as a daemon.

• ndb_node_id.pid is the process ID file used when running the management server as a daemon.

17.7.4. ndb_mgm — The Management Client Process
The ndb_mgm management client process is actually not needed to run the cluster. Its value lies in providing a set of commands for
checking the cluster's status, starting backups, and performing other administrative functions. The management client accesses the man-
agement server using a C API. Advanced users can also employ this API for programming dedicated management processes to perform
tasks similar to those performed by ndb_mgm.

To start the management client, it is necessary to supply the hostname and port number of the management server:

shell> ndb_mgm [host_name [port_num]]

For example:

shell> ndb_mgm ndb_mgmd.mysql.com 1186

The default hostname and port number are localhost and 1186, respectively.

Additional information about using ndb_mgm can be found in Section 17.7.5.3, “Command Options for ndb_mgm”, and Sec-
tion 17.8.2, “Commands in the MySQL Cluster Management Client”.

17.7.5. Command Options for MySQL Cluster Processes
All MySQL Cluster executables (except for mysqld) take the options described in this section. Users of earlier MySQL Cluster ver-
sions should note that some of these options have been changed to make them consistent with one another as well as with mysqld. You
can use the --help option with any MySQL Cluster executable to view a list of the options which it supports.

The following options are common to all MySQL Cluster executables:

•

MySQL Cluster

1174



--help --usage, -?

Prints a short list with descriptions of the available command options.

•
--connect-string=connect_string, -c connect_string

connect_string sets the connectstring to the management server as a command option.

shell> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

For more information, see Section 17.4.4.2, “The Cluster Connectstring”.

•
--debug[=options]

This option can be used only for versions compiled with debugging enabled. It is used to enable output from debug calls in the same
manner as for the mysqld process.

•
--execute=command, -e command

Can be used to send a command to a Cluster executable from the system shell. For example, either of the following:

shell> ndb_mgm -e "SHOW"

or

shell> ndb_mgm --execute="SHOW"

is equivalent to

ndb_mgm> SHOW

This is analogous to how the --execute or -e option works with the mysql command-line client. See Section 4.2.2.1, “Using
Options on the Command Line”.

•
--version, -V

Prints the MySQL Cluster version number of the executable. The version number is relevant because not all versions can be used to-
gether, and the MySQL Cluster startup process verifies that the versions of the binaries being used can co-exist in the same cluster.
This is also important when performing an online (rolling) software upgrade or downgrade of MySQL Cluster. (See Section 17.6.1,
“Performing a Rolling Restart of the Cluster”).

The next few sections describe options specific to individual NDB programs.

See Section 17.5.2, “MySQL Cluster-Related Command Options for mysqld”, for mysqld options relating to MySQL Cluster.

17.7.5.1. Command Options for ndbd

For options common to all NDB programs, see Section 17.7.5, “Command Options for MySQL Cluster Processes”.

• --bind-address

Causes ndbd to bind to a specific network interface (hostname or IP address). This option has no default value.

This option was added in MySQL 5.1.12.

• --daemon, -d

Instructs ndbd to execute as a daemon process. This is the default behavior. --nodaemon can be used to prevent the process from
running as a daemon.

MySQL Cluster

1175



•
--initial

Instructs ndbd to perform an initial start. An initial start erases any files created for recovery purposes by earlier instances of ndbd.
It also re-creates recovery log files. Note that on some operating systems this process can take a substantial amount of time.

An --initial start is to be used only when starting the ndbd process under very special circumstances; this is because this op-
tion causes all files to be removed from the Cluster filesystem and all redo log files to be re-created. These circumstances are listed
here:

• When performing a software upgrade which has changed the contents of any files.

• When restarting the node with a new version of ndbd.

• As a measure of last resort when for some reason the node restart or system restart repeatedly fails. In this case, be aware that
this node can no longer be used to restore data due to the destruction of the data files.

Important

This option does not affect either of the following:

• Backup files that have already been created by the affected node

• Cluster Disk Data files (see Section 17.13, “MySQL Cluster Disk Data Tables”).

It is permissible to use this option when starting the cluster for the very first time (that is, before any data node files have been cre-
ated); however, it is not necessary to do so.

•
--initial-start

This option is used when performing a partial initial start of the cluster. Each node should be started with this option, as well as -
-nowait-nodes.

For example, suppose you have a 4-node cluster whose data nodes have the IDs 2, 3, 4, and 5, and you wish to perform a partial ini-
tial start using only nodes 2, 4, and 5 — that is, omitting node 3:

ndbd --ndbd-nodeid=2 --nowait-nodes=3 --initial-start
ndbd --ndbd-nodeid=4 --nowait-nodes=3 --initial-start
ndbd --ndbd-nodeid=5 --nowait-nodes=3 --initial-start

This option was added in MySQL 5.1.11.

Important

Prior to MySQL 5.1.19, it was not possible to perform DDL operations involving Disk Data tables on a partially started
cluster. (See Bug#24631.)

•
--nowait-nodes=node_id_1[, node_id_2[, ...]]

This option takes a list of data nodes which for which the cluster will not wait for before starting.

This can be used to start the cluster in a partitioned state. For example, to start the cluster with only half of the data nodes (nodes 2,
3, 4, and 5) running in a 4-node cluster, you can start each ndbd process with --nowait-nodes=3,5. In this case, the cluster
starts as soon as nodes 2 and 4 connect, and does not wait StartPartitionedTimeout milliseconds for nodes 3 and 5 to con-
nect as it would otherwise.

If you wanted to start up the same cluster as in the previous example without one ndbd — say, for example, that the host machine
for node 3 has suffered a hardware failure — then start nodes 2, 4, and 5 with --nowait-nodes=3. Then the cluster will start as
soon as nodes 2, 4, and 5 connect and will not wait for node 3 to start.

This option was added in MySQL 5.1.9.

•
--nodaemon

MySQL Cluster

1176

http://bugs.mysql.com/24631


Instructs ndbd not to start as a daemon process. This is useful when ndbd is being debugged and you want output to be redirected
to the screen.

•
--nostart, -n

Instructs ndbd not to start automatically. When this option is used, ndbd connects to the management server, obtains configuration
data from it, and initializes communication objects. However, it does not actually start the execution engine until specifically re-
quested to do so by the management server. This can be accomplished by issuing the proper START command in the management
client (see Section 17.8.2, “Commands in the MySQL Cluster Management Client”).

17.7.5.2. Command Options for ndb_mgmd

For options common to NDB programs, see Section 17.7.5, “Command Options for MySQL Cluster Processes”.

•
MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

--bind-address=host[:port]

When specified, this option limits management server connections by management clients to clients at the specified hostname or IP
address (and possibly port, if this is also specified). In such cases, a management client attempting to connect to the management
server from any other address fails with the error UNABLE TO SETUP PORT: HOST:PORT!

If the port is not specified, the management client attempts to use port 1186.

This option was added in MySQL 5.1.19-ndb-6.2.5 and MySQL 5.1.22-ndb-6.3.2. It is not available in MySQL Cluster 5.1 Carrier
Grade Edition ndb-6.1.x or mainline MySQL 5.1 releases.

The following information applies to all MySQL Cluster users.

•
--config-file=filename, -f filename

Instructs the management server as to which file it should use for its configuration file. By default, the management server looks for
a file named config.ini in the same directory as the ndb_mgmd executable; otherwise the filename and location must be spe-
cified explicitly.

• --daemon, -d

Instructs ndb_mgmd to start as a daemon process. This is the default behavior.

• --nodaemon

Instructs ndb_mgmd not to start as a daemon process.

•
--print-full-config, -P

Shows extended information regarding the configuration of the cluster. With this option on the command line the ndb_mgmd pro-
cess prints information about the cluster setup including an extensive list of the cluster configuration sections as well as parameters
and their values. Normally used together with the --config-file (-f) option.

17.7.5.3. Command Options for ndb_mgm

For options common to NDB programs, see Section 17.7.5, “Command Options for MySQL Cluster Processes”.

• --try-reconnect=number

MySQL Cluster

1177



If the connection to the management server is broken, the node tries to reconnect to it every 5 seconds until it succeeds. By using
this option, it is possible to limit the number of attempts to number before giving up and reporting an error instead.

17.8. Management of MySQL Cluster
Managing a MySQL Cluster involves a number of tasks, the first of which is to configure and start MySQL Cluster. This is covered in
Section 17.4, “MySQL Cluster Configuration”, and Section 17.7, “Process Management in MySQL Cluster”.

The following sections cover the management of a running MySQL Cluster.

For information about security issues relating to management and deployment of a MySQL Cluster, see Section 17.9, “MySQL Cluster
Security Issues”.

There are essentially two methods of actively managing a running MySQL Cluster. The first of these is through the use of commands
entered into the management client whereby cluster status can be checked, log levels changed, backups started and stopped, and nodes
stopped and started. The second method involves studying the contents of the cluster log ndb_node_id_cluster.log; this is usu-
ally found in the management server's DataDir directory, but this location can be overridden using the LogDestination option —
see Section 17.4.4.4, “Defining the Management Server”, for details. (Recall that node_id represents the unique identifier of the node
whose activity is being logged.) The cluster log contains event reports generated by ndbd. It is also possible to send cluster log entries
to a Unix system log.

In addition, some aspects of the cluster's operation can be monitored from an SQL node using the SHOW ENGINE NDB STATUS
statement. See Section 12.5.4.13, “SHOW ENGINE Syntax”, for more information.

17.8.1. Summary of MySQL Cluster Start Phases
This section provides a simplified outline of the steps involved when MySQL Cluster data nodes are started. More complete information
can be found in MySQL Cluster Start Phases.

These phases are the same as those reported in the output from the node_id STATUS command in the management client. (See Sec-
tion 17.8.2, “Commands in the MySQL Cluster Management Client”, for more information about this command.)

Start types. There are several different startup types and modes, as shown here:

• Initial Start. The cluster starts with a clean filesystem on all data nodes. This occurs either when the cluster started for the very
first time, or when all data nodes are restarted using the --initial option.

Note

Disk Data files are not removed when restarting a node using --initial.

• System Restart. The cluster starts and reads data stored in the data nodes. This occurs when the cluster has been shut down after
having been in use, when it is desired for the cluster to resume operations from the point where it left off.

• Node Restart. This is the online restart of a cluster node while the cluster itself is running.

• Initial Node Restart. This is the same as a node restart, except that the node is reinitialized and started with a clean filesystem.

Setup and initialization (Phase -1). Prior to startup, each data node (ndbd process) must be initialized. Initialization consists of the
following steps:

1. Obtain a node ID

2. Fetch configuration data

3. Allocate ports to be used for inter-node communications

4. Allocate memory according to settings obtained from the configuration file

MySQL Cluster

1178

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-start-phases.html


When a data node or SQL node first connects to the management node, it reserves a cluster node ID. To make sure that no other node
allocates the same node ID, this ID is retained until the node has managed to connect to the cluster and at least one ndbd reports that
this node is connected. This retention of the node ID is guarded by the connection between the node in question and ndb_mgmd.

Normally, in the event of a problem with the node, the node disconnects from the management server, the socket used for the connec-
tion is closed, and the reserved node ID is freed. However, if a node is disconnected abruptly — for example, due to a hardware failure
in one of the cluster hosts, or because of network issues — the normal closing of the socket by the operating system may not take place.
In this case, the node ID continues to be reserved and not released until a TCP timeout occurs 10 or so minutes later.

To take care of this problem, you can use PURGE STALE SESSIONS. Running this statement forces all reserved node IDs to be
checked; any that are not being used by nodes actually connected to the cluster are then freed.

Beginning with MySQL 5.1.11, timeout handling of node ID assignments is implemented. This performs the ID usage checks automat-
ically after approximately 20 seconds, so that PURGE STALE SESSIONS should no longer be necessary in a normal Cluster start.

After each data node has been initialized, the cluster startup process can proceed. The stages which the cluster goes through during this
process are listed here:

• Phase 0. The NDBFS and NDBCNTR blocks start (see NDB Kernel Blocks). The cluster filesystem is cleared, if the cluster was star-
ted with the --initial option.

• Phase 1. In this stage, all remaining NDB kernel blocks are started. Cluster connections are set up, inter-block communications are
established, and Cluster heartbeats are started. In the case of a node restart, API node connections are also checked.

Note

When one or more nodes hang in Phase 1 while the remaining node or nodes hang in Phase 2, this often indicates network
problems. One possible cause of such issues is one or more cluster hosts having multiple network interfaces. Another com-
mon source of problems causing this condition is the blocking of TCP/IP ports needed for communications between cluster
nodes. In the latter case, this is often due to a misconfigured firewall.

• Phase 2. The NDBCNTR kernel block checks the states of all existing nodes. The master node is chosen, and the cluster schema file
is initialized.

• Phase 3. The DBLQH and DBTC kernel blocks set up communications between them. The startup type is determined; if this is a re-
start, the DBDIH block obtains permission to perform the restart.

• Phase 4. For an initial start or initial node restart, the redo log files are created. The number of these files is equal to NoOfFrag-
mentLogFiles.

For a system restart:

• Read schema or schemas.

• Read data from the local checkpoint.

• Apply all redo information until the latest restorable global checkpoint has been reached.

For a node restart, find the tail of the redo log.

• Phase 5. Most of the database-related portion of a data node start is performed during this phase. For an initial start or system re-
start, a local checkpoint is executed, followed by a global checkpoint. Periodic checks of memory usage begin during this phase, and
any required node takeovers are performed.

• Phase 6. In this phase, node groups are defined and set up.

• Phase 7. The arbitrator node is selected and begins to function. The next backup ID is set, as is the backup disk write speed. Nodes
reaching this start phase are marked as Started. It is now possible for API nodes (including SQL nodes) to connect to the cluster.
connect.

• Phase 8. If this is a system restart, all indexes are rebuilt (by DBDIH).

• Phase 9. The node internal startup variables are reset.

• Phase 100 (OBSOLETE). Formerly, it was at this point during a node restart or initial node restart that API nodes could connect to

MySQL Cluster

1179

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-kernel-blocks.html


the node and begin to receive events. Currently, this phase is empty.

• Phase 101. At this point in a node restart or initial node restart, event delivery is handed over to the node joining the cluster. The
newly-joined node takes over responsibility for delivering its primary data to subscribers. This phase is also referred to as SUMA
handover phase.

After this process is completed for an initial start or system restart, transaction handling is enabled. For a node restart or initial node re-
start, completion of the startup process means that the node may now act as a transaction coordinator.

17.8.2. Commands in the MySQL Cluster Management Client
In addition to the central configuration file, a cluster may also be controlled through a command-line interface available through the
management client ndb_mgm. This is the primary administrative interface to a running cluster.

Commands for the event logs are given in Section 17.8.3, “Event Reports Generated in MySQL Cluster”; commands for creating
backups and restoring from backup are provided in Section 17.10, “On-line Backup of MySQL Cluster”.

The management client has the following basic commands. In the listing that follows, node_id denotes either a database node ID or
the keyword ALL, which indicates that the command should be applied to all of the cluster's data nodes.

•
HELP

Displays information on all available commands.

•
SHOW

Displays information on the cluster's status.

Note

In a cluster where multiple management nodes are in use, this command displays information only for data nodes that are
actually connected to the current management server.

•
node_id START

Brings online the data node identified by node_id (or all data nodes).

ALL START works on all data nodes only, and does not affect management nodes.

Important

To use this command to bring a data node online, the data node must have been started using ndbd --nostart or nd-
bd -n.

•
node_id STOP

Stops the data or management node identified by node_id. Note that ALL STOP works to stop all data nodes only, and does not
affect management nodes.

A node affected by this command disconnects from the cluster, and its associated ndbd or ndb_mgmd process terminates.

•
node_id RESTART [-n] [-i] [-a]

Restarts the data node identified by node_id (or all data nodes).

Using the -i option with RESTART causes the data node to perform an initial restart; that is, the node's filesystem is deleted and re-
created. The effect is the same as that obtained from stopping the data node process and then starting it again using ndbd -
-initial from the system shell. Note that backup files and Disk Data files are not removed when this option is used.

MySQL Cluster

1180



Using the -n option causes the data node process to be restarted, but the data node is not actually brought online until the appropri-
ate START command is issued. The effect of this option is the same as that obtained from stopping the data node and then starting it
again using ndbd --nostart or ndbd -n from the system shell.

Using the -a causes all current transactions relying on this node to be aborted. No GCP check is done when the node rejoins the
cluster.

•
node_id STATUS

Displays status information for the data node identified by node_id (or for all data nodes).

•
MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

node_id REPORT report-type

Displays a report of type report-type for the data node identified by node_id, or for all data nodes using ALL.

Currently, there are two accepted values for report-type:

• BackupStatus provides a status report on a cluster backup in progress

• MemoryUsage displays how much data memory and index memory is being used by each data node.

The REPORT command was introduced in MySQL 5.1.19-ndb-6.2.3 and MySQL 5.1.19-ndb-6.3.0.

The following information applies to all MySQL Cluster users.

•
ENTER SINGLE USER MODE node_id

Enters single user mode, whereby only the MySQL server identified by the node ID node_id is allowed to access the database.

Important

It is not possible in MySQL 5.1 for data nodes to join the cluster while it is running in single user mode. (See Bug#20395
for more information.)

•
EXIT SINGLE USER MODE

Exits single user mode, allowing all SQL nodes (that is, all running mysqld processes) to access the database.

•
QUIT, EXIT

Terminates the management client.

This command does not affect any nodes connected to the cluster.

•
SHUTDOWN

Shuts down all cluster data nodes and management nodes. To exit the management client after this has been done, use EXIT or
QUIT.

This command does not shut down any SQL nodes or API nodes that are connected to the cluster.

17.8.3. Event Reports Generated in MySQL Cluster
In this section, we discuss the types of event logs provided by MySQL Cluster, and the types of events that are logged.

MySQL Cluster

1181

http://bugs.mysql.com/20395


MySQL Cluster provides two types of event log:

• The cluster log, which includes events generated by all cluster nodes. The cluster log is the log recommended for most uses because
it provides logging information for an entire cluster in a single location.

By default, the cluster log is saved to a file named ndb_node_id_cluster.log, (where node_id is the node ID of the man-
agement server) in the same directory where the ndb_mgm binary resides.

Cluster logging information can also be sent to stdout or a syslog facility in addition to or instead of being saved to a file, as
determined by the values set for the DataDir and LogDestination configuration parameters. See Section 17.4.4.4, “Defining
the Management Server”, for more information about these parameters.

• Node logs are local to each node.

Output generated by node event logging is written to the file ndb_node_id_out.log (where node_id is the node's node ID)
in the node's DataDir. Node event logs are generated for both management nodes and data nodes.

Node logs are intended to be used only during application development, or for debugging application code.

Both types of event logs can be set to log different subsets of events.

Each reportable event can be distinguished according to three different criteria:

• Category: This can be any one of the following values: STARTUP, SHUTDOWN, STATISTICS, CHECKPOINT, NODERESTART,
CONNECTION, ERROR, or INFO.

• Priority: This is represented by one of the numbers from 1 to 15 inclusive, where 1 indicates “most important” and 15 “least import-
ant.”

• Severity Level: This can be any one of the following values: ALERT, CRITICAL, ERROR, WARNING, INFO, or DEBUG.

Both the cluster log and the node log can be filtered on these properties.

The format used in the cluster log is as shown here:

2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Data usage is 2%(60 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Index usage is 1%(24 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Data usage is 2%(76 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Index usage is 1%(24 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Data usage is 2%(58 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Index usage is 1%(25 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Data usage is 2%(74 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Index usage is 1%(25 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 4: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 1: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 1: Node 9: API version 5.1.15
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 2: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 2: Node 9: API version 5.1.15
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 3: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 3: Node 9: API version 5.1.15
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 4: Node 9: API version 5.1.15
2007-01-26 19:59:22 [MgmSrvr] ALERT -- Node 2: Node 7 Disconnected
2007-01-26 19:59:22 [MgmSrvr] ALERT -- Node 2: Node 7 Disconnected

Each line in the cluster log contains the following information:

• A timestamp in YYYY-MM-DD HH:MM:SS format.

• The type of node which is performing the logging. In the cluster log, this is always [MgmSrvr].

• The severity of the event.

• The ID of the node reporting the event.

MySQL Cluster

1182



• A description of the event. The most common types of events to appear in the log are connections and disconnections between dif-
ferent nodes in the cluster, and when checkpoints occur. In some cases, the description may contain status information.

17.8.3.1. Logging Management Commands

The following management commands are related to the cluster log:

• CLUSTERLOG ON

Turns the cluster log on.

• CLUSTERLOG OFF

Turns the cluster log off.

• CLUSTERLOG INFO

Provides information about cluster log settings.

• node_id CLUSTERLOG category=threshold

Logs category events with priority less than or equal to threshold in the cluster log.

• CLUSTERLOG FILTER severity_level

Toggles cluster logging of events of the specified severity_level.

The following table describes the default setting (for all data nodes) of the cluster log category threshold. If an event has a priority with
a value lower than or equal to the priority threshold, it is reported in the cluster log.

Note that events are reported per data node, and that the threshold can be set to different values on different nodes.

Category Default threshold (All data nodes)

STARTUP 7

SHUTDOWN 7

STATISTICS 7

CHECKPOINT 7

NODERESTART 7

CONNECTION 7

ERROR 15

INFO 7

The STATISTICS category can provide a great deal of useful data. See Section 17.8.3.3, “Using CLUSTERLOG STATISTICS”, for
more information.

Thresholds are used to filter events within each category. For example, a STARTUP event with a priority of 3 is not logged unless the
threshold for STARTUP is set to 3 or higher. Only events with priority 3 or lower are sent if the threshold is 3.

The following table shows the event severity levels.

Note

These correspond to Unix syslog levels, except for LOG_EMERG and LOG_NOTICE, which are not used or mapped.

1 ALERT A condition that should be corrected immediately, such as a corrupted system database

2 CRITICAL Critical conditions, such as device errors or insufficient resources

3 ERROR Conditions that should be corrected, such as configuration errors

MySQL Cluster

1183



4 WARNING Conditions that are not errors, but that might require special handling

5 INFO Informational messages

6 DEBUG Debugging messages used for NDB Cluster development

Event severity levels can be turned on or off (using CLUSTERLOG FILTER — see above). If a severity level is turned on, then all
events with a priority less than or equal to the category thresholds are logged. If the severity level is turned off then no events belonging
to that severity level are logged.

Important

Cluster log levels are set on a per ndb_mgmd, per subscriber basis. This means that, in a MySQL Cluster with multiple
management servers, using a CLUSTERLOG command in an instance of ndb_mgm connected to one management server
affects only logs generated by that management server but not by any of the others. This also means that, should one of the
management servers be restarted, only logs generated by that management server are affected by the resetting of log levels
caused by the restart.

17.8.3.2. Log Events

An event report reported in the event logs has the following format:

datetime [string] severity -- message

For example:

09:19:30 2005-07-24 [NDB] INFO -- Node 4 Start phase 4 completed

This section discusses all reportable events, ordered by category and severity level within each category.

In the event descriptions, GCP and LCP mean “Global Checkpoint” and “Local Checkpoint”, respectively.

CONNECTION Events

These events are associated with connections between Cluster nodes.

Event Priority Severity
Level

Description

data nodes connected 8 INFO Data nodes connected

data nodes disconnected 8 INFO Data nodes disconnected

Communication closed 8 INFO SQL node or data node connection closed

Communication opened 8 INFO SQL node or data node connection opened

CHECKPOINT Events

The logging messages shown here are associated with checkpoints.

Event Priority Severity
Level

Description

LCP stopped in calc keep GCI 0 ALERT LCP stopped

Local checkpoint fragment completed 11 INFO LCP on a fragment has been completed

Global checkpoint completed 10 INFO GCP finished

Global checkpoint started 9 INFO Start of GCP: REDO log is written to disk

Local checkpoint completed 8 INFO LCP completed normally

Local checkpoint started 7 INFO Start of LCP: data written to disk

STARTUP Events

MySQL Cluster

1184



The following events are generated in response to the startup of a node or of the cluster and of its success or failure. They also provide
information relating to the progress of the startup process, including information concerning logging activities.

Event Priority Severity
Level

Description

Internal start signal received STTORRY 15 INFO Blocks received after completion of restart

New REDO log started 10 INFO GCI keep X, newest restorable GCI Y

New log started 10 INFO Log part X, start MB Y, stop MB Z

Node has been refused for inclusion in the
cluster

8 INFO Node cannot be included in cluster due to misconfiguration,
inability to establish communication, or other problem

data node neighbors 8 INFO Shows neighboring data nodes

data node start phase X completed 4 INFO A data node start phase has been completed

Node has been successfully included into the
cluster

3 INFO Displays the node, managing node, and dynamic ID

data node start phases initiated 1 INFO NDB Cluster nodes starting

data node all start phases completed 1 INFO NDB Cluster nodes started

data node shutdown initiated 1 INFO Shutdown of data node has commenced

data node shutdown aborted 1 INFO Unable to shut down data node normally

NODERESTART Events

The following events are generated when restarting a node and relate to the success or failure of the node restart process.

Event Priority Severity
Level

Description

Node failure phase completed 8 ALERT Reports completion of node failure phases

Node has failed, node state was X 8 ALERT Reports that a node has failed

Report arbitrator results 2 ALERT There are eight different possible results for arbitration at-
tempts:

• Arbitration check failed — less than 1/2 nodes left

• Arbitration check succeeded — node group majority

• Arbitration check failed — missing node group

• Network partitioning — arbitration required

• Arbitration succeeded — affirmative response from
node X

• Arbitration failed - negative response from node X

• Network partitioning - no arbitrator available

• Network partitioning - no arbitrator configured

Completed copying a fragment 10 INFO

Completed copying of dictionary information 8 INFO

Completed copying distribution information 8 INFO

Starting to copy fragments 8 INFO

Completed copying all fragments 8 INFO

GCP takeover started 7 INFO

GCP takeover completed 7 INFO

MySQL Cluster

1185



LCP takeover started 7 INFO

LCP takeover completed (state = X) 7 INFO

Report whether an arbitrator is found or not 6 INFO There are seven different possible outcomes when seeking
an arbitrator:

• Management server restarts arbitration thread [state=X]

• Prepare arbitrator node X [ticket=Y]

• Receive arbitrator node X [ticket=Y]

• Started arbitrator node X [ticket=Y]

• Lost arbitrator node X - process failure [state=Y]

• Lost arbitrator node X - process exit [state=Y]

• Lost arbitrator node X <error msg> [state=Y]

STATISTICS Events

The following events are of a statistical nature. They provide information such as numbers of transactions and other operations, amount
of data sent or received by individual nodes, and memory usage.

Event Priority Severity
Level

Description

Report job scheduling statistics 9 INFO Mean internal job scheduling statistics

Sent number of bytes 9 INFO Mean number of bytes sent to node X

Received # of bytes 9 INFO Mean number of bytes received from node X

Report transaction statistics 8 INFO Numbers of: transactions, commits, reads, simple reads,
writes, concurrent operations, attribute information, and
aborts

Report operations 8 INFO Number of operations

Report table create 7 INFO

Memory usage 5 INFO Data and index memory usage (80%, 90%, and 100%)

ERROR Events

These events relate to Cluster errors and warnings. The presence of one or more of these generally indicates that a major malfunction or
failure has occurred.

Event Priority Severity Description

Dead due to missed heartbeat 8 ALERT Node X declared “dead” due to missed heartbeat

Transporter errors 2 ERROR

Transporter warnings 8 WARNING

Missed heartbeats 8 WARNING Node X missed heartbeat #Y

General warning events 2 WARNING

INFO Events

These events provide general information about the state of the cluster and activities associated with Cluster maintenance, such as log-
ging and heartbeat transmission.

MySQL Cluster

1186



Event Priority Severity Description

Sent heartbeat 12 INFO Heartbeat sent to node X

Create log bytes 11 INFO Log part, log file, MB

General information events 2 INFO

17.8.3.3. Using CLUSTERLOG STATISTICS

The NDB management client's CLUSTERLOG STATISTICS command can provide a number of useful statistics in its output. The fol-
lowing statistics are reported by the transaction coordinator:

Statistic Description (Number of...)

Trans. Count Transactions attempted with this node as coordinator

Commit Count Transactions committed with this node as coordinator

Read Count Primary key reads (all)

Simple Read Count Primary key reads reading the latest committed value

Write Count Primary key writes (includes all INSERT, UPDATE, and DELETE operations)

AttrInfoCount Data words used to describe all reads and writes received

Concurrent Operations All concurrent operations ongoing at the moment the report is taken

Abort Count Transactions with this node as coordinator that were aborted

Scans Scans (all)

Range Scans Index scans

The ndbd process has a scheduler that runs in an infinite loop. During each loop scheduler performs the following tasks:

1. Read any incoming messages from sockets into a job buffer.

2. Check whether there are any timed messages to be executed; if so, put these into the job buffer as well.

3. Execute (in a loop) any messages in the job buffer.

4. Send any distributed messages that were generated by executing the messages in the job buffer.

5. Wait for any new incoming messages.

The number of loops executed in the third step is reported as the Mean Loop Counter. This statistic increases in size as the utilisa-
tion of the TCP/IP buffer improves. You can use this to monitor performance as you add new processes to the cluster.

The Mean send size and Mean receive size statistics allow you to gauge the efficiency of writes and reads (respectively)
between nodes. These values are given in bytes. Higher values mean a lower cost per byte sent or received; the maximum is 64k.

To cause all cluster log statistics to be logged, you can use the following command in the NDB management client:

ndb_mgm> ALL CLUSTERLOG STATISTICS=15

Note

Setting the threshold for STATISTICS to 15 causes the cluster log to become very verbose, and to gow quite rapidly in
size, in direct proportion to the number of cluster nodes and the amount of activity on the cluster.

17.8.4. Single User Mode
Single user mode allows the database administrator to restrict access to the database system to a single API node, such as a MySQL
server (SQL node) or an instance of ndb_restore. When entering single user mode, connections to all other API nodes are closed
gracefully and all running transactions are aborted. No new transactions are permitted to start.

MySQL Cluster

1187



Once the cluster has entered single user mode, only the designated API node is granted access to the database.

You can use the ALL STATUS command to see when the cluster has entered single user mode.

Example:

ndb_mgm> ENTER SINGLE USER MODE 5

After this command has executed and the cluster has entered single user mode, the API node whose node ID is 5 becomes the cluster's
only permitted user.

The node specified in the preceding command must be an API node; attempting to specify any other type of node will be rejected.

Note

When the preceding command is invoked, all transactions running on the designated node are aborted, the connection is
closed, and the server must be restarted.

The command EXIT SINGLE USER MODE changes the state of the cluster's data nodes from single user mode to normal mode. API
nodes — such as MySQL Servers — waiting for a connection (that is, waiting for the cluster to become ready and available), are again
permitted to connect. The API node denoted as the single-user node continues to run (if still connected) during and after the state
change.

Example:

ndb_mgm> EXIT SINGLE USER MODE

There are two recommended ways to handle a node failure when running in single user mode:

• Method 1:

1. Finish all single user mode transactions

2. Issue the EXIT SINGLE USER MODE command

3. Restart the cluster's data nodes

• Method 2:

Restart database nodes prior to entering single user mode.

17.8.5. Quick Reference: MySQL Cluster SQL Statements
This section discusses several SQL statements that can prove useful in managing and monitoring a MySQL server that is connected to a
MySQL Cluster, and in some cases provide information about the cluster itself.

• SHOW ENGINE NDB STATUS, SHOW ENGINE NDBCLUSTER STATUS

The output of this statement contains information about the server's connection to the cluster, creation and usage of MySQL Cluster
objects, and binary logging for MySQL Cluster replication.

See Section 12.5.4.13, “SHOW ENGINE Syntax”, for a usage example and more detailed information.

•
SHOW ENGINES

This statement can be used to determine whether or not clustering support is enabled in the MySQL server, and if so, whether it is
active.

See Section 12.5.4.14, “SHOW ENGINES Syntax”, for more detailed information.

Note

MySQL Cluster

1188



In MySQL 5.1, this statement no longer supports a LIKE clause. However, you can use LIKE to filter queries against the
INFORMATION_SCHEMA.ENGINES, as discussed in the next item.

•
SELECT * FROM INFORMATION_SCHEMA.ENGINES [WHERE ENGINE LIKE 'NDB%']

This is the equivalent of SHOW ENGINES, but uses the ENGINES table of the INFORMATION_SCHEMA database (available be-
ginning with MySQL 5.1.5). Unlike the case with the SHOW ENGINES statement, it is possible to filter the results using a LIKE
clause, and to select specific columns to obtain information that may be of use in scripts. For example, the following query shows
whether the server was built with NDB support and, if so, whether it is enabled:

mysql> SELECT SUPPORT FROM INFORMATION_SCHEMA.ENGINES
-> WHERE ENGINE LIKE 'NDB%';

+---------+
| support |
+---------+
| ENABLED |
+---------+

See Section 24.18, “The INFORMATION_SCHEMA ENGINES Table”, for more information.

•
SHOW VARIABLES LIKE 'NDB%'

This statement provides a list of most server system variables relating to the NDB storage engine, and their values, as shown here:

mysql> SHOW VARIABLES LIKE 'NDB%';
+-------------------------------------+-------+
| Variable_name | Value |
+-------------------------------------+-------+
| ndb_autoincrement_prefetch_sz | 32 |
| ndb_cache_check_time | 0 |
| ndb_extra_logging | 0 |
| ndb_force_send | ON |
| ndb_index_stat_cache_entries | 32 |
| ndb_index_stat_enable | OFF |
| ndb_index_stat_update_freq | 20 |
| ndb_report_thresh_binlog_epoch_slip | 3 |
| ndb_report_thresh_binlog_mem_usage | 10 |
| ndb_use_copying_alter_table | OFF |
| ndb_use_exact_count | ON |
| ndb_use_transactions | ON |
+-------------------------------------+-------+

See Section 5.1.3, “System Variables”, for more information.

•
SELECT * FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES WHERE VARIABLE_NAME LIKE 'NDB%';

This statement is the equivalent of the SHOW described in the previous item, and provides almost identical output, as shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES
-> WHERE VARIABLE_NAME LIKE 'NDB%';

+-------------------------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+-------------------------------------+----------------+
| NDB_AUTOINCREMENT_PREFETCH_SZ | 32 |
| NDB_CACHE_CHECK_TIME | 0 |
| NDB_EXTRA_LOGGING | 0 |
| NDB_FORCE_SEND | ON |
| NDB_INDEX_STAT_CACHE_ENTRIES | 32 |
| NDB_INDEX_STAT_ENABLE | OFF |
| NDB_INDEX_STAT_UPDATE_FREQ | 20 |
| NDB_REPORT_THRESH_BINLOG_EPOCH_SLIP | 3 |
| NDB_REPORT_THRESH_BINLOG_MEM_USAGE | 10 |
| NDB_USE_COPYING_ALTER_TABLE | OFF |
| NDB_USE_EXACT_COUNT | ON |
| NDB_USE_TRANSACTIONS | ON |
+-------------------------------------+----------------+

Unlike the case with the SHOW statement, it is possible to select individual columns. For example:

mysql> SELECT VARIABLE_VALUE
-> FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES
-> WHERE VARIABLE_NAME = 'ndb_force_send';

+----------------+
| VARIABLE_VALUE |

MySQL Cluster

1189



+----------------+
| ON |
+----------------+

See Section 24.25, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”, and Sec-
tion 5.1.3, “System Variables”, for more information.

•
SHOW STATUS LIKE 'NDB%'

This statement shows at a glance whether or not the MySQL server is acting as a cluster SQL node, and if so, it provides the
MySQL server's cluster node ID, the hostname and port for the cluster management server to which it is connected, and the number
of data nodes in the cluster, as shown here:

mysql> SHOW STATUS LIKE 'NDB%';
+--------------------------+---------------+
| Variable_name | Value |
+--------------------------+---------------+
| Ndb_cluster_node_id | 10 |
| Ndb_config_from_host | 192.168.0.103 |
| Ndb_config_from_port | 1186 |
| Ndb_number_of_data_nodes | 4 |
+--------------------------+---------------+

If the MySQL server was built with clustering support, but it is not connected to a cluster, all rows in the output of this statement
contain a zero or an empty string:

mysql> SHOW STATUS LIKE 'NDB%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| Ndb_cluster_node_id | 0 |
| Ndb_config_from_host | |
| Ndb_config_from_port | 0 |
| Ndb_number_of_data_nodes | 0 |
+--------------------------+-------+

See also Section 12.5.4.27, “SHOW STATUS Syntax”.

•
SELECT * FROM INFORMATION_SCHEMA.GLOBAL_STATUS WHERE VARIABLE_NAME LIKE 'NDB%';

Beginning with MySQL 5.1.12, this statement provides similar output to the SHOW statement discussed in the previous item.
However, unlike the case with SHOW STATUS, it is possible using the SELECT to extract values in SQL for use in scripts for mon-
itoring and automation purposes.

See Section 24.24, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”, for more information.

17.9. MySQL Cluster Security Issues
This section discusses security considerations to take into account when setting up and running MySQL Cluster.

Topics to be covered in this chapter include the following:

• MySQL Cluster and network security issues

• Configuration issues relating to running MySQL Cluster securely

• MySQL Cluster and the MySQL privilege system

• MySQL standard security procedures as applicable to MySQL Cluster

17.9.1. MySQL Cluster Security and Networking Issues
In this section, we discuss basic network security issues as they relate to MySQL Cluster. It is extremely important to remember that
MySQL Cluster “out of the box” is not secure; you or your network administrator must take the proper steps to insure that your cluster

MySQL Cluster

1190



cannot be compromised over the network.

Cluster communication protocols are inherently insecure, and no encryption or similar security measures are used in communications
between nodes in the cluster. Because network speed and latency have a direct impact on the cluster's efficiency, it is also not advisable
to employ SSL or other encryption to network connections between nodes, as such schemes will effectively slow communications.

It is also true that no authentication is used for controlling API node access to a MySQL Cluster. As with encryption, the overhead of
imposing authentication requirements would have an adverse impact on Cluster performance.

In addition, there is no checking of the source IP address for either of the following when accessing the cluster:

• SQL or API nodes using “free slots” created by empty [mysqld] or [api] sections in the config.ini file

This means that, if there are any empty [mysqld] or [api] sections in the config.ini file, then any API nodes (including
SQL nodes) that know the management server's hostname (or IP address) and port can connect to the cluster and access its data
without restriction. (See Section 17.9.2, “MySQL Cluster and MySQL Privileges”, for more information about this and related is-
sues.)

Note

You can exercise some control over SQL and API node access to the cluster by specifying a HostName parameter for all
[mysqld] and [api] sections in the config.ini file. However, this also means that, should you wish to connect an
API node to the cluster from a previously unused host, you need to add an [api] section containing its hostname to the
config.ini file.

More information is available elsewhere in this chapter about the HostName parameter. Also see Section 17.4.3, “Quick
Test Setup of MySQL Cluster”, for configuration examples using HostName with API nodes.

• Any ndb_mgm client

This means that any cluster management client that is given the management server's hostname (or IP address) and port (if not the
standard port) can connect to the cluster and execute any management client command. This includes commands such as ALL
STOP and SHUTDOWN.

For these reasons, it is necessary to protect the cluster on the network level. The safest network configuration for Cluster is one which
isolates connections between Cluster nodes from any other network communications. This can be accomplished by any of the following
methods:

1. Keeping Cluster nodes on a network that is physically separate from any public networks. This option is the most dependable;
however, it is the most expensive to implement.

We show an example of a MySQL Cluster setup using such a physically segregated network here:

MySQL Cluster

1191



This setup has two networks, one private (solid box) for the Cluster management servers and data nodes, and one public (dotted
box) where the SQL nodes reside. (We show the management and data nodes connected using a gigabit switch since this provides
the best performance.) Both networks are protected from the outside by a hardware firewall, sometimes also known as a network-
based firewall.

This network setup is safest because no packets can reach the cluster's management or data nodes from outside the network — and
none of the cluster's internal communications can reach the outside — without going through the SQL nodes, as long as the SQL
nodes do not allow any packets to be forwarded. This means, of course, that all SQL nodes must be secured against hacking at-
tempts.

Important

With regard to potential security vulnerabilities, an SQL node is no different from any other MySQL server. See Sec-
tion 5.3.2, “Making MySQL Secure Against Attackers”, for a description of techniques you can use to secure MySQL
servers.

2. Using one or more software firewalls (also known as host-based firewalls) to control which packets pass through to the cluster
from portions of the network that do not require access to it. In this type of setup, a software firewall must be installed on every
host in the cluster which might otherwise be accessible from outside the local network.

The host-based option is the least expensive to implement, but relies purely on software to provide protection and so is the most
difficult to keep secure.

This type of network setup for MySQL Cluster is illustrated here:

MySQL Cluster

1192



Using this type of network setup means that there are two zones of MySQL Cluster hosts. Each cluster host must be able to com-
municate with all of the other machines in the cluster, but only those hosting SQL nodes (dotted box) can be permitted to have any
contact with the outside, while those in the zone containing the data nodes and management nodes (solid box) must be isolated
from any machines that are not part of the cluster. Applications using the cluster and user of those applications must not be permit-
ted to have direct access to the management and data node hosts.

To accomplish this, you must set up software firewalls that limit the traffic to the type or types shown in the following table, ac-
cording to the type of node that is running on each cluster host computer:

Type of Node to be Accessed Traffic to Allow

SQL or API node
• It originates from the IP address of a management or data node (using any TCP or UDP port).

• It originates from within the network in which the cluster resides and is on the port that your ap-
plication is using.

Data node or Management node
• It originates from the IP address of a management or data node (using any TCP or UDP port).

• It originates from the IP address of an SQL or API node.

Any traffic other than that shown in the table for a given node type should be denied.

The specifics of configuring a firewall vary from firewall application to firewall application. They are beyond the scope of this
book, and will not be covered in the certification exam. iptables is a very common and reliable firewall application, which is
often used with APF as a front end to make configuration easier. You can (and should) consult the documentation for the software
firewall that you employ, should you choose to implement a MySQL Cluster network setup of this type, or of a “mixed” type as
discussed under the next item.

3. It is also possible to employ a combination of the first two methods, using both hardware and software to secure the cluster — that
is, using both network-based and host-based firewalls. This is between the first two schemes in terms of both security level and

MySQL Cluster

1193



cost. This type of network setup keeps the cluster behind the hardware firewall, but allows incoming packets to travel beyond the
router connecting all cluster hosts in order to reach the SQL nodes.

One possible network deployment of a MySQL Cluster using hardware and software firewalls in combination is shown here:

In this case, you can set the rules in the hardware firewall to deny any external traffic except to SQL nodes and API nodes, and
then allow traffic to them only on the ports required by your application.

Whatever network configuration you use, remember that your objective from the viewpoint of keeping the cluster secure remains the
same — to prevent any unessential traffic from reaching the cluster while ensuring the most efficient communication between the nodes
in the cluster.

Because MySQL Cluster requires large numbers of ports to be open for communications between nodes, the recommended option is to
use a segregated network. This represents the simplest way to prevent unwanted traffic from reaching the cluster.

Note

If you wish to administer a MySQL Cluster remotely (that is, from outside the local network), the recommended way to do
this is to use ssh or another secure login shell to access an SQL node host. From this host, you can then run the manage-
ment client to access the management server safely, from within the Cluster's own local network.

Even though it is possible to do so in theory, it is not recommended to use ndb_mgm to manage a Cluster directly from
outside the local network on which the Cluster is running. Since neither authentication nor encryption takes place between
the management client and the management server, this represents an extremely insecure means of managing the cluster,
and is almost certain to be compromised sooner or later.

17.9.2. MySQL Cluster and MySQL Privileges
In this section, we discuss how the MySQL privilege system works in relation to MySQL Cluster and the implications of this for keep-

MySQL Cluster

1194



ing a MySQL Cluster secure.

Standard MySQL privileges apply to MySQL Cluster tables. This includes all MySQL privilege types (SELECT privilege, UPDATE
privilege, DELETE privilege, and so on) granted on the database, table, and column level. As with any other MySQL Server, user and
privilege information is stored in the mysql system database. The SQL statements used to grant and revoke privileges on NDB tables,
databases containing such tables, and columns within such tables are identical in all respects with the GRANT and REVOKE statements
used in connection with database objects involving any (other) MySQL storage engine. The same thing is true with respect to the CRE-
ATE USER and DROP USER statements.

It is important to keep in mind that the MySQL grant tables use the MyISAM storage engine. Because of this, those tables are not duplic-
ated or shared among MySQL servers acting as SQL nodes in a MySQL Cluster. By way of example, suppose that two SQL nodes A
and B are connected to the same MySQL Cluster, which has an NDB table named mytable in a database named mydb, and that you
execute an SQL statement on server A that creates a new user jon@localhost and grants this user the SELECT privilege on that ta-
ble:

mysql> GRANT SELECT ON mydb.mytable
-> TO jon@localhost IDENTIFIED BY 'mypass';

This user is not created on server B. In order for this to take place, the statement must also be run on server B. Similarly, statements run
on server A and affecting the privileges of existing users on server A do not affect users on server B unless those statements are actually
run on server B as well.

In other words, changes in users and their privileges do not automatically propagate between SQL nodes. Synchronization of privileges
between SQL nodes must be done either manually or by scripting an application that periodically synchronizes the privilege tables on
all SQL nodes in the cluster.

Conversely, because there is no way in MySQL to deny privileges (privileges can either be revoked or not granted in the first place, but
not denied as such), there is no special protection for NDB tables on one SQL node from users that have privileges on another SQL
node. The most far-reaching example of this is the MySQL root account, which can perform any action on any database object. In
combination with empty [mysqld] or [api] sections of the config.ini file, this account can be especially dangerous. To under-
stand why, consider the following scenario:

• The config.ini file contains at least one empty [mysqld] or [api] section. This means that the Cluster management server
performs no checking of the host from which a MySQL Server (or other API node) accesses the MySQL Cluster.

• There is no firewall, or the firewall fails to protect against access to the Cluster from hosts external to the network.

• The hostname or IP address of the Cluster's management server is known or can be determined from outside the network.

If these conditions are true, then anyone, anywhere can start a MySQL Server with --ndbcluster
--ndb-connectstring=management_host and access the Cluster. Using the MySQL root account, this person can then per-
form the following actions:

• Execute a SHOW DATABASES statement to obtain a list of all databases that exist in the cluster

• Execute a SHOW TABLES FROM some_database statement to obtain a list of all NDB tables in a given database

• Run any legal MySQL statements on any of those tables, such as:

• SELECT * FROM some_table to read all the data from any table

• DELETE FROM some_table to delete all the data from a table

• DESCRIBE some_table or SHOW CREATE TABLE some_table to determine the table schema

• UPDATE some_table SET column1 = any_value1 to fill a table column with “garbage” data; this could actually
cause much greater damage than simply deleting all the data

Even more insidious variations might include statements like these:

UPDATE some_table SET an_int_column = an_int_column + 1

or

UPDATE some_table SET a_varchar_column = REVERSE(a_varchar_column)

MySQL Cluster

1195



Such malicious statements are limited only by the imagination of the attacker.
The only tables that would be safe from this sort of mayhem would be those tables that were created using storage engines other
than NDB, and so not visible to a “rogue” SQL node.

Note

A user who can log in as root can also access the INFORMATION_SCHEMA database and its tables, and so obtain in-
formation about databases, tables, stored routines, scheduled events, and any other database objects for which metadata is
stored in INFORMATION_SCHEMA.

It is also a very good idea to use different passwords for the root accounts on different cluster SQL nodes.

In sum, you cannot have a safe MySQL Cluster if it is directly accessible from outside your local network.

Important

Never leave the MySQL root account password empty. This is just as true when running MySQL as a MySQL Cluster SQL
node as it is when running it as a standalone (non-Cluster) MySQL Server, and should be done as part of the MySQL in-
stallation process before configuring the MySQL Server as an SQL node in a MySQL Cluster.

You should never convert the system tables in the mysql database to use the NDB storage engine. There are a number of reasons why
you should not do this, but the most important reason is this: Many of the SQL statements that affect mysql tables storing information
about user privileges, stored routines, scheduled events, and other database objects cease to function if these tables are changed to use
any storage engine other than MyISAM. This is a consequence of various MySQL Server internals which are not expected to change in
the foreseeable future.

If you need to synchronize mysql system tables between SQL nodes, you can use standard MySQL replication to do so, or employ a
script to copy table entries between the MySQL servers.

Summary. The two most important points to remember regarding the MySQL privilege system with regard to MySQL Cluster are:

1. Users and privileges established on one SQL node do not automatically exist or take effect on other SQL nodes in the cluster.

Conversely, removing a user or privilege on one SQL node in the cluster does not remove the user or privilege from any other SQL
nodes.

2. Once a MySQL user is granted privileges on an NDB table from one SQL node in a MySQL Cluster, that user can “see” any data in
that table regardless of the SQL node from which the data originated.

17.9.3. MySQL Cluster and MySQL Security Procedures
In this section, we discuss MySQL standard security procedures as they apply to running MySQL Cluster.

In general, any standard procedure for running MySQL securely also applies to running a MySQL Server as part of a MySQL Cluster.
First and foremost, you should always run a MySQL Server as the mysql system user; this is no different from running MySQL in a
standard (non-Cluster) environment. The mysql system account should be uniquely and clearly defined. Fortunately, this is the default
behavior for a new MySQL installation. You can verify that the mysqld process is running as the system user mysql by using the sys-
tem command such as the one shown here:

shell> ps aux | grep mysql
root 10467 0.0 0.1 3616 1380 pts/3 S 11:53 0:00 \
/bin/sh ./mysqld_safe --ndbcluster --ndb-connectstring=localhost:1186

mysql 10512 0.2 2.5 58528 26636 pts/3 Sl 11:53 0:00 \
/usr/local/mysql/libexec/mysqld --basedir=/usr/local/mysql \
--datadir=/usr/local/mysql/var --user=mysql --ndbcluster \
--ndb-connectstring=localhost:1186 --pid-file=/usr/local/mysql/var/mothra.pid \
--log-error=/usr/local/mysql/var/mothra.err

jon 10579 0.0 0.0 2736 688 pts/0 S+ 11:54 0:00 grep mysql

If the mysqld process is running as any other user than mysql, you should immediately shut it down and restart it as the mysql user.
If this user does not exist on the system, the mysql user account should be created, and this user should be part of the mysql user
group; in this case, you should also make sure that the MySQL DataDir on this system is owned by the mysql user, and that the SQL
node's my.cnf file includes user=mysql in the [mysqld] section. Alternatively, you can start the server with --user=mysql

MySQL Cluster

1196



on the command line, but it is preferable to use the my.cnf option, since you might forget to use the command line option and so have
mysqld running as another user unintentionally. The mysqld_safe startup script forces MySQL to run as the mysql user.

Important

Never run mysqld as the system root user. Doing so means that potentially any file on the system can be read by
MySQL, and thus — should MySQL be compromised — by an attacker.

As mentioned in the previous section (see Section 17.9.2, “MySQL Cluster and MySQL Privileges”), you should always set a root pass-
word for the MySQL Server as soon as you have it running. You should also delete the anonymous user account that is installed by de-
fault. You can accomplish these tasks via the following statements:

shell< mysql -u root

mysql> UPDATE mysql.user
-> SET Password=PASSWORD('secure_password')
-> WHERE User='root';

mysql> DELETE FROM mysql.user
-> WHERE User='';

mysql> FLUSH PRIVILEGES;

Be very careful when executing the DELETE statement not to omit the WHERE clause, or you risk deleting all MySQL users. Be sure to
run the FLUSH PRIVILEGES statement as soon as you have modified the mysql.user table, so that the changes take immediate ef-
fect. Without FLUSH PRIVILEGES, the changes do not take effect until the next time that the server is restarted.

Note

Many of the MySQL Cluster utilities such as ndb_show_tables, ndb_desc, and ndb_select_all also work
without authentication and can reveal table names, schemas, and data. By default these are installed on Unix-style systems
with the permissions wxr-xr-x (755), which means they can be executed by any user that can access the mysql/bin
directory.

See Section 17.11, “Cluster Utility Programs”, for more information about these utilities.

17.10. On-line Backup of MySQL Cluster
This section describes how to create a backup and how to restore the database from a backup at a later time.

17.10.1. Cluster Backup Concepts
A backup is a snapshot of the database at a given time. The backup consists of three main parts:

• Metadata. The names and definitions of all database tables

• Table records. The data actually stored in the database tables at the time that the backup was made

• Transaction log. A sequential record telling how and when data was stored in the database

Each of these parts is saved on all nodes participating in the backup. During backup, each node saves these three parts into three files on
disk:

• BACKUP-backup_id.node_id.ctl

A control file containing control information and metadata. Each node saves the same table definitions (for all tables in the cluster)
to its own version of this file.

• BACKUP-backup_id-0.node_id.data

A data file containing the table records, which are saved on a per-fragment basis. That is, different nodes save different fragments
during the backup. The file saved by each node starts with a header that states the tables to which the records belong. Following the
list of records there is a footer containing a checksum for all records.

• BACKUP-backup_id.node_id.log

MySQL Cluster

1197



A log file containing records of committed transactions. Only transactions on tables stored in the backup are stored in the log. Nodes
involved in the backup save different records because different nodes host different database fragments.

In the listing above, backup_id stands for the backup identifier and node_id is the unique identifier for the node creating the file.

17.10.2. Using The Management Client to Create a Backup
Before starting a backup, make sure that the cluster is properly configured for performing one. (See Section 17.10.4, “Configuration for
Cluster Backup”.)

Creating a backup using the management client involves the following steps:

1. Start the management client (ndb_mgm), if it not running already.

2.
Execute the START BACKUP command. This produces several lines of output indicating the progress of the backup, as shown
here:

ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 2: Backup 1 started from node 1
Node 2: Backup 1 started from node 1 completed
StartGCP: 177 StopGCP: 180
#Records: 7362 #LogRecords: 0
Data: 453648 bytes Log: 0 bytes
ndb_mgm>

The first line printed indicates that the management client is waiting for the backup to be completed before returning control to the
client. This behavior is the default for the START BACKUP command, but can be changed. To specify when START BACKUP
command should return control to the client, append NOWAIT, WAIT STARTED, or WAIT COMPLETED to the command. The ef-
fects that each of these has differs as follows:

•
If NOWAIT is specified, the management client displays a prompt immediately, as seen here:

ndb_mgm> START BACKUP NOWAIT
ndb_mgm>

In this case, the management client can be used even while it prints progress information from the backup process.

•
With WAIT STARTED the management client waits until the backup has started before returning control to the user, as shown
here:

ndb_mgm> START BACKUP WAIT STARTED
Waiting for started, this may take several minutes
Node 2: Backup 3 started from node 1
ndb_mgm>

•
WAIT COMPLETED explicitly specifies the default behavior — that is, it causes the management client to wait until the
backup process is complete before returning control to the user.

3.
When the backup has started the management client displays this message:

Backup backup_id started from node node_id

backup_id is the unique identifier for this particular backup. This identifier is saved in the cluster log, if it has not been con-
figured otherwise. node_id is the identifier of the management server that is coordinating the backup with the data nodes. At this
point in the backup process the cluster has received and processed the backup request. It does not mean that the backup has fin-
ished. An example of this statement is shown here:

Node 2: Backup 1 started from node 1

MySQL Cluster

1198



4. The management client indicates that the backup has completed with a message in the following format:

Backup backup_id started from node node_id completed

As is the case for the notification that the backup has started, backup_id is the unique identifier for this particular backup, and
node_id is the node ID of the management server that is coordinating the backup with the data nodes. This output is accompan-
ied by additional information including relevant global checkpoints, the number of records backed up, and the size of the data, as
shown here:

Node 2: Backup 1 started from node 1 completed
StartGCP: 177 StopGCP: 180
#Records: 7362 #LogRecords: 0
Data: 453648 bytes Log: 0 bytes

Cluster backups are created by default in the BACKUP subdirectory of the DataDir on each data node. This can be overridden for one
or more data nodes individually, or for all cluster data nodes in the config.ini file using the BackupDataDir configuration para-
meter as discussed in Identifying Data Nodes. The backup files created for a backup with a given backup_id are stored in a subdirect-
ory named BACKUP-backup_id in the backup directory.

To abort a backup that is already in progress:

1. Start the management client.

2. Execute this command:

ndb_mgm> ABORT BACKUP backup_id

The number backup_id is the identifier of the backup that was included in the response of the management client when the
backup was started (in the message Backup backup_id started from node management_node_id).

3. The management client will acknowledge the abort request with Abort of backup backup_id ordered.

Note

At this point, the management client has not yet received a response from the cluster data nodes to this request, and the
backup has not yet actually been aborted.

4. After the backup has been aborted, the management client will report this fact in a manner similar to what is shown here:

Node 1: Backup 3 started from 5 has been aborted. Error: 1321 - Backup aborted by user request: Permanent error: User defined error
Node 3: Backup 3 started from 5 has been aborted. Error: 1323 - 1323: Permanent error: Internal error
Node 2: Backup 3 started from 5 has been aborted. Error: 1323 - 1323: Permanent error: Internal error
Node 4: Backup 3 started from 5 has been aborted. Error: 1323 - 1323: Permanent error: Internal error

In this example, we have shown sample output for a cluster with 4 data nodes, where the sequence number of the backup to be
aborted is 3, and the management node to which the cluster management client is connected has the node ID 5. The first node to
complete its part in aborting the backup reports that the reason for the abort was due to a request by the user. (The remaining nodes
report that the backup was aborted due to an unspecified internal error.)

Note

There is no guarantee that the cluster nodes respond to an ABORT BACKUP command in any particular order.

The Backup backup_id started from node management_node_id has been aborted messages mean that
the backup has been terminated and that all files relating to this backup have been removed from the cluster filesystem.

It is also possible to abort a backup in progress from a system shell using this command:

shell> ndb_mgm -e "ABORT BACKUP backup_id"

Note

MySQL Cluster

1199



If there is no backup with ID backup_id running when an ABORT BACKUP is issued, the management client makes no
response, nor is it indicated in the cluster log that an invalid abort command was sent.

17.10.3. ndb_restore — Restore a Cluster Backup
The cluster restoration program is implemented as a separate command-line utility ndb_restore, which can normally be found in the
MySQL bin directory. This program reads the files created as a result of the backup and inserts the stored information into the data-
base.

ndb_restore must be executed once for each of the backup files that were created by the START BACKUP command used to create
the backup (see Section 17.10.2, “Using The Management Client to Create a Backup”). This is equal to the number of data nodes in the
cluster at the time that the backup was created.

Note

Before using ndb_restore, it is recommended that the cluster be running in single user mode, unless you are restoring
multiple data nodes in parallel. See Section 17.8.4, “Single User Mode”, for more information about single user mode.

Typical options for this utility are shown here:

ndb_restore [-c connectstring] -n node_id [-s] [-m] -b backup_id -r [backup_path=]/path/to/backup/files [-e]

The -c option is used to specify a connectstring which tells ndb_restore where to locate the cluster management server. (See Sec-
tion 17.4.4.2, “The Cluster Connectstring”, for information on connectstrings.) If this option is not used, then ndb_restore attempts
to connect to a management server on localhost:1186. This utility acts as a cluster API node, and so requires a free connection
“slot” to connect to the cluster management server. This means that there must be at least one [api] or [mysqld] section that can be
used by it in the cluster config.ini file. It is a good idea to keep at least one empty [api] or [mysqld] section in config.ini
that is not being used for a MySQL server or other application for this reason (see Section 17.4.4.6, “Defining SQL and Other API
Nodes”).

You can verify that ndb_restore is connected to the cluster by using the SHOW command in the ndb_mgm management client. You
can also accomplish this from a system shell, as shown here:

shell> ndb_mgm -e "SHOW"

-n is used to specify the node ID of the data node on which the backups were taken.

The first time you run the ndb_restore restoration program, you also need to restore the metadata. In other words, you must re-
create the database tables — this can be done by running it with the -m option. Note that the cluster should have an empty database
when starting to restore a backup. (In other words, you should start ndbd with --initial prior to performing the restore. You
should also remove manually any Disk Data files present in the data node's DataDir.)

It is possible to restore data without restoring table metadata. Prior to MySQL 5.1.17, ndb_restore did not perform any checks of ta-
ble schemas; if a table was altered between the time the backup was taken and when ndb_restore was run, ndb_restore would
still attempt to restore the data to the altered table.

Beginning with MySQL 5.1.17, the default behavior is for ndb_restore is to fail with an error if table data do not match the table
schema; this can be overridden using the --skip-table-check or -s option. If this option is used, then ndb_restore attempts
to fit data into the existing table schema. The result of restoring a backup to a table schema that does not match the original is unspe-
cified and is subject to change without notice. (Bug#24363)

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edition
only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade Edi-
tion”.

Beginning with MySQL 5.1.23-ndb-6.3.8, ndb_restore supports limited attribute promotion; that is, data backed up from a column
of a given type can generally be restored to a column using a “larger” type. For example, data from a CHAR(20) column can be re-
stored to a column declared as CHAR(30) or VARCHAR(30), and data from a MEDIUMINT column can be restored to a column of
type INT or BIGINT. The complete list of type conversions currently supported by attribute promotion is given in the following table,
in which X and N both represent positive integers:

Original Data Type Promoted Data Type(s)

CHAR(X) CHAR(X+N)

MySQL Cluster

1200

http://bugs.mysql.com/24363


Original Data Type Promoted Data Type(s)

VARCHAR(X) VARCHAR(X+N)

CHAR(X) VARCHAR(X+N)

BINARY(X) BINARY(X+N)

VARBINARY(X) VARBINARY(X+N)

BINARY(X) VARBINARY(X+N)

BIT(X) BIT(X+N)

TINYINT SMALLINT, MEDIUMINT, INT, or BIGINT

SMALLINT MEDIUMINT, INT, or BIGINT

MEDIUMINT INT or BIGINT

INT BIGINT

Unsigned integer columns can be promoted to larger unisgned types; for example, a column declared as TINYINT UNSIGNED can be
restored to a column declared as SMALLINT UNSIGNED, MEDIUMINT UNSIGNED, INT UNSIGNED, or BIGINT UNSIGNED.
You cannot promote a signed column to an unsigned type, or an unsigned column to a signed type.

Attribute promotion must be enabled explicitly, as follows:

1. Prepare the table to which the backup is to be restored. ndb_restore cannot be used to re-create the table with a different defin-
ition from the original; this means that you must either create the table manually, or alter the columns which you wish to promote
using ALTER TABLE after restoring the table metadata but before restoring the data.

2. Invoke ndb_restore with the --promote-attributes option (short form -A) when restoring the table data. Attribute pro-
motion does not occur if this option is not used; instead, the restore operation fails with an error.

In addition to --promote-attributes, a --preserve-trailing-spaces option is also available for use with
ndb_restore beginning with MySQL 5.1.23-ndb-6.3.8. This option (short form -R) causes trailing spaces to be preserved when pro-
moting a CHAR column to VARCHAR or a BINARY column to VARBINARY. Otherwise, any trailing spaces are dropped from column
values when they are inserted into the new columns.

Note

You can promote CHAR columns to VARCHAR and BINARY columns to VARBINARY. However, you cannot promote
VARCHAR columns to CHAR or VARBINARY columns to BINARY.

The following information applies to all MySQL Cluster users.

The -b option is used to specify the ID or sequence number of the backup, and is the same number shown by the management client in
the Backup backup_id completed message displayed upon completion of a backup. (See Section 17.10.2, “Using The Manage-
ment Client to Create a Backup”.)

-e adds (or restores) epoch information to the cluster replication status table. This is useful for starting replication on a MySQL Cluster
replication slave. When this option is used, the row in the mysql.ndb_apply_status having 0 in the id column is updated if it
already exists; such a row is inserted if it does not already exist. (See Section 17.12.9, “MySQL Cluster Backups With Replication”.)

The path to the backup directory is required, and must include the subdirectory corresponding to the ID backup of the backup to be re-
stored. For example, if the data node's DataDir is /var/lib/mysql-cluster, then the backup directory is /
var/lib/mysql-cluster/BACKUP, and the backup files for the backup with the ID 3 can be found in /
var/lib/mysql-cluster/BACKUP/BACKUP-3. The path may be absolute or relative to the directory in which the
ndb_restore executable is located, and may be optionally prefixed with backup_path=.

Important

When restoring cluster backups, you must be sure to restore all data nodes from backups having the same backup ID. Us-
ing files from different backups will at best result in restoring the cluster to an inconsistent state, and may fail altogether.

Important

MySQL Cluster

1201



It is not possible to restore a backup made from a newer version of MySQL Cluster using an older version of
ndb_restore. You can restore a backup made from a newer version of MySQL to an older cluster, but you must use a
copy of ndb_restore from the newer MySQL Cluster version to do so.

For example, to restore a cluster backup taken from a cluster running MySQL 5.1.23 to a cluster running MySQL Cluster
5.1.20, you must use a copy of ndb_restore from the 5.1.23 distribution.

It is possible to restore a backup to a database with a different configuration than it was created from. For example, suppose that a
backup with backup ID 12, created in a cluster with two database nodes having the node IDs 2 and 3, is to be restored to a cluster with
four nodes. Then ndb_restore must be run twice — once for each database node in the cluster where the backup was taken.
However, ndb_restore cannot always restore backups made from a cluster running one version of MySQL to a cluster running a
different MySQL version. See Section 17.6.2, “Cluster Upgrade and Downgrade Compatibility”, for more information.

Note

For more rapid restoration, the data may be restored in parallel, provided that there is a sufficient number of cluster con-
nections available. That is, when restoring to multiple nodes in parallel, you must have an [api] or [mysqld] section
in the cluster config.ini file available for each concurrent ndb_restore process. However, the data files must al-
ways be applied before the logs.

Formerly, when using ndb_restore to restore a backup made from a MySQL 5.0 cluster to a 5.1 cluster, VARCHAR columns were
not resized and were recreated using the 5.0 fixed format. Beginning with MySQL 5.1.19, ndb_restore recreates such VARCHAR
columns using MySQL Cluster 5.1's variable-width format. Also beginning with MySQL 5.1.19, this behavior can be overridden using
the --no-upgrade option (short form: -u) when running ndb_restore.

Most of the options available for this program are shown in the following table:

Long Form Short Form Description Default Value

--backup-id -b Backup sequence ID 0

--backup_path None Path to backup files ./

--character-sets-dir None Specify the directory where character set information
can be found

None

--connect, -
-connectstring, or -
-ndb-connectstring

-c or -C Set the connectstring in
[nodeid=node_id;][host=]host[:port]
format

localhost:1186

--core-file None Write a core file in the event of an error TRUE

--debug -# Output debug log d:t:O,/
tmp/
ndb_restore.trace

-
-dont_ignore_systab_0

-f Do not ignore system table during restore — EX-
PERIMENTAL; not for production use

FALSE

--help or --usage -? Display help message with available options and cur-
rent values, then exit

[N/A]

--ndb-mgmd-host None Set the host and port in host[:port] format for
the management server to connect to; this is the same
as --connect, --connectstring, or -
-ndb-connectstring, but without a way to
specify the nodeid

None

--ndb-nodegroup-map -z Specifies a nodegroup map — Syntax: list of
(source_nodegroup, destina-
tion_nodegroup)

None

--ndb-nodeid None Specify a node ID for the ndb_restore process 0

-
-
ndb-optim-
ized-node-selection

None Optimize selection of nodes for transactions TRUE

--ndb-shm None Use shared memory connections when available FALSE

- -d Do not restore Disk Data objects such as tablespaces FALSE (in other words,

MySQL Cluster

1202



-
no-re-
store-disk-objects

and log file groups restore Disk Data objects
unless this option is used)

--no-upgrade -u Do not re-create VARSIZE columns from a MySQL
5.0 Cluster backup as variable-width columns (added
in MySQL 5.1.19)

--nodeid -n Use backup files from node with the specified ID 0

--parallelism -p Set from 1 to 1024 parallel transactions to be used
during the restoration process

128

--print None Print metadata, data, and log to stdout FALSE

--print_data None Print data to stdout FALSE

--print_log None Print log to stdout FALSE

--print_meta None Print metadata to stdout FALSE

--restore_data -r Restore data and logs FALSE

--restore_epoch -e Restore epoch data into the status table; the row in
the cluster.apply_status having the id 0 is
inserted or updated as appropriate — this is conveni-
ent when starting up replication on a MySQL Cluster
replication slave

FALSE

--restore_meta -m Restore table metadata FALSE

--skip-table-check -s Do not check table schemas (Added in MySQL
5.1.17; not supported in MySQL Cluster 5.1 Carrier
Grade Edition)

FALSE

--version -V Output version information and exit [N/A]

MySQL Cluster 5.1 Carrier Grade Edition. The following information does not apply to users of MySQL Cluster 5.1 Carrier Grade
Edition. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade
Edition”.

Beginning with MySQL 5.1.18, several additional options are available for use with the --print_data option in generating data
dumps, either to stdout, or to a file. These are similar to some of the options used with mysqldump, and are shown in the following
table:

Long Form Short Form Description Default Value

--tab -T Creates dumpfiles, one per table, each named
tbl_name.txt. Takes as its argument the path to
the directory where the files should be saved
(required; use . for the current directory).

None

--fields-enclosed-by None String used to enclose all column values None

-
-
fields-option-
ally-enclosed-by

None String used to enclose column values containing
character data (such as CHAR, VARCHAR, BINARY,
TEXT, or ENUM)

None

-
-fields-terminated-by

None String used to separate column values \t (tab character)

--hex None Use hex format for binary values [N/A]

--lines-terminated-by None String used to terminate each line \n (linefeed character)

--append None When used with --tab, causes the data to be ap-
pended to existing files of the same name

[N/A]

Note

If a table has no explicit primary key, then the output generated when using the --print includes the table's hidden

MySQL Cluster

1203



primary key.

Beginning with MySQL 5.1.18, it is possible to restore selected databases, or to restore selected tables from a given database using the
syntax shown here:

ndb_restore other_options db_name_1 [db_name_2[, db_name_3][, ...] | tbl_name_1[, tbl_name_2][, ...]]

In other words, you can specify either of the following to be restored:

• All tables from one or more databases

• One or more tables from a single database

The following information applies to all MySQL Cluster users.

Note

ndb_restore reports both temporary and permanent errors. In the case of temporary errors, it may able to recover from
them. Beginning with MySQL 5.1.12, it reports Restore successful, but encountered temporary er-
ror, please look at configuration in such cases.

17.10.4. Configuration for Cluster Backup
Five configuration parameters are essential for backup:

•
BackupDataBufferSize

The amount of memory used to buffer data before it is written to disk.

•
BackupLogBufferSize

The amount of memory used to buffer log records before these are written to disk.

•
BackupMemory

The total memory allocated in a database node for backups. This should be the sum of the memory allocated for the backup data
buffer and the backup log buffer.

•
BackupWriteSize

The default size of blocks written to disk. This applies for both the backup data buffer and the backup log buffer.

•
BackupMaxWriteSize

The maximum size of blocks written to disk. This applies for both the backup data buffer and the backup log buffer.

More detailed information about these parameters can be found in Backup Parameters.

17.10.5. Backup Troubleshooting
If an error code is returned when issuing a backup request, the most likely cause is insufficient memory or disk space. You should check
that there is enough memory allocated for the backup.

Important

If you have set BackupDataBufferSize and BackupLogBufferSize and their sum is greater than 4MB, then
you must also set BackupMemory as well. See BackupMemory.

MySQL Cluster

1204



You should also make sure that there is sufficient space on the hard drive partition of the backup target.

NDB does not support repeatable reads, which can cause problems with the restoration process. Although the backup process is “hot”,
restoring a MySQL Cluster from backup is not a 100% “hot” process. This is due to the fact that, for the duration of the restore process,
running transactions get non-repeatable reads from the restored data. This means that the state of the data is inconsistent while the re-
store is in progress.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about Cluster backup in the Knowledge Base article,
How Do I Backup my Cluster Database. Access to the MySQL Knowledge Base collection of articles is one of
the advantages of subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

17.11. Cluster Utility Programs
This section discusses the MySQL Cluster utility programs that can be found in the mysql/bin directory. Each of these — except for
ndb_size.pl and ndb_error_reporter — is a standalone binary that can be used from a system shell, and that does not need
to connect to a MySQL server (nor even requires that a MySQL server be connected to the cluster).

These utilities can also serve as examples for writing your own applications using the NDB API. The source code for most of these pro-
grams may be found in the storage/ndb/tools directory of the MySQL 5.1 tree (see Section 2.9, “MySQL Installation Using a
Source Distribution”). The NDB API is not covered in this manual; please refer to the NDB API Guide for information about this API.

All of the NDB utilities are listed here with brief descriptions:

• ndb_config: Retrieves Cluster configuration option values.

• ndb_cpcd: Used in testing and debugging MySQL Cluster.

• ndb_delete_all: Deletes all rows from a given table.

• ndb_desc: Lists all properties of an NDB table.

• ndb_drop_index: Drops the specified index from an NDB table.

• ndb_drop_table: Drops an NDB table.

• ndb_error_reporter: Can be used to gather information useful for diagnosing problems with the cluster.

• ndb_mgm: This is the MySQL Cluster management client, which is discussed in Section 17.8.2, “Commands in the MySQL Cluster
Management Client”.

• ndb_print_backup_file: Prints diagnostic information obtained from cluster backup files.

• ndb_print_schema_file: Prints diagnostic information obtained from cluster schema files.

• ndb_print_sys_file: Prints diagnostic information obtained from cluster system files.

• ndb_restore: This utility is used to restore a cluster from backup. See Section 17.10.3, “ndb_restore — Restore a Cluster
Backup”, for more information.

• ndb_select_all: Prints all rows from an NDB table.

• ndb_select_count: Gets the number of rows in one or more NDB tables.

• ndb_show_tables: Shows all NDB tables anywhere in the cluster.

• ndb_size.pl: Examines all the tables in a given non-Cluster database and calculates the amount of storage each would require if
it were converted to use the NDB storage engine.

• ndb_waiter: Reports on the status of cluster data nodes in a manner similar to that of the management client command ALL
STATUS.

• MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-

MySQL Cluster

1205

https://kb.mysql.com/view.php?id=5803
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/ndbapi/en/index.html


tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

ndbd_redo_log_reader: Reads a redo log file, checking it for errors, printing it in a human-readable format, or both.

Note

An alpha version of this utility was made available in MySQL 5.1.15-ndb-6.1.3. Currently, it should be considered experi-
mental.

The following information applies to all MySQL Cluster users.

Most of these utilities need to connect to a Cluster management server in order to function. The exceptions are ndb_size.pl (see be-
low), and the following utilities which access a cluster data node filesystem and so need to be run on a data node host:

• ndb_print_backup_file

• ndb_print_schema_file

• ndb_print_sys_file

• ndbd_redo_log_reader (MySQL Cluster 5.1 Carrier Grade Edition only)

ndb_size.pl is a Perl script which is also intended to be used from the shell; however it is a MySQL application and must be able to
connect to a MySQL server. See Section 17.11.15, “ndb_size.pl — NDBCluster Size Requirement Estimator”, for additional re-
quirements for using this script.

ndb_error_reporter is also a Perl script. It is used to gather cluster data node and management node logs together into a tarball to
submit along with a bug report. It can use ssh or scp to access the node filesystems remotely.

Additional information about each of these utilities (except for ndb_mgm and ndb_restore) can be found in the sections that follow.

Note

All of these utilities (except for ndb_size.pl and ndb_config) can use the options discussed in Section 17.7.5,
“Command Options for MySQL Cluster Processes”. Additional options specific to each utility program are discussed in
the individual program listings.

The order in which these options are used is generally not important. For example, all of these commands produce exactly the same out-
put:

• ndb_desc -c localhost fish -d test

• ndb_desc fish -c localhost -d test

• ndb_desc -d test fish -c localhost

17.11.1. ndb_config — Extract NDB Configuration Information
This tool extracts configuration information for data nodes, SQL nodes, and API nodes from a cluster management node (and possibly
its config.ini file).

Usage:

ndb_config options

The options available for this utility differ somewhat from those used with the other utilities, and so are listed in their entirety in the
next section, followed by some examples.

Options:

MySQL Cluster

1206



• --usage, --help, or -?

Causes ndb_config to print a list of available options, and then exit.

• --version, -V

Causes ndb_config to print a version information string, and then exit.

• --ndb-connectstring=connect_string

Specifies the connectstring to use in connecting to the management server. The format for the connectstring is the same as described
in Section 17.4.4.2, “The Cluster Connectstring”, and defaults to localhost:1186.

The use of -c as a short version for this option is supported for ndb_config beginning with MySQL 5.1.12.

• --config-file=path-to-file

Gives the path to the management server's configuration file (config.ini). This may be a relative or absolute path. If the man-
agement node resides on a different host from the one on which ndb_config is invoked, then an absolute path must be used.

• --query=query-options, -q query-options

This is a comma-delimited list of query options — that is, a list of one or more node attributes to be returned. These include id
(node ID), type (node type — that is, ndbd, mysqld, or ndb_mgmd), and any configuration parameters whose values are to be ob-
tained.

For example, --query=id,type,indexmemory,datamemory would return the node ID, node type, DataMemory, and
IndexMemory for each node.

Note

If a given parameter is not applicable to a certain type of node, than an empty string is returned for the corresponding
value. See the examples later in this section for more information.

• --host=hostname

Specifies the hostname of the node for which configuration information is to be obtained.

• --id=node_id, --nodeid=node_id

Used to specify the node ID of the node for which configuration information is to be obtained.

• --nodes

(Tells ndb_config to print information from parameters defined in [ndbd] sections only. Currently, using this option has no af-
fect, since these are the only values checked, but it may become possible in future to query parameters set in [tcp] and other sec-
tions of cluster configuration files.)

• --type=node_type

Filters results so that only configuration values applying to nodes of the specified node_type (ndbd, mysqld, or ndb_mgmd)
are returned.

• --fields=delimiter, -f delimiter

Specifies a delimiter string used to separate the fields in the result. The default is “,” (the comma character).

Note

If the delimiter contains spaces or escapes (such as \n for the linefeed character), then it must be quoted.

• --rows=separator, -r separator

Specifies a separator string used to separate the rows in the result. The default is a space character.

Note

MySQL Cluster

1207



If the separator contains spaces or escapes (such as \n for the linefeed character), then it must be quoted.

Examples:

1. To obtain the node ID and type of each node in the cluster:

shell> ./ndb_config --query=id,type --fields=':' --rows='\n'
1:ndbd
2:ndbd
3:ndbd
4:ndbd
5:ndb_mgmd
6:mysqld
7:mysqld
8:mysqld
9:mysqld

In this example, we used the --fields options to separate the ID and type of each node with a colon character (:), and the -
-rows options to place the values for each node on a new line in the output.

2. To produce a connectstring that can be used by data, SQL, and API nodes to connect to the management server:

shell> ./ndb_config --config-file=usr/local/mysql/cluster-data/config.ini --query=hostname,portnumber --fields=: --rows=, --type=ndb_mgmd
192.168.0.179:1186

3. This invocation of ndb_config checks only data nodes (using the --type option), and shows the values for each node's ID and
hostname, and its DataMemory, IndexMemory, and DataDir parameters:

shell> ./ndb_config --type=ndbd --query=id,host,datamemory,indexmemory,datadir -f ' : ' -r '\n'
1 : 192.168.0.193 : 83886080 : 18874368 : /usr/local/mysql/cluster-data
2 : 192.168.0.112 : 83886080 : 18874368 : /usr/local/mysql/cluster-data
3 : 192.168.0.176 : 83886080 : 18874368 : /usr/local/mysql/cluster-data
4 : 192.168.0.119 : 83886080 : 18874368 : /usr/local/mysql/cluster-data

In this example, we used the short options -f and -r for setting the field delimiter and row separator, respectively.

4. To exclude results from any host except one in particular, use the --host option:

shell> ./ndb_config --host=192.168.0.176 -f : -r '\n' -q id,type
3:ndbd
5:ndb_mgmd

In this example, we also used the short form -q to determine the attributes to be queried.

Similarly, you can limit results to a node with a specific ID using the --id or --nodeid option.

17.11.2. ndb_cpcd — Automate Testing for NDB Development
This utility is found in the libexec directory. It is part of an internal automated test framework used in testing and bedugging MySQL
Cluster. Because it can control processes on remote systems, it is not advisable to use ndb_cpcd in a production cluster.

The source files for ndb_cpcd may be found in the directory storage/ndb/src/cw/cpcd, in the MySQL 5.1 source tree.

17.11.3. ndb_delete_all — Delete All Rows from NDB Table
ndb_delete_all deletes all rows from the given NDB table. In some cases, this can be much faster than DELETE or even TRUN-
CATE.

Usage:

ndb_delete_all -c connect_string tbl_name -d db_name

This deletes all rows from the table named tbl_name in the database named db_name. It is exactly equivalent to executing TRUN-

MySQL Cluster

1208



CATE db_name.tbl_name in MySQL.

Additional Options:

• --transactional, -t

Use of this option causes the delete operation to be performed as a single transaction.

Warning

With very large tables, using this option may cause the number of operations available to the cluster to be exceeded.

17.11.4. ndb_desc — Describe NDB Tables
ndb_desc provides a detailed description of one or more NDB tables.

Usage:

ndb_desc -c connect_string tbl_name -d db_name

Sample Output:

MySQL table creation and population statements:

USE test;

CREATE TABLE fish (
id INT(11) NOT NULL AUTO_INCREMENT,
name VARCHAR(20),

PRIMARY KEY pk (id),
UNIQUE KEY uk (name)

) ENGINE=NDBCLUSTER;

INSERT INTO fish VALUES
('','guppy'), ('','tuna'), ('','shark'),
('','manta ray'), ('','grouper'), ('','puffer');

Output from ndb_desc:

shell> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 16777221
Fragment type: 5
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 2
Number of primary keys: 1
Length of frm data: 268
Row Checksum: 1
Row GCI: 1
TableStatus: Retrieved
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
name Varchar(20;latin1_swedish_ci) NULL AT=SHORT_VAR ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
uk(name) - OrderedIndex
PRIMARY(id) - OrderedIndex
uk$unique(name) - UniqueHashIndex

-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory
2 2 2 65536 327680
1 2 2 65536 327680
3 2 2 65536 327680

NDBT_ProgramExit: 0 - OK

Additional Options:

MySQL Cluster

1209



• --extra-partition-info, -p

Prints additional information about the table's partitions.

• Information about multiple tables can be obtained in a single invocation of ndb_desc by using their names, separated by spaces.
All of the tables must be in the same database.

17.11.5. ndb_drop_index — Drop Index from NDB Table
ndb_drop_index drops the specified index from an NDB table. It is recommended that you use this utility only as an example for
writing NDB API applications — see the Warning later in this section for details.

Usage:

ndb_drop_index -c connect_string table_name index -d db_name

The statement shown above drops the index named index from the table in the database.

Additional Options: None that are specific to this application.

Warning

Operations performed on Cluster table indexes using the NDB API are not visible to MySQL and make the table unusable
by a MySQL server. If you use this program to drop an index, then try to access the table from an SQL node, an error res-
ults, as shown here:

shell> ./ndb_drop_index -c localhost dogs ix -d ctest1
Dropping index dogs/idx...OK

NDBT_ProgramExit: 0 - OK

shell> ./mysql -u jon -p ctest1
Enter password: *******
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 5.1.12-beta-20060817

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW TABLES;
+------------------+
| Tables_in_ctest1 |
+------------------+
| a |
| bt1 |
| bt2 |
| dogs |
| employees |
| fish |
+------------------+
6 rows in set (0.00 sec)

mysql> SELECT * FROM dogs;
ERROR 1296 (HY000): GOT ERROR 4243 'INDEX NOT FOUND' FROM NDBCLUSTER

In such a case, your only option for making the table available to MySQL again is to drop the table and re-create it. You can use either
the SQL statementDROP TABLE or the ndb_drop_table utility (see Section 17.11.6, “ndb_drop_table — Drop NDB Table”)
to drop the table.

17.11.6. ndb_drop_table — Drop NDB Table
ndb_drop_table drops the specified NDB table. (If you try to use this on a table created with a storage engine other than NDB, it
fails with the error 723: NO SUCH TABLE EXISTS.) This operation is extremely fast — in some cases, it can be an order of magnitude
faster than using DROP TABLE on an NDB table from MySQL.

Usage:

ndb_drop_table -c connect_string tbl_name -d db_name

MySQL Cluster

1210



Additional Options: None.

17.11.7. ndb_error_reporter — NDB Error-Reporting Utility
ndb_error_reporter creates an archive from data node and management node log files that can be used to help diagnose bugs or
other problems with a cluster. It is highly recommended that you make use of this utility when filing reports of bugs in MySQL Cluster.

Usage:

ndb_error_reporter path/to/config-file [username] [--fs]

This utility is intended for use on a management node host, and requires the path to the management host configuration file (con-
fig.ini). Optionally, you can supply the name of a user that is able to access the cluster's data nodes via SSH, in order to copy the
data node log files. ndb_error_reporter then includes all of these files in archive that is created in the same directory in which it is run.
The archive is named ndb_error_report_YYYYMMDDHHMMSS.tar.bz2, where YYYYMMDDHHMMSS is a datetime string.

If the --fs is used, then the data node filesystems are also copied to the management host and included in the archive that is produced
by this script. As data node filesystems can be extremely large even after being compressed, we ask that you please do not send archives
created using this option to MySQL AB unless you are specifically requested to do so.

17.11.8. ndb_print_backup_file — Print NDB Backup File Contents
ndb_print_backup_file obtains diagnostic information from a cluster backup file.

Usage:

ndb_print_backup_file file_name

file_name is the name of a cluster backup file. This can be any of the files (.Data, .ctl, or .log file) found in a cluster backup
directory. These files are found in the data node's backup directory under the subdirectory BACKUP-#, where # is the sequence number
for the backup. For more information about cluster backup files and their contents, see Section 17.10.1, “Cluster Backup Concepts”.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB utilities that are intended to be
run on a management server host or to connect to a management server) ndb_print_backup_file must be run on a cluster data
node, since it accesses the data node filesystem directly. Because it does not make use of the management server, this utility can be used
when the management server is not running, and even when the cluster has been completely shut down.

Additional Options: None.

17.11.9. ndb_print_schema_file — Print NDB Schema File Contents
ndb_print_schema_file obtains diagnostic information from a cluster schema file.

Usage:

ndb_print_schema_file file_name

file_name is the name of a cluster schema file. For more information about cluster schema files, see Cluster Data Node FileSys-
temDir Files.

Like ndb_print_backup_file and ndb_print_sys_file (and unlike most of the other NDB utilities that are intended to be
run on a management server host or to connect to a management server) ndb_schema_backup_file must be run on a cluster data
node, since it accesses the data node filesystem directly. Because it does not make use of the management server, this utility can be used
when the management server is not running, and even when the cluster has been completely shut down.

Additional Options: None.

17.11.10. ndb_print_sys_file — Print NDB System File Contents
ndb_print_sys_file obtains diagnostic information from a cluster system file.

Usage:

MySQL Cluster

1211

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndbd-filesystemdir-files.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndbd-filesystemdir-files.html


ndb_print_sys_file file_name

file_name is the name of a cluster system file (sysfile). Cluster system files are located in a data node's data directory (DataDir);
the path under this directory to system files matches the pattern ndb_#_fs/D#/DBDIH/P#.sysfile. In each case, the # represents
a number (not necessarily the same number). For more information, see Cluster Data Node FileSystemDir Files.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the other NDB utilities that are intended to
be run on a management server host or to connect to a management server) ndb_print_backup_file must be run on a cluster data
node, since it accesses the data node filesystem directly. Because it does not make use of the management server, this utility can be used
when the management server is not running, and even when the cluster has been completely shut down.

Additional Options: None.

17.11.11. ndbd_redo_log_reader — Check and Print Content of Cluster Redo
Log

MySQL Cluster 5.1 Carrier Grade Edition. The information in this section applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade
Edition”.

Reads a redo log file, checking it for errors, printing its contents in a human-readable format, or both. ndbd_redo_log_reader is
intended for use primarily by MySQL developers and support personnel in debugging and diagnosing problems.

This utility was made available as part of the default builds of MySQL Cluster 5.1 Carrier Grade Edition beginning with MySQL
5.1.15-ndb-6.1.3. It remains under development, and its syntax and behavior are subject to change in future releases. For this reason, it
should be considered experimental at this time.

The C++ source files for ndbd_redo_log_reader can be found in the directory /stor-
age/ndb/src/kernel/blocks/dblqh/redoLogReader.

Usage:

ndbd_redo_log_reader file_name [options]

file_name is the name of a cluster REDO log file. REDO log files are located in the numbered directories under the data node's data
directory (DataDir); the path under this directory to the REDO log files matches the pattern ndb_#_fs/D#/LCP/#/T#F#.Data.
In each case, the # represents a number (not necessarily the same number). For more information, see Cluster Data Node FileSys-
temDir Files.

Additional Options:

The name of the file to be read may be followed by one or more of the options listed here:

• -noprint: Do not print the contents of the log file.

• -nocheck: Do not check the log filre for errors.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the NDB utilities that are intended to be
run on a management server host or to connect to a management server) ndbd_redo_log_reader must be run on a cluster data
node, since it accesses the data node filesystem directly. Because it does not make use of the management server, this utility can be used
when the management server is not running, and even when the cluster has been completely shut down.

17.11.12. ndb_select_all — Print Rows from NDB Table
ndb_select_all prints all rows from an NDB table to stdout.

Usage:

ndb_select_all -c connect_string tbl_name -d db_name [> file_name]

Additional Options:

MySQL Cluster

1212

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndbd-filesystemdir-files.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndbd-filesystemdir-files.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndbd-filesystemdir-files.html


• --lock=lock_type, -l lock_type

Employs a lock when reading the table. Possible values for lock_type are:

• 0: Read lock

• 1: Read lock with hold

• 2: Exclusive read lock

There is no default value for this option.

• --order=index_name, -o index_name

Orders the output according to the index named index_name. Note that this is the name of an index, not of a column, and that the
index must have been explicitly named when created.

• --descending, -z

Sorts the output in descending order. This option can be used only in conjunction with the -o (--order) option.

• --header=FALSE

Excludes column headers from the output.

• --useHexFormat -x

Causes all numeric values to be displayed in hexadecimal format. This does not affect the output of numerals contained in strings or
datetime values.

• --delimiter=character, -D character

Causes the character to be used as a column delimiter. Only table data columns are separated by this delimiter.

The default delimiter is the tab character.

• --disk

Adds a disk reference column to the output. The column is non-empty only for Disk Data tables having non-indexed columns.

• --rowid

Adds a ROWID column providing information about the fragments in which rows are stored.

• --gci

Adds a column to the output showing the global checkpoint at which each row was last updated. See Section 17.17, “MySQL
Cluster Glossary”, and Section 17.8.3.2, “Log Events”, for more information about checkpoints.

• --tupscan, -t

Scan the table in the order of the tuples.

• --nodata

Causes any table data to be omitted.

Sample Output:

Output from a MySQL SELECT statement:

mysql> SELECT * FROM ctest1.fish;
+----+-----------+
| id | name |
+----+-----------+
| 3 | shark |
| 6 | puffer |
| 2 | tuna |

MySQL Cluster

1213



| 4 | manta ray |
| 5 | grouper |
| 1 | guppy |
+----+-----------+
6 rows in set (0.04 sec)

Output from the equivalent invocation of ndb_select_all:

shell> ./ndb_select_all -c localhost fish -d ctest1
id name
3 [shark]
6 [puffer]
2 [tuna]
4 [manta ray]
5 [grouper]
1 [guppy]
6 rows returned

NDBT_ProgramExit: 0 - OK

Note that all string values are enclosed by square brackets (“[...]”) in the output of ndb_select_all. For a further example, con-
sider the table created and populated as shown here:

CREATE TABLE dogs (
id INT(11) NOT NULL AUTO_INCREMENT,
name VARCHAR(25) NOT NULL,
breed VARCHAR(50) NOT NULL,
PRIMARY KEY pk (id),
KEY ix (name)

)
TABLESPACE ts STORAGE DISK
ENGINE=NDB;

INSERT INTO dogs VALUES
('', 'Lassie', 'collie'),
('', 'Scooby-Doo', 'Great Dane'),
('', 'Rin-Tin-Tin', 'Alsatian'),
('', 'Rosscoe', 'Mutt');

This demonstrates the use of several additional ndb_select_all options:

shell> ./ndb_select_all -d ctest1 dogs -o ix -z --gci --disk
GCI id name breed DISK_REF
834461 2 [Scooby-Doo] [Great Dane] [ m_file_no: 0 m_page: 98 m_page_idx: 0 ]
834878 4 [Rosscoe] [Mutt] [ m_file_no: 0 m_page: 98 m_page_idx: 16 ]
834463 3 [Rin-Tin-Tin] [Alsatian] [ m_file_no: 0 m_page: 34 m_page_idx: 0 ]
835657 1 [Lassie] [Collie] [ m_file_no: 0 m_page: 66 m_page_idx: 0 ]
4 rows returned

NDBT_ProgramExit: 0 - OK

17.11.13. ndb_select_count — Print Row Counts for NDB Tables
ndb_select_count prints the number of rows in one or more NDB tables. With a single table, the result is equivalent to that ob-
tained by using the MySQL statement SELECT COUNT(*) FROM tbl_name.

Usage:

ndb_select_count [-c connect_string] -ddb_name tbl_name[, tbl_name2[, ...]]

Additional Options: None that are specific to this application. However, you can obtain row counts from multiple tables in the same
database by listing the table names separated by spaces when invoking this command, as shown under Sample Output.

Sample Output:

shell> ./ndb_select_count -c localhost -d ctest1 fish dogs
6 records in table fish
4 records in table dogs

NDBT_ProgramExit: 0 - OK

17.11.14. ndb_show_tables — Display List of NDB Tables

MySQL Cluster

1214



ndb_show_tables displays a list of all NDB database objects in the cluster. By default, this includes not only both user-created
tables and NDB system tables, but NDB-specific indexes, internal triggers, and Cluster Disk Data objects as well.

Usage:

ndb_show_tables [-c connect_string]

Additional Options:

• --loops, -l

Specifies the number of times the utility should execute. This is 1 when this option is not specified, but if you do use the option, you
must supply an integer argument for it.

• --parsable, -p

Using this option causes the output to be in a format suitable for use with LOAD DATA INFILE.

• --type, -t

Can be used to restrict the output to one type of object, specified by an integer type code as shown here:

• 1: System table

• 2: User-created table

• 3: Unique hash index

Any other value causes all NDB database objects to be listed (the default).

• --unqualified, -u

If specified, this causes unqualified object names to be displayed.

Note

Only user-created Cluster tables may be accessed from MySQL; system tables such as SYSTAB_0 are not visible to
mysqld. However, you can examine the contents of system tables using NDB API applications such as
ndb_select_all (see Section 17.11.12, “ndb_select_all — Print Rows from NDB Table”).

17.11.15. ndb_size.pl — NDBCluster Size Requirement Estimator
This is a Perl script that can be used to estimate the amount of space that would be required by a MySQL database if it were converted
to use the NDBCluster storage engine. Unlike the other utilities discussed in this section, it does not require access to a MySQL
Cluster (in fact, there is no reason for it to do so). However, it does need to access the MySQL server on which the database to be tested
resides.

Requirements:

• A running MySQL server. The server instance does not have to provide support for MySQL Cluster.

• A working installation of Perl.

• The DBI module, which can be obtained from CPAN if it is not already part of your Perl installation. (Many Linux and other operat-
ing system distributions provide their own packages for this library.)

Note

Previous to MySQL 5.1.18, ndb_size.pl also required the HTML::Template module.

• The ndb_size.tmpl template file, which you should be able to find in the share/mysql directory of your MySQL installa-
tion. This file should be copied or moved into the same directory as ndb_size.pl — if it is not there already — before running

MySQL Cluster

1215



the script.

• A MySQL user account having the necessary privileges. If you do not wish to use an existing account, then creating one using
GRANT USAGE ON db_name.* — where db_name is the name of the database to be examined — is sufficient for this pur-
pose.

ndb_size.pl and ndb_size.tmpl can also be found in the MySQL sources in storage/ndb/tools. If these files are not
present in your MySQL installation, you can obtain them from the MySQLForge project page.

Usage:

perl ndb_size.pl db_name hostname username password > file_name.html

The command shown connects to the MySQL server at hostname using the account of the user username having the password
password, analyses all of the tables in database db_name, and generates a report in HTML format which is directed to the file
file_name.html. (Without the redirection, the output is sent to stdout.) This figure shows partial sample output as viewed in a
Web browser:

MySQL Cluster

1216

http://forge.mysql.com/projects/view.php?id=88


MySQL Cluster

1217



The output from this script includes:

• Minimum values for the DataMemory, IndexMemory, MaxNoOfTables, MaxNoOfAttributes, MaxNoOfOrderedIn-
dexes, MaxNoOfUniqueHashIndexes, and MaxNoOfTriggers configuration parameters required to accommodate the
tables analysed.

• Memory requirements for all of the tables, attributes, ordered indexes, and unique hash indexes defined in the database.

• The IndexMemory and DataMemory required per table and table row.

Beginning with MySQL 5.1.23 (5.1.15-ndb-6.1.6-beta: 5.1.22-ndb-6.2.5), the behavior of this utility and its available options have
changed. (Bug#28683, Bug#28253)

Typical usage is shown here:

ndb_size.pl [--database=db_name|ALL] [--hostname=host[:port]] [--socket=socket] [--user=user] [--password=password] [--help|-h] [--format=(html|text)] [--loadqueries=file_name] [--savequeries=file_name]

Important

ndb_size.pl now takes named options, each of which is optional.

By default, this utility attempts to analyze all databases on the server. You can specify a single database using the --database op-
tion; the default behavior can be made explicit by using ALL for the name of the database. You can also exclude one or more databases
by using the --excludedbs with a comma-separated list of the names of the databases to be skipped. Similarly, you can cause spe-
cific tables to be skipped by listing their names, separated by commas, following the optional --excludetables option. A host-
name (and possibly a port as well) can be specified using --hostname; the default is localhost:3306. If necessary, you can spe-
cify a socket; the default is /var/lib/mysql.sock. A MySQL username and password can be specified the corresponding options
shown. It also possible to control the format of the output using the --format option; this can take either of the values html or
text, with text being the default. An example of the text output is shown here:

shell> ndb_size.pl --database=test --socket=/tmp/mysql.sock
ndb_size.pl report for database: 'test' (1 tables)
--------------------------------------------------
Connected to: DBI:mysql:host=localhost;mysql_socket=/tmp/mysql.sock

Including information for versions: 4.1, 5.0, 5.1

test.t1
-------

DataMemory for Columns (* means varsized DataMemory):
Column Name Type Varsized Key 4.1 5.0 5.1

HIDDEN_NDB_PKEY bigint PRI 8 8 8
c2 varchar(50) Y 52 52 4*
c1 int(11) 4 4 4

-- -- --
Fixed Size Columns DM/Row 64 64 12

Varsize Columns DM/Row 0 0 4

DataMemory for Indexes:
Index Name Type 4.1 5.0 5.1

PRIMARY BTREE 16 16 16
-- -- --

Total Index DM/Row 16 16 16

IndexMemory for Indexes:
Index Name 4.1 5.0 5.1

PRIMARY 33 16 16
-- -- --

Indexes IM/Row 33 16 16

Summary (for THIS table):
4.1 5.0 5.1

Fixed Overhead DM/Row 12 12 16
NULL Bytes/Row 4 4 4
DataMemory/Row 96 96 48 (Includes overhead, bitmap and indexes)

Varsize Overhead DM/Row 0 0 8
Varsize NULL Bytes/Row 0 0 4

Avg Varside DM/Row 0 0 16

No. Rows 0 0 0

Rows/32kb DM Page 340 340 680
Fixedsize DataMemory (KB) 0 0 0

MySQL Cluster

1218

http://bugs.mysql.com/28683
http://bugs.mysql.com/28253


Rows/32kb Varsize DM Page 0 0 2040
Varsize DataMemory (KB) 0 0 0

Rows/8kb IM Page 248 512 512
IndexMemory (KB) 0 0 0

Parameter Minimum Requirements
------------------------------
* indicates greater than default

Parameter Default 4.1 5.0 5.1
DataMemory (KB) 81920 0 0 0

NoOfOrderedIndexes 128 1 1 1
NoOfTables 128 1 1 1

IndexMemory (KB) 18432 0 0 0
NoOfUniqueHashIndexes 64 0 0 0

NoOfAttributes 1000 3 3 3
NoOfTriggers 768 5 5 5

For debugging purposes, the Perl arrays containing the queries run by this script can be read from the file specified using can be saved
to a file using --savequeries; a file containing such arrays to be read in during script execution can be specified using -
-loadqueries. Neither of these options has a default value.

17.11.16. ndb_waiter — Wait for Cluster to Reach a Given Status
ndb_waiter repeatedly (each 100 milliseconds) prints out the status of all cluster data nodes until either the cluster reaches a given
status or the --timeout limit is exceeded, then exits. By default, it waits for the cluster to achieve STARTED status, in which all
nodes have started and connected to the cluster. This can be overridden using the --no-contact and --not-started options (see
Additional Options).

The node states reported by this utility are as follows:

• NO_CONTACT: The node cannot be contacted.

• UNKNOWN: The node can be contacted, but its status is not yet known. Usually, this means that the node has received a START or
RESTART command from the management server, but has not yet acted on it.

• NOT_STARTED: The node has stopped, but remains in contact with the cluster. This is seen when restarting the node using the man-
agement client's RESTART command.

• STARTING: The node's ndbd process has started, but the node has not yet joined the cluster.

• STARTED: The node is operational, and has joined the cluster.

• SHUTTING_DOWN: The node is shutting down.

• SINGLE USER MODE: This is shown for all cluster data nodes when the cluster is in single user mode.

Usage:

ndb_waiter [-c connect_string]

Additional Options:

• --no-contact, -n

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches NO_CONTACT status before
exiting.

• --not-started

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches NOT_STARTED status before
exiting.

• --timeout=seconds, -t seconds

Time to wait. The program exits if the desired state is not achieved within this number of seconds. The default is 120 seconds (1200

MySQL Cluster

1219



reporting cycles).

Sample Output. Shown here is the output from ndb_waiter when run against a 4-node cluster in which two nodes have been shut
down and then started again manually. Duplicate reports (indicated by “...”) are omitted.

shell> ./ndb_waiter -c localhost

Connecting to mgmsrv at (localhost)
State node 1 STARTED
State node 2 NO_CONTACT
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 UNKNOWN
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 UNKNOWN
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTED
Waiting for cluster enter state STARTED

NDBT_ProgramExit: 0 - OK

Note

If no connectstring is specified, then ndb_waiter tries to connect to a management on localhost, and reports Con-
necting to mgmsrv at (null).

17.12. MySQL Cluster Replication
Previous to MySQL 5.1.6, asynchronous replication, more usually referred to simply as “replication”, was not available when using
MySQL Cluster. MySQL 5.1.6 introduces master-slave replication of this type for MySQL Cluster databases. This section explains how
to set up and manage a configuration wherein one group of computers operating as a MySQL Cluster replicates to a second computer or
group of computers. We assume some familiarity on the part of the reader with standard MySQL replication as discussed elsewhere in
this Manual. (See Chapter 16, Replication).

MySQL Cluster

1220



Normal (non-clustered) replication involves a “master” server and a “slave” server, the master being the source of the operations and
data to be replicated and the slave being the recipient of these. In MySQL Cluster, replication is conceptually very similar but can be
more complex in practice, as it may be extended to cover a number of different configurations including replicating between two com-
plete clusters. Although a MySQL Cluster itself depends on the NDB Cluster storage engine for clustering functionality, it is not ne-
cessary to use the Cluster storage engine on the slave. However, for maximum availability, it is possible to replicate from one MySQL
Cluster to another, and it is this type of configuration that we discuss, as shown in the following figure:

In this scenario, the replication process is one in which successive states of a master cluster are logged and saved to a slave cluster. This
process is accomplished by a special thread known as the NDB binlog injector thread, which runs on each MySQL server and produces
a binary log (binlog). This thread ensures that all changes in the cluster producing the binary log — and not just those changes that
are effected via the MySQL Server — are inserted into the binary log with the correct serialization order. We refer to the MySQL rep-
lication master and replication slave servers as replication servers or replication nodes, and the data flow or line of communication
between them as a replication channel.

17.12.1. Abbreviations and Symbols
Throughout this section, we use the following abbreviations or symbols for referring to the master and slave clusters, and to processes
and commands run on the clusters or cluster nodes:

Symbol or Abbreviation Description (Refers to...)

M The cluster serving as the (primary) replication master

S The cluster acting as the (primary) replication slave

shellM> Shell command to be issued on the master cluster

mysqlM> MySQL client command issued on a single MySQL server running as an SQL node on the master
cluster

mysqlM*> MySQL client command to be issued on all SQL nodes participating in the replication master cluster

shellS> Shell command to be issued on the slave cluster

mysqlS> MySQL client command issued on a single MySQL server running as an SQL node on the slave
cluster

mysqlS*> MySQL client command to be issued on all SQL nodes participating in the replication slave cluster

C Primary replication channel

MySQL Cluster

1221



C' Secondary replication channel

M' Secondary replication master

S' Secondary replication slave

17.12.2. Assumptions and General Requirements
A replication channel requires two MySQL servers acting as replication servers (one each for the master and slave). For example, this
means that in the case of a replication setup with two replication channels (to provide an extra channel for redundancy), there will be a
total of four replication nodes, two per cluster.

Replication of a MySQL Cluster as described in this section and those following is dependent on row-based replication. This means that
the replication master MySQL server must be started with --binlog-format=ROW or --binlog-format=MIXED, as described
in Section 17.12.6, “Starting Replication (Single Replication Channel)”. For general information about row-based replication, see Sec-
tion 16.1.2, “Replication Formats”.

(It is possible to replicate a MySQL Cluster using statement-based replication. However, in this case, the following restrictions apply:
All updates to data rows on the cluster acting as the master must be directed to a single MySQL server; It is not possible to replicate a
cluster using several MySQL replication processes at the same time; Only changes made at the SQL level are replicated.)

Each MySQL server used for replication in either cluster must be uniquely identified among all the MySQL replication servers particip-
ating in either cluster (you cannot have replication servers on both the master and slave clusters sharing the same ID). This can be done
by starting each SQL node using the --server-id=id option, where id is a unique integer. Although it is not strictly necessary, we
will assume for purposes of this discussion that all MySQL installations are the same version.

In any event, both MySQL servers involved in replication must be compatible with one another with respect to both the version of the
replication protocol used and the SQL feature sets which they support; the simplest and easiest way to assure that this is the case is to
use the same MySQL version for all servers involved. Note that in many cases it is not possible to replicate to a slave running a version
of MySQL with a lower version number than that of the master — see Section 16.3.2, “Replication Compatibility Between MySQL
Versions”, for details.

We assume that the slave server or cluster is dedicated to replication of the master, and that no other data is being stored on it.

17.12.3. Known Issues in MySQL Cluster Replication
The following are known problems or issues when using replication with MySQL Cluster in MySQL 5.1:

• Loss of master-slave connection. Prior to MySQL 5.1.18, a MySQL Cluster replication slave mysqld had no way of detecting
that the connection from the master had been interrupted (due to, for instance, the master going down or a network failure). For this
reason, it was possible for the slave to become inconsistent with the master.

Beginning with MySQL 5.1.18, the master issues a “gap” event when connecting to the cluster. When the slave encounters a gap in
the replication log, it stops with an error message. This message is available in the output of SHOW SLAVE STATUS, and indicates
that the SQL thread has stopped due to an incident registered in the replication stream, and that manual intervention is required. In
order to restart the slave, it is necessary to issue the following commands:

SET GLOBAL SQL_SLAVE_SKIP_COUNTER = 1;
START SLAVE;

The slave then resumes reading the master binlog from the point where the gap was recorded.

Important

If high availability is a requirement for the slave server or cluster, then it is still advisable to set up multiple replication
lines, to monitor the master mysqld on the primary replication line, and to fail over to a secondary line if and as neces-
sary. For information about implementing this type of setup, see Section 17.12.7, “Using Two Replication Channels”, and
Section 17.12.8, “Implementing Failover with MySQL Cluster”.

However, if you are replicating from a standalone MySQL server to a MySQL Cluster, one channel is usually sufficient.

• Multi-byte character sets. There are several known issues with regard to the use of multi-byte characters sets with MySQL Cluster
Replication. See Bug#27404 (fixed in MySQL 5.1.21), Bug#29562, Bug#29563, and Bug#29564 for more information.

MySQL Cluster

1222

http://bugs.mysql.com/27404
http://bugs.mysql.com/29562
http://bugs.mysql.com/29563
http://bugs.mysql.com/29564


• Circular replication. Prior to MySQL 5.1.18, circular replication was not supported with MySQL Cluster replication, due to the
fact that all log events created in a particular MySQL Cluster were wrongly tagged with the server ID of the MySQL server used as
master and not with the server ID of the originating server.

Beginning with MySQL 5.1.18, this limitation is lifted, as discussed in the next few paragraphs, in which we consider the example
of a replication setup involving three MySQL Clusters numbered 1, 2, and 3, in which Cluster 1 acts as the replication master for
Cluster 2, Cluster 2 acts as the master for Cluster 3, and Cluster 3 acts as the master for Cluster 1. Each cluster has two SQL nodes,
with SQL nodes A and B belonging to Cluster 1, SQL nodes C and D belonging to Cluster 2, and SQL nodes E and F belonging to
Cluster 3.

Circular replication using these clusters is supported as long as:

• the SQL nodes on all masters and slaves are the same

• All SQL nodes acting as replication masters and slaves are started using the --log-slave-updates option
This type of circular replication setup is shown in the following diagram:

MySQL Cluster

1223



In this scenario, SQL node A in Cluster 1 replicates to SQL node C in Cluster 2; SQL node C replicates to SQL node E in Cluster 3;
SQL node E replicates to SQL node A. In other words, the replication line (indicated by the red arrows in the diagram) directly con-
nects all SQL nodes used as replication masters and slaves.

It should also be possible to set up circular replication in which not all master SQL nodes are also slaves, as shown here:

MySQL Cluster

1224



In this case, different SQL nodes in each cluster are used as replication masters and slaves. However, you must not start any of the
SQL nodes using --log-slave-updates (see the description of this option for more information). This type of circular replica-
tion scheme for MySQL Cluster, in which the line of replication (again indicated by the red arrows in the diagram) is discontinuous,
should be possible, but it should be noted that it has not yet been thoroughly tested and must therefore still be considered experi-
mental.

Important

Beginning with MySQL 5.1.24, you should execute the following statement before starting circular replication:

MySQL Cluster

1225



mysql> SET GLOBAL SLAVE_EXEC_MODE = 'IDEMPOTENT';

This is necessary to suppress duplicate-key and other errors that otherwise break circular replication of MySQL Cluster.
IDEMPOTENT mode is also required for multi-master replication when using MySQL Cluster. (Bug#31609)

See Slave_exec_mode, for more information.

• DDL statements. The use of data definition statements, such as CREATE TABLE, DROP TABLE, and ALTER TABLE, are recor-
ded in the binary log for only the MySQL server on which they are issued.

• Cluster replication and primary keys. In MySQL 5.1.6, only those NDB tables having explicit primary keys could be replicated.
This limitation was lifted in MySQL 5.1.7. However, in the event of a node failure, errors in replication of NDB tables without
primary keys can still occur, due to the possibility of duplicate rows being inserted in such cases. For this reason, it is highly recom-
mended that all NDB tables being replicated have primary keys.

• Restarting with --initial. Restarting the cluster with the --initial option causes the sequence of GCI and epoch numbers
to start over from 0. (This is generally true of MySQL Cluster and not limited to replication scenarios involving Cluster.) The
MySQL servers involved in replication should in this case be restarted. After this, you should use the RESET MASTER and RESET
SLAVE statements to clear the invalid ndb_binlog_index and ndb_apply_status tables. respectively.

• auto_increment_offset and auto_increment_increment variables. The use of the auto_increment_offset
and auto_increment_increment server system variables is supported beginning with MySQL 5.1.20. Previously, these pro-
duced unpredictable results when used with NDB tables or MySQL Cluster replication.

• Replication from NDB to other storage engines. If you attempt to replicate from a MySQL Cluster to a slave that uses a storage
engine that does not handle its own binary logging, the replication process aborts with the error BINARY LOGGING NOT POSSIBLE

... STATEMENT CANNOT BE WRITTEN ATOMICALLY SINCE MORE THAN ONE ENGINE INVOLVED AND AT LEAST ONE ENGINE IS

SELF-LOGGING (Error 1595). It is possible to work around this issue in one of the following ways:

• Turn off binary logging on the slave. This can be accomplished by setting SQL_LOG_BIN = 0.

• Change the storage engine used for the mysql.ndb_apply_status table. Causing this table to use an engine that does
not handle its own binary logging can also eliminate the conflict. This can be done by issuing a statement such as ALTER TA-
BLE mysql.ndb_apply_status ENGINE=MyISAM on the slave. It is safe to do this when using a non-NDB storage en-
gine on the slave, since you do not then need to worry about keeping multiple slave SQL nodes synchronized.

• Filter out changes to the mysql.ndb_apply_status table on the slave. This can be done by starting the slave SQL node
with the option --replicate-ignore-table=mysql.ndb_apply_status. If you need for other tables to be ignored
by replication, you might wish to use an appropriate --replicate-wild-ignore-table option instead.

17.12.4. Cluster Replication Schema and Tables
Replication in MySQL Cluster makes use of a number of dedicated tables in the mysql database on each MySQL Server instance act-
ing as an SQL node in both the cluster being replicated and the replication slave (whether the slave is a single server or a cluster). These
tables are created during the MySQL installation process by the mysql_install_db script, and include a table for storing the binary
log's indexing data. Since the ndb_binlog_index table is local to each MySQL server and does not participate in clustering, it uses
the MyISAM storage engine. This means that it must be created separately on each mysqld participating in the master cluster.
(However, the binlog itself contains updates from all MySQL servers in the cluster to be replicated.) This table is defined as follows:

CREATE TABLE `ndb_binlog_index` (
`Position` BIGINT(20) UNSIGNED NOT NULL,
`File` VARCHAR(255) NOT NULL,
`epoch` BIGINT(20) UNSIGNED NOT NULL,
`inserts` BIGINT(20) UNSIGNED NOT NULL,
`updates` BIGINT(20) UNSIGNED NOT NULL,
`deletes` BIGINT(20) UNSIGNED NOT NULL,
`schemaops` BIGNINT(20) UNSIGNED NOT NULL,
PRIMARY KEY (`epoch`)

) ENGINE=MYISAM DEFAULT CHARSET=latin1;

Important

Prior to MySQL 5.1.14, the ndb_binlog_index table was known as binlog_index, and was kept in a separate
cluster database, which in MySQL 5.1.7 and earlier was known as the cluster_replication database. Similarly,
the ndb_apply_status and ndb_schema tables were known as apply_status and schema, and were also

MySQL Cluster

1226

http://bugs.mysql.com/31609


found in the cluster (earlier cluster_replication) database. However, beginning with MySQL 5.1.14, all
MySQL Cluster replication tables reside in the mysql system database.

Information about how this change affects upgrades from MySQL Cluster 5.1.13 and earlier to 5.1.14 and later versions
can be found in Section C.1.19, “Changes in MySQL 5.1.14 (05 December 2006)”.

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edition
only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade Edi-
tion”.

Beginning with MySQL 5.1.22-ndb-6.3.2, this table has been changed to facilitate 3-way replication recovery. Two columns
orig_server_id and orig_epoch have been added to this table; when mysqld is started with the --ndb-log-orig option,
these columns store, respectively, the ID of the server on which the event originated and the epoch in which the event took place on the
originating server. In addition, the table's primary key now includes these two columns. The modified table definition is shown here:

CREATE TABLE `ndb_binlog_index` (
`Position` BIGINT(20) UNSIGNED NOT NULL,
`File` VARCHAR(255) NOT NULL,
`epoch` BIGINT(20) UNSIGNED NOT NULL,
`inserts` INT(10) UNSIGNED NOT NULL,
`updates` INT(10) UNSIGNED NOT NULL,
`deletes` INT(10) UNSIGNED NOT NULL,
`schemaops` INT(10) UNSIGNED NOT NULL,
`orig_server_id` INT(10) UNSIGNED NOT NULL,
`orig_epoch` BIGINT(20) UNSIGNED NOT NULL,
`gci` INT(10) UNSIGNED NOT NULL
PRIMARY KEY (`epoch`,`orig_server_id`,`orig_epoch`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

The gci column was added in MySQL 5.1.22-ndb-6.2.6 and MySQL 5.1.22-ndb-6.3.2.

The following information applies to all MySQL Cluster users.

The following figure shows the relationship of the MySQL Cluster replication master server, its binlog injector thread, and the
mysql.ndb_binlog_index table.

MySQL Cluster

1227



An additional table, named ndb_apply_status, is used to keep a record of the operations that have been replicated from the master
to the slave. Unlike the case with ndb_binlog_index, the data in this table is not specific to any one SQL node in the (slave)
cluster, and so ndb_apply_status can use the NDB Cluster storage engine, as shown here:

CREATE TABLE `ndb_apply_status` (
`server_id` INT(10) UNSIGNED NOT NULL,
`epoch` BIGINT(20) UNSIGNED NOT NULL,
`log_name` VARCHAR(255) CHARACTER SET latin1 COLLATE latin1_bin NOT NULL,
`start_pos` BIGINT(20) UNSIGNED NOT NULL,
`end_pos` BIGINT(20) UNSIGNED NOT NULL,
PRIMARY KEY (`server_id`) USING HASH

) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1;

However, this table is populated only on a replication slave; on the master, no DataMemory is allocated to it.

The log_name, start_pos, and end_pos columns were added in MySQL 5.1.18.

Important

If you are using MySQL Cluster replication, see Section 17.6.2, “Cluster Upgrade and Downgrade Compatibility” before
upgrading to MySQL 5.1.18 or later from an earlier version.

The ndb_binlog_index and ndb_apply_status tables are created in the mysql database because they should not be replic-
ated. No user intervention is normally required to create or maintain either of them. Both the ndb_binlog_index and the
ndb_apply_status tables are maintained by the NDB injector thread. This keeps the master mysqld process updated to changes
performed by the NDB storage engine. The NDB binlog injector thread receives events directly from the NDB storage engine. The NDB
injector is responsible for capturing all the data events within the cluster, and ensures that all events which change, insert, or delete data
are recorded in the ndb_binlog_index table. The slave I/O thread transfers the events from the master's binary log to the slave's re-
lay log.

MySQL Cluster

1228



However, it is advisable to check for the existence and integrity of these tables as an initial step in preparing a MySQL Cluster for rep-
lication. It is possible to view event data recorded in the binary log by querying the mysql.ndb_binlog_index table directly on
the master. This can be also be accomplished using the SHOW BINLOG EVENTS statement on either the replication master or slave
MySQL servers. (See Section 12.6.1.4, “SHOW BINLOG EVENTS Syntax”.)

You can also obtain useful information from the output of SHOW ENGINE NDB STATUS.

The ndb_schema table is used to track schema changes made to NDB tables. It is defined as shown here:

CREATE TABLE ndb_schema (
`db` VARBINARY(63) NOT NULL,
`name` VARBINARY(63) NOT NULL,
`slock` BINARY(32) NOT NULL,
`query` BLOB NOT NULL,
`node_id` INT UNSIGNED NOT NULL,
`epoch` BIGINT UNSIGNED NOT NULL,
`id` INT UNSIGNED NOT NULL,
`version` INT UNSIGNED NOT NULL,
`type` INT UNSIGNED NOT NULL,
PRIMARY KEY USING HASH (db,name)

) ENGINE=NDB DEFAULT CHARSET=latin1;

Unlike the two tables previously mentioned in this section, the ndb_schema table is not visible either to MySQL SHOW statements, or
in any INFORMATION_SCHEMA tables; however, it can be seen in the output of ndb_show_tables, as shown here:

shell> ndb_show_tables -t 2
id type state logging database schema name
4 UserTable Online Yes mysql def ndb_apply_status
5 UserTable Online Yes ndbworld def City
6 UserTable Online Yes ndbworld def Country
3 UserTable Online Yes mysql def NDB$BLOB_2_3
7 UserTable Online Yes ndbworld def CountryLanguage
2 UserTable Online Yes mysql def ndb_schema

NDBT_ProgramExit: 0 - OK

It is also possible to SELECT from this table in mysql and other MySQL client applications, as shown here:

mysql> SELECT * FROM mysql.ndb_schema WHERE name='City' \G
*************************** 1. row ***************************

db: ndbworld
name: City
slock:
query: alter table City engine=ndb

node_id: 4
epoch: 0

id: 0
version: 0

type: 7
1 row in set (0.00 sec)

This can sometimes be useful when debugging applications.

Note

When performing schema changes on NDB tables, applications should wait until the ALTER TABLE statement has re-
turned in the MySQL client connection that issued the statement before attempting to use the updated definition of the ta-
ble.

The ndb_schema table was added in MySQL 5.1.8.

Beginning with MySQL 5.1.14, if either of the ndb_apply_status or ndb_schema tables does not exist on the slave, it is created
by ndb_restore. (Bug#14612)

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edition
only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade Edi-
tion”.

Conflict resolution for MySQL Cluster Replication requires the presence of an additional mysql.ndb_replication table. Cur-
rently, this table must be created manually. For details, see Section 17.12.10, “MySQL Cluster Replication Conflict Resolution”.

17.12.5. Preparing the Cluster for Replication
Preparing the MySQL Cluster for replication consists of the following steps:

MySQL Cluster

1229

http://bugs.mysql.com/14612


1. Check all MySQL servers for version compatibility (see Section 17.12.2, “Assumptions and General Requirements”).

2. Create a slave account on the master Cluster with the appropriate privileges:

mysqlM> GRANT REPLICATION SLAVE
-> ON *.* TO 'slave_user'@'slave_host'
-> IDENTIFIED BY 'slave_password';

In the previous statement, slave_user is the slave account username, slave_host is the hostname or IP address of the replic-
ation slave, and slave_password is the password to assign to this account.

For example, to create a slave user account with the name “myslave,” logging in from the host named “rep-slave,” and using
the password “53cr37,” use the following GRANT statement:

mysqlM> GRANT REPLICATION SLAVE
-> ON *.* TO 'myslave'@'rep-slave'
-> IDENTIFIED BY '53cr37';

For security reasons, it is preferable to use a unique user account — not employed for any other purpose — for the replication slave
account.

3. Configure the slave to use the master. Using the MySQL Monitor, this can be accomplished with the CHANGE MASTER TO state-
ment:

mysqlS> CHANGE MASTER TO
-> MASTER_HOST='master_host',
-> MASTER_PORT=master_port,
-> MASTER_USER='slave_user',
-> MASTER_PASSWORD='slave_password';

In the previous statement, master_host is the hostname or IP address of the replication master, master_port is the port for
the slave to use for connecting to the master, slave_user is the username set up for the slave on the master, and
slave_password is the password set for that user account in the previous step.

For example, to tell the slave to replicate from the MySQL server whose hostname is “rep-master,” using the replication slave
account created in the previous step, use the following statement:

mysqlS> CHANGE MASTER TO
-> MASTER_HOST='rep-master'
-> MASTER_PORT=3306,
-> MASTER_USER='myslave'
-> MASTER_PASSWORD='53cr37';

For a complete list of clauses that can be used with this statement, see Section 12.6.2.1, “CHANGE MASTER TO Syntax”.

You can also configure the slave to use the master by setting the corresponding startup options in the slave server's my.cnf file.
To configure the slave in the same way as the preceding example CHANGE MASTER TO statement, the following information
would need to be included in the slave's my.cnf file:

[mysqld]
master-host=rep-master
master-port=3306
master-user=myslave
master-password=53cr37

For additional options that can be set in my.cnf for replication slaves, see Section 16.1.3, “Replication Options and Variables”.

Note

To provide replication backup capability, you will also need to add an ndb-connectstring option to the slave's
my.cnf file prior to starting the replication process. See Section 17.12.9, “MySQL Cluster Backups With Replication”,
for details.

4. If the master cluster is already in use, you can create a backup of the master and load this onto the slave to cut down on the amount
of time required for the slave to synchronize itself with the master. If the slave is also running MySQL Cluster, this can be accom-
plished using the backup and restore procedure described in Section 17.12.9, “MySQL Cluster Backups With Replication”.

ndb-connectstring=management_host[:port]

MySQL Cluster

1230



In the event that you are not using MySQL Cluster on the replication slave, you can create a backup with this command on the rep-
lication master:

shellM> mysqldump --master-data=1

Then import the resulting data dump onto the slave by copying the dump file over to the slave. After this, you can use the mysql
client to import the data from the dumpfile into the slave database as shown here, where dump_file is the name of the file that
was generated using mysqldump on the master, and db_name is the name of the database to be replicated:

shellS> mysql -u root -p db_name < dump_file

For a complete list of options to use with mysqldump, see Section 4.5.4, “mysqldump — A Database Backup Program”.

Note

If you copy the data to the slave in this fashion, you should make sure that the slave is started with the -
-skip-slave-start option on the command line, or else include skip-slave-start in the slave's my.cnf file
to keep it from trying to connect to the master to begin replicating before all the data has been loaded. Once the data load-
ing has completed, follow the additional steps outlined in the next two sections.

5. Ensure that each MySQL server acting as a replication master is configured with a unique server ID, and with binary logging en-
abled, using the row format. (See Section 16.1.2, “Replication Formats”.) These options can be set either in the master server's
my.cnf file, or on the command line when starting the master mysqld process. See Section 17.12.6, “Starting Replication
(Single Replication Channel)”, for information regarding the latter option.

17.12.6. Starting Replication (Single Replication Channel)
This section outlines the procedure for starting MySQL CLuster replication using a single replication channel.

1. Start the MySQL replication master server by issuing this command:

shellM> mysqld --ndbcluster --server-id=id \
--log-bin --binlog-format=ROW &

In the previous statement, id is this server's unique ID (see Section 17.12.2, “Assumptions and General Requirements”). This
starts the server's mysqld process with binary logging enabled using the proper logging format.

Note

You can also start the master with --binlog-format=MIXED, in which case row-based replication is used automatic-
ally when replicating between clusters.

2. Start the MySQL replication slave server as shown here:

shellS> mysqld --ndbcluster --server-id=id &

In the previous statement, id is the slave server's unique ID. It is not necessary to enable logging on the replication slave.

Note

You should use the --skip-slave-start option with this command or else you should include skip-
slave-start in the slave server's my.cnf file, unless you want replication to begin immediately. With the use of this
option, the start of replication is delayed until the appropriate START SLAVE statement has been issued, as explained in
Step 4 below.

3. It is necessary to synchronize the slave server with the master server's replication binlog. If binary logging has not previously been
running on the master, run the following statement on the slave:

mysqlS> CHANGE MASTER TO
-> MASTER_LOG_FILE='',
-> MASTER_LOG_POS=4;

MySQL Cluster

1231



This instructs the slave to begin reading the master's binary log from the log's starting point. Otherwise — that is, if you are loading
data from the master using a backup — see Section 17.12.8, “Implementing Failover with MySQL Cluster”, for information on
how to obtain the correct values to use for MASTER_LOG_FILE and MASTER_LOG_POS in such cases.

4. Finally, you must instruct the slave to begin applying replication by issuing this command from the mysql client on the replica-
tion slave:

mysqlS> START SLAVE;

This also initiates the transmission of replication data from the master to the slave.

It is also possible to use two replication channels, in a manner simlar to the procedure described in the next section; the differences
between this and using a single replication channel are covered in Section 17.12.7, “Using Two Replication Channels”.

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edition
only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade Edi-
tion”.

Beginning with MySQL 5.1.19-ndb-6.2.3, it is possible to improve cluster replication performance by enabling batched updates. This
can be accomplished by starting slave mysqld processes with the --slave-allow-batching option. Normally, updates are ap-
plied as soon as they are received. However, the use of batching causes updates to be applied in 32 KB batches, which can result in
higher throughput and less CPU usage, particularly where individual updates are relatively small.

Note

Slave batching works on a per-epoch basis; updates belonging to more than one transaction can be sent as part of the same
batch.

All outstanding updates are applied when the end of an epoch is reached, even if the updates total less than 32 KB.

Batching can be turned on and off at runtime. To activate it at runtime, you can use either of these two statements:

SET GLOBAL slave_allow_batching = 1;
SET GLOBAL slave_allow_batching = ON;

If a particular batch causes problems (such as a statement whose effects do not appear to be replicated correctly), slave batching can be
deactivated using either of the following statements:

SET GLOBAL slave_allow_batching = 0;
SET GLOBAL slave_allow_batching = OFF;

You can check whether slave batching is currently being used by means of an appropriate SHOW VARIABLES statement, like this one:

mysql> SHOW VARIABLES LIKE 'slave%';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| slave_allow_batching | ON |
| slave_compressed_protocol | OFF |
| slave_load_tmpdir | /tmp |
| slave_net_timeout | 3600 |
| slave_skip_errors | OFF |
| slave_transaction_retries | 10 |
+---------------------------+-------+
6 rows in set (0.00 sec)

The following information applies to all MySQL Cluster users.

17.12.7. Using Two Replication Channels
In a more complete example scenario, we envision two replication channels to provide redundancy and thereby guard against possible
failure of a single replication channel. This requires a total of four replication servers, two masters for the master cluster and two slave
servers for the slave cluster. For purposes of the discussion that follows, we assume that unique identifiers are assigned as shown here:

Server ID Description

MySQL Cluster

1232



1 Master - primary replication channel (M)

2 Master - secondary replication channel (M')

3 Slave - primary replication channel (S)

4 Slave - secondary replication channel (S')

Setting up replication with two channels is not radically different from setting up a single replication channel. First, the mysqld pro-
cesses for the primary and secondary replication masters must be started, followed by those for the primary and secondary slaves. Then
the replication processes may be initiated by issuing the START SLAVE statement on each of the slaves. The commands and the order
in which they need to be issued are shown here:

1. Start the primary replication master:

shellM> mysqld --ndbcluster --server-id=1 \
--log-bin --binlog-format=row &

2. Start the secondary replication master:

shellM'> mysqld --ndbcluster --server-id=2 \
--log-bin --binlog-format=row &

3. Start the primary replication slave server:

shellS> mysqld --ndbcluster --server-id=3 \
--skip-slave-start &

4. Start the secondary replication slave:

shellS'> mysqld --ndbcluster --server-id=4 \
--skip-slave-start &

5. Finally, initiate replication on the primary channel by executing the START SLAVE statement on the primary slave as shown here:

mysqlS> START SLAVE;

Warning

Only the primary channel is to be started at this point. The secondary replication channel is to be started only in the event
that the primary replication channel fails, as described in Section 17.12.8, “Implementing Failover with MySQL Cluster”.
Running multiple replication channels simultaneously can result in unwanted duplicate records being created on the replic-
ation slaves.

As mentioned previously, it is not necessary to enable binary logging on replication slaves.

17.12.8. Implementing Failover with MySQL Cluster
In the event that the primary Cluster replication process fails, it is possible to switch over to the secondary replication channel. The fol-
lowing procedure describes the steps required to accomplish this.

1. Obtain the time of the most recent global checkpoint (GCP). That is, you need to determine the most recent epoch from the
ndb_apply_status table on the slave cluster, which can be found using the following query:

mysqlS'> SELECT @latest:=MAX(epoch)
-> FROM mysql.ndb_apply_status;

2.
Using the information obtained from the query shown in Step 1, obtain the corresponding records from the ndb_binlog_index
table on the master cluster as shown here:

mysqlM'> SELECT

MySQL Cluster

1233



-> @file:=SUBSTRING_INDEX(File, '/', -1),
-> @pos:=Position
-> FROM mysql.ndb_binlog_index
-> WHERE epoch >= @latest
-> ORDER BY epoch ASC LIMIT 1;

These are the records saved on the master since the failure of the primary replication channel. We have employed a user variable
@latest here to represent the value obtained in Step 1. Of course, it is not possible for one mysqld instance to access user vari-
ables set on another server instance directly. These values must be “plugged in” to the second query manually or in application
code.

3. Now it is possible to synchronize the secondary channel by running the following query on the secondary slave server:

mysqlS'> CHANGE MASTER TO
-> MASTER_LOG_FILE='@file',
-> MASTER_LOG_POS=@pos;

Again we have employed user variables (in this case @file and @pos) to represent the values obtained in Step 2 and applied in
Step 3; in practice these values must be inserted manually or using application code that can access both of the servers involved.

Note

@file is a string value such as '/var/log/mysql/replication-master-bin.00001', and so must be
quoted when used in SQL or application code. However, the value represented by @pos must not be quoted. Although
MySQL normally attempts to convert strings to numbers, this case is an exception.

4. You can now initiate replication on the secondary channel by issuing the appropriate command on the secondary slave mysqld:

mysqlS'> START SLAVE;

Once the secondary replication channel is active, you can investigate the failure of the primary and effect repairs. The precise actions re-
quired to do this will depend upon the reasons for which the primary channel failed.

Warning

The secondary replication channel is to be started only if and when the primary replication channel has failed. Running
multiple replication channels simultaneously can result in unwanted duplicate records being created on the replication
slaves.

If the failure is limited to a single server, it should (in theory) be possible to replicate from M to S', or from M' to S; however, this has
not yet been tested.

17.12.9. MySQL Cluster Backups With Replication
This section discusses making backups and restoring from them using MySQL Cluster replication. We assume that the replication serv-
ers have already been configured as covered previously (see Section 17.12.5, “Preparing the Cluster for Replication”, and the sections
immediately following). This having been done, the procedure for making a backup and then restoring from it is as follows:

1. There are two different methods by which the backup may be started.

• Method A. This method requires that the cluster backup process was previously enabled on the master server, prior to starting
the replication process. This can be done by including the following line in a [mysql_cluster] section in the my.cnf
file, where management_host is the IP address or hostname of the NDB management server for the master cluster, and
port is the management server's port number:

ndb-connectstring=management_host[:port]

Note

The port number needs to be specified only if the default port (1186) is not being used. See Section 17.3.3,
“Multi-Computer Configuration”, for more information about ports and port allocation in MySQL Cluster.
In this case, the backup can be started by executing this statement on the replication master:

MySQL Cluster

1234



shellM> ndb_mgm -e "START BACKUP"

• Method B. If the my.cnf file does not specify where to find the management host, you can start the backup process by
passing this information to the NDB management client as part of the START BACKUP command. This can be done as shown
here, where management_host and port are the hostname and port number of the management server:

shellM> ndb_mgm management_host:port -e "START BACKUP"

In our scenario as outlined earlier (see Section 17.12.5, “Preparing the Cluster for Replication”), this would be executed as fol-
lows:

shellM> ndb_mgm rep-master:1186 -e "START BACKUP"

2. Copy the cluster backup files to the slave that is being brought on line. Each system running an ndbd process for the master
cluster will have cluster backup files located on it, and all of these files must be copied to the slave to ensure a successful restore.
The backup files can be copied into any directory on the computer where the slave management host resides, so long as the
MySQL and NDB binaries have read permissions in that directory. In this case, we will assume that these files have been copied
into the directory /var/BACKUPS/BACKUP-1.

It is not necessary that the slave cluster have the same number of ndbd processes (data nodes) as the master; however, it is highly
recommended this number be the same. It is necessary that the slave be started with the --skip-slave-start option, to pre-
vent premature startup of the replication process.

3. Create any databases on the slave cluster that are present on the master cluster that are to be replicated to the slave.

Important

A CREATE DATABASE (or CREATE SCHEMA) statement corresponding to each database to be replicated must be ex-
ecuted on each SQL node in the slave cluster.

4. Reset the slave cluster using this statement in the MySQL Monitor:

mysqlS> RESET SLAVE;

It is important to make sure that the slave's apply_status table does not contain any records prior to running the restore pro-
cess. You can accomplish this by running this SQL statement on the slave:

mysqlS> DELETE FROM mysql.ndb_apply_status;

5. You can now start the cluster restoration process on the replication slave using the ndb_restore command for each backup file
in turn. For the first of these, it is necessary to include the -m option to restore the cluster metadata:

shellS> ndb_restore -c slave_host:port -n node-id \
-b backup-id -m -r dir

dir is the path to the directory where the backup files have been placed on the replication slave. For the ndb_restore com-
mands corresponding to the remaining backup files, the -m option should not be used.

For restoring from a master cluster with four data nodes (as shown in the figure in Section 17.12, “MySQL Cluster Replication”)
where the backup files have been copied to the directory /var/BACKUPS/BACKUP-1, the proper sequence of commands to be
executed on the slave might look like this:

shellS> ndb_restore -c rep-slave:1186 -n 2 -b 1 -m \
-r ./var/BACKUPS/BACKUP-1

shellS> ndb_restore -c rep-slave:1186 -n 3 -b 1 \
-r ./var/BACKUPS/BACKUP-1

shellS> ndb_restore -c rep-slave:1186 -n 4 -b 1 \
-r ./var/BACKUPS/BACKUP-1

shellS> ndb_restore -c rep-slave:1186 -n 5 -b 1 -e \
-r ./var/BACKUPS/BACKUP-1

Important

The -e (or --restore-epoch) option in the final invocation of ndb_restore in this example is required in order

MySQL Cluster

1235



that the epoch is written to the slave mysql.ndb_apply_status. Without this information, the slave will not be able
to synchronize properly with the master. (See Section 17.10.3, “ndb_restore — Restore a Cluster Backup”.)

6. Now you need to obtain the most recent epoch from the ndb_apply_status table on the slave (as discussed in Section 17.12.8,
“Implementing Failover with MySQL Cluster”):

mysqlS> SELECT @latest:=MAX(epoch)
FROM mysql.ndb_apply_status;

7. Using @latest as the epoch value obtained in the previous step, you can obtain the correct starting position @pos in the correct
binary log file @file from the master's mysql.ndb_binlog_index table using the query shown here:

mysqlM> SELECT
-> @file:=SUBSTRING_INDEX(File, '/', -1),
-> @pos:=Position
-> FROM mysql.ndb_binlog_index
-> WHERE epoch > @latest
-> ORDER BY epoch ASC LIMIT 1;

In the event that there is currently no replication traffic, you can get this information by running SHOW MASTER STATUS on the
master and using the value in the Position column for the file whose name has the suffix with the greatest value for all files
shown in the File column. However, in this case, you must determine this and supply it in the next step manually or by parsing
the output with a script.

8. Using the values obtained in the previous step, you can now issue the appropriate CHANGE MASTER TO statement in the slave's
mysql client:

mysqlS> CHANGE MASTER TO
-> MASTER_LOG_FILE='@file',
-> MASTER_LOG_POS=@pos;

9. Now that the slave “knows” from what point in which binlog file to start reading data from the master, you can cause the slave
to begin replicating with this standard MySQL statement:

mysqlS> START SLAVE;

To perform a backup and restore on a second replication channel, it is necessary only to repeat these steps, substituting the hostnames
and IDs of the secondary master and slave for those of the primary master and slave replication servers where appropriate, and running
the preceding statements on them.

For additional information on performing Cluster backups and restoring Cluster from backups, see Section 17.10, “On-line Backup of
MySQL Cluster”.

17.12.9.1. Automating Synchronization of the Slave to the Master binlog

It is possible to automate much of the process described in the previous section (see Section 17.12.9, “MySQL Cluster Backups With
Replication”). The following Perl script reset-slave.pl serves as an example of how you can do this.

#!/user/bin/perl -w

# file: reset-slave.pl

# Copyright ©2005 MySQL AB

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License
# along with this program; if not, write to:
# Free Software Foundation, Inc.
# 59 Temple Place, Suite 330
# Boston, MA 02111-1307 USA
#
# Version 1.1

MySQL Cluster

1236



######################## Includes ###############################

use DBI;

######################## Globals ################################

my $m_host='';
my $m_port='';
my $m_user='';
my $m_pass='';
my $s_host='';
my $s_port='';
my $s_user='';
my $s_pass='';
my $dbhM='';
my $dbhS='';

####################### Sub Prototypes ##########################

sub CollectCommandPromptInfo;
sub ConnectToDatabases;
sub DisconnectFromDatabases;
sub GetSlaveEpoch;
sub GetMasterInfo;
sub UpdateSlave;

######################## Program Main ###########################

CollectCommandPromptInfo;
ConnectToDatabases;
GetSlaveEpoch;
GetMasterInfo;
UpdateSlave;
DisconnectFromDatabases;

################## Collect Command Prompt Info ##################

sub CollectCommandPromptInfo
{
### Check that user has supplied correct number of command line args
die "Usage:\n

reset-slave >master MySQL host< >master MySQL port< \n
>master user< >master pass< >slave MySQL host< \n
>slave MySQL port< >slave user< >slave pass< \n

All 8 arguments must be passed. Use BLANK for NULL passwords\n"
unless @ARGV == 8;

$m_host = $ARGV[0];
$m_port = $ARGV[1];
$m_user = $ARGV[2];
$m_pass = $ARGV[3];
$s_host = $ARGV[4];
$s_port = $ARGV[5];
$s_user = $ARGV[6];
$s_pass = $ARGV[7];

if ($m_pass eq "BLANK") { $m_pass = '';}
if ($s_pass eq "BLANK") { $s_pass = '';}

}

############### Make connections to both databases #############

sub ConnectToDatabases
{
### Connect to both master and slave cluster databases

### Connect to master
$dbhM
= DBI->connect(
"dbi:mysql:database=mysql;host=$m_host;port=$m_port",
"$m_user", "$m_pass")
or die "Can't connect to Master Cluster MySQL process!

Error: $DBI::errstr\n";

### Connect to slave
$dbhS
= DBI->connect(

"dbi:mysql:database=mysql;host=$s_host",
"$s_user", "$s_pass")

or die "Can't connect to Slave Cluster MySQL process!
Error: $DBI::errstr\n";

}

################ Disconnect from both databases ################

sub DisconnectFromDatabases
{
### Disconnect from master

MySQL Cluster

1237



$dbhM->disconnect
or warn " Disconnection failed: $DBI::errstr\n";

### Disconnect from slave

$dbhS->disconnect
or warn " Disconnection failed: $DBI::errstr\n";

}

###################### Find the last good GCI ##################

sub GetSlaveEpoch
{
$sth = $dbhS->prepare("SELECT MAX(epoch)

FROM mysql.ndb_apply_status;")
or die "Error while preparing to select epoch from slave: ",

$dbhS->errstr;

$sth->execute
or die "Selecting epoch from slave error: ", $sth->errstr;

$sth->bind_col (1, \$epoch);
$sth->fetch;
print "\tSlave Epoch = $epoch\n";
$sth->finish;

}

####### Find the position of the last GCI in the binlog ########

sub GetMasterInfo
{
$sth = $dbhM->prepare("SELECT

SUBSTRING_INDEX(File, '/', -1), Position
FROM mysql.ndb_binlog_index
WHERE epoch > $epoch
ORDER BY epoch ASC LIMIT 1;")

or die "Prepare to select from master error: ", $dbhM->errstr;

$sth->execute
or die "Selecting from master error: ", $sth->errstr;

$sth->bind_col (1, \$binlog);
$sth->bind_col (2, \$binpos);
$sth->fetch;
print "\tMaster bin log = $binlog\n";
print "\tMaster Bin Log position = $binpos\n";
$sth->finish;

}

########## Set the slave to process from that location #########

sub UpdateSlave
{
$sth = $dbhS->prepare("CHANGE MASTER TO

MASTER_LOG_FILE='$binlog',
MASTER_LOG_POS=$binpos;")

or die "Prepare to CHANGE MASTER error: ", $dbhS->errstr;

$sth->execute
or die "CHNAGE MASTER on slave error: ", $sth->errstr;

$sth->finish;
print "\tSlave has been updated. You may now start the slave.\n";

}

# end reset-slave.pl

17.12.10. MySQL Cluster Replication Conflict Resolution
MySQL Cluster 5.1 Carrier Grade Edition. The information in this section applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier Grade
Edition”.

When using a replication setup involving multiple masters, it is possible that different masters may try to update the same row on the
slave with different data. Conflict resolution in MySQL Cluster Replication provides a means of resolving such conflicts by allowing a
user defined “timestamp” column to be used to determine whether or not an update to the row on a given master should be applied on
the slave.

Different methods can be used to compare “timestamps” on the slave when conflicts occur, as explained later in this section; the method
used can be set on a per-table basis.

Requirements. Preparations for conflict resolution must be made on both the master and the slave:

MySQL Cluster

1238



• On the master writing the binlogs, you must determine which columns are sent (all columns or only those that have been updated).
This is done for the MySQL Server as a whole by applying the mysqld startup option -–ndb-log-updated-only (described
later in this section) or on a per-table basis by entries in the mysql.ndb_replication table.

• On the slave, you must determine which type of conflict resolution to apply (“latest timestamp wins”, “same timestamp wins”, or
none). This is done using the mysql.ndb_replication system table, on a per-table basis.

If only some but not all columns are sent, then the master and slave can diverge.

Note

We refer to the column used for determining updates as a “timestamp” column, but the data type of this column is never
TIMESTAMP; rather, its data type should be an integer type. This column can be either signed or unsigned.

Master column control. We can see update operations in terms of “before” and “after” images — that is, the states of the table before
and after the update is applied. Normally, when updating a table with a primary key, the “before” image is not of great interest;
however, when we need to determine on a per-update basis whether or not to use the updated values on a replication slave, we need to
make sure that both images are written to the master's binary log. This is done with the --ndb-log-update-as-write startup op-
tion for mysqld, as described later in this section.

Important

Whether logging of complete rows or of updated columns only is done is decided when the MySQL server is started, and
cannot be changed online; you must either restart mysqld, or start a new mysqld instance with different logging options.

Logging full or partial rows (--ndb-log-updated-only option). For purposes of conflict resolution, there are two basic meth-
ods of logging rows, as determined by the setting of the --ndb-log-updated-only option for mysqld:

• Log complete rows

• Log only column data that has been updated — that is, column data whose value has been set, regardless of whether or not this value
was actually changed.

It is more efficient to log updated columns only; however, if you need to log full rows, you can do so by setting -
-ndb-log-updated-only to 0 or OFF.

Logging changed data as updates (--ndb-log-update-as-write option). Either of these logging methods can be configured
to be done with or without the “before” image as determined by the setting of another MySQL Server option -
-ndb-log-update-as-write. Because conflict resolution is done in the MySQL Server's update handler, it is necessary to con-
trol logging on the master such that updates are updates and not writes; that is, such that updates are treated as changes in existing rows
rather than the writing of new rows (even though these replace existing rows). This option is turned on by default; to turn it off, start the
server with --ndb-log-update-as-write=0 or --ndb-log-update-as-write=OFF.

Conflict resolution control. Conflict resolution is usually enabled on the server where conflicts can occur. Like logging method selec-
tion, it is enabled by entries in the mysql.ndb_replication table.

The ndb_replication system table. To enable conflict resolution, it is necessary to create an ndb_replication table in the
mysql system database on the master, the slave, or both, depending on the conflict resolution type and method to be employed. This ta-
ble is used to control logging and conflict resolution functions on a per-table basis, and has one row per table invoved in replication.
ndb_replication is created and filled with control information on the server where the conflict is to be resolved. In a simple mas-
ter-slave setup where data can also be changed locally on the slave this will typically be the slave. In a more complex master-master
(2-way) replication schema this will usually be all of the masters involved. Each row in mysql.ndb_replication corresponds to a
table being replicated, and specifies how to log and resolve conflicts (that is, which conflict resolution function, if any, to use) for that
table. The definition of the mysql.ndb_replication table is shown here:

CREATE TABLE mysql.ndb_replication (
db VARBINARY(63),
table_name VARBINARY(63),
server_id INT UNSIGNED,
binlog_type INT UNSIGNED,
conflict_fn VARBINARY(128),
PRIMARY KEY USING HASH (db, table_name, server_id)

) ENGINE=NDB
PARTITION BY KEY(db,table_name);

The columns in this table are described in the following list:

MySQL Cluster

1239



• db. The name of the database containing the table to be replicated.

• table_name. The name of the table to be replicated.

• server_id. The unique server ID of the MySQL instance (SQL node) where the table resides.

• binlog_type. The type of binary logging to be employed. This is determined as shown in the following table:

Value Internal Value Description

0 NBT_DEFAULT Use server default

1 NBT_NO_LOGGING Do not log this table in the binary log

2 NBT_UPDATED_ONLY Only updated attributes are logged

3 NBT_FULL Log full row, even if not updated (MySQL server default behavior)

4 NBT_USE_UPDATE (For generating NBT_UPDATED_ONLY_USE_UPDATE and
NBT_FULL_USE_UPDATE values only — not intended for separate use)

5 [Not used] ---

6 NBT_UPDATED_ONLY_USE_UPDAT
E (equal to NBT_UPDATED_ONLY |
NBT_USE_UPDATE)

Use updated attributes, even if values are unchanged

7 NBT_FULL_USE_UPDATE (equal to
NBT_FULL | NBT_USE_UPDATE)

Use full row, even if values are unchanged

• conflict_fn. The conflict resolution function to be applied. This function must be specified as one of the following:

• NDB$MAX(column_name). Indicates that “greatest timestamp wins” conflict resolution is to be used — that is, if the
“timestamp” for a given row coming from the master is higher than that on the slave, it is applied; otherwise it is not applied on
the slave. This ensures that, in the event of a conflict, the version of the row that was most recently updated is the version that
persists.

This conflict resolution function is available in MySQL Cluster 5.1 Carrier Grade Edition releases beginning with MySQL
5.1.19-ndb-6.3.0.

• NDB$OLD(column_name). Indicates that an update is applied only if the value of column_name is the same on both the
master and the slave. This ensures that updates are not applied from the wrong master.

This conflict resolution function is available in MySQL Cluster 5.1 Carrier Grade Edition releases beginning with MySQL
5.1.22-ndb-6.3.4.

• NULL: Indicates that conflict resolution is not to be used for the corresponding table
.

Status information. Beginning with MySQL 5.1.22-ndb-6.3.3, a server status variable Ndb_conflict_fn_max provides a count of
the number of times that a row was not applied on the current SQL node due to “greatest timestamp wins” conflict resolution since the
last time that mysqld was started.

Beginning with MySQL-5.1.22-ndb-6.3.4, the number of times that a row was not applied as the result of “same timestamp wins” con-
flict resolution on a given mysqld since the last time it was restarted is given by the global status variable Ndb_conflict_fn_old.
In addition to incrementing Ndb_conflict_fn_old, the primary key of the row that was not used is inserted into an exceptions ta-
ble, as explained later in this section.

Additional requirements for “Same timestamp wins” conflict resolution. To use the NDB$OLD() conflict resolution function, it is
also necessary to create an exceptions table corresponding to each NDB table for which this type of conflict resolution is to be employed.
The name of this table is that of the table for which “same timestamp wins” conflict resolution is to be applied, with the string $EX ap-
pended. (For example, if the name of the original table is mytable, the name of the corresponding exception table name should be
mytable$EX.) This table is created as follows:

CREATE TABLE original_table$EX (
server_id INT UNSIGNED,
master_server_id INT UNSIGNED,
master_epoch BIGINT UNSIGNED,
count INT UNSIGNED,

MySQL Cluster

1240



original_table_pk_columns,
[additional_columns,]
PRIMARY KEY(server_id, master_server_id, master_epoch, count)

) ENGINE=NDB;

The first four columns are required. Following these columns, the columns making up the original table's primary key should be copied
in the order in which they are used to define the primary key of the original table.

Note

The names of the first four columns and the columns matching the original table's primary key columns are not critical;
however, we suggest for reasons of clarity and consistency, that you use the names shown here for the server_id,
master_server_id, master_epoch, and count columns, and that you use the same names as in the original table
for the columns matching those in the original table's primary key.

The data types for the columns duplicating the primary key columns of the original table should be the same as for (or lar-
ger than) the original columns.

Additional columns may optionally be defined following these columns, but not before any of them; any such extra columns cannot be
NOT NULL. The exception table's primary key must be defined as shown. The exception table must use the NDB storage engine. An ex-
ample of use for NDB$OLD() and an exception table is given later in this section.

Important

The mysql.ndb_replication table is read when a data table is set up for replication, so the row corresponding to a
table to be replicated must be inserted into mysql.ndb_replication before the table to be replicated is created.

Examples. The following examples assume that you have already a working MySQL Cluster replication setup, as described in Sec-
tion 17.12.5, “Preparing the Cluster for Replication”, and Section 17.12.6, “Starting Replication (Single Replication Channel)”.

• NDB$MAX() example. Suppose you wish to enable “greatest timestamp wins” conflict resolution on table test.t1, using
column mycol as the “timestamp”. This can be done using the following steps:

1. Make sure that you have started the master mysqld with -–ndb-log-update-as-write=OFF.

2. On the master, perform this INSERT statement:

INSERT INTO mysql.ndb_replication
VALUES ('test', 't1', 0, NULL, 'NDB$MAX(mycol)');

Inserting a 0 into the server_id indicates that all SQL nodes accessing this table should use conflict resolution. If you want
to use conflict resolution on a specific mysqld only, use the actual server ID.

Inserting NULL into the binlog_type column has the same effect as inserting 0 (NBT_DEFAULT); the server default is
used.

3. Create the test.t1 table:

CREATE TABLE test.t1 (
columns
mycol INT UNSIGNED,
columns

) ENGINE=NDB;

Now, when updates are done on this table, conflict resolution will be applied, and the version of the row having the greatest
value for mycol will be written to the slave.

Note

Other binlog_type options — such as NBT_UPDATED_ONLY_USE_UPDATE should be used in order to control log-
ging on the master via the ndb_replication table rather than by using command line options.

• NDB$OLD() example. Suppose an NDB table such as the one defined here is being replicated, and you wish to enable “same
timestamp wins” conflict resolution for updates to this table:

CREATE TABLE test.t2 (
a INT UNSIGNED NOT NULL,
b CHAR(25) NOT NULL,
columns,
mycol INT UNSIGNED NOT NULL,
columns,

MySQL Cluster

1241



PRIMARY KEY pk (a, b)
) ENGINE=NDB;

The following steps are required, in the order shown:

1. First — and prior to creating test.t2 — you must insert a row into the mysql.ndb_replication table, as shown here:

INSERT INTO mysql.ndb_replication
VALUES ('test', 't2', 0, NULL, 'NDB$OLD(mycol)');

Possible values for the binlog_type column are shown earlier in this section. The value 'NDB$OLD(mycol)' should be
inserted into the conflict_fn column.

2. Create an appropriate exceptions table for test.t2. The table creation statement shown here includes all required columns;
any additional columns must be declared following these columns, and before the definition of the table's primary key.

CREATE TABLE test.t2$EX (
server_id SMALLINT UNSIGNED,
master_server_id SMALLINT UNSIGNED,
master_epoch BIGINT UNSIGNED,
count BIGINT UNSIGNED,
a INT UNSIGNED NOT NULL,
b CHAR(25) NOT NULL,
[additional_columns,]
PRIMARY KEY(server_id, master_server_id, master_epoch, count)

) ENGINE=NDB;

3. Create the table test.t2 as shown previously.
These steps must be followed for every table for which you wish to perform conflict resolution using NDB$OLD(). For each such
table, there must be a corresponding row in mysql.ndb_replication, and there must be an exceptions table in the same data-
base as the table being replicated.

17.13. MySQL Cluster Disk Data Tables
Beginning with MySQL 5.1.6, it is possible to store the non-indexed columns of NDB tables on disk, rather than in RAM as with previ-
ous versions of MySQL Cluster.

As part of implementing Cluster Disk Data work, a number of improvements were made in MySQL Cluster for the efficient handling of
very large amounts (terabytes) of data during node recovery and restart. These include a “no-steal” algorithm for synchronising a start-
ing node with very large data sets. For more information, see the paper Recovery Principles of MySQL Cluster 5.1, by MySQL Cluster
developers Mikael Ronström and Jonas Oreland.

17.13.1. Disk Data Objects
This section discusses Disk Data objects — which include tables, log file groups, and tablespaces — as well as how to create and drop
them.

Assuming that you have already set up a MySQL Cluster with all nodes (including management and SQL nodes) running MySQL 5.1.6
or newer, the basic steps for creating a Cluster table on disk are as follows:

1. Create a log file group, and assign one or more undo log files to it (an undo log file is also referred as an undofile).

Note

In MySQL 5.1, undo log files are necessary only for Disk Data tables. They are no longer used for tables that are stored in
memory.

2. Create a tablespace, and assign the log file group to it, as well as one or more data files.

3. Create a Disk Data table that uses this tablespace for data storage.

Each of these tasks can be accomplished using SQL statements, as shown in the following example.

1.

MySQL Cluster

1242



We create a log file group named lg_1 using CREATE LOGFILE GROUP. This log file group is to be made up of two undo log
files, which we name undo_1.dat and undo_2.dat, whose initial sizes are 16 MB and 12 MB, respectively. (The default ini-
tial size for an undo log file is 128 MB.) Optionally, you can also specify a size for the log file group's UNDO buffer, or allow it to
assume the default value of 8 MB. In this example, we set the UNDO buffer's size at 2 MB. A log file group must be created with
an undo log file; so we add undo_1.dat to lg_1 in this CREATE LOGFILE GROUP statement:

CREATE LOGFILE GROUP lg_1
ADD UNDOFILE 'undo_1.dat'
INITIAL_SIZE 16M
UNDO_BUFFER_SIZE 2M
ENGINE NDB;

To add undo_2.dat to the log file group, use the following ALTER LOGFILE GROUP statement:

ALTER LOGFILE GROUP lg_1
ADD UNDOFILE 'undo_2.dat'
INITIAL_SIZE 12M
ENGINE NDB;

Some items of note:

• The .dat file extension used here is not required. We use it merely to make the log and data files easily recognisable.

• Every CREATE LOGFILE GROUP and ALTER LOGFILE GROUP statement must include an ENGINE clause. In MySQL
5.1, the permitted values for this clause are NDB and NDBCLUSTER.

Important

In MySQL 5.1.8 and later, there can exist only one log file group at any given time.

• When you add an undo log file to a log file group using ADD UNDOFILE 'filename', a file with the name filename is
created in the ndb_nodeid_fs directory within the DataDirectory of each data node in the cluster, where nodeid is
the node ID of the data node.

• UNDO_BUFFER_SIZE is limited by the amount of system memory available.

• For more information about the CREATE LOGFILE GROUP statement, see Section 12.1.8, “CREATE LOGFILE GROUP
Syntax”. For more information about ALTER LOGFILE GROUP, see Section 12.1.2, “ALTER LOGFILE GROUP Syntax”.

2.
Now we can create a tablespace, which contains files to be used by MySQL Cluster Disk Data tables for storing their data. A ta-
blespace is also associated with a particular log file group. When creating a new tablespace, you must specify the log file group
which it is to use for undo logging; you must also specify a data file. You can add more data files to the tablespace after the ta-
blespace is created; it is also possible to drop data files from a tablespace (an example of dropping data files is provided later in this
section).

Assume that we wish to create a tablespace named ts_1 which uses lg_1 as its log file group. This tablespace is to contain two
data files named data_1.dat and data_2.dat, whose initial sizes are 32 MB and 48 MB, respectively. (The default value for
INITIAL_SIZE is 128 MB.) We can do this using two SQL statements, as shown here:

CREATE TABLESPACE ts_1
ADD DATAFILE 'data_1.dat'
USE LOGFILE GROUP lg_1
INITIAL_SIZE 32M
ENGINE NDB;

ALTER TABLESPACE ts_1
ADD DATAFILE 'data_2.dat'
INITIAL_SIZE 48M
ENGINE NDB;

The CREATE TABLESPACEstatement creates a tablespace ts_1 with the data file data_1.dat, and associates ts_1 with log
file group lg_1. The ALTER TABLESPACE adds the second data file (data_2.dat).

Some items of note:

• As is the case with the filenames used here for undo log files, there is no special significance for the .dat file extension; it is
used merely for easy recognition.

MySQL Cluster

1243



• All CREATE TABLESPACE and ALTER TABLESPACE statements must contain an ENGINE clause; only tables using the
same storage engine as the tablespace can be created in the tablespace. In MySQL 5.1, the only permitted values for this clause
are NDB and NDBCLUSTER.

For more information about the CREATE TABLESPACE and ALTER TABLESPACE statements, see Section 12.1.11, “CRE-
ATE TABLESPACE Syntax”, and Section 12.1.5, “ALTER TABLESPACE Syntax”.

3.
Now it is possible to create a table whose non-indexed columns are stored on disk in the tablespace ts_1:

CREATE TABLE dt_1 (
member_id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
last_name VARCHAR(50) NOT NULL,
first_name VARCHAR(50) NOT NULL,
dob DATE NOT NULL,
joined DATE NOT NULL,
INDEX(last_name, first_name)
)
TABLESPACE ts_1 STORAGE DISK
ENGINE NDB;

The TABLESPACE ... STORAGE DISK clause tells the NDB Cluster storage engine to use tablespace ts_1 for disk data
storage.

Note

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier
Grade Edition only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL
Cluster 5.1 Carrier Grade Edition”.

Beginning with MySQL 5.1.19-ndb-6.2.5 and MySQL 5.1.20-ndb-6.3.2, it is also possible to specify whether an individual
column is stored on disk or in memory by using a STORAGE clause as part of the column's definition in a CREATE TA-
BLE or ALTER TABLE statement. STORAGE DISK causes the column to be stored on disk, and STORAGE MEMORY
causes in-memory storage to be used. See Section 12.1.10, “CREATE TABLE Syntax”, for more information.

The following information applies to all MySQL Cluster users.

Once table ts_1 has been created as shown, you can perform INSERT, SELECT, UPDATE, and DELETE statements on it just as
you would with any other MySQL table.

For table dt_1 as it has been defined here, only the dob and joined columns are stored on disk. This is because there are in-
dexes on the id, last_name, and first_name columns, and so data belonging to these columns is stored in RAM. In MySQL
5.1, only non-indexed columns can be held on disk; indexes and indexed column data continue to be stored in memory. This trade-
off between the use of indexes and conservation of RAM is something you must keep in mind as you design Disk Data tables.

Performance note. The performance of a cluster using Disk Data storage is greatly improved if Disk Data files are kept on a separate
physical disk from the data node filesystem. This must be done for each data node in the cluster to derive any noticeable benefit.

You may use absolute and relative filesystem paths with ADD UNDOFILE and ADD DATAFILE. Relative paths are calculated relative
to the data node's data directory.

A log file group, a tablespace, and any Disk Data tables using these must be created in a particular order. The same is true for dropping
any of these objects:

• A log file group cannot be dropped, so long as any tablespaces are using it.

• A tablespace cannot be dropped as long as it contains any data files.

• You cannot drop any data files from a tablespace as long as there remain any tables which are using the tablespace.

• Beginning with MySQL 5.1.12, it is no longer possible to drop files created in association with a different tablespace than the one
with which the files were created. (Bug#20053)

For example, to drop all the objects created so far in this section, you would use the following statements:

MySQL Cluster

1244

http://bugs.mysql.com/20053


mysql> DROP TABLE dt_1;

mysql> ALTER TABLESPACE ts_1
-> DROP DATAFILE 'data_2.dat'
-> ENGINE NDB;

mysql> ALTER TABLESPACE ts_1
-> DROP DATAFILE 'data_1.dat'
-> ENGINE NDB;

mysql> DROP TABLESPACE ts_1
-> ENGINE NDB;

mysql> DROP LOGFILE GROUP lg_1
-> ENGINE NDB;

These statements must be performed in the order shown, except that the two ALTER TABLESPACE ... DROP DATAFILE state-
ments may be executed in either order.

You can obtain information about data files used by Disk Data tables by querying the FILES table in the INFORMATION_SCHEMA
database. An extra “NULL row” was added to this table in MySQL 5.1.14 for providing additional information about undo log files. For
more information and examples of use, see Section 24.21, “The INFORMATION_SCHEMA FILES Table”.

17.13.2. Disk Data Storage Requirements
The following items apply to Disk Data storage requirements:

• Variable-length columns of Disk Data tables take up a fixed amount of space. For each row, this is equal to the space required to
store the largest possible value for that column.

For general information about calculating these values, see Section 10.5, “Data Type Storage Requirements”.

• In a Disk Data table, the first 256 bytes of a TEXT or BLOB column are stored in memory; only the remainder is stored on disk.

Important

Starting the cluster with the --initial option does not remove Disk Data files. You must remove these manually prior
to performing an initial restart of the cluster.

17.13.3. Disk Data Configuration Parameters
Configuration parameters affecting Disk Data behaviour include the following:

•
DiskPageBufferMemory

This determines the amount of space used for caching pages on disk, and is set in the [ndbd] or [ndbd default] section of
the config.ini file. It is measured in bytes. Each page takes up 32 KB. This means that Cluster Disk Data storage always uses N
* 32 KB memory where N is some non-negative integer.

•
SharedGlobalMemory

This determines the amount of memory that is used for log buffers, disk operations (such as page requests and wait queues), and
metadata for tablespaces, log file groups, UNDO files, and data files. It can be set in the [ndbd] or [ndbd default] section of
the config.ini configuration file, and is measured in bytes.

The default value is 20M.

These parameters were added in MySQL 5.1.6

Note

The OPTIMIZE TABLE statement does not have any effect on Disk Data tables.

MySQL Cluster

1245



17.14. Using High-Speed Interconnects with MySQL Cluster
Even before design of NDB Cluster began in 1996, it was evident that one of the major problems to be encountered in building par-
allel databases would be communication between the nodes in the network. For this reason, NDB Cluster was designed from the
very beginning to allow for the use of a number of different data transport mechanisms. In this Manual, we use the term transporter for
these.

The MySQL Cluster codebase includes support for four different transporters:

• TCP/IP using 100 Mbps or gigabit Ethernet, as discussed in Section 17.4.4.7, “Cluster TCP/IP Connections”.

• Direct (machine-to-machine) TCP/IP; although this transporter uses the same TCP/IP protocol as mentioned in the previous item, it
requires setting up the hardware differently and is configured differently as well. For this reason, it is considered a separate transport
mechanism for MySQL Cluster. See Section 17.4.4.8, “TCP/IP Connections Using Direct Connections”, for details.

• Shared memory (SHM). For more information about SHM, see Section 17.4.4.9, “Shared-Memory Connections”.

• Scalable Coherent Interface (SCI), as described in the next section of this chapter, Section 17.4.4.10, “SCI Transport Connections”.

Most users today employ TCP/IP over Ethernet because it is ubiquitous. TCP/IP is also by far the best-tested transporter for use with
MySQL Cluster.

We are working to make sure that communication with the ndbd process is made in “chunks” that are as large as possible because this
benefits all types of data transmission.

For users who desire it, it is also possible to use cluster interconnects to enhance performance even further. There are two ways to
achieve this: Either a custom transporter can be designed to handle this case, or you can use socket implementations that bypass the
TCP/IP stack to one extent or another. We have experimented with both of these techniques using the SCI (Scalable Coherent Interface)
technology developed by Dolphin.

17.14.1. Configuring MySQL Cluster to use SCI Sockets
In this section, we show how to adapt a cluster configured for normal TCP/IP communication to use SCI Sockets instead. This docu-
mentation is based on SCI Sockets version 2.3.0 as of 01 October 2004.

Prerequisites. Any machines with which you wish to use SCI Sockets must be equipped with SCI cards.

No special builds (other than the -max builds) are needed for SCI Sockets because it uses normal TCP/IP socket calls which are already
available in MySQL Cluster. However, SCI Sockets are currently supported only on the Linux 2.4 and 2.6 kernels. For other operating
systems, you can use SCI Transporters, but this requires that the server be built using --with-ndb-sci=/opt/DIS.

Prior to MySQL 5.1.20, there were issues with building MySQL Cluster with SCI support (see Bug#25470), but these have been re-
solved due to work contributed by Dolphin International. SCI Sockets are now correctly supported for MySQL Cluster using the -max
builds, and versions of MySQL Cluster with SCI Transporter support can be built using either of compile-amd64-max-sci or
compile-pentium64-max-sci. Both of these build scripts can be found in the BUILD directory of the MySQL 5.1 source; it
should not be difficult to adapt them for other platforms.

There are essentially four requirements for SCI Sockets:

• Building the SCI Socket libraries.

• Installation of the SCI Socket kernel libraries.

• Installation of one or two configuration files.

• The SCI Socket kernel library must be enabled either for the entire machine or for the shell where the MySQL Cluster processes are
started.

This process needs to be repeated for each machine in the cluster where you plan to use SCI Sockets for inter-node communication.

Two packages need to be retrieved to get SCI Sockets working:

MySQL Cluster

1246

http://www.dolphinics.com/
http://bugs.mysql.com/25470


• The source code package containing the DIS support libraries for the SCI Sockets libraries.

• The source code package for the SCI Socket libraries themselves.

Currently, these are available only in source code format. The latest versions of these packages at the time of this writing were available
as (respectively) DIS_GPL_2_5_0_SEP_10_2004.tar.gz and SCI_SOCKET_2_3_0_OKT_01_2004.tar.gz. You should
be able to find these (or possibly newer versions) at http://www.dolphinics.com/support/downloads.html.

Package Installation. Once you have obtained the library packages, the next step is to unpack them into appropriate directories, with
the SCI Sockets library unpacked into a directory below the DIS code. Next, you need to build the libraries. This example shows the
commands used on Linux/x86 to perform this task:

shell> tar xzf DIS_GPL_2_5_0_SEP_10_2004.tar.gz
shell> cd DIS_GPL_2_5_0_SEP_10_2004/src/
shell> tar xzf ../../SCI_SOCKET_2_3_0_OKT_01_2004.tar.gz
shell> cd ../adm/bin/Linux_pkgs
shell> ./make_PSB_66_release

It is possible to build these libraries for some 64-bit processors. To build the libraries for Opteron CPUs using the 64-bit extensions, run
make_PSB_66_X86_64_release rather than make_PSB_66_release. If the build is made on an Itanium machine, you should
use make_PSB_66_IA64_release. The X86-64 variant should work for Intel EM64T architectures but this has not yet (to our
knowledge) been tested.

Once the build process is complete, the compiled libraries will be found in a zipped tar file with a name along the lines of
DIS-<operating-system>-time-date. It is now time to install the package in the proper place. In this example we will place
the installation in /opt/DIS. You most likely need to run the following as the system root user.

shell> cp DIS_Linux_2.4.20-8_181004.tar.gz /opt/
shell> cd /opt
shell> tar xzf DIS_Linux_2.4.20-8_181004.tar.gz
shell> mv DIS_Linux_2.4.20-8_181004 DIS

Network configuration. Now that all the libraries and binaries are in their proper place, we need to ensure that the SCI cards have
proper node IDs within the SCI address space.

It is also necessary to decide on the network structure before proceeding. There are three types of network structures which can be used
in this context:

• A simple one-dimensional ring

• One or more SCI switches with one ring per switch port

• A two- or three-dimensional torus.

Each of these topologies has its own method for providing node IDs. We discuss each of them in brief.

A simple ring uses node IDs which are non-zero multiples of 4: 4, 8, 12,...

The next possibility uses SCI switches. An SCI switch has 8 ports, each of which can support a ring. It is necessary to make sure that
different rings use different node ID spaces. In a typical configuration, the first port uses node IDs below 64 (4 – 60), the next 64 node
IDs (68 – 124) are assigned to the next port, and so on, with node IDs 452 – 508 being assigned to the eighth port.

Two- and three-dimensional torus network structures take into account where each node is located in each dimension, incrementing by 4
for each node in the first dimension, by 64 in the second dimension, and (where applicable) by 1024 in the third dimension. See Dol-
phin's Web site for more thorough documentation.

In our testing we have used switches, although most large cluster installations use 2- or 3-dimensional torus structures. The advantage
provided by switches is that, with dual SCI cards and dual switches, it is possible to build with relative ease a redundant network where
the average failover time on the SCI network is on the order of 100 microseconds. This is supported by the SCI transporter in MySQL
Cluster and is also under development for the SCI Socket implementation.

Failover for the 2D/3D torus is also possible but requires sending out new routing indexes to all nodes. However, this requires only 100
milliseconds or so to complete and should be acceptable for most high-availability cases.

MySQL Cluster

1247

http://www.dolphinics.com/support/downloads.html
http://www.dolphinics.com/support/index.html
http://www.dolphinics.com/support/index.html


By placing cluster data nodes properly within the switched architecture, it is possible to use 2 switches to build a structure whereby 16
computers can be interconnected and no single failure can hinder more than one of them. With 32 computers and 2 switches it is pos-
sible to configure the cluster in such a manner that no single failure can cause the loss of more than two nodes; in this case, it is also
possible to know which pair of nodes is affected. Thus, by placing the two nodes in separate node groups, it is possible to build a “safe”
MySQL Cluster installation.

To set the node ID for an SCI card use the following command in the /opt/DIS/sbin directory. In this example, -c 1 refers to the
number of the SCI card (this is always 1 if there is only 1 card in the machine); -a 0 refers to adapter 0; and 68 is the node ID:

shell> ./sciconfig -c 1 -a 0 -n 68

If you have multiple SCI cards in the same machine, you can determine which card has which slot by issuing the following command
(again we assume that the current working directory is /opt/DIS/sbin):

shell> ./sciconfig -c 1 -gsn

This will give you the SCI card's serial number. Then repeat this procedure with -c 2, and so on, for each card in the machine. Once
you have matched each card with a slot, you can set node IDs for all cards.

After the necessary libraries and binaries are installed, and the SCI node IDs are set, the next step is to set up the mapping from host-
names (or IP addresses) to SCI node IDs. This is done in the SCI sockets configuration file, which should be saved as /
etc/sci/scisock.conf. In this file, each SCI node ID is mapped through the proper SCI card to the hostname or IP address that it
is to communicate with. Here is a very simple example of such a configuration file:

#host #nodeId
alpha 8
beta 12
192.168.10.20 16

It is also possible to limit the configuration so that it applies only to a subset of the available ports for these hosts. An additional config-
uration file /etc/sci/scisock_opt.conf can be used to accomplish this, as shown here:

#-key -type -values
EnablePortsByDefault yes
EnablePort tcp 2200
DisablePort tcp 2201
EnablePortRange tcp 2202 2219
DisablePortRange tcp 2220 2231

Driver installation. With the configuration files in place, the drivers can be installed.

First, the low-level drivers and then the SCI socket driver need to be installed:

shell> cd DIS/sbin/
shell> ./drv-install add PSB66
shell> ./scisocket-install add

If desired, the installation can be checked by invoking a script which verifies that all nodes in the SCI socket configuration files are ac-
cessible:

shell> cd /opt/DIS/sbin/
shell> ./status.sh

If you discover an error and need to change the SCI socket configuration, it is necessary to use ksocketconfig to accomplish this
task:

shell> cd /opt/DIS/util
shell> ./ksocketconfig -f

For more information about ksocketconfig, consult the documentation available from ht-
tp://www.dolphinics.com/support/documentation.html.

Testing the setup. To ensure that SCI sockets are actually being used, you can employ the latency_bench test program. Using this
utility's server component, clients can connect to the server to test the latency of the connection. Determining whether SCI is enabled
should be fairly simple from observing the latency.

Note

MySQL Cluster

1248

http://www.dolphinics.com/support/documentation.html
http://www.dolphinics.com/support/documentation.html


Before using latency_bench, it is necessary to set the LD_PRELOAD environment variable as shown later in this sec-
tion.

To set up a server, use the following:

shell> cd /opt/DIS/bin/socket
shell> ./latency_bench -server

To run a client, use latency_bench again, except this time with the -client option:

shell> cd /opt/DIS/bin/socket
shell> ./latency_bench -client server_hostname

SCI socket configuration should now be complete and MySQL Cluster ready to use both SCI Sockets and the SCI transporter (see Sec-
tion 17.4.4.10, “SCI Transport Connections”).

Starting the cluster. The next step in the process is to start MySQL Cluster. To enable usage of SCI Sockets it is necessary to set the
environment variable LD_PRELOAD before starting ndbd, mysqld, and ndb_mgmd. This variable should point to the kernel library
for SCI Sockets.

To start ndbd in a bash shell, do the following:

bash-shell> export LD_PRELOAD=/opt/DIS/lib/libkscisock.so
bash-shell> ndbd

In a tcsh environment the same thing can be accomplished with:

tcsh-shell> setenv LD_PRELOAD=/opt/DIS/lib/libkscisock.so
tcsh-shell> ndbd

Note

MySQL Cluster can use only the kernel variant of SCI Sockets.

17.14.2. MySQL Cluster Interconnects and Performance
The ndbd process has a number of simple constructs which are used to access the data in a MySQL Cluster. We have created a very
simple benchmark to check the performance of each of these and the effects which various interconnects have on their performance.

There are four access methods:

• Primary key access. This is access of a record through its primary key. In the simplest case, only one record is accessed at a time,
which means that the full cost of setting up a number of TCP/IP messages and a number of costs for context switching are borne by
this single request. In the case where multiple primary key accesses are sent in one batch, those accesses share the cost of setting up
the necessary TCP/IP messages and context switches. If the TCP/IP messages are for different destinations, additional TCP/IP mes-
sages need to be set up.

• Unique key access. Unique key accesses are similar to primary key accesses, except that a unique key access is executed as a read
on an index table followed by a primary key access on the table. However, only one request is sent from the MySQL Server, and the
read of the index table is handled by ndbd. Such requests also benefit from batching.

• Full table scan. When no indexes exist for a lookup on a table, a full table scan is performed. This is sent as a single request to the
ndbd process, which then divides the table scan into a set of parallel scans on all cluster ndbd processes. In future versions of
MySQL Cluster, an SQL node will be able to filter some of these scans.

• Range scan using ordered index

When an ordered index is used, it performs a scan in the same manner as the full table scan, except that it scans only those records
which are in the range used by the query transmitted by the MySQL server (SQL node). All partitions are scanned in parallel when
all bound index attributes include all attributes in the partitioning key.

With benchmarks developed internally by MySQL for testing simple and batched primary and unique key accesses, we have found that
using SCI sockets improves performance by approximately 100% over TCP/IP, except in rare instances when communication perform-

MySQL Cluster

1249



ance is not an issue. This can occur when scan filters make up most of processing time or when very large batches of primary key ac-
cesses are achieved. In that case, the CPU processing in the ndbd processes becomes a fairly large part of the overhead.

Using the SCI transporter instead of SCI Sockets is only of interest in communicating between ndbd processes. Using the SCI trans-
porter is also only of interest if a CPU can be dedicated to the ndbd process because the SCI transporter ensures that this process will
never go to sleep. It is also important to ensure that the ndbd process priority is set in such a way that the process does not lose priority
due to running for an extended period of time, as can be done by locking processes to CPUs in Linux 2.6. If such a configuration is pos-
sible, the ndbd process will benefit by 10–70% as compared with using SCI sockets. (The larger figures will be seen when performing
updates and probably on parallel scan operations as well.)

There are several other optimized socket implementations for computer clusters, including Myrinet, Gigabit Ethernet, Infiniband and the
VIA interface. However, we have tested MySQL Cluster so far only with SCI sockets. See Section 17.14.1, “Configuring MySQL
Cluster to use SCI Sockets”, for information on how to set up SCI sockets using ordinary TCP/IP for MySQL Cluster.

17.15. Known Limitations of MySQL Cluster
In the sections that follow, we discuss known limitations in MySQL 5.1 Cluster and MySQL Cluster 5.1 Carrier Grade Edition releases
as compared with the features available when using the MyISAM and InnoDB storage engines. Currently, there are no plans to address
these in coming releases of MySQL 5.1 or MySQL Cluster 5.1 Carrier Grade Edition; however, we will attempt to supply fixes for these
issues in subsequent release series. If you check the “Cluster” category in the MySQL bugs database at http://bugs.mysql.com, you can
find known bugs which (if marked “5.1”) we intend to correct in upcoming releases of MySQL 5.1.

If you check the following categories under “MySQL Server:” in the MySQL bugs database at http://bugs.mysql.com, you can find
known bugs which (if marked “5.1”) we intend to correct in upcoming releases of MySQL 5.1:

• Cluster

• Cluster Direct API (NDBAPI)

• Cluster Disk Data

• Cluster Replication

Some of these issues may be addressed in MySQL Cluster 5.1 Carrier Grade Edition and the fixes included in a future mainline MySQL
Cluster version.

This information is intended to be complete with respect to the conditions just set forth. You can report any discrepancies that you en-
counter to the MySQL bugs database using the instructions given in Section 1.7, “How to Report Bugs or Problems”. If we do not plan
to fix the problem in MySQL 5.1, we will add it to the list.

See Section 17.15.11, “Previous MySQL Cluster Issues Resolved in MySQL 5.1” for a list of issues in MySQL Cluster in MySQL 5.0
that have been resolved in the current version.

Note

Limitations and other issues specific to MySQL Cluster Replication are described in Section 17.12.3, “Known Issues in
MySQL Cluster Replication”.

17.15.1. Non-Compliance In SQL Syntax
Some SQL statements relating to certain MySQL features produce errors when used with NDB tables, as described in the following list:

• Temporary tables. Temporary tables are not supported. Trying either to create a temporary table that uses the NDB storage engine
or to alter an existing temporary table to use NDB fails with the error TABLE STORAGE ENGINE 'NDBCLUSTER' DOES NOT SUPPORT

THE CREATE OPTION 'TEMPORARY'.

• Indexes and keys in NDB tables. Keys and indexes on MySQL Cluster tables are subject to the following limitations:

• TEXT and BLOB columns. You cannot create indexes on NDB table columns that use any of the TEXT or BLOB data types.

• FULLTEXT indexes. The NDB storage engine does not support FULLTEXT indexes, which are possible for MyISAM tables
only.

MySQL Cluster

1250

http://bugs.mysql.com
http://bugs.mysql.com


However, you can create indexes on VARCHAR columns of NDB tables.

• BIT columns. A BIT column cannot be a primary key, unique key, or index, nor can it be part of a composite primary key,
unique key, or index.

• AUTO_INCREMENT columns. Like other MySQL storage engines, the NDB storage engine can handle a maximum of one
AUTO_INCREMENT column per table. However, in the case of a Cluster table with no explicit primary key, an
AUTO_INCREMENT column is automatically defined and used as a “hidden” primary key. For this reason, you cannot define a
table that has an explicit AUTO_INCREMENT column unless that column is also declared using the PRIMARY KEY option. At-
tempting to create a table with an AUTO_INCREMENT column that is not the table's primary key, and using the NDB storage en-
gine, fails with an error.

• MySQL Cluster and geometry data types. Geometry datatypes (WKT and WKB) are supported in NDB tables in MySQL 5.1.
However, spatial indexes are not supported.

•
Creating NDB tables with user-defined partitioning. Support for user-defined partitioning for MySQL Cluster in MySQL 5.1 is
restricted to [LINEAR] KEY partitioning. Beginning with MySQL 5.1.12, using any other partitioning type with ENGINE=NDB or
ENGINE=NDBCLUSTER in a CREATE TABLE statement results in an error.

Default partitioning scheme. As of MySQL 5.1.6, all Cluster tables are by default partitioned by KEY using the table's primary
key as the partitioning key. If no primary key is explicitly set for the table, the “hidden” primary key automatically created by the
NDB storage engine is used instead. For additional discussion of these and related issues, see Section 18.2.4, “KEY Partitioning”.

DROP PARTITION not supported. It is not possible to drop partitions from NDB tables using ALTER TABLE ... DROP
PARTITION. The other partitioning extensions to ALTER TABLE — ADD PARTITION, REORGANIZE PARTITION, and CO-
ALESCE PARTITION — are supported for Cluster tables, but use copying and so are not optimised. See Section 18.3.1,
“Management of RANGE and LIST Partitions” and Section 12.1.4, “ALTER TABLE Syntax”.

• Row-based replication. When using row-based replication with MySQL Cluster, binary logging cannot be disabled. That is, the
NDB storage engine ignores the value of SQL_LOG_BIN. (Bug#16680)

17.15.2. Limits and Differences from Standard MySQL Limits
In this section, we list limits found in MySQL Cluster that either differ from limits found in, or that are not found in, standard MySQL.

•
Memory usage and recovery. Memory consumed when data is inserted into an NDB table is not automatically recovered when de-
leted, as it is with other storage engines. Instead, the following rules hold true:

• A DELETE statement on an NDB table makes the memory formerly used by the deleted rows available for re-use by inserts on
the same table only. This memory cannot be used by other NDB tables.

• A DROP TABLE or TRUNCATE operation on an NDB table frees the memory that was used by this table for re-use by any NDB
table, either by the same table or by another NDB table.

Note

Recall that TRUNCATE drops and re-creates the table. See Section 12.2.9, “TRUNCATE Syntax”.

Memory freed by DELETE operations but still allocated to a specific table can also be made available for general re-use by per-
forming a rolling restart of the cluster. See Section 17.6.1, “Performing a Rolling Restart of the Cluster”.

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade
Edition only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Car-
rier Grade Edition”.

In MySQL 5.1.23-ndb-6.3.7 and later MySQL Cluster 5.1 Carrier Grade Edition 6.3.x releases, this limitation can be overcome
using OPTIMIZE TABLE. See Section 17.15.11, “Previous MySQL Cluster Issues Resolved in MySQL 5.1”, for more inform-
ation.

MySQL Cluster

1251

http://bugs.mysql.com/16680


The following information applies to all MySQL Cluster users.

• Limits imposed by the cluster's configuration. A number of hard limits exist which are configurable, but available main
memory in the cluster sets limits. See the complete list of configuration parameters in Section 17.4.4, “Configuration File”. Most
configuration parameters can be upgraded online. These hard limits include:

• Database memory size and index memory size (DataMemory and IndexMemory, respectively).

DataMemory is allocated as 32KB pages. As each DataMemory page is used, it is assigned to a specific table; once alloc-
ated, this memory cannot be freed except by dropping the table.

See Section 17.4.4.5, “Defining Data Nodes”, for further information about DataMemory and IndexMemory.

• The maximum number of operations that can be performed per transaction is set using the configuration parameters
MaxNoOfConcurrentOperations and MaxNoOfLocalOperations.

Note

Bulk loading, TRUNCATE TABLE, and ALTER TABLE are handled as special cases by running multiple transactions,
and so are not subject to this limitation.

• Different limits related to tables and indexes. For example, the maximum number of ordered indexes per table is determined
by MaxNoOfOrderedIndexes.

• Node and data object maximums. The following limits apply to numbers of cluster nodes and metadata objects:

• The maximum number of data nodes is 48.

A data node must have a node ID in the range of 1#49, inclusive. (Management and API nodes may use any integer in the
range of 1#63 inclusive as a node ID.)

• The total maximum number of nodes in a MySQL Cluster is 63. This number includes all SQL nodes (MySQL Servers), API
nodes (applications accessing the cluster other than MySQL servers), data nodes, and management servers.

• The maximum number of metadata objects in MySQL 5.1 Cluster and MySQL Cluster 5.1 Carrier Grade Edition is 20320.
This limit is hard-coded.

Note

MySQL Cluster 5.1 Carrier Grade Edition users should see Section 17.15.11, “Previous MySQL Cluster Issues
Resolved in MySQL 5.1”, for more information.

17.15.3. Limits Relating to Transaction Handling
A number of limitations exist in MySQL Cluster with regard to the handling of transactions. These include the following:

• Transaction isolation level. The NDBCLUSTER storage engine supports only the READ COMMITTED transaction isolation level.
(InnoDB, for example, supports READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, and SERIALIZABLE.) See
Section 17.10.5, “Backup Troubleshooting”, for information on how this can affect backing up and restoring Cluster databases.)

Important

If a SELECT from a Cluster table includes a BLOB or TEXT column, the READ COMMITTED transaction isolation level is
converted to a read with read lock. This is done to guarantee consistency, due to the fact that parts of the values stored in
columns of these types are actually read from a separate table.

• Rollbacks. There is no partial rollback of transactions. A duplicate key or similar error rolls back the entire transaction.

• Transactions and memory usage. As noted elsewhere in this chapter, MySQL Cluster does not handle large transactions well; it is
better to perform a number of small transactions with a few operations each than to attempt a single large transaction containing a
great many operations. Among other considerations, large transactions require very large amounts of memory. Because of this, the

MySQL Cluster

1252



transactional behaviour of a number of MySQL statements is effected as described in the following list:

• TRUNCATE is not transactional when used on NDB tables. If a TRUNCATE fails to empty the table, then it must be re-run until it
is successful.

• DELETE FROM (even with no WHERE clause) is transactional. For tables containing a great many rows, you may find that per-
formance is improved by using several DELETE FROM ... LIMIT ... statements to “chunk” the delete operation. If your
objective is to empty the table, then you may wish to use TRUNCATE instead.

• LOAD DATA statements. LOAD DATA INFILE is not transactional when used on NDB tables.

Important

When executing a LOAD DATA INFILE statement, the NDB engine performs commits at irregular intervals that enable
better utilization of the communication network. It is not possible to know ahead of time when such commits take place.
LOAD DATA FROM MASTER is not supported in MySQL Cluster.

• ALTER TABLE and transactions. When copying an NDB table as part of an ALTER TABLE, the creation of the copy is non-
transactional. (In any case, this operation is rolled back when the copy is deleted.)

• Transactions and the COUNT() function. When using MySQL Cluster Replication, it is not possible to guarantee the transaction-
al consistency of the COUNT() function on the slave. In other words, when performing on the master a series of statements (IN-
SERT, DELETE, or both) that changes the number of rows in a table within a single transaction, executing SELECT COUNT(*)
FROM table queries on the slave may yield intermediate results. This is due to the fact that SELECT COUNT(...) may per-
form dirty reads, and is not a bug in the NDB storage engine. (See Bug#31321 for more information.)

17.15.4. Error Handling
Starting, stopping, or restarting a node may give rise to temporary errors causing some transactions to fail. These include the following
cases:

• Temporary errors. When first starting a node, it is possible that you may see Error 1204 TEMPORARY FAILURE, DISTRIBUTION

CHANGED and similar temporary errors.

• Errors due to node failure. The stopping or failure of any data node can result in a number of different node failure errors.
(However, there should be no aborted transactions when performing a planned shutdown of the cluster.)

In either of these cases, any errors that are generated must be handled within the application. This should be done by retrying the trans-
action.

See also Section 17.15.2, “Limits and Differences from Standard MySQL Limits”.

17.15.5. Limits Associated with Database Objects
Some database objects such as tables and indexes have different limitations when using the NDBCLUSTER storage engine:

• Identifiers. Database names, table names and attribute names cannot be as long in NDB tables as when using other table handlers.
Attribute names are truncated to 31 characters, and if not unique after truncation give rise to errors. Database names and table names
can total a maximum of 122 characters. In other words, the maximum length for an NDB table name is 122 characters, less the num-
ber of characters in the name of the database of which that table is a part.

• Table names containing special characters. NDB tables whose names contain characters other than letters, numbers, dashes, and
underscores and which are created on one SQL node were not always discovered correctly by other SQL nodes. (Bug#31470)

Note

This issue was fixed in MySQL 5.1.23. (In MySQL Cluster 5.1 Carrier Grade Edition, the issue was fixed in MySQL
5.1.22-ndb-6.2.7 and MySQL 5.1.22-ndb-6.3.4.)

• Number of tables. The maximum number of NDB tables is limited to 20320.

MySQL Cluster

1253

http://bugs.mysql.com/31321
http://bugs.mysql.com/31470


• Attributes per table. The maximum number of attributes (that is, columns and indexes) per table is limited to 128.

• Attributes per key. The maximum number of attributes per key is 32.

• Row size. The maximum permitted size of any one row is 8KB. Note that each BLOB or TEXT column contributes 256 + 8 = 264
bytes towards this total.

17.15.6. Unsupported Or Missing Features
A number of features supported by other storage engines are not supported for NDB tables. Trying to use any of these features in
MySQL Cluster does not cause errors in or of itself; however, errors may occur in applications that expects the features to be supported
or enforced:

• Foreign key constraints. The foreign key construct is ignored, just as it is in MyISAM tables.

• OPTIMIZE operations. OPTIMIZE operations are not supported.

MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

In MySQL 5.1.23-ndb-6.3.7 and later MySQL Cluster 5.1 Carrier Grade Edition 6.3.x releases, this limitation has been lifted. See
Section 17.15.11, “Previous MySQL Cluster Issues Resolved in MySQL 5.1”, for more information.

The following information applies to all MySQL Cluster users.

• LOAD TABLE ... FROM MASTER. LOAD TABLE ... FROM MASTER is not supported.

• Savepoints and rollbacks. Savepoints and rollbacks to savepoints are ignored as in MyISAM.

• Durability of commits. There are no durable commits on disk. Commits are replicated, but there is no guarantee that logs are
flushed to disk on commit.

• Replication. Statement-based replication is not supported. Use --binlog-format=ROW (or --binlog-format=MIXED) when setting
up cluster replication. See Section 17.12, “MySQL Cluster Replication”, for more information.

Note

See Section 17.15.3, “Limits Relating to Transaction Handling”, for more information relating to limitations on transaction
handling in NDB.

17.15.7. Limitations Relating to Performance
The following performance issues are specific to or especially pronounced in MySQL Cluster:

• Range scans. There are query performance issues due to sequential access to the NDB storage engine; it is also relatively more ex-
pensive to do many range scans than it is with either MyISAM or InnoDB.

• Reliability of Records in range. The Records in range statistic is available but is not completely tested or officially
supported. This may result in non-optimal query plans in some cases. If necessary, you can employ USE INDEX or FORCE IN-
DEX to alter the execution plan. See Section 12.2.7.2, “Index Hint Syntax”, for more information on how to do this.

• Unique hash indexes. Unique hash indexes created with USING HASH cannot be used for accessing a table if NULL is given as
part of the key.

17.15.8. Issues Exclusive to MySQL Cluster
The following are limitations specific to the NDBCLUSTER storage engine:

MySQL Cluster

1254



• Machine architecture. All machines used in the cluster must have the same architecture. That is, all machines hosting nodes must
be either big-endian or little-endian, and you cannot use a mixture of both. For example, you cannot have a management node run-
ning on a PowerPC which directs a data node that is running on an x86 machine. This restriction does not apply to machines simply
running mysql or other clients that may be accessing the cluster's SQL nodes.

• Adding and dropping of data nodes. Online adding or dropping of data nodes is not currently possible. In such cases, the entire
cluster must be restarted.

• Binary logging. MySQL Cluster has the following limitations or restrictions with regard to binary logging:

• SQL_LOG_BIN has no effect on data operations; however, it is supported for schema operations.

• MySQL Cluster cannot produce a binlog for tables having BLOB columns but no primary key.

• Only the following schema operations are logged in a cluster binlog which is not on the mysqld executing the statement:

• CREATE TABLE

• ALTER TABLE

• DROP TABLE

• CREATE DATABASE / CREATE SCHEMA

• DROP DATABASE / DROP SCHEMA

• CREATE TABLESPACE

• ALTER TABLESPACE

• DROP TABLESPACE

• CREATE LOGFILE GROUP

• ALTER LOGFILE GROUP

• DROP LOGFILE GROUP

See also Section 17.15.10, “Limitations Relating to Multiple Cluster Nodes”.

17.15.9. Limitations Relating to Disk Data Storage

• Disk data objects are subject to the following maximums:

• Maximum number of tablespaces: 2^32 (4294967296)

• Maximum number of data files per tablespace: 2^16 (65535)

• The theoretical maximum number of extents per tablespace data file is 2^16 (65525); however, for practical purposes, the re-
commended maximum number of extents per data file is 2^8 (32768).

• Maximum data file size: The theoretical limit is 64G; however, in MySQL 5.1, the practical upper limit is 32G. This is equival-
ent to 32768 extents of 1M each.

The minimum and maximum possible sizes of extents for tablespace data files are 32K and 2G, respectively. See Sec-
tion 12.1.11, “CREATE TABLESPACE Syntax”, for more information.

• Use of Disk Data tables is not supported when running the cluster in diskless mode. Beginning with MySQL 5.1.12, it is disallowed
altogether. (Bug#20008)

17.15.10. Limitations Relating to Multiple Cluster Nodes
Multiple SQL nodes. The following are issues relating to the use of multiple MySQL servers as MySQL Cluster SQL nodes, and are

MySQL Cluster

1255

http://bugs.mysql.com/20008


specific to the NDBCLUSTER storage engine:

• No distributed table locks. A LOCK TABLES works only for the SQL node on which the lock is issued; no other SQL node in the
cluster “sees” this lock. This is also true for a lock issued by any statement that locks tables as part of its operations. (See next item
for an example.)

• ALTER TABLE operations. ALTER TABLE is not fully locking when running multiple MySQL servers (SQL nodes). (As dis-
cussed in the previous item, MySQL Cluster does not support distributed table locks.)

• DDL operations. DDL operations (such as CREATE TABLE or ALTER TABLE) are not safe from data node failures. If a data
node fails while trying to peform one of these, the data dictionary is locked and no further DDL statements can be executed without
restarting the cluster.

Multiple management nodes. When using multiple management servers:

• You must give nodes explicit IDs in connectstrings because automatic allocation of node IDs does not work across multiple man-
agement servers.

• You must take extreme care to have the same configurations for all management servers. No special checks for this are performed
by the cluster.

Multiple data node processes. While it is possible to run multiple cluster processes concurrently on a single host, it is not always ad-
visable to do so for reasons of performance and high availability, as well as other considerations. In particular, in MySQL 5.1 or
MySQL Cluster 5.1 Carrier Grade Edition, we do not support for production use any MySQL Cluster deployment in which more than
one ndbd process is run on a single physical machine.

Note

We may support multiple data nodes per host in a future MySQL release, following additional testing. However, in
MySQL 5.1 and MySQL Cluster 5.1 Carrier Grade Edition, such configurations can be considered experimental only.

Multiple network addresses. Multiple network addresses per data node are not supported. Use of these is liable to cause problems: In
the event of a data node failure, an SQL node waits for confirmation that the data node went down but never receives it because another
route to that data node remains open. This can effectively make the cluster inoperable.

Note

It is possible to use multiple network hardware interfaces (such as Ethernet cards) for a single data node, but these must be
bound to the same address. This also means that it not possible to use more than one [tcp] section per connection in the
config.ini file. See Section 17.4.4.7, “Cluster TCP/IP Connections”, for more information.

17.15.11. Previous MySQL Cluster Issues Resolved in MySQL 5.1
A number of limitations and related issues existing in earlier versions of MySQL Cluster have been resolved over the course of develop-
ment of MySQL 5.1 or MySQL Cluster 5.1 Carrier Grade Edition:

• Variable-length column support. The NDB Cluster storage engine now supports variable-length column types for in-memory
tables.

Previously, for example, any Cluster table having one or more VARCHAR fields which contained only relatively small values, much
more memory and disk space were required when using the NDBCLUSTER storage engine than would have been the case for the
same table and data using the MyISAM engine. In other words, in the case of a VARCHAR column, such a column required the same
amount of storage as a CHAR column of the same size. In MySQL 5.1, this is no longer the case for in-memory tables, where storage
requirements for variable-length column types such as VARCHAR and BINARY are comparable to those for these column types
when used in MyISAM tables (see Section 10.5, “Data Type Storage Requirements”).

Important

For MySQL Cluster Disk Data tables, the fixed-width limitation continues to apply. See Section 17.13, “MySQL Cluster
Disk Data Tables”.

MySQL Cluster

1256



•
Replication with MySQL Cluster. It is now possible to use MySQL replication with Cluster databases. For details, see Sec-
tion 17.12, “MySQL Cluster Replication”.

Circular Replication. Circular replication is supported for MySQL Cluster beginning with MySQL 5.1.18. See Section 17.12.3,
“Known Issues in MySQL Cluster Replication”.

• auto_increment_increment and auto_increment_offset. The auto_increment_increment and
auto_increment_offset server system variables are supported for Cluster replication beginning with MySQL 5.1.20.

•
Database autodiscovery and online schema changes. Autodiscovery of databases is now supported for multiple MySQL servers
accessing the same MySQL Cluster, provided that a given mysqld is already running and is connected to the cluster at the time that
the database is created on a different mysqld.

What this means is that if a mysqld process first connects to the cluster after a database named db_name has been created, you
should issue a CREATE SCHEMA db_name statement on the “new” MySQL server when it first accesses that MySQL Cluster.
Once this has been done, the “new” mysqld should be able to detect any tables in that database tables without errors.

This also means that online schema changes in NDB tables are now possible. That is, the result of operations such as ALTER TA-
BLE and CREATE INDEX performed on one SQL node in the cluster are now visible to the cluster's other SQL nodes without any
additional action being taken.

• Backup and restore between architectures. Beginning with MySQL 5.1.10, it is possible to perform a Cluster backup and restore
between different architectures. Previously — for example — you could not back up a cluster running on a big-endian platform and
then restore from that backup to a cluster running on a little-endian system. (Bug#19255)

• Character set directory. Beginning with MySQL 5.1.10, it is possible to install MySQL with Cluster support to a non-default loc-
ation and change the search path for font description files using either the --basedir or --character-sets-dir options.
(Previously, ndbd in MySQL 5.1 searched only the default path — typically /
usr/local/mysql/share/mysql/charsets — for character sets.)

• In MySQL 5.1, it is no longer necessary, when running multiple management servers, to restart all the cluster's data nodes to enable
the management nodes to see one another.

• Length of CREATE TABLE statements. CREATE TABLE statements may be no more than 4096 characters in length. This limita-
tion affects MySQL 5.1.6, 5.1.7, and 5.1.8 only. (See Bug#17813)

• IGNORE and REPLACE functionality. In MySQL 5.1.7 and earlier, INSERT IGNORE, UPDATE IGNORE, and REPLACE were
supported only for primary keys, but not for unique keys. It was possible to work around this issue by removing the constraint, then
dropping the unique index, performing any inserts, and then adding the unique index again.

This limitation was removed for INSERT IGNORE and REPLACE in MySQL 5.1.8. (See Bug#17431.)

• AUTO_INCREMENT columns. In MySQL 5.1.10 and earlier versions, the maximum number of tables having AUTO_INCREMENT
columns — including those belonging to hidden primary keys — was 2048.

This limitation was lifted in MySQL 5.1.11.

• MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

Maximum number of cluster nodes. Prior to MySQL 5.1.15-ndb-6.1.1, the total maximum number of nodes in a MySQL Cluster
was 63, including all SQL nodes (MySQL Servers), API nodes (applications accessing the cluster other than MySQL servers), data
nodes, and management servers.

Starting with MySQL 5.1.15-ndb-6.1.1, up to 255 API nodes (including MySQL servers acting as cluster SQL nodes) are supported
by a single cluster. The total number of data nodes and management nodes beginning with this version is 63, of which up to 48 can
be data nodes.

The limitation that a data node cannot have a node ID greater than 49 continues to apply in MySQL Cluster 5.1 Carrier Grade Edi-
tion.

The following information applies to all MySQL Cluster users.

MySQL Cluster

1257

http://bugs.mysql.com/19255
http://bugs.mysql.com/17813
http://bugs.mysql.com/17431


• MySQL Cluster 5.1 Carrier Grade Edition. The following information applies to users of MySQL Cluster 5.1 Carrier Grade Edi-
tion only. For more information about MySQL Cluster 5.1 Carrier Grade Edition, see Section 17.2, “MySQL Cluster 5.1 Carrier
Grade Edition”.

Recovery of memory from deleted rows. Beginning with MySQL 5.1.23-ndb-6.3.7, memory can be reclaimed from an NDB table
for reuse with any NDB table by employing OPTIMIZE TABLE, subject to the following limitations:

• Only in-memory tables are supported; the OPTIMIZE TABLE statement still has no effect on MySQL Cluster Disk Data tables.

• Only variable-length columns (such as those declared as VARCHAR, TEXT, or BLOB) are supported.

However, you can force columns defined using fixed-length data types (such as CHAR) to be dynamic using the ROW_FORMAT
or COLUMN_FORMAT option with a CREATE TABLE or ALTER TABLE statement.

See Section 12.1.10, “CREATE TABLE Syntax”, and Section 12.1.4, “ALTER TABLE Syntax”, for information on these op-
tions.

You can regulate the effects of OPTIMIZE on performance by adjusting the value of the global system variable
ndb_optimization_delay, which sets the number of milliseconds to wait between batches of rows being processed by OP-
TIMIZE. The default value is 10 milliseconds. It is possible to set a lower value (to a minimum of 0), but not recommended. The
maximum is 100000 milliseconds (that is, 100 seconds).

The following information applies to all MySQL Cluster users.

17.16. MySQL Cluster Development Roadmap
In this section, we discuss changes in the implementation of MySQL Cluster in MySQL 5.1 and MySQL Cluster 5.1 Carrier Grade Edi-
tion as compared to MySQL 5.0.

There are a number of significant changes in the implementation of the NDB Cluster storage engine in MySQL 5.1 as compared to
that in MySQL 5.0. For an overview of these changes, see Section 17.16.1, “MySQL Cluster Changes in MySQL 5.1”

17.16.1. MySQL Cluster Changes in MySQL 5.1
A number of new features for MySQL Cluster have been implemented in MySQL 5.1:

• Integration of MySQL Cluster into MySQL Replication. This makes it possible to update from any MySQL Server in the cluster
and still have the MySQL Replication handled by one of the MySQL Servers in the cluster, with the state of the slave side remaining
consistent with the cluster acting as the master.

See Section 17.12, “MySQL Cluster Replication”.

• Support for disk-based records. Records on disk are now supported. Indexed columns, including the primary key hash index,
must still be stored in RAM; however, all other columns can be stored on disk.

See Section 17.13, “MySQL Cluster Disk Data Tables”.

• Variable-sized records. A column defined as VARCHAR(255) currently uses 260 bytes of storage independent of what is stored
in any particular record. In MySQL 5.1 Cluster tables, only the portion of the column actually taken up by the record will be stored.
This will make possible a reduction in space requirements for such columns by a factor of 5 in many cases.

• User-defined partitioning. Users can define partitions based on columns that are part of the primary key. It is possible to partition
NDB tables based on KEY and LINEAR KEY schemes. This feature is also available for many other MySQL storage engines, which
support additional partitioning types that are not available with NDB Cluster tables.

For additional general information about user-defined partitioning in MySQL 5.1, see Chapter 18, Partitioning. Specifics of parti-
tioning types are discussed in Section 18.2, “Partition Types”.

The MySQL Server can also determine whether it is possible to “prune away” some of the partitions from the WHERE clause. See
Section 18.4, “Partition Pruning”.

• Autodiscovery of table schema changes. In MySQL 5.1, you no longer need to issue FLUSH TABLES or a “dummy” SELECT in
order for new NDB tables or changes made to schemas of existing NDB tables on one SQL node to be visible on the cluster's other
SQL nodes.

MySQL Cluster

1258



Note

When creating a new database, it is still necessary to issue a CREATE DATABASE or CREATE SCHEMA statement on
each SQL node in the cluster.

See Section 17.15.11, “Previous MySQL Cluster Issues Resolved in MySQL 5.1”, for more information.

17.17. MySQL Cluster Glossary
The following terms are useful to an understanding of MySQL Cluster or have specialized meanings when used in relation to it.

• Cluster. In its generic sense, a cluster is a set of computers functioning as a unit and working together to accomplish a single task.

NDB Cluster. This is the storage engine used in MySQL to implement data storage, retrieval, and management distributed
among several computers.

MySQL Cluster. This refers to a group of computers working together using the NDB storage engine to support a distributed
MySQL database in a shared-nothing architecture using in-memory storage.

• Configuration files. Text files containing directives and information regarding the cluster, its hosts, and its nodes. These are read
by the cluster's management nodes when the cluster is started. See Section 17.4.4, “Configuration File”, for details.

• Backup. A complete copy of all cluster data, transactions and logs, saved to disk or other long-term storage.

• Restore. Returning the cluster to a previous state, as stored in a backup.

• Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been reached. More specific to Cluster,
it is a point in time where all committed transactions are stored on disk. With regard to the NDB storage engine, there are two types
of checkpoints which work together to ensure that a consistent view of the cluster's data is maintained:

• Local Checkpoint (LCP). This is a checkpoint that is specific to a single node; however, LCP's take place for all nodes in the
cluster more or less concurrently. An LCP involves saving all of a node's data to disk, and so usually occurs every few minutes.
The precise interval varies, and depends upon the amount of data stored by the node, the level of cluster activity, and other
factors.

• Global Checkpoint (GCP). A GCP occurs every few seconds, when transactions for all nodes are synchronized and the redo-
log is flushed to disk.

• Cluster host. A computer making up part of a MySQL Cluster. A cluster has both a physical structure and a logical structure. Phys-
ically, the cluster consists of a number of computers, known as cluster hosts (or more simply as hosts. See also Node and Node
group below.

• Node. This refers to a logical or functional unit of MySQL Cluster, and is sometimes also referred to as a cluster node. In the con-
text of MySQL Cluster, we use the term “node” to indicate a process rather than a physical component of the cluster. There are three
node types required to implement a working MySQL Cluster:

• Management nodes. Manages the other nodes within the MySQL Cluster. It provides configuration data to the other nodes;
starts and stops nodes; handles network partitioning; creates backups and restores from them, and so forth.

• SQL nodes. Instances of MySQL Server which serve as front ends to data kept in the cluster's data nodes. Clients desiring to
store, retrieve, or update data can access an SQL node just as they would any other MySQL Server, employing the usual MySQL
authentication methods and APIs; the underlying distribution of data between node groups is transparent to users and applica-
tions. SQL nodes access the cluster's databases as a whole without regard to the data's distribution across different data nodes or
cluster hosts.

• Data nodes. These nodes store the actual data. Table data fragments are stored in a set of node groups; each node group stores a
different subset of the table data. Each of the nodes making up a node group stores a replica of the fragment for which that node
group is responsible. Currently, a single cluster can support up to 48 data nodes total.

It is possible for more than one node to co-exist on a single machine. (In fact, it is even possible to set up a complete cluster on one
machine, although one would almost certainly not want to do this in a production environment.) It may be helpful to remember that,
when working with MySQL Cluster, the term host refers to a physical component of the cluster whereas a node is a logical or func-

MySQL Cluster

1259



tional component (that is, a process).

Note Regarding Terms. In older versions of the MySQL Cluster documentation, data nodes were sometimes referred to as
“database nodes”. The term “storage nodes” has also been used. In addition, SQL nodes were sometimes known as “client nodes”.
This older terminology has been deprecated to minimize confusion, and for this reason should be avoided. They are also often re-
ferred to as “API nodes” — an SQL node is actually an API node that provides an SQL interface to the cluster.

• Node group. A set of data nodes. All data nodes in a node group contain the same data (fragments), and all nodes in a single group
should reside on different hosts. It is possible to control which nodes belong to which node groups.

For more information, see Section 17.1.2, “MySQL Cluster Nodes, Node Groups, Replicas, and Partitions”.

• Node failure. MySQL Cluster is not solely dependent upon the functioning of any single node making up the cluster; the cluster
can continue to run if one or more nodes fail. The precise number of node failures that a given cluster can tolerate depends upon the
number of nodes and the cluster's configuration.

• Node restart. The process of restarting a failed cluster node.

• Initial node restart. The process of starting a cluster node with its filesystem removed. This is sometimes used in the course of
software upgrades and in other special circumstances.

• System crash (or system failure). This can occur when so many cluster nodes have failed that the cluster's state can no longer be
guaranteed.

• System restart. The process of restarting the cluster and reinitializing its state from disk logs and checkpoints. This is required
after either a planned or an unplanned shutdown of the cluster.

• Fragment. A portion of a database table; in the NDB storage engine, a table is broken up into and stored as a number of fragments.
A fragment is sometimes also called a “partition”; however, “fragment” is the preferred term. Tables are fragmented in MySQL
Cluster in order to facilitate load balancing between machines and nodes.

• Replica. Under the NDB storage engine, each table fragment has number of replicas stored on other data nodes in order to provide
redundancy. Currently, there may be up four replicas per fragment.

• Transporter. A protocol providing data transfer between nodes. MySQL Cluster currently supports four different types of trans-
porter connections:

• TCP/IP. This is, of course, the familiar network protocol that underlies HTTP, FTP (and so on) on the Internet. TCP/IP can be
used for both local and remote connections.

• SCI. Scalable Coherent Interface is a high-speed protocol used in building multiprocessor systems and parallel-processing ap-
plications. Use of SCI with MySQL Cluster requires specialized hardware, as discussed in Section 17.14.1, “Configuring
MySQL Cluster to use SCI Sockets”. For a basic introduction to SCI, see this essay at dolphinics.com.

• SHM. Unix-style shared memory segments. Where supported, SHM is used automatically to connect nodes running on the
same host. The Unix man page for shmop(2) is a good place to begin obtaining additional information about this topic.

Note

The cluster transporter is internal to the cluster. Applications using MySQL Cluster communicate with SQL nodes just as
they do with any other version of MySQL Server (via TCP/IP, or through the use of Unix socket files or Windows named
pipes). Queries can be sent and results retrieved using the standard MySQL client APIs.

• NDB. This stands for Network Database, and refers to the storage engine used to enable MySQL Cluster. The NDB storage engine
supports all the usual MySQL data types and SQL statements, and is ACID-compliant. This engine also provides full support for
transactions (commits and rollbacks).

• Shared-nothing architecture. The ideal architecture for a MySQL Cluster. In a true shared-nothing setup, each node runs on a
separate host. The advantage such an arrangement is that there no single host or node can act as single point of failure or as a per-
formance bottle neck for the system as a whole.

• In-memory storage. All data stored in each data node is kept in memory on the node's host computer. For each data node in the
cluster, you must have available an amount of RAM equal to the size of the database times the number of replicas, divided by the
number of data nodes. Thus, if the database takes up 1GB of memory, and you want to set up the cluster with four replicas and eight
data nodes, a minimum of 500MB memory will be required per node. Note that this is in addition to any requirements for the operat-
ing system and any other applications that might be running on the host.

MySQL Cluster

1260

http://www.dolphinics.com/corporate/scitech.html
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+shmop


In MySQL 5.1, it is also possible to create Disk Data tables where non-indexed columns are stored on disk, thus reducing the
memory footprint required by the cluster. Note that indexes and indexed column data are still stored in RAM. See Section 17.13,
“MySQL Cluster Disk Data Tables”.

• Table. As is usual in the context of a relational database, the term “table” denotes a set of identically structured records. In MySQL
Cluster, a database table is stored in a data node as a set of fragments, each of which is replicated on additional data nodes. The set
of data nodes replicating the same fragment or set of fragments is referred to as a node group.

• Cluster programs. These are command-line programs used in running, configuring, and administering MySQL Cluster. They in-
clude both server daemons:

• ndbd:

The data node daemon (runs a data node process)

• ndb_mgmd:

The management server daemon (runs a management server process)

and client programs:

• ndb_mgm:

The management client (provides an interface for executing management commands)

• ndb_waiter:

Used to verify status of all nodes in a cluster

• ndb_restore:

Restores cluster data from backup

For more about these programs and their uses, see Section 17.7, “Process Management in MySQL Cluster”.

• Event log. MySQL Cluster logs events by category (startup, shutdown, errors, checkpoints, and so on), priority, and severity. A
complete listing of all reportable events may be found in Section 17.8.3, “Event Reports Generated in MySQL Cluster”. Event logs
are of two types:

• Cluster log. Keeps a record of all desired reportable events for the cluster as a whole.

• Node log. A separate log which is also kept for each individual node.

Under normal circumstances, it is necessary and sufficient to keep and examine only the cluster log. The node logs need be consul-
ted only for application development and debugging purposes.

• Angel process. When a data node is started, ndbd actually starts two processes. One of these is known as the “angel” process; its
purpose is to check to make sure that the main ndbd process continues to run, and to restart the main process if it should stop for
any reason.

• Watchdog thread. Each ndbd process has an internal watchdog thread which monitors the main worker thread, ensuring forward
progress and a timely response to cluster protocols such as the cluster heartbeat. If the ndbd process is not being woken up
promptly by the operating system when its sleep time expires, INFO and WARNING events, which are identifiable because they con-
tain “Watchdog:...”, are written to the cluster log. Such messages are usually a symptom of an overloaded system; you should see
what else is running on the system, and whether the ndbd process is being swapped out to disk. If ndbd cannot wake up regu-
larly then it cannot respond to heartbeat messages on time, and other nodes eventually consider it “dead” due to the missed heart-
beats, causing it to be excluded from the cluster.

MySQL Cluster

1261



Chapter 18. Partitioning
This chapter discusses user-defined partitioning, as implemented in MySQL 5.1.

An introduction to partitioning and partitioning concepts may be found in Section 18.1, “Overview of Partitioning in MySQL”.

MySQL supports several types of partitioning, which are discussed in Section 18.2, “Partition Types”, as well as subpartitioning, which
is described in Section 18.2.5, “Subpartitioning”.

Methods of adding, removing, and altering partitions in existing partitioned tables are covered in Section 18.3, “Partition Management”.

Table maintenance commands for use with partitioned tables are discussed in Section 18.3.3, “Maintenance of Partitions”.

Important

Partitioned tables created with MySQL versions prior to 5.1.6 cannot be read by a 5.1.6 or later MySQL Server. In addi-
tion, the INFORMATION_SCHEMA.TABLES table cannot be used if such tables are present on a 5.1.6 server. Beginning
with MySQL 5.1.7, a suitable warning message is generated instead, to alert the user that incompatible partitioned tables
have been found by the server.

If you are using partitioned tables which were created in MySQL 5.1.5 or earlier, be sure to see Section C.1.28, “Changes
in MySQL 5.1.6 (01 February 2006)” for more information and suggested workarounds before upgrading to MySQL 5.1.6
or later.

The partitioning implementation in MySQL 5.1 is still undergoing development. For known issues with MySQL partitioning, see Sec-
tion 18.5, “Restrictions and Limitations on Partitioning”, where we have noted these.

You may also find the following resources to be useful when working with partitioned tables.

Additional Resources. Other sources of information about user-defined partitioning in MySQL include the following:

• MySQL Partitioning Forum

This is the official discussion forum for those interested in or experimenting with MySQL Partitioning technology. It features an-
nouncements and updates from MySQL developers and others. It is monitored by members of the Partitioning Development and
Documentation Teams.

• Mikael Ronström's Blog

MySQL Partitioning Architect and Lead Developer Mikael Ronström frequently posts articles here concerning his work with
MySQL Partitioning and MySQL Cluster.

• PlanetMySQL

A MySQL news site featuring MySQL-related blogs, which should be of interest to anyone using my MySQL. We encourage you to
check here for links to blogs kept by those working with MySQL Partitioning, or to have your own blog added to those covered.

MySQL 5.1 binaries are now available from http://dev.mysql.com/downloads/mysql/5.1.html. However, for the latest partitioning bug-
fixes and feature additions, you can obtain the source from our BitKeeper repository. To enable partitioning, you need to compile the
server using the --with-partition option. For more information about building MySQL, see Section 2.9, “MySQL Installation
Using a Source Distribution”. If you have problems compiling a partitioning-enabled MySQL 5.1 build, check the MySQL Partitioning
Forum and ask for assistance there if you do not find a solution to your problem already posted.

18.1. Overview of Partitioning in MySQL
This section provides a conceptual overview of partitioning in MySQL 5.1.

For information on partitioning restrictions and feature limitations, see Section 18.5, “Restrictions and Limitations on Partitioning”.

The SQL standard does not provide much in the way of guidance regarding the physical aspects of data storage. The SQL language it-
self is intended to work independently of any data structures or media underlying the schemas, tables, rows, or columns with which it
works. Nonetheless, most advanced database management systems have evolved some means of determining the physical location to be

1262

http://forums.mysql.com/list.php?106
http://mikaelronstrom.blogspot.com/
http://www.planetmysql.org/
http://dev.mysql.com/downloads/mysql/5.1.html
http://forums.mysql.com/list.php?106
http://forums.mysql.com/list.php?106


used for storing specific pieces of data in terms of the filesystem, hardware or even both. In MySQL, the InnoDB storage engine has
long supported the notion of a tablespace, and the MySQL Server, even prior to the introduction of partitioning, could be configured to
employ different physical directories for storing different databases (see Section 7.6.1, “Using Symbolic Links”, for an explanation of
how this is done).

Partitioning takes this notion a step further, by allowing you to distribute portions of individual tables across a filesystem according to
rules which you can set largely as needed. In effect, different portions of a table are stored as separate tables in different locations. The
user-selected rule by which the division of data is accomplished is known as a partitioning function, which in MySQL can be the modu-
lus, simple matching against a set of ranges or value lists, an internal hashing function, or a linear hashing function. The function is se-
lected according to the partitioning type specified by the user, and takes as its parameter the value of a user-supplied expression. This
expression can be either an integer column value, or a function acting on one or more column values and returning an integer. The value
of this expression is passed to the partitioning function, which returns an integer value representing the number of the partition in which
that particular record should be stored. This function must be non-constant and non-random. It may not contain any queries, but may use
an SQL expression that is valid in MySQL, as long as that expression returns either NULL or an integer intval such that

-MAXVALUE <= intval <= MAXVALUE

(MAXVALUE is used to represent the least upper bound for the type of integer in question. -MAXVALUE represents the greatest lower
bound.) There are some additional restrictions on partitioning functions; see Section 18.5, “Restrictions and Limitations on
Partitioning”, for more information about these.

Examples of partitioning functions can be found in the discussions of partitioning types later in this chapter (see Section 18.2, “Partition
Types”), as well as in the partitioning syntax descriptions given in Section 12.1.10, “CREATE TABLE Syntax”.

This is known as horizontal partitioning — that is, different rows of a table may be assigned to different physical partitions. MySQL 5.1
does not support vertical partitioning, in which different columns of a table are assigned to different physical partitions. There are not at
this time any plans to introduce vertical partitioning into MySQL 5.1.

Partitioning support is included in all binary releases of MySQL 5.1. If you are compiling MySQL 5.1 from source, the build must be
configured using --with-partition to enable partitioning.

If the MySQL binary is built with partitioning support, nothing further needs to be done in order to enable it (for example, no special
entries are required in your my.cnf file). You can determine whether your MySQL server supports partitioning by means of a SHOW
VARIABLES command such as this one:

mysql> SHOW VARIABLES LIKE '%partition%';

+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| have_partitioning | YES |
+-------------------+-------+
1 row in set (0.00 sec)

If you do not see the have_partitioning variable with the value YES listed as shown above in the output of an appropriate SHOW
VARIABLES, then your version of MySQL does not support partitioning.

Note

Prior to MySQL 5.1.6, this variable was named have_partition_engine. (Bug#16718)

For creating partitioned tables, you can use most storage engines that are supported by your MySQL server; the MySQL partitioning en-
gine runs in a separate layer and can interact with any of these. In MySQL 5.1, all partitions of the same partitioned table must use the
same storage engine; for example, you cannot use MyISAM for one partition and InnoDB for another. However, there is nothing pre-
venting you from using different storage engines for different partitioned tables on the same MySQL server or even in the same data-
base.

Note

MySQL partitioning cannot be used with the MERGE or CSV storage engines. Beginning with MySQL 5.1.15, FEDER-
ATED tables also cannot be partitioned (Bug#22451). Prior to MySQL 5.1.6, it was also not feasible to create a partitioned
table using the BLACKHOLE storage engine (Bug#14524). Partitioning by KEY is supported for use with the NDB-
Cluster storage engine, but other types of user-defined partitioning are not supported for Cluster tables in MySQL 5.1.

To employ a particular storage engine for a partitioned table, it is necessary only to use the [STORAGE] ENGINE option just as you
would for a non-partitioned table. However, you should keep in mind that [STORAGE] ENGINE (and other table options) need to be
listed before any partitioning options are used in a CREATE TABLE statement. This example shows how to create a table that is parti-

Partitioning

1263

http://bugs.mysql.com/16718
http://bugs.mysql.com/22451
http://bugs.mysql.com/14524


tioned by hash into 6 partitions and which uses the InnoDB storage engine:

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE)
ENGINE=INNODB
PARTITION BY HASH( MONTH(tr_date) )
PARTITIONS 6;

Note

Each PARTITION clause can include a [STORAGE] ENGINE option, but in MySQL 5.1 this has no effect.

Important

Partitioning applies to all data and indexes of a table; you cannot partition only the data and not the indexes, or vice versa,
nor can you partition only a portion of the table.

Data and indexes for each partition can be assigned to a specific directory using the DATA DIRECTORY and INDEX DIRECTORY op-
tions for the PARTITION clause of the CREATE TABLE statement used to create the partitioned table.

Note

Prior to MySQL 5.1.18, these options were permitted even when the NO_DIR_IN_CREATE server SQL mode was in ef-
fect. (Bug#24633)

The DATA DIRECTORY and INDEX DIRECTORY options have no effect when defining partitions for tables using the
InnoDB storage engine.

DATA DIRECTORY and INDEX DIRECTORY are not supported for individual partitions or subpartitions on Windows.
Beginning with MySQL 5.1.24, these options are ignored on Windows, except that a warning is generated. (Bug#30459)

In addition, MAX_ROWS and MIN_ROWS can be used to determine the maximum and minimum numbers of rows, respectively, that can
be stored in each partition. See Section 18.3, “Partition Management”, for more information on these options.

Some of the advantages of partitioning include:

• Being able to store more data in one table than can be held on a single disk or filesystem partition.

• Data that loses its usefulness can often be easily be removed from the table by dropping the partition containing only that data. Con-
versely, the process of adding new data can in some cases be greatly facilitated by adding a new partition specifically for that data.

• Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE clause can be stored only on one or
more partitions, thereby excluding any remaining partitions from the search. Because partitions can be altered after a partitioned ta-
ble has been created, you can reorganize your data to enhance frequent queries that may not have been so when the partitioning
scheme was first set up. This capability, sometimes referred to as partition pruning, was implemented in MySQL 5.1.6. For addi-
tional information, see Section 18.4, “Partition Pruning”.

Other benefits usually associated with partitioning include those in the following list. These features are not currently implemented in
MySQL Partitioning, but are high on our list of priorities.

• Queries involving aggregate functions such as SUM() and COUNT() can easily be parallelized. A simple example of such a query
might be SELECT salesperson_id, COUNT(orders) as order_total FROM sales GROUP BY salesper-
son_id;. By “parallelized,” we mean that the query can be run simultaneously on each partition, and the final result obtained
merely by summing the results obtained for all partitions.

• Achieving greater query throughput in virtue of spreading data seeks over multiple disks.

Be sure to check this section and chapter frequently for updates as Partitioning development continues.

18.2. Partition Types
This section discusses the types of partitioning which are available in MySQL 5.1. These include:

Partitioning

1264

http://bugs.mysql.com/24633
http://bugs.mysql.com/30459


• RANGE partitioning: Assigns rows to partitions based on column values falling within a given range. See Section 18.2.1, “RANGE
Partitioning”.

• LIST partitioning: Similar to partitioning by range, except that the partition is selected based on columns matching one of a set of
discrete values. See Section 18.2.2, “LIST Partitioning”.

• HASH partitioning: A partition is selected based on the value returned by a user-defined expression that operates on column values
in rows to be inserted into the table. The function may consist of any expression valid in MySQL that yields a non-negative integer
value. See Section 18.2.3, “HASH Partitioning”.

• KEY partitioning: Similar to partitioning by hash, except that only one or more columns to be evaluated are supplied, and the
MySQL server provides its own hashing function. These columns can contain other than integer values, since the hashing function
supplied by MySQL guarantees an integer result regardless of the column data type. See Section 18.2.4, “KEY Partitioning”.

A very common use of database partitioning is to segregate data by date. Some database systems support explicit date partitioning,
which MySQL does not implement in 5.1. However, it is not difficult in MySQL to create partitioning schemes based on DATE, TIME,
or DATETIME columns, or based on expressions making use of such columns.

When partitioning by KEY or LINEAR KEY, you can use a DATE, TIME, or DATETIME column as the partitioning column without
performing any modification of the column value. For example, this table creation statement is perfectly valid in MySQL:

CREATE TABLE members (
firstname VARCHAR(25) NOT NULL,
lastname VARCHAR(25) NOT NULL,
username VARCHAR(16) NOT NULL,
email VARCHAR(35),
joined DATE NOT NULL

)
PARTITION BY KEY(joined)
PARTITIONS 6;

MySQL's other partitioning types, however, require a partitioning expression that yields an integer value or NULL. If you wish to use
date-based partitioning by RANGE, LIST, HASH, or LINEAR HASH, you can simply employ a function that operates on a DATE,
TIME, or DATETIME column and returns such a value, as shown here:

CREATE TABLE members (
firstname VARCHAR(25) NOT NULL,
lastname VARCHAR(25) NOT NULL,
username VARCHAR(16) NOT NULL,
email VARCHAR(35),
joined DATE NOT NULL

)
PARTITION BY RANGE( YEAR(joined) ) (

PARTITION p0 VALUES LESS THAN (1960),
PARTITION p1 VALUES LESS THAN (1970),
PARTITION p2 VALUES LESS THAN (1980),
PARTITION p3 VALUES LESS THAN (1990),
PARTITION p4 VALUES LESS THAN MAXVALUE

);

Additional examples of partitioning using dates may be found here:

• Section 18.2.1, “RANGE Partitioning”

• Section 18.2.3, “HASH Partitioning”

• Section 18.2.3.1, “LINEAR HASH Partitioning”

For more complex examples of date-based partitioning, see:

• Section 18.4, “Partition Pruning”

• Section 18.2.5, “Subpartitioning”

MySQL partitioning is optimized for use with the TO_DAYS() and YEAR() functions. However, you can use other date and time
functions that return an integer or NULL, such as WEEKDAY(), DAYOFYEAR(), or MONTH(). See Section 11.6, “Date and Time

Partitioning

1265



Functions”, for more information about such functions.

It is important to remember — regardless of the type of partitioning that you use — that partitions are always numbered automatically
and in sequence when created, starting with 0. When a new row is inserted into a partitioned table, it is these partition numbers that are
used in identifying the correct partition. For example, if your table uses 4 partitions, these partitions are numbered 0, 1, 2, and 3. For
the RANGE and LIST partitioning types, it is necessary to ensure that there is a partition defined for each partition number. For HASH
partitioning, the user function employed must return an integer value greater than 0. For KEY partitioning, this issue is taken care of
automatically by the hashing function which the MySQL server employs internally.

Names of partitions generally follow the rules governing other MySQL identifiers, such as those for tables and databases. However, you
should note that partition names are not case-sensitive. For example, the following CREATE TABLE statement fails as shown:

mysql> CREATE TABLE t2 (val INT)
-> PARTITION BY LIST(val)(
-> PARTITION mypart VALUES IN (1,3,5),
-> PARTITION MyPart VALUES IN (2,4,6)
-> );

ERROR 1488 (HY000): Duplicate partition name mypart

Failure occurs because MySQL sees no difference between the partition names mypart and MyPart.

When you specify the number of partitions for the table, this must be expressed as a positive, non-zero integer literal with no leading
zeroes, and may not be an expression such as 0.8E+01 or 6-2, even if it evaluates as an integer. (Beginning with MySQL 5.1.12,
decimal fractions are no longer truncated, but instead are disallowed entirely.)

In the sections that follow, we do not necessarily provide all possible forms for the syntax that can be used for creating each partition
type; this information may be found in Section 12.1.10, “CREATE TABLE Syntax”.

18.2.1. RANGE Partitioning
A table that is partitioned by range is partitioned in such a way that each partition contains rows for which the partitioning expression
value lies within a given range. Ranges should be contiguous but not overlapping, and are defined using the VALUES LESS THAN op-
erator. For the next few examples, suppose that you are creating a table such as the following to hold personnel records for a chain of 20
video stores, numbered 1 through 20:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL

);

This table can be partitioned by range in a number of ways, depending on your needs. One way would be to use the store_id
column. For instance, you might decide to partition the table 4 ways by adding a PARTITION BY RANGE clause as shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL

)
PARTITION BY RANGE (store_id) (

PARTITION p0 VALUES LESS THAN (6),
PARTITION p1 VALUES LESS THAN (11),
PARTITION p2 VALUES LESS THAN (16),
PARTITION p3 VALUES LESS THAN (21)

);

In this partitioning scheme, all rows corresponding to employees working at stores 1 through 5 are stored in partition p0, to those em-
ployed at stores 6 through 10 are stored in partition p1, and so on. Note that each partition is defined in order, from lowest to highest.
This is a requirement of the PARTITION BY RANGE syntax; you can think of it as being analogous to a switch ... case in C or
Java in this regard.

It is easy to determine that a new row containing the data (72, 'Michael', 'Widenius', '1998-06-25', NULL, 13) is
inserted into partition p2, but what happens when your chain adds a 21st store? Under this scheme, there is no rule that covers a row
whose store_id is greater than 20, so an error results because the server does not know where to place it. You can keep this from oc-

Partitioning

1266



curring by using a “catchall” VALUES LESS THAN clause in the CREATE TABLE statement that provides for all values greater than
highest value explicitly named:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL

)
PARTITION BY RANGE (store_id) (

PARTITION p0 VALUES LESS THAN (6),
PARTITION p1 VALUES LESS THAN (11),
PARTITION p2 VALUES LESS THAN (16),
PARTITION p3 VALUES LESS THAN MAXVALUE

);

Note

Another way to avoid an error when no matching value is found is to use the IGNORE keyword as part of the INSERT
statement. For an example, see Section 18.2.2, “LIST Partitioning”. Also see Section 12.2.4, “INSERT Syntax”, for gen-
eral information about IGNORE.

MAXVALUE represents an integer value that is always greater than the largest possible integer value (in mathematical language, it serves
as a least upper bound). Now, any rows whose store_id column value is greater than or equal to 16 (the highest value defined) are
stored in partition p3. At some point in the future — when the number of stores has increased to 25, 30, or more — you can use an AL-
TER TABLE statement to add new partitions for stores 21-25, 26-30, and so on (see Section 18.3, “Partition Management”, for details
of how to do this).

In much the same fashion, you could partition the table based on employee job codes — that is, based on ranges of job_code column
values. For example — assuming that two-digit job codes are used for regular (in-store) workers, three-digit codes are used for office
and support personnel, and four-digit codes are used for management positions — you could create the partitioned table using the fol-
lowing:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL

)
PARTITION BY RANGE (job_code) (

PARTITION p0 VALUES LESS THAN (100),
PARTITION p1 VALUES LESS THAN (1000),
PARTITION p2 VALUES LESS THAN (10000)

);

In this instance, all rows relating to in-store workers would be stored in partition p0, those relating to office and support staff in p1, and
those relating to managers in partition p2.

It is also possible to use an expression in VALUES LESS THAN clauses. However, MySQL must be able to evaluate the expression's
return value as part of a LESS THAN (<) comparison.

Rather than splitting up the table data according to store number, you can use an expression based on one of the two DATE columns in-
stead. For example, let us suppose that you wish to partition based on the year that each employee left the company; that is, the value of
YEAR(separated). An example of a CREATE TABLE statement that implements such a partitioning scheme is shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

)
PARTITION BY RANGE ( YEAR(separated) ) (

PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1996),
PARTITION p2 VALUES LESS THAN (2001),
PARTITION p3 VALUES LESS THAN MAXVALUE

);

Partitioning

1267



In this scheme, for all employees who left before 1991, the rows are stored in partition p0; for those who left in the years 1991 through
1995, in p1; for those who left in the years 1996 through 2000, in p2; and for any workers who left after the year 2000, in p3.

Range partitioning is particularly useful when:

• You want or need to delete “old” data. If you are using the partitioning scheme shown immediately above, you can simply use AL-
TER TABLE employees DROP PARTITION p0; to delete all rows relating to employees who stopped working for the firm
prior to 1991. (See Section 12.1.4, “ALTER TABLE Syntax”, and Section 18.3, “Partition Management”, for more information.)
For a table with a great many rows, this can be much more efficient than running a DELETE query such as DELETE FROM em-
ployees WHERE YEAR(separated) <= 1990;.

• You want to use a column containing date or time values, or containing values arising from some other series.

• You frequently run queries that depend directly on the column used for partitioning the table. For example, when executing a query
such as SELECT COUNT(*) FROM employees WHERE YEAR(separated) = 2000 GROUP BY store_id;,
MySQL can quickly determine that only partition p2 needs to be scanned because the remaining partitions cannot contain any re-
cords satisfying the WHERE clause. See Section 18.4, “Partition Pruning”, for more information about how this is accomplished.

18.2.2. LIST Partitioning
List partitioning in MySQL is similar to range partitioning in many ways. As in partitioning by RANGE, each partition must be explicitly
defined. The chief difference is that, in list partitioning, each partition is defined and selected based on the membership of a column
value in one of a set of value lists, rather than in one of a set of contiguous ranges of values. This is done by using PARTITION BY
LIST(expr) where expr is a column value or an expression based on a column value and returning an integer value, and then defin-
ing each partition by means of a VALUES IN (value_list), where value_list is a comma-separated list of integers.

Note

In MySQL 5.1, it is possible to match against only a list of integers (and possibly NULL — see Section 18.2.6, “How
MySQL Partitioning Handles NULL Values”) when partitioning by LIST.

Unlike the case with partitions defined by range, list partitions do not need to be declared in any particular order. For more detailed syn-
tactical information, see Section 12.1.10, “CREATE TABLE Syntax”.

For the examples that follow, we assume that the basic definition of the table to be partitioned is provided by the CREATE TABLE
statement shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

);

(This is the same table used as a basis for the examples in Section 18.2.1, “RANGE Partitioning”.)

Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table:

Region Store ID Numbers

North 3, 5, 6, 9, 17

East 1, 2, 10, 11, 19, 20

West 4, 12, 13, 14, 18

Central 7, 8, 15, 16

To partition this table in such a way that rows for stores belonging to the same region are stored in the same partition, you could use the
CREATE TABLE statement shown here:

CREATE TABLE employees (
id INT NOT NULL,

Partitioning

1268



fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

)
PARTITION BY LIST(store_id) (

PARTITION pNorth VALUES IN (3,5,6,9,17),
PARTITION pEast VALUES IN (1,2,10,11,19,20),
PARTITION pWest VALUES IN (4,12,13,14,18),
PARTITION pCentral VALUES IN (7,8,15,16)

);

This makes it easy to add or drop employee records relating to specific regions to or from the table. For instance, suppose that all stores
in the West region are sold to another company. All rows relating to employees working at stores in that region can be deleted with the
query ALTER TABLE employees DROP PARTITION pWest;, which can be executed much more efficiently than the equival-
ent DELETE statement DELETE FROM employees WHERE store_id IN (4,12,13,14,18);.

As with RANGE partitioning, it is possible to combine LIST partitioning with partitioning by hash or key to produce a composite parti-
tioning (subpartitioning). See Section 18.2.5, “Subpartitioning”.

Unlike the case with RANGE partitioning, there is no “catch-all” such as MAXVALUE; all expected values for the partitioning expression
should be covered in PARTITION ... VALUES IN (...) clauses. An INSERT statement containing an unmatched partitioning
column value fails with an error, as shown in this example:

mysql> CREATE TABLE h2 (
-> c1 INT,
-> c2 INT
-> )
-> PARTITION BY LIST(c1) (
-> PARTITION p0 VALUES IN (1, 4, 7),
-> PARTITION p1 VALUES IN (2, 5, 8)
-> );

Query OK, 0 rows affected (0.11 sec)

mysql> INSERT INTO h2 VALUES (3, 5);
ERROR 1525 (HY000): TABLE HAS NO PARTITION FOR VALUE 3

When inserting multiple rows using a single INSERT statement, any rows coming before the row containing the unmatched value are
inserted, but any coming after it are not:

mysql> SELECT * FROM h2;
Empty set (0.00 sec)

mysql> INSERT INTO h2 VALUES (4, 7), (3, 5), (6, 0);
ERROR 1525 (HY000): TABLE HAS NO PARTITION FOR VALUE 3
mysql> SELECT * FROM h2;
+------+------+
| c1 | c2 |
+------+------+
| 4 | 7 |
+------+------+
1 row in set (0.00 sec)

You can cause this type of error to be ignored by using the IGNORE key word. If you do so, rows containing unmatched partitioning
column values are not inserted, but any rows with matching values are inserted, and no errors are reported:

mysql> TRUNCATE h2;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM h2;
Empty set (0.00 sec)

mysql> INSERT IGNORE INTO h2 VALUES (2, 5), (6, 10), (7, 5), (3, 1), (1, 9);
Query OK, 3 rows affected (0.00 sec)
Records: 5 Duplicates: 2 Warnings: 0

mysql> SELECT * FROM h2;
+------+------+
| c1 | c2 |
+------+------+
| 7 | 5 |
| 1 | 9 |
| 2 | 5 |
+------+------+
3 rows in set (0.00 sec)

18.2.3. HASH Partitioning

Partitioning

1269



Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined number of partitions. With range
or list partitioning, you must specify explicitly into which partition a given column value or set of column values is to be stored; with
hash partitioning, MySQL takes care of this for you, and you need only specify a column value or expression based on a column value
to be hashed and the number of partitions into which the partitioned table is to be divided.

To partition a table using HASH partitioning, it is necessary to append to the CREATE TABLE statement a PARTITION BY HASH
(expr) clause, where expr is an expression that returns an integer. This can simply be the name of a column whose type is one of
MySQL's integer types. In addition, you will most likely want to follow this with a PARTITIONS num clause, where num is a non-
negative integer representing the number of partitions into which the table is to be divided.

For example, the following statement creates a table that uses hashing on the store_id column and is divided into 4 partitions:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

)
PARTITION BY HASH(store_id)
PARTITIONS 4;

If you do not include a PARTITIONS clause, the number of partitions defaults to 1.

Using the PARTITIONS keyword without a number following it results in a syntax error.

You can also use an SQL expression that returns an integer for expr. For instance, you might want to partition based on the year in
which an employee was hired. This can be done as shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

)
PARTITION BY HASH( YEAR(hired) )
PARTITIONS 4;

You may use any function or other expression for expr that is valid in MySQL, so long as it returns a non-constant, non-random in-
teger value. (In other words, it should be varying but deterministic.) However, you should keep in mind that this expression is evaluated
each time a row is inserted or updated (or possibly deleted); this means that very complex expressions may give rise to performance is-
sues, particularly when performing operations (such as batch inserts) that affect a great many rows at one time.

The most efficient hashing function is one which operates upon a single table column and whose value increases or decreases consist-
ently with the column value, as this allows for “pruning” on ranges of partitions. That is, the more closely that the expression varies
with the value of the column on which it is based, the more efficiently MySQL can use the expression for hash partitioning.

For example, where date_col is a column of type DATE, then the expression TO_DAYS(date_col) is said to vary directly with
the value of date_col, because for every change in the value of date_col, the value of the expression changes in a consistent man-
ner. The variance of the expression YEAR(date_col) with respect to date_col is not quite as direct as that of
TO_DAYS(date_col), because not every possible change in date_col produces an equivalent change in YEAR(date_col).
Even so, YEAR(date_col) is a good candidate for a hashing function, because it varies directly with a portion of date_col and
there is no possible change in date_col that produces a disproportionate change in YEAR(date_col).

By way of contrast, suppose that you have a column named int_col whose type is INT. Now consider the expression
POW(5-int_col,3) + 6. This would be a poor choice for a hashing function because a change in the value of int_col is not
guaranteed to produce a proportional change in the value of the expression. Changing the value of int_col by a given amount can
produce by widely different changes in the value of the expression. For example, changing int_col from 5 to 6 produces a change of
-1 in the value of the expression, but changing the value of int_col from 6 to 7 produces a change of -7 in the expression value.

In other words, the more closely the graph of the column value versus the value of the expression follows a straight line as traced by the
equation y=nx where n is some nonzero constant, the better the expression is suited to hashing. This has to do with the fact that the
more nonlinear an expression is, the more uneven the distribution of data among the partitions it tends to produce.

In theory, pruning is also possible for expressions involving more than one column value, but determining which of such expressions

Partitioning

1270



are suitable can be quite difficult and time-consuming. For this reason, the use of hashing expressions involving multiple columns is not
particularly recommended.

When PARTITION BY HASH is used, MySQL determines which partition of num partitions to use based on the modulus of the result
of the user function. In other words, for an expression expr, the partition in which the record is stored is partition number N, where N
= MOD(expr, num). For example, suppose table t1 is defined as follows, so that it has 4 partitions:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY HASH( YEAR(col3) )
PARTITIONS 4;

If you insert a record into t1 whose col3 value is '2005-09-15', then the partition in which it is stored is determined as follows:

MOD(YEAR('2005-09-01'),4)
= MOD(2005,4)
= 1

MySQL 5.1 also supports a variant of HASH partitioning known as linear hashing which employs a more complex algorithm for de-
termining the placement of new rows inserted into the partitioned table. See Section 18.2.3.1, “LINEAR HASH Partitioning”, for a de-
scription of this algorithm.

The user function is evaluated each time a record is inserted or updated. It may also — depending on the circumstances — be evaluated
when records are deleted.

Note

If a table to be partitioned has a UNIQUE key, then any columns supplied as arguments to the HASH user function or to the
KEY's column_list must be part of that key.

18.2.3.1. LINEAR HASH Partitioning

MySQL also supports linear hashing, which differs from regular hashing in that linear hashing utilizes a linear powers-of-two algorithm
whereas regular hashing employs the modulus of the hashing function's value.

Syntactically, the only difference between linear-hash partitioning and regular hashing is the addition of the LINEAR keyword in the
PARTITION BY clause, as shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT

)
PARTITION BY LINEAR HASH( YEAR(hired) )
PARTITIONS 4;

Given an expression expr, the partition in which the record is stored when linear hashing is used is partition number N from among
num partitions, where N is derived according to the following algorithm:

1. Find the next power of 2 greater than num. We call this value V; it can be calculated as:

V = POWER(2, CEILING(LOG(2, num)))

(For example, suppose that num is 13. Then LOG(2,13) is 3.7004397181411. CEILING(3.7004397181411) is 4, and V =
POWER(2,4), which is 16.)

2. Set N = F(column_list) & (V - 1).

3. While N >= num:

• Set V = CEIL(V / 2)

• Set N = N & (V - 1)

Partitioning

1271



For example, suppose that the table t1, using linear hash partitioning and having 6 partitions, is created using this statement:

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY LINEAR HASH( YEAR(col3) )
PARTITIONS 6;

Now assume that you want to insert two records into t1 having the col3 column values '2003-04-14' and '1998-10-19'. The
partition number for the first of these is determined as follows:

V = POWER(2, CEILING( LOG(2,6) )) = 8
N = YEAR('2003-04-14') & (8 - 1)

= 2003 & 7
= 3

(3 >= 6 is FALSE: record stored in partition #3)

The number of the partition where the second record is stored is calculated as shown here:

V = 8
N = YEAR('1998-10-19') & (8-1)
= 1998 & 7
= 6

(6 >= 6 is TRUE: additional step required)

N = 6 & CEILING(8 / 2)
= 6 & 3
= 2

(2 >= 6 is FALSE: record stored in partition #2)

The advantage in partitioning by linear hash is that the adding, dropping, merging, and splitting of partitions is made much faster, which
can be beneficial when dealing with tables containing extremely large amounts (terabytes) of data. The disadvantage is that data is less
likely to be evenly distributed between partitions as compared with the distribution obtained using regular hash partitioning.

18.2.4. KEY Partitioning
Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a user-defined expression, the hashing
function for key partitioning is supplied by the MySQL server. MySQL Cluster uses MD5() for this purpose; for tables using other stor-
age engines, the server employs its own internal hashing function which is based on the same algorithm as PASSWORD().

The syntax rules for CREATE TABLE ... PARTITION BY KEY are similar to those for creating a table that is partitioned by hash.
The major differences are that:

• KEY is used rather than HASH.

• KEY takes only a list of one or more column names. Beginning with MySQL 5.1.5, the column or columns used as the partitioning
key must comprise part or all of the table's primary key, if the table has one.

Beginning with MySQL 5.1.6, KEY takes a list of zero or more column names. Where no column name is specified as the partition-
ing key, the table's primary key is used, if there is one. For example, the following CREATE TABLE statement is valid in MySQL
5.1.6 or later:

CREATE TABLE k1 (
id INT NOT NULL PRIMARY KEY,
name VARCHAR(20)

)
PARTITION BY KEY()
PARTITIONS 2;

If there is no primary key but there is a unique key, then the unique key is used for the partitioning key:

CREATE TABLE k1 (
id INT NOT NULL,
name VARCHAR(20),
UNIQUE KEY (id)

)
PARTITION BY KEY()
PARTITIONS 2;

However, if the unique key column were not defined as NOT NULL, then the previous statement would fail.

Partitioning

1272



In both of these cases, the partitioning key is the id column, even though it is not shown in the output of SHOW CREATE TABLE
or in the PARTITION_EXPRESSION column of the INFORMATION_SCHEMA.PARTITIONS table.

Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted to integer or NULL values. For
example, the following CREATE TABLE statement is valid:

CREATE TABLE tm1 (
s1 CHAR(32) PRIMARY KEY

)
PARTITION BY KEY(s1)
PARTITIONS 10;

The preceding statement would not be valid, were a different partitioning type to be specified.

Note

In this case, simply using PARTITION BY KEY() would also be valid and have the same effect as PARTITION BY
KEY(s1), since s1 is the table's primary key.

For additional information about this issue, see Section 18.5, “Restrictions and Limitations on Partitioning”.

Note

Also beginning with MySQL 5.1.6, tables using the NDB Cluster storage engine are implicitly partitioned by KEY,
again using the table's primary key as the partitioning key. In the event that the Cluster table has no explicit primary key,
the “hidden” primary key generated by the NDB storage engine for each Cluster table is used as the partitioning key.

Important

For a key-partitioned table using any MySQL storage engine other than NDB Cluster, you cannot execute an ALTER
TABLE DROP PRIMARY KEY, as doing so generates the error ERROR 1466 (HY000): FIELD IN LIST OF

FIELDS FOR PARTITION FUNCTION NOT FOUND IN TABLE. This is not an issue for MySQL Cluster tables which are parti-
tioned by KEY; in such cases, the table is reorganized using the “hidden” primary key as the table's new partitioning key.
See Chapter 17, MySQL Cluster.

It is also possible to partition a table by linear key. Here is a simple example:

CREATE TABLE tk (
col1 INT NOT NULL,
col2 CHAR(5),
col3 DATE

)
PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;

Using LINEAR has the same effect on KEY partitioning as it does on HASH partitioning, with the partition number being derived using a
powers-of-two algorithm rather than modulo arithmetic. See Section 18.2.3.1, “LINEAR HASH Partitioning”, for a description of this
algorithm and its implications.

18.2.5. Subpartitioning
Subpartitioning — also known as composite partitioning — is the further division of each partition in a partitioned table. For example,
consider the following CREATE TABLE statement:

CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE( YEAR(purchased) )
SUBPARTITION BY HASH( TO_DAYS(purchased) )
SUBPARTITIONS 2 (

PARTITION p0 VALUES LESS THAN (1990),
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN MAXVALUE

);

Table ts has 3 RANGE partitions. Each of these partitions — p0, p1, and p2 — is further divided into 2 subpartitions. In effect, the en-
tire table is divided into 3 * 2 = 6 partitions. However, due to the action of the PARTITION BY RANGE clause, the first 2 of these
store only those records with a value less than 1990 in the purchased column.

Partitioning

1273



In MySQL 5.1, it is possible to subpartition tables that are partitioned by RANGE or LIST. Subpartitions may use either HASH or KEY
partitioning. This is also known as composite partitioning.

It is also possible to define subpartitions explicitly using SUBPARTITION clauses to specify options for individual subpartitions. For
example, a more verbose fashion of creating the same table ts as shown in the previous example would be:

CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE( YEAR(purchased) )
SUBPARTITION BY HASH( TO_DAYS(purchased) ) (

PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0,
SUBPARTITION s1

),
PARTITION p1 VALUES LESS THAN (2000) (

SUBPARTITION s2,
SUBPARTITION s3

),
PARTITION p2 VALUES LESS THAN MAXVALUE (

SUBPARTITION s4,
SUBPARTITION s5

)
);

Some syntactical items of note:

• Each partition must have the same number of subpartitions.

• If you explicitly define any subpartitions using SUBPARTITION on any partition of a partitioned table, you must define them all. In
other words, the following statement will fail:

CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE( YEAR(purchased) )
SUBPARTITION BY HASH( TO_DAYS(purchased) ) (

PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0,
SUBPARTITION s1

),
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN MAXVALUE (

SUBPARTITION s2,
SUBPARTITION s3

)
);

This statement would still fail even if it included a SUBPARTITIONS 2 clause.

• Each SUBPARTITION clause must include (at a minimum) a name for the subpartition. Otherwise, you may set any desired option
for the subpartition or allow it to assume its default setting for that option.

• In MySQL 5.1.7 and earlier, names of subpartitions must be unique within each partition, but do not have to be unique within the ta-
ble as a whole. Beginning with MySQL 5.1.8, subpartition names must be unique across the entire table. For example, the following
CREATE TABLE statement is valid in MySQL 5.1.8 and later:

CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE( YEAR(purchased) )
SUBPARTITION BY HASH( TO_DAYS(purchased) ) (

PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0,
SUBPARTITION s1

),
PARTITION p1 VALUES LESS THAN (2000) (

SUBPARTITION s2,
SUBPARTITION s3

),
PARTITION p2 VALUES LESS THAN MAXVALUE (

SUBPARTITION s4,
SUBPARTITION s5

)
);

(The previous statement is also valid for versions of MySQL prior to 5.1.8.)

Subpartitions can be used with especially large tables to distribute data and indexes across many disks. Suppose that you have 6 disks
mounted as /disk0, /disk1, /disk2, and so on. Now consider the following example:

Partitioning

1274



CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE( YEAR(purchased) )
SUBPARTITION BY HASH( TO_DAYS(purchased) ) (

PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0

DATA DIRECTORY = '/disk0/data'
INDEX DIRECTORY = '/disk0/idx',

SUBPARTITION s1
DATA DIRECTORY = '/disk1/data'
INDEX DIRECTORY = '/disk1/idx'

),
PARTITION p1 VALUES LESS THAN (2000) (

SUBPARTITION s2
DATA DIRECTORY = '/disk2/data'
INDEX DIRECTORY = '/disk2/idx',

SUBPARTITION s3
DATA DIRECTORY = '/disk3/data'
INDEX DIRECTORY = '/disk3/idx'

),
PARTITION p2 VALUES LESS THAN MAXVALUE (

SUBPARTITION s4
DATA DIRECTORY = '/disk4/data'
INDEX DIRECTORY = '/disk4/idx',

SUBPARTITION s5
DATA DIRECTORY = '/disk5/data'
INDEX DIRECTORY = '/disk5/idx'

)
);

In this case, a separate disk is used for the data and for the indexes of each RANGE. Many other variations are possible; another example
might be:

CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH( TO_DAYS(purchased) ) (

PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0a

DATA DIRECTORY = '/disk0'
INDEX DIRECTORY = '/disk1',

SUBPARTITION s0b
DATA DIRECTORY = '/disk2'
INDEX DIRECTORY = '/disk3'

),
PARTITION p1 VALUES LESS THAN (2000) (

SUBPARTITION s1a
DATA DIRECTORY = '/disk4/data'
INDEX DIRECTORY = '/disk4/idx',

SUBPARTITION s1b
DATA DIRECTORY = '/disk5/data'
INDEX DIRECTORY = '/disk5/idx'

),
PARTITION p2 VALUES LESS THAN MAXVALUE (

SUBPARTITION s2a,
SUBPARTITION s2b

)
);

Here, the storage is as follows:

• Rows with purchased dates from before 1990 take up a vast amount of space, so are split up 4 ways, with a separate disk dedic-
ated to the data and to the indexes for each of the two subpartitions (s0a and s0b) making up partition p0. In other words:

• The data for subpartition s0a is stored on /disk0.

• The indexes for subpartition s0a are stored on /disk1.

• The data for subpartition s0b is stored on /disk2.

• The indexes for subpartition s0b are stored on /disk3.

• Rows containing dates ranging from 1990 to 1999 (partition p1) do not require as much room as those from before 1990. These are
split between 2 disks (/disk4 and /disk5) rather than 4 disks as with the legacy records stored in p0:

• Data and indexes belonging to p1's first subpartition (s1a) are stored on /disk4 — the data in /disk4/data, and the in-
dexes in /disk4/idx.

• Data and indexes belonging to p1's second subpartition (s1b) are stored on /disk5 — the data in /disk5/data, and the in-

Partitioning

1275



dexes in /disk5/idx.

• Rows reflecting dates from the year 2000 to the present (partition p2) do not take up as much space as required by either of the two
previous ranges. Currently, it is sufficient to store all of these in the default location.

In future, when the number of purchases for the decade beginning with the year 2000 grows to a point where the default location no
longer provides sufficient space, the corresponding rows can be moved using an ALTER TABLE ... REORGANIZE PARTI-
TION statement. See Section 18.3, “Partition Management”, for an explanation of how this can be done.

Beginning with MySQL 5.1.18, the DATA DIRECTORY and INDEX DIRECTORY options are disallowed when the
NO_DIR_IN_CREATE server SQL mode is in effect. This is true for partitions and subpartitions.

18.2.6. How MySQL Partitioning Handles NULL Values
Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression, whether it is a column value or the
value of a user-supplied expression. Even though it is permitted to use NULL as the value of an expression that must otherwise yield an
integer, it is important to keep in mind that NULL is not a number. Beginning version 5.1.8, MySQL Partitioning treats NULL as being
less than any non-NULL value, just as ORDER BY does.

Because of this, this treatment of NULL varies between partitioning of different types, and may produce behavior which you do not ex-
pect if you are not prepared for it. This being the case, we discuss in this section how each MySQL partitioning types handles NULL
values when determining the partition in which a row should be stored, and provide examples for each.

If you insert a row into a table partitioned by RANGE such that the column value used to determine the partition is NULL, the row is in-
serted into the lowest partition. For example, consider these two tables, created and populated as follows:

mysql> CREATE TABLE t1 (
-> c1 INT,
-> c2 VARCHAR(20)
-> )
-> PARTITION BY RANGE(c1) (
-> PARTITION p0 VALUES LESS THAN (0),
-> PARTITION p1 VALUES LESS THAN (10),
-> PARTITION p2 VALUES LESS THAN MAXVALUE
-> );

Query OK, 0 rows affected (0.09 sec)

mysql> CREATE TABLE t2 (
-> c1 INT,
-> c2 VARCHAR(20)
-> )
-> PARTITION BY RANGE(c1) (
-> PARTITION p0 VALUES LESS THAN (-5),
-> PARTITION p1 VALUES LESS THAN (0),
-> PARTITION p2 VALUES LESS THAN (10),
-> PARTITION p3 VALUES LESS THAN MAXVALUE
-> );

Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO t1 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)

You can see which partitions the rows are stored in by inspecting the filesystem and comparing the sizes of the .MYD files correpsond-
ing to the partitions:

/var/lib/mysql/test> ls -l *.MYD

Partitioning

1276



-rw-rw---- 1 mysql mysql 20 2006-03-10 03:27 t1#P#p0.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 03:17 t1#P#p1.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 03:17 t1#P#p2.MYD
-rw-rw---- 1 mysql mysql 20 2006-03-10 03:27 t2#P#p0.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 03:17 t2#P#p1.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 03:17 t2#P#p2.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 03:17 t2#P#p3.MYD

Partition files are named according to the format table_name#P#partition_name.extension, so that t1#P#p0.MYD is the
file in which data belonging to partition p0 of table t1 is stored.

Note

Prior to MySQL 5.1.5, these files would have been named t1_p0.MYD and t2_p0.MYD, respectively. See Sec-
tion C.1.28, “Changes in MySQL 5.1.6 (01 February 2006)” and Bug#13437 for information regarding how this change
impacts upgrades.

You can also demonstrate that these rows were stored in the lowest partition of the each table by dropping these partitions, and then re-
running the SELECT statements:

mysql> ALTER TABLE t1 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> ALTER TABLE t2 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)

mysql> SELECT * FROM t1;
Empty set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

(For more information on ALTER TABLE ... DROP PARTITION, see Section 12.1.4, “ALTER TABLE Syntax”.)

Such treatment also holds true for partitioning expressions that use SQL functions. Suppose that we have a table such as this one:

CREATE TABLE tndate (
id INT,
dt DATE

)
PARTITION BY RANGE( YEAR(dt) ) (

PARTITION p0 VALUES LESS THAN (1990),
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN MAXVALUE

);

As with other MySQL functions, YEAR(NULL) returns NULL. A row with a dt column value of NULL is treated as though the parti-
tioning expression evaluated to a value less than any other value, and so is inserted into partition p0.

A table that is partitioned by LIST admits NULL values if and only if one of its partitions is defined using that value-list that contains
NULL. The converse of this is that a table partitioned by LIST which does not explicitly use NULL in a value list rejects rows resulting
in a NULL value for the partitioning expression, as shown in this example:

mysql> CREATE TABLE ts1 (
-> c1 INT,
-> c2 VARCHAR(20)
-> )
-> PARTITION BY LIST(c1) (
-> PARTITION p0 VALUES IN (0, 3, 6),
-> PARTITION p1 VALUES IN (1, 4, 7),
-> PARTITION p2 VALUES IN (2, 5, 8)
-> );

Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO ts1 VALUES (9, 'mothra');
ERROR 1504 (HY000): TABLE HAS NO PARTITION FOR VALUE 9

mysql> INSERT INTO ts1 VALUES (NULL, 'mothra');
ERROR 1504 (HY000): TABLE HAS NO PARTITION FOR VALUE NULL

Only rows having a c1 value between 0 and 8 inclusive can be inserted into ts1. NULL falls outside this range, just like the number 9.
We can create tables ts2 and ts3 having value lists containing NULL, as shown here:

mysql> CREATE TABLE ts2 (
-> c1 INT,
-> c2 VARCHAR(20)

Partitioning

1277

http://bugs.mysql.com/13437


-> )
-> PARTITION BY LIST(c1) (
-> PARTITION p0 VALUES IN (0, 3, 6),
-> PARTITION p1 VALUES IN (1, 4, 7),
-> PARTITION p2 VALUES IN (2, 5, 8),
-> PARTITION p3 VALUES IN (NULL)
-> );

Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE ts3 (
-> c1 INT,
-> c2 VARCHAR(20)
-> )
-> PARTITION BY LIST(c1) (
-> PARTITION p0 VALUES IN (0, 3, 6),
-> PARTITION p1 VALUES IN (1, 4, 7, NULL),
-> PARTITION p2 VALUES IN (2, 5, 8)
-> );

Query OK, 0 rows affected (0.01 sec)

When defining value lists for partitioning, you can treat NULL just as you would any other value, and so VALUES IN (NULL) and
VALUES IN (1, 4, 7, NULL) are both valid (as are VALUES IN (1, NULL, 4, 7), VALUES IN (NULL, 1, 4, 7),
and so on). You can insert a row having NULL for column c1 into each of the tables ts2 and ts3:

mysql> INSERT INTO ts2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO ts3 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

By inspecting the filesystem, you can verify that the first of these statements inserted a new row into partition p3 of table ts2, and that
the second statement inserted a new row into partition p1 of table ts3:

/var/lib/mysql/test> ls -l ts2*.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 10:35 ts2#P#p0.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 10:35 ts2#P#p1.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 10:35 ts2#P#p2.MYD
-rw-rw---- 1 mysql mysql 20 2006-03-10 10:35 ts2#P#p3.MYD

/var/lib/mysql/test> ls -l ts3*.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 10:36 ts3#P#p0.MYD
-rw-rw---- 1 mysql mysql 20 2006-03-10 10:36 ts3#P#p1.MYD
-rw-rw---- 1 mysql mysql 0 2006-03-10 10:36 ts3#P#p2.MYD

As in earlier examples, we assume the use of the bash shell on a Unix operating system for listing files; use whatever your platform
provides in this regard. For example, if you are using a DOS shell on a Windows operating system, the equivalent for the last listing
might be obtained by running the command dir ts3*.MYD in the directory C:\Program Files\MySQL\MySQL Server
5.1\data\test.

As shown earlier in this section, you can also verify which partitions were used for storing the values by deleting them and then per-
forming a SELECT.

NULL is handled somewhat differently for tables partitioned by HASH or KEY. In these cases, any partition expression that yields a
NULL value is treated as though its return value were zero. We can verify this behavior by examining the effects on the filesystem of
creating a table partitioned by HASH and populating it with a record containing appropriate values. Suppose that you have a table th,
created in the test database, using this statement:

mysql> CREATE TABLE th (
-> c1 INT,
-> c2 VARCHAR(20)
-> )
-> PARTITION BY HASH(c1)
-> PARTITIONS 2;

Query OK, 0 rows affected (0.00 sec)

Assuming an RPM installation of MySQL on Linux, this statement creates two .MYD files in /var/lib/mysql/test, which can
be viewed in the bash shell as follows:

/var/lib/mysql/test> ls th*.MYD -l
-rw-rw---- 1 mysql mysql 0 2005-11-04 18:41 th#P#p0.MYD
-rw-rw---- 1 mysql mysql 0 2005-11-04 18:41 th#P#p1.MYD

Note that the size of each file is 0 bytes. Now insert a row into th whose c1 column value is NULL, and verify that this row was inser-
ted:

Partitioning

1278



mysql> INSERT INTO th VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM th;
+------+---------+
| c1 | c2 |
+------+---------+
| NULL | mothra |
+------+---------+
1 row in set (0.01 sec)

Recall that for any integer N, the value of NULL MOD N is always NULL. For tables that are partitioned by HASH or KEY, this result is
treated for determining the correct partition as 0. Returning to the system shell (still assuming bash for this purpose), we can see that
the value was inserted into the first partition (named p0 by default) by listing the data files once again:

var/lib/mysql/test> ls *.MYD -l
-rw-rw---- 1 mysql mysql 20 2005-11-04 18:44 th#P#p0.MYD
-rw-rw---- 1 mysql mysql 0 2005-11-04 18:41 th#P#p1.MYD

You can see that the INSERT statement modified only the file th#P#p0.MYD (increasing its size on disk), without affecting the other
data file.

Important

Prior to MySQL 5.1.8, RANGE partitioning treated a partitioning expression value of NULL as a zero with respect to de-
termining placement (the only way to circumvent this was to design tables so as not to allow nulls, usually by declaring
columns NOT NULL). If you have a RANGE partitioning scheme that depends on this earlier behavior, you will need to re-
implement it when upgrading to MySQL 5.1.8 or later.

18.3. Partition Management
MySQL 5.1 provides a number of ways to modify partitioned tables. It is possible to add, drop, redefine, merge, or split existing parti-
tions. All of these actions can be carried out using the partitioning extensions to the ALTER TABLE command (see Section 12.1.4,
“ALTER TABLE Syntax”, for syntax definitions). There are also ways to obtain information about partitioned tables and partitions. We
discuss these topics in the sections that follow.

• For information about partition management in tables partitioned by RANGE or LIST, see Section 18.3.1, “Management of RANGE
and LIST Partitions”.

• For a discussion of managing HASH and KEY partitions, see Section 18.3.2, “Management of HASH and KEY Partitions”.

• See Section 18.3.4, “Obtaining Information About Partitions”, for a discussion of mechanisms provided in MySQL 5.1 for obtaining
information about partitioned tables and partitions.

• For a discussion of performing maintenance operations on partitions, see Section 18.3.3, “Maintenance of Partitions”.

Note

In MySQL 5.1, all partitions of a partitioned table must have the same number of subpartitions, and it is not possible to
change the subpartitioning once the table has been created.

The statement ALTER TABLE ... PARTITION BY ... is available and is functional beginning with MySQL 5.1.6; previously in
MySQL 5.1, this was accepted as valid syntax, but the statement did nothing.

To change a table's partitioning scheme, it is necessary only to use the ALTER TABLE command with a partition_options
clause. This clause has the same syntax as that as used with CREATE TABLE for creating a partitioned table, and always begins with
the keywords PARTITION BY. For example, suppose that you have a table partitioned by range using the following CREATE TABLE
statement:

CREATE TABLE trb3 (id INT, name VARCHAR(50), purchased DATE)
PARTITION BY RANGE( YEAR(purchased) ) (

PARTITION p0 VALUES LESS THAN (1990),
PARTITION p1 VALUES LESS THAN (1995),
PARTITION p2 VALUES LESS THAN (2000),
PARTITION p3 VALUES LESS THAN (2005)

);

Partitioning

1279



To repartition this table so that it is partitioned by key into two partitions using the id column value as the basis for the key, you can
use this statement:

ALTER TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;

This has the same effect on the structure of the table as dropping the table and re-creating it using CREATE TABLE trb3 PARTI-
TION BY KEY(id) PARTITIONS 2;.

In MySQL 5.1.7 and earlier MySQL 5.1 releases, ALTER TABLE ... ENGINE = ... removed all partitioning from the affected
table. Beginning with MySQL 5.1.8, this statement changes only the storage engine used by the table, and leaves the table's partitioning
scheme intact. As of MySQL 5.1.8, use ALTER TABLE ... REMOVE PARTITIONING to remove a table's partitioning. See Sec-
tion 12.1.4, “ALTER TABLE Syntax”.

Important

Only a single PARTITION BY, ADD PARTITION, DROP PARTITION, REORGANIZE PARTITION, or COALESCE
PARTITION clause can be used in a given ALTER TABLE statement. If you (for example) wish to drop a partition and
reorganize a table's remaining partitions, you must do so in two separate ALTER TABLE statements (one using DROP
PARTITION and then a second one using REORGANIZE PARITITIONS).

18.3.1. Management of RANGE and LIST Partitions
Range and list partitions are very similar with regard to how the adding and dropping of partitions are handled. For this reason we dis-
cuss the management of both sorts of partitioning in this section. For information about working with tables that are partitioned by hash
or key, see Section 18.3.2, “Management of HASH and KEY Partitions”. Dropping a RANGE or LIST partition is more straightforward
than adding one, so we discuss this first.

Dropping a partition from a table that is partitioned by either RANGE or by LIST can be accomplished using the ALTER TABLE state-
ment with a DROP PARTITION clause. Here is a very basic example, which supposes that you have already created a table which is
partitioned by range and then populated with 10 records using the following CREATE TABLE and INSERT statements:

mysql> CREATE TABLE tr (id INT, name VARCHAR(50), purchased DATE)
-> PARTITION BY RANGE( YEAR(purchased) ) (
-> PARTITION p0 VALUES LESS THAN (1990),
-> PARTITION p1 VALUES LESS THAN (1995),
-> PARTITION p2 VALUES LESS THAN (2000),
-> PARTITION p3 VALUES LESS THAN (2005)
-> );

Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO tr VALUES
-> (1, 'desk organiser', '2003-10-15'),
-> (2, 'CD player', '1993-11-05'),
-> (3, 'TV set', '1996-03-10'),
-> (4, 'bookcase', '1982-01-10'),
-> (5, 'exercise bike', '2004-05-09'),
-> (6, 'sofa', '1987-06-05'),
-> (7, 'popcorn maker', '2001-11-22'),
-> (8, 'aquarium', '1992-08-04'),
-> (9, 'study desk', '1984-09-16'),
-> (10, 'lava lamp', '1998-12-25');

Query OK, 10 rows affected (0.01 sec)

You can see which items should have been inserted into partition p2 as shown here:

mysql> SELECT * FROM tr
-> WHERE purchased BETWEEN '1995-01-01' AND '1999-12-31';

+------+-----------+------------+
| id | name | purchased |
+------+-----------+------------+
| 3 | TV set | 1996-03-10 |
| 10 | lava lamp | 1998-12-25 |
+------+-----------+------------+
2 rows in set (0.00 sec)

To drop the partition named p2, execute the following command:

mysql> ALTER TABLE tr DROP PARTITION p2;
Query OK, 0 rows affected (0.03 sec)

Note: In MySQL 5.1, the NDBCLUSTER storage engine does not support ALTER TABLE ... DROP PARTITION. It does,

Partitioning

1280



however, support the other partitioning-related extensions to ALTER TABLE that are described in this chapter.

It is very important to remember that, when you drop a partition, you also delete all the data that was stored in that partition. You can
see that this is the case by re-running the previous SELECT query:

mysql> SELECT * FROM tr WHERE purchased
-> BETWEEN '1995-01-01' AND '1999-12-31';

Empty set (0.00 sec)

Because of this, the requirement was added in MySQL 5.1.10 that you have the DROP privilege for a table before you can execute AL-
TER TABLE ... DROP PARTITION on that table.

If you wish to drop all data from all partitions while preserving the table definition and its partitioning scheme, use the TRUNCATE
TABLE command. (See Section 12.2.9, “TRUNCATE Syntax”.)

If you intend to change the partitioning of a table without losing data, use ALTER TABLE ... REORGANIZE PARTITION instead.
See below or in Section 12.1.4, “ALTER TABLE Syntax”, for information about REORGANIZE PARTITION.

If you now execute a SHOW CREATE TABLE command, you can see how the partitioning makeup of the table has been changed:

mysql> SHOW CREATE TABLE tr\G
*************************** 1. row ***************************

Table: tr
Create Table: CREATE TABLE `tr` (
`id` int(11) default NULL,
`name` varchar(50) default NULL,
`purchased` date default NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE ( YEAR(purchased) ) (
PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM

)
1 row in set (0.01 sec)

When you insert new rows into the changed table with purchased column values between '1995-01-01' and '2004-12-31'
inclusive, those rows will be stored in partition p3. You can verify this as follows:

mysql> INSERT INTO tr VALUES (11, 'pencil holder', '1995-07-12');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM tr WHERE purchased
-> BETWEEN '1995-01-01' AND '2004-12-31';

+------+----------------+------------+
| id | name | purchased |
+------+----------------+------------+
| 11 | pencil holder | 1995-07-12 |
| 1 | desk organiser | 2003-10-15 |
| 5 | exercise bike | 2004-05-09 |
| 7 | popcorn maker | 2001-11-22 |
+------+----------------+------------+
4 rows in set (0.00 sec)

mysql> ALTER TABLE tr DROP PARTITION p3;
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT * FROM tr WHERE purchased
-> BETWEEN '1995-01-01' AND '2004-12-31';

Empty set (0.00 sec)

Note that the number of rows dropped from the table as a result of ALTER TABLE ... DROP PARTITION is not reported by the
server as it would be by the equivalent DELETE query.

Dropping LIST partitions uses exactly the same ALTER TABLE ... DROP PARTITION syntax as used for dropping RANGE parti-
tions. However, there is one important difference in the effect this has on your use of the table afterward: You can no longer insert into
the table any rows having any of the values that were included in the value list defining the deleted partition. (See Section 18.2.2,
“LIST Partitioning”, for an example.)

To add a new range or list partition to a previously partitioned table, use the ALTER TABLE ... ADD PARTITION statement. For
tables which are partitioned by RANGE, this can be used to add a new range to the end of the list of existing partitions. For example,
suppose that you have a partitioned table containing membership data for your organisation, which is defined as follows:

CREATE TABLE members (
id INT,
fname VARCHAR(25),
lname VARCHAR(25),

Partitioning

1281



dob DATE
)
PARTITION BY RANGE( YEAR(dob) ) (

PARTITION p0 VALUES LESS THAN (1970),
PARTITION p1 VALUES LESS THAN (1980),
PARTITION p2 VALUES LESS THAN (1990)

);

Suppose further that the minimum age for members is 16. As the calendar approaches the end of 2005, you realize that you will soon be
admitting members who were born in 1990 (and later in years to come). You can modify the members table to accommodate new
members born in the years 1990-1999 as shown here:

ALTER TABLE ADD PARTITION (PARTITION p3 VALUES LESS THAN (2000));

Important

With tables that are partitioned by range, you can use ADD PARTITION to add new partitions to the high end of the parti-
tions list only. Trying to add a new partition in this manner between or before existing partitions will result in an error as
shown here:

mysql> ALTER TABLE members
> ADD PARTITION (
> PARTITION p3 VALUES LESS THAN (1960));

ERROR 1463 (HY000): VALUES LESS THAN value must be strictly »
increasing for each partition

In a similar fashion, you can add new partitions to a table that is partitioned by LIST. For example, given a table defined like so:

CREATE TABLE tt (
id INT,
data INT

)
PARTITION BY LIST(data) (

PARTITION p0 VALUES IN (5, 10, 15),
PARTITION p1 VALUES IN (6, 12, 18)

);

You can add a new partition in which to store rows having the data column values 7, 14, and 21 as shown:

ALTER TABLE tt ADD PARTITION (PARTITION p2 VALUES IN (7, 14, 21));

Note that you cannot add a new LIST partition encompassing any values that are already included in the value list of an existing parti-
tion. If you attempt to do so, an error will result:

mysql> ALTER TABLE tt ADD PARTITION
> (PARTITION np VALUES IN (4, 8, 12));

ERROR 1465 (HY000): Multiple definition of same constant »
in list partitioning

Because any rows with the data column value 12 have already been assigned to partition p1, you cannot create a new partition on ta-
ble tt that includes 12 in its value list. To accomplish this, you could drop p1, and add np and then a new p1 with a modified defini-
tion. However, as discussed earlier, this would result in the loss of all data stored in p1 — and it is often the case that this is not what
you really want to do. Another solution might appear to be to make a copy of the table with the new partitioning and to copy the data in-
to it using CREATE TABLE ... SELECT ..., then drop the old table and rename the new one, but this could be very time-
consuming when dealing with a large amounts of data. This also might not be feasible in situations where high availability is a require-
ment.

Beginning with MySQL 5.1.6, you can add multiple partitions in a single ALTER TABLE ... ADD PARTITION statement as
shown here:

CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
hired DATE NOT NULL

)
PARTITION BY RANGE( YEAR(hired) ) (
PARTITION p1 VALUES LESS THAN (1991),
PARTITION p2 VALUES LESS THAN (1996),
PARTITION p3 VALUES LESS THAN (2001),
PARTITION p4 VALUES LESS THAN (2005)

Partitioning

1282



);

ALTER TABLE employees ADD PARTITION (
PARTITION p5 VALUES LESS THAN (2010),
PARTITION p6 VALUES LESS THAN MAXVALUE

);

Fortunately, MySQL's partitioning implementation provides ways to redefine partitions without losing data. Let us look first at a couple
of simple examples involving RANGE partitioning. Recall the members table which is now defined as shown here:

mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************

Table: members
Create Table: CREATE TABLE `members` (
`id` int(11) default NULL,
`fname` varchar(25) default NULL,
`lname` varchar(25) default NULL,
`dob` date default NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE ( YEAR(dob) ) (
PARTITION p0 VALUES LESS THAN (1970) ENGINE = MyISAM,
PARTITION p1 VALUES LESS THAN (1980) ENGINE = MyISAM,
PARTITION p2 VALUES LESS THAN (1990) ENGINE = MyISAM.
PARTITION p3 VALUES LESS THAN (2000) ENGINE = MyISAM

)

Suppose that you would like to move all rows representing members born before 1960 into a separate partition. As we have already
seen, this cannot be done using ALTER TABLE ... ADD PARTITION. However, you can use another partition-related extension to
ALTER TABLE in order to accomplish this:

ALTER TABLE members REORGANIZE PARTITION p0 INTO (
PARTITION s0 VALUES LESS THAN (1960),
PARTITION s1 VALUES LESS THAN (1970)

);

In effect, this command splits partition p0 into two new partitions s0 and s1. It also moves the data that was stored in p0 into the new
partitions according to the rules embodied in the two PARTITION ... VALUES ... clauses, so that s0 contains only those records
for which YEAR(dob) is less than 1960 and s1 contains those rows in which YEAR(dob) is greater than or equal to 1960 but less
than 1970.

A REORGANIZE PARTITION clause may also be used for merging adjacent partitions. You can return the members table to its pre-
vious partitioning as shown here:

ALTER TABLE members REORGANIZE PARTITION s0,s1 INTO (
PARTITION p0 VALUES LESS THAN (1970)

);

No data is lost in splitting or merging partitions using REORGANIZE PARTITION. In executing the above statement, MySQL moves
all of the records that were stored in partitions s0 and s1 into partition p0.

The general syntax for REORGANIZE PARTITION is:

ALTER TABLE tbl_name
REORGANIZE PARTITION partition_list
INTO (partition_definitions);

Here, tbl_name is the name of the partitioned table, and partition_list is a comma-separated list of names of one or more ex-
isting partitions to be changed. partition_definitions is a comma-separated list of new partition definitions, which follow the
same rules as for the partition_definitions list used in CREATE TABLE (see Section 12.1.10, “CREATE TABLE Syntax”). It
should be noted that you are not limited to merging several partitions into one, or to splitting one partition into many, when using RE-
ORGANIZE PARTITION. For example, you can reorganize all four partitions of the members table into two, as follows:

ALTER TABLE members REORGANIZE PARTITION p0,p1,p2,p3 INTO (
PARTITION m0 VALUES LESS THAN (1980),
PARTITION m1 VALUES LESS THAN (2000)

);

You can also use REORGANIZE PARTITION with tables that are partitioned by LIST. Let us return to the problem of adding a new
partition to the list-partitioned tt table and failing because the new partition had a value that was already present in the value-list of one
of the existing partitions. We can handle this by adding a partition that contains only non-conflicting values, and then reorganizing the
new partition and the existing one so that the value which was stored in the existing one is now moved to the new one:

Partitioning

1283



ALTER TABLE tt ADD PARTITION (PARTITION np VALUES IN (4, 8));
ALTER TABLE tt REORGANIZE PARTITION p1,np INTO (

PARTITION p1 VALUES IN (6, 18),
PARTITION np VALUES in (4, 8, 12)

);

Here are some key points to keep in mind when using ALTER TABLE ... REORGANIZE PARTITION to repartition tables that are
partitioned by RANGE or LIST:

• The PARTITION clauses used to determine the new partitioning scheme are subject to the same rules as those used with a CREATE
TABLE statement.

Most importantly, you should remember that the new partitioning scheme cannot have any overlapping ranges (applies to tables par-
titioned by RANGE) or sets of values (when reorganizing tables partitioned by LIST).

Note

Prior to MySQL 5.1.4, you could not reuse the names of existing partitions in the INTO clause, even when those partitions
were being dropped or redefined. See Section C.1.30, “Changes in MySQL 5.1.4 (21 December 2005)”, for more informa-
tion.

• The combination of partitions in the partition_definitions list should account for the same range or set of values overall as
the combined partitions named in the partition_list.

For instance, in the members table used as an example in this section, partitions p1 and p2 together cover the years 1980 through
1999. Therefore, any reorganization of these two partitions should cover the same range of years overall.

• For tables partitioned by RANGE, you can reorganize only adjacent partitions; you cannot skip over range partitions.

For instance, you could not reorganize the members table used as an example in this section using a statement beginning with AL-
TER TABLE members REORGANIZE PARTITION p0,p2 INTO ... because p0 covers the years prior to 1970 and p2
the years from 1990 through 1999 inclusive, and thus the two are not adjacent partitions.

• You cannot use REORGANIZE PARTITION to change the table's partitioning type; that is, you cannot (for example) change
RANGE partitions to HASH partitions or vice versa. You also cannot use this command to change the partitioning expression or
column. To accomplish either of these tasks without dropping and re-creating the table, you can use ALTER TABLE ... PAR-
TITION BY .... For example:

ALTER TABLE members
PARTITION BY HASH( YEAR(dob) )
PARTITIONS 8;

18.3.2. Management of HASH and KEY Partitions
Tables which are partitioned by hash or by key are very similar to one another with regard to making changes in a partitioning setup,
and both differ in a number of ways from tables which have been partitioned by range or list. For that reason, this section addresses the
modification of tables partitioned by hash or by key only. For a discussion of adding and dropping of partitions of tables that are parti-
tioned by range or list, see Section 18.3.1, “Management of RANGE and LIST Partitions”.

You cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that you can from tables that are parti-
tioned by RANGE or LIST. However, you can merge HASH or KEY partitions using the ALTER TABLE ... COALESCE PARTI-
TION command. For example, suppose that you have a table containing data about clients, which is divided into twelve partitions. The
clients table is defined as shown here:

CREATE TABLE clients (
id INT,
fname VARCHAR(30),
lname VARCHAR(30),
signed DATE

)
PARTITION BY HASH( MONTH(signed) )
PARTITIONS 12;

To reduce the number of partitions from twelve to eight, execute the following ALTER TABLE command:

mysql> ALTER TABLE clients COALESCE PARTITION 4;

Partitioning

1284



Query OK, 0 rows affected (0.02 sec)

COALESCE works equally well with tables that are partitioned by HASH, KEY, LINEAR HASH, or LINEAR KEY. Here is an example
similar to the previous one, differing only in that the table is partitioned by LINEAR KEY:

mysql> CREATE TABLE clients_lk (
-> id INT,
-> fname VARCHAR(30),
-> lname VARCHAR(30),
-> signed DATE
-> )
-> PARTITION BY LINEAR KEY(signed)
-> PARTITIONS 12;

Query OK, 0 rows affected (0.03 sec)

mysql> ALTER TABLE clients_lk COALESCE PARTITION 4;
Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

Note that the number following COALESCE PARTITION is the number of partitions to merge into the remainder — in other words, it
is the number of partitions to remove from the table.

If you attempt to remove more partitions than the table has, the result is an error like the one shown:

mysql> ALTER TABLE clients COALESCE PARTITION 18;
ERROR 1478 (HY000): Cannot remove all partitions, use DROP TABLE instead

To increase the number of partitions for the clients table from 12 to 18. use ALTER TABLE ... ADD PARTITION as shown
here:

ALTER TABLE clients ADD PARTITION PARTITIONS 6;

18.3.3. Maintenance of Partitions
MySQL 5.1 does not support the statements CHECK TABLE, OPTIMIZE TABLE, ANALYZE TABLE, or REPAIR TABLE for parti-
tioned tables. However, there are alternatives available for performing partitioning maintenance tasks.

Beginning with MySQL 5.1.5, you can rebuild partitions using ALTER TABLE ... REBUILD PARTITION, which has the same
effect as dropping all records stored in the partition, then reinserting them. This can be useful for purposes of defragmentation. You can
rebuild a one or more partitions belonging to the same table at one time using this statement, as shown in these examples:

ALTER TABLE t1 REBUILD PARTITION p1;
ALTER TABLE t1 REBUILD PARTITION p0, p2;

Executing the first statement rebuilds the partition named p1 from the table t1. Performing the second statement rebuilds partitions p0
and p2 from table t1.

ALTER TABLE ... REORGANIZE PARTITION also causes partition files to be rebuilt.

The statements ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, and REPAIR PARTITION were also in-
troduced in MySQL 5.1.5 for the purpose of, respectively, analyzing, checking, optimizing, and repairing individual or multiple parti-
tions. Support for these statements was removed in MySQL 5.1.24. (Bug#20129)

To accomplish these tasks, you can use mysqlcheck or, with partitioned MyISAM tables, you can use myisamchk. See Sec-
tion 4.5.3, “mysqlcheck — A Table Maintenance and Repair Program”, and Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”, for more information.

18.3.4. Obtaining Information About Partitions
This section discusses obtaining information about existing partitions, which can be done in a number of ways. These include:

• Using the SHOW CREATE TABLE statement to view the partitioning clauses used in creating a partitioned table.

• Using the SHOW TABLE STATUS statement to determine whether a table is partitioned.

• Querying the INFORMATION_SCHEMA.PARTITIONS table.

Partitioning

1285

http://bugs.mysql.com/20129


• Using the statement EXPLAIN PARTITIONS SELECT to see which partitions are used by a given SELECT.

As discussed elsewhere in this chapter, SHOW CREATE TABLE includes in its output the PARTITION BY clause used to create a par-
titioned table. For example:

mysql> SHOW CREATE TABLE trb3\G
*************************** 1. row ***************************

Table: trb3
Create Table: CREATE TABLE `trb3` (
`id` int(11) default NULL,
`name` varchar(50) default NULL,
`purchased` date default NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(purchased)) (
PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
PARTITION p2 VALUES LESS THAN (2000) ENGINE = MyISAM,
PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM

)
1 row in set (0.00 sec)

Note

In early MySQL 5.1 releases, the PARTITIONS clause was not shown for tables partitioned by HASH or KEY. This issue
was fixed in MySQL 5.1.6.

SHOW TABLE STATUS works with partitioned tables. Beginning with MySQL 5.1.9, its output is the same as that for non-partitioned
tables, except that the Create_options column contains the string partitioned. In MySQL 5.1.8 and earlier, the Engine
column always contained the value PARTITION; beginning with MySQL 5.1.9, this column contains the name of the storage engine
used by all partitions of the table. (See Section 12.5.4.28, “SHOW TABLE STATUS Syntax”, for more information about this com-
mand.)

You can also obtain information about partitions from INFORMATION_SCHEMA, which contains a PARTITIONS table. See Sec-
tion 24.19, “The INFORMATION_SCHEMA PARTITIONS Table”.

Beginning with MySQL 5.1.5, it is possible to determine which partitions of a partitioned table are involved in a given SELECT query
using EXPLAIN PARTITIONS. The PARTITIONS keyword adds a partitions column to the output of EXPLAIN listing the par-
titions from which records would be matched by the query.

Suppose that you have a table trb1 defined and populated as follows:

CREATE TABLE trb1 (id INT, name VARCHAR(50), purchased DATE)
PARTITION BY RANGE(id)
(

PARTITION p0 VALUES LESS THAN (3),
PARTITION p1 VALUES LESS THAN (7),
PARTITION p2 VALUES LESS THAN (9),
PARTITION p3 VALUES LESS THAN (11)

);

INSERT INTO trb1 VALUES
(1, 'desk organiser', '2003-10-15'),
(2, 'CD player', '1993-11-05'),
(3, 'TV set', '1996-03-10'),
(4, 'bookcase', '1982-01-10'),
(5, 'exercise bike', '2004-05-09'),
(6, 'sofa', '1987-06-05'),
(7, 'popcorn maker', '2001-11-22'),
(8, 'aquarium', '1992-08-04'),
(9, 'study desk', '1984-09-16'),
(10, 'lava lamp', '1998-12-25');

You can see which partitions are used in a query such as SELECT * FROM trb1;, as shown here:

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: trb1
partitions: p0,p1,p2,p3

type: ALL
possible_keys: NULL

key: NULL
key_len: NULL

ref: NULL
rows: 10

Partitioning

1286



Extra: Using filesort

In this case, all four partitions are searched. However, when a limiting condition making use of the partitioning key is added to the
query, you can see that only those partitions containing matching values are scanned, as shown here:

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: trb1
partitions: p0,p1

type: ALL
possible_keys: NULL

key: NULL
key_len: NULL

ref: NULL
rows: 10
Extra: Using where

EXPLAIN PARTITIONS provides information about keys used and possible keys, just as with the standard EXPLAIN SELECT state-
ment:

mysql> ALTER TABLE trb1 ADD PRIMARY KEY (id);
Query OK, 10 rows affected (0.03 sec)
Records: 10 Duplicates: 0 Warnings: 0

mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: trb1
partitions: p0,p1

type: range
possible_keys: PRIMARY

key: PRIMARY
key_len: 4

ref: NULL
rows: 7
Extra: Using where

You should take note of the following restrictions and limitations on EXPLAIN PARTITIONS:

• You cannot use the PARTITIONS and EXTENDED keywords together in the same EXPLAIN ... SELECT statement. Attempt-
ing to do so produces a syntax error.

• If EXPLAIN PARTITIONS is used to examine a query against a non-partitioned table, no error is produced, but the value of the
partitions column is always NULL.

See also Section 12.3.2, “EXPLAIN Syntax”.

18.4. Partition Pruning
This section discusses partition pruning, an optimization which was implemented for partitioned tables in MySQL 5.1.6. The core
concept behind partition pruning is relatively simple, and can be described as “Do not scan partitions where there can be no matching
values”. For example, suppose you have a partitioned table t1 defined by this statement:

CREATE TABLE t1 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL

)
PARTITION BY RANGE( region_code ) (

PARTITION p0 VALUES LESS THAN (64),
PARTITION p1 VALUES LESS THAN (128),
PARTITION p2 VALUES LESS THAN (192)
PARTITION p3 VALUES LESS THAN MAXVALUE

);

Consider the case where you wish to obtain results from a query such as this one:

SELECT fname, lname, postcode, dob
FROM t1

Partitioning

1287



WHERE region_code > 125 AND region_code < 130;

It is easy to see that none of the rows which ought to be returned will be in either of the partitions p0 or p3; that is, we need to search
only in partitions p1 and p2 to find matching rows. By doing so, it is possible to expend much more time and effort in finding matching
rows than it is to scan all partitions in the table. This “cutting away” of unneeded partitions is known as pruning. When the optimizer
can make use of partition pruning in performing a query, execution of the query can be an order of magnitude faster than the same query
against a non-partitioned table containing the same column definitions and data.

The query optimizer can perform pruning whenever a WHERE condition can be reduced to either one of the following:

• partition_column = constant

• partition_column IN (constant1, constant2, ..., constantN)

In the first case, the optimizer simply evaluates the partitioning expression for the value given, determines which partition contains that
value, and scans only this partition. In many cases, the equals sign can be replaced with another arithmetic comparison, including <, >,
<=, >=, and <>. Some queries using BETWEEN in the WHERE clause can also take advantage of partition pruning. See the examples
later in this section.

In the second case, the optimizer evaluates the partitioning expression for each value in the list, creates a list of matching partitions, and
then scans only the partitions in this partition list.

Pruning can also be applied to short ranges, which the optimizer can convert into equivalent lists of values. For instance, in the previous
example, the WHERE clause can be converted to WHERE region_code IN (125, 126, 127, 128, 129, 130). Then the
optimizer can determine that the first three values in the list are found in partition p1, the remaining three values in partition p2, and
that the other partitions contain no relevant values and so do not need to be searched for matching rows.

This type of optimization can be applied whenever the partitioning expression consists of an equality or a range which can be reduced to
a set of equalities, or when the partitioning expression represents an increasing or decreasing relationship. Pruning can also be applied
for tables partitioned on a DATE or DATETIME column when the partitioning expression uses the YEAR() or TO_DAYS() function.

Note

We plan to add pruning support in a future MySQL release for additional functions that act on a DATE or DATETIME
value, return an integer, and are increasing or decreasing.

For example, suppose that table t2, defined as shown here, is partitioned on a DATE column:

CREATE TABLE t2 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL

)
PARTITION BY RANGE( YEAR(dob) ) (

PARTITION d0 VALUES LESS THAN (1970),
PARTITION d1 VALUES LESS THAN (1975),
PARTITION d2 VALUES LESS THAN (1980),
PARTITION d3 VALUES LESS THAN (1985),
PARTITION d4 VALUES LESS THAN (1990),
PARTITION d5 VALUES LESS THAN (2000),
PARTITION d6 VALUES LESS THAN (2005),
PARTITION d7 VALUES LESS THAN MAXVALUE

);

The following queries on t2 can make of use partition pruning:

SELECT * FROM t2 WHERE dob = '1982-06-23';

SELECT * FROM t2 WHERE dob BETWEEN '1991-02-15' AND '1997-04-25';

SELECT * FROM t2 WHERE YEAR(dob)
IN (1979, 1980, 1983, 1985, 1986, 1988);

SELECT * FROM t2 WHERE dob >= '1984-06-21' AND dob <= '1999-06-21'

In the case of the last query, the optimizer can also act as follows:

Partitioning

1288



1. Find the partition containing the low end of the range.

YEAR('1984-06-21') yields the value 1984, which is found in partition d3.

2. Find the partition containing the high end of the range.

YEAR('1999-06-21') evaluates to 1999, which is found in partition d5.

3. Scan only these two partitions and any partitions that may lie between them.

In this case, this means that only partitions d3, d4, and d5 are scanned. The remaining partitions may be safely ignored (and are
ignored).

So far, we have looked only at examples using RANGE partitioning, but pruning can be applied with other partitioning types as well.

Consider a table that is partitioned by LIST, where the partitioning expression is increasing or decreasing, such as the table t3 shown
here. (In this example, we assume for the sake of brevity that the region_code column is limited to values between 1 and 10 inclus-
ive.)

CREATE TABLE t3 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL

)
PARTITION BY LIST(region_code) (

PARTITION r0 VALUES IN (1, 3),
PARTITION r1 VALUES IN (2, 5, 8),
PARTITION r2 VALUES IN (4, 9),
PARTITION r3 VALUES IN (6, 7, 10)

);

For a query such as SELECT * FROM t3 WHERE region_code BETWEEN 1 AND 3, the optimizer determines in which parti-
tions the values 1, 2, and 3 are found (r0 and r1) and skips the remaining ones (r2 and r3).

For tables that are partitioned by HASH or KEY, partition pruning is also possible in cases in which the WHERE clause uses a simple =
relation against a column used in the partitioning expression. Consider a table created like this:

CREATE TABLE t4 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL

)
PARTITION BY KEY(region_code)
PARTITIONS 8;

Any query such as this one can be pruned:

SELECT * FROM t4 WHERE region_code = 7;

Pruning can also be employed for short ranges, because the optimizer can turn such conditions into IN relations. For example, using the
same table t4 as defined previously, queries such as these can be pruned:

SELECT * FROM t4 WHERE region_code > 2 AND region_code < 6;

SELECT * FROM t4 WHERE region_code BETWEEN 3 AND 5;

In both these cases, the WHERE clause is transformed by the optimizer into WHERE region_code IN (3, 4, 5).

Important

This optimization is used only if the range size is smaller than the number of partitions. Consider this query:

SELECT * FROM t4 WHERE region_code BETWEEN 4 AND 8;

The range in the WHERE clause covers 5 values (4, 5, 6, 7, 8), but t4 has only 4 partitions. This means that the previous
query cannot be pruned.

Partitioning

1289



Pruning can be used only on integer columns of tables partitioned by HASH or KEY. For example, this query on table t4 cannot use
pruning because dob is a DATE column:

SELECT * FROM t4 WHERE dob >=- '2001-04-14' AND dob <= '2005-10-15';

However, if the table stores year values in an INT column, then a query having WHERE year_col >= 2001 AND year_col
<= 2005 can be pruned.

18.5. Restrictions and Limitations on Partitioning
This section discusses current restrictions and limitations on MySQL partitioning support, as listed here:

• Prohibited constructs. Beginning with MySQL 5.1.12, the following constructs are not permitted in partitioning expressions:

• Stored functions, stored procedures, UDFs, or plugins.

• Nested function calls. For example, while MOD() and TO_DAYS() are both permitted in partitioning expressions, an expres-
sion such as MOD(TO_DAYS(datetime_column), 7) is not allowed.

• Declared variables or user variables.
For a list of SQL functions which are permitted in partitioning expressions, see Section 18.5.3, “Partitioning Limitations Relating to
Functions”.

• Arithmetic and logical operators. Use of the arithmetic operators +, –, and * is permitted in partitioning expressions. However,
the result must be an integer value or NULL (except in the case of [LINEAR] KEY partitioning, as discussed elswhere in this
chapter — see Section 18.2, “Partition Types”, for more information).

Beginning with MySQL 5.1.23, the DIV operator is also supported, and the / operator is disallowed. (Bug#30188, Bug#33182)

Beginning with MySQL 5.1.12, the bit operators |, &, ^, <<, >>, and ~ are not permitted in partitioning expressions.

• Server SQL mode. Tables employing user-defined partitioning do not preserve the SQL mode in effect at the time that they were
created. As discussed in Section 5.1.6, “SQL Modes”, the results of many MySQL functions and operators may change according to
the server SQL mode. Therefore, a change in the SQL mode at any time after the creation of partitioned tables may lead to major
changes in the behavior of such tables, and could easily lead to corruption or loss of data. For these reasons, it is strongly recommen-
ded that you never change the server SQL mode after creating partitioned tables.

• Performance considerations.

• Filesystem operations. Partitioning and repartitioning operations (such as ALTER TABLE with PARTITION BY ..., RE-
ORGANIZE PARTITIONS, or REMOVE PARTITIONING) depend on filesystem operations for their implementation. This
means that the speed of these operations is affected by such factors as filesystem type and characteristics, disk speed, swap
space, file handling efficiency of the operating system, and MySQL server options and variables that relate to file handling. In
particular, you should make sure that large_files_support is enabled and that open_files_limit is set properly.
For partitioned tables using the MyISAM storage engine, increasing myisam_max_sort_file_size may improve perform-
ance; partitioning and repartitioning operations involving InnoDB tables may be made more efficient by enabling in-
nodb_file_per_table.

• Table locks. The process executing a partitioning operation on a table takes a write lock on the table. Reads from such tables
are relatively unaffected; pending INSERT and UPDATE operations are performed as soon as the partitioning operation has
completed.

• Storage engine. Partitioning operations, queries, and update operations generally tend to be faster with MyISAM tables than
with InnoDB or NDB tables.

• Use of indexes and partition pruning. As with non-partitioned tables, proper use of indexes can speed up queries on parti-
tioned tables significantly. In addition, designing partitioned tables and queries on these tables to take advantage of partition
pruning can improve performance dramatically. See Section 18.4, “Partition Pruning”, for more information.

• Performance with LOAD DATA. Prior to MySQL 5.1.23, LOAD DATA performed very poorly when importing into partitioned
tables. The statement now uses buffering to improve performance; however, the buffer uses 130 KB memory per partition to
achieve this. (Bug#26527)

Partitioning

1290

http://bugs.mysql.com/30188
http://bugs.mysql.com/33182
http://bugs.mysql.com/26527


• Maximum number of partitions. The maximum number of partitions possible for a given table is 1024. This includes subparti-
tions.

If, when creating tables with a very large number of partitions (but which is less than the maximum stated previously), you en-
counter an error message such as GOT ERROR 24 FROM STORAGE ENGINE, this means that you may need to increase the value of the
open_files_limit system variable. See Section B.1.2.18, “'FILE' NOT FOUND and Similar Errors”.

• Foreign keys not supported. Partitioned tables do not support foreign keys. This means that:

1. Definitions of tables employing user-defined partitioning may not contain foreign key references to other tables.

2. No table definition may contain a foreign key reference to a partitioned table.
The scope of these restrictions includes tables that use the InnoDB storage engine.

• ALTER TABLE ... ORDER BY. An ALTER TABLE ... ORDER BY column statement run against a partitioned table
causes ordering of rows only within each partition.

• FULLTEXT indexes. Partitioned tables do not support FULLTEXT indexes. This includes partitioned tables employing the My-
ISAM storage engine.

• Spatial columns. Columns with spatial data types such as POINT or GEOMETRY cannot be used in partitioned tables.

• Temporary tables. As of MySQL 5.1.8, temporary tables cannot be partitioned. (Bug#17497)

• Log tables. Beginning with MySQL 5.1.20, it is no longer possible to partition the log tables; beginning with that version, an AL-
TER TABLE ... PARTITION BY ... statement on such a table fails with an error. (Bug#27816)

• Data type of partitioning key. A partitioning key must be either an integer column or an expression that resolves to an integer.
The column or expression value may also be NULL. (See Section 18.2.6, “How MySQL Partitioning Handles NULL Values”.)

The lone exception to this restriction occurs when partitioning by [LINEAR] KEY, where it is possible to use columns of other types
as partitioning keys, because MySQL's internal key-hashing functions produce the correct data type from these types. For example,
the following CREATE TABLE statement is valid:

CREATE TABLE tkc (c1 CHAR)
PARTITION BY KEY(c1)
PARTITIONS 4;

This exception does not apply to BLOB or TEXT column types.

• Subqueries. A partitioning key may not be a subquery, even if that subquery resolves to an integer value or NULL.

• Subpartitions. Subpartitions are limited to HASH or KEY partitioning. HASH and KEY partitions cannot be subpartitioned.

• Key caches not supported. Key caches are not supported for partitioned tables. The LOAD CACHE and LOAD INDEX INTO
CACHE statements, when you attempt to use them on tables having user-defined partitioning, fail with the errors THE STORAGE EN-

GINE FOR THE TABLE DOESN'T SUPPORT ASSIGN_TO_KEYCACHE and THE STORAGE ENGINE FOR THE TABLE DOESN'T SUPPORT

PRELOAD_KEYS, respectively.

• DELAYED option not supported. Use of INSERT DELAYED to insert rows into a partitioned table is not supported. Beginning
with MySQL 5.1.23, attempting to do so fails with an error. (Bug#31210)

• DATA DIRECTORY and INDEX DIRECTORY options. DATA DIRECTORY and INDEX DIRECTORY are subject to the fol-
lowing restrictions when used with partitioned tables:

• Beginning with MySQL 5.1.23, table-level DATA DIRECTORY and INDEX DIRECTORY are ignored. (Bug#32091)

• On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for individual partitions or subparti-
tions (Bug#30459).

18.5.1. Partitioning Keys, Primary Keys, and Unique Keys
This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule governing this relationship can
be expressed as follows: All columns used in the partitioning expression for a partitioned table must be part of every unique key that the
table may have.

Partitioning

1291

http://bugs.mysql.com/17497
http://bugs.mysql.com/27816
http://bugs.mysql.com/31210
http://bugs.mysql.com/32091
http://bugs.mysql.com/30459


In other words, every unique key on the table must use every column in the table's partitioning expression. (This also includes the table's
primary key, since it is by definition a unique key. This particular case is discussed later in this section.) For example, each of the fol-
lowing table creation statements is invalid:

CREATE TABLE t1 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col2)

)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1),
UNIQUE KEY (col3)

)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

In each case, the proposed table would have at least one unique key that does not include all columns used in the partitioning expres-
sion.

Each of the following statements is valid, and represents one way in which the corresponding invalid table creation statement could be
made to work:

CREATE TABLE t1 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col2, col3)

)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t2 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col3)

)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;

This example shows the error produced in such cases:

mysql> CREATE TABLE t3 (
-> col1 INT NOT NULL,
-> col2 DATE NOT NULL,
-> col3 INT NOT NULL,
-> col4 INT NOT NULL,
-> UNIQUE KEY (col1, col2),
-> UNIQUE KEY (col3)
-> )
-> PARTITION BY HASH(col1 + col3)
-> PARTITIONS 4;

ERROR 1491 (HY000): A PRIMARY KEY MUST INCLUDE ALL COLUMNS IN THE TABLE'S PARTITIONING FUNCTION

The CREATE statement fails because both col1 and col3 are included in the proposed partitioning key, but neither of these columns
is part of both of unique keys on the table. This shows one possible fix for the invalid table definition;

mysql> CREATE TABLE t3 (
-> col1 INT NOT NULL,
-> col2 DATE NOT NULL,
-> col3 INT NOT NULL,
-> col4 INT NOT NULL,
-> UNIQUE KEY (col1, col2, col3),
-> UNIQUE KEY (col3)
-> )
-> PARTITION BY HASH(col3)
-> PARTITIONS 4;

Query OK, 0 rows affected (0.05 sec)

In this case, the proposed partitioning key col3 is part of both unique keys, and the table creation statement succeeds.

Partitioning

1292



Since every primary key is by definition a unique key, this restriction also includes the table's primary key, if it has one. For example,
the next two statements are invalid:

CREATE TABLE t4 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col2)

)
PARTITION BY HASH(col3)
PARTITIONS 4;

CREATE TABLE t5 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col3),
UNIQUE KEY(col2)

)
PARTITION BY HASH( YEAR(col2) )
PARTITIONS 4;

In both cases, the primary key does not include all columns referenced in the partitioning expression. However, both of the next two
statements are valid:

CREATE TABLE t6 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col2)

)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

CREATE TABLE t7 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col2, col4),
UNIQUE KEY(col2, col1)

)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;

If a table has no unique keys — this includes having no primary key — then this restriction does not apply, and you may use any
column or columns in the partitioning expression as long as the column type is compatible with the partitioning type.

For the same reason, you cannot later add a unique key to a partitioned table unless the key includes all columns used by the table's par-
titioning expression. Consider given the partitioned table defined as shown here:

mysql> CREATE TABLE t_no_pk (c1 INT, c2 INT)
-> PARTITION BY RANGE(c1) (
-> PARTITION p0 VALUES LESS THAN (10),
-> PARTITION p1 VALUES LESS THAN (20),
-> PARTITION p2 VALUES LESS THAN (30),
-> PARTITION p3 VALUES LESS THAN (40)
-> );

Query OK, 0 rows affected (0.12 sec)

It is possible to add a primary key to t_no_pk using either of these ALTER TABLE statements:

# possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1);
Query OK, 0 rows affected (0.13 sec)
Records: 0 Duplicates: 0 Warnings: 0

# drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.10 sec)
Records: 0 Duplicates: 0 Warnings: 0

# use another possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1, c2);
Query OK, 0 rows affected (0.12 sec)
Records: 0 Duplicates: 0 Warnings: 0

# drop this PK

Partitioning

1293



mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0

However, the next statement fails, because c1 is part of the partitioning key, but is not part of the proposed primary key:

# fails with error 1503
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c2);
ERROR 1503 (HY000): A PRIMARY KEY MUST INCLUDE ALL COLUMNS IN THE TABLE'S PARTITIONING FUNCTION

Since t_no_pk has only c1 in its partitioning expression, attempting to adding a unique key on c2 alone fails. However, you can add
a unique key that uses both c1 and c2.

These rules also apply to existing non-partitioned tables that you wish to partition using ALTER TABLE ... PARTITION BY. Con-
sider a table np_pk defined as shown here:

mysql> CREATE TABLE np_pk (
-> id INT NOT NULL AUTO_INCREMENT,
-> name VARCHAR(50),
-> added DATE,
-> PRIMARY KEY (id)
-> );

Query OK, 0 rows affected (0.08 sec)

The following ALTER TABLE statements fails with an error, because the added column is not part of any unique key in the table:

mysql> ALTER TABLE np_pk
-> PARTITION BY HASH( TO_DAYS(added) )
-> PARTITIONS 4;

ERROR 1503 (HY000): A PRIMARY KEY MUST INCLUDE ALL COLUMNS IN THE TABLE'S PARTITIONING FUNCTION

However, this statement using the id column for the partitioning column is valid, as shown here:

mysql> ALTER TABLE np_pk
-> PARTITION BY HASH(id)
-> PARTITIONS 4;

Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

In the case of np_pk, the only column that may be used as part of a partitioning expression is id; if you wish to partition this table us-
ing any other column or columns in the partitioning expression, you must first modify the table, either by adding the desired column or
columns to the primary key, or by dropping the primary key altogether.

We are working to remove this limitation in a future MySQL release series.

18.5.2. Partitioning Limitations Relating to Storage Engines
The following limitations apply to the use of storage engines with user-defined partitioning of tables.

MERGE storage engine. User-defined partitioning and the MERGE storage engine are not compatible. Tables using the MERGE storage
engine cannot be partitioned. Partitioned tables cannot be merged.

FEDERATED storage engine. Partitioning of FEDERATED tables is not supported. Beginning with MySQL 5.1.15, it is not possible to
create partitioned FEDERATED tables at all. We are working to remove this limitation in a future MySQL release.

CSV storage engine. Partitioned tables using the CSV storage engine are not supported. Starting with MySQL 5.1.12, it is not possible
to create partitioned CSV tables at all.

BLACKHOLE storage engine. Prior to MySQL 5.1.6, tables using the BLACKHOLE storage engine also could not be partitioned.

NDB storage engine (MySQL Cluster). Partitioning by KEY (or LINEAR KEY) is the only type of partitioning supported for the NDB
storage engine. Beginning with MySQL 5.1.12, it is not possible to create a Cluster table using any partitioning type other than [LIN-
EAR] KEY, and attempting to do so gives rise to an error.

Upgrading partitioned tables. When performing an upgrade, tables which are partitioned by KEY and which use any storage engine
other than NDBCLUSTER must be dumped and reloaded.

Same storage engine for all partitions. All partitions of a partitioned table must use the same storage engine and it must be the same

Partitioning

1294



storage engine used by the table as a whole. In addition, if one does not specify an engine on the table level, then one must do either of
the following when creating or altering a partitioned table:

• Do not specify any engine for any partition or subpartition

• Specify the engine for all partitions or subpartitions

We are working to remove this limitation in a future MySQL release.

18.5.3. Partitioning Limitations Relating to Functions
This section discusses limitations in MySQL Partitioning relating specifically to functions used in partitioning expressions.

Beginning with MySQL 5.1.12, only the following MySQL functions are supported in partitioning expressions:

• ABS()

• CEILING() (see CEILING() and FLOOR(), immediately following this list)

• DAY()

• DAYOFMONTH()

• DAYOFWEEK()

• DAYOFYEAR()

• DATEDIFF()

• EXTRACT()

• FLOOR() (see CEILING() and FLOOR(), immediately following this list)

• HOUR()

• MICROSECOND()

• MINUTE()

• MOD()

• MONTH()

• QUARTER()

• SECOND()

• TIME_TO_SEC()

• TO_DAYS()

• WEEKDAY()

• YEAR()

• YEARWEEK()

Note

CEILING() and FLOOR(). Each of these functions returns an integer only if it is passed an integer argument. This
means, for example, that the following CREATE TABLE statement fails with an error, as shown here:

mysql> CREATE TABLE t (c FLOAT) PARTITION BY LIST( FLOOR(c) )(
-> PARTITION p0 VALUES IN (1,3,5),
-> PARTITION p1 VALUES IN (2,4,6)

Partitioning

1295



-> );
ERROR 1490 (HY000): THE PARTITION FUNCTION RETURNS THE WRONG TYPE

See Section 11.5.2, “Mathematical Functions”, for more information about the return types of these functions.

Partitioning

1296



Chapter 19. Spatial Extensions
MySQL supports spatial extensions to allow the generation, storage, and analysis of geographic features. These features are available
for MyISAM, InnoDB, NDB, and ARCHIVE tables.

For spatial columns, MyISAM supports both SPATIAL and non-SPATIAL indexes. Other storage engines support non-SPATIAL in-
dexes, as described in Section 12.1.7, “CREATE INDEX Syntax”.

This chapter covers the following topics:

• The basis of these spatial extensions in the OpenGIS geometry model

• Data formats for representing spatial data

• How to use spatial data in MySQL

• Use of indexing for spatial data

• MySQL differences from the OpenGIS specification

Additional resources

• The Open Geospatial Consortium publishes the OpenGIS® Simple Features Specifications For SQL, a document that proposes sev-
eral conceptual ways for extending an SQL RDBMS to support spatial data. This specification is available from the OGC Web site
at http://www.opengis.org/docs/99-049.pdf.

• If you have questions or concerns about the use of the spatial extensions to MySQL, you can discuss them in the GIS forum: ht-
tp://forums.mysql.com/list.php?23.

19.1. Introduction to MySQL Spatial Support
MySQL implements spatial extensions following the specification of the Open Geospatial Consortium (OGC). This is an international
consortium of more than 250 companies, agencies, and universities participating in the development of publicly available conceptual
solutions that can be useful with all kinds of applications that manage spatial data. The OGC maintains a Web site at ht-
tp://www.opengis.org/.

In 1997, the Open Geospatial Consortium published the OpenGIS® Simple Features Specifications For SQL, a document that proposes
several conceptual ways for extending an SQL RDBMS to support spatial data. This specification is available from the OGC Web site at
http://www.opengis.org/docs/99-049.pdf. It contains additional information relevant to this chapter.

MySQL implements a subset of the SQL with Geometry Types environment proposed by OGC. This term refers to an SQL environ-
ment that has been extended with a set of geometry types. A geometry-valued SQL column is implemented as a column that has a geo-
metry type. The specification describe a set of SQL geometry types, as well as functions on those types to create and analyze geometry
values.

A geographic feature is anything in the world that has a location. A feature can be:

• An entity. For example, a mountain, a pond, a city.

• A space. For example, town district, the tropics.

• A definable location. For example, a crossroad, as a particular place where two streets intersect.

Some documents use the term geospatial feature to refer to geographic features.

Geometry is another word that denotes a geographic feature. Originally the word geometry meant measurement of the earth. Another
meaning comes from cartography, referring to the geometric features that cartographers use to map the world.

This chapter uses all of these terms synonymously: geographic feature, geospatial feature, feature, or geometry. Here, the term most

1297

http://forums.mysql.com/list.php?23
http://forums.mysql.com/list.php?23
http://www.opengis.org/
http://www.opengis.org/


commonly used is geometry, defined as a point or an aggregate of points representing anything in the world that has a location.

19.2. The OpenGIS Geometry Model
The set of geometry types proposed by OGC's SQL with Geometry Types environment is based on the OpenGIS Geometry Model.
In this model, each geometric object has the following general properties:

• It is associated with a Spatial Reference System, which describes the coordinate space in which the object is defined.

• It belongs to some geometry class.

19.2.1. The Geometry Class Hierarchy
The geometry classes define a hierarchy as follows:

• Geometry (non-instantiable)

• Point (instantiable)

• Curve (non-instantiable)

• LineString (instantiable)

• Line

• LinearRing

• Surface (non-instantiable)

• Polygon (instantiable)

• GeometryCollection (instantiable)

• MultiPoint (instantiable)

• MultiCurve (non-instantiable)

• MultiLineString (instantiable)

• MultiSurface (non-instantiable)

• MultiPolygon (instantiable)

It is not possible to create objects in non-instantiable classes. It is possible to create objects in instantiable classes. All classes have prop-
erties, and instantiable classes may also have assertions (rules that define valid class instances).

Geometry is the base class. It is an abstract class. The instantiable subclasses of Geometry are restricted to zero-, one-, and two-
dimensional geometric objects that exist in two-dimensional coordinate space. All instantiable geometry classes are defined so that valid
instances of a geometry class are topologically closed (that is, all defined geometries include their boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollection:

• Point represents zero-dimensional objects.

• Curve represents one-dimensional objects, and has subclass LineString, with sub-subclasses Line and LinearRing.

• Surface is designed for two-dimensional objects and has subclass Polygon.

• GeometryCollection has specialized zero-, one-, and two-dimensional collection classes named MultiPoint, MultiLin-
eString, and MultiPolygon for modeling geometries corresponding to collections of Points, LineStrings, and Poly-
gons, respectively. MultiCurve and MultiSurface are introduced as abstract superclasses that generalize the collection in-

Spatial Extensions

1298



terfaces to handle Curves and Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as non-instantiable classes. They define a common
set of methods for their subclasses and are included for extensibility.

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and MultiPolygon are in-
stantiable classes.

19.2.2. Class Geometry

Geometry is the root class of the hierarchy. It is a non-instantiable class but has a number of properties that are common to all geo-
metry values created from any of the Geometry subclasses. These properties are described in the following list. Particular subclasses
have their own specific properties, described later.

Geometry Properties

A geometry value has the following properties:

• Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.

• Its SRID, or Spatial Reference Identifier. This value identifies the geometry's associated Spatial Reference System that describes the
coordinate space in which the geometry object is defined.

In MySQL, the SRID value is just an integer associated with the geometry value. All calculations are done assuming Euclidean
(planar) geometry.

• Its coordinates in its Spatial Reference System, represented as double-precision (eight-byte) numbers. All non-empty geometries in-
clude at least one pair of (X,Y) coordinates. Empty geometries contain no coordinates.

Coordinates are related to the SRID. For example, in different coordinate systems, the distance between two objects may differ even
when objects have the same coordinates, because the distance on the planar coordinate system and the distance on the geocentric
system (coordinates on the Earth's surface) are different things.

• Its interior, boundary, and exterior.

Every geometry occupies some position in space. The exterior of a geometry is all space not occupied by the geometry. The interior
is the space occupied by the geometry. The boundary is the interface between the geometry's interior and exterior.

• Its MBR (Minimum Bounding Rectangle), or Envelope. This is the bounding geometry, formed by the minimum and maximum
(X,Y) coordinates:

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• Whether the value is simple or non-simple. Geometry values of types (LineString, MultiPoint, MultiLineString) are
either simple or non-simple. Each type determines its own assertions for being simple or non-simple.

• Whether the value is closed or not closed. Geometry values of types (LineString, MultiString) are either closed or not
closed. Each type determines its own assertions for being closed or not closed.

• Whether the value is empty or non-empty A geometry is empty if it does not have any points. Exterior, interior, and boundary of an
empty geometry are not defined (that is, they are represented by a NULL value). An empty geometry is defined to be always simple
and has an area of 0.

• Its dimension. A geometry can have a dimension of –1, 0, 1, or 2:

• –1 for an empty geometry.

• 0 for a geometry with no length and no area.

• 1 for a geometry with non-zero length and zero area.

• 2 for a geometry with non-zero area.

Spatial Extensions

1299



Point objects have a dimension of zero. LineString objects have a dimension of 1. Polygon objects have a dimension of 2.
The dimensions of MultiPoint, MultiLineString, and MultiPolygon objects are the same as the dimensions of the ele-
ments they consist of.

19.2.3. Class Point

A Point is a geometry that represents a single location in coordinate space.

Point Examples

• Imagine a large-scale map of the world with many cities. A Point object could represent each city.

• On a city map, a Point object could represent a bus stop.

Point Properties

• X-coordinate value.

• Y-coordinate value.

• Point is defined as a zero-dimensional geometry.

• The boundary of a Point is the empty set.

19.2.4. Class Curve

A Curve is a one-dimensional geometry, usually represented by a sequence of points. Particular subclasses of Curve define the type
of interpolation between points. Curve is a non-instantiable class.

Curve Properties

• A Curve has the coordinates of its points.

• A Curve is defined as a one-dimensional geometry.

• A Curve is simple if it does not pass through the same point twice.

• A Curve is closed if its start point is equal to its endpoint.

• The boundary of a closed Curve is empty.

• The boundary of a non-closed Curve consists of its two endpoints.

• A Curve that is simple and closed is a LinearRing.

19.2.5. Class LineString

A LineString is a Curve with linear interpolation between points.

LineString Examples

• On a world map, LineString objects could represent rivers.

• In a city map, LineString objects could represent streets.

Spatial Extensions

1300



LineString Properties

• A LineString has coordinates of segments, defined by each consecutive pair of points.

• A LineString is a Line if it consists of exactly two points.

• A LineString is a LinearRing if it is both closed and simple.

19.2.6. Class Surface

A Surface is a two-dimensional geometry. It is a non-instantiable class. Its only instantiable subclass is Polygon.

Surface Properties

• A Surface is defined as a two-dimensional geometry.

• The OpenGIS specification defines a simple Surface as a geometry that consists of a single “patch” that is associated with a
single exterior boundary and zero or more interior boundaries.

• The boundary of a simple Surface is the set of closed curves corresponding to its exterior and interior boundaries.

19.2.7. Class Polygon

A Polygon is a planar Surface representing a multisided geometry. It is defined by a single exterior boundary and zero or more in-
terior boundaries, where each interior boundary defines a hole in the Polygon.

Polygon Examples

• On a region map, Polygon objects could represent forests, districts, and so on.

Polygon Assertions

• The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString objects that are both simple and
closed) that make up its exterior and interior boundaries.

• A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect at a Point, but only as a tangent.

• A Polygon has no lines, spikes, or punctures.

• A Polygon has an interior that is a connected point set.

• A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each hole defines a connected component of
the exterior.

The preceding assertions make a Polygon a simple geometry.

19.2.8. Class GeometryCollection

A GeometryCollection is a geometry that is a collection of one or more geometries of any class.

All the elements in a GeometryCollection must be in the same Spatial Reference System (that is, in the same coordinate system).
There are no other constraints on the elements of a GeometryCollection, although the subclasses of GeometryCollection
described in the following sections may restrict membership. Restrictions may be based on:

• Element type (for example, a MultiPoint may contain only Point elements)

Spatial Extensions

1301



• Dimension

• Constraints on the degree of spatial overlap between elements

19.2.9. Class MultiPoint

A MultiPoint is a geometry collection composed of Point elements. The points are not connected or ordered in any way.

MultiPoint Examples

• On a world map, a MultiPoint could represent a chain of small islands.

• On a city map, a MultiPoint could represent the outlets for a ticket office.

MultiPoint Properties

• A MultiPoint is a zero-dimensional geometry.

• A MultiPoint is simple if no two of its Point values are equal (have identical coordinate values).

• The boundary of a MultiPoint is the empty set.

19.2.10. Class MultiCurve

A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a non-instantiable class.

MultiCurve Properties

• A MultiCurve is a one-dimensional geometry.

• A MultiCurve is simple if and only if all of its elements are simple; the only intersections between any two elements occur at
points that are on the boundaries of both elements.

• A MultiCurve boundary is obtained by applying the “mod 2 union rule” (also known as the “odd-even rule”): A point is in the
boundary of a MultiCurve if it is in the boundaries of an odd number of MultiCurve elements.

• A MultiCurve is closed if all of its elements are closed.

• The boundary of a closed MultiCurve is always empty.

19.2.11. Class MultiLineString

A MultiLineString is a MultiCurve geometry collection composed of LineString elements.

MultiLineString Examples

• On a region map, a MultiLineString could represent a river system or a highway system.

19.2.12. Class MultiSurface

A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a non-instantiable class. Its only in-
stantiable subclass is MultiPolygon.

MultiSurface Assertions

Spatial Extensions

1302



• Two MultiSurface surfaces have no interiors that intersect.

• Two MultiSurface elements have boundaries that intersect at most at a finite number of points.

19.2.13. Class MultiPolygon

A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples

• On a region map, a MultiPolygon could represent a system of lakes.

MultiPolygon Assertions

• A MultiPolygon has no two Polygon elements with interiors that intersect.

• A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by the previous assertion), or that touch at
an infinite number of points.

• A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regular, closed point set.

• A MultiPolygon that has more than one Polygon has an interior that is not connected. The number of connected components
of the interior of a MultiPolygon is equal to the number of Polygon values in the MultiPolygon.

MultiPolygon Properties

• A MultiPolygon is a two-dimensional geometry.

• A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to the boundaries of its Polygon
elements.

• Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one Polygon element.

• Every Curve in the boundary of an Polygon element is in the boundary of the MultiPolygon.

19.3. Supported Spatial Data Formats
This section describes the standard spatial data formats that are used to represent geometry objects in queries. They are:

• Well-Known Text (WKT) format

• Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT or WKB format.

19.3.1. Well-Known Text (WKT) Format
The Well-Known Text (WKT) representation of Geometry is designed to exchange geometry data in ASCII form.

Examples of WKT representations of geometry objects:

• A Point:

POINT(15 20)

Spatial Extensions

1303



Note that point coordinates are specified with no separating comma.

• A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

Note that point coordinate pairs are separated by commas.

• A Polygon with one exterior ring and one interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

• A MultiPoint with three Point values:

MULTIPOINT(0 0, 20 20, 60 60)

• A MultiLineString with two LineString values:

MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

• A MultiPolygon with two Polygon values:

MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

• A GeometryCollection consisting of two Point values and one LineString:

GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

A Backus-Naur grammar that specifies the formal production rules for writing WKT values can be found in the OpenGIS specification
document referenced near the beginning of this chapter.

19.3.2. Well-Known Binary (WKB) Format
The Well-Known Binary (WKB) representation for geometric values is defined by the OpenGIS specification. It is also defined in the
ISO SQL/MM Part 3: Spatial standard.

WKB is used to exchange geometry data as binary streams represented by BLOB values containing geometric WKB information.

WKB uses one-byte unsigned integers, four-byte unsigned integers, and eight-byte double-precision numbers (IEEE 754 format). A
byte is eight bits.

For example, a WKB value that corresponds to POINT(1 1) consists of this sequence of 21 bytes (each represented here by two hex
digits):

0101000000000000000000F03F000000000000F03F

The sequence may be broken down into these components:

Byte order : 01
WKB type : 01000000
X : 000000000000F03F
Y : 000000000000F03F

Component representation is as follows:

• The byte order may be either 1 or 0 to indicate little-endian or big-endian storage. The little-endian and big-endian byte orders are
also known as Network Data Representation (NDR) and External Data Representation (XDR), respectively.

• The WKB type is a code that indicates the geometry type. Values from 1 through 7 indicate Point, LineString, Polygon,
MultiPoint, MultiLineString, MultiPolygon, and GeometryCollection.

Spatial Extensions

1304



• A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values are represented by more complex data structures, as detailed in the OpenGIS specifica-
tion.

19.4. Creating a Spatially Enabled MySQL Database
This section describes the data types you can use for representing spatial data in MySQL, and the functions available for creating and
retrieving spatial values.

19.4.1. MySQL Spatial Data Types
MySQL has data types that correspond to OpenGIS classes. Some of these types hold single geometry values:

• GEOMETRY

• POINT

• LINESTRING

• POLYGON

GEOMETRY can store geometry values of any type. The other single-value types (POINT, LINESTRING, and POLYGON) restrict their
values to a particular geometry type.

The other data types hold collections of values:

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types (MULTIPOINT, MULTILINES-
TRING, MULTIPOLYGON, and GEOMETRYCOLLECTION) restrict collection members to those having a particular geometry type.

19.4.2. Creating Spatial Values
This section describes how to create spatial values using Well-Known Text and Well-Known Binary functions that are defined in the
OpenGIS standard, and using MySQL-specific functions.

19.4.2.1. Creating Geometry Values Using WKT Functions

MySQL provides a number of functions that take as input parameters a Well-Known Text representation and, optionally, a spatial refer-
ence system identifier (SRID). They return the corresponding geometry.

GeomFromText() accepts a WKT of any geometry type as its first argument. An implementation also provides type-specific con-
struction functions for construction of geometry values of each geometry type.

• GeomCollFromText(wkt[,srid]), GeometryCollectionFromText(wkt[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKT representation and SRID.

• GeomFromText(wkt[,srid]), GeometryFromText(wkt[,srid])

Constructs a geometry value of any type using its WKT representation and SRID.

Spatial Extensions

1305



• LineFromText(wkt[,srid]), LineStringFromText(wkt[,srid])

Constructs a LINESTRING value using its WKT representation and SRID.

• MLineFromText(wkt[,srid]), MultiLineStringFromText(wkt[,srid])

Constructs a MULTILINESTRING value using its WKT representation and SRID.

• MPointFromText(wkt[,srid]), MultiPointFromText(wkt[,srid])

Constructs a MULTIPOINT value using its WKT representation and SRID.

• MPolyFromText(wkt[,srid]), MultiPolygonFromText(wkt[,srid])

Constructs a MULTIPOLYGON value using its WKT representation and SRID.

• PointFromText(wkt[,srid])

Constructs a POINT value using its WKT representation and SRID.

• PolyFromText(wkt[,srid]), PolygonFromText(wkt[,srid])

Constructs a POLYGON value using its WKT representation and SRID.

The OpenGIS specification also defines the following optional functions, which MySQL does not implement. These functions construct
Polygon or MultiPolygon values based on the WKT representation of a collection of rings or closed LineString values. These
values may intersect.

• BdMPolyFromText(wkt,srid)

Constructs a MultiPolygon value from a MultiLineString value in WKT format containing an arbitrary collection of
closed LineString values.

• BdPolyFromText(wkt,srid)

Constructs a Polygon value from a MultiLineString value in WKT format containing an arbitrary collection of closed Lin-
eString values.

19.4.2.2. Creating Geometry Values Using WKB Functions

MySQL provides a number of functions that take as input parameters a BLOB containing a Well-Known Binary representation and, op-
tionally, a spatial reference system identifier (SRID). They return the corresponding geometry.

GeomFromWKB() accepts a WKB of any geometry type as its first argument. An implementation also provides type-specific construc-
tion functions for construction of geometry values of each geometry type.

• GeomCollFromWKB(wkb[,srid]), GeometryCollectionFromWKB(wkb[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKB representation and SRID.

• GeomFromWKB(wkb[,srid]), GeometryFromWKB(wkb[,srid])

Constructs a geometry value of any type using its WKB representation and SRID.

• LineFromWKB(wkb[,srid]), LineStringFromWKB(wkb[,srid])

Constructs a LINESTRING value using its WKB representation and SRID.

• MLineFromWKB(wkb[,srid]), MultiLineStringFromWKB(wkb[,srid])

Constructs a MULTILINESTRING value using its WKB representation and SRID.

• MPointFromWKB(wkb[,srid]), MultiPointFromWKB(wkb[,srid])

Spatial Extensions

1306



Constructs a MULTIPOINT value using its WKB representation and SRID.

• MPolyFromWKB(wkb[,srid]), MultiPolygonFromWKB(wkb[,srid])

Constructs a MULTIPOLYGON value using its WKB representation and SRID.

• PointFromWKB(wkb[,srid])

Constructs a POINT value using its WKB representation and SRID.

• PolyFromWKB(wkb[,srid]), PolygonFromWKB(wkb[,srid])

Constructs a POLYGON value using its WKB representation and SRID.

The OpenGIS specification also describes optional functions for constructing Polygon or MultiPolygon values based on the WKB
representation of a collection of rings or closed LineString values. These values may intersect. MySQL does not implement these
functions:

• BdMPolyFromWKB(wkb,srid)

Constructs a MultiPolygon value from a MultiLineString value in WKB format containing an arbitrary collection of
closed LineString values.

• BdPolyFromWKB(wkb,srid)

Constructs a Polygon value from a MultiLineString value in WKB format containing an arbitrary collection of closed Lin-
eString values.

19.4.2.3. Creating Geometry Values Using MySQL-Specific Functions

MySQL provides a set of useful non-standard functions for creating geometry WKB representations. The functions described in this
section are MySQL extensions to the OpenGIS specification. The results of these functions are BLOB values containing WKB repres-
entations of geometry values with no SRID. The results of these functions can be substituted as the first argument for any function in the
GeomFromWKB() function family.

• GeometryCollection(g1,g2,...)

Constructs a WKB GeometryCollection. If any argument is not a well-formed WKB representation of a geometry, the return
value is NULL.

• LineString(pt1,pt2,...)

Constructs a WKB LineString value from a number of WKB Point arguments. If any argument is not a WKB Point, the re-
turn value is NULL. If the number of Point arguments is less than two, the return value is NULL.

• MultiLineString(ls1,ls2,...)

Constructs a WKB MultiLineString value using WKB LineString arguments. If any argument is not a WKB LineS-
tring, the return value is NULL.

• MultiPoint(pt1,pt2,...)

Constructs a WKB MultiPoint value using WKB Point arguments. If any argument is not a WKB Point, the return value is
NULL.

• MultiPolygon(poly1,poly2,...)

Constructs a WKB MultiPolygon value from a set of WKB Polygon arguments. If any argument is not a WKB Polygon, the
return value is NULL.

• Point(x,y)

Spatial Extensions

1307



Constructs a WKB Point using its coordinates.

• Polygon(ls1,ls2,...)

Constructs a WKB Polygon value from a number of WKB LineString arguments. If any argument does not represent the
WKB of a LinearRing (that is, not a closed and simple LineString) the return value is NULL.

19.4.3. Creating Spatial Columns
MySQL provides a standard way of creating spatial columns for geometry types, for example, with CREATE TABLE or ALTER TA-
BLE. Currently, spatial columns are supported for MyISAM, InnoDB, NDB, and ARCHIVE tables. See also the annotations about spatial
indexes under Section 19.6.1, “Creating Spatial Indexes”.

• Use the CREATE TABLE statement to create a table with a spatial column:

CREATE TABLE geom (g GEOMETRY);

• Use the ALTER TABLE statement to add or drop a spatial column to or from an existing table:

ALTER TABLE geom ADD pt POINT;
ALTER TABLE geom DROP pt;

19.4.4. Populating Spatial Columns
After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that format from either Well-Known Text (WKT) or
Well-Known Binary (WKB) format. The following examples demonstrate how to insert geometry values into a table by converting
WKT values into internal geometry format:

• Perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (GeomFromText('POINT(1 1)'));

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (GeomFromText(@g));

• Perform the conversion prior to the INSERT:

SET @g = GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomFromText(@g));

The preceding examples all use GeomFromText() to create geometry values. You can also use type-specific functions:

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (PointFromText(@g));

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (LineStringFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';

Spatial Extensions

1308



INSERT INTO geom VALUES (PolygonFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomCollFromText(@g));

Note that if a client application program wants to use WKB representations of geometry values, it is responsible for sending correctly
formed WKB in queries to the server. However, there are several ways of satisfying this requirement. For example:

• Inserting a POINT(1 1) value with hex literal syntax:

mysql> INSERT INTO geom VALUES
-> (GeomFromWKB(0x0101000000000000000000F03F000000000000F03F));

• An ODBC application can send a WKB representation, binding it to a placeholder using an argument of BLOB type:

INSERT INTO geom VALUES (GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.

• In a C program, you can escape a binary value using mysql_real_escape_string() and include the result in a query string
that is sent to the server. See Section 26.2.3.53, “mysql_real_escape_string()”.

19.4.5. Fetching Spatial Data
Geometry values stored in a table can be fetched in internal format. You can also convert them into WKT or WKB format.

• Fetching spatial data in internal format:

Fetching geometry values using internal format can be useful in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

• Fetching spatial data in WKT format:

The AsText() function converts a geometry from internal format into a WKT string.

SELECT AsText(g) FROM geom;

• Fetching spatial data in WKB format:

The AsBinary() function converts a geometry from internal format into a BLOB containing the WKB value.

SELECT AsBinary(g) FROM geom;

19.5. Analyzing Spatial Information
After populating spatial columns with values, you are ready to query and analyze them. MySQL provides a set of functions to perform
various operations on spatial data. These functions can be grouped into four major categories according to the type of operation they
perform:

• Functions that convert geometries between various formats

• Functions that provide access to qualitative or quantitative properties of a geometry

• Functions that describe relations between two geometries

• Functions that create new geometries from existing ones

Spatial Extensions

1309



Spatial analysis functions can be used in many contexts, such as:

• Any interactive SQL program, such as mysql or MySQL Query Browser

• Application programs written in any language that supports a MySQL client API

19.5.1. Geometry Format Conversion Functions
MySQL supports the following functions for converting geometry values between internal format and either WKT or WKB format:

• AsBinary(g), AsWKB(g)

Converts a value in internal geometry format to its WKB representation and returns the binary result.

SELECT AsBinary(g) FROM geom;

• AsText(g), AsWKT(g)

Converts a value in internal geometry format to its WKT representation and returns the string result.

mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(GeomFromText(@g));
+--------------------------+
| AsText(GeomFromText(@g)) |
+--------------------------+
| LINESTRING(1 1,2 2,3 3) |
+--------------------------+

• GeomFromText(wkt[,srid])

Converts a string value from its WKT representation into internal geometry format and returns the result. A number of type-specific
functions are also supported, such as PointFromText() and LineFromText(). See Section 19.4.2.1, “Creating Geometry
Values Using WKT Functions”.

• GeomFromWKB(wkb[,srid])

Converts a binary value from its WKB representation into internal geometry format and returns the result. A number of type-specific
functions are also supported, such as PointFromWKB() and LineFromWKB(). See Section 19.4.2.2, “Creating Geometry Val-
ues Using WKB Functions”.

19.5.2. Geometry Functions
Each function that belongs to this group takes a geometry value as its argument and returns some quantitative or qualitative property of
the geometry. Some functions restrict their argument type. Such functions return NULL if the argument is of an incorrect geometry type.
For example, Area() returns NULL if the object type is neither Polygon nor MultiPolygon.

19.5.2.1. General Geometry Functions

The functions listed in this section do not restrict their argument and accept a geometry value of any type.

• Dimension(g)

Returns the inherent dimension of the geometry value g. The result can be –1, 0, 1, or 2. The meaning of these values is given in
Section 19.2.2, “Class Geometry”.

mysql> SELECT Dimension(GeomFromText('LineString(1 1,2 2)'));
+------------------------------------------------+
| Dimension(GeomFromText('LineString(1 1,2 2)')) |
+------------------------------------------------+
| 1 |
+------------------------------------------------+

Spatial Extensions

1310



• Envelope(g)

Returns the Minimum Bounding Rectangle (MBR) for the geometry value g. The result is returned as a Polygon value.

The polygon is defined by the corner points of the bounding box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

mysql> SELECT AsText(Envelope(GeomFromText('LineString(1 1,2 2)')));
+-------------------------------------------------------+
| AsText(Envelope(GeomFromText('LineString(1 1,2 2)'))) |
+-------------------------------------------------------+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+-------------------------------------------------------+

• GeometryType(g)

Returns as a string the name of the geometry type of which the geometry instance g is a member. The name corresponds to one of
the instantiable Geometry subclasses.

mysql> SELECT GeometryType(GeomFromText('POINT(1 1)'));
+------------------------------------------+
| GeometryType(GeomFromText('POINT(1 1)')) |
+------------------------------------------+
| POINT |
+------------------------------------------+

• SRID(g)

Returns an integer indicating the Spatial Reference System ID for the geometry value g.

In MySQL, the SRID value is just an integer associated with the geometry value. All calculations are done assuming Euclidean
(planar) geometry.

mysql> SELECT SRID(GeomFromText('LineString(1 1,2 2)',101));
+-----------------------------------------------+
| SRID(GeomFromText('LineString(1 1,2 2)',101)) |
+-----------------------------------------------+
| 101 |
+-----------------------------------------------+

The OpenGIS specification also defines the following functions, which MySQL does not implement:

• Boundary(g)

Returns a geometry that is the closure of the combinatorial boundary of the geometry value g.

• IsEmpty(g)

Returns 1 if the geometry value g is the empty geometry, 0 if it is not empty, and –1 if the argument is NULL. If the geometry is
empty, it represents the empty point set.

• IsSimple(g)

Currently, this function is a placeholder and should not be used. If implemented, its behavior will be as described in the next para-
graph.

Returns 1 if the geometry value g has no anomalous geometric points, such as self-intersection or self-tangency. IsSimple() re-
turns 0 if the argument is not simple, and –1 if it is NULL.

The description of each instantiable geometric class given earlier in the chapter includes the specific conditions that cause an in-
stance of that class to be classified as not simple. (See Section 19.2.1, “The Geometry Class Hierarchy”.)

19.5.2.2. Point Functions

Spatial Extensions

1311



A Point consists of X and Y coordinates, which may be obtained using the following functions:

• X(p)

Returns the X-coordinate value for the point p as a double-precision number.

mysql> SET @pt = 'Point(56.7 53.34)';
mysql> SELECT X(GeomFromText(@pt));
+----------------------+
| X(GeomFromText(@pt)) |
+----------------------+
| 56.7 |
+----------------------+

• Y(p)

Returns the Y-coordinate value for the point p as a double-precision number.

mysql> SET @pt = 'Point(56.7 53.34)';
mysql> SELECT Y(GeomFromText(@pt));
+----------------------+
| Y(GeomFromText(@pt)) |
+----------------------+
| 53.34 |
+----------------------+

19.5.2.3. LineString Functions

A LineString consists of Point values. You can extract particular points of a LineString, count the number of points that it
contains, or obtain its length.

• EndPoint(ls)

Returns the Point that is the endpoint of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(EndPoint(GeomFromText(@ls)));
+-------------------------------------+
| AsText(EndPoint(GeomFromText(@ls))) |
+-------------------------------------+
| POINT(3 3) |
+-------------------------------------+

• GLength(ls)

Returns as a double-precision number the length of the LineString value ls in its associated spatial reference.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT GLength(GeomFromText(@ls));
+----------------------------+
| GLength(GeomFromText(@ls)) |
+----------------------------+
| 2.8284271247462 |
+----------------------------+

GLength() is a non-standard name. It corresponds to the OpenGIS Length() function.

• NumPoints(ls)

Returns the number of Point objects in the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT NumPoints(GeomFromText(@ls));
+------------------------------+
| NumPoints(GeomFromText(@ls)) |
+------------------------------+
| 3 |
+------------------------------+

Spatial Extensions

1312



• PointN(ls,N)

Returns the N-th Point in the Linestring value ls. Points are numbered beginning with 1.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(PointN(GeomFromText(@ls),2));
+-------------------------------------+
| AsText(PointN(GeomFromText(@ls),2)) |
+-------------------------------------+
| POINT(2 2) |
+-------------------------------------+

• StartPoint(ls)

Returns the Point that is the start point of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(StartPoint(GeomFromText(@ls)));
+---------------------------------------+
| AsText(StartPoint(GeomFromText(@ls))) |
+---------------------------------------+
| POINT(1 1) |
+---------------------------------------+

The OpenGIS specification also defines the following function, which MySQL does not implement:

• IsRing(ls)

Returns 1 if the LineString value ls is closed (that is, its StartPoint() and EndPoint() values are the same) and is
simple (does not pass through the same point more than once). Returns 0 if ls is not a ring, and –1 if it is NULL.

19.5.2.4. MultiLineString Functions

• GLength(mls)

Returns as a double-precision number the length of the MultiLineString value mls. The length of mls is equal to the sum of
the lengths of its elements.

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT GLength(GeomFromText(@mls));
+-----------------------------+
| GLength(GeomFromText(@mls)) |
+-----------------------------+
| 4.2426406871193 |
+-----------------------------+

GLength() is a non-standard name. It corresponds to the OpenGIS Length() function.

• IsClosed(mls)

Returns 1 if the MultiLineString value mls is closed (that is, the StartPoint() and EndPoint() values are the same
for each LineString in mls). Returns 0 if mls is not closed, and –1 if it is NULL.

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT IsClosed(GeomFromText(@mls));
+------------------------------+
| IsClosed(GeomFromText(@mls)) |
+------------------------------+
| 0 |
+------------------------------+

19.5.2.5. Polygon Functions

• Area(poly)

Spatial Extensions

1313



Returns as a double-precision number the area of the Polygon value poly, as measured in its spatial reference system.

mysql> SET @poly = 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT Area(GeomFromText(@poly));
+---------------------------+
| Area(GeomFromText(@poly)) |
+---------------------------+
| 4 |
+---------------------------+

• ExteriorRing(poly)

Returns the exterior ring of the Polygon value poly as a LineString.

mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

mysql> SELECT AsText(ExteriorRing(GeomFromText(@poly)));
+-------------------------------------------+
| AsText(ExteriorRing(GeomFromText(@poly))) |
+-------------------------------------------+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+-------------------------------------------+

• InteriorRingN(poly,N)

Returns the N-th interior ring for the Polygon value poly as a LineString. Rings are numbered beginning with 1.

mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

mysql> SELECT AsText(InteriorRingN(GeomFromText(@poly),1));
+----------------------------------------------+
| AsText(InteriorRingN(GeomFromText(@poly),1)) |
+----------------------------------------------+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+----------------------------------------------+

• NumInteriorRings(poly)

Returns the number of interior rings in the Polygon value poly.

mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

mysql> SELECT NumInteriorRings(GeomFromText(@poly));
+---------------------------------------+
| NumInteriorRings(GeomFromText(@poly)) |
+---------------------------------------+
| 1 |
+---------------------------------------+

19.5.2.6. MultiPolygon Functions

• Area(mpoly)

Returns as a double-precision number the area of the MultiPolygon value mpoly, as measured in its spatial reference system.

mysql> SET @mpoly =
-> 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';

mysql> SELECT Area(GeomFromText(@mpoly));
+----------------------------+
| Area(GeomFromText(@mpoly)) |
+----------------------------+
| 8 |
+----------------------------+

The OpenGIS specification also defines the following functions, which MySQL does not implement:

• Centroid(mpoly)

Spatial Extensions

1314



Returns the mathematical centroid for the MultiPolygon value mpoly as a Point. The result is not guaranteed to be on the
MultiPolygon.

• PointOnSurface(mpoly)

Returns a Point value that is guaranteed to be on the MultiPolygon value mpoly.

19.5.2.7. GeometryCollection Functions

• GeometryN(gc,N)

Returns the N-th geometry in the GeometryCollection value gc. Geometries are numbered beginning with 1.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT AsText(GeometryN(GeomFromText(@gc),1));
+----------------------------------------+
| AsText(GeometryN(GeomFromText(@gc),1)) |
+----------------------------------------+
| POINT(1 1) |
+----------------------------------------+

• NumGeometries(gc)

Returns the number of geometries in the GeometryCollection value gc.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT NumGeometries(GeomFromText(@gc));
+----------------------------------+
| NumGeometries(GeomFromText(@gc)) |
+----------------------------------+
| 2 |
+----------------------------------+

19.5.3. Functions That Create New Geometries from Existing Ones

19.5.3.1. Geometry Functions That Produce New Geometries

Section 19.5.2, “Geometry Functions”, discusses several functions that construct new geometries from existing ones. See that section
for descriptions of these functions:

• Envelope(g)

• StartPoint(ls)

• EndPoint(ls)

• PointN(ls,N)

• ExteriorRing(poly)

• InteriorRingN(poly,N)

• GeometryN(gc,N)

19.5.3.2. Spatial Operators

OpenGIS proposes a number of other functions that can produce geometries. They are designed to implement spatial operators.

These functions are not implemented in MySQL. They may appear in future releases.

Spatial Extensions

1315



• Buffer(g,d)

Returns a geometry that represents all points whose distance from the geometry value g is less than or equal to a distance of d.

• ConvexHull(g)

Returns a geometry that represents the convex hull of the geometry value g.

• Difference(g1,g2)

Returns a geometry that represents the point set difference of the geometry value g1 with g2.

• Intersection(g1,g2)

Returns a geometry that represents the point set intersection of the geometry values g1 with g2.

• SymDifference(g1,g2)

Returns a geometry that represents the point set symmetric difference of the geometry value g1 with g2.

• Union(g1,g2)

Returns a geometry that represents the point set union of the geometry values g1 and g2.

19.5.4. Functions for Testing Spatial Relations Between Geometric Objects
The functions described in these sections take two geometries as input parameters and return a qualitative or quantitative relation
between them.

19.5.5. Relations on Geometry Minimal Bounding Rectangles (MBRs)
MySQL provides several functions that test relations between minimal bounding rectangles of two geometries g1 and g2. The return
values 1 and 0 indicate true and false, respectively.

• MBRContains(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangle of g1 contains the Minimum Bounding Rectangle of g2. This
tests the opposite relationship as MBRWithin().

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Point(1 1)');
mysql> SELECT MBRContains(@g1,@g2), MBRContains(@g2,@g1);
----------------------+----------------------+
| MBRContains(@g1,@g2) | MBRContains(@g2,@g1) |
+----------------------+----------------------+
| 1 | 0 |
+----------------------+----------------------+

• MBRDisjoint(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 are disjoint (do not inter-
sect).

• MBREqual(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 are the same.

• MBRIntersects(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 intersect.

• MBROverlaps(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 overlap. The term spatially
overlaps is used if two geometries intersect and their intersection results in a geometry of the same dimension but not equal to either

Spatial Extensions

1316



of the given geometries.

• MBRTouches(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 touch. Two geometries spa-
tially touch if the interiors of the geometries do not intersect, but the boundary of one of the geometries intersects either the bound-
ary or the interior of the other.

• MBRWithin(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangle of g1 is within the Minimum Bounding Rectangle of g2. This
tests the opposite relationship as MBRContains().

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');
mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
| 1 | 0 |
+--------------------+--------------------+

19.5.6. Functions That Test Spatial Relationships Between Geometries
The OpenGIS specification defines the following functions. They test the relationship between two geometry values g1 and g2.

The return values 1 and 0 indicate true and false, respectively.

Note

Currently, MySQL does not implement these functions according to the specification. Those that are implemented return
the same result as the corresponding MBR-based functions. This includes functions in the following list other than Dis-
tance() and Related().

These functions may be implemented in future releases with full support for spatial analysis, not just MBR-based support.

• Contains(g1,g2)

Returns 1 or 0 to indicate whether g1 completely contains g2. This tests the opposite relationship as Within().

• Crosses(g1,g2)

Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon, or if g2 is a Point or a Multi-
Point. Otherwise, returns 0.

The term spatially crosses denotes a spatial relation between two given geometries that has the following properties:

• The two geometries intersect

• Their intersection results in a geometry that has a dimension that is one less than the maximum dimension of the two given geo-
metries

• Their intersection is not equal to either of the two given geometries

• Disjoint(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.

• Distance(g1,g2)

Returns as a double-precision number the shortest distance between any two points in the two geometries.

• Equals(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially equal to g2.

Spatial Extensions

1317



• Intersects(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially intersects g2.

• Overlaps(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially overlaps g2. The term spatially overlaps is used if two geometries intersect and their
intersection results in a geometry of the same dimension but not equal to either of the given geometries.

• Related(g1,g2,pattern_matrix)

Returns 1 or 0 to indicate whether the spatial relationship specified by pattern_matrix exists between g1 and g2. Returns –1 if
the arguments are NULL. The pattern matrix is a string. Its specification will be noted here if this function is implemented.

• Touches(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially touches g2. Two geometries spatially touch if the interiors of the geometries do not
intersect, but the boundary of one of the geometries intersects either the boundary or the interior of the other.

• Within(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially within g2. This tests the opposite relationship as Contains().

19.6. Optimizing Spatial Analysis
Search operations in non-spatial databases can be optimized using SPATIAL indexes. This is true for spatial databases as well. With the
help of a great variety of multi-dimensional indexing methods that have previously been designed, it is possible to optimize spatial
searches. The most typical of these are:

• Point queries that search for all objects that contain a given point

• Region queries that search for all objects that overlap a given region

MySQL uses R-Trees with quadratic splitting for SPATIAL indexes on spatial columns. A SPATIAL index is built using the MBR
of a geometry. For most geometries, the MBR is a minimum rectangle that surrounds the geometries. For a horizontal or a vertical lines-
tring, the MBR is a rectangle degenerated into the linestring. For a point, the MBR is a rectangle degenerated into the point.

It is also possible to create normal indexes on spatial columns. In a non-SPATIAL index, you must declare a prefix for any spatial
column except for POINT columns.

MyISAM supports both SPATIAL and non-SPATIAL indexes. Other storage engines support non-SPATIAL indexes, as described in
Section 12.1.7, “CREATE INDEX Syntax”.

19.6.1. Creating Spatial Indexes
MySQL can create spatial indexes using syntax similar to that for creating regular indexes, but extended with the SPATIAL keyword.
Currently, columns in spatial indexes must be declared NOT NULL. The following examples demonstrate how to create spatial indexes:

• With CREATE TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g));

• With ALTER TABLE:

ALTER TABLE geom ADD SPATIAL INDEX(g);

• With CREATE INDEX:

CREATE SPATIAL INDEX sp_index ON geom (g);

Spatial Extensions

1318



For MyISAM tables, SPATIAL INDEX creates an R-tree index. For storage engines that support non-spatial indexing of spatial
columns, the engine creates a B-tree index. A B-tree index on spatial values will be useful for exact-value lookups, but not for range
scans.

For more information on indexing spatial columns, see Section 12.1.7, “CREATE INDEX Syntax”.

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

• With ALTER TABLE:

ALTER TABLE geom DROP INDEX g;

• With DROP INDEX:

DROP INDEX sp_index ON geom;

Example: Suppose that a table geom contains more than 32,000 geometries, which are stored in the column g of type GEOMETRY. The
table also has an AUTO_INCREMENT column fid for storing object ID values.

mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
| 32376 |
+----------+
1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0

19.6.2. Using a Spatial Index
The optimizer investigates whether available spatial indexes can be involved in the search for queries that use a function such as
MBRContains() or MBRWithin() in the WHERE clause. The following query finds all objects that are in the given rectangle:

mysql> SET @poly =
-> 'Polygon((30000 15000,

31000 15000,
31000 16000,
30000 16000,
30000 15000))';

mysql> SELECT fid,AsText(g) FROM geom WHERE
-> MBRContains(GeomFromText(@poly),g);

+-----+---------------------------------------------------------------+
| fid | AsText(g) |
+-----+---------------------------------------------------------------+
| 21 | LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ... |
| 22 | LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ... |
| 23 | LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ... |
| 24 | LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ... |
| 25 | LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ... |
| 26 | LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ... |
| 249 | LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ... |
| 1 | LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ... |
| 2 | LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ... |
| 3 | LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ... |
| 4 | LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ... |
| 5 | LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ... |
| 6 | LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ... |
| 7 | LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ... |
| 10 | LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ... |

Spatial Extensions

1319



| 11 | LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ... |
| 13 | LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ... |
| 154 | LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ... |
| 155 | LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ... |
| 157 | LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ... |
+-----+---------------------------------------------------------------+
20 rows in set (0.00 sec)

Use EXPLAIN to check the way this query is executed:

mysql> SET @poly =
-> 'Polygon((30000 15000,

31000 15000,
31000 16000,
30000 16000,
30000 15000))';

mysql> EXPLAIN SELECT fid,AsText(g) FROM geom WHERE
-> MBRContains(GeomFromText(@poly),g)\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
table: geom
type: range

possible_keys: g
key: g

key_len: 32
ref: NULL
rows: 50
Extra: Using where

1 row in set (0.00 sec)

Check what would happen without a spatial index:

mysql> SET @poly =
-> 'Polygon((30000 15000,

31000 15000,
31000 16000,
30000 16000,
30000 15000))';

mysql> EXPLAIN SELECT fid,AsText(g) FROM g IGNORE INDEX (g) WHERE
-> MBRContains(GeomFromText(@poly),g)\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
table: geom
type: ALL

possible_keys: NULL
key: NULL

key_len: NULL
ref: NULL
rows: 32376
Extra: Using where

1 row in set (0.00 sec)

Executing the SELECT statement without the spatial index yields the same result but causes the execution time to rise from 0.00
seconds to 0.46 seconds:

mysql> SET @poly =
-> 'Polygon((30000 15000,

31000 15000,
31000 16000,
30000 16000,
30000 15000))';

mysql> SELECT fid,AsText(g) FROM geom IGNORE INDEX (g) WHERE
-> MBRContains(GeomFromText(@poly),g);

+-----+---------------------------------------------------------------+
| fid | AsText(g) |
+-----+---------------------------------------------------------------+
| 1 | LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ... |
| 2 | LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ... |
| 3 | LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ... |
| 4 | LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ... |
| 5 | LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ... |
| 6 | LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ... |
| 7 | LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ... |
| 10 | LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ... |
| 11 | LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ... |
| 13 | LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ... |
| 21 | LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ... |
| 22 | LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ... |
| 23 | LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ... |
| 24 | LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ... |
| 25 | LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ... |
| 26 | LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ... |

Spatial Extensions

1320



| 154 | LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ... |
| 155 | LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ... |
| 157 | LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ... |
| 249 | LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ... |
+-----+---------------------------------------------------------------+
20 rows in set (0.46 sec)

In future releases, spatial indexes may also be used for optimizing other functions. See Section 19.5.4, “Functions for Testing Spatial
Relations Between Geometric Objects”.

19.7. MySQL Conformance and Compatibility
MySQL does not yet implement the following GIS features:

• Additional Metadata Views

OpenGIS specifications propose several additional metadata views. For example, a system view named GEOMETRY_COLUMNS
contains a description of geometry columns, one row for each geometry column in the database.

• The OpenGIS function Length() on LineString and MultiLineString currently should be called in MySQL as
GLength()

The problem is that there is an existing SQL function Length() that calculates the length of string values, and sometimes it is not
possible to distinguish whether the function is called in a textual or spatial context. We need either to solve this somehow, or decide
on another function name.

Spatial Extensions

1321



Chapter 20. Stored Procedures and Functions
Stored routines (procedures and functions) are supported in MySQL 5.1. A stored procedure is a set of SQL statements that can be
stored in the server. Once this has been done, clients don't need to keep reissuing the individual statements but can refer to the stored
procedure instead.

Answers to some questions that are commonly asked regarding stored routines in MySQL can be found in Section A.4, “MySQL 5.1
FAQ — Stored Procedures”.

MySQL Enterprise
For expert advice on using stored procedures and functions subscribe to the MySQL Enterprise Monitor. For
more information see http://www.mysql.com/products/enterprise/advisors.html.

Some situations where stored routines can be particularly useful:

• When multiple client applications are written in different languages or work on different platforms, but need to perform the same
database operations.

• When security is paramount. Banks, for example, use stored procedures and functions for all common operations. This provides a
consistent and secure environment, and routines can ensure that each operation is properly logged. In such a setup, applications and
users would have no access to the database tables directly, but can only execute specific stored routines.

Stored routines can provide improved performance because less information needs to be sent between the server and the client. The
tradeoff is that this does increase the load on the database server because more of the work is done on the server side and less is done on
the client (application) side. Consider this if many client machines (such as Web servers) are serviced by only one or a few database
servers.

Stored routines also allow you to have libraries of functions in the database server. This is a feature shared by modern application lan-
guages that allow such design internally (for example, by using classes). Using these client application language features is beneficial
for the programmer even outside the scope of database use.

MySQL follows the SQL:2003 syntax for stored routines, which is also used by IBM's DB2.

The MySQL implementation of stored routines is still in progress. All syntax described in this chapter is supported and any limitations
and extensions are documented where appropriate. Further discussion of restrictions on use of stored routines is given in Section D.1,
“Restrictions on Stored Routines, Triggers, and Events”.

Binary logging for stored routines takes place as described in Section 20.4, “Binary Logging of Stored Routines and Triggers”.

Recursive stored procedures are disabled by default, but can be enabled on the server by setting the max_sp_recursion_depth
server system variable to a nonzero value. Stored procedure recursion increases the demand on thread stack space. If you increase the
value of max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the value of thread_stack
at server startup. See Section 5.1.3, “System Variables”, for more information.

Stored functions cannot be recursive. See Section D.1, “Restrictions on Stored Routines, Triggers, and Events”.

20.1. Stored Routines and the Grant Tables
Stored routines require the proc table in the mysql database. This table is created during the MySQL 5.1 installation procedure. If
you are upgrading to MySQL 5.1 from an earlier version, be sure to update your grant tables to make sure that the proc table exists.
See Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

The server manipulates the mysql.proc table in response to statements that create, alter, or drop stored routines. It is not supported
that the server will notice manual manipulation of this table.

The MySQL grant system takes stored routines into account as follows:

• The CREATE ROUTINE privilege is needed to create stored routines.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is granted automatically to the creator of a
routine if necessary, and dropped when the routine creator drops the routine.

1322

http://www.mysql.com/products/enterprise/advisors.html


• The EXECUTE privilege is required to execute stored routines. However, this privilege is granted automatically to the creator of a
routine if necessary (and dropped when the creator drops the routine). Also, the default SQL SECURITY characteristic for a routine
is DEFINER, which enables users who have access to the database with which the routine is associated to execute the routine.

• If the automatic_sp_privileges system variable is 0, the EXECUTE and ALTER ROUTINE privileges are not automatically
granted and dropped.

20.2. Stored Routine Syntax
A stored routine is either a procedure or a function. Stored routines are created with CREATE PROCEDURE and CREATE FUNCTION
statements. A procedure is invoked using a CALL statement, and can only pass back values using output variables. A function can be
called from inside a statement just like any other function (that is, by invoking the function's name), and can return a scalar value.
Stored routines may call other stored routines.

A stored procedure or function is associated with a particular database. This has several implications:

• When the routine is invoked, an implicit USE db_name is performed (and undone when the routine terminates). USE statements
within stored routines are disallowed.

• You can qualify routine names with the database name. This can be used to refer to a routine that is not in the current database. For
example, to invoke a stored procedure p or function f that is associated with the test database, you can say CALL test.p() or
test.f().

• When a database is dropped, all stored routines associated with it are dropped as well.

MySQL supports the very useful extension that allows the use of regular SELECT statements (that is, without using cursors or local
variables) inside a stored procedure. The result set of such a query is simply sent directly to the client. Multiple SELECT statements
generate multiple result sets, so the client must use a MySQL client library that supports multiple result sets. This means the client must
use a client library from a version of MySQL at least as recent as 4.1. The client should also specify the CLIENT_MULTI_RESULTS
option when it connects. For C programs, this can be done with the mysql_real_connect() C API function. See Sec-
tion 26.2.3.52, “mysql_real_connect()”, and Section 26.2.9, “C API Handling of Multiple Statement Execution”.

MySQL Enterprise
MySQL Enterprise subscribers will find numerous articles about stored routines in the MySQL Enterprise Know-
ledge Base. Access to this collection of articles is one of the advantages of subscribing to MySQL Enterprise.
For more information see http://www.mysql.com/products/enterprise/advisors.html.

The following sections describe the syntax used to create, alter, drop, and invoke stored procedures and functions.

20.2.1. CREATE PROCEDURE and CREATE FUNCTION Syntax
CREATE

[DEFINER = { user | CURRENT_USER }]
PROCEDURE sp_name ([proc_parameter[,...]])
[characteristic ...] routine_body

CREATE
[DEFINER = { user | CURRENT_USER }]
FUNCTION sp_name ([func_parameter[,...]])
RETURNS type
[characteristic ...] routine_body

proc_parameter:
[ IN | OUT | INOUT ] param_name type

func_parameter:
param_name type

type:
Any valid MySQL data type

characteristic:
LANGUAGE SQL

| [NOT] DETERMINISTIC
| { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
| SQL SECURITY { DEFINER | INVOKER }
| COMMENT 'string'

routine_body:

Stored Procedures and Functions

1323

http://www.mysql.com/products/enterprise/advisors.html


Valid SQL procedure statement

These statements create stored routines. By default, a routine is associated with the default database. To associate the routine explicitly
with a given database, specify the name as db_name.sp_name when you create it.

To execute these statements, it is necessary to have the CREATE ROUTINE privilege. If binary logging is enabled, the CREATE
FUNCTION statement might also require the SUPER privilege, as described in Section 20.4, “Binary Logging of Stored Routines and
Triggers”. MySQL automatically grants the ALTER ROUTINE and EXECUTE privileges to the routine creator.

The DEFINER and SQL SECURITY clauses specify the security context to be used when checking access privileges at routine execu-
tion time, as described later.

If the routine name is the same as the name of a built-in SQL function, you must use a space between the name and the following paren-
thesis when defining the routine, or a syntax error occurs. This is also true when you invoke the routine later. For this reason, we sug-
gest that it is better to avoid re-using the names of existing SQL functions for your own stored routines.

The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. It is always allowable to have spaces after a
routine name, regardless of whether IGNORE_SPACE is enabled.

The parameter list enclosed within parentheses must always be present. If there are no parameters, an empty parameter list of () should
be used.

Each parameter can be declared to use any valid data type, except that the COLLATE attribute cannot be used.

Each parameter is an IN parameter by default. To specify otherwise for a parameter, use the keyword OUT or INOUT before the para-
meter name.

Note

Specifying a parameter as IN, OUT, or INOUT is valid only for a PROCEDURE. (FUNCTION parameters are always re-
garded as IN parameters.)

An IN parameter passes a value into a procedure. The procedure might modify the value, but the modification is not visible to the caller
when the procedure returns. An OUT parameter passes a value from the procedure back to the caller. Its initial value is NULL within the
procedure, and its value is visible to the caller when the procedure returns. An INOUT parameter is initialized by the caller, can be mod-
ified by the procedure, and any change made by the procedure is visible to the caller when the procedure returns.

For each OUT or INOUT parameter, pass a user-defined variable so that you can obtain its value when the procedure returns. (For an ex-
ample, see Section 20.2.4, “CALL Statement Syntax”.) If you are calling the procedure from within another stored procedure or func-
tion, you can also pass a routine parameter or local routine variable as an IN or INOUT parameter.

The RETURNS clause may be specified only for a FUNCTION, for which it is mandatory. It indicates the return type of the function, and
the function body must contain a RETURN value statement. If the RETURN statement returns a value of a different type, the value is
coerced to the proper type. For example, if a function specifies an ENUM or SET value in the RETURNS clause, but the RETURN state-
ment returns an integer, the value returned from the function is the string for the corresponding ENUM member of set of SET members.

The routine_body consists of a valid SQL procedure statement. This can be a simple statement such as SELECT or INSERT, or it
can be a compound statement written using BEGIN and END. Compound statement syntax is described in Section 20.2.5, “BEGIN ...
END Compound Statement Syntax”. Compound statements can contain declarations, loops, and other control structure statements. The
syntax for these statements is described later in this chapter. See, for example, Section 20.2.6, “DECLARE Statement Syntax”, and Sec-
tion 20.2.10, “Flow Control Constructs”.

Some statements are not allowed in stored routines; see Section D.1, “Restrictions on Stored Routines, Triggers, and Events”.

MySQL stores the sql_mode system variable setting that is in effect at the time a routine is created, and always executes the routine
with this setting in force, regardless of the current server SQL mode.

The CREATE FUNCTION statement was used in earlier versions of MySQL to support UDFs (user-defined functions). See Sec-
tion 29.3, “Adding New Functions to MySQL”. UDFs continue to be supported, even with the existence of stored functions. A UDF can
be regarded as an external stored function. However, do note that stored functions share their namespace with UDFs. See Section 8.2.4,
“Function Name Parsing and Resolution”, for the rules describing how the server interprets references to different kinds of functions.

A procedure or function is considered “deterministic” if it always produces the same result for the same input parameters, and “not de-
terministic” otherwise. If neither DETERMINISTIC nor NOT DETERMINISTIC is given in the routine definition, the default is NOT
DETERMINISTIC.

Stored Procedures and Functions

1324



A routine that contains the NOW() function (or its synonyms) or RAND() is non-deterministic, but it might still be replication-safe. For
NOW(), the binary log includes the timestamp and replicates correctly. RAND() also replicates correctly as long as it is invoked only
once within a routine. (You can consider the routine execution timestamp and random number seed as implicit inputs that are identical
on the master and slave.)

In versions prior to 5.1.21-beta, the DETERMINISTIC characteristic is accepted, but not used by the optimizer. However, if binary log-
ging is enabled, this characteristic always affects which routine definitions MySQL accepts. See Section 20.4, “Binary Logging of
Stored Routines and Triggers”.

Several characteristics provide information about the nature of data use by the routine. In MySQL, these characteristics are advisory
only. The server does not use them to constrain what kinds of statements a routine will be allowed to execute.

• CONTAINS SQL indicates that the routine does not contain statements that read or write data. This is the default if none of these
characteristics is given explicitly. Examples of such statements are SET @x = 1 or DO RELEASE_LOCK('abc'), which ex-
ecute but neither read nor write data.

• NO SQL indicates that the routine contains no SQL statements.

• READS SQL DATA indicates that the routine contains statements that read data (for example, SELECT), but not statements that
write data.

• MODIFIES SQL DATA indicates that the routine contains statements that may write data (for example, INSERT or DELETE).

The SQL SECURITY characteristic can be used to specify whether the routine should be executed using the permissions of the user
who creates the routine or the user who invokes it. The default value is DEFINER. This feature is new in SQL:2003. The creator or in-
voker must have permission to access the database with which the routine is associated. It is necessary to have the EXECUTE privilege
to be able to execute the routine. The user that must have this privilege is either the definer or invoker, depending on how the SQL SE-
CURITY characteristic is set.

The optional DEFINER clause specifies the MySQL account to be used when checking access privileges at routine execution time for
routines that have the SQL SECURITY DEFINER characteristic. The DEFINER clause was added in MySQL 5.1.8.

If a user value is given for the DEFINER clause, it should be a MySQL account in 'user_name'@'host_name' format (the
same format used in the GRANT statement). The user_name and host_name values both are required. The definer can also be given
as CURRENT_USER or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE PROCEDURE or
CREATE FUNCTION or statement. (This is the same as DEFINER = CURRENT_USER.)

If you specify the DEFINER clause, these rules determine the legal DEFINER user values:

• If you do not have the SUPER privilege, the only legal user value is your own account, either specified literally or by using CUR-
RENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically legal account name. If the account does not actually exist, a
warning is generated.

Although it is possible to create routines with a non-existent DEFINER value, an error occurs if the routine executes with definer
privileges but the definer does not exist at execution time.

When the routine is invoked, an implicit USE db_name is performed (and undone when the routine terminates). USE statements with-
in stored routines are disallowed.

The server uses the data type of a routine parameter or function return value as follows. These rules also apply to local routine variables
created with the DECLARE statement (Section 20.2.7.1, “DECLARE Local Variables”).

• Assignments are checked for data type mismatches and overflow. Conversion and overflow problems result in warnings, or errors in
strict mode.

• Only scalar values can be assigned to parameters or variables. For example, a statement such as SET x = (SELECT 1, 2) is
invalid.

• For character data types, if there is a CHARACTER SET clause in the declaration, the specified character set and its default collation

Stored Procedures and Functions

1325



are used. If there is no such clause, the database character set and collation that are in effect at the time the routine is created are
used. (These are given by the values of the character_set_database and collation_database system variables.) The
COLLATE attribute is not supported. (This includes use of BINARY, because in this context BINARY specifies the binary collation
of the character set.)

The COMMENT clause is a MySQL extension, and may be used to describe the stored routine. This information is displayed by the SHOW
CREATE PROCEDURE and SHOW CREATE FUNCTION statements.

MySQL allows routines to contain DDL statements, such as CREATE and DROP. MySQL also allows stored procedures (but not stored
functions) to contain SQL transaction statements such as COMMIT. Stored functions may not contain statements that do explicit or im-
plicit commit or rollback. Support for these statements is not required by the SQL standard, which states that each DBMS vendor may
decide whether to allow them.

Statements that return a result set cannot be used within a stored function. This includes SELECT statements that do not use INTO to
fetch column values into variables, SHOW statements, and other statements such as EXPLAIN. For statements that can be determined at
function definition time to return a result set, a Not allowed to return a result set from a function error occurs
(ER_SP_NO_RETSET). For statements that can be determined only at runtime to return a result set, a PROCEDURE %s can't re-
turn a result set in the given context error occurs (ER_SP_BADSELECT).

The following is an example of a simple stored procedure that uses an OUT parameter. The example uses the mysql client delim-
iter command to change the statement delimiter from ; to // while the procedure is being defined. This allows the ; delimiter used
in the procedure body to be passed through to the server rather than being interpreted by mysql itself.

mysql> delimiter //

mysql> CREATE PROCEDURE simpleproc (OUT param1 INT)
-> BEGIN
-> SELECT COUNT(*) INTO param1 FROM t;
-> END;
-> //

Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL simpleproc(@a);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @a;
+------+
| @a |
+------+
| 3 |
+------+
1 row in set (0.00 sec)

When using the delimiter command, you should avoid the use of the backslash (“\”) character because that is the escape character
for MySQL.

The following is an example of a function that takes a parameter, performs an operation using an SQL function, and returns the result.
In this case, it is unnecessary to use delimiter because the function definition contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC

-> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

For information about invoking stored procedures from within programs written in a language that has a MySQL interface, see Sec-
tion 20.2.4, “CALL Statement Syntax”.

20.2.2. ALTER PROCEDURE and ALTER FUNCTION Syntax
ALTER {PROCEDURE | FUNCTION} sp_name [characteristic ...]

characteristic:
{ CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

Stored Procedures and Functions

1326



| SQL SECURITY { DEFINER | INVOKER }
| COMMENT 'string'

This statement can be used to change the characteristics of a stored procedure or function. You must have the ALTER ROUTINE priv-
ilege for the routine. (That privilege is granted automatically to the routine creator.) If binary logging is enabled, the ALTER FUNC-
TION statement might also require the SUPER privilege, as described in Section 20.4, “Binary Logging of Stored Routines and Trig-
gers”.

More than one change may be specified in an ALTER PROCEDURE or ALTER FUNCTION statement.

20.2.3. DROP PROCEDURE and DROP FUNCTION Syntax
DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name

This statement is used to drop a stored procedure or function. That is, the specified routine is removed from the server. You must have
the ALTER ROUTINE privilege for the routine. (That privilege is granted automatically to the routine creator.)

The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the procedure or function does not exist. A warn-
ing is produced that can be viewed with SHOW WARNINGS.

DROP FUNCTION is also used to drop user-defined functions (see Section 29.3.3, “DROP FUNCTION Syntax”).

20.2.4. CALL Statement Syntax
CALL sp_name([parameter[,...]])
CALL sp_name[()]

The CALL statement invokes a procedure that was defined previously with CREATE PROCEDURE.

CALL can pass back values to its caller using parameters that are declared as OUT or INOUT parameters. It also “returns” the number of
rows affected, which a client program can obtain at the SQL level by calling the ROW_COUNT() function and from C by calling the
mysql_affected_rows() C API function.

As of MySQL 5.1.13, stored procedures that take no arguments can be invoked without parentheses. That is, CALL p() and CALL p
are equivalent.

To get back a value from a procedure using an OUT or INOUT parameter, pass the parameter by means of a user variable, and then
check the value of the variable after the procedure returns. (If you are calling the procedure from within another stored procedure or
function, you can also pass a routine parameter or local routine variable as an IN or INOUT parameter.) For an INOUT parameter, ini-
tialize its value before passing it to the procedure. The following procedure has an OUT parameter that the procedure sets to the current
server version, and an INOUT value that the procedure increments by one from its current value:

CREATE PROCEDURE p (OUT ver_param VARCHAR(25), INOUT incr_param INT)
BEGIN
# Set value of OUT parameter
SELECT VERSION() INTO ver_param;
# Increment value of INOUT parameter
SET incr_param = incr_param + 1;

END;

Before calling the procedure, initialize the variable to be passed as the INOUT parameter. After calling the procedure, the values of the
two variables will have been set or modified:

mysql> SET @increment = 10;
mysql> CALL p(@version, @increment);
mysql> SELECT @version, @increment;
+-----------------+------------+
| @version | @increment |
+-----------------+------------+
| 5.1.12-beta-log | 11 |
+-----------------+------------+

If you write C programs that use the CALL SQL statement to execute stored procedures that produce result sets, you must set the CLI-
ENT_MULTI_RESULTS flag, either explicitly, or implicitly by setting CLIENT_MULTI_STATEMENTS when you call
mysql_real_connect(). This is because each such stored procedure produces multiple results: the result sets returned by state-
ments executed within the procedure, as well as a result to indicate the call status. To process the result of a CALL statement, use a loop
that calls mysql_next_result() to determine whether there are more results. For an example, see Section 26.2.9, “C API Hand-

Stored Procedures and Functions

1327



ling of Multiple Statement Execution”.

For programs written in a language that provides a MySQL interface, there is no native method for directly retrieving the results of OUT
or INOUT parameters from CALL statements. To get the parameter values, pass user-defined variables to the procedure in the CALL
statement and then execute a SELECT statement to produce a result set containing the variable values. The following example illustrates
the technique (without error checking) for a stored procedure p1 that has two OUT parameters.

mysql_query(mysql, "CALL p1(@param1, @param2)");
mysql_query(mysql, "SELECT @param1, @param2");
result = mysql_store_result(mysql);
row = mysql_fetch_row(result);
mysql_free_result(result);

After the preceding code executes, row[0] and row[1] contain the values of @param1 and @param2, respectively.

To handle INOUT parameters, execute a statement prior to the CALL that sets the user variables to the values to be passed to the proced-
ure.

20.2.5. BEGIN ... END Compound Statement Syntax
[begin_label:] BEGIN

[statement_list]
END [end_label]

BEGIN ... END syntax is used for writing compound statements, which can appear within stored routines and triggers. A compound
statement can contain multiple statements, enclosed by the BEGIN and END keywords. statement_list represents a list of one or
more statements. Each statement within statement_list must be terminated by a semicolon (;) statement delimiter. Note that
statement_list is optional, which means that the empty compound statement (BEGIN END) is legal.

Use of multiple statements requires that a client is able to send statement strings containing the ; statement delimiter. This is handled in
the mysql command-line client with the delimiter command. Changing the ; end-of-statement delimiter (for example, to //) al-
lows ; to be used in a routine body. For an example, see Section 20.2.1, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.

A compound statement can be labeled. end_label cannot be given unless begin_label also is present. If both are present, they
must be the same.

The optional [NOT] ATOMIC clause is not yet supported. This means that no transactional savepoint is set at the start of the instruc-
tion block and the BEGIN clause used in this context has no effect on the current transaction.

20.2.6. DECLARE Statement Syntax
The DECLARE statement is used to define various items local to a routine:

• Local variables. See Section 20.2.7, “Variables in Stored Routines”.

• Conditions and handlers. See Section 20.2.8, “Conditions and Handlers”.

• Cursors. See Section 20.2.9, “Cursors”.

The SIGNAL and RESIGNAL statements are not currently supported.

DECLARE is allowed only inside a BEGIN ... END compound statement and must be at its start, before any other statements.

Declarations must follow a certain order. Cursors must be declared before declaring handlers, and variables and conditions must be de-
clared before declaring either cursors or handlers.

20.2.7. Variables in Stored Routines
You may declare and use variables within a routine.

20.2.7.1. DECLARE Local Variables
DECLARE var_name[,...] type [DEFAULT value]

Stored Procedures and Functions

1328



This statement is used to declare local variables. To provide a default value for the variable, include a DEFAULT clause. The value can
be specified as an expression; it need not be a constant. If the DEFAULT clause is missing, the initial value is NULL.

Local variables are treated like routine parameters with respect to data type and overflow checking. See Section 20.2.1, “CREATE
PROCEDURE and CREATE FUNCTION Syntax”.

The scope of a local variable is within the BEGIN ... END block where it is declared. The variable can be referred to in blocks nes-
ted within the declaring block, except those blocks that declare a variable with the same name.

20.2.7.2. Variable SET Statement
SET var_name = expr [, var_name = expr] ...

The SET statement in stored routines is an extended version of the general SET statement. Referenced variables may be ones declared
inside a routine, or global system variables.

The SET statement in stored routines is implemented as part of the pre-existing SET syntax. This allows an extended syntax of SET
a=x, b=y, ... where different variable types (locally declared variables and global and session server variables) can be mixed.
This also allows combinations of local variables and some options that make sense only for system variables; in that case, the options
are recognized but ignored.

20.2.7.3. SELECT ... INTO Statement
SELECT col_name[,...] INTO var_name[,...] table_expr

This SELECT syntax stores selected columns directly into variables. Therefore, only a single row may be retrieved.

SELECT id,data INTO x,y FROM test.t1 LIMIT 1;

User variable names are not case sensitive. See Section 8.4, “User-Defined Variables”.

Important

SQL variable names should not be the same as column names. If an SQL statement, such as a SELECT ... INTO state-
ment, contains a reference to a column and a declared local variable with the same name, MySQL currently interprets the
reference as the name of a variable. For example, in the following statement, xname is interpreted as a reference to the
xname variable rather than the xname column:

CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
DECLARE xname VARCHAR(5) DEFAULT 'bob';
DECLARE newname VARCHAR(5);
DECLARE xid INT;

SELECT xname,id INTO newname,xid
FROM table1 WHERE xname = xname;

SELECT newname;
END;

When this procedure is called, the newname variable returns the value 'bob' regardless of the value of the table1.xname column.

See also Section D.1, “Restrictions on Stored Routines, Triggers, and Events”.

20.2.8. Conditions and Handlers
Certain conditions may require specific handling. These conditions can relate to errors, as well as to general flow control inside a
routine.

20.2.8.1. DECLARE Conditions
DECLARE condition_name CONDITION FOR condition_value

condition_value:
SQLSTATE [VALUE] sqlstate_value

| mysql_error_code

Stored Procedures and Functions

1329



This statement specifies conditions that need specific handling. It associates a name with a specified error condition. The name can sub-
sequently be used in a DECLARE HANDLER statement. See Section 20.2.8.2, “DECLARE Handlers”.

A condition_value can be an SQLSTATE value or a MySQL error code. For a list of SQLSTATE and error values, see Sec-
tion B.2, “Server Error Codes and Messages”.

20.2.8.2. DECLARE Handlers
DECLARE handler_type HANDLER FOR condition_value[,...] statement

handler_type:
CONTINUE

| EXIT
| UNDO

condition_value:
SQLSTATE [VALUE] sqlstate_value

| condition_name
| SQLWARNING
| NOT FOUND
| SQLEXCEPTION
| mysql_error_code

The DECLARE ... HANDLER statement specifies handlers that each may deal with one or more conditions. If one of these conditions
occurs, the specified statement is executed. statement can be a simple statement (for example, SET var_name = value), or
it can be a compound statement written using BEGIN and END (see Section 20.2.5, “BEGIN ... END Compound Statement
Syntax”).

For a CONTINUE handler, execution of the current routine continues after execution of the handler statement. For an EXIT handler, ex-
ecution terminates for the BEGIN ... END compound statement in which the handler is declared. (This is true even if the condition
occurs in an inner block.) The UNDO handler type statement is not yet supported.

If a condition occurs for which no handler has been declared, the default action is EXIT.

A condition_value can be any of the following values:

• An SQLSTATE value or a MySQL error code. For a list of SQLSTATE and error values, see Section B.2, “Server Error Codes and
Messages”.

• A condition name previously specified with DECLARE ... CONDITION. See Section 20.2.8.1, “DECLARE Conditions”.

• SQLWARNING is shorthand for all SQLSTATE codes that begin with 01.

• NOT FOUND is shorthand for all SQLSTATE codes that begin with 02. This is relevant only within the context of cursors and is
used to control what happens when a cursor reaches the end of a data set.

• SQLEXCEPTION is shorthand for all SQLSTATE codes not caught by SQLWARNING or NOT FOUND.

Example:

mysql> CREATE TABLE test.t (s1 int,primary key (s1));
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()
-> BEGIN
-> DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
-> SET @x = 1;
-> INSERT INTO test.t VALUES (1);
-> SET @x = 2;
-> INSERT INTO test.t VALUES (1);
-> SET @x = 3;
-> END;
-> //

Query OK, 0 rows affected (0.00 sec)

mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |

Stored Procedures and Functions

1330



+------+
| 3 |
+------+
1 row in set (0.00 sec)

The example associates a handler with SQLSTATE 23000, which occurs for a duplicate-key error. Notice that @x is 3, which shows
that MySQL executed to the end of the procedure. If the line DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET
@x2 = 1; had not been present, MySQL would have taken the default path (EXIT) after the second INSERT failed due to the
PRIMARY KEY constraint, and SELECT @x would have returned 2.

If you want to ignore a condition, you can declare a CONTINUE handler for it and associate it with an empty block. For example:

DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;

The statement associated with a handler cannot use ITERATE or LEAVE to refer to labels for blocks that enclose the handler declara-
tion. That is, the scope of a block label does not include the code for handlers declared within the block. Consider the following ex-
ample, where the REPEAT block has a label of retry:

CREATE PROCEDURE p ()
BEGIN
DECLARE i INT DEFAULT 3;
retry:
REPEAT
BEGIN
DECLARE CONTINUE HANDLER FOR SQLWARNING
BEGIN
ITERATE retry; # illegal

END;
END;
IF i < 0 THEN
LEAVE retry; # legal

END IF;
SET i = i - 1;

UNTIL FALSE END REPEAT;
END;

The label is in scope for the IF statement within the block. It is not in scope for the CONTINUE handler, so the reference there is inval-
id and results in an error:

ERROR 1308 (42000): LEAVE with no matching label: retry

To avoid using references to outer labels in handlers, you can use different strategies:

• If you want to leave the block, you can use an EXIT handler:

DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;

• If you want to iterate, you can set a status variable in the handler that can be checked in the enclosing block to determine whether
the handler was invoked. The following example uses the variable done for this purpose:

CREATE PROCEDURE p ()
BEGIN
DECLARE i INT DEFAULT 3;
DECLARE done INT DEFAULT FALSE;
retry:
REPEAT
BEGIN
DECLARE CONTINUE HANDLER FOR SQLWARNING
BEGIN
SET done = TRUE;

END;
END;
IF NOT done AND i < 0 THEN
LEAVE retry;

END IF;
SET i = i - 1;

UNTIL FALSE END REPEAT;
END;

20.2.9. Cursors

Stored Procedures and Functions

1331



Cursors are supported inside stored procedures and functions and triggers. The syntax is as in embedded SQL. Cursors currently have
these properties:

• Asensitive: The server may or may not make a copy of its result table

• Read only: Not updatable

• Non-scrollable: Can be traversed only in one direction and cannot skip rows

Cursors must be declared before declaring handlers. Variables and conditions must be declared before declaring either cursors or hand-
lers.

Example:

CREATE PROCEDURE curdemo()
BEGIN
DECLARE done INT DEFAULT 0;
DECLARE a CHAR(16);
DECLARE b,c INT;
DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

OPEN cur1;
OPEN cur2;

REPEAT
FETCH cur1 INTO a, b;
FETCH cur2 INTO c;
IF NOT done THEN

IF b < c THEN
INSERT INTO test.t3 VALUES (a,b);

ELSE
INSERT INTO test.t3 VALUES (a,c);

END IF;
END IF;

UNTIL done END REPEAT;

CLOSE cur1;
CLOSE cur2;

END

20.2.9.1. Declaring Cursors
DECLARE cursor_name CURSOR FOR select_statement

This statement declares a cursor. Multiple cursors may be declared in a routine, but each cursor in a given block must have a unique
name.

The SELECT statement cannot have an INTO clause.

20.2.9.2. Cursor OPEN Statement
OPEN cursor_name

This statement opens a previously declared cursor.

20.2.9.3. Cursor FETCH Statement
FETCH cursor_name INTO var_name [, var_name] ...

This statement fetches the next row (if a row exists) using the specified open cursor, and advances the cursor pointer.

If no more rows are available, a No Data condition occurs with SQLSTATE value 02000. To detect this condition, you can set up a
handler for it (or for a NOT FOUND condition). An example is shown in Section 20.2.9, “Cursors”.

20.2.9.4. Cursor CLOSE Statement

Stored Procedures and Functions

1332



CLOSE cursor_name

This statement closes a previously opened cursor.

If not closed explicitly, a cursor is closed at the end of the compound statement in which it was declared.

20.2.10. Flow Control Constructs
The IF, CASE, ITERATE, LEAVE LOOP, WHILE, and REPEAT constructs are fully implemented.

Many of these constructs contain other statements, as indicated by the grammar specifications in the following sections. Such constructs
may be nested. For example, an IF statement might contain a WHILE loop, which itself contains a CASE statement.

FOR loops are not currently supported.

20.2.10.1. IF Statement
IF search_condition THEN statement_list

[ELSEIF search_condition THEN statement_list] ...
[ELSE statement_list]

END IF

IF implements a basic conditional construct. If the search_condition evaluates to true, the corresponding SQL statement list is
executed. If no search_condition matches, the statement list in the ELSE clause is executed. Each statement_list consists
of one or more statements.

Note

There is also an IF() function, which differs from the IF statement described here. See Section 11.3, “Control Flow
Functions”.

An IF ... END IF block — like all other flow-control blocks used within stored routines — must be terminated with a semicolon,
as shown in this example:

DELIMITER //

CREATE FUNCTION SimpleCompare(n INT, m INT)
RETURNS VARCHAR(20)

BEGIN
DECLARE s VARCHAR(20);

IF n > m THEN SET s = '>';
ELSEIF n = m THEN SET s = '=';
ELSE SET s = '<';
END IF;

SET s = CONCAT(n, ' ', s, ' ', m);

RETURN s;
END //

DELIMITER ;

As with other flow-control constructs, IF ... END IF blocks may be nested within other flow-control constructs, including other
IF statements. Each IF must be terminated by its own END IF followed by a semicolon. You can use indentation to make nested
flow-control blocks more easily readable by humans (although this is not required by MySQL), as shown here:

DELIMITER //

CREATE FUNCTION VerboseCompare (n INT, m INT)
RETURNS VARCHAR(50)

BEGIN
DECLARE s VARCHAR(50);

IF n = m THEN SET s = 'equals';
ELSE
IF n > m THEN SET s = 'greater';
ELSE SET s = 'less';
END IF;

SET s = CONCAT('is ', s, ' than');

Stored Procedures and Functions

1333



END IF;

SET s = CONCAT(n, ' ', s, ' ', m, '.');

RETURN s;
END //

DELIMITER ;

In this example, the inner IF is evaluated only if n is not equal to m.

20.2.10.2. CASE Statement
CASE case_value

WHEN when_value THEN statement_list
[WHEN when_value THEN statement_list] ...
[ELSE statement_list]

END CASE

Or:

CASE
WHEN search_condition THEN statement_list
[WHEN search_condition THEN statement_list] ...
[ELSE statement_list]

END CASE

The CASE statement for stored routines implements a complex conditional construct. If a search_condition evaluates to true, the
corresponding SQL statement list is executed. If no search condition matches, the statement list in the ELSE clause is executed. Each
statement_list consists of one or more statements.

Note

If no search condition matches the value tested, and the CASE statement contains no ELSE clause, a CASE NOT FOUND

FOR CASE STATEMENT error results.

Each statement_list consists of one or more statements; an empty statement_list is not allowed. To handle situations
where no value is matched by any WHEN clause, use an ELSE containing an empty BEGIN ... END block, as shown in this example:

DELIMITER |

CREATE PROCEDURE p()
BEGIN
DECLARE v INT DEFAULT 1;

CASE v
WHEN 2 THEN SELECT v;
WHEN 3 THEN SELECT 0;
ELSE
BEGIN
END;

END CASE;
END;
|

(The indentation used here in the ELSE clause is for purposes of clarity only, and is not otherwise significant.)

The syntax of the CASE statement used inside stored routines differs slightly from that of the SQL CASE expression described in Sec-
tion 11.3, “Control Flow Functions”. The CASE statement cannot have an ELSE NULL clause, and it is terminated with END CASE in-
stead of END.

20.2.10.3. LOOP Statement
[begin_label:] LOOP

statement_list
END LOOP [end_label]

LOOP implements a simple loop construct, enabling repeated execution of the statement list, which consists of one or more statements.
The statements within the loop are repeated until the loop is exited; usually this is accomplished with a LEAVE statement.

A LOOP statement can be labeled. end_label cannot be given unless begin_label also is present. If both are present, they must
be the same.

Stored Procedures and Functions

1334



20.2.10.4. LEAVE Statement
LEAVE label

This statement is used to exit any labeled flow control construct. It can be used within BEGIN ... END or loop constructs (LOOP,
REPEAT, WHILE).

20.2.10.5. ITERATE Statement
ITERATE label

ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means “do the loop again.”

Example:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
label1: LOOP
SET p1 = p1 + 1;
IF p1 < 10 THEN ITERATE label1; END IF;
LEAVE label1;

END LOOP label1;
SET @x = p1;

END

20.2.10.6. REPEAT Statement
[begin_label:] REPEAT

statement_list
UNTIL search_condition
END REPEAT [end_label]

The statement list within a REPEAT statement is repeated until the search_condition is true. Thus, a REPEAT always enters the
loop at least once. statement_list consists of one or more statements.

A REPEAT statement can be labeled. end_label cannot be given unless begin_label also is present. If both are present, they
must be the same.

Example:

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
-> BEGIN
-> SET @x = 0;
-> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
-> END
-> //

Query OK, 0 rows affected (0.00 sec)

mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

20.2.10.7. WHILE Statement
[begin_label:] WHILE search_condition DO

statement_list
END WHILE [end_label]

The statement list within a WHILE statement is repeated as long as the search_condition is true. statement_list consists of
one or more statements.

Stored Procedures and Functions

1335



A WHILE statement can be labeled. end_label cannot be given unless begin_label also is present. If both are present, they must
be the same.

Example:

CREATE PROCEDURE dowhile()
BEGIN
DECLARE v1 INT DEFAULT 5;

WHILE v1 > 0 DO
...
SET v1 = v1 - 1;

END WHILE;
END

20.2.11. RETURN Statement Syntax
RETURN expr

The RETURN statement terminates execution of a stored function and returns the value expr to the function caller. There must be at
least one RETURN statement in a stored function. There may be more than one if the function has multiple exit points.

This statement is not used in stored procedures, triggers, or events.

20.3. Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()
Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID() changes the same way as
for statements executed outside the body of these kinds of objects (see Section 11.11.3, “Information Functions”). The effect of a stored
routine or trigger upon the value of LAST_INSERT_ID() that is seen by following statements depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the changed value will be seen by state-
ments that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or trigger ends, so following state-
ments will not see a changed value.

20.4. Binary Logging of Stored Routines and Triggers
The binary log contains information about SQL statements that modify database contents. This information is stored in the form of
“events” that describe the modifications. The binary log has two important purposes:

• For replication, the master server sends the events contained in its binary log to its slaves, which execute those events to make the
same data changes that were made on the master. See Section 16.4, “Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup file has been restored, the events in the binary log that
were recorded after the backup was made are re-executed. These events bring databases up to date from the point of the backup. See
Section 6.2.2, “Using Backups for Recovery”.

This section describes how MySQL 5.1 handles binary logging for stored routines (procedures and functions) and triggers. It also states
the current conditions that the implementation places on the use of stored routines, and then provides additional information about the
reasons for these conditions.

In general, the issues described here result when binary logging occurs at the SQL statement level. If you use row-based binary logging,
the log contains changes made to individual rows as a result of executing SQL statements. For general information about row-based log-
ging, see Section 16.1.2, “Replication Formats”.

When using row-based logging, definitions of stored routines and triggers are replicated as statements. When routines or triggers ex-
ecute, row changes are logged, not the statements that execute them. For stored procedures, this means that the CALL statement is not
logged. For stored functions, row changes made within the function are logged, not the function invocation. For triggers, row changes
made by the trigger are logged. On the slave side, only the row changes are seen, not the routine or trigger invocation.

Stored Procedures and Functions

1336



Unless noted otherwise, the remarks here assume that you have enabled binary logging by starting the server with the --log-bin op-
tion. (See Section 5.2.4, “The Binary Log”.) If the binary log is not enabled, replication is not possible, nor is the binary log available
for data recovery.

The current conditions on the use of stored functions in MySQL 5.1 can be summarized as follows. These conditions do not apply to
stored procedures and they do not apply unless binary logging is enabled.

• To create or alter a stored function, you must have the SUPER privilege, in addition to the CREATE ROUTINE or ALTER
ROUTINE privilege that is normally required.

• When you create a stored function, you must declare either that it is deterministic or that it does not modify data. Otherwise, it may
be unsafe for data recovery or replication.

• To relax the preceding conditions on function creation (that you must have the SUPER privilege and that a function must be de-
clared deterministic or to not modify data), set the global log_bin_trust_function_creators system variable to 1. By de-
fault, this variable has a value of 0, but you can change it like this:

mysql> SET GLOBAL log_bin_trust_function_creators = 1;

You can also set this variable by using the --log-bin-trust-function-creators=1 option when starting the server.

If binary logging is not enabled, log_bin_trust_function_creators does not apply and SUPER is not required for func-
tion creation.

Triggers are similar to stored functions, so the preceding remarks regarding functions also apply to triggers with the following excep-
tions: log_bin_trust_function_creators does not apply to triggers and does not affect the privileges required for CREATE
TRIGGER. Also, CREATE TRIGGER does not have an optional DETERMINISTIC characteristic, so triggers are assumed to be al-
ways deterministic. However, this assumption might in some cases be invalid. For example, the UUID() function is non-deterministic
(and does not replicate). You should be careful about using such functions in triggers.

Triggers can update tables, so error messages similar to those for stored functions occur with CREATE TRIGGER if you do not have
the required privileges. On the slave side, the slave uses the trigger DEFINER attribute to determine which user is considered to be the
creator of the trigger.

The following discussion provides additional detail about the logging implementation and its implications. This discussion applies only
for statement-based logging, and not for row-based logging, with the exception of the first item: CREATE and DROP statements are
logged as statements regardless of the logging mode.

• The server writes CREATE PROCEDURE, CREATE FUNCTION, ALTER PROCEDURE, ALTER FUNCTION, DROP PROCED-
URE, and DROP FUNCTION statements to the binary log.

• A stored function invocation is logged as a SELECT statement if the function changes data and occurs within a statement that would
not otherwise be logged. This prevents non-replication of data changes that result from use of stored functions in non-logged state-
ments. For example, SELECT statements are not written to the binary log, but a SELECT might invoke a stored function that makes
changes. To handle this, a SELECT func_name() statement is written to the binary log when the given function makes a change.
Suppose that the following statements are executed on the master:

CREATE FUNCTION f1(a INT) RETURNS INT
BEGIN
IF (a < 3) THEN
INSERT INTO t2 VALUES (a);

END IF;
RETURN 0;

END;

CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1),(2),(3);

SELECT f1(a) FROM t1;

When the SELECT statement executes, the function f1() is invoked three times. Two of those invocations insert a row, and
MySQL logs a SELECT statement for each of them. That is, MySQL writes the following statements to the binary log:

SELECT f1(1);
SELECT f1(2);

Stored Procedures and Functions

1337



The server also logs a SELECT statement for a stored function invocation when the function invokes a stored procedure that causes
an error. In this case, the server writes the SELECT statement to the log along with the expected error code. On the slave, if the
same error occurs, that is the expected result and replication continues. Otherwise, replication stops.

Note: Before MySQL 5.1.7, you will see these SELECT func_name() statements logged as DO func_name(). The change to
SELECT was made because use of DO was found to yield insufficient control over error code checking.

• Logging stored function invocations rather than the statements executed by a function has a security implication for replication,
which arises from two factors:

• It is possible for a function to follow different execution paths on master and slave servers.

• Statements executed on a slave are processed by the slave SQL thread which has full privileges.

The implication is that although a user must have the CREATE ROUTINE privilege to create a function, the user can write a func-
tion containing a dangerous statement that will execute only on the slave where the statement is processed by the SQL thread that
has full privileges. For example, if the master and slave servers have server ID values of 1 and 2, respectively, a user on the master
server could create and invoke an unsafe function unsafe_func() as follows:

mysql> delimiter //
mysql> CREATE FUNCTION unsafe_func () RETURNS INT

-> BEGIN
-> IF @@server_id=2 THEN dangerous_statement; END IF;
-> RETURN 1;
-> END;
-> //

mysql> delimiter ;
mysql> INSERT INTO t VALUES(unsafe_func());

The CREATE FUNCTION and INSERT statements are written to the binary log, so the slave will execute them. Because the slave
SQL thread has full privileges, it will execute the dangerous statment. Thus, the function invocation has different effects on the mas-
ter and slave and is not replication-safe.

To guard against this danger for servers that have binary logging enabled, stored function creators must have the SUPER privilege,
in addition to the usual CREATE ROUTINE privilege that is required. Similarly, to use ALTER FUNCTION, you must have the
SUPER privilege in addition to the ALTER ROUTINE privilege. Without the SUPER privilege, an error will occur:

ERROR 1419 (HY000): You do not have the SUPER privilege and
binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

If you do not want to require function creators to have the SUPER privilege (for example, if all users with the CREATE ROUTINE
privilege on your system are experienced application developers), set the global log_bin_trust_function_creators sys-
tem variable to 1. You can also set this variable by using the --log-bin-trust-function-creators=1 option when start-
ing the server. If binary logging is not enabled, log_bin_trust_function_creators does not apply and SUPER is not re-
quired for function creation.

• If a function that performs updates is non-deterministic, it is not repeatable. This can have two undesirable effects:

• It will make a slave different from the master.

• Restored data will be different from the original data.

To deal with these problems, MySQL enforces the following requirement: On a master server, creation and alteration of a function
is refused unless you declare the function to be deterministic or to not modify data. Two sets of function characteristics apply here:

• The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a function always produces the same res-
ult for given inputs. The default is NOT DETERMINISTIC if neither characteristic is given. To declare that a function is de-
terministic, you must specify DETERMINISTIC explicitly.

Use of the NOW() function (or its synonyms) or RAND() does not necessarily make a function non-deterministic. For NOW(),
the binary log includes the timestamp and replicates correctly. RAND() also replicates correctly as long as it is invoked only
once within a function. (You can consider the function execution timestamp and random number seed as implicit inputs that are
identical on the master and slave.)

SYSDATE() is not affected by the timestamps in the binary log, so it causes stored routines to be non-deterministic if state-

Stored Procedures and Functions

1338



ment-based logging is used. This does not occur if row-based logging is used, or if the server is started with the -
-sysdate-is-now option to cause SYSDATE() to be an alias for NOW().

• The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA characteristics provide information about
whether the function reads or writes data. Either NO SQL or READS SQL DATA indicates that a function does not change data,
but you must specify one of these explicitly because the default is CONTAINS SQL if no characteristic is given.

By default, for a CREATE FUNCTION statement to be accepted, DETERMINISTIC or one of NO SQL and READS SQL DATA
must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

If you set log_bin_trust_function_creators to 1, the requirement that functions be deterministic or not modify data is
dropped.

Assessment of the nature of a function is based on the “honesty” of the creator: MySQL does not check that a function declared DE-
TERMINISTIC is free of statements that produce non-deterministic results.

• Stored procedure calls are logged at the statement level rather than at the CALL level. That is, the server does not log the CALL
statement, it logs those statements within the procedure that actually execute. As a result, the same changes that occur on the master
will be observed on slave servers. This prevents problems that could result from a procedure having different execution paths on dif-
ferent machines.

In general, statements executed within a stored procedure are written to the binary log using the same rules that would apply were
the statements to be executed in standalone fashion. Some special care is taken when logging procedure statements because state-
ment execution within procedures is not quite the same as in non-procedure context:

• A statement to be logged might contain references to local procedure variables. These variables do not exist outside of stored
procedure context, so a statement that refers to such a variable cannot be logged literally. Instead, each reference to a local vari-
able is replaced by this construct for logging purposes:

NAME_CONST(var_name, var_value)

var_name is the local variable name, and var_value is a constant indicating the value that the variable has at the time the
statement is logged. NAME_CONST() has a value of var_value, and a “name” of var_name. Thus, if you invoke this func-
tion directly, you get a result like this:

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

NAME_CONST() allows a logged standalone statement to be executed on a slave with the same effect as the original statement
that was executed on the master within a stored procedure.

• A statement to be logged might contain references to user-defined variables. To handle this, MySQL writes a SET statement to
the binary log to make sure that the variable exists on the slave with the same value as on the master. For example, if a statement
refers to a variable @my_var, that statement will be preceded in the binary log by the following statement, where value is the
value of @my_var on the master:

SET @my_var = value;

• Procedure calls can occur within a committed or rolled-back transaction. Previously, CALL statements were logged even if they
occurred within a rolled-back transaction. As of MySQL 5.0.12, transactional context is accounted for so that the transactional
aspects of procedure execution are replicated correctly. That is, the server logs those statements within the procedure that actu-
ally execute and modify data, and also logs BEGIN, COMMIT, and ROLLBACK statements as necessary. For example, if a pro-
cedure updates only transactional tables and is executed within a transaction that is rolled back, those updates are not logged. If
the procedure occurs within a committed transaction, BEGIN and COMMIT statements are logged with the updates. For a proced-
ure that executes within a rolled-back transaction, its statements are logged using the same rules that would apply if the state-
ments were executed in standalone fashion:

Stored Procedures and Functions

1339



• Updates to transactional tables are not logged.

• Updates to non-transactional tables are logged because rollback does not cancel them.

• Updates to a mix of transactional and non-transactional tables are logged surrounded by BEGIN and ROLLBACK so that
slaves will make the same changes and rollbacks as on the master.

• A stored procedure call is not written to the binary log at the statement level if the procedure is invoked from within a stored func-
tion. In that case, the only thing logged is the statement that invokes the function (if it occurs within a statement that is logged) or a
DO statement (if it occurs within a statement that is not logged). For this reason, care should be exercised in the use of stored func-
tions that invoke a procedure, even if the procedure is otherwise safe in itself.

Stored Procedures and Functions

1340



Chapter 21. Triggers
A trigger is a named database object that is associated with a table and that is activated when a particular event occurs for the table. For
example, the following statements create a table and an INSERT trigger. The trigger sums the values inserted into one of the table's
columns:

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
-> FOR EACH ROW SET @sum = @sum + NEW.amount;

Query OK, 0 rows affected (0.06 sec)

Important

MySQL triggers are activated by SQL statements only. They are not activated by changes in tables made by APIs that do
not transmit SQL statements to the MySQL Server; in particular, they are not activated by updates made using the NDB
API.

This chapter describes the syntax for creating and dropping triggers, and shows some examples of how to use them. Discussion of re-
strictions on use of triggers is given in Section D.1, “Restrictions on Stored Routines, Triggers, and Events”. Remarks regarding binary
logging as it applies to triggers are given in Section 20.4, “Binary Logging of Stored Routines and Triggers”.

For answers to some common questions about triggers in MySQL 5.1, see Section A.5, “MySQL 5.1 FAQ — Triggers”.

21.1. CREATE TRIGGER Syntax
CREATE

[DEFINER = { user | CURRENT_USER }]
TRIGGER trigger_name trigger_time trigger_event
ON tbl_name FOR EACH ROW trigger_stmt

This statement creates a new trigger. A trigger is a named database object that is associated with a table, and that activates when a par-
ticular event occurs for the table. The trigger becomes associated with the table named tbl_name, which must refer to a permanent ta-
ble. You cannot associate a trigger with a TEMPORARY table or a view.

MySQL Enterprise
For expert advice on creating triggers subscribe to the MySQL Enterprise Monitor. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

CREATE TRIGGER requires the TRIGGER privilege for the table associated with the trigger. (Before MySQL 5.1.6, this statement re-
quires the SUPER privilege.)

The DEFINER clause determines the security context to be used when checking access privileges at trigger activation time.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger activates before or after each row to
be modified.

trigger_event indicates the kind of statement that activates the trigger. The trigger_event can be one of the following:

• INSERT: The trigger is activated whenever a new row is inserted into the table; for example, through INSERT, LOAD DATA, and
REPLACE statements.

• UPDATE: The trigger is activated whenever a row is modified; for example, through UPDATE statements.

• DELETE: The trigger is activated whenever a row is deleted from the table; for example, through DELETE and REPLACE state-
ments. However, DROP TABLE and TRUNCATE statements on the table do not activate this trigger, because they do not use DE-
LETE. Dropping a partition does not activate DELETE triggers, either. See Section 12.2.9, “TRUNCATE Syntax”.

It is important to understand that the trigger_event does not represent a literal type of SQL statement that activates the trigger so
much as it represents a type of table operation. For example, an INSERT trigger is activated by not only INSERT statements but also
LOAD DATA statements because both statements insert rows into a table.

1341

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


A potentially confusing example of this is the INSERT INTO ... ON DUPLICATE KEY UPDATE ... syntax: a BEFORE IN-
SERT trigger will activate for every row, followed by either an AFTER INSERT trigger or both the BEFORE UPDATE and AFTER
UPDATE triggers, depending on whether there was a duplicate key for the row.

There cannot be two triggers for a given table that have the same trigger action time and event. For example, you cannot have two BE-
FORE UPDATE triggers for a table. But you can have a BEFORE UPDATE and a BEFORE INSERT trigger, or a BEFORE UPDATE
and an AFTER UPDATE trigger.

trigger_stmt is the statement to execute when the trigger activates. If you want to execute multiple statements, use the BEGIN
... END compound statement construct. This also enables you to use the same statements that are allowable within stored routines.
See Section 20.2.5, “BEGIN ... END Compound Statement Syntax”. Some statements are not allowed in triggers; see Section D.1,
“Restrictions on Stored Routines, Triggers, and Events”.

MySQL stores the sql_mode system variable setting that is in effect at the time a trigger is created, and always executes the trigger
with this setting in force, regardless of the current server SQL mode.

Note

Currently, triggers are not activated by cascaded foreign key actions. This limitation will be lifted as soon as possible.

In MySQL 5.1, you can write triggers containing direct references to tables by name, such as the trigger named testref shown in this
example:

CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
CREATE TABLE test4(
a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
b4 INT DEFAULT 0

);

DELIMITER |

CREATE TRIGGER testref BEFORE INSERT ON test1
FOR EACH ROW BEGIN
INSERT INTO test2 SET a2 = NEW.a1;
DELETE FROM test3 WHERE a3 = NEW.a1;
UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;

END;
|

DELIMITER ;

INSERT INTO test3 (a3) VALUES
(NULL), (NULL), (NULL), (NULL), (NULL),
(NULL), (NULL), (NULL), (NULL), (NULL);

INSERT INTO test4 (a4) VALUES
(0), (0), (0), (0), (0), (0), (0), (0), (0), (0);

Suppose that you insert the following values into table test1 as shown here:

mysql> INSERT INTO test1 VALUES
-> (1), (3), (1), (7), (1), (8), (4), (4);

Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0

As a result, the data in the four tables will be as follows:

mysql> SELECT * FROM test1;
+------+
| a1 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| a2 |

Triggers

1342



+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test3;
+----+
| a3 |
+----+
| 2 |
| 5 |
| 6 |
| 9 |
| 10 |
+----+
5 rows in set (0.00 sec)

mysql> SELECT * FROM test4;
+----+------+
| a4 | b4 |
+----+------+
| 1 | 3 |
| 2 | 0 |
| 3 | 1 |
| 4 | 2 |
| 5 | 0 |
| 6 | 0 |
| 7 | 1 |
| 8 | 1 |
| 9 | 0 |
| 10 | 0 |
+----+------+
10 rows in set (0.00 sec)

You can refer to columns in the subject table (the table associated with the trigger) by using the aliases OLD and NEW. OLD.col_name
refers to a column of an existing row before it is updated or deleted. NEW.col_name refers to the column of a new row to be inserted
or an existing row after it is updated.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at trigger activation time. If a user
value is given, it should be a MySQL account in 'user_name'@'host_name' format (the same format used in the GRANT state-
ment). The user_name and host_name values both are required. The definer can also be given as CURRENT_USER or CUR-
RENT_USER(). The default DEFINER value is the user who executes the CREATE TRIGGER statement. (This is the same as
DEFINER = CURRENT_USER.)

If you specify the DEFINER clause, these rules determine the legal DEFINER user values:

• If you do not have the SUPER privilege, the only legal user value is your own account, either specified literally or by using CUR-
RENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically legal account name. If the account does not actually exist, a
warning is generated.

Although it is possible to create triggers with a non-existent DEFINER value, it is not a good idea for such triggers to be activated
until the definer actually does exist. Otherwise, the behavior with respect to privilege checking is undefined.

Note: Prior to MySQL 5.1.6, MySQL requires the SUPER privilege for the use of CREATE TRIGGER, so only the second of the pre-
ceding rules applies. As of 5.1.6, CREATE TRIGGER requires the TRIGGER privilege and SUPER is required only to be able to set
DEFINER to a value other than your own account.

MySQL checks trigger privileges like this:

• At CREATE TRIGGER time, the user that issues the statement must have the TRIGGER privilege. (SUPER prior to MySQL 5.1.6.)

• At trigger activation time, privileges are checked against the DEFINER user. This user must have these privileges:

• The TRIGGER privilege. (SUPER prior to MySQL 5.1.6.)

Triggers

1343



• The SELECT privilege for the subject table if references to table columns occur via OLD.col_name or NEW.col_name in
the trigger definition.

• The UPDATE privilege for the subject table if table columns are targets of SET NEW.col_name = value assignments in
the trigger definition.

• Whatever other privileges normally are required for the statements executed by the trigger.

21.2. DROP TRIGGER Syntax
DROP TRIGGER [IF EXISTS] [schema_name.]trigger_name

This statement drops a trigger. The schema (database) name is optional. If the schema is omitted, the trigger is dropped from the default
schema. DROP TRIGGER was added in MySQL 5.0.2. Its use requires the TRIGGER privilege for the table associated with the trigger.
(This statement requires the SUPER privilege prior to MySQL 5.1.6.)

Use IF EXISTS to prevent an error from occurring for a trigger that does not exist. A NOTE is generated for a non-existent trigger
when using IF EXISTS. See Section 12.5.4.32, “SHOW WARNINGS Syntax”. The IF EXISTS clause was added in MySQL 5.1.14.

Triggers for a table are also dropped if you drop the table.

Note

When upgrading from a version of MySQL older than MySQL 5.0.10 to 5.0.10 or newer — including all MySQL 5.1 re-
leases — you must drop all triggers before upgrading and re-create them afterward, or else DROP TRIGGER does not
work after the upgrade. See Section 2.11.1, “Upgrading from MySQL 5.0 to 5.1”, for a suggested upgrade procedure.

21.3. Using Triggers
This section discusses how to use triggers in MySQL 5.1 and some limitations regarding their use. Additional information about trigger
limitations is given in Section D.1, “Restrictions on Stored Routines, Triggers, and Events”.

A trigger is a named database object that is associated with a table, and that activates when a particular event occurs for the table. Some
uses for triggers are to perform checks of values to be inserted into a table or to perform calculations on values involved in an update.

A trigger is associated with a table and is defined to activate when an INSERT, DELETE, or UPDATE statement for the table executes.
A trigger can be set to activate either before or after the triggering statement. For example, you can have a trigger activate before each
row that is deleted from a table or after each row that is updated.

Important

MySQL triggers are activated by SQL statements only. They are not activated by changes in tables made by APIs that do
not transmit SQL statements to the MySQL Server; in particular, they are not activated by updates made using the NDB
API.

To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement. The syntax for these statements is de-
scribed in Section 21.1, “CREATE TRIGGER Syntax”, and Section 21.2, “DROP TRIGGER Syntax”.

Here is a simple example that associates a trigger with a table for INSERT statements. It acts as an accumulator to sum the values inser-
ted into one of the columns of the table.

The following statements create a table and a trigger for it:

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account

-> FOR EACH ROW SET @sum = @sum + NEW.amount;

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the account table. It also includes
clauses that specify the trigger activation time, the triggering event, and what to do with the trigger activates:

• The keyword BEFORE indicates the trigger action time. In this case, the trigger should activate before each row inserted into the ta-

Triggers

1344



ble. The other allowable keyword here is AFTER.

• The keyword INSERT indicates the event that activates the trigger. In the example, INSERT statements cause trigger activation.
You can also create triggers for DELETE and UPDATE statements.

• The statement following FOR EACH ROW defines the statement to execute each time the trigger activates, which occurs once for
each row affected by the triggering statement In the example, the triggered statement is a simple SET that accumulates the values in-
serted into the amount column. The statement refers to the column as NEW.amount which means “the value of the amount
column to be inserted into the new row.”

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see what value the variable has after-
ward:

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 - 100, or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the trigger is not in the default schema:

mysql> DROP TRIGGER test.ins_sum;

Triggers for a table are also dropped if you drop the table.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names within a schema. Triggers in different
schemas can have the same name.

In addition to the requirement that trigger names be unique for a schema, there are other limitations on the types of triggers you can cre-
ate. In particular, you cannot have two triggers for a table that have the same activation time and activation event. For example, you
cannot define two BEFORE INSERT triggers or two AFTER UPDATE triggers for a table. This should rarely be a significant limita-
tion, because it is possible to define a trigger that executes multiple statements by using the BEGIN ... END compound statement
construct after FOR EACH ROW. (An example appears later in this section.)

The OLD and NEW keywords enable you to access columns in the rows affected by a trigger. (OLD and NEW are not case sensitive.) In an
INSERT trigger, only NEW.col_name can be used; there is no old row. In a DELETE trigger, only OLD.col_name can be used;
there is no new row. In an UPDATE trigger, you can use OLD.col_name to refer to the columns of a row before it is updated and
NEW.col_name to refer to the columns of the row after it is updated.

A column named with OLD is read only. You can refer to it (if you have the SELECT privilege), but not modify it. A column named
with NEW can be referred to if you have the SELECT privilege for it. In a BEFORE trigger, you can also change its value with SET
NEW.col_name = value if you have the UPDATE privilege for it. This means you can use a trigger to modify the values to be in-
serted into a new row or that are used to update a row.

In a BEFORE trigger, the NEW value for an AUTO_INCREMENT column is 0, not the automatically generated sequence number that will
be generated when the new record actually is inserted.

OLD and NEW are MySQL extensions to triggers.

By using the BEGIN ... END construct, you can define a trigger that executes multiple statements. Within the BEGIN block, you
also can use other syntax that is allowed within stored routines such as conditionals and loops. However, just as for stored routines, if
you use the mysql program to define a trigger that executes multiple statements, it is necessary to redefine the mysql statement delim-
iter so that you can use the ; statement delimiter within the trigger definition. The following example illustrates these points. It defines
an UPDATE trigger that checks the new value to be used for updating each row, and modifies the value to be within the range from 0 to
100. This must be a BEFORE trigger because the value needs to be checked before it is used to update the row:

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account

-> FOR EACH ROW
-> BEGIN
-> IF NEW.amount < 0 THEN
-> SET NEW.amount = 0;
-> ELSEIF NEW.amount > 100 THEN

Triggers

1345



-> SET NEW.amount = 100;
-> END IF;
-> END;//

mysql> delimiter ;

It can be easier to define a stored procedure separately and then invoke it from the trigger using a simple CALL statement. This is also
advantageous if you want to invoke the same routine from within several triggers.

There are some limitations on what can appear in statements that a trigger executes when activated:

• The trigger cannot use the CALL statement to invoke stored procedures that return data to the client or that use dynamic SQL.
(Stored procedures are allowed to return data to the trigger through OUT or INOUT parameters.)

• The trigger cannot use statements that explicitly or implicitly begin or end a transaction such as START TRANSACTION, COMMIT,
or ROLLBACK.

MySQL handles errors during trigger execution as follows:

• If a BEFORE trigger fails, the operation on the corresponding row is not performed.

• A BEFORE trigger is activated by the attempt to insert or modify the row, regardless of whether the attempt subsequently succeeds.

• An AFTER trigger is executed only if the BEFORE trigger (if any) and the row operation both execute successfully.

• An error during either a BEFORE or AFTER trigger results in failure of the entire statement that caused trigger invocation.

• For transactional tables, failure of a statement should cause rollback of all changes performed by the statement. Failure of a trigger
causes the statement to fail, so trigger failure also causes rollback. For non-transactional tables, such rollback cannot be done, so al-
though the statement fails, any changes performed prior to the point of the error remain in effect.

Triggers

1346



Chapter 22. Event Scheduler
This chapter describes the MySQL Event Scheduler, for which support was added in MySQL 5.1.6, and is divided into the following
sections:

• Section 22.1, “Event Scheduler Overview”, provides an introduction to and conceptual overview of MySQL Events.

• Section 22.2, “Event Scheduler Syntax”, discusses the SQL statements introduced in MySQL 5.1.6 for creating, altering, and drop-
ping MySQL Events.

• Section 22.3, “Event Metadata”, shows how to obtain information about events and how this information is stored by the MySQL
Server.

• Section 22.5, “The Event Scheduler and MySQL Privileges”, discusses the privileges required to work with events and the ramifica-
tions that events have with regard to privileges when executing.

• Section 22.6, “Event Scheduler Limitations and Restrictions”, describes the restrictions and limitations of MySQL's Event Sched-
uler implementation.

Additional Resources. You may find the MySQL Event Scheduler User Forum of use when working with scheduled events. Here you
can discuss the MySQL Event Scheduler with other MySQL users and the MySQL developers.

22.1. Event Scheduler Overview
MySQL Events are tasks that run according to a schedule. Therefore, we sometimes refer to them as scheduled events. When you create
an event, you are creating a named database object containing one or more SQL statements to be executed at one or more regular inter-
vals, beginning and ending at a specific date and time. Conceptually, this is similar to the idea of the Unix crontab (also known as a
“cron job”) or the Windows Task Scheduler.

Scheduled tasks of this type are also sometimes known as “temporal triggers”, implying that these are objects that are triggered by the
passage of time. While this is essentially correct, we prefer to use the term events in order to avoid confusion with triggers of the type
discussed in Chapter 21, Triggers. Events should more specifically not be confused with “temporary triggers”. Whereas a trigger is a
database object whose statements are executed in response to a specific type of event that occurs on a given table, a (scheduled) event is
an object whose statements are executed in response to the passage of a specified time interval.

While there is no provision in the SQL Standard for event scheduling, there are precedents in other database systems, and you may no-
tice some similarities between these implementations and that found in the MySQL Server.

MySQL Events have the following major features and properties:

• In MySQL 5.1.12 and later, an event is uniquely identified by its name and the schema to which it is assigned. (Previously, an event
was also unique to its definer.)

• An event performs a specific action according to a schedule. This action consists of an SQL statement, which can be a compound
statement in a BEGIN ... END block if desired (see Section 20.2.5, “BEGIN ... END Compound Statement Syntax”). An
event's timing can be either one-time or recurrent. A one-time event executes one time only. A recurrent event repeats its action at a
regular interval, and the schedule for a recurring event can be assigned a specific start day and time, end day and time, both, or
neither. (By default, a recurring event's schedule begins as soon as it is created, and continues indefinitely, until it is disabled or
dropped.)

• Users can create, modify, and drop scheduled events using SQL statements intended for these purposes. Syntactically invalid event
creation and modification statements fail with an appropriate error message. A user may include statements in an event's action
which require privileges that the user does not actually have. The event creation or modification statement succeeds but the event's
action fails. See Section 22.5, “The Event Scheduler and MySQL Privileges” for details.

• Many of the properties of an event can be set or modified using SQL statements. These properties include the event's name, timing,
persistence (that is, whether it is preserved following the expiration of its schedule), status (enabled or disabled), action to be per-
formed, and the schema to which it is assigned. See Section 22.2.1, “ALTER EVENT Syntax”.

The default definer of an event is the user who created the event, unless the event has been altered, in which case the definer is the
user who issued the last ALTER EVENT statement affecting that event. An event can be modified by any user having the EVENT

1347

http://forums.mysql.com/list.php?119


privilege on the database for which the event is defined. (Prior to MySQL 5.1.12, only an event's definer, or a user having privileges
on the mysql.event table, could modify a given event.) See Section 22.5, “The Event Scheduler and MySQL Privileges”.

• An event's action statement may include most SQL statements permitted within stored routines.

Events are executed by a special event scheduler thread; when we refer to the Event Scheduler, we actually refer to this thread. When
running, the event scheduler thread and its current state can be seen by users having the SUPER privilege in the output of SHOW PRO-
CESSLIST, as shown in the discussion that follows.

The global variable event_scheduler determines whether the Event Scheduler is enabled and running on the server. Beginning
with MySQL 5.1.12, it has one of these 3 values, which affect event scheduling as described here:

• OFF: The Event Scheduler is stopped. The event scheduler thread does not run, is not shown in the output of SHOW PROCESS-
LIST, and no scheduled events are executed. OFF is the default value for event_scheduler.

When the Event Scheduler is stopped (event_scheduler is OFF), it can be started by setting the value of event_scheduler
to ON. (See next item.)

• ON: The Event Scheduler is started; the event scheduler thread runs and executes all scheduled events.

When the Event Scheduler is ON, the event scheduler thread is listed in the output of SHOW PROCESSLIST as a daemon process,
and its state is represented as shown here:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 1
User: root
Host: localhost
db: NULL

Command: Query
Time: 0
State: NULL
Info: show processlist

*************************** 2. row ***************************
Id: 2

User: event_scheduler
Host: localhost
db: NULL

Command: Daemon
Time: 3
State: Waiting for next activation
Info: NULL

2 rows in set (0.00 sec)

Event scheduling can be stopped by setting the value of event_scheduler to OFF.

• DISABLED: This value renders the Event Scheduler non-operational. When the Event Scheduler is DISABLED, the event scheduler
thread does not run (and so does not appear in the output of SHOW PROCESSLIST).

When the server is runningevent_scheduler can be toggled between ON and OFF (using SET). It is also possible to use 0 for OFF,
and 1 for ON when setting this variable. Thus, any of the following 4 statements can be used in the mysql client to turn on the Event
Scheduler:

SET GLOBAL event_scheduler = ON;
SET @@global.event_scheduler = ON;
SET GLOBAL event_scheduler = 1;
SET @@global.event_scheduler = 1;

Similarly, any of these 4 statements can be used to turn off the Event Scheduler:

SET GLOBAL event_scheduler = OFF;
SET @@global.event_scheduler = OFF;
SET GLOBAL event_scheduler = 0;
SET @@global.event_scheduler = 0;

Although ON and OFF have numeric equivalents, the value displayed for event_scheduler by SELECT or SHOW VARIABLES is
always one of OFF, ON, or DISABLED. DISABLED has no numeric equivalent. For this reason, ON and OFF are usually preferred over
1 and 0 when setting this variable.

Event Scheduler

1348



Note that attempting to set event_scheduler without specifying it as a global variable causes an error:

mysql< SET @@event_scheduler = OFF;
ERROR 1229 (HY000): VARIABLE 'EVENT_SCHEDULER' IS A GLOBAL
VARIABLE AND SHOULD BE SET WITH SET GLOBAL

Important

It is not possible to enable or disable the Event Scheduler when the server is running. That is, you can change the value of
event_scheduler to DISABLED — or from DISABLED to one of the other permitted values for this option — only
when the server is stopped. Attempting to do so when the server is running fails with an error.

To disable the event scheduler, use one of the following two methods:

• As a command-line option when starting the server:

--event-scheduler=DISABLED

• In the server configuration file (my.cnf, or my.ini on Windows systems), include the line where it will be read by the server (for
example, in a [mysqld] section):

event_scheduler=DISABLED

To enable the Event Scheduler, restart the server without the --event-scheduler=DISABLED command line option, or after re-
moving or commenting out the line containing event_scheduler=DISABLED in the server configuration file, as appropriate. Al-
ternatively, you can use ON (or 1) or OFF (or 0) in place of the DISABLED value when starting the server.

Note

You can issue event-manipulation statements when event_scheduler is set to DISABLED. No warnings or errors are
generated in such cases (provided that the statements are themselves valid). However, scheduled events cannot execute un-
til this variable is set to ON (or 1). Once this has been done, the event scheduler thread executes all events whose schedul-
ing conditions are satisfied.

In MySQL 5.1.11, event_scheduler behaved as follows: this variable could take one of the values 0 (or OFF), 1 (or ON), or 2. Set-
ting it to 0 turned event scheduling off, so that the event scheduler thread did not run; the event_scheduler variable could not be
set to this value while the server was running. Setting it to 1 so that the event scheduler thread ran and executed scheduled events. In
this state, the event scheduler thread appeared to be sleeping when viewed with SHOW PROCESSLIST. When event_scheduler
was set to 2 (which was the default value), the Event Scheduler was considered to be “suspended”; the event scheduler thread ran and
could be seen in the output of SHOW PROCESSLIST (where Suspended was displayed in the State column), but did not execute
any scheduled events. The value of event_scheduler could be changed only between 1 (or ON) and 2 while the server was run-
ning. Setting it to 0 (or OFF) required a server restart, as did changing its value from 0 (or OFF) to 1 (or ON) or 2.

Prior to MySQL 5.1.11, event_scheduler could take one of only the 2 values 0|OFF or 1|ON, and the default value was 0|OFF. It
was also possible to start and stop the event scheduler thread while the MySQL server was running.

For more information concerning the reasons for these changes in behaviour, see Bug#17619.

Beginning with MySQL 5.1.17, starting the MySQL server with the --skip-grant-tables option causes event_scheduler
to be set to DISABLED, overriding any other value set either on the command line or in the my.cnf or my.ini file (Bug#26807).

For SQL statements used to create, alter, and drop events, see Section 22.2, “Event Scheduler Syntax”.

MySQL 5.1.6 and later provides an EVENTS table in the INFORMATION_SCHEMA database. This table can be queried to obtain in-
formation about scheduled events which have been defined on the server. See Section 22.3, “Event Metadata”, and Section 24.20, “The
INFORMATION_SCHEMA EVENTS Table”, for more information.

For information regarding event scheduling and the MySQL privilege system, see Section 22.5, “The Event Scheduler and MySQL
Privileges”.

22.2. Event Scheduler Syntax

Event Scheduler

1349

http://bugs.mysql.com/17619
http://bugs.mysql.com/26807


MySQL 5.1.6 and later provides several SQL statements for working with scheduled events:

• New events are defined using the CREATE EVENT statement. See Section 22.2.2, “CREATE EVENT Syntax”.

• The definition of an existing event can be changed by means of the ALTER EVENT statement. See Section 22.2.1, “ALTER
EVENT Syntax”.

• When a scheduled event is no longer wanted or needed, it can be deleted from the server by its definer using the DROP EVENT
statement. See Section 22.2.3, “DROP EVENT Syntax”. (Whether an event persists past the end of its schedule also depends on its
ON COMPLETION clause, if it has one. See Section 22.2.2, “CREATE EVENT Syntax”.)

An event can be deleted by any user having the EVENT privilege for the database on which the event is defined. Prior to MySQL
5.12, a user other than the definer required privileges on the mysql.event table. See Section 22.5, “The Event Scheduler and
MySQL Privileges”.

22.2.1. ALTER EVENT Syntax
ALTER

[DEFINER = { user | CURRENT_USER }]
EVENT event_name
[ON SCHEDULE schedule]
[ON COMPLETION [NOT] PRESERVE]
[RENAME TO new_event_name]
[ENABLE | DISABLE | DISABLE ON SLAVE]
[COMMENT 'comment']
[DO sql_statement]

The ALTER EVENT statement is used to change one or more of the characteristics of an existing event without the need to drop and re-
create it. The syntax for each of the DEFINER, ON SCHEDULE, ON COMPLETION, COMMENT, ENABLE / DISABLE, and DO clauses
is exactly the same as when used with CREATE EVENT. (See Section 22.2.2, “CREATE EVENT Syntax”.)

Support for the DEFINER clause was added in MySQL 5.1.17.

Beginning with MySQL 5.1.12, any user can alter an event defined on a database for which that user has the EVENT privilege. When a
user executes a successful ALTER EVENT statement, that user becomes the definer for the affected event.

(In MySQL 5.1.11 and earlier, an event could be altered only by its definer, or by a user having the SUPER privilege.)

ALTER EVENT works only with an existing event:

mysql> ALTER EVENT no_such_event
> ON SCHEDULE
> EVERY '2:3' DAY_HOUR;

ERROR 1517 (HY000): UNKNOWN EVENT 'NO_SUCH_EVENT'

In each of the following examples, assume that the event named myevent is defined as shown here:

CREATE EVENT myevent
ON SCHEDULE
EVERY 6 HOUR

COMMENT 'A sample comment.'
DO
UPDATE myschema.mytable SET mycol = mycol + 1;

The following statement changes the schedule for myevent from once every six hours starting immediately to once every twelve
hours, starting four hours from the time the statement is run:

ALTER EVENT myevent
ON SCHEDULE
EVERY 12 HOUR

STARTS CURRENT_TIMESTAMP + 4 HOUR;

To disable myevent, use this ALTER EVENT statement:

ALTER EVENT myevent
DISABLE;

Event Scheduler

1350



The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables to obtain any of the
timestamp or interval values which it contains. You may not use stored routines or user-defined functions in such expressions,
nor may you use any table references; however, you may use SELECT FROM DUAL. This is true for both ALTER EVENT and CRE-
ATE EVENT statements. Beginning with MySQL 5.1.13, references to stored routines, user-defined functions, and tables in such cases
are specifically disallowed, and fail with an error (see Bug#22830).

An ALTER EVENT statement that contains another ALTER EVENT statement in its DO clause appears to succeed; however, when the
server attempts to execute the resulting scheduled event, the execution fails with an error.

It is possible to change multiple characteristics of an event in a single statement. This example changes the SQL statement executed by
myevent to one that deletes all records from mytable; it also changes the schedule for the event such that it executes once, one day
after this ALTER EVENT statement is run.

ALTER TABLE myevent
ON SCHEDULE
AT CURRENT_TIMESTAMP + INTERVAL 1 DAY

DO
TRUNCATE TABLE myschema.mytable;

To rename an event, use the ALTER EVENT statement's RENAME TO clause, as shown here:

ALTER EVENT myevent
RENAME TO yourevent;

The previous statement renames the event myevent to yourevent.

Note

There is no RENAME EVENT statement.

You can also move an event to a different database using ALTER EVENT ... RENAME TO ... and db_name.table_name
notation, as shown here:

ALTER EVENT olddb.myevent
RENAME TO newdb.myevent;

In order to execute the previous statement, the user executing it must have the EVENT privilege on both the olddb and newdb data-
bases.

Beginning with MySQL 5.1.18, a third value may also appear in place of ENABLED or DISABLED; DISABLE ON SLAVE is used on
a replication slave to indicate an event which was created on the master and replicated to the slave, but which is not executed on the
slave. Normally, DISABLE ON SLAVE is set automatically as required; however, there are some circumstances under which you may
want or need to change it manually. See Section 16.3.1.5, “Replication of Invoked Features”, for more information.

It is necessary to include only those options in an ALTER EVENT statement which correspond to characteristics that you actually wish
to change; options which are omitted retain their existing values. This includes any default values for CREATE EVENT such as EN-
ABLE.

22.2.2. CREATE EVENT Syntax
CREATE

[DEFINER = { user | CURRENT_USER }]
EVENT
[IF NOT EXISTS]
event_name
ON SCHEDULE schedule
[ON COMPLETION [NOT] PRESERVE]
[ENABLE | DISABLE | DISABLE ON SLAVE]
[COMMENT 'comment']
DO sql_statement;

schedule:
AT timestamp [+ INTERVAL interval]

| EVERY interval
[STARTS timestamp [+ INTERVAL interval]]
[ENDS timestamp [+ INTERVAL interval]]

interval:
quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |

WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |
DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

Event Scheduler

1351

http://bugs.mysql.com/22830


This statement creates and schedules a new event. The minimum requirements for a valid CREATE EVENT statement are as follows:

• The keywords CREATE EVENT plus an event name, which uniquely identifies the event in the current schema. (Prior to MySQL
5.1.12, the event name needed to be unique only among events created by the same user on a given database.)

• An ON SCHEDULE clause, which determines when and how often the event executes.

• A DO clause, which contains the SQL statement to be executed by an event.

This is an example of a minimal CREATE EVENT statement:

CREATE EVENT myevent
ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
DO
UPDATE myschema.mytable SET mycol = mycol + 1;

The previous statement creates an event named myevent. This event executes once — one hour following its creation — by running
an SQL statement that increments the value of the myschema.mytable table's mycol column by 1.

The event_name must be a valid MySQL identifier with a maximum length of 64 characters. It may be delimited using back ticks,
and may be qualified with the name of a database schema. An event is associated with both a MySQL user (the definer) and a schema,
and its name must be unique among names of events within that schema. In general, the rules governing event names are the same as
those for names of stored routines. See Section 8.2, “Schema Object Names”.

If no schema is indicated as part of event_name, then the default (current) schema is assumed.

Note

MySQL uses case-insensitive comparisons when checking for the uniqueness of event names. This means that, for ex-
ample, you cannot have two events named myevent and MyEvent in the same database schema.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at event execution time. If a user
value is given, it should be a MySQL account in 'user_name'@'host_name' format (the same format used in the GRANT state-
ment). The user_name and host_name values both are required. The definer can also be given as CURRENT_USER or CUR-
RENT_USER(). The default DEFINER value is the user who executes the CREATE EVENT statement. (This is the same as DEFINER
= CURRENT_USER.)

The DEFINER clause was added in MySQL 5.1.17. (Prior to MySQL 5.1.12, it was possible for two different users to create different
events having the same name on the same database schema.)

IF NOT EXISTS functions in the same fashion with CREATE EVENT as it does when used with a CREATE TABLE statement; if an
event named event_name already exists in the same schema, no action is taken, and no error results. (However, a warning is gener-
ated in such cases.)

The ON SCHEDULE clause determines when, how often, and for how long the sql_statement defined for the event repeats. This
clause takes one of two forms:

• AT timestamp is used for a one-time event. It specifies that the event executes one time only at the date and time, given as the
timestamp, which must include both the date and time, or must be an expression that resolves to a datetime value. You may use a
value which is of either the DATETIME or TIMESTAMP type for this purpose. If the date is in the past, a warning occurs, as shown
here:

mysql> SELECT NOW();
+---------------------+
| NOW() |
+---------------------+
| 2006-02-10 23:59:01 |
+---------------------+
1 row in set (0.04 sec)

mysql> CREATE EVENT e_totals
-> ON SCHEDULE AT '2006-02-10 23:59:00'
-> DO INSERT INTO test.totals VALUES (NOW());

Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G

Event Scheduler

1352



*************************** 1. row ***************************
Level: Note
Code: 1588

Message: Event execution time is in the past and ON COMPLETION NOT
PRESERVE is set. The event was dropped immediately after
creation.

CREATE EVENT statements which are themselves invalid — for whatever reason — fail with an error.

You may use CURRENT_TIMESTAMP to specify the current date and time. In such a case, the event acts as soon as it is created.

In order to create an event which occurs at some point in the future relative to the current date and time — such as that expressed by
the phrase “three weeks from now” — you can use the optional clause + INTERVAL interval. The interval portion con-
sists of two parts, a quantity and a unit of time, and follows the same syntax rules that govern intervals used in the DATE_ADD()
function (see Section 11.6, “Date and Time Functions”. The units keywords are also the same, except that you cannot use any units
involving microseconds when defining an event.

You can also combine intervals. For example, AT CURRENT_TIMESTAMP + INTERVAL 3 WEEK + INTERVAL 2 DAY is
equivalent to “three weeks and two days from now”. Each portion of such a clause must begin with + INTERVAL.

• For actions which are to be repeated at a regular interval, you can use an EVERY clause. The EVERY keyword is followed by an
interval as described in the previous dicussion of the AT keyword. (+ INTERVAL is not used with EVERY.) For example,
EVERY 6 WEEK means “every six weeks”.

It is not possible to combine + INTERVAL clauses in a single EVERY clause; however, you can use the same complex time units
allowed in a + INTERVAL. For example, “every two minutes and ten seconds” can be expressed as EVERY '2:10'
MINUTE_SECOND.

An EVERY clause may also contain an optional STARTS clause. STARTS is followed by a timestamp value which indicates
when the action should begin repeating, and may also use + INTERVAL interval in order to specify an amount of time “from
now”. For example, EVERY 3 MONTH STARTS CURRENT_TIMESTAMP + 1 WEEK means “every three months, beginning
one week from now”. Similarly, you can express “every two weeks, beginning six hours and fifteen minutes from now” as EVERY
2 WEEK STARTS CURRENT_TIMESTAMP + INTERVAL '6:15' HOUR_MINUTE. Not specifying STARTS is the same as
using STARTS CURRENT_TIMESTAMP — that is, the action specified for the event begins repeating immediately upon creation
of the event.

An EVERY clause may also contain an optional ENDS clause. The ENDS keyword is followed by a timestamp value which tells
MySQL when the event should stop repeating. You may also use + INTERVAL interval with ENDS; for instance, EVERY 12
HOUR STARTS CURRENT_TIMESTAMP + INTERVAL 30 MINUTE ENDS CURRENT_TIMESTAMP + INTERVAL 4
WEEK is equivalent to “every twelve hours, beginning thirty minutes from now, and ending four weeks from now”. Not using ENDS
means that the event continues executing indefinitely.

ENDS supports the same syntax for complex time units as STARTS does.

You may use STARTS, ENDS, both, or neither in an EVERY clause.

Note

Beginning with MySQL 5.1.17, STARTS or ENDS uses the MySQL server's local time zone, as shown in the INFORMA-
TION_SCHEMA.EVENTS and mysql.event tables, as well as in the output of SHOW EVENTS. Previously, this in-
formation was stored using UTC (Bug#16420).

Due to this change, the mysql.event table must be updated before events created in earlier releases can be created,
altered, viewed, or used in MySQL 5.1.17 or later. You can use mysql_upgrade for this (see Section 4.4.8,
“mysql_upgrade — Check Tables for MySQL Upgrade”).

See Section 24.20, “The INFORMATION_SCHEMA EVENTS Table”, and Section 12.5.4.16, “SHOW EVENTS” for in-
formation about columns added in MySQL 5.1.17 to accomodate these changes.

The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables to obtain any of the
timestamp or interval values which it contains. You may not use stored functions or user-defined functions in such expressions,
nor may you use any table references; however, you may use SELECT FROM DUAL. This is true for both CREATE EVENT and AL-
TER EVENT statements. Beginning with MySQL 5.1.13, references to stored functions, user-defined functions, and tables in such cases
are specifically disallowed, and fail with an error (see Bug#22830).

Event Scheduler

1353

http://bugs.mysql.com/16420
http://bugs.mysql.com/22830


Normally, once an event has expired, it is immediately dropped. You can override this behavior by specifying ON COMPLETION
PRESERVE. Using ON COMPLETION NOT PRESERVE merely makes the default non-persistent behavior explicit.

You can create an event but keep it from being active using the DISABLE keyword. Alternatively, you may use ENABLE to make ex-
plicit the default status, which is active. This is most useful in conjunction with ALTER EVENT (see Section 22.2.1, “ALTER EVENT
Syntax”).

Beginning with MySQL 5.1.18, a third value may also appear in place of ENABLED or DISABLED; DISABLE ON SLAVE is set for
the status of an event on a replication slave to indicate that the event was created on the master and replicated to the slave, but is not ex-
ecuted on the slave. See Section 16.3.1.5, “Replication of Invoked Features”.

You may supply a comment for an event using a COMMENT clause. comment may be any string of up to 64 characters that you wish to
use for describing the event. The comment text, being a string literal, must be surrounded by quotation marks.

The DO clause specifies an action carried by the event, and consists of an SQL statement. Nearly any valid MySQL statement which can
be used in a stored routine can also be used as the action statement for a scheduled event. (See Section D.1, “Restrictions on Stored
Routines, Triggers, and Events”.) For example, the following event e_hourly deletes all rows from the sessions table once per
hour, where this table is part of the site_activity schema:

CREATE EVENT e_hourly
ON SCHEDULE
EVERY 1 HOUR

COMMENT 'Clears out sessions table each hour.'
DO
DELETE FROM site_activity.sessions;

MySQL stores the sql_mode system variable setting that is in effect at the time an event is created, and always executes the event
with this setting in force, regardless of the current server SQL mode.

A CREATE EVENT statement that contains an ALTER EVENT statement in its DO clause appears to succeed; however, when the serv-
er attempts to execute the resulting scheduled event, the execution fails with an error.

Note

The SHOW statement and SELECT statements that merely return a result set have no effect when used in an event; the out-
put from these is not sent to the MySQL Monitor, nor is it stored anywhere. However, you can use statements such as SE-
LECT INTO and INSERT ... SELECT that store a result. (See the next example in this section for an instance of the
latter.)

Any reference in the DO clause to a table in other than the same database schema to which the event belongs must be qualified with the
name of the schema in which the table occurs. (In MySQL 5.1.6, all tables referenced in event DO clauses had to include a reference to
the database.)

As with stored routines, you can use multiple statements in the DO clause by bracketing them with the BEGIN and END keywords, as
shown here:

DELIMITER |

CREATE EVENT e_daily
ON SCHEDULE
EVERY 1 DAY

COMMENT 'Saves total number of sessions then clears the table each day.'
DO
BEGIN
INSERT INTO site_activity.totals (when, total)
SELECT CURRENT_TIMESTAMP, COUNT(*)
FROM site_activity.sessions;

DELETE FROM site_activity.sessions;
END |

DELIMITER ;

Note the use of the DELIMITER statement to change the statement delimiter, as with stored routines. See Section 20.2.1, “CREATE
PROCEDURE and CREATE FUNCTION Syntax”.

More complex compound statements, such as those used in stored routines, are possible in an event. This example uses local variables,
an error handler, and a flow control construct:

DELIMITER |

CREATE EVENT e

Event Scheduler

1354



ON SCHEDULE
EVERY 5 SECOND

DO
BEGIN
DECLARE v INTEGER;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN END;

SET v = 0;

WHILE v < 5 DO
INSERT INTO t1 VALUES (0);
UPDATE t2 SET s1 = s1 + 1;
SET v = v + 1;

END WHILE;
END |

DELIMITER ;

There is no way to pass parameters directly to or from events; however, it is possible to invoke a stored routine with parameters:

CREATE EVENT e_call_myproc
ON SCHEDULE
AT CURRENT_TIMESTAMP + INTERVAL 1 DAY

DO CALL myproc(5, 27);

In addition, if the event's definer has the SUPER privilege, that event may read and write global variables. As granting this privilege en-
tails a potential for abuse, extreme care must be taken in doing so.

Generally, any statements which are valid in stored routines may be used for action statements executed by events. For more informa-
tion about statements allowable within stored routines, see Section 20.2, “Stored Routine Syntax”. You can create an event as part of a
stored routine, but an event cannot be created by another event.

22.2.3. DROP EVENT Syntax
DROP EVENT [IF EXISTS] event_name

This statement drops the event named event_name. The event immediately ceases being active, and is deleted completely from the
server.

If the event does not exist, the error ERROR 1517 (HY000): UNKNOWN EVENT 'EVENT_NAME' results. You can override this and
cause the statement to generate a warning for non-existent events instead using IF EXISTS.

Beginning with MySQL 5.1.12, an event can be dropped by any user having the EVENT privilege on the database schema to which the
event to be dropped belongs. (In MySQL 5.1.11 and earlier, an event could be dropped only by its definer, or by a user having the SU-
PER privilege.)

22.3. Event Metadata
Information about events can be obtained as follows:

• Querying the EVENTS table of the INFORMATION_SCHEMA database. See Section 24.20, “The INFORMATION_SCHEMA
EVENTS Table”.

• Using the SHOW EVENTS statement. See Section 12.5.4.16, “SHOW EVENTS”.

• Using the SHOW CREATE EVENT statement. See Section 12.5.4.7, “SHOW CREATE EVENT”.

• A record of events executed on the server can be read from the MySQL Server's error log (see Section 22.5, “The Event Scheduler
and MySQL Privileges” for an example).

22.4. Event Scheduler Status
Information about the state of the Event Scheduler for debugging and troubleshooting purposes can be obtained as follows:

• In MySQL 5.1.11 -debug builds, you can use the SHOW SCHEDULER STATUS statement; see Section 12.5.4.26, “SHOW

Event Scheduler

1355



SCHEDULER STATUS Syntax”.

Important

This statement was removed in MySQL 5.1.12. We intend to implement an SQL statement providing similar functionality
in a future MySQL release.

• Beginning with MySQL 5.1.12, event scheduler status information can be obtained by running mysqladmin debug (see Sec-
tion 4.5.2, “mysqladmin — Client for Administering a MySQL Server”); after running this command, the error log contains out-
put relating to the Event Scheduler, similar to what is shown here:

Events status:
LLA = Last Locked At LUA = Last Unlocked At
WOC = Waiting On Condition DL = Data Locked

Event scheduler status:
State : INITIALIZED
Thread id : 0
LLA : init_scheduler:313
LUA : init_scheduler:318
WOC : NO
Workers : 0
Executed : 0
Data locked: NO

Event queue status:
Element count : 1
Data locked : NO
Attempting lock : NO
LLA : init_queue:148
LUA : init_queue:168
WOC : NO
Next activation : 0000-00-00 00:00:00

22.5. The Event Scheduler and MySQL Privileges
To enable or disable the execution of scheduled events, it is necessary to set the value of the global event_scheduler variable. This
requires the SUPER privilege.

MySQL 5.1.6 introduces a privilege governing the creation, modification, and deletion of events, the EVENT privilege. This privilege
can be bestowed using GRANT. For example, this GRANT statement confers the EVENT privilege for the schema named myschema on
the user jon@ghidora:

GRANT EVENT ON myschema.* TO jon@ghidora;

(We assume that this user account already exists, and that we wish for it to remain unchanged otherwise.)

To grant this same user the EVENT privilege on all schemas would require the following statement:

GRANT EVENT ON *.* TO jon@ghidora;

The EVENT privilege has schema-level scope. Therefore, trying to grant it on a single table results in an error as shown:

mysql> GRANT EVENT ON myschema.mytable TO jon@ghidora;
ERROR 1144 (42000): ILLEGAL GRANT/REVOKE COMMAND; PLEASE
CONSULT THE MANUAL TO SEE WHICH PRIVILEGES CAN BE USED

It is important to understand that an event is executed with the privileges of its definer, and that it cannot perform any actions for which
its definer does not have the requisite privileges. For example, suppose that jon@ghidora has the EVENT privilege for myschema.
Suppose also that this user has the SELECT privilege for myschema, but no other privileges for this schema. It is possible for
jon@ghidora to create a new event such as this one:

CREATE EVENT e_store_ts
ON SCHEDULE
EVERY 10 SECOND

DO
INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());

The user waits for a minute or so, and then performs a SELECT * FROM mytable; query, expecting to see several new rows in the

Event Scheduler

1356



table. Instead, he finds that the table is empty. Since he does not have the INSERT privilege for the table in question, the event has no
effect.

If you inspect the MySQL error log (hostname.err), you can see that the event is executing, but the action it is attempting to per-
form fails, as indicated by RetCode=0:

060209 22:39:44 [Note] EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:39:44 [Note] EVEX EXECUTED event newdb.e [EXPR:10]. RetCode=0
060209 22:39:54 [Note] EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:39:54 [Note] EVEX EXECUTED event newdb.e [EXPR:10]. RetCode=0
060209 22:40:04 [Note] EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:40:04 [Note] EVEX EXECUTED event newdb.e [EXPR:10]. RetCode=0

Since this user very likely does not have access to the error log, he can verify whether the event's action statement is valid by running it
himself:

mysql> INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());
ERROR 1142 (42000): INSERT COMMAND DENIED TO USER
'JON'@'GHIDORA' FOR TABLE 'MYTABLE'

Inspection of the INFORMATION_SCHEMA.EVENTS table shows that e_store_ts exists and is enabled, but its LAST_EXECUTED
column is NULL:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
> WHERE EVENT_NAME='e_store_ts'
> AND EVENT_SCHEMA='myschema'\G

*************************** 1. row ***************************
EVENT_CATALOG: NULL
EVENT_SCHEMA: myschema
EVENT_NAME: e_store_ts

DEFINER: jon@ghidora
EVENT_BODY: SQL

EVENT_DEFINITION: INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP())
EVENT_TYPE: RECURRING
EXECUTE_AT: NULL

INTERVAL_VALUE: 5
INTERVAL_FIELD: INTERVAL_SECOND

SQL_MODE: NULL
STARTS: 0000-00-00 00:00:00
ENDS: 0000-00-00 00:00:00

STATUS: ENABLED
ON_COMPLETION: NOT PRESERVE

CREATED: 2006-02-09 22:36:06
LAST_ALTERED: 2006-02-09 22:36:06
LAST_EXECUTED: NULL
EVENT_COMMENT:

1 row in set (0.00 sec)

Note

Prior to MySQL 5.1.12, there was no EVENT_DEFINITION column, and EVENT_BODY contained the SQL statement or
statements to be executed. See Section 24.20, “The INFORMATION_SCHEMA EVENTS Table”, for more information.

To rescind the EVENT privilege, use the REVOKE statement. In this example, the EVENT privilege on the schema myschema is re-
moved from the jon@ghidora user account:

REVOKE EVENT ON myschema.* FROM jon@ghidora;

Important

Revoking the EVENT privilege from a user does not delete or disable any events that may have been created by that user.

An event is not migrated or dropped as a result of the renaming or dropping of the user who created it.

For example, suppose that that user jon@ghidora has been granted the EVENT and INSERT privileges on the myschema schema.
This user then creates the following event:

CREATE EVENT e_insert
ON SCHEDULE
EVERY 7 SECOND

DO
INSERT INTO myschema.mytable;

Event Scheduler

1357



After this event has been created, root revokes the EVENT privilege for jon@ghidora. However, e_insert continues to execute,
inserting a new row into mytable each seven seconds. The same would be true if root had issued either of these statements:

• DROP USER jon@ghidora;

• RENAME USER jon@ghidora TO someotherguy@ghidora;

You can verify that this is true by examining the mysql.event table (discussed later in this section) or the INFORMA-
TION_SCHEMA.EVENTS table (see Section 24.20, “The INFORMATION_SCHEMA EVENTS Table”) before and after issuing a DROP
USER or RENAME USER statement.

Event definitions are stored in the mysql.event table, which was added in MySQL 5.1.6. To drop an event created by another user
account, the MySQL root user (or another user with the necessary privileges) can delete rows from this table. For example, to remove
the event e_insert shown previously, root can use the following statement:

DELETE FROM mysql.event
WHERE db = 'myschema'
AND definer = 'jon@ghidora'
AND name = 'e_insert';

It is very important to match the event name, database schema name, and user account when deleting rows from the mysql.event ta-
ble. This is because the same user can create different events of the same name in different schemas.

Note

The namespace for scheduled events changed in MySQL 5.1.12. Prior to that MySQL version, different users could create
different events having the same name in the same database; in MySQL 5.1.12 and later, that is no longer the case. When
upgrading to MySQL 5.1.12 or later from MySQL 5.1.11 or earlier, it is extremely important to make sure that no events
in the same database share the same name, prior to performing the upgrade.

Users' EVENT privileges are stored in the Event_priv columns of the mysql.user and mysql.db tables. In both cases, this
column holds one of the values 'Y' or 'N'. 'N' is the default. mysql.user.Event_priv is set to 'Y' for a given user only if that user
has the global EVENT privilege (that is, if the privilege was bestowed using GRANT EVENT ON *.*). For a schema-level EVENT
privilege, GRANT creates a row in mysql.db and sets that row's Db column to the name of the schema, the User column to the name
of the user, and the Event_priv column to 'Y'. There should never be any need to manipulate these tables directly, since the GRANT
EVENT and REVOKE EVENT statement perform the required operations on them.

MySQL 5.1.6 introduces five status variables providing counts of event-related operations (but not of statements executed by events —
see Section 22.6, “Event Scheduler Limitations and Restrictions”). These are:

• Com_create_event: The number of CREATE EVENT statements executed since the last server restart.

• Com_alter_event: The number of ALTER EVENT statements executed since the last server restart.

• Com_drop_event: The number of DROP EVENT statements executed since the last server restart.

• Com_show_create_event: The number of SHOW CREATE EVENT statements executed since the last server restart.

• Com_show_events: The number of SHOW EVENTS statements executed since the last server restart.

You can view current values for all of these at one time by running the statement SHOW STATUS LIKE '%event%';.

22.6. Event Scheduler Limitations and Restrictions
This section lists restrictions and limitations applying to event scheduling in MySQL 5.1.

Qualification of identifiers. In MySQL 5.1.6 only, any table referenced in an event's action statement must be fully qualified with the
name of the schema in which it occurs (that is, as schema_name.table_name).

Case sensitivity of event identifiers. Beginning with MySQL 5.1.8, event names are handled in case-insensitive fashion. For example,
this means that you cannot have two events in the same database (and — prior to MySQL 5.1.12 — with the same definer) with the
names anEvent and AnEvent.

Event Scheduler

1358



Important

If you have events created in MySQL 5.1.7 or earlier which are assigned to the same database and have the same definer,
and whose names differ only with respect to lettercase, then you must rename these events to respect case-sensitive hand-
ling before upgrading to MySQL 5.1.8 or later.

Modification of events by stored routines and triggers. An event may not be created, altered, or dropped by a trigger, stored routine,
or another event. An event also may not create, alter, or drop triggers or stored routines. (Bug#16409, Bug#18896)

Resolution of event timings. Event timings using the intervals YEAR, QUARTER, MONTH, and YEAR_MONTH are resolved in months;
those using any other interval are resolved in seconds. There is no way to cause events scheduled to occur at the same second to execute
in a given order. In addition — due to rounding, the nature of threaded applications, and the fact that a non-zero length of time is re-
quired to create events and to signal their execution — events may be delayed by as much as 1 or 2 seconds. However, the time shown
in the INFORMATION_SCHEMA.EVENTS table's LAST_EXECUTED column or the mysql.event table's last_executed
column is always accurate to within one second of the time the event was actually executed. (See also Bug#16522.)

Effects on statement counts. Each execution of the statements contained in the body of an event takes place in a new connection; thus,
these statements has no effect in a given user session on the server's statement counts such as Com_select and Com_insert that are
displayed by SHOW STATUS. However, such counts are updated in the global scope. (Bug#16422)

Visibility of events belonging to other users. Prior to MySQL 5.1.12, you could not view another user's events in the INFORMA-
TION_SCHEMA.EVENTS table. In other words, any query made against this table was treated as though it contained the condition
DEFINER = CURRENT_USER() in the WHERE clause.

Start times. Events cannot be created with a start time that is in the past.

Latest time supported. Events do not support times later than the end of the Unix Epoch; this is approximately the end of the year
2038. Prior to MySQL 5.1.8, handling in scheduled events of dates later than this was buggy; starting with MySQL 5.1.8, such dates are
specifically disallowed by the Event Scheduler. (Bug#16396)

Server SQL mode. In MySQL 5.1.6, INFORMATION_SCHEMA.EVENTS shows NULL in the SQL_MODE column. Beginning with
MySQL 5.1.7, the SQL_MODE displayed is that in effect when the event was created.

Dropping or altering events. In MySQL 5.1.6, the only way to drop or alter an event created by a user who was not the definer of that
event was by manipulation of the mysql.event system table by the MySQL root user or by another user with privileges on this ta-
ble. Beginning with MySQL 5.1.7, DROP USER drops all events for which that user was the definer; also beginning with MySQL 5.1.7
DROP SCHEMA drops all events associated with the dropped schema.

Database object references in ON SCHEDULE clauses. References to stored functions, user-defined functions, and tables in the ON
SCHEDULE clauses of CREATE EVENT and ALTER EVENT statements are not supported. Beginning with MySQL 5.1.13, these sorts
of references are disallowed. (See Bug#22830 for more information.)

Disallowed statements. Generally speaking, statements which are not permitted in stored routines or in SQL prepared statements are
also not allowed in the body of an event. See Section D.1, “Restrictions on Stored Routines, Triggers, and Events”, and Section 12.7,
“SQL Syntax for Prepared Statements”, for more information.

Upgrading to MySQL 5.1.18 or later. When upgrading to MySQL 5.1.18 or later from a previous MySQL version where scheduled
events were in use, the upgrade utilities mysql_upgrade and mysql_fix_privilege_tables do not accomodate changes in
system tables relating to the Event Scheduler. As a workaround, you can dump events before the upgrade, then restore them from the
dump afterwards. This issue was fixed in MySQL 5.1.20 (see Bug#28521).

Event Scheduler

1359

http://bugs.mysql.com/16409
http://bugs.mysql.com/18896
http://bugs.mysql.com/16522
http://bugs.mysql.com/16422
http://bugs.mysql.com/16396
http://bugs.mysql.com/22830
http://bugs.mysql.com/28521


Chapter 23. Views
Views (including updatable views) are available in MySQL Server 5.1.

Answers to some frequently asked questions concerning views in MySQL 5.1 can be found in Section A.6, “MySQL 5.1 FAQ —
Views”.

This chapter discusses the following topics:

• Creating or altering views with CREATE VIEW or ALTER VIEW

• Destroying views with DROP VIEW

Discussion of restrictions on use of views is given in Section D.4, “Restrictions on Views”.

To use views if you have upgraded to MySQL 5.1 from an older release that did not support views, you should upgrade your grant
tables so that they contain the view-related privileges. See Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

Metadata about views can be obtained from the INFORMATION_SCHEMA.VIEWS table and by using the SHOW CREATE VIEW
statement. See Section 24.15, “The INFORMATION_SCHEMA VIEWS Table”, and Section 12.5.4.11, “SHOW CREATE VIEW Syn-
tax”.

23.1. ALTER VIEW Syntax
ALTER

[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = { user | CURRENT_USER }]
[SQL SECURITY { DEFINER | INVOKER }]
VIEW view_name [(column_list)]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]

This statement changes the definition of a view, which must exist. The syntax is similar to that for CREATE VIEW and the effect is the
same as for CREATE OR REPLACE VIEW. See Section 23.2, “CREATE VIEW Syntax”. This statement requires the CREATE VIEW
and DROP privileges for the view, and some privilege for each column referred to in the SELECT statement. As of MySQL 5.1.23, AL-
TER VIEW is allowed only to the definer or users with the SUPER privilege.

23.2. CREATE VIEW Syntax
CREATE

[OR REPLACE]
[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = { user | CURRENT_USER }]
[SQL SECURITY { DEFINER | INVOKER }]
VIEW view_name [(column_list)]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]

The CREATE VIEW statement creates a new view, or replaces an existing one if the OR REPLACE clause is given. If the view does not
exist, CREATE OR REPLACE VIEW is the same as CREATE VIEW. If the view does exist, CREATE OR REPLACE VIEW is the
same as ALTER VIEW.

The select_statement is a SELECT statement that provides the definition of the view. (When you select from the view, you select
in effect using the SELECT statement.) select_statement can select from base tables or other views.

The view definition is “frozen” at creation time, so changes to the underlying tables afterward do not affect the view definition. For ex-
ample, if a view is defined as SELECT * on a table, new columns added to the table later do not become part of the view.

The ALGORITHM clause affects how MySQL processes the view. The DEFINER and SQL SECURITY clauses specify the security
context to be used when checking access privileges at view invocation time. The WITH CHECK OPTION clause can be given to con-
strain inserts or updates to rows in tables referenced by the view. These clauses are described later in this section.

The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some privilege for each column selected by the
SELECT statement. For columns used elsewhere in the SELECT statement you must have the SELECT privilege. If the OR REPLACE

1360



clause is present, you must also have the DROP privilege for the view.

A view belongs to a database. By default, a new view is created in the default database. To create the view explicitly in a given data-
base, specify the name as db_name.view_name when you create it.

mysql> CREATE VIEW test.v AS SELECT * FROM t;

Base tables and views share the same namespace within a database, so a database cannot contain a base table and a view that have the
same name.

Views must have unique column names with no duplicates, just like base tables. By default, the names of the columns retrieved by the
SELECT statement are used for the view column names. To define explicit names for the view columns, the optional column_list
clause can be given as a list of comma-separated identifiers. The number of names in column_list must be the same as the number
of columns retrieved by the SELECT statement.

When you modify an existing view, the current view definition is backed up and saved. It is stored in that table's database directory, in a
sub-folder named arc. The backup file will be named view_name.frm-00001. If you alter the view again, the next backup will be
named view_name.frm-00002. The three latest view backup definitions will be stored.

Note

Backed up view definitions will not be preserved by mysqldump, or any other such programs, but you could retain it
from a file copy. However, they are not needed for anything, but to provide you with a backup of your previous view
definition.

Also note that while it is safe to remove these, it is not safe to do so while mysqld is running. If you delete this folder (or sub-files)
while mysqld is running, you will receive an error the next time you try to alter that view:

mysql> ALTER VIEW v AS SELECT * FROM t;
ERROR 6 (HY000): Error on delete of '.\test\arc/v.frm-0004' (Errcode:
2)

Columns retrieved by the SELECT statement can be simple references to table columns. They can also be expressions that use func-
tions, constant values, operators, and so forth.

Unqualified table or view names in the SELECT statement are interpreted with respect to the default database. A view can refer to
tables or views in other databases by qualifying the table or view name with the proper database name.

A view can be created from many kinds of SELECT statements. It can refer to base tables or other views. It can use joins, UNION, and
subqueries. The SELECT need not even refer to any tables. The following example defines a view that selects two columns from anoth-
er table, as well as an expression calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
+------+-------+-------+

A view definition is subject to the following restrictions:

• The SELECT statement cannot contain a subquery in the FROM clause.

• The SELECT statement cannot refer to system or user variables.

• The SELECT statement cannot refer to prepared statement parameters.

• Within a stored routine, the definition cannot refer to routine parameters or local variables.

• Any table or view referred to in the definition must exist. However, after a view has been created, it is possible to drop a table or
view that the definition refers to. In this case, use of the view results in an error. To check a view definition for problems of this
kind, use the CHECK TABLE statement.

• The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.

Views

1361



• The tables named in the view definition must already exist.

• You cannot associate a trigger with a view.

ORDER BY is allowed in a view definition, but it is ignored if you select from a view using a statement that has its own ORDER BY.

For other options or clauses in the definition, they are added to the options or clauses of the statement that references the view, but the
effect is undefined. For example, if a view definition includes a LIMIT clause, and you select from the view using a statement that has
its own LIMIT clause, it is undefined which limit applies. This same principle applies to options such as ALL, DISTINCT, or
SQL_SMALL_RESULT that follow the SELECT keyword, and to clauses such as INTO, FOR UPDATE, LOCK IN SHARE MODE,
and PROCEDURE.

If you create a view and then change the query processing environment by changing system variables, that may affect the results that
you get from the view:

mysql> CREATE VIEW v (mycol) AS SELECT 'abc';
Query OK, 0 rows affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| mycol |
+-------+
1 row in set (0.01 sec)

mysql> SET sql_mode = 'ANSI_QUOTES';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| abc |
+-------+
1 row in set (0.00 sec)

The DEFINER and SQL SECURITY clauses determine which MySQL account to use when checking access privileges for the view
when a statement is executed that references the view. They were addded in MySQL 5.1.2. The legal SQL SECURITY characteristic
values are DEFINER and INVOKER. These indicate that the required privileges must be held by the user who defined or invoked the
view, respectively. The default SQL SECURITY value is DEFINER.

If a user value is given for the DEFINER clause, it should be a MySQL account in 'user_name'@'host_name' format (the
same format used in the GRANT statement). The user_name and host_name values both are required. The definer can also be given
as CURRENT_USER or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE VIEW statement. This
is the same as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the legal DEFINER user values:

• If you do not have the SUPER privilege, the only legal user value is your own account, either specified literally or by using CUR-
RENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically legal account name. If the account does not actually exist, a
warning is generated.

If the SQL SECURITY value is DEFINER but the definer account does not exist when the view is referenced, an error occurs.

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic, CURRENT_USER returns the routine creat-
or. This also affects a view defined within such a routine, if the view definition contains a DEFINER value of CURRENT_USER.

As of MySQL 5.1.2 (when the DEFINER and SQL SECURITY clauses were implemented), view privileges are checked like this:

• At view definition time, the view creator must have the privileges needed to use the top-level objects accessed by the view. For ex-
ample, if the view definition refers to table columns, the creator must have privileges for the columns, as described previously. If the
definition refers to a stored function, only the privileges needed to invoke the function can be checked. The privileges required when

Views

1362



the function runs can be checked only as it executes: For different invocations of the function, different execution paths within the
function might be taken.

• When a view is referenced, privileges for objects accessed by the view are checked against the privileges held by the view creator or
invoker, depending on whether the SQL SECURITY characteristic is DEFINER or INVOKER, respectively.

• If reference to a view causes execution of a stored function, privilege checking for statements executed within the function depend
on whether the function is defined with a SQL SECURITY characteristic of DEFINER or INVOKER. If the security characteristic is
DEFINER, the function runs with the privileges of its creator. If the characteristic is INVOKER, the function runs with the privileges
determined by the view's SQL SECURITY characteristic.

Prior to MySQL 5.1.2 (before the DEFINER and SQL SECURITY clauses were implemented), privileges required for objects used in a
view are checked at view creation time.

Example: A view might depend on a stored function, and that function might invoke other stored routines. For example, the following
view invokes a stored function f():

CREATE VIEW v AS SELECT * FROM t WHERE t.id = f(t.name);

Suppose that f() contains a statement such as this:

IF name IS NULL then
CALL p1();

ELSE
CALL p2();

END IF;

The privileges required for executing statements within f() need to be checked when f() executes. This might mean that privileges
are needed for p1() or p2(), depending on the execution path within f(). Those privileges must be checked at runtime, and the user
who must possess the privileges is determined by the SQL SECURITY values of the view v and the function f().

The DEFINER and SQL SECURITY clauses for views are extensions to standard SQL. In standard SQL, views are handled using the
rules for SQL SECURITY INVOKER.

If you invoke a view that was created before MySQL 5.1.2, it is treated as though it was created with a SQL SECURITY DEFINER
clause and with a DEFINER value that is the same as your account. However, because the actual definer is unknown, MySQL issues a
warning. To make the warning go away, it is sufficient to re-create the view so that the view definition includes a DEFINER clause.

The optional ALGORITHM clause is a MySQL extension to standard SQL. It affects how MySQL processes the view. ALGORITHM
takes three values: MERGE, TEMPTABLE, or UNDEFINED. The default algorithm is UNDEFINED if no ALGORITHM clause is present.

For MERGE, the text of a statement that refers to the view and the view definition are merged such that parts of the view definition re-
place corresponding parts of the statement.

For TEMPTABLE, the results from the view are retrieved into a temporary table, which then is used to execute the statement.

For UNDEFINED, MySQL chooses which algorithm to use. It prefers MERGE over TEMPTABLE if possible, because MERGE is usually
more efficient and because a view cannot be updatable if a temporary table is used.

A reason to choose TEMPTABLE explicitly is that locks can be released on underlying tables after the temporary table has been created
and before it is used to finish processing the statement. This might result in quicker lock release than the MERGE algorithm so that other
clients that use the view are not blocked as long.

A view algorithm can be UNDEFINED for three reasons:

• No ALGORITHM clause is present in the CREATE VIEW statement.

• The CREATE VIEW statement has an explicit ALGORITHM = UNDEFINED clause.

• ALGORITHM = MERGE is specified for a view that can be processed only with a temporary table. In this case, MySQL generates a
warning and sets the algorithm to UNDEFINED.

As mentioned earlier, MERGE is handled by merging corresponding parts of a view definition into the statement that refers to the view.

Views

1363



The following examples briefly illustrate how the MERGE algorithm works. The examples assume that there is a view v_merge that
has this definition:

CREATE ALGORITHM = MERGE VIEW v_merge (vc1, vc2) AS
SELECT c1, c2 FROM t WHERE c3 > 100;

Example 1: Suppose that we issue this statement:

SELECT * FROM v_merge;

MySQL handles the statement as follows:

• v_merge becomes t

• * becomes vc1, vc2, which corresponds to c1, c2

• The view WHERE clause is added

The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE c3 > 100;

Example 2: Suppose that we issue this statement:

SELECT * FROM v_merge WHERE vc1 < 100;

This statement is handled similarly to the previous one, except that vc1 < 100 becomes c1 < 100 and the view WHERE clause is
added to the statement WHERE clause using an AND connective (and parentheses are added to make sure the parts of the clause are ex-
ecuted with correct precedence). The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE (c3 > 100) AND (c1 < 100);

Effectively, the statement to be executed has a WHERE clause of this form:

WHERE (select WHERE) AND (view WHERE)

The MERGE algorithm requires a one-to-one relationship between the rows in the view and the rows in the underlying table. If this rela-
tionship does not hold, a temporary table must be used instead. Lack of a one-to-one relationship occurs if the view contains any of a
number of constructs:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• UNION or UNION ALL

• Subquery in the select list

• Refers only to literal values (in this case, there is no underlying table)

Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or INSERT to update the contents of the
underlying table. For a view to be updatable, there must be a one-to-one relationship between the rows in the view and the rows in the
underlying table. There are also certain other constructs that make a view non-updatable. To be more specific, a view is not updatable if
it contains any of the following:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

Views

1364



• DISTINCT

• GROUP BY

• HAVING

• UNION or UNION ALL

• Subquery in the select list

• Certain joins (see additional join discussion later in this section)

• Non-updatable view in the FROM clause

• A subquery in the WHERE clause that refers to a table in the FROM clause

• Refers only to literal values (in this case, there is no underlying table to update)

• ALGORITHM = TEMPTABLE (use of a temporary table always makes a view non-updatable)

With respect to insertability (being updatable with INSERT statements), an updatable view is insertable if it also satisfies these addi-
tional requirements for the view columns:

• There must be no duplicate view column names.

• The view must contain all columns in the base table that do not have a default value.

• The view columns must be simple column references and not derived columns. A derived column is one that is not a simple column
reference but is derived from an expression. These are examples of derived columns:

3.14159
col1 + 3
UPPER(col2)
col3 / col4
(subquery)

A view that has a mix of simple column references and derived columns is not insertable, but it can be updatable if you update only
those columns that are not derived. Consider this view:

CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;

This view is not insertable because col2 is derived from an expression. But it is updatable if the update does not try to update col2.
This update is allowable:

UPDATE v SET col1 = 0;

This update is not allowable because it attempts to update a derived column:

UPDATE v SET col2 = 0;

It is sometimes possible for a multiple-table view to be updatable, assuming that it can be processed with the MERGE algorithm. For this
to work, the view must use an inner join (not an outer join or a UNION). Also, only a single table in the view definition can be updated,
so the SET clause must name only columns from one of the tables in the view. Views that use UNION ALL are disallowed even though
they might be theoretically updatable, because the implementation uses temporary tables to process them.

For a multiple-table updatable view, INSERT can work if it inserts into a single table. DELETE is not supported.

INSERT DELAYED is not supported for views.

If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that does not include the
AUTO_INCREMENT column does not change the value of LAST_INSERT_ID(), because the side effects of inserting default values
into columns not part of the view should not be visible.

Views

1365



The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to rows except those for which the
WHERE clause in the select_statement is true.

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords determine the scope of check testing
when the view is defined in terms of another view. The LOCAL keyword restricts the CHECK OPTION only to the view being defined.
CASCADED causes the checks for underlying views to be evaluated as well. When neither keyword is given, the default is CASCADED.
Consider the definitions for the following table and set of views:

mysql> CREATE TABLE t1 (a INT);
mysql> CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2

-> WITH CHECK OPTION;
mysql> CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0

-> WITH LOCAL CHECK OPTION;
mysql> CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0

-> WITH CASCADED CHECK OPTION;

Here the v2 and v3 views are defined in terms of another view, v1. v2 has a LOCAL check option, so inserts are tested only against the
v2 check. v3 has a CASCADED check option, so inserts are tested not only against its own check, but against those of underlying views.
The following statements illustrate these differences:

mysql> INSERT INTO v2 VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true) if UPDATE and DELETE
(and similar operations) are legal for the view. Otherwise, the flag is set to NO (false). The IS_UPDATABLE column in the INFORMA-
TION_SCHEMA.VIEWS table displays the status of this flag. It means that the server always knows whether a view is updatable. If the
view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and will be rejected. (Note that even if a view is up-
datable, it might not be possible to insert into it, as described elsewhere in this section.)

The updatability of views may be affected by the value of the updatable_views_with_limit system variable. See Section 5.1.3,
“System Variables”.

23.3. DROP VIEW Syntax
DROP VIEW [IF EXISTS]

view_name [, view_name] ...
[RESTRICT | CASCADE]

DROP VIEW removes one or more views. You must have the DROP privilege for each view. If any of the views named in the argument
list do not exist, MySQL returns an error indicating by name which non-existing views it was unable to drop, but it also drops all of the
views in the list that do exist.

The IF EXISTS clause prevents an error from occurring for views that don't exist. When this clause is given, a NOTE is generated for
each non-existent view. See Section 12.5.4.32, “SHOW WARNINGS Syntax”.

RESTRICT and CASCADE, if given, are parsed and ignored.

Views

1366



Chapter 24. INFORMATION_SCHEMA Tables
INFORMATION_SCHEMA provides access to database metadata.

Metadata is data about the data, such as the name of a database or table, the data type of a column, or access privileges. Other terms that
sometimes are used for this information are data dictionary and system catalog.

INFORMATION_SCHEMA is the information database, the place that stores information about all the other databases that the MySQL
server maintains. Inside INFORMATION_SCHEMA there are several read-only tables. They are actually views, not base tables, so there
are no files associated with them.

In effect, we have a database named INFORMATION_SCHEMA, although the server does not create a database directory with that name.
It is possible to select INFORMATION_SCHEMA as the default database with a USE statement, but it is possible only to read the con-
tents of tables. You cannot insert into them, update them, or delete from them.

Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine
-> FROM information_schema.tables
-> WHERE table_schema = 'db5'
-> ORDER BY table_name DESC;

+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
| v56 | VIEW | NULL |
| v3 | VIEW | NULL |
| v2 | VIEW | NULL |
| v | VIEW | NULL |
| tables | BASE TABLE | MyISAM |
| t7 | BASE TABLE | MyISAM |
| t3 | BASE TABLE | MyISAM |
| t2 | BASE TABLE | MyISAM |
| t | BASE TABLE | MyISAM |
| pk | BASE TABLE | InnoDB |
| loop | BASE TABLE | MyISAM |
| kurs | BASE TABLE | MyISAM |
| k | BASE TABLE | MyISAM |
| into | BASE TABLE | MyISAM |
| goto | BASE TABLE | MyISAM |
| fk2 | BASE TABLE | InnoDB |
| fk | BASE TABLE | InnoDB |
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, in reverse alphabetical order, showing just three pieces of
information: the name of the table, its type, and its storage engine.

Each MySQL user has the right to access these tables, but can see only the rows in the tables that correspond to objects for which the
user has the proper access privileges. In some cases (for example, the ROUTINE_DEFINITION column in the INFORMA-
TION_SCHEMA.ROUTINES table), users who have insufficient privileges will see NULL.

The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way to provide access to the informa-
tion provided by the various SHOW statements that MySQL supports (SHOW DATABASES, SHOW TABLES, and so forth). Using SE-
LECT has these advantages, compared to SHOW:

• It conforms to Codd's rules. That is, all access is done on tables.

• Nobody needs to learn a new statement syntax. Because they already know how SELECT works, they only need to learn the object
names.

• The implementor need not worry about adding keywords.

• There are millions of possible output variations, instead of just one. This provides more flexibility for applications that have varying
requirements about what metadata they need.

• Migration is easier because every other DBMS does it this way.

However, because SHOW is popular with MySQL employees and users, and because it might be confusing were it to disappear, the ad-
vantages of conventional syntax are not a sufficient reason to eliminate SHOW. In fact, along with the implementation of INFORMA-

1367



TION_SCHEMA, there are enhancements to SHOW as well. These are described in Section 24.27, “Extensions to SHOW Statements”.

There is no difference between the privileges required for SHOW statements and those required to select information from INFORMA-
TION_SCHEMA. In either case, you have to have some privilege on an object in order to see information about it.

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/ISO SQL:2003 standard Part 11
Schemata. Our intent is approximate compliance with SQL:2003 core feature F021 Basic information schema.

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity. However, MySQL has omitted many
columns that are not relevant for our implementation, and added columns that are MySQL-specific. One such column is the ENGINE
column in the INFORMATION_SCHEMA.TABLES table.

Although other DBMSs use a variety of names, like syscat or system, the standard name is INFORMATION_SCHEMA.

The following sections describe each of the tables and columns that are in INFORMATION_SCHEMA. For each column, there are three
pieces of information:

• “INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMATION_SCHEMA table. This corresponds to
the standard SQL name unless the “Remarks” field says “MySQL extension.”

• “SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.

• “Remarks” provides additional information where applicable. If this field is NULL, it means that the value of the column is always
NULL. If this field says “MySQL extension,” the column is a MySQL extension to standard SQL.

To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we changed the names of some columns
marked “MySQL extension”. (For example, we changed COLLATION to TABLE_COLLATION in the TABLES table.) See the list of
reserved words near the end of this article: http://web.archive.org/web/20030201202307/www.dbazine.com/gulutzan5.html.

The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N) CHARACTER SET utf8
where N is at least 64. MySQL uses the default collation for this character set (utf8_general_ci) for all searches, sorts, comparis-
ons, and other string operations on such columns. If the default collation is not correct for your needs, you can force a suitable collation
with a COLLATE clause (Section 9.1.5.1, “Using COLLATE in SQL Statements”).

Each section indicates what SHOW statement is equivalent to a SELECT that retrieves information from INFORMATION_SCHEMA, if
there is such a statement.

Note

At present, there are some missing columns and some columns out of order. We are working on this and updating the doc-
umentation as changes are made.

For answers to questions that are often asked concerning the INFORMATION_SCHEMA database, see Section A.7, “MySQL 5.0 FAQ
— INFORMATION_SCHEMA”.

24.1. The INFORMATION_SCHEMA SCHEMATA Table
A schema is a database, so the SCHEMATA table provides information about databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

CATALOG_NAME NULL

SCHEMA_NAME Database

DEFAULT_CHARACTER_SET_NAME

DEFAULT_COLLATION_NAME

SQL_PATH NULL

The following statements are equivalent:

SELECT SCHEMA_NAME AS `Database`
FROM INFORMATION_SCHEMA.SCHEMATA
[WHERE SCHEMA_NAME LIKE 'wild']

INFORMATION_SCHEMA Tables

1368

http://web.archive.org/web/20030201202307/www.dbazine.com/gulutzan5.html


SHOW DATABASES
[LIKE 'wild']

24.2. The INFORMATION_SCHEMA TABLES Table
The TABLES table provides information about tables in databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA Table_...

TABLE_NAME Table_...

TABLE_TYPE

ENGINE Engine MySQL extension

VERSION Version The version number of the table's
.frm file, MySQL extension

ROW_FORMAT Row_format MySQL extension

TABLE_ROWS Rows MySQL extension

AVG_ROW_LENGTH Avg_row_length MySQL extension

DATA_LENGTH Data_length MySQL extension

MAX_DATA_LENGTH Max_data_length MySQL extension

INDEX_LENGTH Index_length MySQL extension

DATA_FREE Data_free MySQL extension

AUTO_INCREMENT Auto_increment MySQL extension

CREATE_TIME Create_time MySQL extension

UPDATE_TIME Update_time MySQL extension

CHECK_TIME Check_time MySQL extension

TABLE_COLLATION Collation MySQL extension

CHECKSUM Checksum MySQL extension

CREATE_OPTIONS Create_options MySQL extension

TABLE_COMMENT Comment MySQL extension

Notes:

• TABLE_SCHEMA and TABLE_NAME are a single field in a SHOW display, for example Table_in_db1.

• TABLE_TYPE should be BASE TABLE or VIEW. If table is temporary, then TABLE_TYPE = TEMPORARY. (There are no tempor-
ary views, so this is not ambiguous.)

• For partitioned tables, beginning with MySQL 5.1.9, the ENGINE column shows the name of the storage engine used by all parti-
tions. (Previously, this column showed PARTITION for such tables.)

• The TABLE_ROWS column is NULL if the table is in the INFORMATION_SCHEMA database. For InnoDB tables, the row count is
only a rough estimate used in SQL optimization.

• For tables using the NDBCLUSTER storage engine, beginning with MySQL 5.1.12, the DATA_LENGTH column reflects the true
amount of storage for variable-width columns. (See Bug#18413.)

Note

Because MySQL Cluster allocates storage for variable-width columns in 10-page extents of 32 kilobytes each, space usage
for such columns is reported in increments of 320 KB.

• Beginning with MySQL 5.1.24, the DATA_FREE column shows the free space in bytes for InnoDB tables. (Bug#32440)

INFORMATION_SCHEMA Tables

1369

http://bugs.mysql.com/18413
http://bugs.mysql.com/32440


• We have nothing for the table's default character set. TABLE_COLLATION is close, because collation names begin with a character
set name.

• Beginning with MySQL 5.1.9, the CREATE_OPTIONS column shows partitioned if the table is partitioned.

The following statements are equivalent:

SELECT table_name FROM INFORMATION_SCHEMA.TABLES
[WHERE table_schema = 'db_name']
[WHERE|AND table_name LIKE 'wild']

SHOW TABLES
[FROM db_name]
[LIKE 'wild']

24.3. The INFORMATION_SCHEMA COLUMNS Table
The COLUMNS table provides information about columns in tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME Field

ORDINAL_POSITION see notes

COLUMN_DEFAULT Default

IS_NULLABLE Null

DATA_TYPE Type

CHARACTER_MAXIMUM_LENGTH Type

CHARACTER_OCTET_LENGTH

NUMERIC_PRECISION Type

NUMERIC_SCALE Type

CHARACTER_SET_NAME

COLLATION_NAME Collation

COLUMN_TYPE Type MySQL extension

COLUMN_KEY Key MySQL extension

EXTRA Extra MySQL extension

COLUMN_COMMENT Comment MySQL extension

Notes:

• In SHOW, the Type display includes values from several different COLUMNS columns.

• ORDINAL_POSITION is necessary because you might want to say ORDER BY ORDINAL_POSITION. Unlike SHOW, SELECT
does not have automatic ordering.

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except for multi-byte character sets.

• CHARACTER_SET_NAME can be derived from Collation. For example, if you say SHOW FULL COLUMNS FROM t, and you
see in the Collation column a value of latin1_swedish_ci, the character set is what's before the first underscore: latin1.

The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT

INFORMATION_SCHEMA Tables

1370



FROM INFORMATION_SCHEMA.COLUMNS
WHERE table_name = 'tbl_name'
[AND table_schema = 'db_name']
[AND column_name LIKE 'wild']

SHOW COLUMNS
FROM tbl_name
[FROM db_name]
[LIKE 'wild']

24.4. The INFORMATION_SCHEMA STATISTICS Table
The STATISTICS table provides information about table indexes.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA = Database

TABLE_NAME Table

NON_UNIQUE Non_unique

INDEX_SCHEMA = Database

INDEX_NAME Key_name

SEQ_IN_INDEX Seq_in_index

COLUMN_NAME Column_name

COLLATION Collation

CARDINALITY Cardinality

SUB_PART Sub_part MySQL extension

PACKED Packed MySQL extension

NULLABLE Null MySQL extension

INDEX_TYPE Index_type MySQL extension

COMMENT Comment MySQL extension

Notes:

• There is no standard table for indexes. The preceding list is similar to what SQL Server 2000 returns for sp_statistics, except
that we replaced the name QUALIFIER with CATALOG and we replaced the name OWNER with SCHEMA.

Clearly, the preceding table and the output from SHOW INDEX are derived from the same parent. So the correlation is already
close.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
WHERE table_name = 'tbl_name'
[AND table_schema = 'db_name']

SHOW INDEX
FROM tbl_name
[FROM db_name]

24.5. The INFORMATION_SCHEMA USER_PRIVILEGES Table
The USER_PRIVILEGES table provides information about global privileges. This information comes from the mysql.user grant ta-
ble.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'

INFORMATION_SCHEMA Tables

1371



value, MySQL extension

TABLE_CATALOG NULL, MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a non-standard table. It takes its values from the mysql.user table.

24.6. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. This information comes from the
mysql.db grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value, MySQL extension

TABLE_CATALOG NULL, MySQL extension

TABLE_SCHEMA MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a non-standard table. It takes its values from the mysql.db table.

24.7. The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
The TABLE_PRIVILEGES table provides information about table privileges. This information comes from the
mysql.tables_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE, REFERENCES, ALTER,
INDEX, DROP, CREATE VIEW.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

INFORMATION_SCHEMA Tables

1372



SHOW GRANTS ...

24.8. The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
The COLUMN_PRIVILEGES table provides information about column privileges. This information comes from the
mysql.columns_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• In the output from SHOW FULL COLUMNS, the privileges are all in one field and in lowercase, for example, se-
lect,insert,update,references. In COLUMN_PRIVILEGES, there is one privilege per row, in uppercase.

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE, REFERENCES.

• If the user has GRANT OPTION privilege, IS_GRANTABLE should be YES. Otherwise, IS_GRANTABLE should be NO. The out-
put does not list GRANT OPTION as a separate privilege.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

SHOW GRANTS ...

24.9. The INFORMATION_SCHEMA CHARACTER_SETS Table
The CHARACTER_SETS table provides information about available character sets.

INFORMATION_SCHEMA Name SHOW Name Remarks

CHARACTER_SET_NAME Charset

DEFAULT_COLLATE_NAME Default collation

DESCRIPION Description MySQL extension

MAXLEN Maxlen MySQL extension

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
[WHERE name LIKE 'wild']

SHOW CHARACTER SET
[LIKE 'wild']

24.10. The INFORMATION_SCHEMA COLLATIONS Table
The COLLATIONS table provides information about collations for each character set.

INFORMATION_SCHEMA Tables

1373



INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset MySQL extension

ID Id MySQL extension

IS_DEFAULT Default MySQL extension

IS_COMPILED Compiled MySQL extension

SORTLEN Sortlen MySQL extension

The following statements are equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
[WHERE collation_name LIKE 'wild']

SHOW COLLATION
[LIKE 'wild']

24.11. The INFORMATION_SCHEMA COLLA-
TION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applicable for what collation. The
columns are equivalent to the first two display fields that we get from SHOW COLLATION.

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset

24.12. The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
The TABLE_CONSTRAINTS table describes which tables have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_SCHEMA

TABLE_NAME

CONSTRAINT_TYPE

Notes:

• The CONSTRAINT_TYPE value can be UNIQUE, PRIMARY KEY, or FOREIGN KEY.

• The UNIQUE and PRIMARY KEY information is about the same as what you get from the Key_name field in the output from
SHOW INDEX when the Non_unique field is 0.

• The CONSTRAINT_TYPE column can contain one of these values: UNIQUE, PRIMARY KEY, FOREIGN KEY, CHECK. This is a
CHAR (not ENUM) column. The CHECK value is not available until we support CHECK.

24.13. The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
The KEY_COLUMN_USAGE table describes which key columns have constraints.

INFORMATION_SCHEMA Tables

1374



INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

ORDINAL_POSITION

POSITION_IN_UNIQUE_CONSTRAINT

REFERENCED_TABLE_SCHEMA

REFERENCED_TABLE_NAME

REFERENCED_COLUMN_NAME

Notes:

• If the constraint is a foreign key, then this is the column of the foreign key, not the column that the foreign key references.

• The value of ORDINAL_POSITION is the column's position within the constraint, not the column's position within the table.
Column positions are numbered beginning with 1.

• The value of POSITION_IN_UNIQUE_CONSTRAINT is NULL for unique and primary-key constraints. For foreign-key con-
straints, it is the ordinal position in key of the table that is being referenced.

For example, suppose that there are two tables name t1 and t3 that have the following definitions:

CREATE TABLE t1
(

s1 INT,
s2 INT,
s3 INT,
PRIMARY KEY(s3)

) ENGINE=InnoDB;

CREATE TABLE t3
(

s1 INT,
s2 INT,
s3 INT,
KEY(s1),
CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)

) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME = 's3', ORDIN-
AL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.

• One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2', ORDINAL_POSITION = 1,
POSITION_IN_UNIQUE_CONSTRAINT = 1.

24.14. The INFORMATION_SCHEMA ROUTINES Table
The ROUTINES table provides information about stored routines (both procedures and functions). The ROUTINES table does not in-
clude user-defined functions (UDFs) at this time.

The column named “mysql.proc name” indicates the mysql.proc table column that corresponds to the INFORMA-
TION_SCHEMA.ROUTINES table column, if any.

INFORMATION_SCHEMA Name mysql.proc Name Remarks

INFORMATION_SCHEMA Tables

1375



SPECIFIC_NAME specific_name

ROUTINE_CATALOG NULL

ROUTINE_SCHEMA db

ROUTINE_NAME name

ROUTINE_TYPE type {PROCEDURE|FUNCTION}

DTD_IDENTIFIER data type descriptor

ROUTINE_BODY SQL

ROUTINE_DEFINITION body

EXTERNAL_NAME NULL

EXTERNAL_LANGUAGE language NULL

PARAMETER_STYLE SQL

IS_DETERMINISTIC is_deterministic

SQL_DATA_ACCESS sql_data_access

SQL_PATH NULL

SECURITY_TYPE security_type

CREATED created

LAST_ALTERED modified

SQL_MODE sql_mode MySQL extension

ROUTINE_COMMENT comment MySQL extension

DEFINER definer MySQL extension

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

DATABASE_COLLATION MySQL extension

Notes:

• MySQL calculates EXTERNAL_LANGUAGE thus:

• If mysql.proc.language='SQL', EXTERNAL_LANGUAGE is NULL

• Otherwise, EXTERNAL_LANGUAGE is what is in mysql.proc.language. However, we do not have external languages
yet, so it is always NULL.

• CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the routine was cre-
ated. COLLATION_CONNECTION is the session value of the collation_connection system variable when the routine was
created. DATABASE_COLLATION is the collation of the database with which the routine is associated. These columns were added
in MySQL 5.1.21.

24.15. The INFORMATION_SCHEMA VIEWS Table
The VIEWS table provides information about views in databases. You must have the SHOW VIEW privilege to access this table.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

VIEW_DEFINITION

CHECK_OPTION

IS_UPDATABLE

INFORMATION_SCHEMA Tables

1376



DEFINER

SECURITY_TYPE

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

Notes:

• The VIEW_DEFINITION column has most of what you see in the Create Table field that SHOW CREATE VIEW produces.
Skip the words before SELECT and skip the words WITH CHECK OPTION. Suppose that the original statement was:

CREATE VIEW v AS
SELECT s2,s1 FROM t
WHERE s1 > 5
ORDER BY s1
WITH CHECK OPTION;

Then the view definition looks like this:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• The CHECK_OPTION column always has a value of NONE.

• MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true) if UPDATE and DELETE
(and similar operations) are legal for the view. Otherwise, the flag is set to NO (false). The IS_UPDATABLE column in the VIEWS
table displays the status of this flag. It means that the server always knows whether a view is updatable. If the view is not updatable,
statements such UPDATE, DELETE, and INSERT are illegal and will be rejected. (Note that even if a view is updatable, it might not
be possible to insert into it; for details, refer to Section 23.2, “CREATE VIEW Syntax”.)

• The DEFINER column indicates who defined the view. SECURITY_TYPE has a value of DEFINER or INVOKER.

• CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the view was created.
COLLATION_CONNECTION is the session value of the collation_connection system variable when the view was created.
These columns were added in MySQL 5.1.21.

24.16. The INFORMATION_SCHEMA TRIGGERS Table
The TRIGGERS table provides information about triggers. You must have the TRIGGER privilege to access this table (prior to MySQL
5.1.22, you must have the SUPER privilege).

INFORMATION_SCHEMA Name SHOW Name Remarks

TRIGGER_CATALOG NULL

TRIGGER_SCHEMA

TRIGGER_NAME Trigger

EVENT_MANIPULATION Event

EVENT_OBJECT_CATALOG NULL

EVENT_OBJECT_SCHEMA

EVENT_OBJECT_TABLE Table

ACTION_ORDER 0

ACTION_CONDITION NULL

ACTION_STATEMENT Statement

ACTION_ORIENTATION ROW

ACTION_TIMING Timing

ACTION_REFERENCE_OLD_TABLE NULL

ACTION_REFERENCE_NEW_TABLE NULL

INFORMATION_SCHEMA Tables

1377



ACTION_REFERENCE_OLD_ROW OLD

ACTION_REFERENCE_NEW_ROW NEW

CREATED NULL (0)

SQL_MODE MySQL extension

DEFINER MySQL extension

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

DATABASE_COLLATION MySQL extension

Notes:

• The TRIGGER_SCHEMA and TRIGGER_NAME columns contain the name of the database in which the trigger occurs and the trig-
ger name, respectively.

• The EVENT_MANIPULATION column contains one of the values 'INSERT', 'DELETE', or 'UPDATE'.

• As noted in Chapter 21, Triggers, every trigger is associated with exactly one table. The EVENT_OBJECT_SCHEMA and
EVENT_OBJECT_TABLE columns contain the database in which this table occurs, and the table's name.

• The ACTION_ORDER statement contains the ordinal position of the trigger's action within the list of all similar triggers on the same
table. Currently, this value is always 0, because it is not possible to have more than one trigger with the same
EVENT_MANIPULATION and ACTION_TIMING on the same table.

• The ACTION_STATEMENT column contains the statement to be executed when the trigger is invoked. This is the same as the text
displayed in the Statement column of the output from SHOW TRIGGERS. Note that this text uses UTF-8 encoding.

• The ACTION_ORIENTATION column always contains the value 'ROW'.

• The ACTION_TIMING column contains one of the two values 'BEFORE' or 'AFTER'.

• The columns ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW contain the old and new column identifi-
ers, respectively. This means that ACTION_REFERENCE_OLD_ROW always contains the value 'OLD' and AC-
TION_REFERENCE_NEW_ROW always contains the value 'NEW'.

• The SQL_MODE column shows the server SQL mode that was in effect at the time when the trigger was created (and thus which re-
mains in effect for this trigger whenever it is invoked, regardless of the current server SQL mode). The possible range of values for
this column is the same as that of the sql_mode system variable. See Section 5.1.6, “SQL Modes”.

• The DEFINER column was added in MySQL 5.1.2. DEFINER indicates who defined the trigger.

• CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the trigger was cre-
ated. COLLATION_CONNECTION is the session value of the collation_connection system variable when the trigger was
created. DATABASE_COLLATION is the collation of the database with which the trigger is associated. These columns were added
in MySQL 5.1.21.

• The following columns currently always contain NULL: TRIGGER_CATALOG, EVENT_OBJECT_CATALOG, AC-
TION_CONDITION, ACTION_REFERENCE_OLD_TABLE, ACTION_REFERENCE_NEW_TABLE, and CREATED.

Example, using the ins_sum trigger defined in Section 21.3, “Using Triggers”:

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS\G
*************************** 1. row ***************************

TRIGGER_CATALOG: NULL
TRIGGER_SCHEMA: test
TRIGGER_NAME: ins_sum

EVENT_MANIPULATION: INSERT
EVENT_OBJECT_CATALOG: NULL
EVENT_OBJECT_SCHEMA: test
EVENT_OBJECT_TABLE: account

ACTION_ORDER: 0
ACTION_CONDITION: NULL
ACTION_STATEMENT: SET @sum = @sum + NEW.amount

ACTION_ORIENTATION: ROW

INFORMATION_SCHEMA Tables

1378



ACTION_TIMING: BEFORE
ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
ACTION_REFERENCE_OLD_ROW: OLD
ACTION_REFERENCE_NEW_ROW: NEW

CREATED: NULL
SQL_MODE:
DEFINER: me@localhost

See also Section 12.5.4.30, “SHOW TRIGGERS Syntax”.

24.17. The INFORMATION_SCHEMA PLUGINS Table
The PLUGINS table provides information about server plugins.

INFORMATION_SCHEMA Name SHOW Name Remarks

PLUGIN_NAME Name MySQL extension

PLUGIN_VERSION MySQL extension

PLUGIN_STATUS Status MySQL extension

PLUGIN_TYPE Type MySQL extension

PLUGIN_TYPE_VERSION MySQL extension

PLUGIN_LIBRARY Library MySQL extension

PLUGIN_LIBRARY_VERSION MySQL extension

PLUGIN_AUTHOR MySQL extension

PLUGIN_DESCRIPTION MySQL extension

PLUGIN_LICENSE MySQL extension

Notes:

• The PLUGINS table is a non-standard table. It was added in MySQL 5.1.5.

• The PLUGIN_LICENSE column was added in MySQL 5.1.12.

See also Section 12.5.4.21, “SHOW PLUGINS Syntax”.

24.18. The INFORMATION_SCHEMA ENGINES Table
The PLUGINS table provides information about storage engines.

INFORMATION_SCHEMA Name SHOW Name Remarks

ENGINE Engine MySQL extension

SUPPORT Support MySQL extension

COMMENT Comment MySQL extension

TRANSACTIONS Transactions MySQL extension

XA XA MySQL extension

SAVEPOINTS Savepoints MySQL extension

Notes:

• The ENGINES table is a non-standard table. It was added in MySQL 5.1.5.

See also Section 12.5.4.14, “SHOW ENGINES Syntax”.

INFORMATION_SCHEMA Tables

1379



24.19. The INFORMATION_SCHEMA PARTITIONS Table
The PARTITIONS table provides information about table partitions. See Chapter 18, Partitioning, for more information about parti-
tioning tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG MySQL extension

TABLE_SCHEMA MySQL extension

TABLE_NAME MySQL extension

PARTITION_NAME MySQL extension

SUBPARTITION_NAME MySQL extension

PARTITION_ORDINAL_POSITION MySQL extension

SUBPARTITION_ORDINAL_POSITION MySQL extension

PARTITION_METHOD MySQL extension

SUBPARTITION_METHOD MySQL extension

PARTITION_EXPRESSION MySQL extension

SUBPARTITION_EXPRESSION MySQL extension

PARTITION_DESCRIPTION MySQL extension

TABLE_ROWS MySQL extension

AVG_ROW_LENGTH MySQL extension

DATA_LENGTH MySQL extension

MAX_DATA_LENGTH MySQL extension

INDEX_LENGTH MySQL extension

DATA_FREE MySQL extension

CREATE_TIME MySQL extension

UPDATE_TIME MySQL extension

CHECK_TIME MySQL extension

CHECKSUM MySQL extension

PARTITION_COMMENT MySQL extension

NODEGROUP MySQL extension

TABLESPACE_NAME MySQL extension

Notes:

• The PARTITIONS table is a non-standard table. It was added in MySQL 5.1.6.

Each record in this table corresponds to an individual partition or subpartition of a partitioned table.

• TABLE_CATALOG: This column is always NULL.

• TABLE_SCHEMA: This column contains the name of the database to which the table belongs.

• TABLE_NAME: This column contains the name of the table containing the partition.

• PARTITION_NAME: The name of the partition.

• SUBPARTITION_NAME: If the PARTITIONS table record represents a subpartition, then this column contains the name of subpar-
tition; otherwise it is NULL.

• PARTITION_ORDINAL_POSITION: All partitions are indexed in the same order as they are defined, with 1 being the number as-
signed to the first partition. The indexing can change as partitions are added, dropped, and reorganized; the number shown is this
column reflects the current order, taking into account any indexing changes.

INFORMATION_SCHEMA Tables

1380



• SUBPARTITION_ORDINAL_POSITION: Subpartitions within a given partition are also indexed and reindexed in the same man-
ner as partitions are indexed within a table.

• PARTITION_METHOD: One of the values RANGE, LIST, HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the avail-
able partitioning types as discussed in Section 18.2, “Partition Types”.

• SUBPARTITION_METHOD: One of the values HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the available subpar-
titioning types as discussed in Section 18.2.5, “Subpartitioning”.

• PARTITION_EXPRESSION: This is the expression for the partitioning function used in the CREATE TABLE or ALTER TABLE
statement that created the table's current partitioning scheme.

For example, consider a partitioned table created in the test database using this statement:

CREATE TABLE tp (
c1 INT,
c2 INT,
c3 VARCHAR(25)

)
PARTITION BY HASH(c1 + c2)
PARTITIONS 4;

The PARTITION_EXPRESSION column in a PARTITIONS table record for a partition from this table displays c1 + c2, as
shown here:

mysql> SELECT DISTINCT PARTITION_EXPRESSION
> FROM INFORMATION_SCHEMA.PARTITIONS
> WHERE TABLE_NAME='tp' AND TABLE_SCHEMA='test';

+----------------------+
| PARTITION_EXPRESSION |
+----------------------+
| c1 + c2 |
+----------------------+
1 row in set (0.09 sec)

• SUBPARTITION_EXPRESSION: This works in the same fashion for the subpartitioning expression that defines the subpartition-
ing for a table as PARTITION_EXPRESSION does for the partitioning expression used to define a table's partitioning.

If the table has no subpartitions, then this column is NULL.

• PARTITION_DESCRIPTION: This column is used for RANGE and LIST partitions. For a RANGE partition, it contains the value
set in the partition's VALUES LESS THAN clause, which can be either an integer or MAXVALUE. For a LIST partition, this column
contains the values defined in the partition's VALUES IN clause, which is a comma-separated list of integer values.

For partitions whose PARTITION_METHOD is other than RANGE or LIST, this column is always NULL.

• TABLE_ROWS: The number of table rows in the partition.

• AVG_ROW_LENGTH: The average length of the rows stored in this partition or subpartition, in bytes.

This is the same as DATA_LENGTH divided by TABLE_ROWS.

• DATA_LENGTH: The total length of all rows stored in this partition or subpartition, in bytes — that is, the total number of bytes
stored in the partition or subpartition.

• MAX_DATA_LENGTH: The maximum number of bytes that can be stored in this partition or subpartition.

• INDEX_LENGTH: The length of the index file for this partition or subpartition, in bytes.

• DATA_FREE: The number of bytes allocated to the partition or subpartition but not used.

• CREATE_TIME: The time of the partition's or subpartition's creation.

• UPDATE_TIME: The time that the partition or subpartition was last modified.

• CHECK_TIME: The last time that the table to which this partition or subpartition belongs was checked.

Note

INFORMATION_SCHEMA Tables

1381



Some storage engines do not update this time; for tables using these storage engines, this value is always NULL.

• CHECKSUM: The checksum value, if any; otherwise, this column is NULL.

• PARTITION_COMMENT: This column contains the text of any comment made for the partition.

The default value for this column is an empty string.

• NODEGROUP: This is the nodegroup to which the partition belongs. This is relevant only to MySQL Cluster tables; otherwise the
value of this column is always 0.

• TABLESPACE_NAME: This column contains the name of tablespace to which the partition belongs. In MySQL 5.1, the value of this
column is always DEFAULT.

•
Important

If any partitioned tables created in a MySQL version prior to MySQL 5.1.6 are present following an upgrade to MySQL
5.1.6 or later, it is not possible to SELECT from, SHOW, or DESCRIBE the PARTITIONS table. See Section C.1.28,
“Changes in MySQL 5.1.6 (01 February 2006)” before upgrading from MySQL 5.1.5 or earlier to MySQL 5.1.6 or later.

• A non-partitioned table has one record in INFORMATION_SCHEMA.PARTITIONS; however, the values of the PARTI-
TION_NAME, SUBPARTITION_NAME, PARTITION_ORDINAL_POSITION, SUBPARTITION_ORDINAL_POSITION, PAR-
TITION_METHOD, SUBPARTITION_METHOD, PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, and PARTI-
TION_DESCRIPTION columns are all NULL. (The PARTITION_COMMENT column in this case is blank.)

In MySQL 5.1, there is also only one record in the PARTITIONS table for a table using the NDBCluster storage engine. The
same columns are also NULL (or empty) as for a non-partitioned table.

24.20. The INFORMATION_SCHEMA EVENTS Table
The EVENTS table provides information about scheduled events, which are discussed in Chapter 22, Event Scheduler.

INFORMATION_SCHEMA Name SHOW Name Remarks

EVENT_CATALOG NULL, MySQL extension

EVENT_SCHEMA Db MySQL extension

EVENT_NAME Name MySQL extension

DEFINER Definer MySQL extension

TIME_ZONE Time zone MySQL extension

EVENT_BODY MySQL extension

EVENT_DEFINITION MySQL extension

EVENT_TYPE Type MySQL extension

EXECUTE_AT Execute at MySQL extension

INTERVAL_VALUE Interval value MySQL extension

INTERVAL_FIELD Interval field MySQL extension

SQL_MODE MySQL extension

STARTS Starts MySQL extension

ENDS Ends MySQL extension

STATUS Status MySQL extension

ON_COMPLETION MySQL extension

CREATED MySQL extension

LAST_ALTERED MySQL extension

LAST_EXECUTED MySQL extension

EVENT_COMMENT MySQL extension

INFORMATION_SCHEMA Tables

1382



ORIGINATOR Originator MySQL extension

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

DATABASE_COLLATION MySQL extension

Notes:

• The EVENTS table is a non-standard table. It was added in MySQL 5.1.6.

• EVENT_CATALOG: The value of this column is always NULL.

• EVENT_SCHEMA: The name of the schema (database) to which this event belongs.

• EVENT_NAME: The name of the event.

• DEFINER: The user who created the event. Always displayed in 'user_name'@'host_name' format.

• TIME_ZONE: The time zone in effect when schedule for the event was last modified. If the event's schedule has not been modified
since the event was created, then this is the time zone that was in effect at the event's creation. The default value is SYSTEM.

This column was added in MySQL 5.1.17. See Section C.1.14, “Changes in MySQL 5.1.17 (04 April 2007)”, for important informa-
tion if you are using the Event Scheduler and are upgrading from MySQL 5.1.16 (or earlier) to MySQL 5.1.17 (or later).

• EVENT_BODY: The language used for the statements in the event's DO clause; in MySQL 5.1, this is always SQL.

This column was added in MySQL 5.1.12. It is not to be confused with the column of the same name (now named
EVENT_DEFINITION) that existed in earlier MySQL versions.

• EVENT_DEFINITION: The text of the SQL statement making up the event's DO clause; in other words, the statement executed by
this event.

Note

Prior to MySQL 5.1.12, this column was named EVENT_BODY.

• EVENT_TYPE: One of the two values ONE TIME or RECURRING.

• EXECUTE_AT: For a one-time event, this is the DATETIME value specified in the AT clause of the CREATE EVENT statement
used to create the event, or of the last ALTER EVENT statement that modified the event. The value shown in this column reflects
the addition or subtraction of any INTERVAL value included in the event's AT clause. For example, if an event is created using ON
SCHEDULE AT CURRENT_TIMESTAMP + '1:6' DAY_HOUR, and the event was created at 2006-02-09 14:05:30, the value
shown in this column would be '2006-02-10 20:05:30'.

If the event's timing is determined by an EVERY clause instead of an AT clause (that is, if the event is recurring), the value of this
column is NULL.

• INTERVAL_VALUE: For recurring events, this column contains the numeric portion of the event's EVERY clause.

For a one-time event (that is, an event whose timing is determined by an AT clause), this column's value is NULL.

• INTERVAL_FIELD: For recurring events, this column contains the units portion of the EVERY clause governing the timing of the
event, prefixed with 'INTERVAL_'. Thus, this column contains a value such as 'INTERVAL_YEAR', 'INTERVAL_QUARTER', 'IN-
TERVAL_DAY', and so on.

For a one-time event (that is, an event whose timing is determined by an AT clause), this column's value is NULL.

• SQL_MODE: The SQL mode in effect at the time the event was created or altered.

• STARTS: For a recurring event whose definition includes a STARTS clause, this column contains the corresponding DATETIME
value. As with the EXECUTE_AT column, this value resolves any expressions used.

If there is no STARTS clause affecting the timing of the event, this column is empty. (Prior to MySQL 5.1.8, it contained NULL in

INFORMATION_SCHEMA Tables

1383



such cases.)

• ENDS: For a recurring event whose definition includes a ENDS clause, this column contains the corresponding DATETIME value.
As with the EXECUTE_AT column (see previous example), this value resolves any expressions used.

If there is no ENDS clause affecting the timing of the event, this column contains NULL.

• STATUS: One of the three values ENABLED, DISABLED, or SLAVESIDE_DISABLED.

SLAVESIDE_DISABLED was added to the list of possible values for this column in MySQL 5.1.18. This value indicates that the
creation of the event occurred on another MySQL server acting as a replication master and was replicated to the current MySQL
server which is acting as a slave, but the event is not presently being executed on the slave. See Section 16.3.1.5, “Replication of In-
voked Features”, for more information.

• ON_COMPLETION: One of the two values PRESERVE or NOT PRESERVE.

• CREATED: The date and time when the event was created. This is a DATETIME value.

• LAST_ALTERED: The date and time when the event was last modified. This is a DATETIME value. If the event has not been modi-
fied since its creation, this column holds the same value as the CREATED column.

• LAST_EXECUTED: The date and time when the event last executed. A DATETIME value. If the event has never executed, this
column's value is NULL.

Before MySQL 5.1.23, LAST_EXECUTED indicates when event finished executing. As of 5.1.23, LAST_EXECUTED instead indic-
ates when the event started. As a result, the ENDS column is never less than LAST_EXECUTED.

• EVENT_COMMENT: The text of a comment, if the event has one. If there is no comment, the value of this column is an empty string.

• ORIGINATOR: The server ID of the MySQL server on which the event was created; used in replication. The default value is 0. This
column was added in MySQL 5.1.18.

• CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the event was created.
COLLATION_CONNECTION is the session value of the collation_connection system variable when the event was created.
DATABASE_COLLATION is the collation of the database with which the event is associated. These columns were added in MySQL
5.1.21.

Example: Suppose the user jon@ghidora creates an event named e_daily, and then modifies it a few minutes later using an AL-
TER EVENT statement, as shown here:

DELIMITER |

CREATE EVENT e_daily
ON SCHEDULE EVERY 1 DAY
STARTS CURRENT_TIMESTAMP + INTERVAL 6 HOUR
DISABLE
COMMENT 'Saves total number of sessions and

clears the table once per day.'
DO
BEGIN
INSERT INTO site_activity.totals (when, total)
SELECT CURRENT_TIMESTAMP, COUNT(*)
FROM site_activity.sessions;

DELETE FROM site_activity.sessions;
END |

DELIMITER ;

ALTER EVENT e_daily
ENABLED;

(Note that comments can span multiple lines.)

This user can then run the following SELECT statement, and obtain the output shown:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
> WHERE EVENT_NAME = 'e_daily'
> AND EVENT_SCHEMA = 'myschema'\G

*************************** 1. row ***************************
EVENT_CATALOG: NULL
EVENT_SCHEMA: myschema

INFORMATION_SCHEMA Tables

1384



EVENT_NAME: e_daily
DEFINER: jon@ghidora

EVENT_BODY: BEGIN
INSERT INTO site_activity.totals (when, total)
SELECT CURRENT_TIMESTAMP, COUNT(*)
FROM site_activity.sessions;

DELETE FROM site_activity.sessions;
END

EVENT_TYPE: RECURRING
EXECUTE_AT: NULL

INTERVAL_VALUE: 1
INTERVAL_FIELD: INTERVAL_DAY

SQL_MODE: NULL
STARTS: 2006-02-09 10:41:23

ENDS: NULL
STATUS: ENABLED

ON_COMPLETION: DROP
CREATED: 2006-02-09 14:35:35

LAST_ALTERED: 2006-02-09 14:41:23
LAST_EXECUTED: NULL
EVENT_COMMENT: Saves total number of sessions and

clears the table once per day.
ORIGINATOR: 0

1 row in set (0.50 sec)

Prior to MySQL 5.1.17, the times displayed in the STARTS, ENDS, and LAST_EXECUTED columns were given in terms of Universal
Time (GMT or UTC), regardless of the server's time zone setting (Bug#16420). Beginning with MySQL 5.1.17, these times are all giv-
en in terms of local time as determined by the MySQL server's time_zone setting. (The same was true of the starts, ends, and
last_executed columns of the mysql.event table as well as the Starts and Ends columns in the output of SHOW [FULL]
EVENTS.)

The CREATED and LAST_ALTERED columns use the server time zone (as do the created and last_altered columns of the
mysql.event table).

See also Section 12.5.4.16, “SHOW EVENTS”.

24.21. The INFORMATION_SCHEMA FILES Table
The FILES table provides information about the files in which MySQL NDB Disk Data tables are stored.

INFORMATION_SCHEMA Name SHOW Name Remarks

FILE_ID MySQL extension

FILE_NAME MySQL extension

FILE_TYPE MySQL extension

TABLESPACE_NAME MySQL extension

TABLE_CATALOG MySQL extension

TABLE_SCHEMA MySQL extension

TABLE_NAME MySQL extension

LOGFILE_GROUP_NAME MySQL extension

LOGFILE_GROUP_NUMBER MySQL extension

ENGINE MySQL extension

FULLTEXT_KEYS MySQL extension

DELETED_ROWS MySQL extension

UPDATE_COUNT MySQL extension

FREE_EXTENTS MySQL extension

TOTAL_EXTENTS MySQL extension

EXTENT_SIZE MySQL extension

INITIAL_SIZE MySQL extension

MAXIMUM_SIZE MySQL extension

AUTOEXTEND_SIZE MySQL extension

CREATION_TIME MySQL extension

INFORMATION_SCHEMA Tables

1385

http://bugs.mysql.com/16420


LAST_UPDATE_TIME MySQL extension

LAST_ACCESS_TIME MySQL extension

RECOVER_TIME MySQL extension

TRANSACTION_COUNTER MySQL extension

VERSION MySQL extension

ROW_FORMAT MySQL extension

TABLE_ROWS MySQL extension

AVG_ROW_LENGTH MySQL extension

DATA_LENGTH MySQL extension

MAX_DATA_LENGTH MySQL extension

INDEX_LENGTH MySQL extension

DATA_FREE MySQL extension

CREATE_TIME MySQL extension

UPDATE_TIME MySQL extension

CHECK_TIME MySQL extension

CHECKSUM MySQL extension

STATUS MySQL extension

EXTRA MySQL extension

Notes:

• FILE_ID column values are auto-generated.

• FILE_NAME is the name of an UNDO log file created by CREATE LOGFILE GROUP or ALTER LOGFILE GROUP, or of a data
file created by CREATE TABLESPACE or ALTER TABLESPACE.

• FILE_TYPE is one of the values UNDOFILE or DATAFILE.

• TABLESPACE_NAME is the name of the tablespace with which the file is associated.

• In MySQL 5.1, the value of the TABLESPACE_CATALOG column is always NULL.

• TABLE_NAME is the name of the Disk Data table with which the file is associated, if any.

• The LOGFILE_GROUP_NAME column gives the name of the log file group to which the log file or data file belongs.

• For an UNDO log file, the LOGFILE_GROUP_NUMBER contains the auto-generated ID number of the log file group to which the log
file belongs.

• For a MySQL Cluster Disk Data log file or data file, the value of the ENGINE column is always NDB or NDBCLUSTER.

• For a MySQL Cluster Disk Data log file or data file, the value of the FULLTEXT_KEYS column is always empty.

• The FREE EXTENTS column displays the number of extents which have not yet been used by the file. The TOTAL EXTENTS
column show the total number of extents allocated to the file.

The difference between these two columns is the number of extents currently in use by the file:

SELECT TOTAL_EXTENTS - FREE_EXTENTS AS extents_used
FROM INFORMATION_SCHEMA.FILES
WHERE FILE_NAME = 'myfile.dat';

You can approximate the amount of disk space in use by the file by multiplying this difference by the value of the EXTENT_SIZE
column, which gives the size of an extent for the file in bytes:

SELECT (TOTAL_EXTENTS - FREE_EXTENTS) * EXTENT_SIZE AS bytes_used
FROM INFORMATION_SCHEMA.FILES

INFORMATION_SCHEMA Tables

1386



WHERE FILE_NAME = 'myfile.dat';

Similarly, you can estimate the amount of space that remains available in a given file by multiplying FREE_EXTENTS by EX-
TENT_SIZE:

SELECT FREE_EXTENTS * EXTENT_SIZE AS bytes_free
FROM INFORMATION_SCHEMA.FILES
WHERE FILE_NAME = 'myfile.dat';

Important

The byte values produced by the preceding queries are approximations only, and their precision is inversely proportional
to the value of EXTENT_SIZE. That is, the larger EXTENT_SIZE becomes, the less accurate the approximations are.

It is also important to remember that once an extent is used, it cannot be freed again without dropping the data file of which it is a
part. This means that deletes from a Disk Data table do not release disk space.

The extent size can be set in a CREATE TABLESPACE statement. See Section 12.1.11, “CREATE TABLESPACE Syntax”, for
more information.

• The INITIAL_SIZE column shows the size in bytes of the file. This is the same value that was used in the INITIAL_SIZE
clause of the CREATE LOGFILE GROUP, ALTER LOGFILE GROUP, CREATE TABLESPACE, or ALTER TABLESPACE
statement used to create the file.

For MySQL 5.1 Cluster Disk Data files, the value of the MAXIMUM_SIZE column is always the same as INITIAL_SIZE, and the
AUTOEXTEND_SIZE column is always empty.

• The CREATION_TIME column shows the date and time when the file was created. The LAST_UPDATE_TIME column displays
the date and time when the file was last modified. The LAST_ACCESSED column provides the date and time when the file was last
accessed by the server.

Currently, the values of these columns are as reported by the operating system, and are not supplied by the NDB storage engine.
Where no value is provided by the operating system, these columns display 0000-00-00 00:00:00.

• For MySQL Cluster Disk Data files, the value of the RECOVER_TIME and TRANSACTION_COUNTER columns is always 0.

• For MySQL 5.1 Cluster Disk Data files, the following columns are always NULL:

• VERSION

• ROW_FORMAT

• TABLE_ROWS

• AVG_ROW_LENGTH

• DATA_LENGTH

• MAX_DATA_LENGTH

• INDEX_LENGTH

• DATA_FREE

• CREATE_TIME

• UPDATE_TIME

• CHECK_TIME

• CHECKSUM

• For MySQL Cluster Disk Data files, the value of the STATUS column is always NORMAL.

• For MySQL Cluster Disk Data files, the EXTRA column shows which data node the file belongs to, as each data node has its own

INFORMATION_SCHEMA Tables

1387



copy of the file. For example, suppose you use this statement on a MySQL Cluster with four data nodes:

CREATE LOGFILE GROUP mygroup
ADD UNDOFILE 'new_undo.dat'
INITIAL_SIZE 2G
ENGINE NDB;

After running the CREATE LOGFILE GROUP statement successfully, you should see a result similar to the one shown here for
this query against the FILES table:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_TYPE, EXTRA
-> FROM INFORMATION_SCHEMA.FILES
-> WHERE FILE_NAME = 'new_undo.dat';

+--------------------+-------------+----------------+
| LOGFILE_GROUP_NAME | FILE_TYPE | EXTRA |
+--------------------+-------------+----------------+
| mygroup | UNDO FILE | CLUSTER_NODE=3 |
| mygroup | UNDO FILE | CLUSTER_NODE=4 |
| mygroup | UNDO FILE | CLUSTER_NODE=5 |
| mygroup | UNDO FILE | CLUSTER_NODE=6 |
+--------------------+-------------+----------------+
4 rows in set (0.01 sec)

• The FILES table is a non-standard table. It was added in MySQL 5.1.6.

• Beginning with MySQL 5.1.14, an additional row is present in the FILES table following the creation of a logfile group. This row
has NULL for the value of the FILE_NAME column. For this row, the value of the FILE_ID column is always 0, that of the
FILE_TYPE column is always UNDO FILE, and that of the STATUS column is always NORMAL. In MySQL 5.1 the value of the
ENGINE column is always ndbcluster.

This row shows in the FREE_EXTENTS column the total number of free extents available to all undo files belonging to a given log
file group whose name and number are shown in the LOGFILE_GROUP_NAME and LOGFILE_GROUP_NUMBER columns, re-
spectively.

Suppose there are no existing log file groups on your MySQL Cluster, and you create one using the following statement:

mysql> CREATE LOGFILE GROUP lg1
-> ADD UNDOFILE 'undofile.dat'
-> INITIAL_SIZE = 16M
-> UNDO_BUFFER_SIZE = 1M
-> ENGINE = NDB;

Query OK, 0 rows affected (3.81 sec)

You can now see this NULL row when you query the FILES table:

mysql> SELECT DISTINCT
-> FILE_NAME AS File,
-> FREE_EXTENTS AS Free,
-> TOTAL_EXTENTS AS Total,
-> EXTENT_SIZE AS Size,
-> INITIAL_SIZE AS Initial
-> FROM INFORMATION_SCHEMA.FILES;

+--------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |
+--------------+---------+---------+------+----------+
| undofile.dat | NULL | 4194304 | 4 | 16777216 |
| NULL | 4184068 | NULL | 4 | NULL |
+--------------+---------+---------+------+----------+
2 rows in set (0.01 sec)

The total number of free extents available for undo logging is always somewhat less than the sum of the TOTAL_EXTENTS column
values for all undo files in the log file group due to overhead required for maintaining the undo files. This can be seen by adding a
second undo file to the log file group, then repeating the previous query against the FILES table:

mysql> ALTER LOGFILE GROUP lg1
-> ADD UNDOFILE 'undofile02.dat'
-> INITIAL_SIZE = 4M
-> ENGINE = NDB;

Query OK, 0 rows affected (1.02 sec)

mysql> SELECT DISTINCT
-> FILE_NAME AS File,
-> FREE_EXTENTS AS Free,
-> TOTAL_EXTENTS AS Total,
-> EXTENT_SIZE AS Size,
-> INITIAL_SIZE AS Initial

INFORMATION_SCHEMA Tables

1388



-> FROM INFORMATION_SCHEMA.FILES;
+----------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |
+----------------+---------+---------+------+----------+
| undofile.dat | NULL | 4194304 | 4 | 16777216 |
| undofile02.dat | NULL | 1048576 | 4 | 4194304 |
| NULL | 5223944 | NULL | 4 | NULL |
+----------------+---------+---------+------+----------+
3 rows in set (0.01 sec)

The amount of free space in bytes which is available for undo logging by Disk Data tables using this log file group can be approxim-
ated by multiplying the number of free extents by the initial size:

mysql> SELECT
-> FREE_EXTENTS AS 'Free Extents',
-> FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
-> FROM INFORMATION_SCHEMA.FILES
-> WHERE LOGFILE_GROUP_NAME = 'lg1'
-> AND FILE_NAME IS NULL;

+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
| 5223944 | 20895776 |
+--------------+------------+
1 row in set (0.02 sec)

If you create a Disk Data table and then insert some rows into it, you can see approximately how much space remains for undo log-
ging afterwards, for example:

mysql> CREATE TABLESPACE ts1
-> ADD DATAFILE 'data1.dat'
-> USE LOGFILE GROUP lg1
-> INITIAL_SIZE 512M
-> ENGINE = NDB;

Query OK, 0 rows affected (8.71 sec)

mysql> CREATE TABLE dd (
-> c1 INT NOT NULL PRIMARY KEY,
-> c2 INT,
-> c3 DATE
-> )
-> TABLESPACE ts1 STORAGE DISK
-> ENGINE = NDB;

Query OK, 0 rows affected (2.11 sec)

mysql> INSERT INTO dd VALUES
-> (NULL, 1234567890, '2007-02-02'),
-> (NULL, 1126789005, '2007-02-03'),
-> (NULL, 1357924680, '2007-02-04'),
-> (NULL, 1642097531, '2007-02-05');

Query OK, 4 rows affected (0.01 sec)

mysql> SELECT
-> FREE_EXTENTS AS 'Free Extents',
-> FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
-> FROM INFORMATION_SCHEMA.FILES
-> WHERE LOGFILE_GROUP_NAME = 'lg1'
-> AND FILE_NAME IS NULL;

+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
| 5207565 | 20830260 |
+--------------+------------+
1 row in set (0.01 sec)

• There are no SHOW commands associated with the FILES table.

• For additional examples using the FILES table to obtain information about Cluster Disk Data tables, see Section 17.13, “MySQL
Cluster Disk Data Tables”.

24.22. The INFORMATION_SCHEMA PROCESSLIST Table
The PROCESSLIST table provides information about which threads are running.

INFORMATION_SCHEMA Name SHOW Name Remarks

ID Id MySQL extension

INFORMATION_SCHEMA Tables

1389



USER User MySQL extension

HOST Host MySQL extension

DB db MySQL extension

COMMAND Command MySQL extension

TIME Time MySQL extension

STATE State MySQL extension

INFO Info MySQL extension

For an extensive description of the table columns, see Section 12.5.4.25, “SHOW PROCESSLIST Syntax”.

Notes:

• The PROCESSLIST table is a non-standard table. It was added in MySQL 5.1.7.

• Like the output from the corresponding SHOW statement, the PROCESSLIST table will only show information about your own
threads, unless you have the PROCESS privilege, in which case you will see information about other threads, too. As an anonymous
user, you cannot see any rows at all.

• If an SQL statement refers to INFORMATION_SCHEMA.PROCESSLIST, then MySQL will populate the entire table once, when
statement execution begins, so there is read consistency during the statement. There is no read consistency for a multi-statement
transaction, though.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST

SHOW FULL PROCESSLIST

24.23. The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
The REFERENTIAL_CONSTRAINTS table provides information about foreign keys.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

UNIQUE_CONSTRAINT_CATALOG NULL

UNIQUE_CONSTRAINT_SCHEMA

UNIQUE_CONSTRAINT_NAME

MATCH_OPTION

UPDATE_RULE

DELETE_RULE

TABLE_NAME

REFERENCED_TABLE_NAME

Notes:

• The REFERENTIAL_CONSTRAINTS table was added in MySQL 5.1.10. The REFERENCED_TABLE_NAME column was added
in MySQL 5.1.16.

• TABLE_NAME has the same value as TABLE_NAME in INFORMATION_SCHEMA.TABLE_CONSTRAINTS.

INFORMATION_SCHEMA Tables

1390



• CONSTRAINT_SCHEMA and CONSTRAINT_NAME identify the foreign key.

• UNIQUE_CONSTRAINT_SCHEMA, UNIQUE_CONSTRAINT_NAME, and REFERENCED_TABLE_NAME identify the referenced
key. (Note: Before MySQL 5.1.16, UNIQUE_CONSTRAINT_NAME incorrectly named the referenced table, not the constraint.)

• The only valid value at this time for MATCH_OPTION is NONE.

• The possible values for UPDATE_RULE or DELETE_RULE are CASCADE, SET NULL, SET DEFAULT, RESTRICT, NO AC-
TION.

24.24. The INFORMATION_SCHEMA GLOBAL_STATUS and SES-
SION_STATUS Tables

The GLOBAL_STATUS and SESSION_STATUS tables provide information about server status variables. Their contents correspond to
the information produced by the SHOW GLOBAL STATUS and SHOW SESSION STATUS statements (see Section 12.5.4.27, “SHOW
STATUS Syntax”).

INFORMATION_SCHEMA Name SHOW Name Remarks

VARIABLE_NAME Variable_name

VARIABLE_VALUE Value

Notes:

• The GLOBAL_STATUS and SESSION_STATUS tables were added in MySQL 5.1.12.

• Beginning with MySQL 5.1.19, the VARIABLE_VALUE column for each of these tables is defined as VARCHAR(20480). Previ-
ously, this column had the data type DECIMAL(22,7), but was changed to avoid loss of data when working with status variables
whose values were strings (Bug#26994).

24.25. The INFORMATION_SCHEMA GLOBAL_VARIABLES and SES-
SION_VARIABLES Tables

The GLOBAL_VARIABLES and SESSION_VARIABLES tables provide information about server status variables. Their contents cor-
respond to the information produced by the SHOW GLOBAL VARIABLES and SHOW SESSION VARIABLES statements (see Sec-
tion 12.5.4.31, “SHOW VARIABLES Syntax”).

INFORMATION_SCHEMA Name SHOW Name Remarks

VARIABLE_NAME Variable_name

VARIABLE_VALUE Value

Notes:

• The GLOBAL_VARIABLES and SESSION_VARIABLES tables were added in MySQL 5.1.12.

• Beginning with MySQL 5.1.19, the VARIABLE_VALUE column for each of these tables is defined as VARCHAR(20480). Previ-
ously, this column had the data type LONGTEXT; this was changed in order to make these tables consistent with the GLOB-
AL_STATUS and SESSION_STATUS tables, whose definitions had been changed in that version (see Section 24.24, “The IN-
FORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”).

24.26. Other INFORMATION_SCHEMA Tables
We intend to implement additional INFORMATION_SCHEMA tables. In particular, we acknowledge the need for the PARAMETERS ta-

INFORMATION_SCHEMA Tables

1391

http://bugs.mysql.com/26994


ble. (PARAMETERS is implemented in MySQL 6.0.)

24.27. Extensions to SHOW Statements
Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which rows to display.

INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW DATABASES. Similarly, SHOW
TABLES can be used with INFORMATION_SCHEMA to obtain a list of its tables:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_INFORMATION_SCHEMA |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| ENGINES |
| EVENTS |
| FILES |
| GLOBAL_STATUS |
| GLOBAL_VARIABLES |
| KEY_COLUMN_USAGE |
| PARTITIONS |
| PLUGINS |
| PROCESSLIST |
| REFERENTIAL_CONSTRAINTS |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| SESSION_STATUS |
| SESSION_VARIABLES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+
27 rows in set (0.00 sec)

SHOW COLUMNS and DESCRIBE can display information about the columns in individual INFORMATION_SCHEMA tables.

SHOW statements that accept a LIKE clause to limit the rows displayed also allow a WHERE clause that enables specification of more
general conditions that selected rows must satisfy:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW INDEX
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW TRIGGERS
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW statement. For example, the SHOW
CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
| dec8 | DEC West European | dec8_swedish_ci | 1 |
| cp850 | DOS West European | cp850_general_ci | 1 |
| hp8 | HP West European | hp8_english_ci | 1 |

INFORMATION_SCHEMA Tables

1392



| koi8r | KOI8-R Relcom Russian | koi8r_general_ci | 1 |
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As an example, the following state-
ment displays information about character sets for which the default collation contains the string 'japanese':

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
| ujis | EUC-JP Japanese | ujis_japanese_ci | 3 |
| sjis | Shift-JIS Japanese | sjis_japanese_ci | 2 |
| cp932 | SJIS for Windows Japanese | cp932_japanese_ci | 2 |
| eucjpms | UJIS for Windows Japanese | eucjpms_japanese_ci | 3 |
+---------+---------------------------+---------------------+--------+

This statement displays the multi-byte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
| ujis | EUC-JP Japanese | ujis_japanese_ci | 3 |
| sjis | Shift-JIS Japanese | sjis_japanese_ci | 2 |
| euckr | EUC-KR Korean | euckr_korean_ci | 2 |
| gb2312 | GB2312 Simplified Chinese | gb2312_chinese_ci | 2 |
| gbk | GBK Simplified Chinese | gbk_chinese_ci | 2 |
| utf8 | UTF-8 Unicode | utf8_general_ci | 3 |
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
| cp932 | SJIS for Windows Japanese | cp932_japanese_ci | 2 |
| eucjpms | UJIS for Windows Japanese | eucjpms_japanese_ci | 3 |
+---------+---------------------------+---------------------+--------+

INFORMATION_SCHEMA Tables

1393



Chapter 25. Precision Math
MySQL 5.1 provides support for precision math: numeric value handling that results in extremely accurate results and a high degree
control over invalid values. Precision math is based on these two features:

• SQL modes that control how strict the server is about accepting or rejecting invalid data.

• The MySQL library for fixed-point arithmetic.

These features have several implications for numeric operations:

• Precise calculations: For exact-value numbers, calculations do not introduce floating-point errors. Instead, exact precision is used.
For example, a number such as .0001 is treated as an exact value rather than as an approximation, and summing it 10,000 times
produces a result of exactly 1, not a value that merely “close” to 1.

• Well-defined rounding behavior: For exact-value numbers, the result of ROUND() depends on its argument, not on environmental
factors such as how the underlying C library works.

• Platform independence: Operations on exact numeric values are the same across different platforms such as Windows and Unix.

• Control over handling of invalid values: Overflow and division by zero are detectable and can be treated as errors. For example,
you can treat a value that is too large for a column as an error rather than having the value truncated to lie within the range of the
column's data type. Similarly, you can treat division by zero as an error rather than as an operation that produces a result of NULL.
The choice of which approach to take is determined by the setting of the sql_mode system variable.

An important result of these features is that MySQL 5.1 provides a high degree of compliance with standard SQL.

The following discussion covers several aspects of how precision math works (including possible incompatibilities with older applica-
tions). At the end, some examples are given that demonstrate how MySQL 5.1 handles numeric operations precisely. For information
about using the sql_mode system variable to control the SQL mode, see Section 5.1.6, “SQL Modes”.

25.1. Types of Numeric Values
The scope of precision math for exact-value operations includes the exact-value data types (DECIMAL and integer types) and exact-
value numeric literals. Approximate-value data types and numeric literals still are handled as floating-point numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed. Examples: 1, .2, 3.4, -5, -6.78,
+9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent. Either or both parts may be
signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar need not be both exact-value or both approximate-value. For example, 2.34 is an exact-value
(fixed-point) number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type has several synonyms: NU-
MERIC, DEC, FIXED. The integer types also are exact-value types.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In MySQL, types that are synonymous
with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

25.2. DECIMAL Data Type Changes
This section discusses the characteristics of the DECIMAL data type (and its synonyms) in MySQL 5.1, with particular regard to the fol-
lowing topics:

• Maximum number of digits

• Storage format

1394



• Storage requirements

• The non-standard MySQL extension to the upper range of DECIMAL columns

Possible incompatibilities with applications that are written for older versions of MySQL are noted throughout this section.

The declaration syntax for a DECIMAL column is DECIMAL(M,D). The ranges of values for the arguments in MySQL 5.1 are as fol-
lows:

• M is the maximum number of digits (the precision). It has a range of 1 to 65. (Older versions of MySQL allowed a range of 1 to
254.)

• D is the number of digits to the right of the decimal point (the scale). It has a range of 0 to 30 and must be no larger than M.

The maximum value of 65 for M means that calculations on DECIMAL values are accurate up to 65 digits. This limit of 65 digits of pre-
cision also applies to exact-value numeric literals, so the maximum range of such literals is different from before. (In older versions of
MySQL, decimal values could have up to 254 digits. However, calculations were done using floating-point and thus were approximate,
not exact.)

Values for DECIMAL columns in MySQL 5.1 are stored using a binary format that packs nine decimal digits into four bytes. The stor-
age requirements for the integer and fractional parts of each value are determined separately. Each multiple of nine digits requires four
bytes, and any digits left over require some fraction of four bytes. For example, a DECIMAL(18,9) column has nine digits on either
side of the decimal point, so the integer part and the fractional part each require four bytes. A DECIMAL(20,10) column has ten di-
gits on either side of the decimal point. Each part requires four bytes for nine of the digits, and one byte for the remaining digit.

The storage required for leftover digits is given by the following table:

Leftover Digits Number of Bytes

0 0

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

9 4

Unlike some older versions of MySQL (prior to 5.0.3), DECIMAL columns in MySQL 5.1 do not store a leading + character or - char-
acter or leading 0 digits. If you insert +0003.1 into a DECIMAL(5,1) column, it is stored as 3.1. For negative numbers, a literal -
character is not stored. Applications that rely on the older behavior must be modified to account for this change.

DECIMAL columns in MySQL 5.1 do not allow values larger than the range implied by the column definition. For example, a DECIM-
AL(3,0) column supports a range of -999 to 999. A DECIMAL(M,D) column allows at most M - D digits to the left of the decimal
point. This is not compatible with applications relying on older versions of MySQL that allowed storing an extra digit in lieu of a +
sign.

The SQL standard requires that the precision of NUMERIC(M,D) be exactly M digits. For DECIMAL(M,D), the standard requires a
precision of at least M digits but allows more. In MySQL, DECIMAL(M,D) and NUMERIC(M,D) are the same, and both have a preci-
sion of exactly M digits.

For more detailed information about porting applications that rely on the old treatment of the DECIMAL data type, see the MySQL 5.0
Reference Manual.

25.3. Expression Handling

Precision Math

1395



With precision math, exact-value numbers are used as given whenever possible. For example, numbers in comparisons are used exactly
as given without a change in value. In strict SQL mode, for INSERT into a column with an exact data type (DECIMAL or integer), a
number is inserted with its exact value if it is within the column range. When retrieved, the value should be the same as what was inser-
ted. (Without strict mode, truncation for INSERT is allowable.)

Handling of a numeric expression depends on what kind of values the expression contains:

• If any approximate values are present, the expression is approximate and is evaluated using floating-point arithmetic.

• If no approximate values are present, the expression contains only exact values. If any exact value contains a fractional part (a value
following the decimal point), the expression is evaluated using DECIMAL exact arithmetic and has a precision of 65 digits. (The
term “exact” is subject to the limits of what can be represented in binary. For example, 1.0/3.0 can be approximated in decimal
notation as .333..., but not written as an exact number, so (1.0/3.0)*3.0 does not evaluate to exactly 1.0.)

• Otherwise, the expression contains only integer values. The expression is exact and is evaluated using integer arithmetic and has a
precision the same as BIGINT (64 bits).

If a numeric expression contains any strings, they are converted to double-precision floating-point values and the expression is approx-
imate.

Inserts into numeric columns are affected by the SQL mode, which is controlled by the sql_mode system variable. (See Section 5.1.6,
“SQL Modes”.) The following discussion mentions strict mode (selected by the STRICT_ALL_TABLES or
STRICT_TRANS_TABLES mode values) and ERROR_FOR_DIVISION_BY_ZERO. To turn on all restrictions, you can simply use
TRADITIONAL mode, which includes both strict mode values and ERROR_FOR_DIVISION_BY_ZERO:

mysql> SET sql_mode='TRADITIONAL';

If a number is inserted into an exact type column (DECIMAL or integer), it is inserted with its exact value if it is within the column
range.

If the value has too many digits in the fractional part, rounding occurs and a warning is generated. Rounding is done as described in
Section 25.4, “Rounding Behavior”.

If the value has too many digits in the integer part, it is too large and is handled as follows:

• If strict mode is not enabled, the value is truncated to the nearest legal value and a warning is generated.

• If strict mode is enabled, an overflow error occurs.

Underflow is not detected, so underflow handing is undefined.

By default, division by zero produces a result of NULL and no warning. With the ERROR_FOR_DIVISION_BY_ZERO SQL mode en-
abled, MySQL handles division by zero differently:

• If strict mode is not enabled, a warning occurs.

• If strict mode is enabled, inserts and updates involving division by zero are prohibited, and an error occurs.

In other words, inserts and updates involving expressions that perform division by zero can be treated as errors, but this requires ER-
ROR_FOR_DIVISION_BY_ZERO in addition to strict mode.

Suppose that we have this statement:

INSERT INTO t SET i = 1/0;

This is what happens for combinations of strict and ERROR_FOR_DIVISION_BY_ZERO modes:

sql_mode Value Result

'' (Default) No warning, no error; i is set to NULL.

Precision Math

1396



strict No warning, no error; i is set to NULL.

ERROR_FOR_DIVISION_BY_ZERO Warning, no error; i is set to NULL.

strict,ERROR_FOR_DIVISION_BY_ZERO Error condition; no row is inserted.

For inserts of strings into numeric columns, conversion from string to number is handled as follows if the string has non-numeric con-
tents:

• A string that does not begin with a number cannot be used as a number and produces an error in strict mode, or a warning otherwise.
This includes the empty string.

• A string that begins with a number can be converted, but the trailing non-numeric portion is truncated. If the truncated portion con-
tains anything other than spaces, this produces an error in strict mode, or a warning otherwise.

25.4. Rounding Behavior
This section discusses precision math rounding for the ROUND() function and for inserts into columns with exact-value types (DECIM-
AL and integer).

The ROUND() function rounds differently depending on whether its argument is exact or approximate:

• For exact-value numbers, ROUND() uses the “round half up” rule: A value with a fractional part of .5 or greater is rounded up to the
next integer if positive or down to the next integer if negative. (In other words, it is rounded away from zero.) A value with a frac-
tional part less than .5 is rounded down to the next integer if positive or up to the next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this means that ROUND() uses the “round
to nearest even” rule: A value with any fractional part is rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For inserts into a DECIMAL or integer column, the target is an exact data type, so rounding uses “round half up,” regardless of whether
the value to be inserted is exact or approximate:

mysql> CREATE TABLE t (d DECIMAL(10,0));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t VALUES(2.5),(2.5E0);
Query OK, 2 rows affected, 2 warnings (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 2

mysql> SELECT d FROM t;
+------+
| d |
+------+
| 3 |
| 3 |
+------+

25.5. Precision Math Examples
This section provides some examples that show precision math query results in MySQL 5.1.

Example 1. Numbers are used with their exact value as given when possible:

mysql> SELECT .1 + .2 = .3;
+--------------+
| .1 + .2 = .3 |

Precision Math

1397



+--------------+
| 1 |
+--------------+

For floating-point values, results are inexact:

mysql> SELECT .1E0 + .2E0 = .3E0;
+--------------------+
| .1E0 + .2E0 = .3E0 |
+--------------------+
| 0 |
+--------------------+

Another way to see the difference in exact and approximate value handling is to add a small number to a sum many times. Consider the
following stored procedure, which adds .0001 to a variable 1,000 times.

CREATE PROCEDURE p ()
BEGIN
DECLARE i INT DEFAULT 0;
DECLARE d DECIMAL(10,4) DEFAULT 0;
DECLARE f FLOAT DEFAULT 0;
WHILE i < 10000 DO
SET d = d + .0001;
SET f = f + .0001E0;
SET i = i + 1;

END WHILE;
SELECT d, f;

END;

The sum for both d and f logically should be 1, but that is true only for the decimal calculation. The floating-point calculation intro-
duces small errors:

+--------+------------------+
| d | f |
+--------+------------------+
| 1.0000 | 0.99999999999991 |
+--------+------------------+

Example 2. Multiplication is performed with the scale required by standard SQL. That is, for two numbers X1 and X2 that have scale
S1 and S2, the scale of the result is S1 + S2:

mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+
| 0.0001 |
+-----------+

Example 3. Rounding behavior is well-defined:

Rounding behavior (for example, with the ROUND() function) is independent of the implementation of the underlying C library, which
means that results are consistent from platform to platform.

Rounding for exact-value columns (DECIMAL and integer) and exact-valued numbers uses the “round half up” rule. Values with a frac-
tional part of .5 or greater are rounded away from zero to the nearest integer, as shown here:

mysql> SELECT ROUND(2.5), ROUND(-2.5);
+------------+-------------+
| ROUND(2.5) | ROUND(-2.5) |
+------------+-------------+
| 3 | -3 |
+------------+-------------+

However, rounding for floating-point values uses the C library, which on many systems uses the “round to nearest even” rule. Values
with any fractional part on such systems are rounded to the nearest even integer:

mysql> SELECT ROUND(2.5E0), ROUND(-2.5E0);
+--------------+---------------+
| ROUND(2.5E0) | ROUND(-2.5E0) |
+--------------+---------------+
| 2 | -2 |
+--------------+---------------+

Precision Math

1398



Example 4. In strict mode, inserting a value that is too large results in overflow and causes an error, rather than truncation to a legal
value.

When MySQL is not running in strict mode, truncation to a legal value occurs:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET i = 128;
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| 127 |
+------+
1 row in set (0.00 sec)

Howver, an overflow condition occurs if strict mode is in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 128;
ERROR 1264 (22003): Out of range value adjusted for column 'i' at row 1

mysql> SELECT i FROM t;
Empty set (0.00 sec)

Example 5: In strict mode and with ERROR_FOR_DIVISION_BY_ZERO set, division by zero causes an error, and not a result of
NULL.

In non-strict mode, division by zero has a result of NULL:

mysql> SET sql_mode='';
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| NULL |
+------+
1 row in set (0.03 sec)

However, division by zero is an error if the proper SQL modes are in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
ERROR 1365 (22012): Division by 0

mysql> SELECT i FROM t;
Empty set (0.01 sec)

Example 6. Prior to MySQL 5.0.3 (before precision math was introduced), exact-value and approximate-value literals both are conver-
ted to double-precision floating-point values:

mysql> SELECT VERSION();
+------------+
| VERSION() |

Precision Math

1399



+------------+
| 4.1.18-log |
+------------+
1 row in set (0.01 sec)

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.07 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| a | double(3,1) | | | 0.0 | |
| b | double | | | 0 | |
+-------+-------------+------+-----+---------+-------+
2 rows in set (0.04 sec)

As of MySQL 5.0.3, the approximate-value literal still is converted to floating-point, but the exact-value literal is handled as DECIMAL:

mysql> SELECT VERSION();
+-----------------+
| VERSION() |
+-----------------+
| 5.1.6-alpha-log |
+-----------------+
1 row in set (0.11 sec)

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-----------------------+------+-----+---------+-------+
| a | decimal(2,1) unsigned | NO | | 0.0 | |
| b | double | NO | | 0 | |
+-------+-----------------------+------+-----+---------+-------+
2 rows in set (0.01 sec)

Example 7. If the argument to an aggregate function is an exact numeric type, the result is also an exact numeric type, with a scale at
least that of the argument.

Consider these statements:

mysql> CREATE TABLE t (i INT, d DECIMAL, f FLOAT);
mysql> INSERT INTO t VALUES(1,1,1);
mysql> CREATE TABLE y SELECT AVG(i), AVG(d), AVG(f) FROM t;

Result before MySQL 5.0.3 (prior to the introduction of precision math in MySQL):

mysql> DESCRIBE y;
+--------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
| AVG(i) | double(17,4) | YES | | NULL | |
| AVG(d) | double(17,4) | YES | | NULL | |
| AVG(f) | double | YES | | NULL | |
+--------+--------------+------+-----+---------+-------+

The result is a double no matter the argument type.

Result as of MySQL 5.0.3:

mysql> DESCRIBE y;
+--------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------+------+-----+---------+-------+
| AVG(i) | decimal(14,4) | YES | | NULL | |
| AVG(d) | decimal(14,4) | YES | | NULL | |
| AVG(f) | double | YES | | NULL | |
+--------+---------------+------+-----+---------+-------+

The result is a double only for the floating-point argument. For exact type arguments, the result is also an exact type.

Precision Math

1400



Chapter 26. APIs and Libraries
This chapter describes the APIs available for MySQL, where to get them, and how to use them. The C API is the most extensively
covered, because it was developed by the MySQL team, and is the basis for most of the other APIs. This chapter also covers the
libmysqld library (the embedded server).

26.1. libmysqld, the Embedded MySQL Server Library
The embedded MySQL server library makes it possible to run a full-featured MySQL server inside a client application. The main bene-
fits are increased speed and more simple management for embedded applications.

The embedded server library is based on the client/server version of MySQL, which is written in C/C++. Consequently, the embedded
server also is written in C/C++. There is no embedded server available in other languages.

The API is identical for the embedded MySQL version and the client/server version. To change an old threaded application to use the
embedded library, you normally only have to add calls to the following functions:

Function When to Call

mysql_library_init() Should be called before any other MySQL function is called, preferably early in the main() func-
tion.

mysql_library_end() Should be called before your program exits.

mysql_thread_init() Should be called in each thread you create that accesses MySQL.

mysql_thread_end() Should be called before calling pthread_exit()

Then you must link your code with libmysqld.a instead of libmysqlclient.a. To ensure binary compatibility between your
application and the server library, be sure to compile your application against headers for the same series of MySQL that was used to
compile the server library. For example, if libmysqld was compiled against MySQL 4.1 headers, do not compile your application
against MySQL 5.1 headers, or vice versa.

The mysql_library_xxx() functions are also included in libmysqlclient.a to allow you to change between the embedded
and the client/server version by just linking your application with the right library. See Section 26.2.3.40,
“mysql_library_init()”.

One difference between the embedded server and the standalone server is that for the embedded server, authentication for connections is
disabled by default. To use authentication for the embedded server, specify the --with-embedded-privilege-control option
when you invoke configure to configure your MySQL distribution.

26.1.1. Compiling Programs with libmysqld

In precompiled binary MySQL distributions that include libmysqld, the embedded server library, MySQL builds the library using
the appropriate vendor compiler if there is one.

To get a libmysqld library if you build MySQL from source yourself, you should configure MySQL with the -
-with-embedded-server option. See Section 2.9.2, “Typical configure Options”.

When you link your program with libmysqld, you must also include the system-specific pthread libraries and some libraries that
the MySQL server uses. You can get the full list of libraries by executing mysql_config --libmysqld-libs.

The correct flags for compiling and linking a threaded program must be used, even if you do not directly call any thread functions in
your code.

To compile a C program to include the necessary files to embed the MySQL server library into an executable version of a program, the
compiler will need to know where to find various files and need instructions on how to compile the program. The following example
shows how a program could be compiled from the command line, assuming that you are using gcc, use the GNU C compiler:

gcc mysql_test.c -o mysql_test -lz \
`/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

Immediately following the gcc command is the name of the C program source file. After it, the -o option is given to indicate that the
file name that follows is the name that the compiler is to give to the output file, the compiled program. The next line of code tells the

1401



compiler to obtain the location of the include files and libraries and other settings for the system on which it's compiled. Because of a
problem with mysql_config, the option -lz (for compression) is added here. The mysql_config command is contained in back-
ticks, not single quotes.

On some non-gcc platforms, the embedded library depends on C++ runtime libraries and linking against the embedded library might
result in missing-symbol errors. To solve this, link using a C++ compiler or explicitly list the required libraries on the link command
line.

26.1.2. Restrictions When Using the Embedded MySQL Server
The embedded server has the following limitations:

• No user-defined functions (UDFs).

• No stack trace on core dump.

• You cannot set this up as a master or a slave (no replication).

• Very large result sets may be unusable on low memory systems.

• You cannot connect to an embedded server from an outside process with sockets or TCP/IP. However, you can connect to an inter-
mediate application, which in turn can connect to an embedded server on the behalf of a remote client or outside process.

• InnoDB is not reentrant in the embedded server and cannot be used for multiple connections, either successively or simultaneously.

Some of these limitations can be changed by editing the mysql_embed.h include file and recompiling MySQL.

26.1.3. Options with the Embedded Server
Any options that may be given with the mysqld server daemon, may be used with an embedded server library. Server options may be
given in an array as an argument to the mysql_library_init(), which initializes the server. They also may be given in an option
file like my.cnf. To specify an option file for a C program, use the --defaults-file option as one of the elements of the second
argument of the mysql_library_init() function. See Section 26.2.3.40, “mysql_library_init()”, for more information
on the mysql_library_init() function.

Using option files can make it easier to switch between a client/server application and one where MySQL is embedded. Put common
options under the [server] group. These are read by both MySQL versions. Client/server-specific options should go under the
[mysqld] section. Put options specific to the embedded MySQL server library in the [embedded] section. Options specific to ap-
plications go under section labeled [ApplicationName_SERVER]. See Section 4.2.2.2, “Using Option Files”.

26.1.4. Embedded Server Examples
These two example programs should work without any changes on a Linux or FreeBSD system. For other operating systems, minor
changes are needed, mostly with file paths. These examples are designed to give enough details for you to understand the problem,
without the clutter that is a necessary part of a real application. The first example is very straightforward. The second example is a little
more advanced with some error checking. The first is followed by a command-line entry for compiling the program. The second is fol-
lowed by a GNUmake file that may be used for compiling instead.

Example 1

test1_libmysqld.c

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include "mysql.h"

MYSQL *mysql;
MYSQL_RES *results;
MYSQL_ROW record;

static char *server_options[] = \
{ "mysql_test", "--defaults-file=my.cnf", NULL };

int num_elements = (sizeof(server_options) / sizeof(char *)) - 1;

static char *server_groups[] = { "libmysqld_server",
"libmysqld_client", NULL };

APIs and Libraries

1402



int main(void)
{

mysql_library_init(num_elements, server_options, server_groups);
mysql = mysql_init(NULL);
mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);

mysql_real_connect(mysql, NULL,NULL,NULL, "database1", 0,NULL,0);

mysql_query(mysql, "SELECT column1, column2 FROM table1");

results = mysql_store_result(mysql);

while((record = mysql_fetch_row(results))) {
printf("%s - %s \n", record[0], record[1]);

}

mysql_free_result(results);
mysql_close(mysql);
mysql_library_end();

return 0;
}

Here is the command line for compiling the above program:

gcc test1_libmysqld.c -o test1_libmysqld -lz \
`/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`

Example 2

To try out the example, create an test2_libmysqld directory at the same level as the MySQL source directory. Save the
test2_libmysqld.c source and the GNUmakefile in the directory, and run GNU make from inside the test2_libmysqld
directory.

test2_libmysqld.c

/*
* A simple example client, using the embedded MySQL server library
*/

#include <mysql.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

MYSQL *db_connect(const char *dbname);
void db_disconnect(MYSQL *db);
void db_do_query(MYSQL *db, const char *query);

const char *server_groups[] = {
"test2_libmysqld_SERVER", "embedded", "server", NULL

};

int
main(int argc, char **argv)
{
MYSQL *one, *two;

/* mysql_library_init() must be called before any other mysql
* functions.
*
* You can use mysql_library_init(0, NULL, NULL), and it
* initializes the server using groups = {
* "server", "embedded", NULL
* }.
*
* In your $HOME/.my.cnf file, you probably want to put:

[test2_libmysqld_SERVER]
language = /path/to/source/of/mysql/sql/share/english

* You could, of course, modify argc and argv before passing
* them to this function. Or you could create new ones in any
* way you like. But all of the arguments in argv (except for
* argv[0], which is the program name) should be valid options
* for the MySQL server.
*
* If you link this client against the normal mysqlclient
* library, this function is just a stub that does nothing.
*/
mysql_library_init(argc, argv, (char **)server_groups);

one = db_connect("test");

APIs and Libraries

1403



two = db_connect(NULL);

db_do_query(one, "SHOW TABLE STATUS");
db_do_query(two, "SHOW DATABASES");

mysql_close(two);
mysql_close(one);

/* This must be called after all other mysql functions */
mysql_library_end();

exit(EXIT_SUCCESS);
}

static void
die(MYSQL *db, char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
(void)putc('\n', stderr);
if (db)
db_disconnect(db);

exit(EXIT_FAILURE);
}

MYSQL *
db_connect(const char *dbname)
{
MYSQL *db = mysql_init(NULL);
if (!db)
die(db, "mysql_init failed: no memory");

/*
* Notice that the client and server use separate group names.
* This is critical, because the server does not accept the
* client's options, and vice versa.
*/
mysql_options(db, MYSQL_READ_DEFAULT_GROUP, "test2_libmysqld_CLIENT");
if (!mysql_real_connect(db, NULL, NULL, NULL, dbname, 0, NULL, 0))
die(db, "mysql_real_connect failed: %s", mysql_error(db));

return db;
}

void
db_disconnect(MYSQL *db)
{
mysql_close(db);

}

void
db_do_query(MYSQL *db, const char *query)
{
if (mysql_query(db, query) != 0)
goto err;

if (mysql_field_count(db) > 0)
{
MYSQL_RES *res;
MYSQL_ROW row, end_row;
int num_fields;

if (!(res = mysql_store_result(db)))
goto err;

num_fields = mysql_num_fields(res);
while ((row = mysql_fetch_row(res)))
{
(void)fputs(">> ", stdout);
for (end_row = row + num_fields; row < end_row; ++row)
(void)printf("%s\t", row ? (char*)*row : "NULL");

(void)fputc('\n', stdout);
}
(void)fputc('\n', stdout);
mysql_free_result(res);

}
else
(void)printf("Affected rows: %lld\n", mysql_affected_rows(db));

return;

err:
die(db, "db_do_query failed: %s [%s]", mysql_error(db), query);

}

GNUmakefile

# This assumes the MySQL software is installed in /usr/local/mysql

APIs and Libraries

1404



inc := /usr/local/mysql/include/mysql
lib := /usr/local/mysql/lib

# If you have not installed the MySQL software yet, try this instead
#inc := $(HOME)/mysql-5.1/include
#lib := $(HOME)/mysql-5.1/libmysqld

CC := gcc
CPPFLAGS := -I$(inc) -D_THREAD_SAFE -D_REENTRANT
CFLAGS := -g -W -Wall
LDFLAGS := -static
# You can change -lmysqld to -lmysqlclient to use the
# client/server library
LDLIBS = -L$(lib) -lmysqld -lz -lm -ldl -lcrypt

ifneq (,$(shell grep FreeBSD /COPYRIGHT 2>/dev/null))
# FreeBSD
LDFLAGS += -pthread
else
# Assume Linux
LDLIBS += -lpthread
endif

# This works for simple one-file test programs
sources := $(wildcard *.c)
objects := $(patsubst %c,%o,$(sources))
targets := $(basename $(sources))

all: $(targets)

clean:
rm -f $(targets) $(objects) *.core

26.1.5. Licensing the Embedded Server
We encourage everyone to promote free software by releasing code under the GPL or a compatible license. For those who are not able
to do this, another option is to purchase a commercial license for the MySQL code from MySQL AB. For details, please see ht-
tp://www.mysql.com/company/legal/licensing/.

26.2. MySQL C API
The C API code is distributed with MySQL. It is included in the mysqlclient library and allows C programs to access a database.

Many of the clients in the MySQL source distribution are written in C. If you are looking for examples that demonstrate how to use the
C API, take a look at these clients. You can find these in the clients directory in the MySQL source distribution.

Most of the other client APIs (all except Connector/J and Connector/NET) use the mysqlclient library to communicate with the
MySQL server. This means that, for example, you can take advantage of many of the same environment variables that are used by other
client programs, because they are referenced from the library. See Chapter 4, MySQL Programs, for a list of these variables.

The client has a maximum communication buffer size. The size of the buffer that is allocated initially (16KB) is automatically increased
up to the maximum size (the maximum is 16MB). Because buffer sizes are increased only as demand warrants, simply increasing the
default maximum limit does not in itself cause more resources to be used. This size check is mostly a check for erroneous statements
and communication packets.

The communication buffer must be large enough to contain a single SQL statement (for client-to-server traffic) and one row of returned
data (for server-to-client traffic). Each thread's communication buffer is dynamically enlarged to handle any query or row up to the
maximum limit. For example, if you have BLOB values that contain up to 16MB of data, you must have a communication buffer limit of
at least 16MB (in both server and client). The client's default maximum is 16MB, but the default maximum in the server is 1MB. You
can increase this by changing the value of the max_allowed_packet parameter when the server is started. See Section 7.5.2,
“Tuning Server Parameters”.

The MySQL server shrinks each communication buffer to net_buffer_length bytes after each query. For clients, the size of the
buffer associated with a connection is not decreased until the connection is closed, at which time client memory is reclaimed.

For programming with threads, see Section 26.2.16, “How to Make a Threaded Client”. For creating a standalone application which in-
cludes the "server" and "client" in the same program (and does not communicate with an external MySQL server), see Section 26.1,
“libmysqld, the Embedded MySQL Server Library”.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about using the C API in the Knowledge Base articles,
The C API. Access to the MySQL Knowledge Base collection of articles is one of the advantages of subscribing

APIs and Libraries

1405

http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/
https://kb.mysql.com/search.php?cat=search&pagerRow=0&Category=17


to MySQL Enterprise. For more information see http://www.mysql.com/products/enterprise/advisors.html.

26.2.1. C API Data Types
This section describes C API data types other than those used for prepared statements. For information about the latter, see Sec-
tion 26.2.5, “C API Prepared Statement Data types”.

• MYSQL

This structure represents a handle to one database connection. It is used for almost all MySQL functions. You should not try to make
a copy of a MYSQL structure. There is no guarantee that such a copy will be usable.

• MYSQL_RES

This structure represents the result of a query that returns rows (SELECT, SHOW, DESCRIBE, EXPLAIN). The information returned
from a query is called the result set in the remainder of this section.

• MYSQL_ROW

This is a type-safe representation of one row of data. It is currently implemented as an array of counted byte strings. (You cannot
treat these as null-terminated strings if field values may contain binary data, because such values may contain null bytes internally.)
Rows are obtained by calling mysql_fetch_row().

• MYSQL_FIELD

This structure contains information about a field, such as the field's name, type, and size. Its members are described in more detail
here. You may obtain the MYSQL_FIELD structures for each field by calling mysql_fetch_field() repeatedly. Field values
are not part of this structure; they are contained in a MYSQL_ROW structure.

• MYSQL_FIELD_OFFSET

This is a type-safe representation of an offset into a MySQL field list. (Used by mysql_field_seek().) Offsets are field num-
bers within a row, beginning at zero.

• my_ulonglong

The type used for the number of rows and for mysql_affected_rows(), mysql_num_rows(), and
mysql_insert_id(). This type provides a range of 0 to 1.84e19.

On some systems, attempting to print a value of type my_ulonglong does not work. To print such a value, convert it to un-
signed long and use a %lu print format. Example:

printf ("Number of rows: %lu\n",
(unsigned long) mysql_num_rows(result));

• my_bool

A boolean type, for values that are true (non-zero) or false (zero).

The MYSQL_FIELD structure contains the members listed here:

• char * name

The name of the field, as a null-terminated string. If the field was given an alias with an AS clause, the value of name is the alias.

• char * org_name

The name of the field, as a null-terminated string. Aliases are ignored.

• char * table

The name of the table containing this field, if it isn't a calculated field. For calculated fields, the table value is an empty string. If
the column is selected from a view, table names the view. If the table or view was given an alias with an AS clause, the value of
table is the alias. For a UNION, the value is the empty string.

APIs and Libraries

1406

http://www.mysql.com/products/enterprise/advisors.html


• char * org_table

The name of the table, as a null-terminated string. Aliases are ignored. If the column is selected from a view, org_table names
the underlying table. For a UNION, the value is the empty string.

• char * db

The name of the database that the field comes from, as a null-terminated string. If the field is a calculated field, db is an empty
string. For a UNION, the value is the empty string.

• char * catalog

The catalog name. This value is always "def".

• char * def

The default value of this field, as a null-terminated string. This is set only if you use mysql_list_fields().

• unsigned long length

The width of the field. This corresponds to the display length, in bytes.

• unsigned long max_length

The maximum width of the field for the result set (the length in bytes of the longest field value for the rows actually in the result
set). If you use mysql_store_result() or mysql_list_fields(), this contains the maximum length for the field. If you
use mysql_use_result(), the value of this variable is zero.

The value of max_length is the length of the string representation of the values in the result set. For example, if you retrieve a
FLOAT column and the “widest” value is -12.345, max_length is 7 (the length of '-12.345').

If you are using prepared statements, max_length is not set by default because for the binary protocol the lengths of the values
depend on the types of the values in the result set. (See Section 26.2.5, “C API Prepared Statement Data types”.) If you want the
max_length values anyway, enable the STMT_ATTR_UPDATE_MAX_LENGTH option with mysql_stmt_attr_set() and
the lengths will be set when you call mysql_stmt_store_result(). (See Section 26.2.7.3, “mysql_stmt_attr_set()”,
and Section 26.2.7.27, “mysql_stmt_store_result()”.)

• unsigned int name_length

The length of name.

• unsigned int org_name_length

The length of org_name.

• unsigned int table_length

The length of table.

• unsigned int org_table_length

The length of org_table.

• unsigned int db_length

The length of db.

• unsigned int catalog_length

The length of catalog.

• unsigned int def_length

The length of def.

• unsigned int flags

APIs and Libraries

1407



Different bit-flags for the field. The flags value may have zero or more of the following bits set:

Flag Value Flag Description

NOT_NULL_FLAG Field can't be NULL

PRI_KEY_FLAG Field is part of a primary key

UNIQUE_KEY_FLAG Field is part of a unique key

MULTIPLE_KEY_FLAG Field is part of a non-unique key

UNSIGNED_FLAG Field has the UNSIGNED attribute

ZEROFILL_FLAG Field has the ZEROFILL attribute

BINARY_FLAG Field has the BINARY attribute

AUTO_INCREMENT_FLAG Field has the AUTO_INCREMENT attribute

ENUM_FLAG Field is an ENUM (deprecated)

SET_FLAG Field is a SET (deprecated)

BLOB_FLAG Field is a BLOB or TEXT (deprecated)

TIMESTAMP_FLAG Field is a TIMESTAMP (deprecated)

NO_DEFAULT_VALUE_FLAG Field has no default value; see additional notes following table

Use of the BLOB_FLAG, ENUM_FLAG, SET_FLAG, and TIMESTAMP_FLAG flags is deprecated because they indicate the type of
a field rather than an attribute of its type. It is preferable to test field->type against MYSQL_TYPE_BLOB,
MYSQL_TYPE_ENUM, MYSQL_TYPE_SET, or MYSQL_TYPE_TIMESTAMP instead.

NUM_FLAG indicates that a column is numeric. This includes columns with a type of MYSQL_TYPE_DECIMAL,
MYSQL_TYPE_TINY, MYSQL_TYPE_SHORT, MYSQL_TYPE_LONG, MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE,
MYSQL_TYPE_NULL, MYSQL_TYPE_TIMESTAMP, MYSQL_TYPE_LONGLONG, MYSQL_TYPE_INT24, and
MYSQL_TYPE_YEAR.

NO_DEFAULT_VALUE_FLAG indicates that a column has no DEFAULT clause in its definition. This does not apply to NULL
columns (because such columns have a default of NULL), or to AUTO_INCREMENT columns (which have an implied default value).

The following example illustrates a typical use of the flags value:

if (field->flags & NOT_NULL_FLAG)
printf("Field can't be null\n");

You may use the following convenience macros to determine the boolean status of the flags value:

Flag Status Description

IS_NOT_NULL(flags) True if this field is defined as NOT NULL

IS_PRI_KEY(flags) True if this field is a primary key

IS_BLOB(flags) True if this field is a BLOB or TEXT (deprecated; test field->type instead)

• unsigned int decimals

The number of decimals for numeric fields.

• unsigned int charsetnr

The character set number for the field.

To distinguish between binary and non-binary data for string data types, check whether the charsetnr value is 63. If so, the char-
acter set is binary, which indicates binary rather than non-binary data. This enables you to distinguish BINARY from CHAR,
VARBINARY from VARCHAR, and the BLOB types from the TEXT types.

• enum enum_field_types type

APIs and Libraries

1408



The type of the field. The type value may be one of the MYSQL_TYPE_ symbols shown in the following table.

Type Value Type Description

MYSQL_TYPE_TINY TINYINT field

MYSQL_TYPE_SHORT SMALLINT field

MYSQL_TYPE_LONG INTEGER field

MYSQL_TYPE_INT24 MEDIUMINT field

MYSQL_TYPE_LONGLONG BIGINT field

MYSQL_TYPE_DECIMAL DECIMAL or NUMERIC field

MYSQL_TYPE_NEWDECIMAL Precision math DECIMAL or NUMERIC

MYSQL_TYPE_FLOAT FLOAT field

MYSQL_TYPE_DOUBLE DOUBLE or REAL field

MYSQL_TYPE_BIT BIT field

MYSQL_TYPE_TIMESTAMP TIMESTAMP field

MYSQL_TYPE_DATE DATE field

MYSQL_TYPE_TIME TIME field

MYSQL_TYPE_DATETIME DATETIME field

MYSQL_TYPE_YEAR YEAR field

MYSQL_TYPE_STRING CHAR or BINARY field

MYSQL_TYPE_VAR_STRING VARCHAR or VARBINARY field

MYSQL_TYPE_BLOB BLOB or TEXT field (use max_length to determine the maximum length)

MYSQL_TYPE_SET SET field

MYSQL_TYPE_ENUM ENUM field

MYSQL_TYPE_GEOMETRY Spatial field

MYSQL_TYPE_NULL NULL-type field

You can use the IS_NUM() macro to test whether a field has a numeric type. Pass the type value to IS_NUM() and it evaluates
to TRUE if the field is numeric:

if (IS_NUM(field->type))
printf("Field is numeric\n");

26.2.2. C API Function Overview
The functions available in the C API are summarized here and described in greater detail in a later section. See Section 26.2.3, “C API
Function Descriptions”.

Function Description

my_init() Initialize global variables, and thread handler in thread-safe programs

mysql_affected_rows() Returns the number of rows changed/deleted/inserted by the last UPDATE, DELETE, or
INSERT query

mysql_autocommit() Toggles autocommit mode on/off

mysql_change_user() Changes user and database on an open connection

mysql_character_set_name() Return default character set name for current connection

mysql_close() Closes a server connection

mysql_commit() Commits the transaction

mysql_connect() Connects to a MySQL server (this function is deprecated; use
mysql_real_connect() instead)

APIs and Libraries

1409



mysql_create_db() Creates a database (this function is deprecated; use the SQL statement CREATE DATA-
BASE instead)

mysql_data_seek() Seeks to an arbitrary row number in a query result set

mysql_debug() Does a DBUG_PUSH with the given string

mysql_drop_db() Drops a database (this function is deprecated; use the SQL statement DROP DATABASE
instead)

mysql_dump_debug_info() Makes the server write debug information to the log

mysql_eof() Determines whether the last row of a result set has been read (this function is deprecated;
mysql_errno() or mysql_error() may be used instead)

mysql_errno() Returns the error number for the most recently invoked MySQL function

mysql_error() Returns the error message for the most recently invoked MySQL function

mysql_escape_string() Escapes special characters in a string for use in an SQL statement

mysql_fetch_field() Returns the type of the next table field

mysql_fetch_field_direct() Returns the type of a table field, given a field number

mysql_fetch_fields() Returns an array of all field structures

mysql_fetch_lengths() Returns the lengths of all columns in the current row

mysql_fetch_row() Fetches the next row from the result set

mysql_field_count() Returns the number of result columns for the most recent statement

mysql_field_seek() Puts the column cursor on a specified column

mysql_field_tell() Returns the position of the field cursor used for the last mysql_fetch_field()

mysql_free_result() Frees memory used by a result set

mysql_get_character_set_info
()

Return information about default character set

mysql_get_client_info() Returns client version information as a string

mysql_get_client_version() Returns client version information as an integer

mysql_get_host_info() Returns a string describing the connection

mysql_get_proto_info() Returns the protocol version used by the connection

mysql_get_server_info() Returns the server version number

mysql_get_server_version() Returns version number of server as an integer

mysql_get_ssl_cipher() Return current SSL cipher

mysql_hex_string() Encode string in hexadecimal format

mysql_info() Returns information about the most recently executed query

mysql_init() Gets or initializes a MYSQL structure

mysql_insert_id() Returns the ID generated for an AUTO_INCREMENT column by the previous query

mysql_kill() Kills a given thread

mysql_library_end() Finalize the MySQL C API library

mysql_library_init() Initialize the MySQL C API library

mysql_list_dbs() Returns database names matching a simple regular expression

mysql_list_fields() Returns field names matching a simple regular expression

mysql_list_processes() Returns a list of the current server threads

mysql_list_tables() Returns table names matching a simple regular expression

mysql_more_results() Checks whether any more results exist

mysql_next_result() Returns/initiates the next result in multiple-statement executions

mysql_num_fields() Returns the number of columns in a result set

mysql_num_rows() Returns the number of rows in a result set

mysql_options() Sets connect options for mysql_real_connect()

APIs and Libraries

1410



mysql_ping() Checks whether the connection to the server is working, reconnecting as necessary

mysql_query() Executes an SQL query specified as a null-terminated string

mysql_real_connect() Connects to a MySQL server

mysql_real_escape_string() Escapes special characters in a string for use in an SQL statement, taking into account the
current character set of the connection

mysql_real_query() Executes an SQL query specified as a counted string

mysql_refresh() Flush or reset tables and caches

mysql_reload() Tells the server to reload the grant tables

mysql_rollback() Rolls back the transaction

mysql_row_seek() Seeks to a row offset in a result set, using value returned from mysql_row_tell()

mysql_row_tell() Returns the row cursor position

mysql_select_db() Selects a database

mysql_server_end() Finalize the MySQL C API library

mysql_server_init() Initialize the MySQL C API library

mysql_set_character_set() Set default character set for current connection

mysql_set_local_infile_defau
lt()

Set the LOAD DATA LOCAL INFILE handler callbacks to their default values

mysql_set_local_infile_handl
er()

Install application-specific LOAD DATA LOCAL INFILE handler callbacks

mysql_set_server_option() Sets an option for the connection (like multi-statements)

mysql_sqlstate() Returns the SQLSTATE error code for the last error

mysql_shutdown() Shuts down the database server

mysql_ssl_set() Prepare to establish SSL connection to server

mysql_stat() Returns the server status as a string

mysql_store_result() Retrieves a complete result set to the client

mysql_thread_end() Finalize thread handler

mysql_thread_id() Returns the current thread ID

mysql_thread_init() Initialize thread handler

mysql_thread_safe() Returns 1 if the clients are compiled as thread-safe

mysql_use_result() Initiates a row-by-row result set retrieval

mysql_warning_count() Returns the warning count for the previous SQL statement

Application programs should use this general outline for interacting with MySQL:

1. Initialize the MySQL library by calling mysql_library_init(). This function exists in both the mysqlclient C client
library and the mysqld embedded server library, so it is used whether you build a regular client program by linking with the -
libmysqlclient flag, or an embedded server application by linking with the -libmysqld flag.

2. Initialize a connection handler by calling mysql_init() and connect to the server by calling mysql_real_connect().

3. Issue SQL statements and process their results. (The following discussion provides more information about how to do this.)

4. Close the connection to the MySQL server by calling mysql_close().

5. End use of the MySQL library by calling mysql_library_end().

The purpose of calling mysql_library_init() and mysql_library_end() is to provide proper initialization and finalization
of the MySQL library. For applications that are linked with the client library, they provide improved memory management. If you don't
call mysql_library_end(), a block of memory remains allocated. (This does not increase the amount of memory used by the ap-
plication, but some memory leak detectors will complain about it.) For applications that are linked with the embedded server, these calls

APIs and Libraries

1411



start and stop the server.

In a non-multi-threaded environment, the call to mysql_library_init() may be omitted, because mysql_init() will invoke
it automatically as necessary. However, mysql_library_init() is not thread-safe in a multi-threaded environment, and thus
neither is mysql_init(), which calls mysql_library_init(). You must either call mysql_library_init() prior to
spawning any threads, or else use a mutex to protect the call, whether you invoke mysql_library_init() or indirectly via
mysql_init(). This should be done prior to any other client library call.

To connect to the server, call mysql_init() to initialize a connection handler, then call mysql_real_connect() with that
handler (along with other information such as the hostname, username, and password). Upon connection, mysql_real_connect()
sets the reconnect flag (part of the MYSQL structure) to a value of 1 in versions of the API older than 5.0.3, or 0 in newer versions.
A value of 1 for this flag indicates that if a statement cannot be performed because of a lost connection, to try reconnecting to the server
before giving up. You can use the MYSQL_OPT_RECONNECT option to mysql_options() to control reconnection behavior. When
you are done with the connection, call mysql_close() to terminate it.

While a connection is active, the client may send SQL statements to the server using mysql_query() or mysql_real_query().
The difference between the two is that mysql_query() expects the query to be specified as a null-terminated string whereas
mysql_real_query() expects a counted string. If the string contains binary data (which may include null bytes), you must use
mysql_real_query().

For each non-SELECT query (for example, INSERT, UPDATE, DELETE), you can find out how many rows were changed (affected) by
calling mysql_affected_rows().

For SELECT queries, you retrieve the selected rows as a result set. (Note that some statements are SELECT-like in that they return
rows. These include SHOW, DESCRIBE, and EXPLAIN. They should be treated the same way as SELECT statements.)

There are two ways for a client to process result sets. One way is to retrieve the entire result set all at once by calling
mysql_store_result(). This function acquires from the server all the rows returned by the query and stores them in the client.
The second way is for the client to initiate a row-by-row result set retrieval by calling mysql_use_result(). This function initial-
izes the retrieval, but does not actually get any rows from the server.

In both cases, you access rows by calling mysql_fetch_row(). With mysql_store_result(), mysql_fetch_row() ac-
cesses rows that have previously been fetched from the server. With mysql_use_result(), mysql_fetch_row() actually re-
trieves the row from the server. Information about the size of the data in each row is available by calling
mysql_fetch_lengths().

After you are done with a result set, call mysql_free_result() to free the memory used for it.

The two retrieval mechanisms are complementary. Client programs should choose the approach that is most appropriate for their re-
quirements. In practice, clients tend to use mysql_store_result() more commonly.

An advantage of mysql_store_result() is that because the rows have all been fetched to the client, you not only can access rows
sequentially, you can move back and forth in the result set using mysql_data_seek() or mysql_row_seek() to change the cur-
rent row position within the result set. You can also find out how many rows there are by calling mysql_num_rows(). On the other
hand, the memory requirements for mysql_store_result() may be very high for large result sets and you are more likely to en-
counter out-of-memory conditions.

An advantage of mysql_use_result() is that the client requires less memory for the result set because it maintains only one row at
a time (and because there is less allocation overhead, mysql_use_result() can be faster). Disadvantages are that you must process
each row quickly to avoid tying up the server, you don't have random access to rows within the result set (you can only access rows se-
quentially), and you don't know how many rows are in the result set until you have retrieved them all. Furthermore, you must retrieve
all the rows even if you determine in mid-retrieval that you've found the information you were looking for.

The API makes it possible for clients to respond appropriately to statements (retrieving rows only as necessary) without knowing
whether the statement is a SELECT. You can do this by calling mysql_store_result() after each mysql_query() (or
mysql_real_query()). If the result set call succeeds, the statement was a SELECT and you can read the rows. If the result set call
fails, call mysql_field_count() to determine whether a result was actually to be expected. If mysql_field_count() returns
zero, the statement returned no data (indicating that it was an INSERT, UPDATE, DELETE, and so forth), and was not expected to re-
turn rows. If mysql_field_count() is non-zero, the statement should have returned rows, but didn't. This indicates that the state-
ment was a SELECT that failed. See the description for mysql_field_count() for an example of how this can be done.

Both mysql_store_result() and mysql_use_result() allow you to obtain information about the fields that make up the
result set (the number of fields, their names and types, and so forth). You can access field information sequentially within the row by
calling mysql_fetch_field() repeatedly, or by field number within the row by calling mysql_fetch_field_direct().
The current field cursor position may be changed by calling mysql_field_seek(). Setting the field cursor affects subsequent calls
to mysql_fetch_field(). You can also get information for fields all at once by calling mysql_fetch_fields().

APIs and Libraries

1412



For detecting and reporting errors, MySQL provides access to error information by means of the mysql_errno() and
mysql_error() functions. These return the error code or error message for the most recently invoked function that can succeed or
fail, allowing you to determine when an error occurred and what it was.

26.2.3. C API Function Descriptions
In the descriptions here, a parameter or return value of NULL means NULL in the sense of the C programming language, not a MySQL
NULL value.

Functions that return a value generally return a pointer or an integer. Unless specified otherwise, functions returning a pointer return a
non-NULL value to indicate success or a NULL value to indicate an error, and functions returning an integer return zero to indicate suc-
cess or non-zero to indicate an error. Note that “non-zero” means just that. Unless the function description says otherwise, do not test
against a value other than zero:

if (result) /* correct */
... error ...

if (result < 0) /* incorrect */
... error ...

if (result == -1) /* incorrect */
... error ...

When a function returns an error, the Errors subsection of the function description lists the possible types of errors. You can find out
which of these occurred by calling mysql_errno(). A string representation of the error may be obtained by calling
mysql_error().

MySQL Enterprise
MySQL Enterprise subscribers will find more information about the C API functions in the Knowledge Base art-
icles, The C API. Access to the MySQL Knowledge Base collection of articles is one of the advantages of sub-
scribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

26.2.3.1. mysql_affected_rows()

my_ulonglong mysql_affected_rows(MYSQL *mysql)

Description

After executing a statement with mysql_query() or mysql_real_query(), returns the number of rows changed (for UPDATE),
deleted (for DELETE), or inserted (for INSERT). For SELECT statements, mysql_affected_rows() works like
mysql_num_rows().

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no records were updated for an UP-
DATE statement, no rows matched the WHERE clause in the query or that no query has yet been executed. -1 indicates that the query re-
turned an error or that, for a SELECT query, mysql_affected_rows() was called prior to calling mysql_store_result().
Because mysql_affected_rows() returns an unsigned value, you can check for -1 by comparing the return value to
(my_ulonglong)-1 (or to (my_ulonglong)~0, which is equivalent).

Errors

None.

Example

char *stmt = "UPDATE products SET cost=cost*1.25 WHERE group=10";
mysql_query(&mysql,stmt);
printf("%ld products updated",

(long) mysql_affected_rows(&mysql));

For UPDATE statements, if you specify the CLIENT_FOUND_ROWS flag when connecting to mysqld, mysql_affected_rows()
returns the number of rows matched by the WHERE clause. Otherwise, the default behavior is to return the number of rows actually
changed.

APIs and Libraries

1413

https://kb.mysql.com/search.php?cat=search&pagerRow=0&category=17
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


Note that when you use a REPLACE command, mysql_affected_rows() returns 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

If you use INSERT ... ON DUPLICATE KEY UPDATE to insert a row, mysql_affected_rows() returns 1 if the row is in-
serted as a new row and 2 if an existing row is updated.

26.2.3.2. mysql_autocommit()

my_bool mysql_autocommit(MYSQL *mysql, my_bool mode)

Description

Sets autocommit mode on if mode is 1, off if mode is 0.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

26.2.3.3. mysql_change_user()

my_bool mysql_change_user(MYSQL *mysql, const char *user, const char *password, const char
*db)

Description

Changes the user and causes the database specified by db to become the default (current) database on the connection specified by
mysql. In subsequent queries, this database is the default for table references that do not include an explicit database specifier.

mysql_change_user() fails if the connected user cannot be authenticated or doesn't have permission to use the database. In this
case, the user and database are not changed.

The db parameter may be set to NULL if you don't want to have a default database.

This command resets the state as if one had done a new connect. (See Section 26.2.13, “Controlling Automatic Reconnect Behavior”.) It
always performs a ROLLBACK of any active transactions, closes and drops all temporary tables, and unlocks all locked tables. Session
system variables are reset to the values of the corresponding global system variables. Prepared statements are released and HANDLER
variables are closed. Locks acquired with GET_LOCK() are released. These effects occur even if the user didn't change.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

The same that you can get from mysql_real_connect().

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

APIs and Libraries

1414



• ER_UNKNOWN_COM_ERROR

The MySQL server doesn't implement this command (probably an old server).

• ER_ACCESS_DENIED_ERROR

The user or password was wrong.

• ER_BAD_DB_ERROR

The database didn't exist.

• ER_DBACCESS_DENIED_ERROR

The user did not have access rights to the database.

• ER_WRONG_DB_NAME

The database name was too long.

Example

if (mysql_change_user(&mysql, "user", "password", "new_database"))
{

fprintf(stderr, "Failed to change user. Error: %s\n",
mysql_error(&mysql));

}

26.2.3.4. mysql_character_set_name()

const char *mysql_character_set_name(MYSQL *mysql)

Description

Returns the default character set name for the current connection.

Return Values

The default character set name

Errors

None.

26.2.3.5. mysql_close()

void mysql_close(MYSQL *mysql)

Description

Closes a previously opened connection. mysql_close() also deallocates the connection handle pointed to by mysql if the handle
was allocated automatically by mysql_init() or mysql_connect().

Return Values

None.

Errors

None.

26.2.3.6. mysql_commit()

my_bool mysql_commit(MYSQL *mysql)

APIs and Libraries

1415



Description

Commits the current transaction.

The action of this function is subject to the value of the completion_type system variable. In particular, if the value of comple-
tion_type is 2, the server performs a release after terminating a transaction and closes the client connection. The client program
should call mysql_close() to close the connection from the client side.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

26.2.3.7. mysql_connect()

MYSQL *mysql_connect(MYSQL *mysql, const char *host, const char *user, const char *passwd)

Description

This function is deprecated. Use mysql_real_connect() instead.

mysql_connect() attempts to establish a connection to a MySQL database engine running on host. mysql_connect() must
complete successfully before you can execute any of the other API functions, with the exception of mysql_get_client_info().

The meanings of the parameters are the same as for the corresponding parameters for mysql_real_connect() with the difference
that the connection parameter may be NULL. In this case, the C API allocates memory for the connection structure automatically and
frees it when you call mysql_close(). The disadvantage of this approach is that you can't retrieve an error message if the connec-
tion fails. (To get error information from mysql_errno() or mysql_error(), you must provide a valid MYSQL pointer.)

Return Values

Same as for mysql_real_connect().

Errors

Same as for mysql_real_connect().

26.2.3.8. mysql_create_db()

int mysql_create_db(MYSQL *mysql, const char *db)

Description

Creates the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL CREATE DATABASE statement instead.

Return Values

Zero if the database was created successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

APIs and Libraries

1416



The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

if(mysql_create_db(&mysql, "my_database"))
{

fprintf(stderr, "Failed to create new database. Error: %s\n",
mysql_error(&mysql));

}

26.2.3.9. mysql_data_seek()

void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset)

Description

Seeks to an arbitrary row in a query result set. The offset value is a row number and should be in the range from 0 to
mysql_num_rows(result)-1.

This function requires that the result set structure contains the entire result of the query, so mysql_data_seek() may be used only
in conjunction with mysql_store_result(), not with mysql_use_result().

Return Values

None.

Errors

None.

26.2.3.10. mysql_debug()

void mysql_debug(const char *debug)

Description

Does a DBUG_PUSH with the given string. mysql_debug() uses the Fred Fish debug library. To use this function, you must compile
the client library to support debugging. See MySQL Internals: Porting.

Return Values

None.

Errors

None.

Example

The call shown here causes the client library to generate a trace file in /tmp/client.trace on the client machine:

mysql_debug("d:t:O,/tmp/client.trace");

26.2.3.11. mysql_drop_db()

int mysql_drop_db(MYSQL *mysql, const char *db)

Description

Drops the database named by the db parameter.

APIs and Libraries

1417

http://forge.mysql.com/wiki/MySQL_Internals_Porting


This function is deprecated. It is preferable to use mysql_query() to issue an SQL DROP DATABASE statement instead.

Return Values

Zero if the database was dropped successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

if(mysql_drop_db(&mysql, "my_database"))
fprintf(stderr, "Failed to drop the database: Error: %s\n",

mysql_error(&mysql));

26.2.3.12. mysql_dump_debug_info()

int mysql_dump_debug_info(MYSQL *mysql)

Description

Instructs the server to write some debug information to the log. For this to work, the connected user must have the SUPER privilege.

Return Values

Zero if the command was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.13. mysql_eof()

APIs and Libraries

1418



my_bool mysql_eof(MYSQL_RES *result)

Description

This function is deprecated. mysql_errno() or mysql_error() may be used instead.

mysql_eof() determines whether the last row of a result set has been read.

If you acquire a result set from a successful call to mysql_store_result(), the client receives the entire set in one operation. In
this case, a NULL return from mysql_fetch_row() always means the end of the result set has been reached and it is unnecessary to
call mysql_eof(). When used with mysql_store_result(), mysql_eof() always returns true.

On the other hand, if you use mysql_use_result() to initiate a result set retrieval, the rows of the set are obtained from the server
one by one as you call mysql_fetch_row() repeatedly. Because an error may occur on the connection during this process, a NULL
return value from mysql_fetch_row() does not necessarily mean the end of the result set was reached normally. In this case, you
can use mysql_eof() to determine what happened. mysql_eof() returns a non-zero value if the end of the result set was reached
and zero if an error occurred.

Historically, mysql_eof() predates the standard MySQL error functions mysql_errno() and mysql_error(). Because those
error functions provide the same information, their use is preferred over mysql_eof(), which is deprecated. (In fact, they provide
more information, because mysql_eof() returns only a boolean value whereas the error functions indicate a reason for the error
when one occurs.)

Return Values

Zero if no error occurred. Non-zero if the end of the result set has been reached.

Errors

None.

Example

The following example shows how you might use mysql_eof():

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{

// do something with data
}
if(!mysql_eof(result)) // mysql_fetch_row() failed due to an error
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

However, you can achieve the same effect with the standard MySQL error functions:

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{

// do something with data
}
if(mysql_errno(&mysql)) // mysql_fetch_row() failed due to an error
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

26.2.3.14. mysql_errno()

unsigned int mysql_errno(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_errno() returns the error code for the most recently invoked API function that can
succeed or fail. A return value of zero means that no error occurred. Client error message numbers are listed in the MySQL errmsg.h
header file. Server error message numbers are listed in mysqld_error.h. Errors also are listed at Appendix B, Errors, Error Codes,
and Common Problems.

APIs and Libraries

1419



Note that some functions like mysql_fetch_row() don't set mysql_errno() if they succeed.

A rule of thumb is that all functions that have to ask the server for information reset mysql_errno() if they succeed.

MySQL-specific error numbers returned by mysql_errno() differ from SQLSTATE values returned by mysql_sqlstate().
For example, the mysql client program displays errors using the following format, where 1146 is the mysql_errno() value and
'42S02' is the corresponding mysql_sqlstate() value:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Return Values

An error code value for the last mysql_xxx() call, if it failed. zero means no error occurred.

Errors

None.

26.2.3.15. mysql_error()

const char *mysql_error(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_error() returns a null-terminated string containing the error message for the most
recently invoked API function that failed. If a function didn't fail, the return value of mysql_error() may be the previous error or an
empty string to indicate no error.

A rule of thumb is that all functions that have to ask the server for information reset mysql_error() if they succeed.

For functions that reset mysql_error(), the following two tests are equivalent:

if(*mysql_error(&mysql))
{
// an error occurred

}

if(mysql_error(&mysql)[0])
{
// an error occurred

}

The language of the client error messages may be changed by recompiling the MySQL client library. Currently, you can choose error
messages in several different languages. See Section 9.3, “Setting the Error Message Language”.

Return Values

A null-terminated character string that describes the error. An empty string if no error occurred.

Errors

None.

26.2.3.16. mysql_escape_string()

You should use mysql_real_escape_string() instead!

This function is identical to mysql_real_escape_string() except that mysql_real_escape_string() takes a connec-
tion handler as its first argument and escapes the string according to the current character set. mysql_escape_string() does not
take a connection argument and does not respect the current character set.

26.2.3.17. mysql_fetch_field()

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result)

Description

APIs and Libraries

1420



Returns the definition of one column of a result set as a MYSQL_FIELD structure. Call this function repeatedly to retrieve information
about all columns in the result set. mysql_fetch_field() returns NULL when no more fields are left.

mysql_fetch_field() is reset to return information about the first field each time you execute a new SELECT query. The field re-
turned by mysql_fetch_field() is also affected by calls to mysql_field_seek().

If you've called mysql_query() to perform a SELECT on a table but have not called mysql_store_result(), MySQL returns
the default blob length (8KB) if you call mysql_fetch_field() to ask for the length of a BLOB field. (The 8KB size is chosen be-
cause MySQL doesn't know the maximum length for the BLOB. This should be made configurable sometime.) Once you've retrieved
the result set, field->max_length contains the length of the largest value for this column in the specific query.

Return Values

The MYSQL_FIELD structure for the current column. NULL if no columns are left.

Errors

None.

Example

MYSQL_FIELD *field;

while((field = mysql_fetch_field(result)))
{

printf("field name %s\n", field->name);
}

26.2.3.18. mysql_fetch_field_direct()

MYSQL_FIELD *mysql_fetch_field_direct(MYSQL_RES *result, unsigned int fieldnr)

Description

Given a field number fieldnr for a column within a result set, returns that column's field definition as a MYSQL_FIELD structure.
You may use this function to retrieve the definition for an arbitrary column. The value of fieldnr should be in the range from 0 to
mysql_num_fields(result)-1.

Return Values

The MYSQL_FIELD structure for the specified column.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *field;

num_fields = mysql_num_fields(result);
for(i = 0; i < num_fields; i++)
{

field = mysql_fetch_field_direct(result, i);
printf("Field %u is %s\n", i, field->name);

}

26.2.3.19. mysql_fetch_fields()

MYSQL_FIELD *mysql_fetch_fields(MYSQL_RES *result)

Description

Returns an array of all MYSQL_FIELD structures for a result set. Each structure provides the field definition for one column of the res-
ult set.

APIs and Libraries

1421



Return Values

An array of MYSQL_FIELD structures for all columns of a result set.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *fields;

num_fields = mysql_num_fields(result);
fields = mysql_fetch_fields(result);
for(i = 0; i < num_fields; i++)
{

printf("Field %u is %s\n", i, fields[i].name);
}

26.2.3.20. mysql_fetch_lengths()

unsigned long *mysql_fetch_lengths(MYSQL_RES *result)

Description

Returns the lengths of the columns of the current row within a result set. If you plan to copy field values, this length information is also
useful for optimization, because you can avoid calling strlen(). In addition, if the result set contains binary data, you must use this
function to determine the size of the data, because strlen() returns incorrect results for any field containing null characters.

The length for empty columns and for columns containing NULL values is zero. To see how to distinguish these two cases, see the de-
scription for mysql_fetch_row().

Return Values

An array of unsigned long integers representing the size of each column (not including any terminating null characters). NULL if an er-
ror occurred.

Errors

mysql_fetch_lengths() is valid only for the current row of the result set. It returns NULL if you call it before calling
mysql_fetch_row() or after retrieving all rows in the result.

Example

MYSQL_ROW row;
unsigned long *lengths;
unsigned int num_fields;
unsigned int i;

row = mysql_fetch_row(result);
if (row)
{

num_fields = mysql_num_fields(result);
lengths = mysql_fetch_lengths(result);
for(i = 0; i < num_fields; i++)
{

printf("Column %u is %lu bytes in length.\n",
i, lengths[i]);

}
}

26.2.3.21. mysql_fetch_row()

MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)

Description

Retrieves the next row of a result set. When used after mysql_store_result(), mysql_fetch_row() returns NULL when
there are no more rows to retrieve. When used after mysql_use_result(), mysql_fetch_row() returns NULL when there are

APIs and Libraries

1422



no more rows to retrieve or if an error occurred.

The number of values in the row is given by mysql_num_fields(result). If row holds the return value from a call to
mysql_fetch_row(), pointers to the values are accessed as row[0] to row[mysql_num_fields(result)-1]. NULL val-
ues in the row are indicated by NULL pointers.

The lengths of the field values in the row may be obtained by calling mysql_fetch_lengths(). Empty fields and fields containing
NULL both have length 0; you can distinguish these by checking the pointer for the field value. If the pointer is NULL, the field is
NULL; otherwise, the field is empty.

Return Values

A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve or if an error occurred.

Errors

Note that error is not reset between calls to mysql_fetch_row()

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

MYSQL_ROW row;
unsigned int num_fields;
unsigned int i;

num_fields = mysql_num_fields(result);
while ((row = mysql_fetch_row(result)))
{

unsigned long *lengths;
lengths = mysql_fetch_lengths(result);
for(i = 0; i < num_fields; i++)
{

printf("[%.*s] ", (int) lengths[i],
row[i] ? row[i] : "NULL");

}
printf("\n");

}

26.2.3.22. mysql_field_count()

unsigned int mysql_field_count(MYSQL *mysql)

Description

Returns the number of columns for the most recent query on the connection.

The normal use of this function is when mysql_store_result() returned NULL (and thus you have no result set pointer). In this
case, you can call mysql_field_count() to determine whether mysql_store_result() should have produced a non-empty
result. This allows the client program to take proper action without knowing whether the query was a SELECT (or SELECT-like) state-
ment. The example shown here illustrates how this may be done.

See Section 26.2.14.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

APIs and Libraries

1423



MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{

// error
}
else // query succeeded, process any data returned by it
{

result = mysql_store_result(&mysql);
if (result) // there are rows
{

num_fields = mysql_num_fields(result);
// retrieve rows, then call mysql_free_result(result)

}
else // mysql_store_result() returned nothing; should it have?
{

if(mysql_field_count(&mysql) == 0)
{

// query does not return data
// (it was not a SELECT)
num_rows = mysql_affected_rows(&mysql);

}
else // mysql_store_result() should have returned data
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

}
}

An alternative is to replace the mysql_field_count(&mysql) call with mysql_errno(&mysql). In this case, you are check-
ing directly for an error from mysql_store_result() rather than inferring from the value of mysql_field_count() whether
the statement was a SELECT.

26.2.3.23. mysql_field_seek()

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result, MYSQL_FIELD_OFFSET offset)

Description

Sets the field cursor to the given offset. The next call to mysql_fetch_field() retrieves the field definition of the column associ-
ated with that offset.

To seek to the beginning of a row, pass an offset value of zero.

Return Values

The previous value of the field cursor.

Errors

None.

26.2.3.24. mysql_field_tell()

MYSQL_FIELD_OFFSET mysql_field_tell(MYSQL_RES *result)

Description

Returns the position of the field cursor used for the last mysql_fetch_field(). This value can be used as an argument to
mysql_field_seek().

Return Values

The current offset of the field cursor.

Errors

None.

26.2.3.25. mysql_free_result()

APIs and Libraries

1424



void mysql_free_result(MYSQL_RES *result)

Description

Frees the memory allocated for a result set by mysql_store_result(), mysql_use_result(), mysql_list_dbs(), and
so forth. When you are done with a result set, you must free the memory it uses by calling mysql_free_result().

Do not attempt to access a result set after freeing it.

Return Values

None.

Errors

None.

26.2.3.26. mysql_get_character_set_info()

void mysql_get_character_set_info(MYSQL *mysql, MY_CHARSET_INFO *cs)

Description

This function provides information about the default client character set. The default character set may be changed with the
mysql_set_character_set() function.

Example

This example shows the fields that are available in the MY_CHARSET_INFO structure:

if (!mysql_set_character_set(&mysql, "utf8"))
{

MY_CHARSET_INFO cs;
mysql_get_character_set_info(&mysql, &cs);
printf("character set information:\n");
printf("character set name: %s\n", cs.name);
printf("collation name: %s\n", cs.csname);
printf("comment: %s\n", cs.comment);
printf("directory: %s\n", cs.dir);
printf("multi byte character min. length: %d\n", cs.mbminlen);
printf("multi byte character max. length: %d\n", cs.mbmaxlen);

}

26.2.3.27. mysql_get_client_info()

const char *mysql_get_client_info(void)

Description

Returns a string that represents the client library version.

Return Values

A character string that represents the MySQL client library version.

Errors

None.

26.2.3.28. mysql_get_client_version()

unsigned long mysql_get_client_version(void)

Description

Returns an integer that represents the client library version. The value has the format XYYZZ where X is the major version, YY is the re-
lease level, and ZZ is the version number within the release level. For example, a value of 40102 represents a client library version of
4.1.2.

APIs and Libraries

1425



Return Values

An integer that represents the MySQL client library version.

Errors

None.

26.2.3.29. mysql_get_host_info()

const char *mysql_get_host_info(MYSQL *mysql)

Description

Returns a string describing the type of connection in use, including the server hostname.

Return Values

A character string representing the server hostname and the connection type.

Errors

None.

26.2.3.30. mysql_get_proto_info()

unsigned int mysql_get_proto_info(MYSQL *mysql)

Description

Returns the protocol version used by current connection.

Return Values

An unsigned integer representing the protocol version used by the current connection.

Errors

None.

26.2.3.31. mysql_get_server_info()

const char *mysql_get_server_info(MYSQL *mysql)

Description

Returns a string that represents the server version number.

Return Values

A character string that represents the server version number.

Errors

None.

26.2.3.32. mysql_get_server_version()

unsigned long mysql_get_server_version(MYSQL *mysql)

Description

Returns the version number of the server as an integer.

Return Values

APIs and Libraries

1426



A number that represents the MySQL server version in this format:

major_version*10000 + minor_version *100 + sub_version

For example, 5.1.5 is returned as 50105.

This function is useful in client programs for quickly determining whether some version-specific server capability exists.

Errors

None.

26.2.3.33. mysql_get_ssl_cipher()

const char *mysql_get_ssl_cipher(MYSQL *mysql)

Description

mysql_get_ssl_cipher() returns the SSL cipher used for the given connection to the server. mysql is the connection handler
returned from mysql_init().

This function was added in MySQL 5.1.11.

Return Values

A string naming the SSL cipher used for the connection, or NULL if no cipher is being used.

26.2.3.34. mysql_hex_string()

unsigned long mysql_hex_string(char *to, const char *from, unsigned long length)

Description

This function is used to create a legal SQL string that you can use in an SQL statement. See Section 8.1.1, “Strings”.

The string in from is encoded to hexadecimal format, with each character encoded as two hexadecimal digits. The result is placed in
to and a terminating null byte is appended.

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at least length*2+1 bytes long.
When mysql_hex_string() returns, the contents of to is a null-terminated string. The return value is the length of the encoded
string, not including the terminating null character.

The return value can be placed into an SQL statement using either 0xvalue or X'value' format. However, the return value does not
include the 0x or X'...'. The caller must supply whichever of those is desired.

Example

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table values(");
end = strmov(end,"0x");
end += mysql_hex_string(end,"What's this",11);
end = strmov(end,",0x");
end += mysql_hex_string(end,"binary data: \0\r\n",16);
*end++ = ')';

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{

fprintf(stderr, "Failed to insert row, Error: %s\n",
mysql_error(&mysql));

}

The strmov() function used in the example is included in the mysqlclient library and works like strcpy() but returns a point-
er to the terminating null of the first parameter.

Return Values

The length of the value placed into to, not including the terminating null character.

APIs and Libraries

1427



Errors

None.

26.2.3.35. mysql_info()

const char *mysql_info(MYSQL *mysql)

Description

Retrieves a string providing information about the most recently executed statement, but only for the statements listed here. For other
statements, mysql_info() returns NULL. The format of the string varies depending on the type of statement, as described here. The
numbers are illustrative only; the string contains values appropriate for the statement.

• INSERT INTO ... SELECT ...

String format: Records: 100 Duplicates: 0 Warnings: 0

• INSERT INTO ... VALUES (...),(...),(...)...

String format: Records: 3 Duplicates: 0 Warnings: 0

• LOAD DATA INFILE ...

String format: Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

• ALTER TABLE

String format: Records: 3 Duplicates: 0 Warnings: 0

• UPDATE

String format: Rows matched: 40 Changed: 40 Warnings: 0

Note that mysql_info() returns a non-NULL value for INSERT ... VALUES only for the multiple-row form of the statement
(that is, only if multiple value lists are specified).

Return Values

A character string representing additional information about the most recently executed statement. NULL if no information is available
for the statement.

Errors

None.

26.2.3.36. mysql_init()

MYSQL *mysql_init(MYSQL *mysql)

Description

Allocates or initializes a MYSQL object suitable for mysql_real_connect(). If mysql is a NULL pointer, the function allocates,
initializes, and returns a new object. Otherwise, the object is initialized and the address of the object is returned. If mysql_init() al-
locates a new object, it is freed when mysql_close() is called to close the connection.

Return Values

An initialized MYSQL* handle. NULL if there was insufficient memory to allocate a new object.

Errors

In case of insufficient memory, NULL is returned.

APIs and Libraries

1428



26.2.3.37. mysql_insert_id()

my_ulonglong mysql_insert_id(MYSQL *mysql)

Description

Returns the value generated for an AUTO_INCREMENT column by the previous INSERT or UPDATE statement. Use this function after
you have performed an INSERT statement into a table that contains an AUTO_INCREMENT field, or have used INSERT or UPDATE to
set a column value with LAST_INSERT_ID(expr).

The return value of mysql_insert_id() is always zero unless explicitly updated under one of the following conditions:

• INSERT statements that store a value into an AUTO_INCREMENT column. This is true whether the value is automatically generated
by storing the special values NULL or 0 into the column, or is an explicit non-special value.

• In the case of a multiple-row INSERT statement, the return value of mysql_insert_id() depends on the MySQL server ver-
sion.

In MySQL 5.1.12 and later, mysql_insert_id() returns the first automatically generated AUTO_INCREMENT value that was
successfully inserted. In MySQL 5.1.11 and earlier, mysql_insert_id() returns the first automatically generated
AUTO_INCREMENT value, regardless of whether insertion of that value was successful.

If no rows are successfully inserted, mysql_insert_id() returns 0.

• Starting in MySQL 5.1.12, if an INSERT ... SELECT statement is executed, and no automatically generated value is success-
fully inserted, mysql_insert_id() returns the ID of the last inserted row.

• Starting in MySQL 5.1.12, if an INSERT ... SELECT statement uses LAST_INSERT_ID(expr), mysql_insert_id()
returns expr.

• INSERT statements that generate an AUTO_INCREMENT value by inserting LAST_INSERT_ID(expr) into any column or by
updating any column to LAST_INSERT_ID(expr).

• If the previous statement returned an error, the value of mysql_insert_id() is undefined.

For 5.1.12 and later, the return value of mysql_insert_id() can be simplified to the following sequence:

1. If there is an AUTO_INCREMENT column, and an automatically generated value was successfully inserted, return the first such
value.

2. If LAST_INSERT_ID(expr) occurred in the statement, return expr, even if there was an AUTO_INCREMENT column in the
affected table.

3. The return value varies depending on the statement used. When called after an INSERT statement:

• If there is an AUTO_INCREMENT column in the table, and there were some explicit values for this column that were success-
fully inserted into the table, return the last of the explicit values.

When called after an INSERT ... ON DUPLICATE KEY statement:

• If there is an AUTO_INCREMENT column in the table and there were some explicit succesfully inserted values, or some up-
dated rows, return the last of the inserted or updated values.

mysql_insert_id() returns 0 if the previous statement does not use an AUTO_INCREMENT value. If you need to save the value
for later, be sure to call mysql_insert_id() immediately after the statement that generates the value.

The value of mysql_insert_id() is affected only by statements issued within the current client connection. It is not affected by
statements issued by other clients.

The LAST_INSERT_ID() SQL function returns the value of the first automatically generated value that was successfully inserted
(starting from 5.1.12) or the first automatically generated value if any rows were successfully inserted (before 5.1.12).
LAST_INSERT_ID() is not reset between statements because the value of that function is maintained in the server. Another differ-

APIs and Libraries

1429



ence from mysql_insert_id() is that LAST_INSERT_ID() is not updated if you set an AUTO_INCREMENT column to a specif-
ic non-special value. See Section 11.11.3, “Information Functions”.

The reason for the differences between LAST_INSERT_ID() and mysql_insert_id() is that LAST_INSERT_ID() is made
easy to use in scripts while mysql_insert_id() tries to provide more exact information about what happens to the
AUTO_INCREMENT column.

Return Values

Described in the preceding discussion.

Errors

None.

26.2.3.38. mysql_kill()

int mysql_kill(MYSQL *mysql, unsigned long pid)

Description

Asks the server to kill the thread specified by pid.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL KILL statement instead.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.39. mysql_library_end()

void mysql_library_end(void)

Description

This function finalizes the MySQL library. You should call it when you are done using the library (for example, after disconnecting
from the server). The action taken by the call depends on whether your application is linked to the MySQL client library or the MySQL
embedded server library. For a client program linked against the libmysqlclient library by using the -lmysqlclient flag,
mysql_library_end() performs some memory management to clean up. For an embedded server application linked against the
libmysqld library by using the -lmysqld flag, mysql_library_end() shuts down the embedded server and then cleans up.

See Section 26.2.2, “C API Function Overview”, and Section 26.2.3.40, “mysql_library_init()”, for usage information.

26.2.3.40. mysql_library_init()

int mysql_library_init(int argc, char **argv, char **groups)

APIs and Libraries

1430



Description

This function should be called to initialize the MySQL library before you call any other MySQL function. If your application uses the
embedded server, this call starts the server and initializes any subsystems (mysys, InnoDB, and so forth) that the server uses.

In a non-multi-threaded environment, the call to mysql_library_init() may be omitted, because mysql_init() will invoke
it automatically as necessary. However, mysql_library_init() is not thread-safe in a multi-threaded environment, and thus
neither is mysql_init(), which calls mysql_library_init(). You must either call mysql_library_init() prior to
spawning any threads, or else use a mutex to protect the call, whether you invoke mysql_library_init() or indirectly via
mysql_init(). This should be done prior to any other client library call.

After your application is done using the MySQL library, call mysql_library_end() to clean up. See Section 26.2.3.39,
“mysql_library_end()”.

The argc and argv arguments are analogous to the arguments to main(). The first element of argv is ignored (it typically contains
the program name). For convenience, argc may be 0 (zero) if there are no command-line arguments for the server.
mysql_library_init() makes a copy of the arguments so it is safe to destroy argv or groups after the call.

If you want to connect to an external server without starting the embedded server, you have to specify a negative value for argc.

The groups argument should be an array of strings that indicate the groups in option files from which options should be read. See Sec-
tion 4.2.2.2, “Using Option Files”. The final entry in the array should be NULL. For convenience, if the groups argument itself is
NULL, the [server] and [embedded] groups are used by default.

See Section 26.2.2, “C API Function Overview”, for additional usage information.

Example

#include <mysql.h>
#include <stdlib.h>

static char *server_args[] = {
"this_program", /* this string is not used */
"--datadir=.",
"--key_buffer_size=32M"

};
static char *server_groups[] = {
"embedded",
"server",
"this_program_SERVER",
(char *)NULL

};

int main(void) {
if (mysql_library_init(sizeof(server_args) / sizeof(char *),

server_args, server_groups)) {
fprintf(stderr, "could not initialize MySQL library\n");
exit(1);

}

/* Use any MySQL API functions here */

mysql_library_end();

return EXIT_SUCCESS;
}

Return Values

Zero if successful. Non-zero if an error occurred.

26.2.3.41. mysql_list_dbs()

MYSQL_RES *mysql_list_dbs(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of database names on the server that match the simple regular expression specified by the wild paramet-
er. wild may contain the wildcard characters “%” or “_”, or may be a NULL pointer to match all databases. Calling
mysql_list_dbs() is similar to executing the query SHOW databases [LIKE wild].

You must free the result set with mysql_free_result().

APIs and Libraries

1431



Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.42. mysql_list_fields()

MYSQL_RES *mysql_list_fields(MYSQL *mysql, const char *table, const char *wild)

Description

Returns a result set consisting of field names in the given table that match the simple regular expression specified by the wild paramet-
er. wild may contain the wildcard characters “%” or “_”, or may be a NULL pointer to match all fields. Calling
mysql_list_fields() is similar to executing the query SHOW COLUMNS FROM tbl_name [LIKE wild].

Note that it's recommended that you use SHOW COLUMNS FROM tbl_name instead of mysql_list_fields().

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

APIs and Libraries

1432



26.2.3.43. mysql_list_processes()

MYSQL_RES *mysql_list_processes(MYSQL *mysql)

Description

Returns a result set describing the current server threads. This is the same kind of information as that reported by mysqladmin pro-
cesslist or a SHOW PROCESSLIST query.

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.44. mysql_list_tables()

MYSQL_RES *mysql_list_tables(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of table names in the current database that match the simple regular expression specified by the wild
parameter. wild may contain the wildcard characters “%” or “_”, or may be a NULL pointer to match all tables. Calling
mysql_list_tables() is similar to executing the query SHOW tables [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

APIs and Libraries

1433



• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.45. mysql_more_results()

my_bool mysql_more_results(MYSQL *mysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or when you execute CALL state-
ments, which can return multiple result sets.

mysql_more_results() true if more results exist from the currently executed statement, in which case the application must call
mysql_next_result() to fetch the results.

Return Values

TRUE (1) if more results exist. FALSE (0) if no more results exist.

In most cases, you can call mysql_next_result() instead to test whether more results exist and initiate retrieval if so.

See Section 26.2.9, “C API Handling of Multiple Statement Execution”, and Section 26.2.3.46, “mysql_next_result()”.

Errors

None.

26.2.3.46. mysql_next_result()

int mysql_next_result(MYSQL *mysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or when you execute CALL state-
ments, which can return multiple result sets.

If more statement results exist, mysql_next_result() reads the next statement result and returns the status back to the application.

Before calling mysql_next_result(), you must call mysql_free_result() for the preceding statement if it is a query that
returned a result set.

After calling mysql_next_result() the state of the connection is as if you had called mysql_real_query() or
mysql_query() for the next statement. This means that you can call mysql_store_result(), mysql_warning_count(),
mysql_affected_rows(), and so forth.

If mysql_next_result() returns an error, no other statements are executed and there are no more results to fetch.

If your program executes stored procedures with the CALL SQL statement, you must set the CLIENT_MULTI_RESULTS flag expli-
citly, or implicitly by setting CLIENT_MULTI_STATEMENTS when you call mysql_real_connect(). This is because each
CALL returns a result to indicate the call status, in addition to any results sets that might be returned by statements executed within the
procedure. In addition, because CALL can return multiple results, you should process those results using a loop that calls
mysql_next_result() to determine whether there are more results.

For an example that shows how to use mysql_next_result(), see Section 26.2.9, “C API Handling of Multiple Statement Execu-
tion”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results

>0 An error occurred

APIs and Libraries

1434



Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order. For example if you didn't call mysql_use_result() for a previous result set.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.47. mysql_num_fields()

unsigned int mysql_num_fields(MYSQL_RES *result)

To pass a MYSQL* argument instead, use unsigned int mysql_field_count(MYSQL *mysql).

Description

Returns the number of columns in a result set.

Note that you can get the number of columns either from a pointer to a result set or to a connection handle. You would use the connec-
tion handle if mysql_store_result() or mysql_use_result() returned NULL (and thus you have no result set pointer). In
this case, you can call mysql_field_count() to determine whether mysql_store_result() should have produced a non-
empty result. This allows the client program to take proper action without knowing whether the query was a SELECT (or SELECT-like)
statement. The example shown here illustrates how this may be done.

See Section 26.2.14.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{

// error
}
else // query succeeded, process any data returned by it
{

result = mysql_store_result(&mysql);
if (result) // there are rows
{

num_fields = mysql_num_fields(result);
// retrieve rows, then call mysql_free_result(result)

}
else // mysql_store_result() returned nothing; should it have?
{

if (mysql_errno(&mysql))
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}
else if (mysql_field_count(&mysql) == 0)
{

// query does not return data

APIs and Libraries

1435



// (it was not a SELECT)
num_rows = mysql_affected_rows(&mysql);

}
}

}

An alternative (if you know that your query should have returned a result set) is to replace the mysql_errno(&mysql) call with a
check whether mysql_field_count(&mysql) returns 0. This happens only if something went wrong.

26.2.3.48. mysql_num_rows()

my_ulonglong mysql_num_rows(MYSQL_RES *result)

Description

Returns the number of rows in the result set.

The use of mysql_num_rows() depends on whether you use mysql_store_result() or mysql_use_result() to return
the result set. If you use mysql_store_result(), mysql_num_rows() may be called immediately. If you use
mysql_use_result(), mysql_num_rows() does not return the correct value until all the rows in the result set have been re-
trieved.

mysql_num_rows() is intended for use with statements that return a result set, such as SELECT. For statements such as INSERT,
UPDATE, or DELETE, the number of affected rows can be obtained with mysql_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

26.2.3.49. mysql_options()

int mysql_options(MYSQL *mysql, enum mysql_option option, const void *arg)

Description

Can be used to set extra connect options and affect behavior for a connection. This function may be called multiple times to set several
options.

mysql_options() should be called after mysql_init() and before mysql_connect() or mysql_real_connect().

The option argument is the option that you want to set; the arg argument is the value for the option. If the option is an integer, arg
should point to the value of the integer.

The following list describes the possible options, their effect, and how arg is used for each option. Several of the options apply only
when the application is linked against the libmysqld embedded server library and are unused for applications linked against the
libmysql client library. For option descriptions that indicate arg is unused, its value is irrelevant; it is conventional to pass 0.

• MYSQL_INIT_COMMAND (argument type: char *)

Statement to execute when connecting to the MySQL server. Automatically re-executed if reconnection occurs.

• MYSQL_OPT_COMPRESS (argument: not used)

Use the compressed client/server protocol.

• MYSQL_OPT_CONNECT_TIMEOUT (argument type: unsigned int *)

Connect timeout in seconds.

• MYSQL_OPT_GUESS_CONNECTION (argument: not used)

APIs and Libraries

1436



For an application linked against the libmysqld embedded server library, this allows the library to guess whether to use the em-
bedded server or a remote server. “Guess” means that if the hostname is set and is not localhost, it uses a remote server. This
behavior is the default. MYSQL_OPT_USE_EMBEDDED_CONNECTION and MYSQL_OPT_USE_REMOTE_CONNECTION can be
used to override it. This option is ignored for applications linked against the libmysqlclient client library.

• MYSQL_OPT_LOCAL_INFILE (argument type: optional pointer to unsigned int)

If no pointer is given or if pointer points to an unsigned int that has a non-zero value, the LOAD LOCAL INFILE statement
is enabled.

• MYSQL_OPT_NAMED_PIPE (argument: not used)

Use named pipes to connect to a MySQL server on Windows, if the server allows named-pipe connections.

• MYSQL_OPT_PROTOCOL (argument type: unsigned int *)

Type of protocol to use. Should be one of the enum values of mysql_protocol_type defined in mysql.h.

• MYSQL_OPT_READ_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for attempts to read from the server. Each attempt uses this timeout value and there are retries if necessary,
so the total effective timeout value is three times the option value. You can set the value so that a lost connection can be detected
earlier than the TCP/IP Close_Wait_Timeout value of 10 minutes. This option works only for TCP/IP connections, and only
for Windows prior to MySQL 5.1.12.

• MYSQL_OPT_RECONNECT (argument type: my_bool *)

Enable or disable automatic reconnection to the server if the connection is found to have been lost. Reconnect is off by default; this
option provides a way to set reconnection behavior explicitly.

Note: mysql_real_connect() incorrectly reset the MYSQL_OPT_RECONNECT option to its default value before MySQL
5.1.6. Therefore, prior to that version, if you want reconnect to be enabled for each connection, you must call mysql_options()
with the MYSQL_OPT_RECONNECT option after each call to mysql_real_connect(). This is not necessary as of 5.1.6: Call
mysql_options() only before mysql_real_connect() as usual.

• MYSQL_OPT_SET_CLIENT_IP (argument type: char *)

For an application linked against the libmysqld embedded server library (when libmysqld is compiled with authentication
support), this means that the user is considered to have connected from the specified IP address (specified as a string) for authentica-
tion purposes. This option is ignored for applications linked against the libmysqlclient client library.

• MYSQL_OPT_SSL_VERIFY_SERVER_CERT (argument type: my_bool *)

Enable or disable verification of the server's Common Name value in its certificate against the hostname used when connecting to
the server. The connection is rejected if there is a mismatch. This feature can be used to prevent man-in-the-middle attacks. Verific-
ation is disabled by default. Added in MySQL 5.1.11.

• MYSQL_OPT_USE_EMBEDDED_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this forces the use of the embedded server for the con-
nection. This option is ignored for applications linked against the libmysqlclient client library.

• MYSQL_OPT_USE_REMOTE_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this forces the use of a remote server for the connec-
tion. This option is ignored for applications linked against the libmysqlclient client library.

• MYSQL_OPT_USE_RESULT (argument: not used)

This option is unused.

• MYSQL_OPT_WRITE_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for attempts to write to the server. This option works only for TCP/IP connections, and only for Windows
prior to MySQL 5.1.12.

APIs and Libraries

1437



• MYSQL_READ_DEFAULT_FILE (argument type: char *)

Read options from the named option file instead of from my.cnf.

• MYSQL_READ_DEFAULT_GROUP (argument type: char *)

Read options from the named group from my.cnf or the file specified with MYSQL_READ_DEFAULT_FILE.

• MYSQL_REPORT_DATA_TRUNCATION (argument type: my_bool *)

Enable or disable reporting of data truncation errors for prepared statements via the error member of MYSQL_BIND structures.
(Default: enabled.)

• MYSQL_SECURE_AUTH (argument type: my_bool *)

Whether to connect to a server that does not support the password hashing used in MySQL 4.1.1 and later.

• MYSQL_SET_CHARSET_DIR (argument type: char *)

The pathname to the directory that contains character set definition files.

• MYSQL_SET_CHARSET_NAME (argument type: char *)

The name of the character set to use as the default character set.

• MYSQL_SHARED_MEMORY_BASE_NAME (argument type: char *)

The name of the shared-memory object for communication to the server on Windows, if the server supports shared-memory connec-
tions. Should have the same value as the --shared-memory-base-name option used for the mysqld server you want to con-
nect to.

The client group is always read if you use MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP.

The specified group in the option file may contain the following options:

Option Description

character-sets-dir=path The directory where character sets are installed.

compress Use the compressed client/server protocol.

connect-timeout=seconds Connect timeout in seconds. On Linux this timeout is also used for waiting for the first
answer from the server.

database=db_name Connect to this database if no database was specified in the connect command.

debug Debug options.

default-character-set=char-
set_name

The default character set to use.

disable-local-infile Disable use of LOAD DATA LOCAL.

host=host_name Default hostname.

init-command=stmt Statement to execute when connecting to MySQL server. Automatically re-executed if
reconnection occurs.

interactive-timeout=seconds Same as specifying CLIENT_INTERACTIVE to mysql_real_connect(). See
Section 26.2.3.52, “mysql_real_connect()”.

local-infile[={0|1}] If no argument or non-zero argument, enable use of LOAD DATA LOCAL; otherwise
disable.

max_allowed_packet=bytes Maximum size of packet that client can read from server.

multi-queries, multi-results Allow multiple result sets from multiple-statement executions or stored procedures.

multi-statements Allow the client to send multiple statements in a single string (separated by “;”).

password=password Default password.

pipe Use named pipes to connect to a MySQL server on Windows.

APIs and Libraries

1438



port=port_num Default port number.

pro-
tocol={TCP|SOCKET|PIPE|MEMORY}

The protocol to use when connecting to the server.

return-found-rows Tell mysql_info() to return found rows instead of updated rows when using UP-
DATE.

shared-memory-base-name=name Shared-memory name to use to connect to server.

socket=path Default socket file.

ssl-ca=file_name Certificate Authority file.

ssl-capath=path Certificate Authority directory.

ssl-cert=file_name Certificate file.

ssl-cipher=cipher_list Allowable SSL ciphers.

ssl-key=file_name Key file.

timeout=seconds Like connect-timeout.

user Default user.

timeout has been replaced by connect-timeout, but timeout is still supported in MySQL 5.1 for backward compatibility.

For more information about option files, see Section 4.2.2.2, “Using Option Files”.

Before MySQL 5.1.18, the arg argument was declared as char *.

Return Values

Zero for success. Non-zero if you specify an unknown option.

Example

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_COMPRESS,0);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"odbc");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{

fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));

}

This code requests that the client use the compressed client/server protocol and read the additional options from the odbc section in the
my.cnf file.

26.2.3.50. mysql_ping()

int mysql_ping(MYSQL *mysql)

Description

Checks whether the connection to the server is working. If the connection has gone down, an attempt to reconnect is made unless auto-
reconnect is disabled.

This function can be used by clients that remain idle for a long while, to check whether the server has closed the connection and recon-
nect if necessary.

Return Values

Zero if the connection to the server is alive. Non-zero if an error occurred. A non-zero return does not indicate whether the MySQL
server itself is down; the connection might be broken for other reasons such as network problems.

Errors

APIs and Libraries

1439



• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.51. mysql_query()

int mysql_query(MYSQL *mysql, const char *stmt_str)

Description

Executes the SQL statement pointed to by the null-terminated string stmt_str. Normally, the string must consist of a single SQL
statement and you should not add a terminating semicolon (“;”) or \g to the statement. If multiple-statement execution has been en-
abled, the string can contain several statements separated by semicolons. See Section 26.2.9, “C API Handling of Multiple Statement
Execution”.

mysql_query() cannot be used for statements that contain binary data; you must use mysql_real_query() instead. (Binary
data may contain the “\0” character, which mysql_query() interprets as the end of the statement string.)

If you want to know whether the statement should return a result set, you can use mysql_field_count() to check for this. See
Section 26.2.3.22, “mysql_field_count()”.

Return Values

Zero if the statement was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.52. mysql_real_connect()

MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, const char *user, const char
*passwd, const char *db, unsigned int port, const char *unix_socket, unsigned long cli-
ent_flag)

Description

mysql_real_connect() attempts to establish a connection to a MySQL database engine running on host.
mysql_real_connect() must complete successfully before you can execute any other API functions that require a valid MYSQL
connection handle structure.

APIs and Libraries

1440



The parameters are specified as follows:

• The first parameter should be the address of an existing MYSQL structure. Before calling mysql_real_connect() you must
call mysql_init() to initialize the MYSQL structure. You can change a lot of connect options with the mysql_options()
call. See Section 26.2.3.49, “mysql_options()”.

• The value of host may be either a hostname or an IP address. If host is NULL or the string "localhost", a connection to the
local host is assumed: For Windows, the client connects using a shared-memory connection, if the server has shared-memory con-
nections enabled. Otherwise, TCP/IP is used. For Unix, the client connects using a Unix socket file. For local connections, you can
also influence the type of connection to use with the MYSQL_OPT_PROTOCOL or MYSQL_OPT_NAMED_PIPE options to
mysql_options(). The type of connection must be supported by the server. For a host value of "." on Windows, the client
connects using a named pipe, if the server has named-pipe connections enabled. If named-pipe connections are not enabled, an error
occurs.

• The user parameter contains the user's MySQL login ID. If user is NULL or the empty string "", the current user is assumed.
Under Unix, this is the current login name. Under Windows ODBC, the current username must be specified explicitly. See the My-
ODBC section of Chapter 27, Connectors.

• The passwd parameter contains the password for user. If passwd is NULL, only entries in the user table for the user that have
a blank (empty) password field are checked for a match. This allows the database administrator to set up the MySQL privilege sys-
tem in such a way that users get different privileges depending on whether they have specified a password.

Note

Do not attempt to encrypt the password before calling mysql_real_connect(); password encryption is handled auto-
matically by the client API.

• The user and passwd parameters use whatever character set has been configured for the MYSQL object. By default, this is lat-
in1, but can be changed by calling mysql_options(mysql, MYSQL_SET_CHARSET_NAME, "charset_name") prior
to connecting.

• db is the database name. If db is not NULL, the connection sets the default database to this value.

• If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the host parameter determines the type
of the connection.

• If unix_socket is not NULL, the string specifies the socket or named pipe that should be used. Note that the host parameter de-
termines the type of the connection.

• The value of client_flag is usually 0, but can be set to a combination of the following flags to enable certain features:

Flag Name Flag Description

CLIENT_COMPRESS Use compression protocol.

CLIENT_FOUND_ROWS Return the number of found (matched) rows, not the number of changed rows.

CLIENT_IGNORE_SIGPIPE Prevents the client library from installing a SIGPIPE signal handler. This can be used
to avoid conflicts with a handler that the application has already installed.

CLIENT_IGNORE_SPACE Allow spaces after function names. Makes all functions names reserved words.

CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead of wait_timeout seconds) of
inactivity before closing the connection. The client's session wait_timeout variable
is set to the value of the session interactive_timeout variable.

CLIENT_LOCAL_FILES Enable LOAD DATA LOCAL handling.

CLIENT_MULTI_RESULTS Tell the server that the client can handle multiple result sets from multiple-statement
executions or stored procedures. This is automatically set if CLI-
ENT_MULTI_STATEMENTS is set. See the note following this table for more inform-
ation about this flag.

CLIENT_MULTI_STATEMENTS Tell the server that the client may send multiple statements in a single string (separated
by “;”). If this flag is not set, multiple-statement execution is disabled. See the note
following this table for more information about this flag.

CLIENT_NO_SCHEMA Don't allow the db_name.tbl_name.col_name syntax. This is for ODBC. It
causes the parser to generate an error if you use that syntax, which is useful for trap-

APIs and Libraries

1441



ping bugs in some ODBC programs.

CLIENT_ODBC Unused.

CLIENT_SSL Use SSL (encrypted protocol). This option should not be set by application programs;
it is set internally in the client library. Instead, use mysql_ssl_set() before calling
mysql_real_connect().

If your program uses the CALL SQL statement to execute stored procedures that produce result sets, you must set the CLI-
ENT_MULTI_RESULTS flag, either explicitly, or implicitly by setting CLIENT_MULTI_STATEMENTS when you call
mysql_real_connect(). This is because each such stored procedure produces multiple results: the result sets returned by state-
ments executed within the procedure, as well as a result to indicate the call status.

If you enable CLIENT_MULTI_STATEMENTS or CLIENT_MULTI_RESULTS, you should process the result for every call to
mysql_query() or mysql_real_query() by using a loop that calls mysql_next_result() to determine whether there are
more results. For an example, see Section 26.2.9, “C API Handling of Multiple Statement Execution”.

For some parameters, it is possible to have the value taken from an option file rather than from an explicit value in the
mysql_real_connect() call. To do this, call mysql_options() with the MYSQL_READ_DEFAULT_FILE or
MYSQL_READ_DEFAULT_GROUP option before calling mysql_real_connect(). Then, in the mysql_real_connect()
call, specify the “no-value” value for each parameter to be read from an option file:

• For host, specify a value of NULL or the empty string ("").

• For user, specify a value of NULL or the empty string.

• For passwd, specify a value of NULL. (For the password, a value of the empty string in the mysql_real_connect() call can-
not be overridden in an option file, because the empty string indicates explicitly that the MySQL account must have an empty pass-
word.)

• For db, specify a value of NULL or the empty string.

• For port, specify a value of 0.

• For unix_socket, specify a value of NULL.

If no value is found in an option file for a parameter, its default value is used as indicated in the descriptions given earlier in this section.

Return Values

A MYSQL* connection handle if the connection was successful, NULL if the connection was unsuccessful. For a successful connection,
the return value is the same as the value of the first parameter.

Errors

• CR_CONN_HOST_ERROR

Failed to connect to the MySQL server.

• CR_CONNECTION_ERROR

Failed to connect to the local MySQL server.

• CR_IPSOCK_ERROR

Failed to create an IP socket.

• CR_OUT_OF_MEMORY

Out of memory.

APIs and Libraries

1442



• CR_SOCKET_CREATE_ERROR

Failed to create a Unix socket.

• CR_UNKNOWN_HOST

Failed to find the IP address for the hostname.

• CR_VERSION_ERROR

A protocol mismatch resulted from attempting to connect to a server with a client library that uses a different protocol version.

• CR_NAMEDPIPEOPEN_ERROR

Failed to create a named pipe on Windows.

• CR_NAMEDPIPEWAIT_ERROR

Failed to wait for a named pipe on Windows.

• CR_NAMEDPIPESETSTATE_ERROR

Failed to get a pipe handler on Windows.

• CR_SERVER_LOST

If connect_timeout > 0 and it took longer than connect_timeout seconds to connect to the server or if the server died
while executing the init-command.

Example

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"your_prog_name");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{

fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));

}

By using mysql_options() the MySQL library reads the [client] and [your_prog_name] sections in the my.cnf file
which ensures that your program works, even if someone has set up MySQL in some non-standard way.

Note that upon connection, mysql_real_connect() sets the reconnect flag (part of the MYSQL structure) to a value of 1 in
versions of the API older than 5.0.3, or 0 in newer versions. A value of 1 for this flag indicates that if a statement cannot be performed
because of a lost connection, to try reconnecting to the server before giving up. You can use the MYSQL_OPT_RECONNECT option to
mysql_options() to control reconnection behavior.

26.2.3.53. mysql_real_escape_string()

unsigned long mysql_real_escape_string(MYSQL *mysql, char *to, const char *from, unsigned
long length)

Note that mysql must be a valid, open connection. This is needed because the escaping depends on the character set in use by the serv-
er.

Description

This function is used to create a legal SQL string that you can use in an SQL statement. See Section 8.1.1, “Strings”.

The string in from is encoded to an escaped SQL string, taking into account the current character set of the connection. The result is
placed in to and a terminating null byte is appended. Characters encoded are NUL (ASCII 0), “\n”, “\r”, “\”, “'”, “"”, and Control-Z
(see Section 8.1, “Literal Values”). (Strictly speaking, MySQL requires only that backslash and the quote character used to quote the
string in the query be escaped. This function quotes the other characters to make them easier to read in log files.)

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at least length*2+1 bytes long.

APIs and Libraries

1443



(In the worst case, each character may need to be encoded as using two bytes, and you need room for the terminating null byte.) When
mysql_real_escape_string() returns, the contents of to is a null-terminated string. The return value is the length of the en-
coded string, not including the terminating null character.

If you need to change the character set of the connection, you should use the mysql_set_character_set() function rather than
executing a SET NAMES (or SET CHARACTER SET) statement. mysql_set_character_set() works like SET NAMES but
also affects the character set used by mysql_real_escape_string(), which SET NAMES does not.

Example

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table values(");
*end++ = '\'';
end += mysql_real_escape_string(&mysql, end,"What's this",11);
*end++ = '\'';
*end++ = ',';
*end++ = '\'';
end += mysql_real_escape_string(&mysql, end,"binary data: \0\r\n",16);
*end++ = '\'';
*end++ = ')';

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{

fprintf(stderr, "Failed to insert row, Error: %s\n",
mysql_error(&mysql));

}

The strmov() function used in the example is included in the mysqlclient library and works like strcpy() but returns a point-
er to the terminating null of the first parameter.

Return Values

The length of the value placed into to, not including the terminating null character.

Errors

None.

26.2.3.54. mysql_real_query()

int mysql_real_query(MYSQL *mysql, const char *stmt_str, unsigned long length)

Description

Executes the SQL statement pointed to by stmt_str, which should be a string length bytes long. Normally, the string must consist
of a single SQL statement and you should not add a terminating semicolon (“;”) or \g to the statement. If multiple-statement execution
has been enabled, the string can contain several statements separated by semicolons. See Section 26.2.9, “C API Handling of Multiple
Statement Execution”.

mysql_query() cannot be used for statements that contain binary data; you must use mysql_real_query() instead. (Binary
data may contain the “\0” character, which mysql_query() interprets as the end of the statement string.) In addition,
mysql_real_query() is faster than mysql_query() because it does not call strlen() on the statement string.

If you want to know whether the statement should return a result set, you can use mysql_field_count() to check for this. See
Section 26.2.3.22, “mysql_field_count()”.

Return Values

Zero if the statement was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

APIs and Libraries

1444



• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.55. mysql_refresh()

int mysql_refresh(MYSQL *mysql, unsigned int options)

Description

This function flushes tables or caches, or resets replication server information. The connected user must have the RELOAD privilege.

The options argument is a bit mask composed from any combination of the following values. Multiple values can be OR'ed together
to perform multiple operations with a single call.

• REFRESH_GRANT

Refresh the grant tables, like FLUSH PRIVILEGES.

• REFRESH_LOG

Flush the logs, like FLUSH LOGS.

• REFRESH_TABLES

Flush the table cache, like FLUSH TABLES.

• REFRESH_HOSTS

Flush the host cache, like FLUSH HOSTS.

• REFRESH_STATUS

Reset status variables, like FLUSH STATUS.

• REFRESH_THREADS

Flush the thread cache.

• REFRESH_SLAVE

On a slave replication server, reset the master server information and restart the slave, like RESET SLAVE.

• REFRESH_MASTER

On a master replication server, remove the binary log files listed in the binary log index and truncate the index file, like RESET
MASTER.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

APIs and Libraries

1445



The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.56. mysql_reload()

int mysql_reload(MYSQL *mysql)

Description

Asks the MySQL server to reload the grant tables. The connected user must have the RELOAD privilege.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL FLUSH PRIVILEGES statement instead.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.57. mysql_rollback()

my_bool mysql_rollback(MYSQL *mysql)

Description

Rolls back the current transaction.

The action of this function is subject to the value of the completion_type system variable. In particular, if the value of comple-
tion_type is 2, the server performs a release after terminating a transaction and closes the client connection. The client program
should call mysql_close() to close the connection from the client side.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

APIs and Libraries

1446



26.2.3.58. mysql_row_seek()

MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a query result set. The offset value is a row offset that should be a value returned from
mysql_row_tell() or from mysql_row_seek(). This value is not a row number; if you want to seek to a row within a result
set by number, use mysql_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so mysql_row_seek() may be used only in
conjunction with mysql_store_result(), not with mysql_use_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to mysql_row_seek().

Errors

None.

26.2.3.59. mysql_row_tell()

MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result)

Description

Returns the current position of the row cursor for the last mysql_fetch_row(). This value can be used as an argument to
mysql_row_seek().

You should use mysql_row_tell() only after mysql_store_result(), not after mysql_use_result().

Return Values

The current offset of the row cursor.

Errors

None.

26.2.3.60. mysql_select_db()

int mysql_select_db(MYSQL *mysql, const char *db)

Description

Causes the database specified by db to become the default (current) database on the connection specified by mysql. In subsequent
queries, this database is the default for table references that do not include an explicit database specifier.

mysql_select_db() fails unless the connected user can be authenticated as having permission to use the database.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

APIs and Libraries

1447



• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.61. mysql_set_character_set()

int mysql_set_character_set(MYSQL *mysql, const char *csname)

Description

This function is used to set the default character set for the current connection. The string csname specifies a valid character set name.
The connection collation becomes the default collation of the character set. This function works like the SET NAMES statement, but
also sets the value of mysql->charset, and thus affects the character set used by mysql_real_escape_string()

Return Values

Zero for success. Non-zero if an error occurred.

Example

MYSQL mysql;

mysql_init(&mysql);
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{

fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));

}

if (!mysql_set_character_set(&mysql, "utf8"))
{

printf("New client character set: %s\n",
mysql_character_set_name(&mysql));

}

26.2.3.62. mysql_set_local_infile_default()

void mysql_set_local_infile_default(MYSQL *mysql);

Description

Sets the LOAD LOCAL DATA INFILE handler callback functions to the defaults used internally by the C client library. The library
calls this function automatically if mysql_set_local_infile_handler() has not been called or does not supply valid func-
tions for each of its callbacks.

The mysql_set_local_infile_default() function was added in MySQL 4.1.2.

Return Values

None.

Errors

None.

26.2.3.63. mysql_set_local_infile_handler()

void mysql_set_local_infile_handler(MYSQL *mysql, int (*local_infile_init)(void **, const
char *, void *), int (*local_infile_read)(void *, char *, unsigned int), void
(*local_infile_end)(void *), int (*local_infile_error)(void *, char*, unsigned int), void
*userdata);

Description

APIs and Libraries

1448



This function installs callbacks to be used during the execution of LOAD DATA LOCAL INFILE statements. It enables application
programs to exert control over local (client-side) data file reading. The arguments are the connection handler, a set of pointers to call-
back functions, and a pointer to a data area that the callbacks can use to share information.

To use mysql_set_local_infile_handler(), you must write the following callback functions:

int
local_infile_init(void **ptr, const char *filename, void *userdata);

The initialization function. This is called once to do any setup necessary, open the data file, allocate data structures, and so forth. The
first void** argument is a pointer to a pointer. You can set the pointer (that is, *ptr) to a value that will be passed to each of the oth-
er callbacks (as a void*). The callbacks can use this pointed-to value to maintain state information. The userdata argument is the
same value that is passed to mysql_set_local_infile_handler().

The initialization function should return zero for success, non-zero for an error.

int
local_infile_read(void *ptr, char *buf, unsigned int buf_len);

The data-reading function. This is called repeatedly to read the data file. buf points to the buffer where the read data should be stored,
and buf_len is the maximum number of bytes that the callback can read and store in the buffer. (It can read fewer bytes, but should
not read more.)

The return value is the number of bytes read, or zero when no more data could be read (this indicates EOF). Return a value less than
zero if an error occurs.

void
local_infile_end(void *ptr)

The termination function. This is called once after local_infile_read() has returned zero (EOF) or an error. This function
should deallocate any memory allocated by local_infile_init() and perform any other cleanup necessary. It is invoked even if
the initalization function returns an error.

int
local_infile_error(void *ptr,

char *error_msg,
unsigned int error_msg_len);

The error-handling function. This is called to get a textual error message to return to the user in case any of your other functions returns
an error. error_msg points to the buffer into which the message should be written, and error_msg_len is the length of the buffer.
The message should be written as a null-terminated string, so the message can be at most error_msg_len–1 bytes long.

The return value is the error number.

Typically, the other callbacks store the error message in the data structure pointed to by ptr, so that local_infile_error() can
copy the message from there into error_msg.

After calling mysql_set_local_infile_handler() in your C code and passing pointers to your callback functions, you can
then issue a LOAD DATA LOCAL INFILE statement (for example, by using mysql_query()). The client library automatically in-
vokes your callbacks. The filename specified in LOAD DATA LOCAL INFILE will be passed as the second parameter to the loc-
al_infile_init() callback.

The mysql_set_local_infile_handler() function was added in MySQL 4.1.2.

Return Values

None.

Errors

None.

26.2.3.64. mysql_set_server_option()

int mysql_set_server_option(MYSQL *mysql, enum enum_mysql_set_option option)

APIs and Libraries

1449



Description

Enables or disables an option for the connection. option can have one of the following values:

MYSQL_OPTION_MULTI_STATEMENTS_ON Enable multiple-statement support

MYSQL_OPTION_MULTI_STATEMENTS_OFF Disable multiple-statement support

If you enable multiple-statement support, you should retrieve results from calls to mysql_query() or mysql_real_query() by
using a loop that calls mysql_next_result() to determine whether there are more results. For an example, see Section 26.2.9, “C
API Handling of Multiple Statement Execution”.

Enabling multiple-statement support with MYSQL_OPTION_MULTI_STATEMENTS_ON does not have quite the same effect as en-
abling it by passing the CLIENT_MULTI_STATEMENTS flag to mysql_real_connect(): CLIENT_MULTI_STATEMENTS also
enables CLIENT_MULTI_RESULTS. If you are using the CALL SQL statement in your programs, multiple-result support must be en-
abled; this means that MYSQL_OPTION_MULTI_STATEMENTS_ON by itself is insufficient to allow the use of CALL.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• ER_UNKNOWN_COM_ERROR

The server didn't support mysql_set_server_option() (which is the case that the server is older than 4.1.1) or the server
didn't support the option one tried to set.

26.2.3.65. mysql_shutdown()

int mysql_shutdown(MYSQL *mysql, enum mysql_enum_shutdown_level shutdown_level)

Description

Asks the database server to shut down. The connected user must have SHUTDOWN privileges. MySQL 5.1 servers support only one type
of shutdown; shutdown_level must be equal to SHUTDOWN_DEFAULT. Additional shutdown levels are planned to make it pos-
sible to choose the desired level. Dynamically linked executables which have been compiled with older versions of the libmysql-
client headers and call mysql_shutdown() need to be used with the old libmysqlclient dynamic library.

The shutdown process is described in Section 5.1.9, “The Shutdown Process”.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

APIs and Libraries

1450



• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.66. mysql_sqlstate()

const char *mysql_sqlstate(MYSQL *mysql)

Description

Returns a null-terminated string containing the SQLSTATE error code for the most recently executed SQL statement. The error code
consists of five characters. '00000' means “no error”. The values are specified by ANSI SQL and ODBC. For a list of possible val-
ues, see Appendix B, Errors, Error Codes, and Common Problems.

SQLSTATE values returned by mysql_sqlstate() differ from MySQL-specific error numbers returned by mysql_errno().
For example, the mysql client program displays errors using the following format, where 1146 is the mysql_errno() value and
'42S02' is the corresponding mysql_sqlstate() value:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Not all MySQL error numbers are mapped to SQLSTATE error codes. The value 'HY000' (general error) is used for unmapped error
numbers.

If you call mysql_sqlstate() after mysql_real_connect() fails, mysql_sqlstate() might not return a useful value.
For example, this happens if a host is blocked by the server and the connection is closed without any SQLSTATE value being sent to
the client.

Return Values

A null-terminated character string containing the SQLSTATE error code.

See Also

See Section 26.2.3.14, “mysql_errno()”, Section 26.2.3.15, “mysql_error()”, and Section 26.2.7.26,
“mysql_stmt_sqlstate()”.

26.2.3.67. mysql_ssl_set()

my_bool mysql_ssl_set(MYSQL *mysql, const char *key, const char *cert, const char *ca,
const char *capath, const char *cipher)

Description

mysql_ssl_set() is used for establishing secure connections using SSL. It must be called before mysql_real_connect().

mysql_ssl_set() does nothing unless OpenSSL support is enabled in the client library.

mysql is the connection handler returned from mysql_init(). The other parameters are specified as follows:

• key is the pathname to the key file.

• cert is the pathname to the certificate file.

• ca is the pathname to the certificate authority file.

APIs and Libraries

1451



• capath is the pathname to a directory that contains trusted SSL CA certificates in pem format.

• cipher is a list of allowable ciphers to use for SSL encryption.

Any unused SSL parameters may be given as NULL.

Return Values

This function always returns 0. If SSL setup is incorrect, mysql_real_connect() returns an error when you attempt to connect.

26.2.3.68. mysql_stat()

const char *mysql_stat(MYSQL *mysql)

Description

Returns a character string containing information similar to that provided by the mysqladmin status command. This includes up-
time in seconds and the number of running threads, questions, reloads, and open tables.

Return Values

A character string describing the server status. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.69. mysql_store_result()

MYSQL_RES *mysql_store_result(MYSQL *mysql)

Description

After invoking mysql_query() or mysql_real_query(), you must call mysql_store_result() or
mysql_use_result() for every statement that successfully retrieves data (SELECT, SHOW, DESCRIBE, EXPLAIN, CHECK TA-
BLE, and so forth). You must also call mysql_free_result() after you are done with the result set.

You don't have to call mysql_store_result() or mysql_use_result() for other statements, but it does not do any harm or
cause any notable performance degradation if you call mysql_store_result() in all cases. You can detect whether the statement
has a result set by checking whether mysql_store_result() returns a non-zero value (more about this later on).

If you enable multiple-statement support, you should retrieve results from calls to mysql_query() or mysql_real_query() by
using a loop that calls mysql_next_result() to determine whether there are more results. For an example, see Section 26.2.9, “C
API Handling of Multiple Statement Execution”.

If you want to know whether a statement should return a result set, you can use mysql_field_count() to check for this. See Sec-
tion 26.2.3.22, “mysql_field_count()”.

mysql_store_result() reads the entire result of a query to the client, allocates a MYSQL_RES structure, and places the result into

APIs and Libraries

1452



this structure.

mysql_store_result() returns a null pointer if the statement didn't return a result set (for example, if it was an INSERT state-
ment).

mysql_store_result() also returns a null pointer if reading of the result set failed. You can check whether an error occurred by
checking whether mysql_error() returns a non-empty string, mysql_errno() returns non-zero, or mysql_field_count()
returns zero.

An empty result set is returned if there are no rows returned. (An empty result set differs from a null pointer as a return value.)

After you have called mysql_store_result() and gotten back a result that isn't a null pointer, you can call
mysql_num_rows() to find out how many rows are in the result set.

You can call mysql_fetch_row() to fetch rows from the result set, or mysql_row_seek() and mysql_row_tell() to ob-
tain or set the current row position within the result set.

See Section 26.2.14.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns Success”.

Return Values

A MYSQL_RES result structure with the results. NULL (0) if an error occurred.

Errors

mysql_store_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.70. mysql_thread_id()

unsigned long mysql_thread_id(MYSQL *mysql)

Description

Returns the thread ID of the current connection. This value can be used as an argument to mysql_kill() to kill the thread.

If the connection is lost and you reconnect with mysql_ping(), the thread ID changes. This means you should not get the thread ID
and store it for later. You should get it when you need it.

Return Values

The thread ID of the current connection.

Errors

None.

APIs and Libraries

1453



26.2.3.71. mysql_use_result()

MYSQL_RES *mysql_use_result(MYSQL *mysql)

Description

You must call mysql_store_result() or mysql_use_result() for every query that successfully retrieves data (SELECT,
SHOW, DESCRIBE, EXPLAIN).

mysql_use_result() initiates a result set retrieval but does not actually read the result set into the client like
mysql_store_result() does. Instead, each row must be retrieved individually by making calls to mysql_fetch_row(). This
reads the result of a query directly from the server without storing it in a temporary table or local buffer, which is somewhat faster and
uses much less memory than mysql_store_result(). The client allocates memory only for the current row and a communication
buffer that may grow up to max_allowed_packet bytes.

On the other hand, you shouldn't use mysql_use_result() if you are doing a lot of processing for each row on the client side, or if
the output is sent to a screen on which the user may type a ^S (stop scroll). This ties up the server and prevent other threads from updat-
ing any tables from which the data is being fetched.

When using mysql_use_result(), you must execute mysql_fetch_row() until a NULL value is returned, otherwise, the un-
fetched rows are returned as part of the result set for your next query. The C API gives the error Commands out of sync; you
can't run this command now if you forget to do this!

You may not use mysql_data_seek(), mysql_row_seek(), mysql_row_tell(), mysql_num_rows(), or
mysql_affected_rows() with a result returned from mysql_use_result(), nor may you issue other queries until
mysql_use_result() has finished. (However, after you have fetched all the rows, mysql_num_rows() accurately returns the
number of rows fetched.)

You must call mysql_free_result() once you are done with the result set.

When using the libmysqld embedded server, the memory benefits are essentially lost because memory usage incrementally increases
with each row retrieved until mysql_free_result() is called.

Return Values

A MYSQL_RES result structure. NULL if an error occurred.

Errors

mysql_use_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.3.72. mysql_warning_count()

unsigned int mysql_warning_count(MYSQL *mysql)

APIs and Libraries

1454



Description

Returns the number of warnings generated during execution of the previous SQL statement.

Return Values

The warning count.

Errors

None.

26.2.4. C API Prepared Statements
The MySQL client/server protocol provides for the use of prepared statements. This capability uses the MYSQL_STMT statement hand-
ler data structure returned by the mysql_stmt_init() initialization function. Prepared execution is an efficient way to execute a
statement more than once. The statement is first parsed to prepare it for execution. Then it is executed one or more times at a later time,
using the statement handle returned by the initialization function.

Prepared execution is faster than direct execution for statements executed more than once, primarily because the query is parsed only
once. In the case of direct execution, the query is parsed every time it is executed. Prepared execution also can provide a reduction of
network traffic because for each execution of the prepared statement, it is necessary only to send the data for the parameters.

Prepared statements might not provide a performance increase in some situations. For best results, test your application both with pre-
pared and non-prepared statements and choose whichever yields best performance.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer between client and server more effi-
cient.

The following statements can be used as prepared statements: CREATE TABLE, DELETE, DO, INSERT, REPLACE, SELECT, SET,
UPDATE, and most SHOW statements.

As of MySQL 5.1.10, the following additional statements are supported:

ANALYZE TABLE
OPTIMIZE TABLE
REPAIR TABLE

As of MySQL 5.1.12, the following additional statements are supported:

CACHE INDEX
CHANGE MASTER
CHECKSUM {TABLE | TABLES}
{CREATE | RENAME | DROP} DATABASE
{CREATE | RENAME | DROP} USER
FLUSH {TABLE | TABLES | TABLES WITH READ LOCK | HOSTS | PRIVILEGES
| LOGS | STATUS | MASTER | SLAVE | DES_KEY_FILE | USER_RESOURCES}

GRANT
REVOKE
KILL
LOAD INDEX INTO CACHE
RESET {MASTER | SLAVE | QUERY CACHE}
SHOW BINLOG EVENTS
SHOW CREATE {PROCEDURE | FUNCTION | EVENT | TABLE | VIEW}
SHOW {AUTHORS | CONTRIBUTORS | WARNINGS | ERRORS}
SHOW {MASTER | BINARY} LOGS
SHOW {MASTER | SLAVE} STATUS
SLAVE {START | STOP}
INSTALL PLUGIN
UNINSTALL PLUGIN

Other statements are not yet supported in MySQL 5.1.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about using prepared statements in the Knowledge
Base article, How can I create server-side prepared statements?. Access to the MySQL Knowledge Base col-
lection of articles is one of the advantages of subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

APIs and Libraries

1455

https://kb.mysql.com/view.php?id=5931
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


26.2.5. C API Prepared Statement Data types
Prepared statements use several data structures:

• To prepare a statement, pass the statement string to mysql_stmt_init(), which returns a pointer to a MYSQL_STMT data struc-
ture.

• To provide input parameters for a prepared statement, set up MYSQL_BIND structures and pass them to
mysql_stmt_bind_param(). To receive output column values, set up MYSQL_BIND structures and pass them to
mysql_stmt_bind_result().

• The MYSQL_TIME structure is used to transfer temporal data in both directions.

The following discussion describes the prepared statement data types in detail.

• MYSQL_STMT

This structure represents a prepared statement. A statement is created by calling mysql_stmt_init(), which returns a statement
handle (that is, a pointer to a MYSQL_STMT). The handle is used for all subsequent operations with the statement until you close it
with mysql_stmt_close(), at which point the handle becomes invalid.

The MYSQL_STMT structure has no members that are intended for application use. Also, you should not try to make a copy of a
MYSQL_STMT structure. There is no guarantee that such a copy will be usable.

Multiple statement handles can be associated with a single connection. The limit on the number of handles depends on the available
system resources.

• MYSQL_BIND

This structure is used both for statement input (data values sent to the server) and output (result values returned from the server):

• For input, MYSQL_BIND is used with mysql_stmt_bind_param() to bind parameter data values to buffers for use by
mysql_stmt_execute().

• For output, MYSQL_BIND is used with mysql_stmt_bind_result() to bind result set buffers for use in fetching rows
with mysql_stmt_fetch().

To use a MYSQL_BIND structure, you should zero its contents to initialize it, and then set its members appropriately. For example,
to declare and initialize an array of three MYSQL_BIND structures, use this code:

MYSQL_BIND bind[3];
memset(bind, 0, sizeof(bind));

The MYSQL_BIND structure contains the following members for use by application programs. For several of the members, the man-
ner of use depends on whether the structure is used for input or output.

• enum enum_field_types buffer_type

The type of the buffer. This member indicates the data type of the C language variable that you are binding to the statement
parameter. The allowable buffer_type values are listed later in this section. For input, buffer_type indicates the type of
the variable containing the value that you will send to the server. For output, it indicates the type of the variable into which you
want a value received from the server to be stored.

• void *buffer

A pointer to the buffer to be used for data transfer. This is the address of a variable.

For input, buffer is a pointer to the variable in which a statement parameter's data value is stored. When you call
mysql_stmt_execute(), MySQL takes the value that you have stored in the variable and uses it in place of the corres-
ponding parameter marker in the statement.

For output, buffer is a pointer to the variable in which to return a result set column value. When you call
mysql_stmt_fetch(), MySQL returns a column value and stores it in this variable. You can access the value when the call

APIs and Libraries

1456



returns.

To minimize the need for MySQL to perform type conversions between C language values on the client side and SQL values on
the server side, use variables that have types similar to those of the corresponding SQL values. For numeric data types, buffer
should point to a variable of the proper numeric C type. (For char or integer variables, you should also indicate whether the
variable has the unsigned attribute by setting the is_unsigned member, described later in this list.) For character
(non-binary) and binary string data types, buffer should point to a character buffer. For date and time data types, buffer
should point to a MYSQL_TIME structure.

See the notes about type conversions later in the section.

• unsigned long buffer_length

The actual size of *buffer in bytes. This indicates the maximum amount of data that can be stored in the buffer. For character
and binary C data, the buffer_length value specifies the length of *buffer when used with
mysql_stmt_bind_param() to specify input values, or the maximum number of output data bytes that can be fetched into
the buffer when used with mysql_stmt_bind_result().

• unsigned long *length

A pointer to an unsigned long variable that indicates the actual number of bytes of data stored in *buffer. length is
used for character or binary C data.

For input parameter data binding, length points to an unsigned long variable that indicates the actual length of the para-
meter value stored in *buffer; this is used by mysql_stmt_execute().

For output value binding, the return value of mysql_stmt_fetch() determines the interpretation of the length:

• If mysql_stmt_fetch() returns 0, *length indicates the actual length of the parameter value.

• If mysql_stmt_fetch() returns MYSQL_DATA_TRUNCATED, *length indicates the non-truncated length of the
parameter value. In this case, the minimum of *length and buffer_length indicates the actual length of the value.

length is ignored for numeric and temporal data types because the length of the data value is determined by the buf-
fer_type value.

If you need to be able to determine the length of a returned value before fetching it with mysql_stmt_fetch(), see Sec-
tion 26.2.7.11, “mysql_stmt_fetch()”, for some strategies.

• my_bool *is_null

This member points to a my_bool variable that is true if a value is NULL, false if it is not NULL. For input, set *is_null to
true to indicate that you are passing a NULL value as a statement parameter.

The reason that is_null is not a boolean scalar but is instead a pointer to a boolean scalar is to provide flexibility in how you
specify NULL values:

• If your data values are always NULL, use MYSQL_TYPE_NULL as the buffer_type value when you bind the column.
The other members do not matter.

• If your data values are always NOT NULL, set the other members appropriately for the variable you are binding, and set
is_null = (my_bool*) 0.

• In all other cases, set the other members appriopriately, and set is_null to the address of a my_bool variable. Set that
variable's value to true or false appropriately between executions to indicate whether data values are NULL or NOT NULL,
respectively.

For output, the value pointed to by is_null is set to true after you fetch a row if the result set column value returned from the
statement is NULL.

• my_bool is_unsigned

This member is used for C variables with data types that can be unsigned (char, short int, int, long long int).
Set is_unsigned to true if the variable pointed to by buffer is unsigned and false otherwise. For example, if you bind a
signed char variable to buffer, specify a type code of MYSQL_TYPE_TINY and set is_unsigned to false. If you bind

APIs and Libraries

1457



an unsigned char instead, the type code is the same but is_unsigned should be true. (For char, it is not defined wheth-
er it is signed or unsigned, so it is best to be explicit about signedness by using signed char or unsigned char.)

is_unsigned applies only to the C language variable on the client side. It indicates nothing about the signedness of the cor-
responding SQL value on the server side. For example, if you use an int variable to supply a value for a BIGINT UNSIGNED
column, is_unsigned should be false because int is a signed type. If you use an unsigned int variable to supply a
value for a BIGINT column, is_unsigned should be true because unsigned int is an unsigned type. MySQL performs
the proper conversion between signed and unsigned values in both directions, although a warning occurs if truncation results.

• my_bool *error

For output, set this member to point to a my_bool variable to have truncation information for the parameter stored there after a
row fetching operation. (Truncation reporting is enabled by default, but can be controlled by calling mysql_options() with
the MYSQL_REPORT_DATA_TRUNCATION option.) When truncation reporting is enabled, mysql_stmt_fetch() returns
MYSQL_DATA_TRUNCATED and *error is true in the MYSQL_BIND structures for parameters in which truncation occurred.
Truncation indicates loss of sign or significant digits, or that a string was too long to fit in a column.

• MYSQL_TIME

This structure is used to send and receive DATE, TIME, DATETIME, and TIMESTAMP data directly to and from the server. Set the
buffer_type member of a MYSQL_BIND structure to one of the temporal types (MYSQL_TYPE_TIME, MYSQL_TYPE_DATE,
MYSQL_TYPE_DATETIME, MYSQL_TYPE_TIMESTAMP), and set the buffer member to point to a MYSQL_TIME structure.

The MYSQL_TIME structure contains the members listed in the following table.

Member Description

unsigned int year The year

unsigned int month The month of the year

unsigned int day The day of the month

unsigned int hour The hour of the day

unsigned int minute The minute of the hour

unsigned int second The second of the minute

my_bool neg A boolean flag to indicate whether the time is negative

unsigned long second_part The fractional part of the second in microseconds; currently unused

Only those parts of a MYSQL_TIME structure that apply to a given type of temporal value are used. The year, month, and day
elements are used for DATE, DATETIME, and TIMESTAMP values. The hour, minute, and second elements are used for TIME,
DATETIME, and TIMESTAMP values. See Section 26.2.10, “C API Handling of Date and Time Values”.

The following table shows the allowable values that may be specified in the buffer_type member of MYSQL_BIND structures for
input values. The value should be chosen according to the data type of the C language variable that you are binding. If the variable is
unsigned, you should also set the is_unsigned member to true. The table shows the C variable types that you can use, the corres-
ponding type codes, and the SQL data types for which the supplied value can be used without conversion.

Input Variable C Type buffer_type Value SQL Type of Destination Value

signed char MYSQL_TYPE_TINY TINYINT

short int MYSQL_TYPE_SHORT SMALLINT

int MYSQL_TYPE_LONG INT

long long int MYSQL_TYPE_LONGLONG BIGINT

float MYSQL_TYPE_FLOAT FLOAT

double MYSQL_TYPE_DOUBLE DOUBLE

MYSQL_TIME MYSQL_TYPE_TIME TIME

MYSQL_TIME MYSQL_TYPE_DATE DATE

MYSQL_TIME MYSQL_TYPE_DATETIME DATETIME

APIs and Libraries

1458



MYSQL_TIME MYSQL_TYPE_TIMESTAMP TIMESTAMP

char[] MYSQL_TYPE_STRING (for non-binary
data)

TEXT, CHAR, VARCHAR

char[] MYSQL_TYPE_BLOB (for binary data) BLOB, BINARY, VARBINARY

MYSQL_TYPE_NULL NULL

The use of MYSQL_TYPE_NULL is described earlier in connection with the is_null member.

The following table shows the allowable values that may be specified in the buffer_type member of MYSQL_BIND structures for
output values. The value should be chosen according to the data type of the C language variable that you are binding. If the variable is
unsigned, you should also set the is_unsigned member to true. The table shows the SQL types of received values, the corres-
ponding type code that such values have in result set metadata, and the recommended C language data types to bind to the
MYSQL_BIND structure to receive the SQL values without conversion.

If there is a mismatch between the C variable type on the client side and the corresponding SQL value on the server side, MySQL per-
forms implicit type conversions in both directions.

SQL Type of Received Value buffer_type Value Output Variable C Type

TINYINT MYSQL_TYPE_TINY signed char

SMALLINT MYSQL_TYPE_SHORT short int

MEDIUMINT MYSQL_TYPE_INT24 int

INT MYSQL_TYPE_LONG int

BIGINT MYSQL_TYPE_LONGLONG long long int

FLOAT MYSQL_TYPE_FLOAT float

DOUBLE MYSQL_TYPE_DOUBLE double

DECIMAL MYSQL_TYPE_NEWDECIMAL char[]

YEAR MYSQL_TYPE_SHORT short int

TIME MYSQL_TYPE_TIME MYSQL_TIME

DATE MYSQL_TYPE_DATE MYSQL_TIME

DATETIME MYSQL_TYPE_DATETIME MYSQL_TIME

TIMESTAMP MYSQL_TYPE_TIMESTAMP MYSQL_TIME

CHAR, BINARY MYSQL_TYPE_STRING char[]

VARCHAR, VARBINARY MYSQL_TYPE_VAR_STRING char[]

TINYBLOB, TINYTEXT MYSQL_TYPE_TINY_BLOB char[]

BLOB, TEXT MYSQL_TYPE_BLOB char[]

MEDIUMBLOB, MEDIUMTEXT MYSQL_TYPE_MEDIUM_BLOB char[]

LONGBLOB, LONGTEXT MYSQL_TYPE_LONG_BLOB char[]

BIT MYSQL_TYPE_BIT char[]

MySQL knows the type code for the SQL value on the server side. The buffer_type value indicates the MySQL the type code of
the C variable that holds the value on the client side. The two codes together tell MySQL what conversion must be performed, if any.
Here are some examples:

• If you use MYSQL_TYPE_LONG with an int variable to pass an integer value to the server that is to be stored into a FLOAT
column, MySQL converts the value to floating-point format before storing it.

• If you fetch a SQL MEDIUMINT column value, but specify a buffer_type value of MYSQL_TYPE_LONGLONG and use a C
variable of type long long int as the destination buffer, MySQL will convert the MEDIUMINT value (which requires less than
8 bytes) for storage into the long long int (an 8-byte variable).

• If you fetch a numeric column with a value of 255 into a char[4] character array and specify a buffer_type value of

APIs and Libraries

1459



MYSQL_TYPE_STRING, the resulting value in the array will be a 4-byte string containing '255\0'.

• DECIMAL values are returned as strings, which is why the corresponding C type is char[]. DECIMAL values returned by the serv-
er correspond to the string representation of the original server-side value. For example, 12.345 is returned to the client as
'12.345'. If you specify MYSQL_TYPE_NEWDECIMAL and bind a string buffer to the MYSQL_BIND structure,
mysql_stmt_fetch() stores the value in the buffer without conversion. If instead you specify a numeric variable and type
code, mysql_stmt_fetch() converts the string-format DECIMAL value to numeric form.

• For the MYSQL_TYPE_BIT type code, BIT values are returned into a string buffer (thus, the corresponding C type is char[]
here, too). The value represents a bit string that requires interpretation on the client side. To return the value as a type that is easier
to deal with, you can cause the value to be cast to integer using either of the following types of expressions:

SELECT bit_col + 0 FROM t
SELECT CAST(bit_col AS UNSIGNED) FROM t

To retrieve the value, bind an integer variable large enough to hold the value and specify the appropriate corresponding integer type
code.

Before binding variables to the MYSQL_BIND structures that are to be used for fetching column values, you can check the type codes
for each column of the result set. This might be desirable if you want to determine which variable types would be best to use to avoid
type conversions. To get the type codes, call mysql_stmt_result_metadata() after executing the prepared statement with
mysql_stmt_execute(). The metadata provides access to the type codes for the result set as described in Section 26.2.7.22,
“mysql_stmt_result_metadata()”, and Section 26.2.1, “C API Data Types”.

If you cause the max_length member of the MYSQL_FIELD column metadata structures to be set (by calling
mysql_stmt_attr_set()), be aware that the max_length values for the result set indicate the lengths of the longest string rep-
resentation of the result values, not the lengths of the binary representation. That is, max_length does not necessarily correspond to
the size of the buffers needed to fetch the values with the binary protocol used for prepared statements. The size of the buffers should be
chosen according to the types of the variables into which you fetch the values.

For input character (non-binary) string data (indicated by MYSQL_TYPE_STRING), the value is assumed to be in the character set in-
dicated by the character_set_client system variable. If the value is stored into a column with a different character set, the ap-
propriate conversion to that character set occurs. For input binary string data (indicated by MYSQL_TYPE_BLOB), the value is treated
as having the binary character set; that is, it is treated as a byte string and no conversion occurs.

To determine whether output string values in a result set returned from the server contain binary or non-binary data, check whether the
charsetnr value of the result set metadata is 63 (see Section 26.2.1, “C API Data Types”). If so, the character set is binary, which
indicates binary rather than non-binary data. This enables you to distinguish BINARY from CHAR, VARBINARY from VARCHAR, and
the BLOB types from the TEXT types.

26.2.6. C API Prepared Statement Function Overview
The functions available for prepared statement processing are summarized here and described in greater detail in a later section. See
Section 26.2.7, “C API Prepared Statement Function Descriptions”.

Function Description

mysql_stmt_affected_rows() Returns the number of rows changed, deleted, or inserted by prepared UPDATE, DELETE,
or INSERT statement

mysql_stmt_attr_get() Get value of an attribute for a prepared statement

mysql_stmt_attr_set() Sets an attribute for a prepared statement

mysql_stmt_bind_param() Associates application data buffers with the parameter markers in a prepared SQL state-
ment

mysql_stmt_bind_result() Associates application data buffers with columns in the result set

mysql_stmt_close() Frees memory used by prepared statement

mysql_stmt_data_seek() Seeks to an arbitrary row number in a statement result set

mysql_stmt_errno() Returns the error number for the last statement execution

mysql_stmt_error() Returns the error message for the last statement execution

mysql_stmt_execute() Executes the prepared statement

mysql_stmt_fetch() Fetches the next row of data from the result set and returns data for all bound columns

APIs and Libraries

1460



mysql_stmt_fetch_column() Fetch data for one column of the current row of the result set

mysql_stmt_field_count() Returns the number of result columns for the most recent statement

mysql_stmt_free_result() Free the resources allocated to the statement handle

mysql_stmt_init() Allocates memory for MYSQL_STMT structure and initializes it

mysql_stmt_insert_id() Returns the ID generated for an AUTO_INCREMENT column by prepared statement

mysql_stmt_num_rows() Returns total row count from the buffered statement result set

mysql_stmt_param_count() Returns the number of parameters in a prepared SQL statement

mysql_stmt_param_metadata() (Return parameter metadata in the form of a result set.) Currently, this function does noth-
ing

mysql_stmt_prepare() Prepares an SQL string for execution

mysql_stmt_reset() Reset the statement buffers in the server

mysql_stmt_result_metadata() Returns prepared statement metadata in the form of a result set

mysql_stmt_row_seek() Seeks to a row offset in a statement result set, using value returned from
mysql_stmt_row_tell()

mysql_stmt_row_tell() Returns the statement row cursor position

mysql_stmt_send_long_data() Sends long data in chunks to server

mysql_stmt_sqlstate() Returns the SQLSTATE error code for the last statement execution

mysql_stmt_store_result() Retrieves the complete result set to the client

Call mysql_stmt_init() to create a statement handle, then mysql_stmt_prepare() to prepare it,
mysql_stmt_bind_param() to supply the parameter data, and mysql_stmt_execute() to execute the statement. You can
repeat the mysql_stmt_execute() by changing parameter values in the respective buffers supplied through
mysql_stmt_bind_param().

If the statement is a SELECT or any other statement that produces a result set, mysql_stmt_prepare() also returns the result set
metadata information in the form of a MYSQL_RES result set through mysql_stmt_result_metadata().

You can supply the result buffers using mysql_stmt_bind_result(), so that the mysql_stmt_fetch() automatically re-
turns data to these buffers. This is row-by-row fetching.

You can also send the text or binary data in chunks to server using mysql_stmt_send_long_data(). See Section 26.2.7.25,
“mysql_stmt_send_long_data()”.

When statement execution has been completed, the statement handle must be closed using mysql_stmt_close() so that all re-
sources associated with it can be freed.

If you obtained a SELECT statement's result set metadata by calling mysql_stmt_result_metadata(), you should also free the
metadata using mysql_free_result().

Execution Steps

To prepare and execute a statement, an application follows these steps:

1. Create a prepared statement handle with mysql_stmt_init(). To prepare the statement on the server, call
mysql_stmt_prepare() and pass it a string containing the SQL statement.

2. If the statement produces a result set, call mysql_stmt_result_metadata() to obtain the result set metadata. This
metadata is itself in the form of result set, albeit a separate one from the one that contains the rows returned by the query. The
metadata result set indicates how many columns are in the result and contains information about each column.

3. Set the values of any parameters using mysql_stmt_bind_param(). All parameters must be set. Otherwise, statement execu-
tion returns an error or produces unexpected results.

4. Call mysql_stmt_execute() to execute the statement.

5. If the statement produces a result set, bind the data buffers to use for retrieving the row values by calling

APIs and Libraries

1461



mysql_stmt_bind_result().

6. Fetch the data into the buffers row by row by calling mysql_stmt_fetch() repeatedly until no more rows are found.

7. Repeat steps 3 through 6 as necessary, by changing the parameter values and re-executing the statement.

When mysql_stmt_prepare() is called, the MySQL client/server protocol performs these actions:

• The server parses the statement and sends the okay status back to the client by assigning a statement ID. It also sends total number
of parameters, a column count, and its metadata if it is a result set oriented statement. All syntax and semantics of the statement are
checked by the server during this call.

• The client uses this statement ID for the further operations, so that the server can identify the statement from among its pool of state-
ments.

When mysql_stmt_execute() is called, the MySQL client/server protocol performs these actions:

• The client uses the statement handle and sends the parameter data to the server.

• The server identifies the statement using the ID provided by the client, replaces the parameter markers with the newly supplied data,
and executes the statement. If the statement produces a result set, the server sends the data back to the client. Otherwise, it sends an
okay status and total number of rows changed, deleted, or inserted.

When mysql_stmt_fetch() is called, the MySQL client/server protocol performs these actions:

• The client reads the data from the packet row by row and places it into the application data buffers by doing the necessary conver-
sions. If the application buffer type is same as that of the field type returned from the server, the conversions are straightforward.

If an error occurs, you can get the statement error code, error message, and SQLSTATE value using mysql_stmt_errno(),
mysql_stmt_error(), and mysql_stmt_sqlstate(), respectively.

Prepared Statement Logging

For prepared statements that are executed with the mysql_stmt_prepare() and mysql_stmt_execute() C API functions,
the server writes Prepare and Execute lines to the general query log so that you can tell when statements are prepared and ex-
ecuted.

Suppose that you prepare and execute a statement as follows:

1. Call mysql_stmt_prepare() to prepare the statement string "SELECT ?".

2. Call mysql_stmt_bind_param() to bind the value 3 to the parameter in the prepared statement.

3. Call mysql_stmt_execute() to execute the prepared statement.

As a result of the preceding calls, the server writes the following lines to the general query log:

Prepare [1] SELECT ?
Execute [1] SELECT 3

Each Prepare and Execute line in the log is tagged with a [N] statement identifier so that you can keep track of which prepared
statement is being logged. N is a positive integer. If there are multiple prepared statements active simultaneously for the client, N may be
greater than 1. Each Execute lines shows a prepared statement after substitution of data values for ? parameters.

Version notes: Prepare lines are displayed without [N] before MySQL 4.1.10. Execute lines are not displayed at all before
MySQL 4.1.10.

APIs and Libraries

1462



26.2.7. C API Prepared Statement Function Descriptions
To prepare and execute queries, use the functions described in detail in the following sections.

All functions that operate with a MYSQL_STMT structure begin with the prefix mysql_stmt_.

To create a MYSQL_STMT handle, use the mysql_stmt_init() function.

26.2.7.1. mysql_stmt_affected_rows()

my_ulonglong mysql_stmt_affected_rows(MYSQL_STMT *stmt)

Description

Returns the total number of rows changed, deleted, or inserted by the last executed statement. May be called immediately after
mysql_stmt_execute() for UPDATE, DELETE, or INSERT statements. For SELECT statements,
mysql_stmt_affected_rows() works like mysql_num_rows().

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no records were updated for an UP-
DATE statement, no rows matched the WHERE clause in the query, or that no query has yet been executed. -1 indicates that the query re-
turned an error or that, for a SELECT query, mysql_stmt_affected_rows() was called prior to calling
mysql_stmt_store_result(). Because mysql_stmt_affected_rows() returns an unsigned value, you can check for -1
by comparing the return value to (my_ulonglong)-1 (or to (my_ulonglong)~0, which is equivalent).

See Section 26.2.3.1, “mysql_affected_rows()”, for additional information on the return value.

Errors

None.

Example

For the usage of mysql_stmt_affected_rows(), refer to the Example from Section 26.2.7.10, “mysql_stmt_execute()”.

26.2.7.2. mysql_stmt_attr_get()

my_bool mysql_stmt_attr_get(MYSQL_STMT *stmt, enum enum_stmt_attr_type option, void *arg)

Description

Can be used to get the current value for a statement attribute.

The option argument is the option that you want to get; the arg should point to a variable that should contain the option value. If the
option is an integer, then arg should point to the value of the integer.

See Section 26.2.7.3, “mysql_stmt_attr_set()”, for a list of options and option types.

Note

In MySQL 5.1, mysql_stmt_attr_get() originally used unsigned int *, not my_bool *, for
STMT_ATTR_UPDATE_MAX_LENGTH. This was corrected in MySQL 5.1.7.

Return Values

Zero if successful. Non-zero if option is unknown.

Errors

None.

26.2.7.3. mysql_stmt_attr_set()

my_bool mysql_stmt_attr_set(MYSQL_STMT *stmt, enum enum_stmt_attr_type option, const void
*arg)

APIs and Libraries

1463



Description

Can be used to affect behavior for a prepared statement. This function may be called multiple times to set several options.

The option argument is the option that you want to set. The arg argument is the value for the option. arg should point to a variable
that is set to the desired attribute value. The variable type is as indicated in the following table.

Possible option values:

Option Argument Type Function

STMT_ATTR_UPDATE_MAX_LENGTH my_bool * If set to 1: Update metadata
MYSQL_FIELD->max_length in
mysql_stmt_store_result().

STMT_ATTR_CURSOR_TYPE unsigned long * Type of cursor to open for statement when
mysql_stmt_execute() is invoked. *arg
can be CURSOR_TYPE_NO_CURSOR (the de-
fault) or CURSOR_TYPE_READ_ONLY.

STMT_ATTR_PREFETCH_ROWS unsigned long * Number of rows to fetch from server at a time
when using a cursor. *arg can be in the range
from 1 to the maximum value of unsigned
long. The default is 1.

If you use the STMT_ATTR_CURSOR_TYPE option with CURSOR_TYPE_READ_ONLY, a cursor is opened for the statement when
you invoke mysql_stmt_execute(). If there is already an open cursor from a previous mysql_stmt_execute() call, it closes
the cursor before opening a new one. mysql_stmt_reset() also closes any open cursor before preparing the statement for re-
execution. mysql_stmt_free_result() closes any open cursor.

If you open a cursor for a prepared statement, mysql_stmt_store_result() is unnecessary, because that function causes the res-
ult set to be buffered on the client side.

Return Values

Zero if successful. Non-zero if option is unknown.

Errors

None.

Example

The following example opens a cursor for a prepared statement and sets the number of rows to fetch at a time to 5:

MYSQL_STMT *stmt;
int rc;
unsigned long type;
unsigned long prefetch_rows = 5;

stmt = mysql_stmt_init(mysql);
type = (unsigned long) CURSOR_TYPE_READ_ONLY;
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_CURSOR_TYPE, (void*) &type);
/* ... check return value ... */
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_PREFETCH_ROWS,

(void*) &prefetch_rows);
/* ... check return value ... */

26.2.7.4. mysql_stmt_bind_param()

my_bool mysql_stmt_bind_param(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_param() is used to bind input data for the parameter markers in the SQL statement that was passed to
mysql_stmt_prepare(). It uses MYSQL_BIND structures to supply the data. bind is the address of an array of MYSQL_BIND
structures. The client library expects the array to contain one element for each “?” parameter marker that is present in the query.

APIs and Libraries

1464



Suppose that you prepare the following statement:

INSERT INTO mytbl VALUES(?,?,?)

When you bind the parameters, the array of MYSQL_BIND structures must contain three elements, and can be declared like this:

MYSQL_BIND bind[3];

Section 26.2.5, “C API Prepared Statement Data types”, describes the members of each MYSQL_BIND element and how they should be
set to provide input values.

Return Values

Zero if the bind operation was successful. Non-zero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is illegal or is not one of the supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_bind_param(), refer to the Example from Section 26.2.7.10, “mysql_stmt_execute()”.

26.2.7.5. mysql_stmt_bind_result()

my_bool mysql_stmt_bind_result(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_result() is used to associate (that is, bind) output columns in the result set to data buffers and length buffers.
When mysql_stmt_fetch() is called to fetch data, the MySQL client/server protocol places the data for the bound columns into
the specified buffers.

All columns must be bound to buffers prior to calling mysql_stmt_fetch(). bind is the address of an array of MYSQL_BIND
structures. The client library expects the array to contain one element for each column of the result set. If you do not bind columns to
MYSQL_BIND structures, mysql_stmt_fetch() simply ignores the data fetch. The buffers should be large enough to hold the data
values, because the protocol doesn't return data values in chunks.

A column can be bound or rebound at any time, even after a result set has been partially retrieved. The new binding takes effect the next
time mysql_stmt_fetch() is called. Suppose that an application binds the columns in a result set and calls
mysql_stmt_fetch(). The client/server protocol returns data in the bound buffers. Then suppose that the application binds the
columns to a different set of buffers. The protocol places data into the newly bound buffers when the next call to
mysql_stmt_fetch() occurs.

To bind a column, an application calls mysql_stmt_bind_result() and passes the type, address, and length of the output buffer
into which the value should be stored. Section 26.2.5, “C API Prepared Statement Data types”, describes the members of each
MYSQL_BIND element and how they should be set to receive output values.

Return Values

Zero if the bind operation was successful. Non-zero if an error occurred.

Errors

APIs and Libraries

1465



• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is illegal or is not one of the supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_bind_result(), refer to the Example from Section 26.2.7.11, “mysql_stmt_fetch()”.

26.2.7.6. mysql_stmt_close()

my_bool mysql_stmt_close(MYSQL_STMT *)

Description

Closes the prepared statement. mysql_stmt_close() also deallocates the statement handle pointed to by stmt.

If the current statement has pending or unread results, this function cancels them so that the next query can be executed.

Return Values

Zero if the statement was freed successfully. Non-zero if an error occurred.

Errors

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_close(), refer to the Example from Section 26.2.7.10, “mysql_stmt_execute()”.

26.2.7.7. mysql_stmt_data_seek()

void mysql_stmt_data_seek(MYSQL_STMT *stmt, my_ulonglong offset)

Description

Seeks to an arbitrary row in a statement result set. The offset value is a row number and should be in the range from 0 to
mysql_stmt_num_rows(stmt)-1.

This function requires that the statement result set structure contains the entire result of the last executed query, so
mysql_stmt_data_seek() may be used only in conjunction with mysql_stmt_store_result().

Return Values

None.

Errors

None.

APIs and Libraries

1466



26.2.7.8. mysql_stmt_errno()

unsigned int mysql_stmt_errno(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_errno() returns the error code for the most recently invoked statement API
function that can succeed or fail. A return value of zero means that no error occurred. Client error message numbers are listed in the
MySQL errmsg.h header file. Server error message numbers are listed in mysqld_error.h. Errors also are listed at Appendix B,
Errors, Error Codes, and Common Problems.

Return Values

An error code value. Zero if no error occurred.

Errors

None.

26.2.7.9. mysql_stmt_error()

const char *mysql_stmt_error(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_error() returns a null-terminated string containing the error message for the
most recently invoked statement API function that can succeed or fail. An empty string ("") is returned if no error occurred. This means
the following two tests are equivalent:

if(*mysql_stmt_errno(stmt))
{
// an error occurred

}

if (mysql_stmt_error(stmt)[0])
{
// an error occurred

}

The language of the client error messages may be changed by recompiling the MySQL client library. Currently, you can choose error
messages in several different languages.

Return Values

A character string that describes the error. An empty string if no error occurred.

Errors

None.

26.2.7.10. mysql_stmt_execute()

int mysql_stmt_execute(MYSQL_STMT *stmt)

Description

mysql_stmt_execute() executes the prepared query associated with the statement handle. The currently bound parameter marker
values are sent to server during this call, and the server replaces the markers with this newly supplied data.

If the statement is an UPDATE, DELETE, or INSERT, the total number of changed, deleted, or inserted rows can be found by calling
mysql_stmt_affected_rows(). If this is a statement such as SELECT that generates a result set, you must call
mysql_stmt_fetch() to fetch the data prior to calling any other functions that result in query processing. For more information on
how to fetch the results, refer to Section 26.2.7.11, “mysql_stmt_fetch()”.

For statements that generate a result set, you can request that mysql_stmt_execute() open a cursor for the statement by calling
mysql_stmt_attr_set() before executing the statement. If you execute a statement multiple times, mysql_stmt_execute()
closes any open cursor before opening a new one.

APIs and Libraries

1467



Return Values

Zero if execution was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to create and populate a table using mysql_stmt_init(), mysql_stmt_prepare(),
mysql_stmt_param_count(), mysql_stmt_bind_param(), mysql_stmt_execute(), and
mysql_stmt_affected_rows(). The mysql variable is assumed to be a valid connection handle.

#define STRING_SIZE 50

#define DROP_SAMPLE_TABLE "DROP TABLE IF EXISTS test_table"
#define CREATE_SAMPLE_TABLE "CREATE TABLE test_table(col1 INT,\

col2 VARCHAR(40),\
col3 SMALLINT,\
col4 TIMESTAMP)"

#define INSERT_SAMPLE "INSERT INTO \
test_table(col1,col2,col3) \
VALUES(?,?,?)"

MYSQL_STMT *stmt;
MYSQL_BIND bind[3];
my_ulonglong affected_rows;
int param_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
unsigned long str_length;
my_bool is_null;

if (mysql_query(mysql, DROP_SAMPLE_TABLE))
{
fprintf(stderr, " DROP TABLE failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);

}

if (mysql_query(mysql, CREATE_SAMPLE_TABLE))
{
fprintf(stderr, " CREATE TABLE failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);

}

/* Prepare an INSERT query with 3 parameters */
/* (the TIMESTAMP column is not named; the server */
/* sets it to the current date and time) */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);

}

APIs and Libraries

1468



if (mysql_stmt_prepare(stmt, INSERT_SAMPLE, strlen(INSERT_SAMPLE)))
{
fprintf(stderr, " mysql_stmt_prepare(), INSERT failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
fprintf(stdout, " prepare, INSERT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in INSERT: %d\n", param_count);

if (param_count != 3) /* validate parameter count */
{
fprintf(stderr, " invalid parameter count returned by MySQL\n");
exit(0);

}

/* Bind the data for all 3 parameters */

memset(bind, 0, sizeof(bind));

/* INTEGER PARAM */
/* This is a number type, so there is no need

to specify buffer_length */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= 0;
bind[0].length= 0;

/* STRING PARAM */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= 0;
bind[1].length= &str_length;

/* SMALLINT PARAM */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null;
bind[2].length= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
fprintf(stderr, " mysql_stmt_bind_param() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Specify the data values for the first row */
int_data= 10; /* integer */
strncpy(str_data, "MySQL", STRING_SIZE); /* string */
str_length= strlen(str_data);

/* INSERT SMALLINT data as NULL */
is_null= 1;

/* Execute the INSERT statement - 1*/
if (mysql_stmt_execute(stmt))
{
fprintf(stderr, " mysql_stmt_execute(), 1 failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Get the total number of affected rows */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 1): %lu\n",

(unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
fprintf(stderr, " invalid affected rows by MySQL\n");
exit(0);

}

/* Specify data values for second row,
then re-execute the statement */

int_data= 1000;
strncpy(str_data, "

The most popular Open Source database",
STRING_SIZE);

str_length= strlen(str_data);
small_data= 1000; /* smallint */
is_null= 0; /* reset */

/* Execute the INSERT statement - 2*/
if (mysql_stmt_execute(stmt))

APIs and Libraries

1469



{
fprintf(stderr, " mysql_stmt_execute, 2 failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Get the total rows affected */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 2): %lu\n",

(unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
fprintf(stderr, " invalid affected rows by MySQL\n");
exit(0);

}

/* Close the statement */
if (mysql_stmt_close(stmt))
{
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

Note

For complete examples on the use of prepared statement functions, refer to the file tests/mysql_client_test.c.
This file can be obtained from a MySQL source distribution or from the BitKeeper source repository.

26.2.7.11. mysql_stmt_fetch()

int mysql_stmt_fetch(MYSQL_STMT *stmt)

Description

mysql_stmt_fetch() returns the next row in the result set. It can be called only while the result set exists; that is, after a call to
mysql_stmt_execute() for a statement such as SELECT that creates a result set.

mysql_stmt_fetch() returns row data using the buffers bound by mysql_stmt_bind_result(). It returns the data in those
buffers for all the columns in the current row set and the lengths are returned to the length pointer. All columns must be bound by the
application before it calls mysql_stmt_fetch().

By default, result sets are fetched unbuffered a row at a time from the server. To buffer the entire result set on the client, call
mysql_stmt_store_result() after binding the data buffers and before caling mysql_stmt_fetch().

If a fetched data value is a NULL value, the *is_null value of the corresponding MYSQL_BIND structure contains TRUE (1). Other-
wise, the data and its length are returned in the *buffer and *length elements based on the buffer type specified by the application.
Each numeric and temporal type has a fixed length, as listed in the following table. The length of the string types depends on the length
of the actual data value, as indicated by data_length.

Type Length

MYSQL_TYPE_TINY 1

MYSQL_TYPE_SHORT 2

MYSQL_TYPE_LONG 4

MYSQL_TYPE_LONGLONG 8

MYSQL_TYPE_FLOAT 4

MYSQL_TYPE_DOUBLE 8

MYSQL_TYPE_TIME sizeof(MYSQL_TIME)

MYSQL_TYPE_DATE sizeof(MYSQL_TIME)

MYSQL_TYPE_DATETIME sizeof(MYSQL_TIME)

MYSQL_TYPE_STRING data length

MYSQL_TYPE_BLOB data_length

APIs and Libraries

1470



Return Values

Return Value Description

0 Successful, the data has been fetched to application data buffers.

1 Error occurred. Error code and message can be obtained by calling
mysql_stmt_errno() and mysql_stmt_error().

MYSQL_NO_DATA No more rows/data exists

MYSQL_DATA_TRUNCATED Data truncation occurred

MYSQL_DATA_TRUNCATED is returned when truncation reporting is enabled. (Reporting is enabled by default, but can be controlled
with mysql_options().) To determine which parameters were truncated when this value is returned, check the error members of
the MYSQL_BIND parameter structures.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• CR_UNSUPPORTED_PARAM_TYPE

The buffer type is MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, but
the data type is not DATE, TIME, DATETIME, or TIMESTAMP.

• All other unsupported conversion errors are returned from mysql_stmt_bind_result().

Example

The following example demonstrates how to fetch data from a table using mysql_stmt_result_metadata(),
mysql_stmt_bind_result(), and mysql_stmt_fetch(). (This example expects to retrieve the two rows inserted by the ex-
ample shown in Section 26.2.7.10, “mysql_stmt_execute()”.) The mysql variable is assumed to be a valid connection handle.

#define STRING_SIZE 50

#define SELECT_SAMPLE "SELECT col1, col2, col3, col4 \
FROM test_table"

MYSQL_STMT *stmt;
MYSQL_BIND bind[4];
MYSQL_RES *prepare_meta_result;
MYSQL_TIME ts;
unsigned long length[4];
int param_count, column_count, row_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
my_bool is_null[4];
my_bool error[4];

/* Prepare a SELECT query to fetch data from test_table */

APIs and Libraries

1471



stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);

}
if (mysql_stmt_prepare(stmt, SELECT_SAMPLE, strlen(SELECT_SAMPLE)))
{
fprintf(stderr, " mysql_stmt_prepare(), SELECT failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
fprintf(stdout, " prepare, SELECT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in SELECT: %d\n", param_count);

if (param_count != 0) /* validate parameter count */
{
fprintf(stderr, " invalid parameter count returned by MySQL\n");
exit(0);

}

/* Fetch result set meta information */
prepare_meta_result = mysql_stmt_result_metadata(stmt);
if (!prepare_meta_result)
{
fprintf(stderr,

" mysql_stmt_result_metadata(), \
returned no meta information\n");

fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Get total columns in the query */
column_count= mysql_num_fields(prepare_meta_result);
fprintf(stdout,

" total columns in SELECT statement: %d\n",
column_count);

if (column_count != 4) /* validate column count */
{
fprintf(stderr, " invalid column count returned by MySQL\n");
exit(0);

}

/* Execute the SELECT query */
if (mysql_stmt_execute(stmt))
{
fprintf(stderr, " mysql_stmt_execute(), failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Bind the result buffers for all 4 columns before fetching them */

memset(bind, 0, sizeof(bind));

/* INTEGER COLUMN */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= &is_null[0];
bind[0].length= &length[0];
bind[0].error= &error[0];

/* STRING COLUMN */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= &is_null[1];
bind[1].length= &length[1];
bind[1].error= &error[1];

/* SMALLINT COLUMN */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null[2];
bind[2].length= &length[2];
bind[2].error= &error[2];

/* TIMESTAMP COLUMN */
bind[3].buffer_type= MYSQL_TYPE_TIMESTAMP;
bind[3].buffer= (char *)&ts;
bind[3].is_null= &is_null[3];
bind[3].length= &length[3];
bind[3].error= &error[3];

/* Bind the result buffers */
if (mysql_stmt_bind_result(stmt, bind))

APIs and Libraries

1472



{
fprintf(stderr, " mysql_stmt_bind_result() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Now buffer all results to client (optional step) */
if (mysql_stmt_store_result(stmt))
{
fprintf(stderr, " mysql_stmt_store_result() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Fetch all rows */
row_count= 0;
fprintf(stdout, "Fetching results ...\n");
while (!mysql_stmt_fetch(stmt))
{
row_count++;
fprintf(stdout, " row %d\n", row_count);

/* column 1 */
fprintf(stdout, " column1 (integer) : ");
if (is_null[0])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %d(%ld)\n", int_data, length[0]);

/* column 2 */
fprintf(stdout, " column2 (string) : ");
if (is_null[1])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %s(%ld)\n", str_data, length[1]);

/* column 3 */
fprintf(stdout, " column3 (smallint) : ");
if (is_null[2])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %d(%ld)\n", small_data, length[2]);

/* column 4 */
fprintf(stdout, " column4 (timestamp): ");
if (is_null[3])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %04d-%02d-%02d %02d:%02d:%02d (%ld)\n",

ts.year, ts.month, ts.day,
ts.hour, ts.minute, ts.second,
length[3]);

fprintf(stdout, "\n");
}

/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %d\n", row_count);
if (row_count != 2)
{
fprintf(stderr, " MySQL failed to return all rows\n");
exit(0);

}

/* Free the prepared result metadata */
mysql_free_result(prepare_meta_result);

/* Close the statement */
if (mysql_stmt_close(stmt))
{
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

In some cases you might want to determine the length of a column value before fetching it with mysql_stmt_fetch(). For ex-
ample, the value might be a long string or BLOB value for which you want to know how much space must be allocated. To accomplish
this, you can use these strategies:

• Before invoking mysql_stmt_fetch() to retrieve individual rows, invoke mysql_stmt_store_result() to buffer the
entire result on the client side. Then the maximal length of column values will be indicated by the max_length member of the
result set metadata returned by mysql_stmt_result_metadata(). This strategy requires that you pass
STMT_ATTR_UPDATE_MAX_LENGTH to mysql_stmt_attr_set() or the max_length values will not be calculated.

APIs and Libraries

1473



• Invoke mysql_stmt_fetch() with a zero-length buffer for the column in question and a pointer in which the real length can be
stored. Then use the real length with mysql_stmt_fetch_column().

real_length= 0;

bind[0].buffer= 0;
bind[0].buffer_length= 0;
bind[0].length= &real_length
mysql_stmt_bind_result(stmt, bind);

mysql_stmt_fetch(stmt);
if (real_length > 0)
{
data= malloc(real_length);
bind[0].buffer= data;
bind[0].buffer_length= real_length;
mysql_stmt_fetch_column(stmt, 0, bind, 0);

}

26.2.7.12. mysql_stmt_fetch_column()

int mysql_stmt_fetch_column(MYSQL_STMT *stmt, MYSQL_BIND *bind, unsigned int column, un-
signed long offset)

Description

Fetch one column from the current result set row. bind provides the buffer where data should be placed. It should be set up the same
way as for mysql_stmt_bind_result(). column indicates which column to fetch. The first column is numbered 0. offset is
the offset within the data value at which to begin retrieving data. This can be used for fetching the data value in pieces. The beginning
of the value is offset 0.

Return Values

Zero if the value was fetched successfully. Non-zero if an error occurred.

Errors

• CR_INVALID_PARAMETER_NO

Invalid column number.

• CR_NO_DATA

The end of the result set has already been reached.

26.2.7.13. mysql_stmt_field_count()

unsigned int mysql_stmt_field_count(MYSQL_STMT *stmt)

Description

Returns the number of columns for the most recent statement for the statement handler. This value is zero for statements such as IN-
SERT or DELETE that do not produce result sets.

mysql_stmt_field_count() can be called after you have prepared a statement by invoking mysql_stmt_prepare().

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

26.2.7.14. mysql_stmt_free_result()

APIs and Libraries

1474



my_bool mysql_stmt_free_result(MYSQL_STMT *stmt)

Description

Releases memory associated with the result set produced by execution of the prepared statement. If there is a cursor open for the state-
ment, mysql_stmt_free_result() closes it.

Return Values

Zero if the result set was freed successfully. Non-zero if an error occurred.

Errors

26.2.7.15. mysql_stmt_init()

MYSQL_STMT *mysql_stmt_init(MYSQL *mysql)

Description

Create a MYSQL_STMT handle. The handle should be freed with mysql_stmt_close(MYSQL_STMT *).

Return values

A pointer to a MYSQL_STMT structure in case of success. NULL if out of memory.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

26.2.7.16. mysql_stmt_insert_id()

my_ulonglong mysql_stmt_insert_id(MYSQL_STMT *stmt)

Description

Returns the value generated for an AUTO_INCREMENT column by the prepared INSERT or UPDATE statement. Use this function after
you have executed a prepared INSERT statement on a table which contains an AUTO_INCREMENT field.

See Section 26.2.3.37, “mysql_insert_id()”, for more information.

Return Values

Value for AUTO_INCREMENT column which was automatically generated or explicitly set during execution of prepared statement, or
value generated by LAST_INSERT_ID(expr) function. Return value is undefined if statement does not set AUTO_INCREMENT
value.

Errors

None.

26.2.7.17. mysql_stmt_num_rows()

my_ulonglong mysql_stmt_num_rows(MYSQL_STMT *stmt)

Description

Returns the number of rows in the result set.

The use of mysql_stmt_num_rows() depends on whether you used mysql_stmt_store_result() to buffer the entire result
set in the statement handle.

If you use mysql_stmt_store_result(), mysql_stmt_num_rows() may be called immediately. Otherwise, the row count

APIs and Libraries

1475



is unavailable unless you count the rows as you fetch them.

mysql_stmt_num_rows() is intended for use with statements that return a result set, such as SELECT. For statements such as IN-
SERT, UPDATE, or DELETE, the number of affected rows can be obtained with mysql_stmt_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

26.2.7.18. mysql_stmt_param_count()

unsigned long mysql_stmt_param_count(MYSQL_STMT *stmt)

Description

Returns the number of parameter markers present in the prepared statement.

Return Values

An unsigned long integer representing the number of parameters in a statement.

Errors

None.

Example

For the usage of mysql_stmt_param_count(), refer to the Example from Section 26.2.7.10, “mysql_stmt_execute()”.

26.2.7.19. mysql_stmt_param_metadata()

MYSQL_RES *mysql_stmt_param_metadata(MYSQL_STMT *stmt)

This function currently does nothing.

Description

Return Values

Errors

26.2.7.20. mysql_stmt_prepare()

int mysql_stmt_prepare(MYSQL_STMT *stmt, const char *stmt_str, unsigned long length)

Description

Given the statement handle returned by mysql_stmt_init(), prepares the SQL statement pointed to by the string stmt_str and
returns a status value. The string length should be given by the length argument. The string must consist of a single SQL statement.
You should not add a terminating semicolon (“;”) or \g to the statement.

The application can include one or more parameter markers in the SQL statement by embedding question mark (“?”) characters into the
SQL string at the appropriate positions.

The markers are legal only in certain places in SQL statements. For example, they are allowed in the VALUES() list of an INSERT
statement (to specify column values for a row), or in a comparison with a column in a WHERE clause to specify a comparison value.
However, they are not allowed for identifiers (such as table or column names), or to specify both operands of a binary operator such as
the = equal sign. The latter restriction is necessary because it would be impossible to determine the parameter type. In general, paramet-
ers are legal only in Data Manipulation Language (DML) statements, and not in Data Definition Language (DDL) statements.

The parameter markers must be bound to application variables using mysql_stmt_bind_param() before executing the statement.

APIs and Libraries

1476



Return Values

Zero if the statement was prepared successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

If the prepare operation was unsuccessful (that is, mysql_stmt_prepare() returns non-zero), the error message can be obtained by
calling mysql_stmt_error().

Example

For the usage of mysql_stmt_prepare(), refer to the Example from Section 26.2.7.10, “mysql_stmt_execute()”.

26.2.7.21. mysql_stmt_reset()

my_bool mysql_stmt_reset(MYSQL_STMT *stmt)

Description

Reset the prepared statement on the client and server to state after prepare. This is mainly used to reset data sent with
mysql_stmt_send_long_data(). Any open cursor for the statement is closed.

To re-prepare the statement with another query, use mysql_stmt_prepare().

Return Values

Zero if the statement was reset successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

APIs and Libraries

1477



An unknown error occurred.

26.2.7.22. mysql_stmt_result_metadata()

MYSQL_RES *mysql_stmt_result_metadata(MYSQL_STMT *stmt)

Description

If a statement passed to mysql_stmt_prepare() is one that produces a result set, mysql_stmt_result_metadata() re-
turns the result set metadata in the form of a pointer to a MYSQL_RES structure that can be used to process the meta information such as
total number of fields and individual field information. This result set pointer can be passed as an argument to any of the field-based
API functions that process result set metadata, such as:

• mysql_num_fields()

• mysql_fetch_field()

• mysql_fetch_field_direct()

• mysql_fetch_fields()

• mysql_field_count()

• mysql_field_seek()

• mysql_field_tell()

• mysql_free_result()

The result set structure should be freed when you are done with it, which you can do by passing it to mysql_free_result(). This
is similar to the way you free a result set obtained from a call to mysql_store_result().

The result set returned by mysql_stmt_result_metadata() contains only metadata. It does not contain any row results. The
rows are obtained by using the statement handle with mysql_stmt_fetch().

Return Values

A MYSQL_RES result structure. NULL if no meta information exists for the prepared query.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_result_metadata(), refer to the Example from Section 26.2.7.11, “mysql_stmt_fetch()”.

26.2.7.23. mysql_stmt_row_seek()

MYSQL_ROW_OFFSET mysql_stmt_row_seek(MYSQL_STMT *stmt, MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a statement result set. The offset value is a row offset that should be a value returned from

APIs and Libraries

1478



mysql_stmt_row_tell() or from mysql_stmt_row_seek(). This value is not a row number; if you want to seek to a row
within a result set by number, use mysql_stmt_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so mysql_stmt_row_seek() may be used
only in conjunction with mysql_stmt_store_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to mysql_stmt_row_seek().

Errors

None.

26.2.7.24. mysql_stmt_row_tell()

MYSQL_ROW_OFFSET mysql_stmt_row_tell(MYSQL_STMT *stmt)

Description

Returns the current position of the row cursor for the last mysql_stmt_fetch(). This value can be used as an argument to
mysql_stmt_row_seek().

You should use mysql_stmt_row_tell() only after mysql_stmt_store_result().

Return Values

The current offset of the row cursor.

Errors

None.

26.2.7.25. mysql_stmt_send_long_data()

my_bool mysql_stmt_send_long_data(MYSQL_STMT *stmt, unsigned int parameter_number, const
char *data, unsigned long length)

Description

Allows an application to send parameter data to the server in pieces (or “chunks”). Call this function after
mysql_stmt_bind_param() and before mysql_stmt_execute(). It can be called multiple times to send the parts of a char-
acter or binary data value for a column, which must be one of the TEXT or BLOB data types.

parameter_number indicates which parameter to associate the data with. Parameters are numbered beginning with 0. data is a
pointer to a buffer containing data to be sent, and length indicates the number of bytes in the buffer.

Note

The next mysql_stmt_execute() call ignores the bind buffer for all parameters that have been used with
mysql_stmt_send_long_data() since last mysql_stmt_execute() or mysql_stmt_reset().

If you want to reset/forget the sent data, you can do it with mysql_stmt_reset(). See Section 26.2.7.21,
“mysql_stmt_reset()”.

Return Values

Zero if the data is sent successfully to server. Non-zero if an error occurred.

Errors

• CR_INVALID_BUFFER_USE

The parameter does not have a string or binary type.

• CR_COMMANDS_OUT_OF_SYNC

APIs and Libraries

1479



Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to send the data for a TEXT column in chunks. It inserts the data value 'MySQL - The
most popular Open Source database' into the text_column column. The mysql variable is assumed to be a valid con-
nection handle.

#define INSERT_QUERY "INSERT INTO \
test_long_data(text_column) VALUES(?)"

MYSQL_BIND bind[1];
long length;

stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);

}
if (mysql_stmt_prepare(stmt, INSERT_QUERY, strlen(INSERT_QUERY)))
{
fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}
memset(bind, 0, sizeof(bind));
bind[0].buffer_type= MYSQL_TYPE_STRING;
bind[0].length= &length;
bind[0].is_null= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
fprintf(stderr, "\n param bind failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

/* Supply data in chunks to server */
if (mysql_stmt_send_long_data(stmt,0,"MySQL",5))
{
fprintf(stderr, "\n send_long_data failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

/* Supply the next piece of data */
if (mysql_stmt_send_long_data(stmt,0,

" - The most popular Open Source database",40))
{
fprintf(stderr, "\n send_long_data failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

/* Now, execute the query */
if (mysql_stmt_execute(stmt))
{
fprintf(stderr, "\n mysql_stmt_execute failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

26.2.7.26. mysql_stmt_sqlstate()

APIs and Libraries

1480



const char *mysql_stmt_sqlstate(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_sqlstate() returns a null-terminated string containing the SQLSTATE error
code for the most recently invoked prepared statement API function that can succeed or fail. The error code consists of five characters.
"00000" means “no error.” The values are specified by ANSI SQL and ODBC. For a list of possible values, see Appendix B, Errors,
Error Codes, and Common Problems.

Note that not all MySQL errors are yet mapped to SQLSTATE codes. The value "HY000" (general error) is used for unmapped errors.

Return Values

A null-terminated character string containing the SQLSTATE error code.

26.2.7.27. mysql_stmt_store_result()

int mysql_stmt_store_result(MYSQL_STMT *stmt)

Description

Result sets are produced by executing prepared statements for SQL statements such as SELECT, SHOW, DESCRIBE, and EXPLAIN. By
default, result sets for successfully executed prepared statements are not buffered on the client and mysql_stmt_fetch() fetches
them one at a time from the server. To cause the complete result set to be buffered on the client, call
mysql_stmt_store_result() after binding data buffers with mysql_stmt_bind_result() and before calling
mysql_stmt_fetch() to fetch rows. (For an example, see Section 26.2.7.11, “mysql_stmt_fetch()”.)

mysql_stmt_store_result() is optional for result set processing, unless you will call mysql_stmt_data_seek(),
mysql_stmt_row_seek(), or mysql_stmt_row_tell(). Those functions require a seekable result set.

It is unnecessary to call mysql_stmt_store_result() after executing a SQL statement that does not produce a result set, but if
you do, it does not harm or cause any notable performance problem. You can detect whether the statement produced a result set by
checking if mysql_stmt_result_metadata() returns NULL. For more information, refer to Section 26.2.7.22,
“mysql_stmt_result_metadata()”.

Note

MySQL doesn't by default calculate MYSQL_FIELD->max_length for all columns in
mysql_stmt_store_result() because calculating this would slow down mysql_stmt_store_result()
considerably and most applications doesn't need max_length. If you want max_length to be updated, you can call
mysql_stmt_attr_set(MYSQL_STMT, STMT_ATTR_UPDATE_MAX_LENGTH, &flag) to enable this. See
Section 26.2.7.3, “mysql_stmt_attr_set()”.

Return Values

Zero if the results are buffered successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

APIs and Libraries

1481



• CR_UNKNOWN_ERROR

An unknown error occurred.

26.2.8. C API Prepared Statement Problems
Here follows a list of the currently known problems with prepared statements:

• TIME, TIMESTAMP, and DATETIME do not support parts of seconds (for example, from DATE_FORMAT()).

• When converting an integer to string, ZEROFILL is honored with prepared statements in some cases where the MySQL server
doesn't print the leading zeros. (For example, with MIN(number-with-zerofill)).

• When converting a floating-point number to a string in the client, the rightmost digits of the converted value may differ slightly
from those of the original value.

• Before MySQL 5.1.17, prepared statements do not use the query cache. As of 5.1.17, prepared statements use the query cache under
the conditions described in Section 7.5.4.1, “How the Query Cache Operates”.

• Prepared statements do not support multi-statements (that is, multiple statements within a single string separated by “;” characters).
This also means that prepared statements cannot invoke stored procedures that return result sets, because prepared statements do not
support multiple result sets.

26.2.9. C API Handling of Multiple Statement Execution
By default, mysql_query() and mysql_real_query() interpret their statement string argument as a single statement to be ex-
ecuted, and you process the result according to whether the statement produces a result set (a set of rows, as for SELECT) or an af-
fected-rows count (as for INSERT, UPDATE, and so forth).

MySQL 5.1 also supports the execution of a string containing multiple statements separated by semicolon (“;”) characters. This capab-
ility is enabled by special options that are specified either when you connect to the server with mysql_real_connect() or after
connecting by calling` mysql_set_server_option().

Executing a multiple-statement string can produce multiple result sets or row-count indicators. Processing these results involves a dif-
ferent approach than for the single-statement case: After handling the result from the first statement, it is necessary to check whether
more results exist and process them in turn if so. To support multiple-result processing, the C API includes the
mysql_more_results() and mysql_next_result() functions. These functions are used at the end of a loop that iterates as
long as more results are available. Failure to process the result this way may result in a dropped connection to the server.

Multiple-result processing also is required if you execute CALL statements for stored procedures. Results from a stored procedure have
these characteristics:

• Statements within the procedure may produce result sets (for example, if it executes SELECT statements). These result sets are re-
turned in the order that they are produced as the procedure executes.

In general, the caller cannot know how many result sets a procedure will return. Procedure execution may depend on loops or condi-
tional statements that cause the execution path to differ from one call to the next. Therefore, you must be prepared to retrieve mul-
tiple results.

• The final result from the procedure is a status result that includes no result set. The status indicates whether the procedure succeeded
or an error occurred.

The multiple statement and result capabilities can be used only with mysql_query() or mysql_real_query(). They cannot be
used with the prepared statement interface. Prepared statement handles are defined to work only with strings that contain a single state-
ment. See Section 26.2.4, “C API Prepared Statements”.

To enable multiple-statement execution and result processing, the following options may be used:

• The mysql_real_connect() function has a flags argument for which two option values are relevent:

APIs and Libraries

1482



• CLIENT_MULTI_RESULTS enables the client program to process multiple results. This option must be enabled if you execute
CALL statements for stored procedures that produce result sets. Otherwise, such procedures result in an error Error 1312
(0A000): PROCEDURE proc_name can't return a result set in the given context.

• CLIENT_MULTI_STATEMENTS enables mysql_query() and mysql_real_query() to execute statement strings con-
taining multiple statements separated by semicolons. This option also enables CLIENT_MULTI_RESULTS implicitly, so a
flags argument of CLIENT_MULTI_STATEMENTS to mysql_real_connect() is equivalent to an argument of CLI-
ENT_MULTI_STATEMENTS | CLIENT_MULTI_RESULTS. That is, CLIENT_MULTI_STATEMENTS is sufficient to en-
able multiple-statement execution and all multiple-result processing.

• After the connection to the server has been established, you can use the mysql_set_server_option() function to enable or
disable multiple-statement execution by passing it an argument of MYSQL_OPTION_MULTI_STATEMENTS_ON or
MYSQL_OPTION_MULTI_STATEMENTS_OFF. Enabling multiple-statement execution with this function also enables processing
of “simple” results for a multiple-statement string where each statement produces a single result, but is not sufficient to allow pro-
cessing of stored procedures that produce result sets.

The following procedure outlines a suggested strategy for handling multiple statements:

1. Pass CLIENT_MULTI_STATEMENTS to mysql_real_connect(), to fully enable multiple-statement execution and mul-
tiple-result processing.

2. After calling mysql_query() or mysql_real_query() and verifying that it succeeds, enter a loop within which you pro-
cess statement results.

3. For each iteration of the loop, handle the current statement result, retrieving either a result set or an affected-rows count. If an error
occurs, exit the loop.

4. At the end of the loop, call mysql_next_result() to check whether another result exists and initiate retrieval for it if so. If no
more results are available, exit the loop.

One possible implementation of the preceding strategy is shown following. The final part of the loop can be reduced to a simple test of
whether mysql_next_result() returns non-zero. The code as written distinguishes between no more results and an error, which
allows a message to be printed for the latter occurrence.

/* connect to server with the CLIENT_MULTI_STATEMENTS option */
if (mysql_real_connect (mysql, host_name, user_name, password,

db_name, port_num, socket_name, CLIENT_MULTI_STATEMENTS) == NULL)
{
printf("mysql_real_connect() failed\n");
mysql_close(mysql);
exit(1);

}

/* execute multiple statements */
status = mysql_query(mysql,

"DROP TABLE IF EXISTS test_table;\
CREATE TABLE test_table(id INT);\
INSERT INTO test_table VALUES(10);\
UPDATE test_table SET id=20 WHERE id=10;\
SELECT * FROM test_table;\
DROP TABLE test_table");

if (status)
{
printf("Could not execute statement(s)");
mysql_close(mysql);
exit(0);

}

/* process each statement result */
do {
/* did current statement return data? */
result = mysql_store_result(mysql);
if (result)
{
/* yes; process rows and free the result set */
process_result_set(mysql, result);
mysql_free_result(result);

}
else /* no result set or error */
{
if (mysql_field_count(mysql) == 0)
{

APIs and Libraries

1483



printf("%lld rows affected\n",
mysql_affected_rows(mysql));

}
else /* some error occurred */
{
printf("Could not retrieve result set\n");
break;

}
}
/* more results? -1 = no, >0 = error, 0 = yes (keep looping) */
if ((status = mysql_next_result(mysql)) > 0)
printf("Could not execute statement\n");

} while (status == 0);

mysql_close(mysql);

26.2.10. C API Handling of Date and Time Values
The binary (prepared statement) protocol allows you to send and receive date and time values (DATE, TIME, DATETIME, and
TIMESTAMP), using the MYSQL_TIME structure. The members of this structure are described in Section 26.2.5, “C API Prepared
Statement Data types”.

To send temporal data values, create a prepared statement using mysql_stmt_prepare(). Then, before calling
mysql_stmt_execute() to execute the statement, use the following procedure to set up each temporal parameter:

1. In the MYSQL_BIND structure associated with the data value, set the buffer_type member to the type that indicates what kind
of temporal value you're sending. For DATE, TIME, DATETIME, or TIMESTAMP values, set buffer_type to
MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, respectively.

2. Set the buffer member of the MYSQL_BIND structure to the address of the MYSQL_TIME structure in which you pass the tem-
poral value.

3. Fill in the members of the MYSQL_TIME structure that are appropriate for the type of temporal value to be passed.

Use mysql_stmt_bind_param() to bind the parameter data to the statement. Then you can call mysql_stmt_execute().

To retrieve temporal values, the procedure is similar, except that you set the buffer_type member to the type of value you expect to
receive, and the buffer member to the address of a MYSQL_TIME structure into which the returned value should be placed. Use
mysql_stmt_bind_result() to bind the buffers to the statement after calling mysql_stmt_execute() and before fetching
the results.

Here is a simple example that inserts DATE, TIME, and TIMESTAMP data. The mysql variable is assumed to be a valid connection
handle.

MYSQL_TIME ts;
MYSQL_BIND bind[3];
MYSQL_STMT *stmt;

strmov(query, "INSERT INTO test_table(date_field, time_field, \
timestamp_field) VALUES(?,?,?");

stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);

}
if (mysql_stmt_prepare(mysql, query, strlen(query)))
{
fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

/* set up input buffers for all 3 parameters */
bind[0].buffer_type= MYSQL_TYPE_DATE;
bind[0].buffer= (char *)&ts;
bind[0].is_null= 0;
bind[0].length= 0;
...
bind[1]= bind[2]= bind[0];
...

mysql_stmt_bind_param(stmt, bind);

APIs and Libraries

1484



/* supply the data to be sent in the ts structure */
ts.year= 2002;
ts.month= 02;
ts.day= 03;

ts.hour= 10;
ts.minute= 45;
ts.second= 20;

mysql_stmt_execute(stmt);
..

26.2.11. C API Threaded Function Descriptions
You need to use the following functions when you want to create a threaded client. See Section 26.2.16, “How to Make a Threaded Cli-
ent”.

26.2.11.1. my_init()

void my_init(void)

Description

my_init() initializes some global variables that MySQL needs. If you are using a thread-safe client library, it also calls
mysql_thread_init() for this thread.

It is necessary for my_init() to be called early in the initialization phase of a program's use of the MySQL library. However,
my_init() is automatically called by mysql_init(), mysql_library_init(), mysql_server_init(), and
mysql_connect(). If you ensure that your program invokes one of those functions before any other MySQL calls, there is no need
to invoke my_init() explicitly.

To access my_init(), your program must include the my_sys.h header file:

#include <my_sys.h>

Return Values

None.

26.2.11.2. mysql_thread_end()

void mysql_thread_end(void)

Description

This function needs to be called before calling pthread_exit() to free memory allocated by mysql_thread_init().

mysql_thread_end() is not invoked automatically by the client library. It must be called explicitly to avoid a memory leak.

Return Values

None.

26.2.11.3. mysql_thread_init()

my_bool mysql_thread_init(void)

Description

This function must be called early within each created thread to initialize thread-specific variables. However, you may not necessarily
need to invoke it explicitly: mysql_thread_init() is automatically called by my_init(), which itself is automatically called by
mysql_init(), mysql_library_init(), mysql_server_init(), and mysql_connect(). If you invoke any of those
functions, mysql_thread_init() will be called for you.

Return Values

APIs and Libraries

1485



Zero if successful. Non-zero if an error occurred.

26.2.11.4. mysql_thread_safe()

unsigned int mysql_thread_safe(void)

Description

This function indicates whether the client library is compiled as thread-safe.

Return Values

1 if the client library is thread-safe, 0 otherwise.

26.2.12. C API Embedded Server Function Descriptions
MySQL applications can be written to use an embedded server. See Section 26.1, “libmysqld, the Embedded MySQL Server Library”.
To write such an application, you must link it against the libmysqld library by using the -lmysqld flag rather than linking it
against the libmysqlclient client library by using the -lmysqlclient flag. However, the calls to initialize and finalize the lib-
rary are the same whether you write a client application or one that uses the embedded server: Call mysql_library_init() to ini-
tialize the library and mysql_library_end() when you are done with it. See Section 26.2.2, “C API Function Overview”.

26.2.12.1. mysql_server_init()

int mysql_server_init(int argc, char **argv, char **groups)

Description

This function initializes the MySQL library, which must be done before you call any other MySQL function. However,
mysql_server_init() is deprecated and you should call mysql_library_init() instead. See Section 26.2.3.40,
“mysql_library_init()”.

Return Values

Zero if successful. Non-zero if an error occurred.

26.2.12.2. mysql_server_end()

void mysql_server_end(void)

Description

This function finalizes the MySQL library, which should be done when you are done using the library. However,
mysql_server_end() is deprecated and mysql_library_end() should be used instead. See Section 26.2.3.39,
“mysql_library_end()”.

Return Values

None.

26.2.13. Controlling Automatic Reconnect Behavior
The MySQL client library can perform an automatic reconnect to the server if it finds that the connection is down when you attempt to
send a statement to the server to be executed. In this case, the library tries once to reconnect to the server and send the statement again.

If it is important for your application to know that the connection has been dropped (so that is can exit or take action to adjust for the
loss of state information), be sure to disable auto-reconnect. This can be done explicitly by calling mysql_options() with the
MYSQL_OPT_RECONNECT option:

my_bool reconnect = 0;
mysql_options(&mysql, MYSQL_OPT_RECONNECT, &reconnect);

In MySQL 5.1, auto-reconnect is disabled by default.

APIs and Libraries

1486



Some client programs might provide the capability of controlling automatic reconnection. For example, mysql reconnects by default,
but the --skip-reconnect option can be used to suppress this behavior.

Automatic reconnection can be convenient because you need not implement your own reconnect code, but if a reconnection does occur,
several aspects of the connection state are reset and your application will not know about it. The connection-related state is affected as
follows:

• Any active transactions are rolled back and autocommit mode is reset.

• All table locks are released.

• All TEMPORARY tables are closed (and dropped).

• Session variables are reinitialized to the values of the corresponding variables. This also affects variables that are set implicitly by
statements such as SET NAMES.

• User variable settings are lost.

• Prepared statements are released.

• HANDLER variables are closed.

• The value of LAST_INSERT_ID() is reset to 0.

• Locks acquired with GET_LOCK() are released.

• mysql_ping() does not attempt a reconnection if the connection is down. It returns an error instead.

26.2.14. Common Questions and Problems When Using the C API

MySQL Enterprise
Subscribers to MySQL Enterprise will find articles about the C API in the MySQL Knowledge Base. Access to
the Knowledge Base collection of articles is one of the advantages of subscribing to MySQL Enterprise. For
more information see http://www.mysql.com/products/enterprise/advisors.html.

26.2.14.1. Why mysql_store_result() Sometimes Returns NULL After mysql_query() Re-
turns Success

It is possible for mysql_store_result() to return NULL following a successful call to mysql_query(). When this happens, it
means one of the following conditions occurred:

• There was a malloc() failure (for example, if the result set was too large).

• The data couldn't be read (an error occurred on the connection).

• The query returned no data (for example, it was an INSERT, UPDATE, or DELETE).

You can always check whether the statement should have produced a non-empty result by calling mysql_field_count(). If
mysql_field_count() returns zero, the result is empty and the last query was a statement that does not return values (for example,
an INSERT or a DELETE). If mysql_field_count() returns a non-zero value, the statement should have produced a non-empty
result. See the description of the mysql_field_count() function for an example.

You can test for an error by calling mysql_error() or mysql_errno().

26.2.14.2. What Results You Can Get from a Query

In addition to the result set returned by a query, you can also get the following information:

• mysql_affected_rows() returns the number of rows affected by the last query when doing an INSERT, UPDATE, or DE-
LETE.

APIs and Libraries

1487

http://www.mysql.com/products/enterprise/advisors.html


For a fast re-create, use TRUNCATE TABLE.

• mysql_num_rows() returns the number of rows in a result set. With mysql_store_result(), mysql_num_rows() may
be called as soon as mysql_store_result() returns. With mysql_use_result(), mysql_num_rows() may be called
only after you have fetched all the rows with mysql_fetch_row().

• mysql_insert_id() returns the ID generated by the last query that inserted a row into a table with an AUTO_INCREMENT in-
dex. See Section 26.2.3.37, “mysql_insert_id()”.

• Some queries (LOAD DATA INFILE ..., INSERT INTO ... SELECT ..., UPDATE) return additional information. The
result is returned by mysql_info(). See the description for mysql_info() for the format of the string that it returns.
mysql_info() returns a NULL pointer if there is no additional information.

26.2.14.3. How to Get the Unique ID for the Last Inserted Row

If you insert a record into a table that contains an AUTO_INCREMENT column, you can obtain the value stored into that column by call-
ing the mysql_insert_id() function.

You can check from your C applications whether a value was stored in an AUTO_INCREMENT column by executing the following code
(which assumes that you've checked that the statement succeeded). It determines whether the query was an INSERT with an
AUTO_INCREMENT index:

if ((result = mysql_store_result(&mysql)) == 0 &&
mysql_field_count(&mysql) == 0 &&
mysql_insert_id(&mysql) != 0)

{
used_id = mysql_insert_id(&mysql);

}

When a new AUTO_INCREMENT value has been generated, you can also obtain it by executing a SELECT LAST_INSERT_ID()
statement with mysql_query() and retrieving the value from the result set returned by the statement.

When inserting multiple values, the last automatically incremented value is returned.

For LAST_INSERT_ID(), the most recently generated ID is maintained in the server on a per-connection basis. It is not changed by
another client. It is not even changed if you update another AUTO_INCREMENT column with a non-magic value (that is, a value that is
not NULL and not 0). Using LAST_INSERT_ID() and AUTO_INCREMENT columns simultaneously from multiple clients is per-
fectly valid. Each client will receive the last inserted ID for the last statement that client executed.

If you want to use the ID that was generated for one table and insert it into a second table, you can use SQL statements like this:

INSERT INTO foo (auto,text)
VALUES(NULL,'text'); # generate ID by inserting NULL

INSERT INTO foo2 (id,text)
VALUES(LAST_INSERT_ID(),'text'); # use ID in second table

Note that mysql_insert_id() returns the value stored into an AUTO_INCREMENT column, whether that value is automatically
generated by storing NULL or 0 or was specified as an explicit value. LAST_INSERT_ID() returns only automatically generated
AUTO_INCREMENT values. If you store an explicit value other than NULL or 0, it does not affect the value returned by
LAST_INSERT_ID().

For more information on obtaining the last ID in an AUTO_INCREMENT column:

• For information on LAST_INSERT_ID(), which can be used within an SQL statement, see Section 11.11.3, “Information Func-
tions”.

• For information on mysql_insert_id(), the function you use from within the C API, see Section 26.2.3.37,
“mysql_insert_id()”.

• For information on obtaining the auto-incremented value when using Connector/J, see Section 27.4.5, “Connector/J Notes and
Tips”.

• For information on obtaining the auto-incremented value when using Connector/ODBC, see Section 27.1.7.1.1, “Obtaining Auto-
Increment Values”.

APIs and Libraries

1488



26.2.14.4. Problems Linking with the C API

When linking with the C API, the following errors may occur on some systems:

gcc -g -o client test.o -L/usr/local/lib/mysql \
-lmysqlclient -lsocket -lnsl

Undefined first referenced
symbol in file
floor /usr/local/lib/mysql/libmysqlclient.a(password.o)
ld: fatal: Symbol referencing errors. No output written to client

If this happens on your system, you must include the math library by adding -lm to the end of the compile/link line.

26.2.15. Building Client Programs
If you compile MySQL clients that you've written yourself or that you obtain from a third-party, they must be linked using the -
lmysqlclient -lz options in the link command. You may also need to specify a -L option to tell the linker where to find the lib-
rary. For example, if the library is installed in /usr/local/mysql/lib, use -L/usr/local/mysql/lib -lmysqlclient
-lz in the link command.

For clients that use MySQL header files, you may need to specify an -I option when you compile them (for example, -
I/usr/local/mysql/include), so that the compiler can find the header files.

To make it simpler to compile MySQL programs on Unix, we have provided the mysql_config script for you. See Section 4.7.2,
“mysql_config — Get Compile Options for Compiling Clients”.

You can use it to compile a MySQL client as follows:

CFG=/usr/local/mysql/bin/mysql_config
sh -c "gcc -o progname `$CFG --cflags` progname.c `$CFG --libs`"

The sh -c is needed to get the shell not to treat the output from mysql_config as one word.

MySQL Enterprise
Subscribers to MySQL Enterprise will find an example client program in the Knowledge Base article, Sample C
program using the embedded MySQL server library . Access to the MySQL Knowledge Base collection of art-
icles is one of the advantages of subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

26.2.16. How to Make a Threaded Client
The client library is almost thread-safe. The biggest problem is that the subroutines in net.c that read from sockets are not interrupt
safe. This was done with the thought that you might want to have your own alarm that can break a long read to a server. If you install in-
terrupt handlers for the SIGPIPE interrupt, the socket handling should be thread-safe.

To avoid aborting the program when a connection terminates, MySQL blocks SIGPIPE on the first call to
mysql_library_init(), mysql_init(), or mysql_connect(). If you want to use your own SIGPIPE handler, you
should first call mysql_library_init() and then install your handler.

Before MySQL 4.0, binary client libraries that we provided other than those for Windows were not normally compiled with the thread-
safe option. Current binary distributions should have both a normal and a thread-safe client library.

To create a threaded client where you can interrupt the client from other threads and set timeouts when talking with the MySQL server,
you should use the net_serv.o code that the server uses and the -lmysys, -lmystrings, and -ldbug libraries.

If you don't need interrupts or timeouts, you can just compile a thread-safe client library (mysqlclient_r) and use it. In this case,
you don't have to worry about the net_serv.o object file or the other MySQL libraries.

When using a threaded client and you want to use timeouts and interrupts, you can make great use of the routines in the thr_alarm.c
file. If you are using routines from the mysys library, the only thing you must remember is to call my_init() first! See Sec-
tion 26.2.11, “C API Threaded Function Descriptions”.

In all cases, be sure to initialize the client library by calling mysql_library_init() before calling any other MySQL functions.
When you are done with the library, call mysql_library_end().

APIs and Libraries

1489

https://kb.mysql.com/view.php?id=5264
https://kb.mysql.com/view.php?id=5264
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


mysql_real_connect() is not thread-safe by default. The following notes describe how to compile a thread-safe client library and
use it in a thread-safe manner. (The notes below for mysql_real_connect() also apply to the older mysql_connect() routine
as well, although mysql_connect() is deprecated and should no longer be used.)

To make mysql_real_connect() thread-safe, you must configure your MySQL distribution with this command:

shell> ./configure --enable-thread-safe-client

Then recompile the distribution to create a thread-safe client library, libmysqlclient_r. (Assuming that your operating system has
a thread-safe gethostbyname_r() function.) This library is thread-safe per connection. You can let two threads share the same con-
nection with the following caveats:

• Two threads can't send a query to the MySQL server at the same time on the same connection. In particular, you have to ensure that
between calls to mysql_query() and mysql_store_result() no other thread is using the same connection.

• Many threads can access different result sets that are retrieved with mysql_store_result().

• If you use mysql_use_result(), you must ensure that no other thread is using the same connection until the result set is
closed. However, it really is best for threaded clients that share the same connection to use mysql_store_result().

• If you want to use multiple threads on the same connection, you must have a mutex lock around your pair of mysql_query() and
mysql_store_result() calls. Once mysql_store_result() is ready, the lock can be released and other threads may
query the same connection.

• If you use POSIX threads, you can use pthread_mutex_lock() and pthread_mutex_unlock() to establish and release a
mutex lock.

You need to know the following if you have a thread that is calling MySQL functions which did not create the connection to the
MySQL database:

When you call mysql_init(), MySQL creates a thread-specific variable for the thread that is used by the debug library (among oth-
er things). If you call a MySQL function before the thread has called mysql_init(), the thread does not have the necessary thread-
specific variables in place and you are likely to end up with a core dump sooner or later. To get things to work smoothly you must do
the following:

1. Call mysql_library_init() before any other MySQL functions. It is not thread-safe, so call it before threads are created, or
protect the call with a mutex.

2. Arrange for mysql_thread_init() to be called early in the thread handler before calling any MySQL function. If you call
mysql_init(), they will call mysql_thread_init() for you.

3. In the thread, call mysql_thread_end() before calling pthread_exit(). This frees the memory used by MySQL thread-
specific variables.

The preceding notes regarding mysql_init() also apply to mysql_connect(), which calls mysql_init().

If “undefined symbol” errors occur when linking your client with libmysqlclient_r, in most cases this is because you haven't in-
cluded the thread libraries on the link/compile command.

26.3. MySQL PHP API
PHP is a server-side, HTML-embedded scripting language that may be used to create dynamic Web pages. It is available for most oper-
ating systems and Web servers, and can access most common databases, including MySQL. PHP may be run as a separate program or
compiled as a module for use with the Apache Web server.

PHP actually provides two different MySQL API extensions:

• mysql: Available for PHP versions 4 and 5, this extension is intended for use with MySQL versions prior to MySQL 4.1. This ex-
tension does not support the improved authentication protocol used in MySQL 4.1, nor does it support prepared statements or mul-
tiple statements. If you wish to use this extension with MySQL 4.1, you will likely want to configure the MySQL server to use the -

APIs and Libraries

1490



-old-passwords option (see Section B.1.2.4, “Client does not support authentication protocol”). This
extension is documented on the PHP Web site at http://php.net/mysql.

• mysqli - Stands for “MySQL, Improved”; this extension is available only in PHP 5. It is intended for use with MySQL 4.1.1 and
later. This extension fully supports the authentication protocol used in MySQL 5.0, as well as the Prepared Statements and Multiple
Statements APIs. In addition, this extension provides an advanced, object-oriented programming interface. You can read the docu-
mentation for the mysqli extension at http://php.net/mysqli. A helpful article can be found at ht-
tp://www.zend.com/php5/articles/php5-mysqli.php.

If you're experiencing problems with enabling both the mysql and the mysqli extension when building PHP on Linux yourself, see
Section 26.3.2, “Enabling Both mysql and mysqli in PHP”.

The PHP distribution and documentation are available from the PHP Web site. MySQL provides the mysql and mysqli extensions
for the Windows operating system on http://dev.mysql.com/downloads/connector/php/. You can find information why you should
preferably use the extensions provided by MySQL on that page.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about MySQL and PHP in the Knowledge Base art-
icles found at PHP. Access to the MySQL Knowledge Base collection of articles is one of the advantages of
subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/knowledgebase.html.

26.3.1. Common Problems with MySQL and PHP

• Error: Maximum Execution Time Exceeded: This is a PHP limit; go into the php.ini file and set the maximum exe-
cution time up from 30 seconds to something higher, as needed. It is also not a bad idea to double the RAM allowed per script to
16MB instead of 8MB.

• Fatal error: Call to unsupported or undefined function mysql_connect() in ...: This means that
your PHP version isn't compiled with MySQL support. You can either compile a dynamic MySQL module and load it into PHP or
recompile PHP with built-in MySQL support. This process is described in detail in the PHP manual.

• Error: Undefined reference to 'uncompress': This means that the client library is compiled with support for a
compressed client/server protocol. The fix is to add -lz last when linking with -lmysqlclient.

• Error: Client does not support authentication protocol: This is most often encountered when trying to use
the older mysql extension with MySQL 4.1.1 and later. Possible solutions are: downgrade to MySQL 4.0; switch to PHP 5 and the
newer mysqli extension; or configure the MySQL server with --old-passwords. (See Section B.1.2.4, “Client does
not support authentication protocol”, for more information.)

Those with PHP4 legacy code can make use of a compatibility layer for the old and new MySQL libraries, such as this one: ht-
tp://www.coggeshall.org/oss/mysql2i.

26.3.2. Enabling Both mysql and mysqli in PHP
If you're experiencing problems with enabling both the mysql and the mysqli extension when building PHP on Linux yourself, you
should try the following procedure.

1. Configure PHP like this:

./configure --with-mysqli=/usr/bin/mysql_config --with-mysql=/usr

2. Edit the Makefile and search for a line that starts with EXTRA_LIBS. It might look like this (all on one line):

EXTRA_LIBS = -lcrypt -lcrypt -lmysqlclient -lz -lresolv -lm -ldl -lnsl
-lxml2 -lz -lm -lxml2 -lz -lm -lmysqlclient -lz -lcrypt -lnsl -lm
-lxml2 -lz -lm -lcrypt -lxml2 -lz -lm -lcrypt

Remove all duplicates, so that the line looks like this (all on one line):

EXTRA_LIBS = -lcrypt -lcrypt -lmysqlclient -lz -lresolv -lm -ldl -lnsl
-lxml2

APIs and Libraries

1491

http://php.net/mysql
http://php.net/mysqli
http://www.zend.com/php5/articles/php5-mysqli.php
http://www.zend.com/php5/articles/php5-mysqli.php
http://www.php.net/
http://dev.mysql.com/downloads/connector/php/
https://kb.mysql.com/search.php?cat=search&category=23
http://www.mysql.com/products/enterprise/knowledgebase.html
http://www.mysql.com/products/enterprise/knowledgebase.html
http://www.coggeshall.org/oss/mysql2i
http://www.coggeshall.org/oss/mysql2i


3. Build and install PHP:

make
make install

MySQL Enterprise
MySQL Enterprise subscribers will find more information about the mysqli extension in the Knowledge Base art-
icles found at mysqli. Access to the MySQL Knowledge Base collection of articles is one of the advantages of
subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

26.4. MySQL Perl API
The Perl DBI module provides a generic interface for database access. You can write a DBI script that works with many different data-
base engines without change. To use DBI, you must install the DBI module, as well as a DataBase Driver (DBD) module for each type
of server you want to access. For MySQL, this driver is the DBD::mysql module.

Perl DBI is the recommended Perl interface. It replaces an older interface called mysqlperl, which should be considered obsolete.

Installation instructions for Perl DBI support are given in Section 2.15, “Perl Installation Notes”.

DBI information is available at the command line, online, or in printed form:

• Once you have the DBI and DBD::mysql modules installed, you can get information about them at the command line with the
perldoc command:

shell> perldoc DBI
shell> perldoc DBI::FAQ
shell> perldoc DBD::mysql

You can also use pod2man, pod2html, and so forth to translate this information into other formats.

• For online information about Perl DBI, visit the DBI Web site, http://dbi.perl.org/. That site hosts a general DBI mailing list.
MySQL AB hosts a list specifically about DBD::mysql; see Section 1.6.1, “MySQL Mailing Lists”.

• For printed information, the official DBI book is Programming the Perl DBI (Alligator Descartes and Tim Bunce, O'Reilly & Asso-
ciates, 2000). Information about the book is available at the DBI Web site, http://dbi.perl.org/.

For information that focuses specifically on using DBI with MySQL, see MySQL and Perl for the Web (Paul DuBois, New Riders,
2001). This book's Web site is http://www.kitebird.com/mysql-perl/.

26.5. MySQL C++ API
MySQL++ is a MySQL API for C++. Warren Young has taken over this project. More information can be found at ht-
tp://tangentsoft.net/mysql++/doc.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about using C++ with the MySQL API in the MySQL
Knowledge Base. articles found at C++. Access to the MySQL Knowledge Base collection of articles is one of
the advantages of subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

26.6. MySQL Python API
MySQLdb provides MySQL support for Python, compliant with the Python DB API version 2.0. It can be found at ht-
tp://sourceforge.net/projects/mysql-python/.

MySQL Enterprise

APIs and Libraries

1492

https://kb.mysql.com/search.php?cat=search&cat=search&keywords=mysqli&go=Go
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://dbi.perl.org/
http://dbi.perl.org/
http://www.kitebird.com/mysql-perl/
http://tangentsoft.net/mysql++/doc
http://tangentsoft.net/mysql++/doc
https://kb.mysql.com/search.php?cat=search&pagerRow=0&category=18
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://sourceforge.net/projects/mysql-python/
http://sourceforge.net/projects/mysql-python/


MySQL Enterprise subscribers will find more information about using Python with the MySQL API in the MySQL
Knowledge Base articles found at Python. Access to the MySQL Knowledge Base collection of articles is one of
the advantages of subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

26.7. MySQL Tcl API
MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming language. It can be found at ht-
tp://www.xdobry.de/mysqltcl/.

26.8. MySQL Eiffel Wrapper
Eiffel MySQL is an interface to the MySQL database server using the Eiffel programming language, written by Michael Ravits. It can
be found at http://efsa.sourceforge.net/archive/ravits/mysql.htm.

APIs and Libraries

1493

https://kb.mysql.com/search.php?cat=search&category=24
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://www.xdobry.de/mysqltcl/
http://www.xdobry.de/mysqltcl/
http://efsa.sourceforge.net/archive/ravits/mysql.htm


Chapter 27. Connectors
This chapter describes MySQL Connectors, drivers that provide connectivity to the MySQL server for client programs. There are cur-
rently five MySQL Connectors:

• Connector/ODBC provides driver support for connecting to a MySQL server using the Open Database Connectivity (ODBC) API.
Support is available for ODBC connectivity from Windows, Unix and Mac OS X platforms.

• Connector/NET enables developers to create .NET applications that use data stored in a MySQL database. Connector/NET imple-
ments a fully-functional ADO.NET interface and provides support for use with ADO.NET aware tools. Applications that want to
use Connector/NET can be written in any of the supported .NET languages.

• The MySQL Visual Studio Plugin works with Connector/NET and Visual Studio 2005. The plugin is a MySQL DDEX Provider,
which means that you can use the schema and data manipulation tools within Visual Studio to create and edit objects within a
MySQL database.

• Connector/J provides driver support for connecting to MySQL from a Java application using the standard Java Database Connectiv-
ity (JDBC) API.

• Connector/MXJ is a tool that enables easy deployment and management of MySQL server and database through your Java applica-
tion.

• Connector/PHP is a Windows-only connector for PHP that provides the mysql and mysqli extensions for use with MySQL
5.0.18 and later.

For information on connecting to a MySQL server using other languages and interfaces than those detailed above, including Perl, Py-
thon and PHP for other platforms and environments, please refer to the Chapter 26, APIs and Libraries chapter.

27.1. MySQL Connector/ODBC
The MySQL Connector/ODBC is the name for the family of MySQL ODBC drivers (previously called MyODBC drivers) that provide
access to a MySQL database using the industry standard Open Database Connectivity (ODBC) API. This reference covers Connector/
ODBC 3.51 and Connector/ODBC 5.1. Both releases provide an ODBC compliant interface to MySQL Server.

MySQL Connector/ODBC provides both driver-manager based and native interfaces to the MySQL database, which full support for
MySQL functionality, including stored procedures, transactions and, with Connector/ODBC 5.1, full Unicode compliance.

For more information on the ODBC API standard and how to use it, refer to http://support.microsoft.com/kb/110093.

The application development part of this reference assumes a good working knowledge of C, general DBMS knowledge, and finally,
but not least, familiarity with MySQL. For more information about MySQL functionality and its syntax, refer to ht-
tp://dev.mysql.com/doc/.

Typically, you need to install Connector/ODBC only on Windows machines. For Unix and Mac OS X you can use the native MySQL
network or named pipe to communicate with your MySQL database. You may need Connector/ODBC for Unix or Mac OS X if you
have an application that requires an ODBC interface to communicate with the database. Applications that require ODBC to communic-
ate with MySQL include ColdFusion, Microsoft Office, and Filemaker Pro.

Key topics:

• For help installing Connector/ODBC see Section 27.1.3, “Connector/ODBC Installation”.

• For information on the configuration options, see Section 27.1.4.2, “Connector/ODBC Connection Parameters”.

• For more information on connecting to a MySQL database from a Windows host using Connector/ODBC see Section 27.1.5.2,
“Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC”.

• If you want to use Microsoft Access as an interface to a MySQL database using Connector/ODBC see Section 27.1.5.4, “Using
Connector/ODBC with Microsoft Access”.

• General tips on using Connector/ODBC, including obtaining the last auto-increment ID see Section 27.1.7.1, “Connector/ODBC

1494

http://support.microsoft.com/kb/110093
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/


General Functionality”.

• For tips and common questions on using Connector/ODBC with specific application see Section 27.1.7.2, “Connector/ODBC Ap-
plication Specific Tips”.

• For a general list of Frequently Asked Questions see Section 27.1.7.3, “Connector/ODBC Errors and Resolutions (FAQ)”.

• Additional support when using Connector/ODBC is available, see Section 27.1.8, “Connector/ODBC Support”.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about MySQL and ODBC in the Knowledge Base art-
icles about ODBC. Access to the MySQL Knowledge Base collection of articles is one of the advantages of
subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

27.1.1. Connector/ODBC Versions
There are currently two version of Connector/ODBC available:

• Connector/ODBC 5.1, currently in Beta status, is a partial rewrite of the of the 3.51 code base and is designed to work all versions of
MySQL from 4.1. Connector/ODBC 5.1 will be a complete implementation of the ODBC Core interface,plus more Level 1 and
Level 2 functionality of the ODBC specification than that currently supported by Connector/ODBC 3.51. See Section 27.1.2.1,
“Connector/ODBC Roadmap”.

Connector/ODBC 5.1 also includes the following changes and improvements over the 3.51 release:

• Improved support on Windows 64-bit platforms.

• Full Unicode support at the driver level. This includes support for the SQL_WCHAR datatype, and support for Unicode login,
password and DSN configurations. For more information,. see Microsoft Knowledgebase Article #716246.

• Support for the SQL_NUMERIC_STRUCT datatype, which provides easier access to the precise definition of numeric values.
For more information, see Microsoft Knowledgebase Article #714556

• Native Windows setup library. This replaces the Qt library based interface for configuring DSN information within the ODBC
Data Sources application.

• Support for the ODBC descriptor, which improves the handling and metadata of columns and parameter data. For more informa-
tion, see Microsoft Knowledgebase Article #716339.

• Connector/ODBC 3.51 is the current release of the 32-bit ODBC driver, also known as the MySQL ODBC 3.51 driver. Connector/
ODBC 3.51 has support for ODBC 3.5x specification level 1 (complete core API + level 2 features) in order to continue to provide
all functionality of ODBC for accessing MySQL.

The manual for versions of Connector/ODBC older than 3.51 can be located in the corresponding binary or source distribution. Please
note that versions of Connector/ODBC earlier than the 3.51 revision were not fully compliant with the ODBC specification.

Note

Development on Connector/ODBC 5.0 was stopped due to development issues. Connector/ODBC 5.1 is now the current
development release.

Note

From this section onward, the primary focus of this guide is the Connector/ODBC 3.51 and Connector/ODBC 5.1 drivers.

Note

Version numbers for MySQL products are formatted as X.X.X. However, Windows tools (Control Panel, properties dis-
play) may show the version numbers as XX.XX.XX. For example, the official MySQL formatted version number 5.0.9
may be displayed by Windows tools as 5.00.09. The two versions are the same; only the number display format is differ-
ent.

Connectors

1495

https://kb.mysql.com/search.php?cat=search&category=9
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
http://msdn2.microsoft.com/en-us/library/ms716246.aspx
http://msdn2.microsoft.com/en-us/library/ms714556.aspx
http://msdn2.microsoft.com/en-us/library/ms716339.aspx


27.1.2. Connector/ODBC Introduction
ODBC (Open Database Connectivity) provides a way for client programs to access a wide range of databases or data sources. ODBC is
a standardized API that allows connections to SQL database servers. It was developed according to the specifications of the SQL Ac-
cess Group and defines a set of function calls, error codes, and data types that can be used to develop database-independent applications.
ODBC usually is used when database independence or simultaneous access to different data sources is required.

For more information about ODBC, refer to http://support.microsoft.com/kb/110093.

27.1.2.1. Connector/ODBC Roadmap

Connector/ODBC 5.1 is currently in development and will be a complete implementation of the ODBC Core interface,plus more Level
1 and Level 2 functionality of the ODBC specification than that currently supported by Connector/ODBC 3.51.

The following functionality was added or changed as part of 5.1:

• Add support for SQL_NUMERIC_STRUCT: MSDN Article 714556.

• Replace installer library with new implementation (from v5 tree).

• Implement native Windows setup library.

• Implement SQLCancel() (Bug#15601): MSDN Article 714112.

The following functionality will be added in a version after 5.1:

• Implement native Mac OS X setup library.

• Replace OPTIONS flags with individual DSN settings (but support OPTIONS for backwards-compatibility).

• Fix support for SQLBIGINT (Bug#28887): MSDN Article 714121.

• Make diagnostics support standards-compliant: MSDN Article 711021.

• Add support for SQL_ATTR_METADATA_ID: MSDN Article 716447.

• Implement SQLBrowseConnect(): MSDN Article 714565, MSDN Article 712446.

• Implement arrays of parameters: MSDN Article 711818.

27.1.2.2. General Information About ODBC and Connector/ODBC

Open Database Connectivity (ODBC) is a widely accepted application-programming interface (API) for database access. It is based on
the Call-Level Interface (CLI) specifications from X/Open and ISO/IEC for database APIs and uses Structured Query Language (SQL)
as its database access language.

A survey of ODBC functions supported by Connector/ODBC is given at Section 27.1.6.1, “Connector/ODBC API Reference”. For gen-
eral information about ODBC, see http://support.microsoft.com/kb/110093.

27.1.2.2.1. Connector/ODBC Architecture

The Connector/ODBC architecture is based on five components, as shown in the following diagram:

Connectors

1496

http://support.microsoft.com/kb/110093
http://msdn2.microsoft.com/en-us/library/ms714556.aspx
http://bugs.mysql.com/15601
http://msdn2.microsoft.com/en-us/library/ms714112.aspx
http://bugs.mysql.com/28887
http://msdn2.microsoft.com/en-us/library/ms714121.aspx
http://msdn2.microsoft.com/en-us/library/ms711021.aspx
http://msdn2.microsoft.com/en-us/library/ms716447.aspx
http://msdn2.microsoft.com/en-us/library/ms714565.aspx
http://msdn2.microsoft.com/en-us/library/ms712446.aspx
http://msdn2.microsoft.com/en-us/library/ms711818.aspx
http://support.microsoft.com/kb/110093


• Application:

The Application uses the ODBC API to access the data from the MySQL server. The ODBC API in turn uses the communicates
with the Driver Manager. The Application communicates with the Driver Manager using the standard ODBC calls. The Application
does not care where the data is stored, how it is stored, or even how the system is configured to access the data. It needs to know
only the Data Source Name (DSN).

A number of tasks are common to all applications, no matter how they use ODBC. These tasks are:

• Selecting the MySQL server and connecting to it

• Submitting SQL statements for execution

• Retrieving results (if any)

• Processing errors

• Committing or rolling back the transaction enclosing the SQL statement

Connectors

1497



• Disconnecting from the MySQL server

Because most data access work is done with SQL, the primary tasks for applications that use ODBC are submitting SQL statements
and retrieving any results generated by those statements.

• Driver manager:

The Driver Manager is a library that manages communication between application and driver or drivers. It performs the following
tasks:

• Resolves Data Source Names (DSN). The DSN is a configuration string that identifies a given database driver, database, data-
base host and optionally authentication information that enables an ODBC application to connect to a database using a standard-
ized reference.

Because the database connectivity information is identified by the DSN, any ODBC compliant application can connect to the
data source using the same DSN reference. This eliminates the need to separately configure each application that needs access to
a given database; instead you instruct the application to use a pre-configured DSN.

• Loading and unloading of the driver required to access a specific database as defined within the DSN. For example, if you have
configured a DSN that connects to a MySQL database then the driver manager will load the Connector/ODBC driver to enable
the ODBC API to communicate with the MySQL host.

• Processes ODBC function calls or passes them to the driver for processing.

• Connector/ODBC Driver:

The Connector/ODBC driver is a library that implements the functions supported by the ODBC API. It processes ODBC function
calls, submits SQL requests to MySQL server, and returns results back to the application. If necessary, the driver modifies an applic-
ation's request so that the request conforms to syntax supported by MySQL.

• DSN Configuration:

The ODBC configuration file stores the driver and database information required to connect to the server. It is used by the Driver
Manager to determine which driver to be loaded according to the definition in the DSN. The driver uses this to read connection
parameters based on the DSN specified. For more information, Section 27.1.4, “Connector/ODBC Configuration”.

• MySQL Server:

The MySQL database where the information is stored. The database is used as the source of the data (during queries) and the destin-
ation for data (during inserts and updates).

27.1.2.2.2. ODBC Driver Managers

An ODBC Driver Manager is a library that manages communication between the ODBC-aware application and any drivers. Its main
functionality includes:

• Resolving Data Source Names (DSN).

• Driver loading and unloading.

• Processing ODBC function calls or passing them to the driver.

Both Windows and Mac OS X include ODBC driver managers with the operating system. Most ODBC Driver Manager implementa-
tions also include an administration application that makes the configuration of DSN and drivers easier. Examples and information on
these managers, including Unix ODBC driver managers are listed below:

• Microsoft Windows ODBC Driver Manager (odbc32.dll), http://support.microsoft.com/kb/110093.

• Mac OS X includes ODBC Administrator, a GUI application that provides a simpler configuration mechanism for the Unix
iODBC Driver Manager. You can configure DSN and driver information either through ODBC Administrator or through the iOD-
BC configuration files. This also means that you can test ODBC Administrator configurations using the iodbctest command. ht-

Connectors

1498

http://support.microsoft.com/kb/110093


tp://www.apple.com.

• unixODBC Driver Manager for Unix (libodbc.so). See http://www.unixodbc.org, for more information. The unixODBC
Driver Manager includes the Connector/ODBC driver 3.51 in the installation package, starting with version unixODBC 2.1.2.

• iODBC ODBC Driver Manager for Unix (libiodbc.so), see http://www.iodbc.org, for more information.

27.1.3. Connector/ODBC Installation
You can install the Connector/ODBC drivers using two different methods, a binary installation and a source installation. The binary in-
stallation is the easiest and most straightforward method of installation. Using the source installation methods should only be necessary
on platforms where a binary installation package is not available, or in situations where you want to customize or modify the installation
process or Connector/ODBC drivers before installation.

Where to Get Connector/ODBC

MySQL AB distributes all its products under the General Public License (GPL). You can get a copy of the latest version of Connector/
ODBC binaries and sources from the MySQL AB Web site http://dev.mysql.com/downloads/.

For more information about Connector/ODBC, visit http://www.mysql.com/products/myodbc/.

For more information about licensing, visit http://www.mysql.com/company/legal/licensing/.

Supported Platforms

Connector/ODBC can be used on all major platforms supported by MySQL. You can install it on:

• Windows 95, 98, Me, NT, 2000, XP, and 2003

• All Unix-like Operating Systems, including: AIX, Amiga, BSDI, DEC, FreeBSD, HP-UX 10/11, Linux, NetBSD, OpenBSD, OS/2,
SGI Irix, Solaris, SunOS, SCO OpenServer, SCO UnixWare, Tru64 Unix

• Mac OS X and Mac OS X Server

Using a binary distribution offers the most straightforward method for installing Connector/ODBC. If you want more control over the
driver, the installation location and or to customize elements of the driver you will need to build and install from the source.

If a binary distribution is not available for a particular platform build the driver from the original source code. You can contribute the
binaries you create to MySQL by sending a mail message to <myodbc@lists.mysql.com>, so that it becomes available for other
users.

For further instructions:

Platform Binary Source

Windows Installation Instructions Build Instructions

Unix/Linux Installation Instructions Build Instructions

Mac OS X Installation Instructions

27.1.3.1. Installing Connector/ODBC from a Binary Distribution on Windows

Before installing the Connector/ODBC drivers on Windows you should ensure that your Microsoft Data Access Components (MDAC)
are up to date. You can obtain the latest version from the Microsoft Data Access and Storage Web site.

There are three available distribution types to use when installing for Windows. The contents in each case are identical, it is only the in-
stallation method which is different.

• Zipped installer consists of a Zipped package containing a standalone installation application. To install from this package, you must
unzip the installer, and then run the installation application. See Section 27.1.3.1.1, “Installing the Windows Connector/ODBC
Driver using an installer” to complete the installation.

Connectors

1499

http://www.apple.com
http://www.unixodbc.org
http://www.iodbc.org
http://dev.mysql.com/downloads/
http://www.mysql.com/products/myodbc/
http://www.mysql.com/company/legal/licensing/
http://support.microsoft.com/kb/110093


• MSI installer, an installation file that can be used with the installer included in Windows 2000, Windows XP and Windows Server
2003. See Section 27.1.3.1.1, “Installing the Windows Connector/ODBC Driver using an installer” to complete the installation.

• Zipped DLL package, containing the DLL files that need must be manually installed. See Section 27.1.3.1.2, “Installing the Win-
dows Connector/ODBC Driver using the Zipped DLL package” to complete the installation.

Note

An OLEDB/ODBC driver for Windows 64-bit is available from Microsoft Downloads.

27.1.3.1.1. Installing the Windows Connector/ODBC Driver using an installer

The installer packages offer a very simple method for installing the Connector/ODBC drivers. If you have downloaded the zipped in-
staller then you must extract the installer application. The basic installation process is identical for both installers.

You should follow these steps to complete the installation:

1. Double click on the standalone installer that you extracted, or the MSI file you downloaded.

2. The MySQL Connector/ODBC 3.51 - Setup Wizard will start. Click the NEXT button to begin the installation process.

3. You will need to choose the installation type. The Typical installation provides the standard files you will need to connect to a
MySQL database using ODBC. The Complete option installs all the available files, including debug and utility components. It is
recommended you choose one of these two options to complete the installation. If choose one of these methods, click NEXT and
then proceed to step 5.

Connectors

1500

http://www.microsoft.com/downloads/details.aspx?FamilyID=000364db-5e8b-44a8-b9be-ca44d18b059b&displaylang=en


You may also choose a Custom installation, which enables you to select the individual components that you want to install. You
have chosen this method, click NEXT and then proceed to step 4.

4. If you have chosen a custom installation, use the popups to select which components to install and then click NEXT to install the
necessary files.

Connectors

1501



5. Once the files have copied to your machine, the installation is complete. Click FINISH to exit the installer.

Connectors

1502



Now the installation is complete, you can continue to configure your ODBC connections using Section 27.1.4, “Connector/ODBC Con-
figuration”.

27.1.3.1.2. Installing the Windows Connector/ODBC Driver using the Zipped DLL package

If you have downloaded the Zipped DLL package then you must install the individual files required for Connector/ODBC operation
manually. Once you have unzipped the installation files, you can either perform this operation by hand, executing each statement indi-
vidually, or you can use the included Batch file to perform an installation to the default locations.

To install using the Batch file:

1. Unzip the Connector/ODBC Zipped DLL package.

2. Open a Command Prompt.

3. Change to the directory created when you unzipped the Connector/ODBC Zipped DLL package.

4. Run Install.bat:

C:\> Install.bat

This will copy the necessary files into the default location, and then register the Connector/ODBC driver with the Windows ODBC
manager.

Connectors

1503



If you want to copy the files to an alternative location - for example, to run or test different versions of the Connector/ODBC driver on
the same machine, then you must copy the files by hand. It is however not recommended to install these files in a non-standard location.
To copy the files by hand to the default installation location use the following steps:

1. Unzip the Connector/ODBC Zipped DLL package.

2. Open a Command Prompt.

3. Change to the directory created when you unzipped the Connector/ODBC Zipped DLL package.

4. Copy the library files to a suitable directory. The default is to copy them into the default Windows system directory
\Windows\System32:

C:\> copy lib\myodbc3S.dll \Windows\System32
C:\> copy lib\myodbc3S.lib \Windows\System32
C:\> copy lib\myodbc3.dll \Windows\System32
C:\> copy lib\myodbc3.lib \Windows\System32

5. Copy the Connector/ODBC tools. These must be placed into a directory that is in the system PATH. The default is to install these
into the Windows system directory \Windows\System32:

C:\> copy bin\myodbc3i.exe \Windows\System32
C:\> copy bin\myodbc3m.exe \Windows\System32
C:\> copy bin\myodbc3c.exe \Windows\System32

6. Optionally copy the help files. For these files to be accessible through the help system, they must be installed in the Windows sys-
tem directory:

C:\> copy doc\*.hlp \Windows\System32

7. Finally, you must register the Connector/ODBC driver with the ODBC manager:

C:\> myodbc3i -a -d -t"MySQL ODBC 3.51 Driver;\
DRIVER=myodbc3.dll;SETUP=myodbc3S.dll"

You must change the references to the DLL files and command location in the above statement if you have not installed these files
into the default location.

27.1.3.2. Installing Connector/ODBC from a Binary Distribution on Unix

There are two methods available for installing Connector/ODBC on Unix from a binary distribution. For most Unix environments you
will need to use the tarball distribution. For Linux systems, there is also an RPM distribution available.

27.1.3.2.1. Installing Connector/ODBC from a Binary Tarball Distribution

To install the driver from a tarball distribution (.tar.gz file), download the latest version of the driver for your operating system and
follow these steps that demonstrate the process using the Linux version of the tarball:

shell> su root
shell> gunzip mysql-connector-odbc-3.51.11-i686-pc-linux.tar.gz
shell> tar xvf mysql-connector-odbc-3.51.11-i686-pc-linux.tar
shell> cd mysql-connector-odbc-3.51.11-i686-pc-linux

Read the installation instructions in the INSTALL-BINARY file and execute these commands.

shell> cp libmyodbc* /usr/local/lib
shell> cp odbc.ini /usr/local/etc
shell> export ODBCINI=/usr/local/etc/odbc.ini

Then proceed on to Section 27.1.4.5, “Configuring a Connector/ODBC DSN on Unix”, to configure the DSN for Connector/ODBC. For
more information, refer to the INSTALL-BINARY file that comes with your distribution.

27.1.3.2.2. Installing Connector/ODBC from an RPM Distribution

Connectors

1504



To install or upgrade Connector/ODBC from an RPM distribution on Linux, simply download the RPM distribution of the latest version
of Connector/ODBC and follow the instructions below. Use su root to become root, then install the RPM file.

If you are installing for the first time:

shell> su root
shell> rpm -ivh mysql-connector-odbc-3.51.12.i386.rpm

If the driver exists, upgrade it like this:

shell> su root
shell> rpm -Uvh mysql-connector-odbc-3.51.12.i386.rpm

If there is any dependency error for MySQL client library, libmysqlclient, simply ignore it by supplying the --nodeps option,
and then make sure the MySQL client shared library is in the path or set through LD_LIBRARY_PATH.

This installs the driver libraries and related documents to /usr/local/lib and /usr/share/doc/MyODBC, respectively. Pro-
ceed onto Section 27.1.4.5, “Configuring a Connector/ODBC DSN on Unix”.

To uninstall the driver, become root and execute an rpm command:

shell> su root
shell> rpm -e mysql-connector-odbc

27.1.3.3. Installing Connector/ODBC from a Binary Distribution on Mac OS X

Mac OS X is based on the FreeBSD operating system, and you can normally use the MySQL network port for connecting to MySQL
servers on other hosts. Installing the Connector/ODBC driver enables you to connect to MySQL databases on any platform through the
ODBC interface. You should only need to install the Connector/ODBC driver when your application requires an ODBC interface. Ap-
plications that require or can use ODBC (and therefore the Connector/ODBC driver) include ColdFusion, Filemaker Pro, 4th Dimension
and many other applications.

Mac OS X includes its own ODBC manager, based on the iODBC manager. Mac OS X includes an administration tool that provides
easier administration of ODBC drivers and configuration, updating the underlying iODBC configuration files.

The method for installing Connector/ODBC on Mac OS X depends on the version on Connector/ODBC you are using. For Connector/
ODBC 3.51.14 and later, the package is provided as a compress tar archive that you must manually install. For Connector/ODBC
3.51.13 and earlier the software was provided on a compressed disk image (.dmg) file and included an installer.

In either case, the driver is designed to work with the iODBC driver manager included with Mac OS X.

To install Connector/ODBC 3.51.14 and later:

1. Download the installation file. Note that versions are available for both PowerPC and Intel platforms.

2. Extract the archive:

$ tar zxf mysql-connector-odbc-3.51.16-osx10.4-x86-32bit.tar.gz

3. The directory created will contain two subdirectories, lib and bin. You need to copy these to a suitable location such as /
usr/local:

$ cp bin/* /usr/local/bin
$ cp lib/* /usr/local/lib

4. Finally, you must register the driver with iODBC using the myodbc3i tool you just installed:

$ myodbc3i -a -d -t"MySQL ODBC 3.51 Driver;Driver=/usr/local/lib/libmyodbc3.so;Setup=/usr/local/lib/libmyodbc3S.so"

You can verify the installed drivers either by using the ODBC Administrator application or the myodbc3i utility:

$ myodbc3i -q -d

Connectors

1505



To install Connector/ODBC 3.51.13 and earlier, follow these steps:

1. Download the file to your computer and double-click on the downloaded image file.

2. Within the disk image you will find an installer package (with the .pkg extension). Double click on this file to start the Mac OS X
installer.

3. You will be presented with the installer welcome message. Click the CONTINUE button to begin the installation process.

4. Please take the time to read the Important Information as it contains guidance on how to complete the installation process. Once
you have read the notice and collected the necessary information, click CONTINUE.

Connectors

1506



5. Connector/ODBC drivers are made available under the GNU General Public License. Please read the license if you are not familiar
with it before continuing installation. Click CONTINUE to approve the license (you will be asked to confirm that decision) and con-
tinue the installation.

Connectors

1507



6. Choose a location to install the Connector/ODBC drivers and the ODBC Administrator application. You must install the files onto
a drive with an operating system and you may be limited in the choices available. Select the drive you want to use, and then click
CONTINUE.

Connectors

1508



7. The installer will automatically select the files that need to be installed on your machine. Click INSTALL to continue. The installer
will copy the necessary files to your machine. A progress bar will be shown indicating the installation progress.

Connectors

1509



8. When installation has been completed you will get a window like the one shown below. Click CLOSE to close and quit the installer.

Connectors

1510



27.1.3.4. Installing Connector/ODBC from a Source Distribution on Windows

You should only need to install Connector/ODBC from source on Windows if you want to change or modify the source or installation.
If you are unsure whether to install from source, please use the binary installation detailed in Section 27.1.3.1, “Installing Connector/
ODBC from a Binary Distribution on Windows”.

Installing Connector/ODBC from source on Windows requires a number of different tools and packages:

• MDAC, Microsoft Data Access SDK from http://support.microsoft.com/kb/110093.

• Suitable C compiler, such as Microsoft Visual C++ or the C compiler included with Microsoft Visual Studio.

• Compatible make tool. Microsoft's nmake is used in the examples in this section.

• MySQL client libraries and include files from MySQL 4.0.0 or higher. (Preferably MySQL 4.0.16 or higher). This is required be-
cause Connector/ODBC uses new calls and structures that exist only starting from this version of the library. To get the client librar-
ies and include files, visit http://dev.mysql.com/downloads/.

27.1.3.4.1. Building Connector/ODBC 3.51

Connector/ODBC source distributions include Makefiles that require the nmake or other make utility. In the distribution, you can
find Makefile for building the release version and Makefile_debug for building debugging versions of the driver libraries and
DLLs.

To build the driver, use this procedure:

Connectors

1511

http://support.microsoft.com/kb/110093
http://dev.mysql.com/downloads/


1. Download and extract the sources to a folder, then change directory into that folder. The following command assumes the folder is
named myodbc3-src:

C:\> cd myodbc3-src

2. Edit Makefile to specify the correct path for the MySQL client libraries and header files. Then use the following commands to
build and install the release version:

C:\> nmake -f Makefile
C:\> nmake -f Makefile install

nmake -f Makefile builds the release version of the driver and places the binaries in subdirectory called Release.

nmake -f Makefile install installs (copies) the driver DLLs and libraries (myodbc3.dll, myodbc3.lib) to your
system directory.

3. To build the debug version, use Makefile_Debug rather than Makefile, as shown below:

C:\> nmake -f Makefile_debug
C:\> nmake -f Makefile_debug install

4. You can clean and rebuild the driver by using:

C:\> nmake -f Makefile clean
C:\> nmake -f Makefile install

Note

• Make sure to specify the correct MySQL client libraries and header files path in the Makefiles (set the
MYSQL_LIB_PATH and MYSQL_INCLUDE_PATH variables). The default header file path is assumed to be
C:\mysql\include. The default library path is assumed to be C:\mysql\lib\opt for release DLLs and
C:\mysql\lib\debug for debug versions.

• For the complete usage of nmake, visit ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp.

• If you are using the Subversion tree for compiling, all Windows-specific Makefiles are named as
Win_Makefile*.

27.1.3.4.2. Testing

After the driver libraries are copied/installed to the system directory, you can test whether the libraries are properly built by using the
samples provided in the samples subdirectory:

C:\> cd samples
C:\> nmake -f Makefile all

27.1.3.5. Installing Connector/ODBC from a Source Distribution on Unix

You need the following tools to build MySQL from source on Unix:

• A working ANSI C++ compiler. gcc 2.95.2 or later, SGI C++, and SunPro C++ are some of the compilers that are known to work.

• A good make program. GNU make is always recommended and is sometimes required.

• MySQL client libraries and include files from MySQL 4.0.0 or higher. (Preferably MySQL 4.0.16 or higher). This is required be-
cause Connector/ODBC uses new calls and structures that exist only starting from this version of the library. To get the client librar-
ies and include files, visit http://dev.mysql.com/downloads/.

If you have built your own MySQL server and/or client libraries from source then you must have used the -

Connectors

1512

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp
http://dev.mysql.com/downloads/


-enable-thread-safe-client option to configure when the libraries were built.

You should also ensure that the libmysqlclient library were built and installed as a shared library.

• A compatible ODBC manager must be installed. Connector/ODBC is known to work with the iODBC and unixODBC managers.
See Section 27.1.2.2.2, “ODBC Driver Managers”, for more information.

• If you are using a character set that isn't compiled into the MySQL client library then you need to install the MySQL character
definitions from the charsets directory into SHAREDIR (by default, /usr/local/mysql/share/mysql/charsets).
These should be in place if you have installed the MySQL server on the same machine. See Section 9.1, “Character Set Support”,
for more information on character set support.

Once you have all the required files, unpack the source files to a separate directory, you then have to run configure and build the lib-
rary using make.

27.1.3.5.1. Typical configure Options

The configure script gives you a great deal of control over how you configure your Connector/ODBC build. Typically you do this
using options on the configure command line. You can also affect configure using certain environment variables. For a list of
options and environment variables supported by configure, run this command:

shell> ./configure --help

Some of the more commonly used configure options are described here:

1. To compile Connector/ODBC, you need to supply the MySQL client include and library files path using the -
-with-mysql-path=DIR option, where DIR is the directory where MySQL is installed.

MySQL compile options can be determined by running DIR/bin/mysql_config.

2. Supply the standard header and library files path for your ODBC Driver Manager (iODBC or unixODBC).

• If you are using iODBC and iODBC is not installed in its default location (/usr/local), you might have to use the -
-with-iodbc=DIR option, where DIR is the directory where iODBC is installed.

If the iODBC headers do not reside in DIR/include, you can use the --with-iodbc-includes=INCDIR option to
specify their location.

The applies to libraries. If they are not in DIR/lib, you can use the --with-iodbc-libs=LIBDIR option.

• If you are using unixODBC, use the --with-unixODBC=DIR option (case sensitive) to make configure look for
unixODBC instead of iODBC by default, DIR is the directory where unixODBC is installed.

If the unixODBC headers and libraries aren't located in DIR/include and DIR/lib, use the -
-with-unixODBC-includes=INCDIR and --with-unixODBC-libs=LIBDIR options.

3. You might want to specify an installation prefix other than /usr/local. For example, to install the Connector/ODBC drivers in
/usr/local/odbc/lib, use the --prefix=/usr/local/odbc option.

The final configuration command looks something like this:

shell> ./configure --prefix=/usr/local \
--with-iodbc=/usr/local \
--with-mysql-path=/usr/local/mysql

27.1.3.5.2. Additional configure Options

There are a number of other options that you need, or want, to set when configuring the Connector/ODBC driver before it is built.

• To link the driver with MySQL thread safe client libraries libmysqlclient_r.so or libmysqlclient_r.a, you must spe-
cify the following configure option:

Connectors

1513



--enable-thread-safe

and can be disabled (default) using

--disable-thread-safe

This option enables the building of the driver thread-safe library libmyodbc3_r.so from by linking with MySQL thread-safe
client library libmysqlclient_r.so (The extensions are OS dependent).

If the compilation with the thread-safe option fails, it may be because the correct thread-libraries on the system could not be located.
You should set the value of LIBS to point to the correct thread library for your system.

LIBS="-lpthread" ./configure ..

• You can enable or disable the shared and static versions of Connector/ODBC using these options:

--enable-shared[=yes/no]
--disable-shared
--enable-static[=yes/no]
--disable-static

• By default, all the binary distributions are built as non-debugging versions (configured with --without-debug).

To enable debugging information, build the driver from source distribution and use the --with-debug option when you run
configure.

• This option is available only for source trees that have been obtained from the Subversion repository. This option does not apply to
the packaged source distributions.

By default, the driver is built with the --without-docs option. If you would like the documentation to be built, then execute
configure with:

--with-docs

27.1.3.5.3. Building and Compilation

To build the driver libraries, you have to just execute make.

shell> make

If any errors occur, correct them and continue the build process. If you aren't able to build, then send a detailed email to
<myodbc@lists.mysql.com> for further assistance.

27.1.3.5.4. Building Shared Libraries

On most platforms, MySQL does not build or support .so (shared) client libraries by default. This is based on our experience of prob-
lems when building shared libraries.

In cases like this, you have to download the MySQL distribution and configure it with these options:

--without-server --enable-shared

To build shared driver libraries, you must specify the --enable-shared option for configure. By default, configure does not
enable this option.

If you have configured with the --disable-shared option, you can build the .so file from the static libraries using the following
commands:

shell> cd mysql-connector-odbc-3.51.01
shell> make
shell> cd driver
shell> CC=/usr/bin/gcc \

$CC -bundle -flat_namespace -undefined error \

Connectors

1514



-o .libs/libmyodbc3-3.51.01.so \
catalog.o connect.o cursor.o dll.o error.o execute.o \
handle.o info.o misc.o myodbc3.o options.o prepare.o \
results.o transact.o utility.o \
-L/usr/local/mysql/lib/mysql/ \
-L/usr/local/iodbc/lib/ \
-lz -lc -lmysqlclient -liodbcinst

Make sure to change -liodbcinst to -lodbcinst if you are using unixODBC instead of iODBC, and configure the library paths
accordingly.

This builds and places the libmyodbc3-3.51.01.so file in the .libs directory. Copy this file to the Connector/ODBC library in-
stallation directory (/usr/local/lib (or the lib directory under the installation directory that you supplied with the --prefix).

shell> cd .libs
shell> cp libmyodbc3-3.51.01.so /usr/local/lib
shell> cd /usr/local/lib
shell> ln -s libmyodbc3-3.51.01.so libmyodbc3.so

To build the thread-safe driver library:

shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3_r-3.51.01.so
catalog.o connect.o cursor.o dll.o error.o execute.o
handle.o info.o misc.o myodbc3.o options.o prepare.o
results.o transact.o utility.o
-L/usr/local/mysql/lib/mysql/
-L/usr/local/iodbc/lib/
-lz -lc -lmysqlclient_r -liodbcinst

27.1.3.5.5. Installing Driver Libraries

To install the driver libraries, execute the following command:

shell> make install

That command installs one of the following sets of libraries:

For Connector/ODBC 3.51:

• libmyodbc3.so

• libmyodbc3-3.51.01.so, where 3.51.01 is the version of the driver

• libmyodbc3.a

For thread-safe Connector/ODBC 3.51:

• libmyodbc3_r.so

• libmyodbc3-3_r.51.01.so

• libmyodbc3_r.a

For more information on build process, refer to the INSTALL file that comes with the source distribution. Note that if you are trying to
use the make from Sun, you may end up with errors. On the other hand, GNU gmake should work fine on all platforms.

27.1.3.5.6. Testing Connector/ODBC on Unix

To run the basic samples provided in the distribution with the libraries that you built, use the following command:

shell> make test

Before running the tests, create the DSN 'myodbc3' in odbc.ini and set the environment variable ODBCINI to the correct

Connectors

1515



odbc.ini file; and MySQL server is running. You can find a sample odbc.ini with the driver distribution.

You can even modify the samples/run-samples script to pass the desired DSN, UID, and PASSWORD values as the command-
line arguments to each sample.

27.1.3.5.7. Building Connector/ODBC from Source on Mac OS X

To build the driver on Mac OS X (Darwin), make use of the following configure example:

shell> ./configure --prefix=/usr/local
--with-unixODBC=/usr/local
--with-mysql-path=/usr/local/mysql
--disable-shared
--enable-gui=no
--host=powerpc-apple

The command assumes that the unixODBC and MySQL are installed in the default locations. If not, configure accordingly.

On Mac OS X, --enable-shared builds .dylib files by default. You can build .so files like this:

shell> make
shell> cd driver
shell> CC=/usr/bin/gcc \

$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3-3.51.01.so *.o
-L/usr/local/mysql/lib/
-L/usr/local/iodbc/lib
-liodbcinst -lmysqlclient -lz -lc

To build the thread-safe driver library:

shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3-3.51.01.so *.o
-L/usr/local/mysql/lib/
-L/usr/local/iodbc/lib
-liodbcinst -lmysqlclienti_r -lz -lc -lpthread

Make sure to change the -liodbcinst to -lodbcinst in case of using unixODBC instead of iODBC and configure the libraries
path accordingly.

In Apple's version of GCC, both cc and gcc are actually symbolic links to gcc3.

Copy this library to the $prefix/lib directory and symlink to libmyodbc3.so.

You can cross-check the output shared-library properties using this command:

shell> otool -LD .libs/libmyodbc3-3.51.01.so

27.1.3.5.8. Building Connector/ODBC from Source on HP-UX

To build the driver on HP-UX 10.x or 11.x, make use of the following configure example:

If using cc:

shell> CC="cc" \
CFLAGS="+z" \
LDFLAGS="-Wl,+b:-Wl,+s" \
./configure --prefix=/usr/local
--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql/lib/mysql
--enable-shared
--enable-thread-safe

If using gcc:

shell> CC="gcc" \
LDFLAGS="-Wl,+b:-Wl,+s" \
./configure --prefix=/usr/local
--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql
--enable-shared
--enable-thread-safe

Connectors

1516



Once the driver is built, cross-check its attributes using chatr .libs/libmyodbc3.sl to determine whether you need to have set
the MySQL client library path using the SHLIB_PATH environment variable. For static versions, ignore all shared-library options and
run configure with the --disable-shared option.

27.1.3.5.9. Building Connector/ODBC from Source on AIX

To build the driver on AIX, make use of the following configure example:

shell> ./configure --prefix=/usr/local
--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql
--disable-shared
--enable-thread-safe

Note

For more information about how to build and set up the static and shared libraries across the different platforms refer to '
Using static and shared libraries across platforms'.

27.1.3.6. Installing Connector/ODBC from the Development Source Tree

Caution

You should read this section only if you are interested in helping us test our new code. If you just want to get MySQL
Connector/ODBC up and running on your system, you should use a standard release distribution.

To be able to access the Connector/ODBC source tree, you must have Subversion installed. Subversion is freely available from ht-
tp://subversion.tigris.org/.

To build from the source trees, you need the following tools:

• autoconf 2.52 (or newer)

• automake 1.4 (or newer)

• libtool 1.4 (or newer)

• m4

The most recent development source tree is available from our public Subversion trees at ht-
tp://dev.mysql.com/tech-resources/sources.html.

To checkout out the Connector/ODBC sources, change to the directory where you want the copy of the Connector/ODBC tree to be
stored, then use the following command:

shell> svn co http://svn.mysql.com/svnpublic/connector-odbc3

You should now have a copy of the entire Connector/ODBC source tree in the directory connector-odbc3. To build from this
source tree on Unix or Linux follow these steps:

shell> cd connector-odbc3
shell> aclocal
shell> autoheader
shell> autoconf
shell> automake;
shell> ./configure # Add your favorite options here
shell> make

For more information on how to build, refer to the INSTALL file located in the same directory. For more information on options to
configure, see Section 27.1.3.5.1, “Typical configure Options”

When the build is done, run make install to install the Connector/ODBC 3.51 driver on your system.

If you have gotten to the make stage and the distribution does not compile, please report it to <myodbc@lists.mysql.com>.

Connectors

1517

http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html
http://subversion.tigris.org/
http://subversion.tigris.org/
http://dev.mysql.com/tech-resources/sources.html
http://dev.mysql.com/tech-resources/sources.html


On Windows, make use of Windows Makefiles WIN-Makefile and WIN-Makefile_debug in building the driver. For more in-
formation, see Section 27.1.3.4, “Installing Connector/ODBC from a Source Distribution on Windows”.

After the initial checkout operation to get the source tree, you should run svn update periodically update your source according to
the latest version.

27.1.4. Connector/ODBC Configuration
Before you connect to a MySQL database using the Connector/ODBC driver you must configure an ODBC Data Source Name. The
DSN associates the various configuration parameters required to communicate with a database to a specific name. You use the DSN in
an application to communicate with the database, rather than specifying individual parameters within the application itself. DSN in-
formation can be user specific, system specific, or provided in a special file. ODBC data source names are configured in different ways,
depending on your platform and ODBC driver.

27.1.4.1. Data Source Names

A Data Source Name associates the configuration parameters for communicating with a specific database. Generally a DSN consists of
the following parameters:

• Name

• Hostname

• Database Name

• Login

• Password

In addition, different ODBC drivers, including Connector/ODBC, may accept additional driver-specific options and parameters.

There are three types of DSN:

• A System DSN is a global DSN definition that is available to any user and application on a particular system. A System DSN can
normally only be configured by a systems administrator, or by a user who has specific permissions that let them create System
DSNs.

• A User DSN is specific to an individual user, and can be used to store database connectivity information that the user regularly uses.

• A File DSN uses a simple file to define the DSN configuration. File DSNs can be shared between users and machines and are there-
fore more practical when installing or deploying DSN information as part of an application across many machines.

DSN information is stored in different locations depending on your platform and environment.

27.1.4.2. Connector/ODBC Connection Parameters

You can specify the parameters in the following tables for Connector/ODBC when configuring a DSN. Users on Windows can use the
Options and Advanced panels when configuring a DSN to set these parameters; see the table for information on which options relate to
which fields and checkboxes. On Unix and Mac OS X, use the parameter name and value as the keyword/value pair in the DSN config-
uration. Alternatively, you can set these parameters within the InConnectionString argument in the SQLDriverConnect()
call.

Parameter Default Value Comment

user ODBC The username used to connect to MySQL.

uid ODBC Synonymous with user. Added in 3.51.16.

server localhost The hostname of the MySQL server.

database The default database.

option 0 Options that specify how Connector/ODBC should work. See below.

Connectors

1518



Parameter Default Value Comment

port 3306 The TCP/IP port to use if server is not localhost.

stmt A statement to execute when connecting to MySQL.

password The password for the user account on server.

pwd Synonymous with password. Added in 3.51.16.

socket The Unix socket file or Windows named pipe to connect to if server is
localhost.

sslca The path to a file with a list of trust SSL CAs. Added in 3.51.16.

sslcapath The path to a directory that contains trusted SSL CA certificates in PEM format. Added
in 3.51.16.

sslcert The name of the SSL certificate file to use for establishing a secure connection. Added
in 3.51.16.

sslcipher A list of allowable ciphers to use for SSL encryption. The cipher list has the same
format as the openssl ciphers command Added in 3.51.16.

sslkey The name of the SSL key file to use for establishing a secure connection. Added in
3.51.16.

charset The character set to use for the connection. Added in 3.51.17.

sslverify If set to 1, the SSL certificate will be verified when used with the MySQL connection.
If not set, then the default behaviour is to ignore SSL certificate verification.

Note

The SSL configuration parameters can also be automatically loaded from a my.ini or my.cnf file.

The option argument is used to tell Connector/ODBC that the client isn't 100% ODBC compliant. On Windows, you normally select
options by toggling the checkboxes in the connection screen, but you can also select them in the option argument. The following op-
tions are listed in the order in which they appear in the Connector/ODBC connect screen:

Value Flagname GUI Option Description

1 FLAG_FIELD_LENGTH Don't Optimize Column
Width

The client can't handle that Connector/ODBC returns the real
width of a column. This option was removed in 3.51.18.

2 FLAG_FOUND_ROWS Return Matching Rows The client can't handle that MySQL returns the true value of af-
fected rows. If this flag is set, MySQL returns “found rows” in-
stead. You must have MySQL 3.21.14 or newer to get this to
work.

4 FLAG_DEBUG Trace Driver Calls To
myodbc.log

Make a debug log in C:\myodbc.log on Windows, or /
tmp/myodbc.log on Unix variants. This option was removed
in Connector/ODBC 3.51.18.

8 FLAG_BIG_PACKETS Allow Big Results Don't set any packet limit for results and parameters.

16 FLAG_NO_PROMPT Don't Prompt Upon Con-
nect

Don't prompt for questions even if driver would like to prompt.

32 FLAG_DYNAMIC_CURS
OR

Enable Dynamic Cursor Enable or disable the dynamic cursor support.

64 FLAG_NO_SCHEMA Ignore # in Table Name Ignore use of database name in
db_name.tbl_name.col_name.

128 FLAG_NO_DEFAULT_C
URSOR

User Manager Cursors Force use of ODBC manager cursors (experimental).

256 FLAG_NO_LOCALE Don't Use Set Locale Disable the use of extended fetch (experimental).

512 FLAG_PAD_SPACE Pad Char To Full Length Pad CHAR columns to full column length.

1024 FLAG_FULL_COLUMN_
NAMES

Return Table Names for
SQLDescribeCol

SQLDescribeCol() returns fully qualified column names.

2048 FLAG_COMPRESSED_P Use Compressed Protocol Use the compressed client/server protocol.

Connectors

1519



ROTO

4096 FLAG_IGNORE_SPACE Ignore Space After Func-
tion Names

Tell server to ignore space after function name and before “(”
(needed by PowerBuilder). This makes all function names
keywords.

8192 FLAG_NAMED_PIPE Force Use of Named
Pipes

Connect with named pipes to a mysqld server running on NT.

16384 FLAG_NO_BIGINT Change BIGINT
Columns to Int

Change BIGINT columns to INT columns (some applications
can't handle BIGINT).

32768 FLAG_NO_CATALOG No Catalog Forces results from the catalog functions, such as SQLTables, to
always return NULL and the driver to report that catalogs are not
supported.

65536 FLAG_USE_MYCNF Read Options From
my.cnf

Read parameters from the [client] and [odbc] groups from
my.cnf.

131072 FLAG_SAFE Safe Add some extra safety checks.

262144 FLAG_NO_TRANSACTI
ONS

Disable transactions Disable transactions.

524288 FLAG_LOG_QUERY Save queries to myod-
bc.sql

Enable query logging to c:\myodbc.sql(/
tmp/myodbc.sql) file. (Enabled only in debug mode.)

1048576 FLAG_NO_CACHE Don't Cache Result
(forward only cursors)

Do not cache the results locally in the driver, instead read from
server (mysql_use_result()). This works only for forward-
only cursors. This option is very important in dealing with large
tables when you don't want the driver to cache the entire result set.

2097152 FLAG_FORWARD_CURS
OR

Force Use Of Forward
Only Cursors

Force the use of Forward-only cursor type. In case of applica-
tions setting the default static/dynamic cursor type, and one wants
the driver to use non-cache result sets, then this option ensures the
forward-only cursor behavior.

4194304 FLAG_AUTO_RECONNE
CT

Enable auto-reconnect. Enables auto-reconnection functionality. You should not use this
option with transactions, since a auto reconnection during a incom-
plete transaction may cause corruption. Note that an auto-
reconnected connection will not inherit the same settings and en-
vironment as the original. This option was enabled in Connector/
ODBC 3.51.13.

8388608 FLAG_AUTO_IS_NULL Flag Auto Is Null When set, this option causes the connection to set the
SQL_AUTO_IS_NULL option to 1. This disables the standard be-
havior, but may enable older applications to correctly identify
AUTO_INCREMENT values. For more information. See IS
NULL. This option was enabled in Connector/ODBC 3.51.13.

16777216 FLAG_ZERO_DATE_TO
_MIN

Flag Zero Date to Min Translates zero dates (XXXX-00-00) into the minimum date val-
ues supported by ODBC, XXXX-01-01. This resolves an issue
where some statements will not work because the date returned
and the minimum ODBC date value are incompatible. This option
was enabled in Connector/ODBC 3.51.17.

33554432 FLAG_MIN_DATE_TO_
ZERO

Flag Min Date to Zero Translates the minimum ODBC date value (XXXX-01-01) to the
zero date format supported by MySQL (XXXX-00-00). This re-
solves an issue where some statements will not work because the
date returned and the minimum ODBC date value are incompat-
ible. This option was enabled in Connector/ODBC 3.51.17.

67108864 FLAG_MULTI_STATEM
ENTS

Allow multiple state-
ments

Enables support for batched statements. This option was enabled
in Connector/ODBC 3.51.18.

134217728 FLAG_COLUMN_SIZE_
S32

Limit column size to
32-bit value

Limits the column size to a signed 32-bit value to prevent prob-
lems with larger column sizes in applications that do not support
them. This option is automatically enabled when working with
ADO applications. This option was enabled in Connector/ODBC
3.51.22.

To select multiple options, add together their values. For example, setting option to 12 (4+8) gives you debugging without packet

Connectors

1520



limits.

The following table shows some recommended option values for various configurations:

Configuration Option Value

Microsoft Access, Visual Basic 3

Driver trace generation (Debug mode) 4

Microsoft Access (with improved DELETE queries) 35

Large tables with too many rows 2049

Sybase PowerBuilder 135168

Query log generation (Debug mode) 524288

Generate driver trace as well as query log (Debug mode) 524292

Large tables with no-cache results 3145731

27.1.4.3. Configuring a Connector/ODBC DSN on Windows

The ODBC Data Source Administrator within Windows enables you to create DSNs, check driver installation and configure
ODBC systems such as tracing (used for debugging) and connection pooling.

Different editions and versions of Windows store the ODBC Data Source Administrator in different locations depending on
the version of Windows that you are using.

To open the ODBC Data Source Administrator in Windows Server 2003:

Tip

Because it is possible to create DSN using either the 32-bit or 64-bit driver, but using the same DNS identifier, it is advis-
able to include the driver being used within the DSN identifier. This will help you to identify the DSN when using it from
applications such as Excel that are only compatible with the 32-bit driver. For example, you might add Us-
ing32bitCODBC to the DSN identifier for the 32-bit interface and Using64bitCODBC for those using the 64-bit Con-
nector/ODBC driver.

1. On the Start menu, choose Administrative Tools, and then click Data Sources (ODBC).

To open the ODBC Data Source Administrator in Windows 2000 Server or Windows 2000 Professional:

1. On the Start menu, choose Settings, and then click Control Panel.

2. In Control Panel, click Administrative Tools.

3. In Administrative Tools, click Data Sources (ODBC).

To open the ODBC Data Source Administrator on Windows XP:

1. On the Start menu, click Control Panel.

2. In the Control Panel when in Category View click Performance and Maintenance and then click Adminis-
trative Tools.. If you are viewing the Control Panel in Classic View, click Administrative Tools.

3. In Administrative Tools, click Data Sources (ODBC).

Irrespective of your Windows version, you should be presented the ODBC Data Source Administrator window:

Connectors

1521



Within Windows XP, you can add the Administrative Tools folder to your START menu to make it easier to locate the ODBC
Data Source Administrator. To do this:

1. Right click on the START menu.

2. Select Properties.

3. Click CUSTOMIZE....

4. Select the ADVANCED tab.

5. Within Start menu items, within the System Administrative Tools section, select Display on the All
Programs menu.

Within both Windows Server 2003 and Windows XP you may want to permanently add the ODBC Data Source Administrat-
or to your START menu. To do this, locate the Data Sources (ODBC) icon using the methods shown, then right-click on the icon
and then choose PIN TO START MENU.

The interfaces for the 3.51 and 5.1 versions of the Connector/ODBC driver are different, although the fields and information that you
need to enter remain the same.

To configure a DSN using Connector/ODBC 3.51.x or Connector/ODBC 5.1.0, see Section 27.1.4.3.1, “Configuring a Connector/
ODBC 3.51 DSN on Windows”.

Connectors

1522



To configure a DSN using Connector/ODBC 5.1.1 or later, see Section 27.1.4.3.2, “Configuring a Connector/ODBC 5.1 DSN on Win-
dows”.

27.1.4.3.1. Configuring a Connector/ODBC 3.51 DSN on Windows

To add and configure a new Connector/ODBC data source on Windows, use the ODBC Data Source Administrator:

1. Open the ODBC Data Source Administrator.

2. To create a System DSN (which will be available to all users) , select the System DSN tab. To create a User DSN, which will be
unique only to the current user, click the ADD... button.

3. You will need to select the ODBC driver for this DSN.

Select MySQL ODBC 3.51 Driver, then click FINISH.

4. You now need to configure the specific fields for the DSN you are creating through the Add Data Source Name dialog.

Connectors

1523



In the DATA SOURCE NAME box, enter the name of the data source you want to access. It can be any valid name that you choose.

5. In the DESCRIPTION box, enter some text to help identify the connection.

6. In the SERVER field, enter the name of the MySQL server host that you want to access. By default, it is localhost.

7. In the USER field, enter the user name to use for this connection.

8. In the PASSWORD field, enter the corresponding password for this connection.

9. The DATABASE popup should automatically populate with the list of databases that the user has permissions to access.

10. Click OK to save the DSN.

A completed DSN configuration may look like this:

Connectors

1524



You can verify the connection using the parameters you have entered by clicking the TEST button. If the connection could be made suc-
cessfully, you will be notified with a Success; connection was made! dialog.

If the connection failed, you can obtain more information on the test and why it may have failed by clicking the DIAGNOSTICS... button
to show additional error messages.

You can configure a number of options for a specific DSN by using either the CONNECT OPTIONS or ADVANCED tabs in the DSN con-
figuration dialog.

Connectors

1525



The three options you can configure are:

• PORT sets the TCP/IP port number to use when communicating with MySQL. Communication with MySQL uses port 3306 by de-
fault. If your server is configured to use a different TCP/IP port, you must specify that port number here.

• SOCKET sets the name or location of a specific socket or Windows pipe to use when communicating with MySQL.

• INITIAL STATEMENT defines an SQL statement that will be executed when the connection to MySQL is opened. You can use this to
set MySQL options for your connection, such as disabling autocommit.

• CHARACTER SET is a popup list from which you can select the default character set to be used with this connection. The Character
Set option was added in 3.5.17.

The ADVANCED tab enables you to configure Connector/ODBC connection parameters. Refer to Section 27.1.4.2, “Connector/ODBC
Connection Parameters”, for information about the meaning of these options.

Connectors

1526



27.1.4.3.2. Configuring a Connector/ODBC 5.1 DSN on Windows

The DSN configuration when using Connector/ODBC 5.1.1 and later has a slightly different layout. Also, due to the native Unicode
support within Connector/ODBC 5.1, you no longer need to specify the initial character set to be used with your connection.

To configure a DSN using the Connector/ODBC 5.1.1 or later driver:

1. Open the ODBC Data Source Administrator.

2. To create a System DSN (which will be available to all users) , select the SYSTEM DSN tab. To create a User DSN, which will be
unique only to the current user, click the ADD... button.

3. You will need to select the ODBC driver for this DSN.

Connectors

1527



Select MySQL ODBC 5.1 Driver, then click FINISH.

4. You now need to configure the specific fields for the DSN you are creating through the Connection Parameters dialog.

Connectors

1528



In the DATA SOURCE NAME box, enter the name of the data source you want to access. It can be any valid name that you choose.

5. In the DESCRIPTION box, enter some text to help identify the connection.

6. In the SERVER field, enter the name of the MySQL server host that you want to access. By default, it is localhost.

7. In the USER field, enter the user name to use for this connection.

8. In the PASSWORD field, enter the corresponding password for this connection.

9. The DATABASE popup should automatically populate with the list of databases that the user has permissions to access.

10. To communicate over a different TCP/IP port than the default (3306), change the value of the PORT.

11. Click OK to save the DSN.

You can verify the connection using the parameters you have entered by clicking the TEST button. If the connection could be made suc-
cessfully, you will be notified with a Success; connection was made! dialog.

You can configure a number of options for a specific DSN by using the DETAILS button.

Connectors

1529



Connectors

1530



The DETAILS button opens a tabbed display which allows you to set additional options:

• FLAGS 1, FLAGS 2, and FLAGS 3 enable you to select the additional flags for the DSN connection. For more information on these
flags, see Section 27.1.4.2, “Connector/ODBC Connection Parameters”.

• DEBUG allows you to enable ODBC debugging to record the queries you execute through the DSN to the myodbc.sql file. For
more information, see Section 27.1.4.8, “Getting an ODBC Trace File”.

• SSL SETTINGS configures the additional options required for using the Secure Sockets Layer (SSL) when communicating with
MySQL server. Note that you must have enabled SSL and configured the MySQL server with suitable certificates to communicate
over SSL.

The ADVANCED tab enables you to configure Connector/ODBC connection parameters. Refer to Section 27.1.4.2, “Connector/ODBC
Connection Parameters”, for information about the meaning of these options.

27.1.4.3.3. Errors and Debugging

This section answers Connector/ODBC connection-related questions.

• While configuring a Connector/ODBC DSN, a Could Not Load Translator or Setup Library error occurs

For more information, refer to MS KnowledgeBase Article(Q260558). Also, make sure you have the latest valid ctl3d32.dll in
your system directory.

• On Windows, the default myodbc3.dll is compiled for optimal performance. If you want to debug Connector/ODBC 3.51 (for
example, to enable tracing), you should instead use myodbc3d.dll. To install this file, copy myodbc3d.dll over the installed
myodbc3.dll file. Make sure to revert back to the release version of the driver DLL once you are done with the debugging be-
cause the debug version may cause performance issues. Note that the myodbc3d.dll isn't included in Connector/ODBC 3.51.07
through 3.51.11. If you are using one of these versions, you should copy that DLL from a previous version (for example, 3.51.06).

27.1.4.4. Configuring a Connector/ODBC DSN on Mac OS X

To configure a DSN on Mac OS X you can either use the myodbc3i utility, edit the odbc.ini file within the Library/ODBC dir-

Connectors

1531

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q260558


ectory of the user or the should use the ODBC Administrator. If you have Mac OS X 10.2 or earlier, refer to Section 27.1.4.5,
“Configuring a Connector/ODBC DSN on Unix”. Select whether you want to create a User DSN or a System DSN. If you want to add a
System DSN, you may need to authenticate with the system. You must click the padlock and enter a user and password with adminis-
trator privileges.

For correct operation of ODBC Administrator, you should ensure that the /Library/ODBC/odbc.ini file used to set up ODBC
connectivity and DSNs are writable by the admin group. If this file is not writable by this group then the ODBC Administrator may
fail, or may appear to have worked but not generated the correct entry.

Warning

There are known issues with the OS X ODBC Administrator and Connector/ODBC that may prevent you from creating a
DSN using this method. In this case you should use the command-line or edit the odbc.ini file directly. Note that exist-
ing DSNs or those that you create via the myodbc3i or myodbc-installertool can still be checked and edited using
ODBC Administrator.

To create a DSN using the myodbc3i utility, you need only specify the DSN type and the DSN connection string. For example:

$ myodbc3i -a -s -t"DSN=mydb;DRIVER=MySQL ODBC 3.51 Driver;SERVER=mysql;USER=username;PASSWORD=pass"

To use ODBC Administrator:

1. Open the ODBC Administrator from the Utilities folder in the Applications folder.

2. On the User DSN or System DSN panel, click ADD.

3. Select the Connector/ODBC driver and click OK.

4. You will be presented with the Data Source Name dialog. Enter The Data Source Name and an optional Description
for the DSN.

Connectors

1532



5. Click ADD to add a new keyword/value pair to the panel. You should configure at least four pairs to specify the server, user-
name, password and database connection parameters. See Section 27.1.4.2, “Connector/ODBC Connection Parameters”.

6. Click OK to add the DSN to the list of configured data source names.

A completed DSN configuration may look like this:

Connectors

1533



You can configure additional ODBC options to your DSN by adding further keyword/value pairs and setting the corresponding values.
See Section 27.1.4.2, “Connector/ODBC Connection Parameters”.

27.1.4.5. Configuring a Connector/ODBC DSN on Unix

On Unix, you configure DSN entries directly in the odbc.ini file. Here is a typical odbc.ini file that configures myodbc3 as the
DSN name for Connector/ODBC 3.51:

;
; odbc.ini configuration for Connector/ODBC and Connector/ODBC 3.51 drivers
;

[ODBC Data Sources]
myodbc3 = MyODBC 3.51 Driver DSN

[myodbc3]
Driver = /usr/local/lib/libmyodbc3.so
Description = Connector/ODBC 3.51 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =

[Default]
Driver = /usr/local/lib/libmyodbc3.so
Description = Connector/ODBC 3.51 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =

Refer to the Section 27.1.4.2, “Connector/ODBC Connection Parameters”, for the list of connection parameters that can be supplied.

Note

If you are using unixODBC, you can use the following tools to set up the DSN:

Connectors

1534



• ODBCConfig GUI tool(HOWTO: ODBCConfig)

• odbcinst

In some cases when using unixODBC, you might get this error:

Data source name not found and no default driver specified

If this happens, make sure the ODBCINI and ODBCSYSINI environment variables are pointing to the right odbc.ini file. For ex-
ample, if your odbc.ini file is located in /usr/local/etc, set the environment variables like this:

export ODBCINI=/usr/local/etc/odbc.ini
export ODBCSYSINI=/usr/local/etc

27.1.4.6. Connecting Without a Predefined DSN

You can connect to the MySQL server using SQLDriverConnect, by specifying the DRIVER name field. Here are the connection strings
for Connector/ODBC using DSN-Less connections:

For Connector/ODBC 3.51:

ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};\
SERVER=localhost;\
DATABASE=test;\
USER=venu;\
PASSWORD=venu;\
OPTION=3;"

If your programming language converts backslash followed by whitespace to a space, it is preferable to specify the connection string as
a single long string, or to use a concatenation of multiple strings that does not add spaces in between. For example:

ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};"
"SERVER=localhost;"
"DATABASE=test;"
"USER=venu;"
"PASSWORD=venu;"
"OPTION=3;"

Note. Note that on Mac OS X you may need to specify the full path to the Connector/ODBC driver library.

Refer to the Section 27.1.4.2, “Connector/ODBC Connection Parameters”, for the list of connection parameters that can be supplied.

27.1.4.7. ODBC Connection Pooling

Connection pooling enables the ODBC driver to re-use existing connections to a given database from a pool of connections, instead of
opening a new connection each time the database is accessed. By enabling connection pooling you can improve the overall performance
of your application by lowering the time taken to open a connection to a database in the connection pool.

For more information about connection pooling: http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470.

27.1.4.8. Getting an ODBC Trace File

If you encounter difficulties or problems with Connector/ODBC, you should start by making a log file from the ODBC Manager and
Connector/ODBC. This is called tracing, and is enabled through the ODBC Manager. The procedure for this differs for Windows, Mac
OS X and Unix.

27.1.4.8.1. Enabling ODBC Tracing on Windows

To enable the trace option on Windows:

1. The Tracing tab of the ODBC Data Source Administrator dialog box enables you to configure the way ODBC function calls are
traced.

Connectors

1535

http://www.unixodbc.org/config.html
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470


2. When you activate tracing from the Tracing tab, the Driver Manager logs all ODBC function calls for all subsequently run
applications.

3. ODBC function calls from applications running before tracing is activated are not logged. ODBC function calls are recorded in a
log file you specify.

4. Tracing ceases only after you click Stop Tracing Now. Remember that while tracing is on, the log file continues to increase in
size and that tracing affects the performance of all your ODBC applications.

27.1.4.8.2. Enabling ODBC Tracing on Mac OS X

To enable the trace option on Mac OS X 10.3 or later you should use the Tracing tab within ODBC Administrator .

1. Open the ODBC Administrator.

2. Select the Tracing tab.

Connectors

1536



3. Select the Enable Tracing checkbox.

4. Enter the location where you want to save the Tracing log. If you want to append information to an existing log file, click the
CHOOSE... button.

27.1.4.8.3. Enabling ODBC Tracing on Unix

To enable the trace option on Mac OS X 10.2 (or earlier) or Unix you must add the trace option to the ODBC configuration:

1. On Unix, you need to explicitly set the Trace option in the ODBC.INI file.

Set the tracing ON or OFF by using TraceFile and Trace parameters in odbc.ini as shown below:

TraceFile = /tmp/odbc.trace
Trace = 1

TraceFile specifies the name and full path of the trace file and Trace is set to ON or OFF. You can also use 1 or YES for ON
and 0 or NO for OFF. If you are using ODBCConfig from unixODBC, then follow the instructions for tracing unixODBC calls at
HOWTO-ODBCConfig.

27.1.4.8.4. Enabling a Connector/ODBC Log

To generate a Connector/ODBC log, do the following:

1. Within Windows, enable the Trace Connector/ODBC option flag in the Connector/ODBC connect/configure screen. The log
is written to file C:\myodbc.log. If the trace option is not remembered when you are going back to the above screen, it means

Connectors

1537

http://www.unixodbc.org/config.html


that you are not using the myodbcd.dll driver, see Section 27.1.4.3.3, “Errors and Debugging”.

On Mac OS X, Unix, or if you are using DSN-Less connection, then you need to supply OPTION=4 in the connection string or set
the corresponding keyword/value pair in the DSN.

2. Start your application and try to get it to fail. Then check the Connector/ODBC trace file to find out what could be wrong.

If you need help determining what is wrong, see Section 27.1.8.1, “Connector/ODBC Community Support”.

27.1.5. Connector/ODBC Examples
Once you have configured a DSN to provide access to a database, how you access and use that connection is dependent on the applica-
tion or programming language. As ODBC is a standardized interface, any application or language that supports ODBC can use the DSN
and connect to the configured database.

27.1.5.1. Basic Connector/ODBC Application Steps

Interacting with a MySQL server from an applications using the Connector/ODBC typically involves the following operations:

• Configure the Connector/ODBC DSN

• Connect to MySQL server

• Initialization operations

• Execute SQL statements

• Retrieve results

• Perform Transactions

• Disconnect from the server

Most applications use some variation of these steps. The basic application steps are shown in the following diagram:

Connectors

1538



27.1.5.2. Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC

Connectors

1539



A typical installation situation where you would install Connector/ODBC is when you want to access a database on a Linux or Unix
host from a Windows machine.

As an example of the process required to set up access between two machines, the steps below take you through the basic steps. These
instructions assume that you want to connect to system ALPHA from system BETA with a username and password of myuser and
mypassword.

On system ALPHA (the MySQL server) follow these steps:

1. Start the MySQL server.

2. Use GRANT to set up an account with a username of myuser that can connect from system BETA using a password of myuser to
the database test:

GRANT ALL ON test.* to 'myuser'@'BETA' IDENTIFIED BY 'mypassword';

For more information about MySQL privileges, refer to Section 5.5, “MySQL User Account Management”.

On system BETA (the Connector/ODBC client), follow these steps:

1. Configure a Connector/ODBC DSN using parameters that match the server, database and authentication information that you have
just configured on system ALPHA.

Parameter Value Comment

DSN remote_test A name to identify the connection.

SERVER ALPHA The address of the remote server.

DATABASE test The name of the default database.

USER myuser The username configured for access to this database.

PASSWORD mypassword The password for myuser.

2. Using an ODBC-capable application, such as Microsoft Office, connect to the MySQL server using the DSN you have just created.
If the connection fails, use tracing to examine the connection process. See Section 27.1.4.8, “Getting an ODBC Trace File”, for
more information.

27.1.5.3. Connector/ODBC and Third-Party ODBC Tools

Once you have configured your Connector/ODBC DSN, you can access your MySQL database through any application that supports
the ODBC interface, including programming languages and third-party applications. This section contains guides and help on using
Connector/ODBC with various ODBC-compatible tools and applications, including Microsoft Word, Microsoft Excel and Adobe/
Macromedia ColdFusion.

Connector/ODBC has been tested with the following applications:

Publisher Application Notes

Adobe ColdFusion Formerly Macromedia ColdFusion

Borland C++ Builder

Builder 4

Delphi

Business Objects Crystal Reports

Claris Filemaker Pro

Corel Paradox

Computer Associates Visual Objects Also known as CAVO

AllFusion ERwin Data Modeler

Connectors

1540



Gupta Team Developer Previously known as Centura Team Developer; Gupta SQL/
Windows

Gensym G2-ODBC Bridge

Inline iHTML

Lotus Notes Versions 4.5 and 4.6

Microsoft Access

Excel

Visio Enterprise

Visual C++

Visual Basic

ODBC.NET Using C#, Visual Basic, C++

FoxPro

Visual Interdev

OpenOffice.org OpenOffice.org

Perl DBD::ODBC

Pervasive Software DataJunction

Sambar Technologies Sambar Server

SPSS SPSS

SoftVelocity Clarion

SQLExpress SQLExpress for Xbase++

Sun StarOffice

SunSystems Vision

Sybase PowerBuilder

PowerDesigner

theKompany.com Data Architect

If you know of any other applications that work with Connector/ODBC, please send mail to <myodbc@lists.mysql.com> about
them.

27.1.5.4. Using Connector/ODBC with Microsoft Access

You can use MySQL database with Microsoft Access using Connector/ODBC. The MySQL database can be used as an import source,
an export source, or as a linked table for direct use within an Access application, so you can use Access as the front-end interface to a
MySQL database.

27.1.5.4.1. Exporting Access Data to MySQL

To export a table of data from an Access database to MySQL, follow these instructions:

1. When you open an Access database or an Access project, a Database window appears. It displays shortcuts for creating new data-
base objects and opening existing objects.

Connectors

1541



2. Click the name of the table or query you want to export, and then in the File menu, select Export.

3. In the Export Object Type Object name To dialog box, in the Save As Type box, select ODBC Databases ()
as shown here:

4. In the Export dialog box, enter a name for the file (or use the suggested name), and then select OK.

5. The Select Data Source dialog box is displayed; it lists the defined data sources for any ODBC drivers installed on your computer.
Click either the File Data Source or Machine Data Source tab, and then double-click the Connector/ODBC or Connector/ODBC
3.51 data source that you want to export to. To define a new data source for Connector/ODBC, please Section 27.1.4.3,
“Configuring a Connector/ODBC DSN on Windows”.

Note

Ensure that the information that you are exporting to the MySQL table is valid for the corresponding MySQL data types.

Connectors

1542



Values that are outside of the supported range of the MySQL data type but valid within Access may trigger an “overflow”
error during the export.

Microsoft Access connects to the MySQL Server through this data source and exports new tables and or data.

27.1.5.4.2. Importing MySQL Data to Access

To import a table or tables from MySQL to Access, follow these instructions:

1. Open a database, or switch to the Database window for the open database.

2. To import tables, on the File menu, point to Get External Data, and then click Import.

3. In the Import dialog box, in the Files Of Type box, select ODBC DATABASES (). The Select Data Source dialog box lists the
defined data sources THE SELECT DATA SOURCE dialog box is displayed; it lists the defined data source names.

4. If the ODBC data source that you selected requires you to log on, enter your login ID and password (additional information might
also be required), and then click OK.

5. Microsoft Access connects to the MySQL server through ODBC data source and displays the list of tables that you can im-
port.

6. Click each table that you want to import, and then click OK.

27.1.5.4.3. Using Microsoft Access as a Front-end to MySQL

You can use Microsoft Access as a front end to a MySQL database by linking tables within your Microsoft Access database to tables
that exist within your MySQL database. When a query is requested on a table within Access, ODBC is used to execute the queries on
the MySQL database instead.

To create a linked table:

1. Open the Access database that you want to link to MySQL.

2. From the FILE, choose GET EXTERNAL DATA->LINK TABLES.

Connectors

1543



3. From the browser, choose ODBC DATABASES () from the FILES OF TYPE popup.

4. In the SELECT DATA SOURCE window, choose an existing DSN, either from a FILE DATA SOURCE or MACHINE DATA
SOURCE.You can also create a new DSN using the NEW... button. For more information on creating a DSN see Section 27.1.4.3,
“Configuring a Connector/ODBC DSN on Windows”.

Connectors

1544



5. In the LINK TABLES dialog, select one or more tables from the MySQL database. A link will be created to each table that you se-
lect from this list.

Connectors

1545



6. If Microsoft Access is unable to determine the unique record identifier for a table automatically then it may ask you to confirm the
column, or combination of columns, to be used to uniquely identify each row from the source table. Select the columns you want to
use and click OK.

Once the process has been completed, you can now build interfaces and queries to the linked tables just as you would for any Access
database.

Use the following procedure to view or to refresh links when the structure or location of a linked table has changed. The Linked Table
Manager lists the paths to all currently linked tables.

To view or refresh links:

Connectors

1546



1. Open the database that contains links to MySQL tables.

2. On the Tools menu, point to Add-ins (Database Utilities in Access 2000 or newer), and then click Linked Table
Manager.

3. Select the check box for the tables whose links you want to refresh.

4. Click OK to refresh the links.

Microsoft Access confirms a successful refresh or, if the table wasn't found, displays the Select New Location of <table name>
dialog box in which you can specify its the table's new location. If several selected tables have moved to the new location that you spe-
cify, the Linked Table Manager searches that location for all selected tables, and updates all links in one step.

To change the path for a set of linked tables:

1. Open the database that contains links to tables.

2. On the Tools menu, point to Add-ins (Database Utilities in Access 2000 or newer), and then click Linked Table
Manager.

3. Select the Always Prompt For A New Location check box.

4. Select the check box for the tables whose links you want to change, and then click OK.

5. In the Select New Location of <table name> dialog box, specify the new location, click Open, and then click OK.

27.1.5.5. Using Connector/ODBC with Microsoft Word or Excel

You can use Microsoft Word and Microsoft Excel to access information from a MySQL database using Connector/ODBC. Within Mi-
crosoft Word, this facility is most useful when importing data for mailmerge, or for tables and data to be included in reports. Within Mi-
crosoft Excel, you can execute queries on your MySQL server and import the data directly into an Excel Worksheet, presenting the data
as a series of rows and columns.

With both applications, data is accessed and imported into the application using Microsoft Query , which enables you to execute a query
though an ODBC source. You use Microsoft Query to build the SQL statement to be executed, selecting the tables, fields, selection cri-
teria and sort order. For example, to insert information from a table in the World test database into an Excel spreadsheet, using the DSN
samples shown in Section 27.1.4, “Connector/ODBC Configuration”:

1. Create a new Worksheet.

2. From the Data menu, choose Import External Data, and then select New Database Query.

3. Microsoft Query will start. First, you need to choose the data source, by selecting an existing Data Source Name.

Connectors

1547



4. Within the Query Wizard, you must choose the columns that you want to import. The list of tables available to the user con-
figured through the DSN is shown on the left, the columns that will be added to your query are shown on the right. The columns
you choose are equivalent to those in the first section of a SELECT query. Click NEXT to continue.

5. You can filter rows from the query (the equivalent of a WHERE clause) using the Filter Data dialog. Click NEXT to continue.

Connectors

1548



6. Select an (optional) sort order for the data. This is equivalent to using a ORDER BY clause in your SQL query. You can select up
to three fields for sorting the information returned by the query. Click NEXT to continue.

7. Select the destination for your query. You can select to return the data Microsoft Excel, where you can choose a worksheet and cell

Connectors

1549



where the data will be inserted; you can continue to view the query and results within Microsoft Query, where you can edit the
SQL query and further filter and sort the information returned; or you can create an OLAP Cube from the query, which can then be
used directly within Microsoft Excel. Click FINISH.

The same process can be used to import data into a Word document, where the data will be inserted as a table. This can be used for mail
merge purposes (where the field data is read from a Word table), or where you want to include data and reports within a report or other
document.

27.1.5.6. Using Connector/ODBC with Crystal Reports

Crystal Reports can use an ODBC DSN to connect to a database from which you to extract data and information for reporting purposes.

Note

There is a known issue with certain versions of Crystal Reports where the application is unable to open and browse tables
and fields through an ODBC connection. Before using Crystal Reports with MySQL, please ensure that you have update to
the latest version, including any outstanding service packs and hotfixes. For more information on this issue, see the Busi-
ness) Objects Knowledgebase for more information.

For example, to create a simple crosstab report within Crystal Reports XI, you should follow these steps:

1. Create a DSN using the Data Sources (ODBC) tool. You can either specify a complete database, including username and
password, or you can build a basic DSN and use Crystal Reports to set the username and password.

For the purposes of this example, a DSN that provides a connection to an instance of the MySQL Sakila sample database has been
created.

2. Open Crystal Reports and create a new project, or an open an existing reporting project into which you want to insert data from
your MySQL data source.

3. Start the Cross-Tab Report Wizard, either by clicking on the option on the Start Page. Expand the CREATE NEW CONNECTION
folder, then expand the ODBC (RDO) folder to obtain a list of ODBC data sources.

Connectors

1550

http://support.crystaldecisions.com/library/kbase/new_articles/c2013269.asp
http://support.crystaldecisions.com/library/kbase/new_articles/c2013269.asp


You will be asked to select a data source.

4. When you first expand the ODBC (RDO) folder you will be presented the Data Source Selection screen. From here you can select
either a pre-configured DSN, open a file-based DSN or enter and manual connection string. For this example, the SAKILA DSN
will be used.

If the DSN contains a username/password combination, or you want to use different authentication credentials, click NEXT to enter
the username and password that you want to use. Otherwise, click FINISH to continue the data source selection wizard.

Connectors

1551



5. You will be returned the Cross-Tab Report Creation Wizard. You now need to select the database and tables that you want to in-
clude in your report. For our example, we will expand the selected Sakila database. Click the city table and use the > button to
add the table to the report. Then repeat the action with the country table. Alternatively you can select multiple tables and add
them to the report.

Finally, you can select the parent SAKILA resource and add of the tables to the report.

Once you have selected the tables you want to include, click NEXT to continue.

Connectors

1552



6. Crystal Reports will now read the table definitions and automatically identify the links between the tables. The identification of
links between tables enables Crystal Reports to automatically lookup and summarize information based on all the tables in the
database according to your query. If Crystal Reports is unable to perform the linking itself, you can manually create the links
between fields in the tables you have selected.

Click NEXT to continue the process.

Connectors

1553



7. You can now select the columns and rows that you wish to include within the Cross-Tab report. Drag and drop or use the > buttons
to add fields to each area of the report. In the example shown, we will report on cities, organized by country, incorporating a count
of the number of cities within each country. If you want to browse the data, select a field and click the BROWSE DATA... button.

Click NEXT to create a graph of the results. Since we are not creating a graph from this data, click FINISH to generate the report.

Connectors

1554



8. The finished report will be shown, a sample of the output from the Sakila sample database is shown below.

Connectors

1555



Once the ODBC connection has been opened within Crystal Reports, you can browse and add any fields within the available tables into
your reports.

27.1.5.7. Connector/ODBC Programming

With a suitable ODBC Manager and the Connector/ODBC driver installed, any programming language or environment that can support
ODBC should be able to connect to a MySQL database through Connector/ODBC.

This includes, but is certainly not limited to, Microsoft support languages (including Visual Basic, C# and interfaces such as
ODBC.NET), Perl (through the DBI module, and the DBD::ODBC driver).

Connectors

1556



27.1.5.7.1. Using Connector/ODBC with Visual Basic Using ADO, DAO and RDO

This section contains simple examples of the use of MySQL ODBC 3.51 Driver with ADO, DAO and RDO.

27.1.5.7.1.1. ADO: rs.addNew, rs.delete, and rs.update

The following ADO (ActiveX Data Objects) example creates a table my_ado and demonstrates the use of rs.addNew, rs.delete,
and rs.update.

Private Sub myodbc_ado_Click()

Dim conn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim fld As ADODB.Field
Dim sql As String

'connect to MySQL server using MySQL ODBC 3.51 Driver
Set conn = New ADODB.Connection
conn.ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"

conn.Open

'create table
conn.Execute "DROP TABLE IF EXISTS my_ado"
conn.Execute "CREATE TABLE my_ado(id int not null primary key, name varchar(20)," _
& "txt text, dt date, tm time, ts timestamp)"

'direct insert
conn.Execute "INSERT INTO my_ado(id,name,txt) values(1,100,'venu')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(2,200,'MySQL')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(3,300,'Delete')"

Set rs = New ADODB.Recordset
rs.CursorLocation = adUseServer

'fetch the initial table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Initial my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print

Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print
Loop
rs.Close

'rs insert
rs.Open "select * from my_ado", conn, adOpenDynamic, adLockOptimistic
rs.AddNew
rs!Name = "Monty"
rs!txt = "Insert row"
rs.Update
rs.Close

'rs update
rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-row"
rs.Update
rs.Close

'rs update second time..
rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-second-time"
rs.Update
rs.Close

'rs delete
rs.Open "SELECT * FROM my_ado"
rs.MoveNext
rs.MoveNext
rs.Delete
rs.Close

Connectors

1557



'fetch the updated table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Updated my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print

Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print
Loop
rs.Close
conn.Close
End Sub

27.1.5.7.1.2. DAO: rs.addNew, rs.update, and Scrolling

The following DAO (Data Access Objects) example creates a table my_dao and demonstrates the use of rs.addNew, rs.update,
and result set scrolling.

Private Sub myodbc_dao_Click()

Dim ws As Workspace
Dim conn As Connection
Dim queryDef As queryDef
Dim str As String

'connect to MySQL using MySQL ODBC 3.51 Driver
Set ws = DBEngine.CreateWorkspace("", "venu", "venu", dbUseODBC)
str = "odbc;DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"
Set conn = ws.OpenConnection("test", dbDriverNoPrompt, False, str)

'Create table my_dao
Set queryDef = conn.CreateQueryDef("", "drop table if exists my_dao")
queryDef.Execute

Set queryDef = conn.CreateQueryDef("", "create table my_dao(Id INT AUTO_INCREMENT PRIMARY KEY, " _
& "Ts TIMESTAMP(14) NOT NULL, Name varchar(20), Id2 INT)")
queryDef.Execute

'Insert new records using rs.addNew
Set rs = conn.OpenRecordset("my_dao")
Dim i As Integer

For i = 10 To 15
rs.AddNew
rs!Name = "insert record" & i
rs!Id2 = i
rs.Update
Next i
rs.Close

'rs update..
Set rs = conn.OpenRecordset("my_dao")
rs.Edit
rs!Name = "updated-string"
rs.Update
rs.Close

'fetch the table back...
Set rs = conn.OpenRecordset("my_dao", dbOpenDynamic)
str = "Results:"
rs.MoveFirst
While Not rs.EOF
str = " " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print "DATA:" & str
rs.MoveNext
Wend

'rs Scrolling
rs.MoveFirst
str = " FIRST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str

rs.MoveLast
str = " LAST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str

Connectors

1558



rs.MovePrevious
str = " LAST-1 ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str

'free all resources
rs.Close
queryDef.Close
conn.Close
ws.Close

End Sub

27.1.5.7.1.3. RDO: rs.addNew and rs.update

The following RDO (Remote Data Objects) example creates a table my_rdo and demonstrates the use of rs.addNew and
rs.update.

Dim rs As rdoResultset
Dim cn As New rdoConnection
Dim cl As rdoColumn
Dim SQL As String

'cn.Connect = "DSN=test;"
cn.Connect = "DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"

cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverPrompt

'drop table my_rdo
SQL = "drop table if exists my_rdo"
cn.Execute SQL, rdExecDirect

'create table my_rdo
SQL = "create table my_rdo(id int, name varchar(20))"
cn.Execute SQL, rdExecDirect

'insert - direct
SQL = "insert into my_rdo values (100,'venu')"
cn.Execute SQL, rdExecDirect

SQL = "insert into my_rdo values (200,'MySQL')"
cn.Execute SQL, rdExecDirect

'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.AddNew
rs!id = 300
rs!Name = "Insert1"
rs.Update
rs.Close

'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.AddNew
rs!id = 400
rs!Name = "Insert 2"
rs.Update
rs.Close

'rs update
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.Edit
rs!id = 999
rs!Name = "updated"
rs.Update
rs.Close

'fetch back...
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
Do Until rs.EOF
For Each cl In rs.rdoColumns
Debug.Print cl.Value,
Next
rs.MoveNext
Debug.Print
Loop
Debug.Print "Row count="; rs.RowCount

Connectors

1559



'close
rs.Close
cn.Close

End Sub

27.1.5.7.2. Using Connector/ODBC with .NET

This section contains simple examples that demonstrate the use of Connector/ODBC drivers with ODBC.NET.

27.1.5.7.2.1. Using Connector/ODBC with ODBC.NET and C# (C sharp)

The following sample creates a table my_odbc_net and demonstrates its use in C#.

/**
* @sample : mycon.cs
* @purpose : Demo sample for ODBC.NET using Connector/ODBC
* @author : Venu, <myodbc@lists.mysql.com>
*
* (C) Copyright MySQL AB, 1995-2006
*
**/

/* build command
*
* csc /t:exe
* /out:mycon.exe mycon.cs
* /r:Microsoft.Data.Odbc.dll
*/

using Console = System.Console;
using Microsoft.Data.Odbc;

namespace myodbc3
{
class mycon
{
static void Main(string[] args)
{
try
{
//Connection string for Connector/ODBC 3.51
string MyConString = "DRIVER={MySQL ODBC 3.51 Driver};" +
"SERVER=localhost;" +
"DATABASE=test;" +
"UID=venu;" +
"PASSWORD=venu;" +
"OPTION=3";

//Connect to MySQL using Connector/ODBC
OdbcConnection MyConnection = new OdbcConnection(MyConString);
MyConnection.Open();

Console.WriteLine("\n !!! success, connected successfully !!!\n");

//Display connection information
Console.WriteLine("Connection Information:");
Console.WriteLine("\tConnection String:" +

MyConnection.ConnectionString);
Console.WriteLine("\tConnection Timeout:" +

MyConnection.ConnectionTimeout);
Console.WriteLine("\tDatabase:" +

MyConnection.Database);
Console.WriteLine("\tDataSource:" +

MyConnection.DataSource);
Console.WriteLine("\tDriver:" +

MyConnection.Driver);
Console.WriteLine("\tServerVersion:" +

MyConnection.ServerVersion);

//Create a sample table
OdbcCommand MyCommand =
new OdbcCommand("DROP TABLE IF EXISTS my_odbc_net",

MyConnection);
MyCommand.ExecuteNonQuery();
MyCommand.CommandText =
"CREATE TABLE my_odbc_net(id int, name varchar(20), idb bigint)";

MyCommand.ExecuteNonQuery();

//Insert
MyCommand.CommandText =
"INSERT INTO my_odbc_net VALUES(10,'venu', 300)";

Console.WriteLine("INSERT, Total rows affected:" +
MyCommand.ExecuteNonQuery());;

Connectors

1560



//Insert
MyCommand.CommandText =
"INSERT INTO my_odbc_net VALUES(20,'mysql',400)";

Console.WriteLine("INSERT, Total rows affected:" +
MyCommand.ExecuteNonQuery());

//Insert
MyCommand.CommandText =
"INSERT INTO my_odbc_net VALUES(20,'mysql',500)";

Console.WriteLine("INSERT, Total rows affected:" +
MyCommand.ExecuteNonQuery());

//Update
MyCommand.CommandText =
"UPDATE my_odbc_net SET id=999 WHERE id=20";

Console.WriteLine("Update, Total rows affected:" +
MyCommand.ExecuteNonQuery());

//COUNT(*)
MyCommand.CommandText =
"SELECT COUNT(*) as TRows FROM my_odbc_net";

Console.WriteLine("Total Rows:" +
MyCommand.ExecuteScalar());

//Fetch
MyCommand.CommandText = "SELECT * FROM my_odbc_net";
OdbcDataReader MyDataReader;
MyDataReader = MyCommand.ExecuteReader();
while (MyDataReader.Read())
{
if(string.Compare(MyConnection.Driver,"myodbc3.dll") == 0) {
//Supported only by Connector/ODBC 3.51
Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +

MyDataReader.GetString(1) + " " +
MyDataReader.GetInt64(2));

}
else {
//BIGINTs not supported by Connector/ODBC
Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +

MyDataReader.GetString(1) + " " +
MyDataReader.GetInt32(2));

}
}

//Close all resources
MyDataReader.Close();
MyConnection.Close();

}
catch (OdbcException MyOdbcException) //Catch any ODBC exception ..
{
for (int i=0; i < MyOdbcException.Errors.Count; i++)
{
Console.Write("ERROR #" + i + "\n" +

"Message: " +
MyOdbcException.Errors[i].Message + "\n" +
"Native: " +
MyOdbcException.Errors[i].NativeError.ToString() + "\n" +
"Source: " +
MyOdbcException.Errors[i].Source + "\n" +
"SQL: " +
MyOdbcException.Errors[i].SQLState + "\n");

}
}

}
}

}

27.1.5.7.2.2. Using Connector/ODBC with ODBC.NET and Visual Basic

The following sample creates a table my_vb_net and demonstrates the use in VB.

' @sample : myvb.vb
' @purpose : Demo sample for ODBC.NET using Connector/ODBC
' @author : Venu, <myodbc@lists.mysql.com>
'
' (C) Copyright MySQL AB, 1995-2006
'
'

'
' build command
'
' vbc /target:exe
' /out:myvb.exe
' /r:Microsoft.Data.Odbc.dll
' /r:System.dll
' /r:System.Data.dll

Connectors

1561



'

Imports Microsoft.Data.Odbc
Imports System

Module myvb
Sub Main()
Try

'Connector/ODBC 3.51 connection string
Dim MyConString As String = "DRIVER={MySQL ODBC 3.51 Driver};" & _
"SERVER=localhost;" & _
"DATABASE=test;" & _
"UID=venu;" & _
"PASSWORD=venu;" & _
"OPTION=3;"

'Connection
Dim MyConnection As New OdbcConnection(MyConString)
MyConnection.Open()

Console.WriteLine("Connection State::" & MyConnection.State.ToString)

'Drop
Console.WriteLine("Dropping table")
Dim MyCommand As New OdbcCommand()
MyCommand.Connection = MyConnection
MyCommand.CommandText = "DROP TABLE IF EXISTS my_vb_net"
MyCommand.ExecuteNonQuery()

'Create
Console.WriteLine("Creating....")
MyCommand.CommandText = "CREATE TABLE my_vb_net(id int, name varchar(30))"
MyCommand.ExecuteNonQuery()

'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(10,'venu')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())

'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())

'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())

'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net(id) VALUES(30)"
Console.WriteLine("INSERT, Total rows affected:" & _

MyCommand.ExecuteNonQuery())

'Update
MyCommand.CommandText = "UPDATE my_vb_net SET id=999 WHERE id=20"
Console.WriteLine("Update, Total rows affected:" & _
MyCommand.ExecuteNonQuery())

'COUNT(*)
MyCommand.CommandText = "SELECT COUNT(*) as TRows FROM my_vb_net"
Console.WriteLine("Total Rows:" & MyCommand.ExecuteScalar())

'Select
Console.WriteLine("Select * FROM my_vb_net")
MyCommand.CommandText = "SELECT * FROM my_vb_net"
Dim MyDataReader As OdbcDataReader
MyDataReader = MyCommand.ExecuteReader
While MyDataReader.Read
If MyDataReader("name") Is DBNull.Value Then
Console.WriteLine("id = " & _
CStr(MyDataReader("id")) & " name = " & _
"NULL")

Else
Console.WriteLine("id = " & _
CStr(MyDataReader("id")) & " name = " & _
CStr(MyDataReader("name")))

End If
End While

'Catch ODBC Exception
Catch MyOdbcException As OdbcException
Dim i As Integer
Console.WriteLine(MyOdbcException.ToString)

'Catch program exception
Catch MyException As Exception
Console.WriteLine(MyException.ToString)

End Try
End Sub

Connectors

1562



27.1.6. Connector/ODBC Reference
This section provides reference material for the Connector/ODBC API, showing supported functions and methods, supported MySQL
column types and the corresponding native type in Connector/ODBC, and the error codes returned by Connector/ODBC when a fault
occurs.

27.1.6.1. Connector/ODBC API Reference

This section summarizes ODBC routines, categorized by functionality.

For the complete ODBC API reference, please refer to the ODBC Programer's Reference at ht-
tp://msdn.microsoft.com/library/en-us/odbc/htm/odbcabout_this_manual.asp.

An application can call SQLGetInfo function to obtain conformance information about Connector/ODBC. To obtain information
about support for a specific function in the driver, an application can call SQLGetFunctions.

Note

For backward compatibility, the Connector/ODBC 3.51 driver supports all deprecated functions.

The following tables list Connector/ODBC API calls grouped by task:

Connecting to a data source:

Function name C/ODBC 3.51 Standard Purpose

SQLAllocHandle Yes ISO 92 Obtains an environment, connection, statement, or descriptor
handle.

SQLConnect Yes ISO 92 Connects to a specific driver by data source name, user ID, and
password.

SQLDriverConnect Yes ODBC Connects to a specific driver by connection string or requests that
the Driver Manager and driver display connection dialog boxes for
the user.

SQLAllocEnv Yes Deprecated Obtains an environment handle allocated from driver.

SQLAllocConnect Yes Deprecated Obtains a connection handle

Obtaining information about a driver and data source:

Function name C/ODBC 3.51 Standard Purpose

SQLDataSources No ISO 92 Returns the list of available data sources, handled by the Driver
Manager

SQLDrivers No ODBC Returns the list of installed drivers and their attributes, handles by
Driver Manager

SQLGetInfo Yes ISO 92 Returns information about a specific driver and data source.

SQLGetFunctions Yes ISO 92 Returns supported driver functions.

SQLGetTypeInfo Yes ISO 92 Returns information about supported data types.

Setting and retrieving driver attributes:

Function name C/ODBC 3.51 Standard Purpose

SQLSetConnectAttr Yes ISO 92 Sets a connection attribute.

SQLGetConnectAttr Yes ISO 92 Returns the value of a connection attribute.

SQLSetConnectOption Yes Deprecated Sets a connection option

SQLGetConnectOption Yes Deprecated Returns the value of a connection option

SQLSetEnvAttr Yes ISO 92 Sets an environment attribute.

SQLGetEnvAttr Yes ISO 92 Returns the value of an environment attribute.

Connectors

1563

http://msdn.microsoft.com/library/en-us/odbc/htm/odbcabout_this_manual.asp
http://msdn.microsoft.com/library/en-us/odbc/htm/odbcabout_this_manual.asp


SQLSetStmtAttr Yes ISO 92 Sets a statement attribute.

SQLGetStmtAttr Yes ISO 92 Returns the value of a statement attribute.

SQLSetStmtOption Yes Deprecated Sets a statement option

SQLGetStmtOption Yes Deprecated Returns the value of a statement option

Preparing SQL requests:

Function name C/ODBC 3.51 Standard Purpose

SQLAllocStmt Yes Deprecated Allocates a statement handle

SQLPrepare Yes ISO 92 Prepares an SQL statement for later execution.

SQLBindParameter Yes ODBC Assigns storage for a parameter in an SQL statement.

SQLGetCursorName Yes ISO 92 Returns the cursor name associated with a statement handle.

SQLSetCursorName Yes ISO 92 Specifies a cursor name.

SQLSetScrollOptions Yes ODBC Sets options that control cursor behavior.

Submitting requests:

Function name C/ODBC 3.51 Standard Purpose

SQLExecute Yes ISO 92 Executes a prepared statement.

SQLExecDirect Yes ISO 92 Executes a statement

SQLNativeSql Yes ODBC Returns the text of an SQL statement as translated by the driver.

SQLDescribeParam Yes ODBC Returns the description for a specific parameter in a statement.

SQLNumParams Yes ISO 92 Returns the number of parameters in a statement.

SQLParamData Yes ISO 92 Used in conjunction with SQLPutData to supply parameter data
at execution time. (Useful for long data values.)

SQLPutData Yes ISO 92 Sends part or all of a data value for a parameter. (Useful for long
data values.)

Retrieving results and information about results:

Function name C/ODBC 3.51 Standard Purpose

SQLRowCount Yes ISO 92 Returns the number of rows affected by an insert, update, or delete
request.

SQLNumResultCols Yes ISO 92 Returns the number of columns in the result set.

SQLDescribeCol Yes ISO 92 Describes a column in the result set.

SQLColAttribute Yes ISO 92 Describes attributes of a column in the result set.

SQLColAttributes Yes Deprecated Describes attributes of a column in the result set.

SQLFetch Yes ISO 92 Returns multiple result rows.

SQLFetchScroll Yes ISO 92 Returns scrollable result rows.

SQLExtendedFetch Yes Deprecated Returns scrollable result rows.

SQLSetPos Yes ODBC Positions a cursor within a fetched block of data and allows an ap-
plication to refresh data in the rowset or to update or delete data in
the result set.

SQLBulkOperations Yes ODBC Performs bulk insertions and bulk bookmark operations, including
update, delete, and fetch by bookmark.

Retrieving error or diagnostic information:

Connectors

1564



Function name C/ODBC 3.51 Standard Purpose

SQLError Yes Deprecated Returns additional error or status information

SQLGetDiagField Yes ISO 92 Returns additional diagnostic information (a single field of the dia-
gnostic data structure).

SQLGetDiagRec Yes ISO 92 Returns additional diagnostic information (multiple fields of the
diagnostic data structure).

Obtaining information about the data source's system tables (catalog functions) item:

Function name C/ODBC 3.51 Standard Purpose

SQLColumnPrivileges Yes ODBC Returns a list of columns and associated privileges for one or more
tables.

SQLColumns Yes X/Open Returns the list of column names in specified tables.

SQLForeignKeys Yes ODBC Returns a list of column names that make up foreign keys, if they
exist for a specified table.

SQLPrimaryKeys Yes ODBC Returns the list of column names that make up the primary key for
a table.

SQLSpecialColumns Yes X/Open Returns information about the optimal set of columns that
uniquely identifies a row in a specified table, or the columns that
are automatically updated when any value in the row is updated by
a transaction.

SQLStatistics Yes ISO 92 Returns statistics about a single table and the list of indexes associ-
ated with the table.

SQLTablePrivileges Yes ODBC Returns a list of tables and the privileges associated with each ta-
ble.

SQLTables Yes X/Open Returns the list of table names stored in a specific data source.

Performing transactions:

Function name C/ODBC 3.51 Standard Purpose

SQLTransact Yes Deprecated Commits or rolls back a transaction

SQLEndTran Yes ISO 92 Commits or rolls back a transaction.

Terminating a statement:

Function name C/ODBC 3.51 Standard Purpose

SQLFreeStmt Yes ISO 92 Ends statement processing, discards pending results, and, option-
ally, frees all resources associated with the statement handle.

SQLCloseCursor Yes ISO 92 Closes a cursor that has been opened on a statement handle.

SQLCancel Yes ISO 92 Cancels an SQL statement.

Terminating a connection:

Function name C/ODBC 3.51 Standard Purpose

SQLDisconnect Yes ISO 92 Closes the connection.

SQLFreeHandle Yes ISO 92 Releases an environment, connection, statement, or descriptor
handle.

SQLFreeConnect Yes Deprecated Releases connection handle

SQLFreeEnv Yes Deprecated Releases an environment handle

Connectors

1565



27.1.6.2. Connector/ODBC Data Types

The following table illustrates how driver maps the server data types to default SQL and C data types:

Native Value SQL Type C Type

bigint unsigned SQL_BIGINT SQL_C_UBIGINT

bigint SQL_BIGINT SQL_C_SBIGINT

bit SQL_BIT SQL_C_BIT

bit SQL_CHAR SQL_C_CHAR

blob SQL_LONGVARBINARY SQL_C_BINARY

bool SQL_CHAR SQL_C_CHAR

char SQL_CHAR SQL_C_CHAR

date SQL_DATE SQL_C_DATE

datetime SQL_TIMESTAMP SQL_C_TIMESTAMP

decimal SQL_DECIMAL SQL_C_CHAR

double precision SQL_DOUBLE SQL_C_DOUBLE

double SQL_FLOAT SQL_C_DOUBLE

enum SQL_VARCHAR SQL_C_CHAR

float SQL_REAL SQL_C_FLOAT

int unsigned SQL_INTEGER SQL_C_ULONG

int SQL_INTEGER SQL_C_SLONG

integer unsigned SQL_INTEGER SQL_C_ULONG

integer SQL_INTEGER SQL_C_SLONG

long varbinary SQL_LONGVARBINARY SQL_C_BINARY

long varchar SQL_LONGVARCHAR SQL_C_CHAR

longblob SQL_LONGVARBINARY SQL_C_BINARY

longtext SQL_LONGVARCHAR SQL_C_CHAR

mediumblob SQL_LONGVARBINARY SQL_C_BINARY

mediumint unsigned SQL_INTEGER SQL_C_ULONG

mediumint SQL_INTEGER SQL_C_SLONG

mediumtext SQL_LONGVARCHAR SQL_C_CHAR

numeric SQL_NUMERIC SQL_C_CHAR

real SQL_FLOAT SQL_C_DOUBLE

set SQL_VARCHAR SQL_C_CHAR

smallint unsigned SQL_SMALLINT SQL_C_USHORT

smallint SQL_SMALLINT SQL_C_SSHORT

text SQL_LONGVARCHAR SQL_C_CHAR

time SQL_TIME SQL_C_TIME

timestamp SQL_TIMESTAMP SQL_C_TIMESTAMP

tinyblob SQL_LONGVARBINARY SQL_C_BINARY

tinyint unsigned SQL_TINYINT SQL_C_UTINYINT

tinyint SQL_TINYINT SQL_C_STINYINT

tinytext SQL_LONGVARCHAR SQL_C_CHAR

varchar SQL_VARCHAR SQL_C_CHAR

year SQL_SMALLINT SQL_C_SHORT

Connectors

1566



27.1.6.3. Connector/ODBC Error Codes

The following tables lists the error codes returned by the driver apart from the server errors.

Native
Code

SQLSTATE 2 SQLSTATE 3 Error Message

500 01000 01000 General warning

501 01004 01004 String data, right truncated

502 01S02 01S02 Option value changed

503 01S03 01S03 No rows updated/deleted

504 01S04 01S04 More than one row updated/deleted

505 01S06 01S06 Attempt to fetch before the result set returned the first row set

506 07001 07002 SQLBindParameter not used for all parameters

507 07005 07005 Prepared statement not a cursor-specification

508 07009 07009 Invalid descriptor index

509 08002 08002 Connection name in use

510 08003 08003 Connection does not exist

511 24000 24000 Invalid cursor state

512 25000 25000 Invalid transaction state

513 25S01 25S01 Transaction state unknown

514 34000 34000 Invalid cursor name

515 S1000 HY000 General driver defined error

516 S1001 HY001 Memory allocation error

517 S1002 HY002 Invalid column number

518 S1003 HY003 Invalid application buffer type

519 S1004 HY004 Invalid SQL data type

520 S1009 HY009 Invalid use of null pointer

521 S1010 HY010 Function sequence error

522 S1011 HY011 Attribute can not be set now

523 S1012 HY012 Invalid transaction operation code

524 S1013 HY013 Memory management error

525 S1015 HY015 No cursor name available

526 S1024 HY024 Invalid attribute value

527 S1090 HY090 Invalid string or buffer length

528 S1091 HY091 Invalid descriptor field identifier

529 S1092 HY092 Invalid attribute/option identifier

530 S1093 HY093 Invalid parameter number

531 S1095 HY095 Function type out of range

532 S1106 HY106 Fetch type out of range

533 S1117 HY117 Row value out of range

534 S1109 HY109 Invalid cursor position

535 S1C00 HYC00 Optional feature not implemented

0 21S01 21S01 Column count does not match value count

0 23000 23000 Integrity constraint violation

0 42000 42000 Syntax error or access violation

0 42S02 42S02 Base table or view not found

Connectors

1567



0 42S12 42S12 Index not found

0 42S21 42S21 Column already exists

0 42S22 42S22 Column not found

0 08S01 08S01 Communication link failure

27.1.7. Connector/ODBC Notes and Tips
Here are some common notes and tips for using Connector/ODBC within different environments, applications and tools. The notes
provided here are based on the experiences of Connector/ODBC developers and users.

27.1.7.1. Connector/ODBC General Functionality

This section provides help with common queries and areas of functionality in MySQL and how to use them with Connector/ODBC.

27.1.7.1.1. Obtaining Auto-Increment Values

Obtaining the value of column that uses AUTO_INCREMENT after an INSERT statement can be achieved in a number of different
ways. To obtain the value immediately after an INSERT, use a SELECT query with the LAST_INSERT_ID() function.

For example, using Connector/ODBC you would execute two separate statements, the INSERT statement and the SELECT query to ob-
tain the auto-increment value.

INSERT INTO tbl (auto,text) VALUES(NULL,'text');
SELECT LAST_INSERT_ID();

If you do not require the value within your application, but do require the value as part of another INSERT, the entire process can be
handled by executing the following statements:

INSERT INTO tbl (auto,text) VALUES(NULL,'text');
INSERT INTO tbl2 (id,text) VALUES(LAST_INSERT_ID(),'text');

Certain ODBC applications (including Delphi and Access) may have trouble obtaining the auto-increment value using the previous ex-
amples. In this case, try the following statement as an alternative:

SELECT * FROM tbl WHERE auto IS NULL;

See Section 26.2.14.3, “How to Get the Unique ID for the Last Inserted Row”.

27.1.7.1.2. Dynamic Cursor Support

Support for the dynamic cursor is provided in Connector/ODBC 3.51, but dynamic cursors are not enabled by default. You can en-
able this function within Windows by selecting the Enable Dynamic Cursor checkbox within the ODBC Data Source Adminis-
trator.

On other platforms, you can enable the dynamic cursor by adding 32 to the OPTION value when creating the DSN.

27.1.7.1.3. Connector/ODBC Performance

The Connector/ODBC driver has been optimized to provide very fast performance. If you experience problems with the performance of
Connector/ODBC, or notice a large amount of disk activity for simple queries, there are a number of aspects you should check:

• Ensure that ODBC Tracing is not enabled. With tracing enabled, a lot of information is recorded in the tracing file by the ODBC
Manager. You can check, and disable, tracing within Windows using the TRACING panel of the ODBC Data Source Administrator.
Within Mac OS X, check the TRACING panel of ODBC Administrator. See Section 27.1.4.8, “Getting an ODBC Trace File”.

• Make sure you are using the standard version of the driver, and not the debug version. The debug version includes additional checks
and reporting measures.

• Disable the Connector/ODBC driver trace and query logs. These options are enabled for each DSN, so make sure to examine only
the DSN that you are using in your application. Within Windows, you can disable the Connector/ODBC and query logs by modify-

Connectors

1568



ing the DSN configuration. Within Mac OS X and Unix, ensure that the driver trace (option value 4) and query logging (option
value 524288) are not enabled.

27.1.7.1.4. Setting ODBC Query Timeout in Windows

For more information on how to set the query timeout on Microsoft Windows when executing queries through an ODBC connection,
read the Microsoft knowledgebase document at http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756.

27.1.7.2. Connector/ODBC Application Specific Tips

Most programs should work with Connector/ODBC, but for each of those listed here, there are specific notes and tips to improve or en-
hance the way you work with Connector/ODBC and these applications.

With all applications you should ensure that you are using the latest Connector/ODBC drivers, ODBC Manager and any supporting lib-
raries and interfaces used by your application. For example, on Windows, using the latest version of Microsoft Data Access Compon-
ents (MDAC) will improve the compatibility with ODBC in general, and with the Connector/ODBC driver.

27.1.7.2.1. Using Connector/ODBC with Microsoft Applications

The majority of Microsoft applications have been tested with Connector/ODBC, including Microsoft Office, Microsoft Access and the
various programming languages supported within ASP and Microsoft Visual Studio.

27.1.7.2.1.1. Microsoft Access

To improve the integration between Microsoft Access and MySQL through Connector/ODBC:

• For all versions of Access, you should enable the Connector/ODBC Return matching rows option. For Access 2.0, you
should additionally enable the Simulate ODBC 1.0 option.

• You should have a TIMESTAMP column in all tables that you want to be able to update. For maximum portability, don't use a length
specification in the column declaration (which is unsupported within MySQL in versions earlier than 4.1).

• You should have a primary key in each MySQL table you want to use with Access. If not, new or updated rows may show up as
#DELETED#.

• Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symptom usually is that new or up-
dated rows may show up as #DELETED# or that you can't find or update rows.

• If you are using Connector/ODBC to link to a table that has a BIGINT column, the results are displayed as #DELETED#. The work
around solution is:

• Have one more dummy column with TIMESTAMP as the data type.

• Select the Change BIGINT columns to INT option in the connection dialog in ODBC DSN Administrator.

• Delete the table link from Access and re-create it.

Old records may still display as #DELETED#, but newly added/updated records are displayed properly.

• If you still get the error Another user has changed your data after adding a TIMESTAMP column, the following trick
may help you:

Don't use a table data sheet view. Instead, create a form with the fields you want, and use that form data sheet view. You should
set the DefaultValue property for the TIMESTAMP column to NOW(). It may be a good idea to hide the TIMESTAMP column
from view so your users are not confused.

• In some cases, Access may generate SQL statements that MySQL can't understand. You can fix this by selecting
"Query|SQLSpecific|Pass-Through" from the Access menu.

• On Windows NT, Access reports BLOB columns as OLE OBJECTS. If you want to have MEMO columns instead, you should change
BLOB columns to TEXT with ALTER TABLE.

• Access can't always handle the MySQL DATE column properly. If you have a problem with these, change the columns to DATE-

Connectors

1569

http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756


TIME.

• If you have in Access a column defined as BYTE, Access tries to export this as TINYINT instead of TINYINT UNSIGNED. This
gives you problems if you have values larger than 127 in the column.

• If you have very large (long) tables in Access, it might take a very long time to open them. Or you might run low on virtual memory
and eventually get an ODBC Query Failed error and the table cannot open. To deal with this, select the following options:

• Return Matching Rows (2)

• Allow BIG Results (8).

These add up to a value of 10 (OPTION=10).

Some external articles and tips that may be useful when using Access, ODBC and Connector/ODBC:

• Read How to Trap ODBC Login Error Messages in Access

• Optimizing Access ODBC Applications

• Optimizing for Client/Server Performance

• Tips for Converting Applications to Using ODBCDirect

• Tips for Optimizing Queries on Attached SQL Tables

• For a list of tools that can be used with Access and ODBC data sources, refer to converters section for list of available tools.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about using ODBC with Access in Knowledge Base
articles such as Use MySQL-Specific Syntax with Microsoft Access. To subscribe to MySQL Enterprise see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

27.1.7.2.1.2. Microsoft Excel and Column Types

If you have problems importing data into Microsoft Excel, particularly numerical, date, and time values, this is probably because of a
bug in Excel, where the column type of the source data is used to determine the data type when that data is inserted into a cell within the
worksheet. The result is that Excel incorrectly identifies the content and this affects both the display format and the data when it is used
within calculations.

To address this issue, use the CONCAT() function in your queries. The use of CONCAT() forces Excel to treat the value as a string,
which Excel will then parse and usually correctly identify the embedded information.

However, even with this option, some data may be incorrectly formatted, even though the source data remains unchanged. Use the
Format Cells option within Excel to change the format of the displayed information.

27.1.7.2.1.3. Microsoft Visual Basic

To be able to update a table, you must define a primary key for the table.

Visual Basic with ADO can't handle big integers. This means that some queries like SHOW PROCESSLIST do not work properly. The
fix is to use OPTION=16384 in the ODBC connect string or to select the Change BIGINT columns to INT option in the Con-
nector/ODBC connect screen. You may also want to select the Return matching rows option.

MySQL Enterprise
MySQL Enterprise subscribers can find a discussion about using VBA in the Knowledge Base article, MySQL-
Specific Syntax with VBA. To subscribe to MySQL Enterprise see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

27.1.7.2.1.4. Microsoft Visual InterDev

If you have a BIGINT in your result, you may get the error [Microsoft][ODBC Driver Manager] Driver does not
support this parameter. Try selecting the Change BIGINT columns to INT option in the Connector/ODBC connect

Connectors

1570

http://support.microsoft.com/support/kb/articles/Q124/9/01.asp?LN=EN-US&SD=gn&FR=0%3CP%3E
http://support.microsoft.com/default.aspx?scid=kb;en-us;128808
http://support.microsoft.com/default.aspx?scid=kb;en-us;164481
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q99321
http://www.mysql.com/portal/software/convertors/
https://kb.mysql.com/view.php?id=5309
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html
https://kb.mysql.com/view.php?id=5308
https://kb.mysql.com/view.php?id=5308
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


screen.

27.1.7.2.1.5. Visual Objects

You should select the Don't optimize column widths option.

27.1.7.2.1.6. Microsoft ADO

When you are coding with the ADO API and Connector/ODBC, you need to pay attention to some default properties that aren't suppor-
ted by the MySQL server. For example, using the CursorLocation Property as adUseServer returns a result of –1 for the
RecordCount Property. To have the right value, you need to set this property to adUseClient, as shown in the VB code here:

Dim myconn As New ADODB.Connection
Dim myrs As New Recordset
Dim mySQL As String
Dim myrows As Long

myconn.Open "DSN=MyODBCsample"
mySQL = "SELECT * from user"
myrs.Source = mySQL
Set myrs.ActiveConnection = myconn
myrs.CursorLocation = adUseClient
myrs.Open
myrows = myrs.RecordCount

myrs.Close
myconn.Close

Another workaround is to use a SELECT COUNT(*) statement for a similar query to get the correct row count.

To find the number of rows affected by a specific SQL statement in ADO, use the RecordsAffected property in the ADO execute
method. For more information on the usage of execute method, refer to ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp.

For information, see ActiveX Data Objects(ADO) Frequently Asked Questions.

27.1.7.2.1.7. Using Connector/ODBC with Active Server Pages (ASP)

You should select the Return matching rows option in the DSN.

For more information about how to access MySQL via ASP using Connector/ODBC, refer to the following articles:

• Using MyODBC To Access Your MySQL Database Via ASP

• ASP and MySQL at DWAM.NT

A Frequently Asked Questions list for ASP can be found at ht-
tp://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp.

27.1.7.2.1.8. Using Connector/ODBC with Visual Basic (ADO, DAO and RDO) and ASP

Some articles that may help with Visual Basic and ASP:

• MySQL BLOB columns and Visual Basic 6 by Mike Hillyer (<mike@openwin.org>).

• How to map Visual basic data type to MySQL types by Mike Hillyer (<mike@openwin.org>).

27.1.7.2.2. Using Connector/ODBC with Borland Applications

With all Borland applications where the Borland Database Engine (BDE) is used, follow these steps to improve compatibility:

• Update to BDE 3.2 or newer.

• Enable the Don't optimize column widths option in the DSN.

Connectors

1571

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q183606
http://www.devarticles.com/c/a/ASP/Using-MyODBC-To-Access-Your-MySQL-Database-Via-ASP/
http://www.dwam.net/mysql/asp_myodbc.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://dev.mysql.com/tech-resources/articles/vb-blob-handling.html
http://dev.mysql.com/tech-resources/articles/visual-basic-datatypes.html


• Enabled the Return matching rows option in the DSN.

27.1.7.2.2.1. Using Connector/ODBC with Borland Builder 4

When you start a query, you can use the Active property or the Open method. Note that Active starts by automatically issuing a
SELECT * FROM ... query. That may not be a good thing if your tables are large.

27.1.7.2.2.2. Using Connector/ODBC with Delphi

Also, here is some potentially useful Delphi code that sets up both an ODBC entry and a BDE entry for Connector/ODBC. The BDE
entry requires a BDE Alias Editor that is free at a Delphi Super Page near you. (Thanks to Bryan Brunton
<bryan@flesherfab.com> for this):

fReg:= TRegistry.Create;
fReg.OpenKey('\Software\ODBC\ODBC.INI\DocumentsFab', True);
fReg.WriteString('Database', 'Documents');
fReg.WriteString('Description', ' ');
fReg.WriteString('Driver', 'C:\WINNT\System32\myodbc.dll');
fReg.WriteString('Flag', '1');
fReg.WriteString('Password', '');
fReg.WriteString('Port', ' ');
fReg.WriteString('Server', 'xmark');
fReg.WriteString('User', 'winuser');
fReg.OpenKey('\Software\ODBC\ODBC.INI\ODBC Data Sources', True);
fReg.WriteString('DocumentsFab', 'MySQL');
fReg.CloseKey;
fReg.Free;

Memo1.Lines.Add('DATABASE NAME=');
Memo1.Lines.Add('USER NAME=');
Memo1.Lines.Add('ODBC DSN=DocumentsFab');
Memo1.Lines.Add('OPEN MODE=READ/WRITE');
Memo1.Lines.Add('BATCH COUNT=200');
Memo1.Lines.Add('LANGDRIVER=');
Memo1.Lines.Add('MAX ROWS=-1');
Memo1.Lines.Add('SCHEMA CACHE DIR=');
Memo1.Lines.Add('SCHEMA CACHE SIZE=8');
Memo1.Lines.Add('SCHEMA CACHE TIME=-1');
Memo1.Lines.Add('SQLPASSTHRU MODE=SHARED AUTOCOMMIT');
Memo1.Lines.Add('SQLQRYMODE=');
Memo1.Lines.Add('ENABLE SCHEMA CACHE=FALSE');
Memo1.Lines.Add('ENABLE BCD=FALSE');
Memo1.Lines.Add('ROWSET SIZE=20');
Memo1.Lines.Add('BLOBS TO CACHE=64');
Memo1.Lines.Add('BLOB SIZE=32');

AliasEditor.Add('DocumentsFab','MySQL',Memo1.Lines);

27.1.7.2.2.3. Using Connector/ODBC with C++ Builder

Tested with BDE 3.0. The only known problem is that when the table schema changes, query fields are not updated. BDE, however,
does not seem to recognize primary keys, only the index named PRIMARY, although this has not been a problem.

27.1.7.2.3. Using Connector/ODBC with ColdFusion

The following information is taken from the ColdFusion documentation:

Use the following information to configure ColdFusion Server for Linux to use the unixODBC driver with Connector/ODBC for
MySQL data sources. You can download Connector/ODBC at http://dev.mysql.com/downloads/connector/odbc/.

ColdFusion version 4.5.1 allows you to us the ColdFusion Administrator to add the MySQL data source. However, the driver is not in-
cluded with ColdFusion version 4.5.1. Before the MySQL driver appears in the ODBC data sources drop-down list, you must build and
copy the Connector/ODBC driver to /opt/coldfusion/lib/libmyodbc.so.

The Contrib directory contains the program mydsn-xxx.zip which allows you to build and remove the DSN registry file for the
Connector/ODBC driver on ColdFusion applications.

For more information and guides on using ColdFusion and Connector/ODBC, see the following external sites:

• Troubleshooting Data Sources and Database Connectivity for Unix Platforms.

Connectors

1572

http://dev.mysql.com/downloads/connector/odbc/
http://www.macromedia.com/v1/handlers/index.cfm?ID=11328&Method=Full&PageCall=/support/index.cfm


27.1.7.2.4. Using Connector/ODBC with OpenOffice

Open Office (http://www.openoffice.org) How-to: MySQL + OpenOffice. How-to: OpenOffice + MyODBC + unixODBC.

27.1.7.2.5. Using Connector/ODBC with Sambar Server

Sambar Server (http://www.sambarserver.info) How-to: MyODBC + SambarServer + MySQL.

27.1.7.2.6. Using Connector/ODBC with Pervasive Software DataJunction

You have to change it to output VARCHAR rather than ENUM, as it exports the latter in a manner that causes MySQL problems.

27.1.7.2.7. Using Connector/ODBC with SunSystems Vision

You should select the Return matching rows option.

27.1.7.3. Connector/ODBC Errors and Resolutions (FAQ)

The following section details some common errors and their suggested fix or alternative solution. If you are still experiencing problems,
use the Connector/ODBC mailing list; see Section 27.1.8.1, “Connector/ODBC Community Support”.

Many problems can be resolved by upgrading your Connector/ODBC drivers to the latest available release. On Windows, you should
also make sure that you have the latest versions of the Microsoft Data Access Components (MDAC) installed.

Questions

• 28.1.7.3.1: I have installed Connector/ODBC on Windows XP x64 Edition or Windows Server 2003 R2 x64. The installation com-
pleted successfully, but the Connector/ODBC driver does not appear in ODBC Data Source Administrator.

• 28.1.7.3.2: When connecting or using the TEST button in ODBC Data Source Administrator I get error 10061 (Cannot
connect to server)

• 28.1.7.3.3: The following error is reported when using transactions: Transactions are not enabled

• 28.1.7.3.4: Access reports records as #DELETED# when inserting or updating records in linked tables.

• 28.1.7.3.5: How do I handle Write Conflicts or Row Location errors?

• 28.1.7.3.6: Exporting data from Access 97 to MySQL reports a Syntax Error.

• 28.1.7.3.7: Exporting data from Microsoft DTS to MySQL reports a Syntax Error.

• 28.1.7.3.8: Using ODBC.NET with Connector/ODBC, while fetching empty string (0 length), it starts giving the SQL_NO_DATA
exception.

• 28.1.7.3.9: Using SELECT COUNT(*) FROM tbl_name within Visual Basic and ASP returns an error.

• 28.1.7.3.10: Using the AppendChunk() or GetChunk() ADO methods, the Multiple-step operation generated
errors. Check each status value error is returned.

• 28.1.7.3.11: Access Returns Another user had modified the record that you have modified while editing
records on a Linked Table.

• 28.1.7.3.12: When linking an application directly to the Connector/ODBC library under Unix/Linux, the application crashes.

• 28.1.7.3.13: Applications in the Microsoft Office suite are unable to update tables that have DATE or TIMESTAMP columns.

• 28.1.7.3.14: When connecting Connector/ODBC 5.x (Beta) to a MySQL 4.x server, the error 1044 Access denied for
user 'xxx'@'%' to database 'information_schema' is returned.

• 28.1.7.3.15: When calling SQLTables, the error S1T00 is returned, but I cannot find this in the list of error numbers for Connect-
or/ODBC.

• 28.1.7.3.16: When linking to tables in Access 2000 and generating links to tables programmatically, rather than through the table de-

Connectors

1573

http://www.openoffice.org
http://dba.openoffice.org/proposals/MySQL_OOo.html
http://www.sambarserver.info
http://www.sambarserver.info/article.php?sid=66


signer interface, you may get errors about tables not existing.

• 28.1.7.3.17: When I try to use batched statements, the excution of the batched statements fails.

• 28.1.7.3.18: When connecting to a MySQL server using ADODB and Excel, occasionally the application fails to communicate with
the server and the error Got an error reading communication packets appears in the error log.

• 28.1.7.3.19: When using some applications to access a MySQL server using C/ODBC and outer joins, an error is reported regarding
the Outer Join Escape Sequence.

• 28.1.7.3.20: I can correctly store extended characters in the database (Hebrew/CJK) using C/ODBC 5.1, but when I retrieve the data,
the text is not formatted correctly and I get garbled characters.

• 28.1.7.3.21: I have a duplicate MySQL Connector/ODBC entry within my INSTALLED PROGRAMS list, but I cannot delete one of
them.

Questions and Answers

28.1.7.3.1: I have installed Connector/ODBC on Windows XP x64 Edition or Windows Server 2003 R2 x64. The installation
completed successfully, but the Connector/ODBC driver does not appear in ODBC Data Source Administrator.

This is not a bug, but is related to the way Windows x64 editions operate with the ODBC driver. On Windows x64 editions, the Con-
nector/ODBC driver is installed in the %SystemRoot%\SysWOW64 folder. However, the default ODBC Data Source Admin-
istrator that is available through the Administrative Tools or Control Panel in Windows x64 Editions is located in the
%SystemRoot%\system32 folder, and only searches this folder for ODBC drivers.

On Windows x64 editions, you should use the ODBC administration tool located at %SystemRoot%\SysWOW64\odbcad32.exe,
this will correctly locate the installed Connector/ODBC drivers and enable you to create a Connector/ODBC DSN.

This issue was originally reported as Bug#20301.

28.1.7.3.2: When connecting or using the TEST button in ODBC Data Source Administrator I get error 10061 (Cannot
connect to server)

This error can be raised by a number of different issues, including server problems, network problems, and firewall and port blocking
problems. For more information, see Section B.1.2.2, “Can't connect to [local] MySQL server”.

28.1.7.3.3: The following error is reported when using transactions: Transactions are not enabled

This error indicates that you are trying to use transactions with a MySQL table that does not support transactions. Transactions are sup-
ported within MySQL when using the InnoDB database engine. In versions of MySQL before Mysql 5.1 you may also use the BDB en-
gine.

You should check the following before continuing:

• Verify that your MySQL server supports a transactional database engine. Use SHOW ENGINES to obtain a list of the available en-
gine types.

• Verify that the tables you are updating use a transaction database engine.

• Ensure that you have not enabled the disable transactions option in your DSN.

28.1.7.3.4: Access reports records as #DELETED# when inserting or updating records in linked tables.

If the inserted or updated records are shown as #DELETED# in the access, then:

• If you are using Access 2000, you should get and install the newest (version 2.6 or higher) Microsoft MDAC (Microsoft Data
Access Components) from http://support.microsoft.com/kb/110093. This fixes a bug in Access that when you export data to
MySQL, the table and column names aren't specified.

You should also get and apply the Microsoft Jet 4.0 Service Pack 5 (SP5) which can be found at ht-
tp://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114. This fixes some cases where columns are marked as

Connectors

1574

http://bugs.mysql.com/20301
http://support.microsoft.com/kb/110093
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114


#DELETED# in Access.

• For all versions of Access, you should enable the Connector/ODBC Return matching rows option. For Access 2.0, you
should additionally enable the Simulate ODBC 1.0 option.

• You should have a timestamp in all tables that you want to be able to update.

• You should have a primary key in the table. If not, new or updated rows may show up as #DELETED#.

• Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symptom usually is that new or up-
dated rows may show up as #DELETED# or that you can't find or update rows.

• If you are using Connector/ODBC to link to a table that has a BIGINT column, the results are displayed as #DELETED. The work
around solution is:

• Have one more dummy column with TIMESTAMP as the data type.

• Select the Change BIGINT columns to INT option in the connection dialog in ODBC DSN Administrator.

• Delete the table link from Access and re-create it.

Old records still display as #DELETED#, but newly added/updated records are displayed properly.

28.1.7.3.5: How do I handle Write Conflicts or Row Location errors?

If you see the following errors, select the Return Matching Rows option in the DSN configuration dialog, or specify OPTION=2,
as the connection parameter:

Write Conflict. Another user has changed your data.

Row cannot be located for updating. Some values may have been changed
since it was last read.

28.1.7.3.6: Exporting data from Access 97 to MySQL reports a Syntax Error.

This error is specific to Access 97 and versions of Connector/ODBC earlier than 3.51.02. Update to the latest version of the Connector/
ODBC driver to resolve this problem.

28.1.7.3.7: Exporting data from Microsoft DTS to MySQL reports a Syntax Error.

This error occurs only with MySQL tables using the TEXT or VARCHAR data types. You can fix this error by upgrading your Connect-
or/ODBC driver to version 3.51.02 or higher.

28.1.7.3.8: Using ODBC.NET with Connector/ODBC, while fetching empty string (0 length), it starts giving the
SQL_NO_DATA exception.

You can get the patch that addresses this problem from http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243.

28.1.7.3.9: Using SELECT COUNT(*) FROM tbl_name within Visual Basic and ASP returns an error.

This error occurs because the COUNT(*) expression is returning a BIGINT, and ADO can't make sense of a number this big. Select
the Change BIGINT columns to INT option (option value 16384).

28.1.7.3.10: Using the AppendChunk() or GetChunk() ADO methods, the Multiple-step operation generated
errors. Check each status value error is returned.

The GetChunk() and AppendChunk() methods from ADO doesn't work as expected when the cursor location is specified as ad-
UseServer. On the other hand, you can overcome this error by using adUseClient.

A simple example can be found from http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm

28.1.7.3.11: Access Returns Another user had modified the record that you have modified while editing re-
cords on a Linked Table.

In most cases, this can be solved by doing one of the following things:

Connectors

1575

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243
http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm


• Add a primary key for the table if one doesn't exist.

• Add a timestamp column if one doesn't exist.

• Only use double-precision float fields. Some programs may fail when they compare single-precision floats.

If these strategies don't help, you should start by making a log file from the ODBC manager (the log you get when requesting logs from
ODBCADMIN) and a Connector/ODBC log to help you figure out why things go wrong. For instructions, see Section 27.1.4.8,
“Getting an ODBC Trace File”.

28.1.7.3.12: When linking an application directly to the Connector/ODBC library under Unix/Linux, the application crashes.

Connector/ODBC 3.51 under Unix/Linux is not compatible with direct application linking. You must use a driver manager, such as
iODBC or unixODBC to connect to an ODBC source.

28.1.7.3.13: Applications in the Microsoft Office suite are unable to update tables that have DATE or TIMESTAMP columns.

This is a known issue with Connector/ODBC. You must ensure that the field has a default value (rather than NULL and that the default
value is non-zeo (i.e. the default value is not 0000-00-00 00:00:00).

28.1.7.3.14: When connecting Connector/ODBC 5.x (Beta) to a MySQL 4.x server, the error 1044 Access denied for
user 'xxx'@'%' to database 'information_schema' is returned.

Connector/ODBC 5.x is designed to work with MySQL 5.0 or later, taking advantage of the INFORMATION_SCHEMA database to de-
termine data definition information. Support for MySQL 4.1 is planned for the final release.

28.1.7.3.15: When calling SQLTables, the error S1T00 is returned, but I cannot find this in the list of error numbers for Con-
nector/ODBC.

The S1T00 error indicates that a general timeout has occurred within the ODBC system and is not a MySQL error. Typically it indic-
ates that the connection you are using is stale, the server is too busy to accept your request or that the server has gone away.

28.1.7.3.16: When linking to tables in Access 2000 and generating links to tables programmatically, rather than through the ta-
ble designer interface, you may get errors about tables not existing.

There is a known issue with a specific version of the msjet40.dll that exhibits this issue. The version affected is 4.0.9025.0. Revert-
ing to an older version will enable you to create the links. If you have recently updated your version, check your WINDOWS directory for
the older version of the file and copy it to the drivers directory.

28.1.7.3.17: When I try to use batched statements, the excution of the batched statements fails.

Batched statement support was added in 3.51.18. Support for batched statements is not enabled by default. You must enable option
FLAG_MULTI_STATEMENTS, value 67108864, or select the ALLOW MULTIPLE STATEMENTS flag within a GUI configuration.

28.1.7.3.18: When connecting to a MySQL server using ADODB and Excel, occasionally the application fails to communicate
with the server and the error Got an error reading communication packets appears in the error log.

This error may be related to Keyboard Logger 1.1 from PanteraSoft.com, which is known to interfere with the network communication
between MySQL Connector/ODBC and MySQL.

28.1.7.3.19: When using some applications to access a MySQL server using C/ODBC and outer joins, an error is reported re-
garding the Outer Join Escape Sequence.

This is a known issue with MySQL Connector/ODBC which is not correctly parsing the "Outer Join Escape Sequence", as per the specs
at Microsoft ODBC Specs. Currently, Connector/ODBC will return value > 0 when asked for SQL_OJ_CAPABILITIES even though
no parsing takes place in the driver to handle the outer join escape sequence.

28.1.7.3.20: I can correctly store extended characters in the database (Hebrew/CJK) using C/ODBC 5.1, but when I retrieve the
data, the text is not formatted correctly and I get garbled characters.

When using ASP and UTF8 characters you should add the following to your ASP files to ensure that the data returned is correctly en-
coded:

Response.CodePage = 65001
Response.CharSet = "utf-8"

Connectors

1576

http://msdn2.microsoft.com/en-us/library/ms710299.aspx


28.1.7.3.21: I have a duplicate MySQL Connector/ODBC entry within my INSTALLED PROGRAMS list, but I cannot delete one of
them.

This problem can occur when you upgrade an existing Connector/ODBC installation, rather than removing and then installing the up-
dated version.

Warning

To fix the problem you should use any working uninstallers to remove existing installations and then may have to edit the
contents of the registry. Make sure you have a backup of your registry information before attempting any editing of the re-
gistry contents.

27.1.8. Connector/ODBC Support
There are many different places where you can get support for using Connector/ODBC. You should always try the Connector/ODBC
Mailing List or Connector/ODBC Forum. See Section 27.1.8.1, “Connector/ODBC Community Support”, for help before reporting a
specific bug or issue to MySQL.

27.1.8.1. Connector/ODBC Community Support

MySQL AB provides assistance to the user community by means of its mailing lists. For Connector/ODBC-related issues, you can get
help from experienced users by using the <myodbc@lists.mysql.com> mailing list. Archives are available online at ht-
tp://lists.mysql.com/myodbc.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http://lists.mysql.com/. See Section 1.6.1,
“MySQL Mailing Lists”.

Community support from experienced users is also available through the ODBC Forum. You may also find help from other users in the
other MySQL Forums, located at http://forums.mysql.com. See Section 1.6.2, “MySQL Community Support at the MySQL Forums”.

27.1.8.2. How to Report Connector/ODBC Problems or Bugs

If you encounter difficulties or problems with Connector/ODBC, you should start by making a log file from the ODBC Manager (the
log you get when requesting logs from ODBC ADMIN) and Connector/ODBC. The procedure for doing this is described in Sec-
tion 27.1.4.8, “Getting an ODBC Trace File”.

Check the Connector/ODBC trace file to find out what could be wrong. You should be able to determine what statements were issued
by searching for the string >mysql_real_query in the myodbc.log file.

You should also try issuing the statements from the mysql client program or from admndemo. This helps you determine whether the
error is in Connector/ODBC or MySQL.

If you find out something is wrong, please only send the relevant rows (maximum 40 rows) to the myodbc mailing list. See Sec-
tion 1.6.1, “MySQL Mailing Lists”. Please never send the whole Connector/ODBC or ODBC log file!

You should ideally include the following information with the email:

• Operating system and version

• Connector/ODBC version

• ODBC Driver Manager type and version

• MySQL server version

• ODBC trace from Driver Manager

• Connector/ODBC log file from Connector/ODBC driver

• Simple reproducible sample

Remember that the more information you can supply to us, the more likely it is that we can fix the problem!

Connectors

1577

http://lists.mysql.com/myodbc
http://lists.mysql.com/myodbc
http://lists.mysql.com/
http://forums.mysql.com/list.php?37
http://forums.mysql.com


Also, before posting the bug, check the MyODBC mailing list archive at http://lists.mysql.com/myodbc.

If you are unable to find out what's wrong, the last option is to create an archive in tar or Zip format that contains a Connector/ODBC
trace file, the ODBC log file, and a README file that explains the problem. You can send this to ftp://ftp.mysql.com/pub/mysql/upload/.
Only MySQL engineers have access to the files you upload, and we are very discreet with the data.

If you can create a program that also demonstrates the problem, please include it in the archive as well.

If the program works with another SQL server, you should include an ODBC log file where you perform exactly the same SQL state-
ments so that we can compare the results between the two systems.

Remember that the more information you can supply to us, the more likely it is that we can fix the problem.

27.1.8.3. How to Submit a Connector/ODBC Patch

You can send a patch or suggest a better solution for any existing code or problems by sending a mail message to
<myodbc@lists.mysql.com>.

27.1.8.4. Connector/ODBC Change History

The Connector/ODBC Change History (Changelog) is located with the main Changelog for MySQL. See Section C.2, “MySQL Con-
nector/ODBC (MyODBC) Change History”.

27.1.8.5. Credits

These are the developers that have worked on the Connector/ODBC and Connector/ODBC 3.51 Drivers from MySQL AB.

• Michael (Monty) Widenius

• Venu Anuganti

• Peter Harvey

27.2. MySQL Connector/NET
Connector/NET enables developers to easily create .NET applications that require secure, high-performance data connectivity with
MySQL. It implements the required ADO.NET interfaces and integrates into ADO.NET aware tools. Developers can build applications
using their choice of .NET languages. Connector/NET is a fully managed ADO.NET driver written in 100% pure C#.

Connector/NET includes full support for:

• MySQL 5.0 features (such as stored procedures)

• MySQL 4.1 features (server-side prepared statements, Unicode, and shared memory access, and so forth)

• Large-packet support for sending and receiving rows and BLOBs up to 2 gigabytes in size.

• Protocol compression which allows for compressing the data stream between the client and server.

• Support for connecting using TCP/IP sockets, named pipes, or shared memory on Windows.

• Support for connecting using TCP/IP sockets or Unix sockets on Unix.

• Support for the Open Source Mono framework developed by Novell.

• Fully managed, does not utilize the MySQL client library.

This document is intended as a user's guide to Connector/NET and includes a full syntax reference. Syntax information is also included
within the Documentation.chm file included with the Connector/NET distribution.

If you are using MySQL 5.0 or later, and Visual Studio as your development environment, you may want also want to use the MySQL

Connectors

1578

http://lists.mysql.com/myodbc
ftp://ftp.mysql.com/pub/mysql/upload/


Visual Studio Plugin. The plugin acts as a DDEX (Data Designer Extensibility) provider, enabling you to use the data design tools with-
in Visual Studio to manipulate the schema and objects within a MySQL database. For more information, see Section 27.3, “MySQL
Visual Studio Plugin”.

Note

Connector/NET 5.1.2 and later include the Visual Studio Plugin by default.

Key topics:

• For connection string properties when using the MySqlConnection class, see Section 27.2.3.3.3, “ConnectionString”.

27.2.1. Connector/NET Versions
There are currently three versions of Connector/NET available:

• Connector/NET 1.0 includes support for MySQL 4.0, and MySQL 5.0 features, and full compatibility with the ADO.NET driver in-
terface.

Connector/NET 5.0 includes support for MySQL 4.0, MySQL 4.1, MySQL 5.0 and MySQL 5.1 features. Connector/NET 5.0 also
includes full support for the ADO.Net 2.0 interfaces and subclasses, includes support for the usage advisor and performance monitor
(PerfMon) hooks.

Connector/NET 5.1 includes support for MySQL 4.0, MySQL 5.0, MySQL 5.1 and MySQL 6.0 (Falcon Preview) features. Con-
nector/NET 5.1 also includes support for a new membership/role provider, Compact Framework 2.0, a new stored procedure parser
and improvements to GetSchema. Connector/NET 5.1 also includes the Visual Studio Plugin as a standard installable component.

Note

Version numbers for MySQL products are formatted as X.X.X. However, Windows tools (Control Panel, properties dis-
play) may show the version numbers as XX.XX.XX. For example, the official MySQL formatted version number 5.0.9
may be displayed by Windows tools as 5.00.09. The two versions are the same; only the number display format is differ-
ent.

27.2.2. Connector/NET Installation
Connector/NET runs on any platform that supports the .NET framework. The .NET framework is primarily supported on recent ver-
sions of Microsoft Windows, and is supported on Linux through the Open Source Mono framework (see
http://www.mono-project.com).

Connector/NET is available for download from http://dev.mysql.com/downloads/connector/net/1.0.html.

27.2.2.1. Installing Connector/NET on Windows

On Windows, installation is supported either through a binary installation process or by downloading a Zip file with the Connector/NET
components.

Before installing, you should ensure that your system is up to date, including installing the latest version of the .NET Framework.

27.2.2.1.1. Installing Connector/NET using the Installer

Using the installer is the most straightforward method of installing Connector/NET on Windows and the installed components include
the source code, test code and full reference documentation.

Connector/NET is installed through the use of a Windows Installer (.msi) installation package, which can be used to install Connector/
NET on all Windows operating systems. The MSI package in contained within a ZIP archive named
mysql-connector-net-version.zip, where version indicates the Connector/NET version.

To install Connector/NET:

Connectors

1579

http://www.mono-project.com
http://dev.mysql.com/downloads/connector/net/1.0.html


1. Double click on the MSI installer file extracted from the Zip you downloaded. Click NEXT to start the installation.

2. You must choose the type of installation that you want to perform.

Connectors

1580



For most situations, the Typical installation will be suitable. Click the TYPICAL button and proceed to Step 5. A Complete installa-
tion installs all the available files. To conduct a Complete installation, click the COMPLETE button and proceed to step 5. If you
want to customize your installation, including choosing the components to install and some installation options, click the CUSTOM
button and proceed to Step 3.

The Connector/NET installer will register the connector within the Global Assembly Cache (GAC) - this will make the Connector/
NET component available to all applications, not just those where you explicitly reference the Connector/NET component. The in-
staller will also create the necessary links in the Start menu to the documentation and release notes.

3. If you have chosen a custom installation, you can select the individual components that you want to install, including the core in-
terface component, supporting documentation (a CHM file) samples and examples and the source code. Select the items, and their
installation level, and then click NEXT to continue the installation.

Note

For Connector/NET 1.0.8 or lower and Connector 5.0.4 and lower the installer will attempt to install binaries for both 1.x
and 2.x of the .NET Framework. If you only have one version of the framework installed, the connector installation may
fail. If this happens, you can choose the framework version to be installed through the custom installation step.

Connectors

1581



4. You will be given a final opportunity to confirm the installation. Click INSTALL to copy and install the files onto your machine.

Connectors

1582



5. Once the installation has been completed, click FINISH to exit the installer.

Unless you choose otherwise, Connector/NET is installed in C:\Program Files\MySQL\MySQL Connector Net X.X.X,
where X.X.X is replaced with the version of Connector/NET you are installing. New installations do not overwrite existing versions of
Connector/NET.

Depending on your installation type, the installed components will include some or all of the following components:

• bin - Connector/NET MySQL libraries for different versions of the .NET environment.

• docs - contains a CHM of the Connector/NET documentation.

• samples - sample code and applications that use the Connector/NET component.

• src - the source code for the Connector/NET component.

You may also use the /quiet or /q command line option with the msiexec tool to install the Connector/NET package automatically
(using the default options) with no notification to the user. Using this option you cannot select options and no prompts, messages or dia-
log boxes will be displayed.

C:\> msiexec /package conector-net.msi /quiet

To provide a progress bar to the user during automatic installation, but still without presenting the user with a dialog box of the ability

Connectors

1583



to select options, use the /passive option.

27.2.2.1.2. Installing Connector/NET using the Zip package

If you are having problems running the installer, you can download a .zip file without an installer as an alternative. That file is called
mysql-connector-net-version-noinstall.zip. Once downloaded, you can extract the files to a location of your choice.

The .zip file contains the following directories:

• bin - Connector/NET MySQL libraries for different versions of the .NET environment.

• doc - contains a CHM of the Connector/NET documentation.

• Samples - sample code and applications that use the Connector/NET component.

• mysqlclient - the source code for the Connector/NET component.

• testsuite - the test suite used to verify the operation of the Connector/NET component.

27.2.2.2. Installing Connector/NET on Unix with Mono

There is no installer available for installing the Connector/NET component on your Unix installation. However, the installation is very
simple. Before installing, please ensure that you have a working Mono project installation.

Note that you should only install the Connector/NET component on Unix environments where you want to connect to a MySQL server
through the Mono project. If you are deploying or developing on a different environment such as Java or Perl then you should use a
more appropriate connectivity component. See Chapter 27, Connectors, or Chapter 26, APIs and Libraries, for more information.

To install Connector/NET on Unix/Mono:

1. Download the mysql-connector-net-version-noinstall.zip and extract the contents.

2. Copy the MySql.Data.dll file to your Mono project installation folder.

3. You must register the Connector/NET component in the Global Assembly Cache using the gacutil command:

shell> gacutil /i MySql.Data.dll

Once installed, applications that are compiled with the Connector/NET component need no further changes. However, you must ensure
that when you compile your applications you include the Connector/NET component using the -r:MySqlData.dll command line
option.

27.2.2.3. Installing Connector/NET using the Source

Caution

You should read this section only if you are interested in helping us test our new code. If you just want to get Connector/
NET up and running on your system, you should use a standard release distribution.

To be able to access the Connector/NET source tree, you must have Subversion installed. Subversion is freely available from ht-
tp://subversion.tigris.org/.

The most recent development source tree is available from our public Subversion trees at ht-
tp://dev.mysql.com/tech-resources/sources.html.

To checkout out the Connector/NET sources, change to the directory where you want the copy of the Connector/NET tree to be stored,
then use the following command:

shell> svn co
http://svn.mysql.com/svnpublic/connector-net

Connectors

1584

http://subversion.tigris.org/
http://subversion.tigris.org/
http://dev.mysql.com/tech-resources/sources.html
http://dev.mysql.com/tech-resources/sources.html


A Visual Studio project is included in the source which you can use to build Connector/NET.

27.2.3. Connector/NET Examples and Usage Guide
Connector/NET comprises several classes that are used to connect to the database, execute queries and statements, and manage query
results.

The following are the major classes of Connector/NET:

• MySqlCommand: Represents an SQL statement to execute against a MySQL database.

• MySqlCommandBuilder: Automatically generates single-table commands used to reconcile changes made to a DataSet with the
associated MySQL database.

• MySqlConnection: Represents an open connection to a MySQL Server database.

• MySqlDataAdapter: Represents a set of data commands and a database connection that are used to fill a data set and update a
MySQL database.

• MySqlDataReader: Provides a means of reading a forward-only stream of rows from a MySQL database.

• MySqlException: The exception that is thrown when MySQL returns an error.

• MySqlHelper: Helper class that makes it easier to work with the provider.

• MySqlTransaction: Represents an SQL transaction to be made in a MySQL database.

This section contains basic information and examples for each of the above classes. For a more detailed reference guide please see Sec-
tion 27.2.4, “Connector/NET Reference”.

27.2.3.1. Using MySqlCommand

Represents a SQL statement to execute against a MySQL database. This class cannot be inherited.

MySqlCommand features the following methods for executing commands at a MySQL database:

Item Description

ExecuteReader Executes commands that return rows.

ExecuteNonQuery Executes commands such as SQL INSERT, DELETE, and UP-
DATE statements.

ExecuteScalar Retrieves a single value (for example, an aggregate value) from a
database.

You can reset the CommandText property and reuse the MySqlCommand object. However, you must close the MySqlDataReader be-
fore you can execute a new or previous command.

If a MySqlException is generated by the method executing a MySqlCommand, the MySqlConnection remains open. It is the responsib-
ility of the programmer to close the connection.

Note

Prior versions of the provider used the '@' symbol to mark parameters in SQL. This is incompatible with MySQL user
variables, so the provider now uses the '?' symbol to locate parameters in SQL. To support older code, you can set 'old syn-
tax=yes' on your connection string. If you do this, please be aware that an exception will not be thrown if you fail to define
a parameter that you intended to use in your SQL.

Examples

The following example creates a MySqlCommand and a MySqlConnection. The MySqlConnection is opened and set as the
Connection for the MySqlCommand. The example then calls ExecuteNonQuery, and closes the connection. To accomplish this, the

Connectors

1585



ExecuteNonQuery is passed a connection string and a query string that is a SQL INSERT statement.

Visual Basic example:

Public Sub InsertRow(myConnectionString As String)
" If the connection string is null, use a default.
If myConnectionString = "" Then
myConnectionString = "Database=Test;Data Source=localhost;User Id=username;Password=pass"

End If
Dim myConnection As New MySqlConnection(myConnectionString)
Dim myInsertQuery As String = "INSERT INTO Orders (id, customerId, amount) Values(1001, 23, 30.66)"
Dim myCommand As New MySqlCommand(myInsertQuery)
myCommand.Connection = myConnection
myConnection.Open()
myCommand.ExecuteNonQuery()
myCommand.Connection.Close()

End Sub

C# example:

public void InsertRow(string myConnectionString)
{
// If the connection string is null, use a default.
if(myConnectionString == "")
{
myConnectionString = "Database=Test;Data Source=localhost;User Id=username;Password=pass";

}
MySqlConnection myConnection = new MySqlConnection(myConnectionString);
string myInsertQuery = "INSERT INTO Orders (id, customerId, amount) Values(1001, 23, 30.66)";
MySqlCommand myCommand = new MySqlCommand(myInsertQuery);
myCommand.Connection = myConnection;
myConnection.Open();
myCommand.ExecuteNonQuery();
myCommand.Connection.Close();

}

27.2.3.1.1. Class MySqlCommand Constructor Form 1

Overload methods for MySqlCommand

Initializes a new instance of the MySqlCommand class.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Note

This example shows how to use one of the overloaded versions of the MySqlCommand constructor. For other examples
that might be available, see the individual overload topics.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim myConnection As New MySqlConnection _

("Persist Security Info=False;database=test;server=myServer")
myConnection.Open()
Dim myTrans As MySqlTransaction = myConnection.BeginTransaction()
Dim mySelectQuery As String = "SELECT * FROM MyTable"
Dim myCommand As New MySqlCommand(mySelectQuery, myConnection, myTrans)
myCommand.CommandTimeout = 20

End Sub

C# example:

public void CreateMySqlCommand()
{
MySqlConnection myConnection = new MySqlConnection("Persist Security Info=False;
database=test;server=myServer");

myConnection.Open();
MySqlTransaction myTrans = myConnection.BeginTransaction();
string mySelectQuery = "SELECT * FROM myTable";
MySqlCommand myCommand = new MySqlCommand(mySelectQuery, myConnection,myTrans);
myCommand.CommandTimeout = 20;

}

Connectors

1586



C++ example:

public:
void CreateMySqlCommand()
{
MySqlConnection* myConnection = new MySqlConnection(S"Persist Security Info=False;
database=test;server=myServer");

myConnection->Open();
MySqlTransaction* myTrans = myConnection->BeginTransaction();
String* mySelectQuery = S"SELECT * FROM myTable";
MySqlCommand* myCommand = new MySqlCommand(mySelectQuery, myConnection, myTrans);
myCommand->CommandTimeout = 20;

};

Initializes a new instance of the MySqlCommand class.

The base constructor initializes all fields to their default values. The following table shows initial property values for an instance of
MySqlCommand.

Properties Initial Value

CommandText empty string ("")

CommandTimeout 0

CommandType CommandType.Text

Connection Null

You can change the value for any of these properties through a separate call to the property.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim myCommand As New MySqlCommand()
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{

MySqlCommand myCommand = new MySqlCommand();
myCommand.CommandType = CommandType.Text;

}

27.2.3.1.2. Class MySqlCommand Constructor Form 2

Initializes a new instance of the MySqlCommand class with the text of the query.

Parameters: The text of the query.

When an instance of MySqlCommand is created, the following read/write properties are set to initial values.

Properties Initial Value

CommandText cmdText

CommandTimeout 0

CommandType CommandType.Text

Connection Null

Connectors

1587



You can change the value for any of these properties through a separate call to the property.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim sql as String = "SELECT * FROM mytable"
Dim myCommand As New MySqlCommand(sql)
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{
string sql = "SELECT * FROM mytable";
MySqlCommand myCommand = new MySqlCommand(sql);
myCommand.CommandType = CommandType.Text;

}

27.2.3.1.3. Class MySqlCommand Constructor Form 3

Initializes a new instance of the MySqlCommand class with the text of the query and a MySqlConnection.

Parameters: The text of the query.

Parameters: A MySqlConnection that represents the connection to an instance of SQL Server.

When an instance of MySqlCommand is created, the following read/write properties are set to initial values.

Properties Initial Value

CommandText cmdText

CommandTimeout 0

CommandType CommandType.Text

Connection connection

You can change the value for any of these properties through a separate call to the property.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim conn as new MySqlConnection("server=myServer")
Dim sql as String = "SELECT * FROM mytable"
Dim myCommand As New MySqlCommand(sql, conn)
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{
MySqlConnection conn = new MySqlConnection("server=myserver")
string sql = "SELECT * FROM mytable";
MySqlCommand myCommand = new MySqlCommand(sql, conn);
myCommand.CommandType = CommandType.Text;

}

27.2.3.1.4. Class MySqlCommand Constructor Form 4

Connectors

1588



Initializes a new instance of the MySqlCommand class with the text of the query, a MySqlConnection, and the MySqlTransac-
tion.

Parameters: The text of the query.

Parameters: A MySqlConnection that represents the connection to an instance of SQL Server.

Parameters: The MySqlTransaction in which the MySqlCommand executes.

When an instance of MySqlCommand is created, the following read/write properties are set to initial values.

Properties Initial Value

CommandText cmdText

CommandTimeout 0

CommandType CommandType.Text

Connection connection

You can change the value for any of these properties through a separate call to the property.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim conn as new MySqlConnection("server=myServer")
conn.Open();
Dim txn as MySqlTransaction = conn.BeginTransaction()
Dim sql as String = "SELECT * FROM mytable"
Dim myCommand As New MySqlCommand(sql, conn, txn)
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{
MySqlConnection conn = new MySqlConnection("server=myserver")
conn.Open();
MySqlTransaction txn = conn.BeginTransaction();
string sql = "SELECT * FROM mytable";
MySqlCommand myCommand = new MySqlCommand(sql, conn, txn);
myCommand.CommandType = CommandType.Text;

}

27.2.3.1.5. ExecuteNonQuery

Executes a SQL statement against the connection and returns the number of rows affected.

Returns: Number of rows affected

You can use ExecuteNonQuery to perform any type of database operation, however any resultsets returned will not be available. Any
output parameters used in calling a stored procedure will be populated with data and can be retrieved after execution is complete. For
UPDATE, INSERT, and DELETE statements, the return value is the number of rows affected by the command. For all other types of
statements, the return value is -1.

Examples

The following example creates a MySqlCommand and then executes it using ExecuteNonQuery. The example is passed a string that is a
SQL statement (such as UPDATE, INSERT, or DELETE) and a string to use to connect to the data source.

Visual Basic example:

Public Sub CreateMySqlCommand(myExecuteQuery As String, myConnection As MySqlConnection)
Dim myCommand As New MySqlCommand(myExecuteQuery, myConnection)
myCommand.Connection.Open()

Connectors

1589



myCommand.ExecuteNonQuery()
myConnection.Close()

End Sub

C# example:

public void CreateMySqlCommand(string myExecuteQuery, MySqlConnection myConnection)
{
MySqlCommand myCommand = new MySqlCommand(myExecuteQuery, myConnection);
myCommand.Connection.Open();
myCommand.ExecuteNonQuery();
myConnection.Close();

}

27.2.3.1.6. ExecuteReader1

Sends the CommandText to the MySqlConnectionConnection, and builds a MySqlDataReader using one of the CommandBe-
havior values.

Parameters: One of the CommandBehavior values.

When the CommandType property is set to StoredProcedure, the CommandText property should be set to the name of the
stored procedure. The command executes this stored procedure when you call ExecuteReader.

The MySqlDataReader supports a special mode that enables large binary values to be read efficiently. For more information, see the
SequentialAccess setting for CommandBehavior.

While the MySqlDataReader is in use, the associated MySqlConnection is busy serving the MySqlDataReader. While in this
state, no other operations can be performed on the MySqlConnection other than closing it. This is the case until the
MySqlDataReader.Close method of the MySqlDataReader is called. If the MySqlDataReader is created with Command-
Behavior set to CloseConnection, closing the MySqlDataReader closes the connection automatically.

Note

When calling ExecuteReader with the SingleRow behavior, you should be aware that using a limit clause in your
SQL will cause all rows (up to the limit given) to be retrieved by the client. The MySqlDataReader.Read method will
still return false after the first row but pulling all rows of data into the client will have a performance impact. If the limit
clause is not necessary, it should be avoided.

Returns: A MySqlDataReader object.

27.2.3.1.7. Using ExecuteReader

Sends the CommandText to the MySqlConnectionConnection and builds a MySqlDataReader.

Returns: A MySqlDataReader object.

When the CommandType property is set to StoredProcedure, the CommandText property should be set to the name of the
stored procedure. The command executes this stored procedure when you call ExecuteReader.

While the MySqlDataReader is in use, the associated MySqlConnection is busy serving the MySqlDataReader. While in this
state, no other operations can be performed on the MySqlConnection other than closing it. This is the case until the
MySqlDataReader.Close method of the MySqlDataReader is called.

Examples

The following example creates a MySqlCommand, then executes it by passing a string that is a SQL SELECT statement, and a string to
use to connect to the data source.

Visual Basic example:

Public Sub CreateMySqlDataReader(mySelectQuery As String, myConnection As MySqlConnection)
Dim myCommand As New MySqlCommand(mySelectQuery, myConnection)
myConnection.Open()
Dim myReader As MySqlDataReader
myReader = myCommand.ExecuteReader()
Try

Connectors

1590



While myReader.Read()
Console.WriteLine(myReader.GetString(0))

End While
Finally

myReader.Close
myConnection.Close
End Try

End Sub

C# example:

public void CreateMySqlDataReader(string mySelectQuery, MySqlConnection myConnection)
{

MySqlCommand myCommand = new MySqlCommand(mySelectQuery, myConnection);
myConnection.Open();
MySqlDataReader myReader;
myReader = myCommand.ExecuteReader();
try
{
while(myReader.Read())
{
Console.WriteLine(myReader.GetString(0));

}
}
finally
{
myReader.Close();
myConnection.Close();

}
}

27.2.3.1.8. Using Prepare

Creates a prepared version of the command on an instance of MySQL Server.

Prepared statements are only supported on MySQL version 4.1 and higher. Calling prepare while connected to earlier versions of
MySQL will succeed but will execute the statement in the same way as unprepared.

Examples

The following example demonstrates the use of the Prepare method.

Visual Basic example:

public sub PrepareExample()
Dim cmd as New MySqlCommand("INSERT INTO mytable VALUES (?val)", myConnection)
cmd.Parameters.Add( "?val", 10 )
cmd.Prepare()
cmd.ExecuteNonQuery()

cmd.Parameters(0).Value = 20
cmd.ExecuteNonQuery()

end sub

C# example:

private void PrepareExample()
{
MySqlCommand cmd = new MySqlCommand("INSERT INTO mytable VALUES (?val)", myConnection);
cmd.Parameters.Add( "?val", 10 );
cmd.Prepare();
cmd.ExecuteNonQuery();

cmd.Parameters[0].Value = 20;
cmd.ExecuteNonQuery();

}

27.2.3.1.9. ExecuteScalar

Executes the query, and returns the first column of the first row in the result set returned by the query. Extra columns or rows are ig-
nored.

Returns: The first column of the first row in the result set, or a null reference if the result set is empty

Connectors

1591



Use the ExecuteScalar method to retrieve a single value (for example, an aggregate value) from a database. This requires less code
than using the ExecuteReader method, and then performing the operations necessary to generate the single value using the data re-
turned by a MySqlDataReader

A typical ExecuteScalar query can be formatted as in the following C# example:

C# example:

cmd.CommandText = "select count(*) from region";
Int32 count = (int32) cmd.ExecuteScalar();

Examples

The following example creates a MySqlCommand and then executes it using ExecuteScalar. The example is passed a string that is
a SQL statement that returns an aggregate result, and a string to use to connect to the data source.

Visual Basic example:

Public Sub CreateMySqlCommand(myScalarQuery As String, myConnection As MySqlConnection)
Dim myCommand As New MySqlCommand(myScalarQuery, myConnection)
myCommand.Connection.Open()
myCommand.ExecuteScalar()
myConnection.Close()

End Sub

C# example:

public void CreateMySqlCommand(string myScalarQuery, MySqlConnection myConnection)
{

MySqlCommand myCommand = new MySqlCommand(myScalarQuery, myConnection);
myCommand.Connection.Open();
myCommand.ExecuteScalar();
myConnection.Close();

}

C++ example:

public:
void CreateMySqlCommand(String* myScalarQuery, MySqlConnection* myConnection)
{

MySqlCommand* myCommand = new MySqlCommand(myScalarQuery, myConnection);
myCommand->Connection->Open();
myCommand->ExecuteScalar();
myConnection->Close();

}

27.2.3.1.10. CommandText

Gets or sets the SQL statement to execute at the data source.

Value: The SQL statement or stored procedure to execute. The default is an empty string.

When the CommandType property is set to StoredProcedure, the CommandText property should be set to the name of the
stored procedure. The user may be required to use escape character syntax if the stored procedure name contains any special characters.
The command executes this stored procedure when you call one of the Execute methods.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim myCommand As New MySqlCommand()
myCommand.CommandText = "SELECT * FROM Mytable ORDER BY id"
myCommand.CommandType = CommandType.Text

End Sub

C# example:

Connectors

1592



public void CreateMySqlCommand()
{

MySqlCommand myCommand = new MySqlCommand();
myCommand.CommandText = "SELECT * FROM mytable ORDER BY id";
myCommand.CommandType = CommandType.Text;

}

27.2.3.1.11. CommandTimeout

Gets or sets the wait time before terminating the attempt to execute a command and generating an error.

Value: The time (in seconds) to wait for the command to execute. The default is 0 seconds.

MySQL currently does not support any method of canceling a pending or executing operation. All commands issued against a MySQL
server will execute until completion or until an exception occurs.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about CommandTimeout in the Knowledge Base art-
icle, Why CommandTimeout is not Supported. Access to the MySQL Knowledge Base collection of articles is
one of the advantages of subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

27.2.3.1.12. CommandType

Gets or sets a value indicating how the CommandText property is to be interpreted.

Value: One of the System.Data.CommandType values. The default is Text.

When you set the CommandType property to StoredProcedure, you should set the CommandText property to the name of the
stored procedure. The command executes this stored procedure when you call one of the Execute methods.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim myCommand As New MySqlCommand()
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{

MySqlCommand myCommand = new MySqlCommand();
myCommand.CommandType = CommandType.Text;

}

27.2.3.1.13. Connection

Gets or sets the MySqlConnection used by this instance of the MySqlCommand.

Value: The connection to a data source. The default value is a null reference (Nothing in Visual Basic).

If you set Connection while a transaction is in progress and the Transaction property is not null, an InvalidOperationEx-
ception is generated. If the Transaction property is not null and the transaction has already been committed or rolled back,
Transaction is set to null.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim mySelectQuery As String = "SELECT * FROM mytable ORDER BY id"

Connectors

1593

https://kb.mysql.com/view.php?id=4920
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


Dim myConnectString As String = "Persist Security Info=False;database=test;server=myServer"
Dim myCommand As New MySqlCommand(mySelectQuery)
myCommand.Connection = New MySqlConnection(myConnectString)
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{

string mySelectQuery = "SELECT * FROM mytable ORDER BY id";
string myConnectString = "Persist Security Info=False;database=test;server=myServer";
MySqlCommand myCommand = new MySqlCommand(mySelectQuery);
myCommand.Connection = new MySqlConnection(myConnectString);
myCommand.CommandType = CommandType.Text;

}

27.2.3.1.14. IsPrepared

Returns true if the statement is prepared.

27.2.3.1.15. Parameters

Get the MySqlParameterCollection

Value: The parameters of the SQL statement or stored procedure. The default is an empty collection.

Connector/Net does not support unnamed parameters. Every parameter added to the collection must have an associated name.

Examples

The following example creates a MySqlCommand and displays its parameters. To accomplish this, the method is passed a MySql-
Connection, a query string that is a SQL SELECT statement, and an array of MySqlParameter objects.

Visual Basic example:

Public Sub CreateMySqlCommand(myConnection As MySqlConnection, _
mySelectQuery As String, myParamArray() As MySqlParameter)

Dim myCommand As New MySqlCommand(mySelectQuery, myConnection)
myCommand.CommandText = "SELECT id, name FROM mytable WHERE age=?age"
myCommand.UpdatedRowSource = UpdateRowSource.Both
myCommand.Parameters.Add(myParamArray)
Dim j As Integer
For j = 0 To myCommand.Parameters.Count - 1

myCommand.Parameters.Add(myParamArray(j))
Next j
Dim myMessage As String = ""
Dim i As Integer
For i = 0 To myCommand.Parameters.Count - 1

myMessage += myCommand.Parameters(i).ToString() & ControlChars.Cr
Next i
Console.WriteLine(myMessage)

End Sub

C# example:

public void CreateMySqlCommand(MySqlConnection myConnection, string mySelectQuery,
MySqlParameter[] myParamArray)

{
MySqlCommand myCommand = new MySqlCommand(mySelectQuery, myConnection);
myCommand.CommandText = "SELECT id, name FROM mytable WHERE age=?age";
myCommand.Parameters.Add(myParamArray);
for (int j=0; j<myParamArray.Length; j++)
{

myCommand.Parameters.Add(myParamArray[j]) ;
}
string myMessage = "";
for (int i = 0; i < myCommand.Parameters.Count; i++)
{

myMessage += myCommand.Parameters[i].ToString() + "\n";
}
MessageBox.Show(myMessage);

}

Connectors

1594



27.2.3.1.16. Transaction

Gets or sets the MySqlTransaction within which the MySqlCommand executes.

Value: The MySqlTransaction. The default value is a null reference (Nothing in Visual Basic).

You cannot set the Transaction property if it is already set to a specific value, and the command is in the process of executing. If
you set the transaction property to a MySqlTransaction object that is not connected to the same MySqlConnection as the
MySqlCommand object, an exception will be thrown the next time you attempt to execute a statement.

27.2.3.1.17. UpdatedRowSource

Gets or sets how command results are applied to the DataRow when used by the Sys-
tem.Data.Common.DbDataAdapter.Update method of the System.Data.Common.DbDataAdapter.

Value: One of the UpdateRowSource values.

The default System.Data.UpdateRowSource value is Both unless the command is automatically generated (as in the case of the
MySqlCommandBuilder), in which case the default is None.

27.2.3.2. Using MySqlCommandBuilder

Automatically generates single-table commands used to reconcile changes made to a DataSet with the associated MySQL database. This
class cannot be inherited.

The MySqlDataAdapter does not automatically generate the SQL statements required to reconcile changes made to a Sys-
tem.Data.DataSetDataSet with the associated instance of MySQL. However, you can create a MySqlCommandBuilder object
to automatically generate SQL statements for single-table updates if you set the MySqlDataAdapter.SelectCommandSelect-
Command property of the MySqlDataAdapter. Then, any additional SQL statements that you do not set are generated by the
MySqlCommandBuilder.

The MySqlCommandBuilder registers itself as a listener for MySqlDataAdapter.OnRowUpdatingRowUpdating events
whenever you set the DataAdapter property. You can only associate one MySqlDataAdapter or MySqlCommandBuilder ob-
ject with each other at one time.

To generate INSERT, UPDATE, or DELETE statements, the MySqlCommandBuilder uses the SelectCommand property to re-
trieve a required set of metadata automatically. If you change the SelectCommand after the metadata has is retrieved (for example,
after the first update), you should call the RefreshSchema method to update the metadata.

The SelectCommand must also return at least one primary key or unique column. If none are present, an InvalidOperation ex-
ception is generated, and the commands are not generated.

When using MySqlCommandbuilder and INSERT you should set the ReturnGeneratedIdentifiers property to true to
ensure that AUTO_INCREMENT fields in MySQL tables return the automatically generated value.

The MySqlCommandBuilder also uses the MySqlCommand.ConnectionConnection,
MySqlCommand.CommandTimeoutCommandTimeout, and MySqlCommand.TransactionTransaction properties referenced
by the SelectCommand. The user should call RefreshSchema if any of these properties are modified, or if the SelectCommand
itself is replaced. Otherwise the MySqlDataAdapter.InsertCommandInsertCommand, MySqlDataAd-
apter.UpdateCommandUpdateCommand, and MySqlDataAdapter.DeleteCommandDeleteCommand properties retain their
previous values.

If you call Dispose, the MySqlCommandBuilder is disassociated from the MySqlDataAdapter, and the generated commands
are no longer used.

Note

Caution must be used when using MySqlCommandBuilder on MySql 4.0 systems. With MySQL 4.0, database/schema
information is not provided to the connector for a query. This means that a query that pulls columns from two identically
named tables in two or more different databases will not cause an exception to be thrown but will not work correctly. Even
more dangerous is the situation where your select statement references database X but is executed in database Y and both
databases have tables with similar layouts. This situation can cause unwanted changes or deletes. This note does not apply
to MySQL versions 4.1 and later.

Examples

Connectors

1595



The following example uses the MySqlCommand, along MySqlDataAdapter and MySqlConnection, to select rows from a data
source. The example is passed an initialized System.Data.DataSet, a connection string, a query string that is a SQL SELECT
statement, and a string that is the name of the database table. The example then creates a MySqlCommandBuilder.

Visual Basic example:

Public Shared Function SelectRows(myConnection As String, mySelectQuery As String, myTableName As String) As DataSet
Dim myConn As New MySqlConnection(myConnection)
Dim myDataAdapter As New MySqlDataAdapter()
myDataAdapter.SelectCommand = New MySqlCommand(mySelectQuery, myConn)
Dim cb As SqlCommandBuilder = New MySqlCommandBuilder(myDataAdapter)
myConn.Open()
Dim ds As DataSet = New DataSet
myDataAdapter.Fill(ds, myTableName)
' Code to modify data in DataSet here
' Without the MySqlCommandBuilder this line would fail.
myDataAdapter.Update(ds, myTableName)
myConn.Close()

End Function 'SelectRows

C# example:

public static DataSet SelectRows(string myConnection, string mySelectQuery, string myTableName)
{
MySqlConnection myConn = new MySqlConnection(myConnection);
MySqlDataAdapter myDataAdapter = new MySqlDataAdapter();
myDataAdapter.SelectCommand = new MySqlCommand(mySelectQuery, myConn);
MySqlCommandBuilder cb = new MySqlCommandBuilder(myDataAdapter);
myConn.Open();
DataSet ds = new DataSet();
myDataAdapter.Fill(ds, myTableName);
//code to modify data in DataSet here
//Without the MySqlCommandBuilder this line would fail
myDataAdapter.Update(ds, myTableName);
myConn.Close();
return ds;
}

27.2.3.2.1. Class MySqlCommandBuilder Constructor

Initializes a new instance of the MySqlCommandBuilder class.

27.2.3.2.2. Class MySqlCommandBuilder Constructor Form 1

Initializes a new instance of the MySqlCommandBuilder class and sets the last one wins property.

Parameters: False to generate change protection code. True otherwise.

The lastOneWins parameter indicates whether SQL code should be included with the generated DELETE and UPDATE commands
that checks the underlying data for changes. If lastOneWins is true then this code is not included and data records could be overwrit-
ten in a multi-user or multi-threaded environments. Setting lastOneWins to false will include this check which will cause a concur-
rency exception to be thrown if the underlying data record has changed without our knowledge.

27.2.3.2.3. Class MySqlCommandBuilder Constructor Form 2

Initializes a new instance of the MySqlCommandBuilder class with the associated MySqlDataAdapter object.

Parameters: The MySqlDataAdapter to use.

The MySqlCommandBuilder registers itself as a listener for MySqlDataAdapter.RowUpdating events that are generated by
the MySqlDataAdapter specified in this property.

When you create a new instance MySqlCommandBuilder, any existing MySqlCommandBuilder associated with this
MySqlDataAdapter is released.

27.2.3.2.4. Class MySqlCommandBuilder Constructor Form 3

Initializes a new instance of the MySqlCommandBuilder class with the associated MySqlDataAdapter object.

Parameters: The MySqlDataAdapter to use.

Connectors

1596



Parameters: False to generate change protection code. True otherwise.

The MySqlCommandBuilder registers itself as a listener for MySqlDataAdapter.RowUpdating events that are generated by
the MySqlDataAdapter specified in this property.

When you create a new instance MySqlCommandBuilder, any existing MySqlCommandBuilder associated with this
MySqlDataAdapter is released.

The lastOneWins parameter indicates whether SQL code should be included with the generated DELETE and UPDATE commands
that checks the underlying data for changes. If lastOneWins is true then this code is not included and data records could be overwrit-
ten in a multi-user or multi-threaded environments. Setting lastOneWins to false will include this check which will cause a concur-
rency exception to be thrown if the underlying data record has changed without our knowledge.

27.2.3.2.5. DataAdapter

Gets or sets a MySqlDataAdapter object for which SQL statements are automatically generated.

Value: A MySqlDataAdapter object.

The MySqlCommandBuilder registers itself as a listener for MySqlDataAdapter.RowUpdating events that are generated by
the MySqlDataAdapter specified in this property.

When you create a new instance MySqlCommandBuilder, any existing MySqlCommandBuilder associated with this
MySqlDataAdapter is released.

27.2.3.2.6. QuotePrefix

Gets or sets the beginning character or characters to use when specifying MySQL database objects (for example, tables or columns)
whose names contain characters such as spaces or reserved tokens.

Value: The beginning character or characters to use. The default value is `.

Database objects in MySQL can contain special characters such as spaces that would make normal SQL strings impossible to correctly
parse. Use of the QuotePrefix and the QuoteSuffix properties allows the MySqlCommandBuilder to build SQL statements
that handle this situation.

27.2.3.2.7. QuoteSuffix

Gets or sets the beginning character or characters to use when specifying MySQL database objects (for example, tables or columns)
whose names contain characters such as spaces or reserved tokens.

Value: The beginning character or characters to use. The default value is `.

Database objects in MySQL can contain special characters such as spaces that would make normal SQL strings impossible to correctly
parse. Use of the QuotePrefix and the QuoteSuffix properties allows the MySqlCommandBuilder to build SQL statements
that handle this situation.

27.2.3.2.8. DeriveParameters

27.2.3.2.9. GetDeleteCommand

Gets the automatically generated MySqlCommand object required to perform deletions on the database.

Returns: The MySqlCommand object generated to handle delete operations.

An application can use the GetDeleteCommand method for informational or troubleshooting purposes because it returns the
MySqlCommand object to be executed.

You can also use GetDeleteCommand as the basis of a modified command. For example, you might call GetDeleteCommand and
modify the MySqlCommand.CommandTimeout value, and then explicitly set that on the MySqlDataAdapter.

After the SQL statement is first generated, the application must explicitly call RefreshSchema if it changes the statement in any
way. Otherwise, the GetDeleteCommand will be still be using information from the previous statement, which might not be correct.

Connectors

1597



The SQL statements are first generated either when the application calls System.Data.Common.DataAdapter.Update or
GetDeleteCommand.

27.2.3.2.10. GetInsertCommand

Gets the automatically generated MySqlCommand object required to perform insertions on the database.

Returns: The MySqlCommand object generated to handle insert operations.

An application can use the GetInsertCommand method for informational or troubleshooting purposes because it returns the
MySqlCommand object to be executed.

You can also use the GetInsertCommand as the basis of a modified command. For example, you might call GetInsertCommand
and modify the MySqlCommand.CommandTimeout value, and then explicitly set that on the MySqlDataAdapter.

After the SQL statement is first generated, the application must explicitly call RefreshSchema if it changes the statement in any
way. Otherwise, the GetInsertCommand will be still be using information from the previous statement, which might not be correct.
The SQL statements are first generated either when the application calls System.Data.Common.DataAdapter.Update or
GetInsertCommand.

27.2.3.2.11. GetUpdateCommand

Gets the automatically generated MySqlCommand object required to perform updates on the database.

Returns: The MySqlCommand object generated to handle update operations.

An application can use the GetUpdateCommand method for informational or troubleshooting purposes because it returns the
MySqlCommand object to be executed.

You can also use GetUpdateCommand as the basis of a modified command. For example, you might call GetUpdateCommand and
modify the MySqlCommand.CommandTimeout value, and then explicitly set that on the MySqlDataAdapter.

After the SQL statement is first generated, the application must explicitly call RefreshSchema if it changes the statement in any
way. Otherwise, the GetUpdateCommand will be still be using information from the previous statement, which might not be correct.
The SQL statements are first generated either when the application calls System.Data.Common.DataAdapter.Update or
GetUpdateCommand.

27.2.3.2.12. RefreshSchema

Refreshes the database schema information used to generate INSERT, UPDATE, or DELETE statements.

An application should call RefreshSchema whenever the SELECT statement associated with the MySqlCommandBuilder
changes.

An application should call RefreshSchema whenever the MySqlDataAdapter.SelectCommand value of the
MySqlDataAdapter changes.

MySQL Enterprise
MySQL Enterprise subscribers will find more information on this topic in the Knowledge Base article, Under-
standing MySqlCommandBuilder and the LastOneWins Setting . For information about subscribing to MySQL
Enterprise see http://www.mysql.com/products/enterprise/advisors.html.

27.2.3.3. Using MySqlConnection

Represents an open connection to a MySQL Server database. This class cannot be inherited.

A MySqlConnection object represents a session to a MySQL Server data source. When you create an instance of MySqlConnec-
tion, all properties are set to their initial values. For a list of these values, see the MySqlConnection constructor.

If the MySqlConnection goes out of scope, it is not closed. Therefore, you must explicitly close the connection by calling MySql-
Connection.Close or MySqlConnection.Dispose.

Examples

The following example creates a MySqlCommand and a MySqlConnection. The MySqlConnection is opened and set as the
MySqlCommand.Connection for the MySqlCommand. The example then calls MySqlCommand.ExecuteNonQuery, and

Connectors

1598

https://kb.mysql.com/view.php?id=4922
https://kb.mysql.com/view.php?id=4922
http://www.mysql.com/products/enterprise/advisors.html


closes the connection. To accomplish this, the ExecuteNonQuery is passed a connection string and a query string that is a SQL IN-
SERT statement.

Visual Basic example:

Public Sub InsertRow(myConnectionString As String)
' If the connection string is null, use a default.
If myConnectionString = "" Then
myConnectionString = "Database=Test;Data Source=localhost;User Id=username;Password=pass"

End If
Dim myConnection As New MySqlConnection(myConnectionString)
Dim myInsertQuery As String = "INSERT INTO Orders (id, customerId, amount) Values(1001, 23, 30.66)"
Dim myCommand As New MySqlCommand(myInsertQuery)
myCommand.Connection = myConnection
myConnection.Open()
myCommand.ExecuteNonQuery()
myCommand.Connection.Close()

End Sub

C# example:

public void InsertRow(string myConnectionString)
{
// If the connection string is null, use a default.
if(myConnectionString == "")
{
myConnectionString = "Database=Test;Data Source=localhost;User Id=username;Password=pass";

}
MySqlConnection myConnection = new MySqlConnection(myConnectionString);
string myInsertQuery = "INSERT INTO Orders (id, customerId, amount) Values(1001, 23, 30.66)";
MySqlCommand myCommand = new MySqlCommand(myInsertQuery);
myCommand.Connection = myConnection;
myConnection.Open();
myCommand.ExecuteNonQuery();
myCommand.Connection.Close();

}

27.2.3.3.1. Class MySqlConnection Constructor (Default)

Initializes a new instance of the MySqlConnection class.

When a new instance of MySqlConnection is created, the read/write properties are set to the following initial values unless they are
specifically set using their associated keywords in the ConnectionString property.

Properties Initial Value

ConnectionString empty string ("")

ConnectionTimeout 15

Database empty string ("")

DataSource empty string ("")

ServerVersion empty string ("")

You can change the value for these properties only by using the ConnectionString property.

Examples

Overload methods for MySqlConnection

Initializes a new instance of the MySqlConnection class.

27.2.3.3.2. Class MySqlConnection Constructor Form 1

Initializes a new instance of the MySqlConnection class when given a string containing the connection string.

When a new instance of MySqlConnection is created, the read/write properties are set to the following initial values unless they are
specifically set using their associated keywords in the ConnectionString property.

Properties Initial Value

Connectors

1599



ConnectionString empty string ("")

ConnectionTimeout 15

Database empty string ("")

DataSource empty string ("")

ServerVersion empty string ("")

You can change the value for these properties only by using the ConnectionString property.

Examples

Parameters: The connection properties used to open the MySQL database.

27.2.3.3.3. ConnectionString

Gets or sets the string used to connect to a MySQL Server database.

The ConnectionString returned may not be exactly like what was originally set but will be indentical in terms of keyword/value
pairs. Security information will not be included unless the Persist Security Info value is set to true.

You can use the ConnectionString property to connect to a database. The following example illustrates a typical connection
string.

"Persist Security Info=False;database=MyDB;»
server=MySqlServer;user id=myUser;Password=myPass"

The ConnectionString property can be set only when the connection is closed. Many of the connection string values have corres-
ponding read-only properties. When the connection string is set, all of these properties are updated, except when an error is detected. In
this case, none of the properties are updated. MySqlConnection properties return only those settings contained in the Connec-
tionString.

To connect to a local machine, specify "localhost" for the server. If you do not specify a server, localhost is assumed.

Resetting the ConnectionString on a closed connection resets all connection string values (and related properties) including the
password. For example, if you set a connection string that includes "Database= MyDb", and then reset the connection string to "Data
Source=myserver;User Id=myUser;Password=myPass", the MySqlConnection.Database property is no longer set to MyDb.

The connection string is parsed immediately after being set. If errors in syntax are found when parsing, a runtime exception, such as
ArgumentException, is generated. Other errors can be found only when an attempt is made to open the connection.

The basic format of a connection string consists of a series of keyword/value pairs separated by semicolons. The equal sign (=) connects
each keyword and its value. Additional notes on setting values for options:

• To include values that contain a semicolon, single-quote character, or double-quote character, the value must be enclosed in double
quotes. If the value contains both a semicolon and a double-quote character, the value can be enclosed in single quotes. The single
quote is also useful if the value begins with a double-quote character. Conversely, the double quote can be used if the value begins
with a single quote. If the value contains both single-quote and double-quote characters, the quote character used to enclose the
value must be doubled each time it occurs within the value.

• To include preceding or trailing spaces in the string value, the value must be enclosed in either single quotes or double quotes. Any
leading or trailing spaces around integer, Boolean, or enumerated values are ignored, even if enclosed in quotes. However, spaces
within a string literal keyword or value are preserved. Using .NET Framework version 1.1, single or double quotes may be used
within a connection string without using delimiters (for example, Data Source= my'Server or Data Source= my"Server), unless a
quote character is the first or last character in the value.

• To include an equal sign (=) in a keyword or value, it must be preceded by another equal sign. For example, in the hypothetical con-
nection string

"key==word=value"

the keyword is "key=word" and the value is "value".

Connectors

1600



• If a specific keyword in a keyword= value pair occurs multiple times in a connection string, the last occurrence listed is used in the
value set.

• Keywords are not case sensitive.

The following table lists the valid names for keyword values within the ConnectionString.

Name Default Description

Connect Timeout, Connection
Timeout

15 The length of time (in seconds) to wait for a connection to the server be-
fore terminating the attempt and generating an error.

Host, Server, Data Source, Data-
Source, Address, Addr, Network Ad-
dress

localhost The name or network address of the instance of MySQL to which to con-
nect. Multiple hosts can be specified separated by &. This can be useful
where multiple MySQL servers are configured for replication and you are
not concerned about the precise server you are connecting to. No attempt
is made by the provider to synchronize writes to the database so care
should be taken when using this option. In Unix environment with Mono,
this can be a fully qualified path to MySQL socket filename. With this
configuration, the Unix socket will be used instead of TCP/IP socket.
Currently only a single socket name can be given so accessing MySQL in
a replicated environment using Unix sockets is not currently supported.

Ignore Prepare true When true, instructs the provider to ignore any calls to MySqlCom-
mand.Prepare(). This option is provided to prevent issues with cor-
ruption of the statements when use with server side prepared statements.
If you want to use server-side prepare statements, set this option to false.
This option was added in Connector/NET 5.0.3 and Connector/NET
1.0.9.

Port 3306 The port MySQL is using to listen for connections. Specify -1 for this
value to use a named pipe connection (Windows only). This value is ig-
nored if Unix socket is used.

Protocol socket Specifies the type of connection to make to the server.Values can be:
socket or tcp for a socket connection pipe for a named pipe connection
unix for a Unix socket connection memory to use MySQL shared
memory

CharSet, Character Set Specifies the character set that should be used to encode all queries sent
to the server. Resultsets are still returned in the character set of the data
returned.

Logging false When true, various pieces of information is output to any configured
TraceListeners.

Allow Batch true When true, multiple SQL statements can be sent with one command exe-
cution. -Note- Starting with MySQL 4.1.1, batch statements should be
separated by the server-defined separator character. Commands sent to
earlier versions of MySQL should be separated with ';'.

Encrypt false For Connector/NET 5.0.3 and later, when true, SSL encryption is used
for all data sent between the client and server if the server has a certific-
ate installed. Recognized values are true, false, yes, and no. In ver-
sions before 5.0.3, this option had no effect.

Initial Catalog, Database mysql The name of the database to use intially

Password, pwd The password for the MySQL account being used.

Persist Security Info false When set to false or no (strongly recommended), security-sensitive in-
formation, such as the password, is not returned as part of the connection
if the connection is open or has ever been in an open state. Resetting the
connection string resets all connection string values including the pass-
word. Recognized values are true, false, yes, and no.

User Id, Username, Uid, User name The MySQL login account being used.

Shared Memory Name MYSQL The name of the shared memory object to use for communication if the
connection protocol is set to memory.

Allow Zero Datetime false True to have MySqlDataReader.GetValue() return a MySqlDateTime for

Connectors

1601



date or datetime columns that have illegal values. False will cause a
System.DateTime object to be returned for legal values and an ex-
ception will be thrown for illegal values.

Convert Zero Datetime false True to have MySqlDataReader.GetValue() and
MySqlDataReader.GetDateTime() return DateTime.MinValue
for date or datetime columns that have illegal values.

Old Syntax, OldSyntax false Allows use of '@' symbol as a parameter marker. See MySqlCommand
for more info. This is for compatibility only. All future code should be
written to use the new '?' parameter marker.

Pipe Name, Pipe mysql When set to the name of a named pipe, the MySqlConnection will at-
tempt to connect to MySQL on that named pipe.This settings only applies
to the Windows platform.

Procedure Cache 25 Sets the size of the stored procedure cache. By default, Connector/NET
will store the metadata (input/output datatypes) about the last 25 stored
procedures used. To disable the stored procedure cache, set the value to
zero (0). This option was added in Connector/NET 5.0.2 and Connector/
NET 1.0.9.

Use Procedure Bodies true Setting this option to false indicates that the user connecting to the
database does not have the SELECT privileges for the mysql.proc
(stored procedures) table. When to set to false, Connector/NET will
not rely on this information being available when the procedure is called.
Because Connector/NET will be unable to determine this information,
you should explicitly set the types of the all the parameters before the call
and the parameters should be added to the command in the exact same or-
der as they appear in the procedure definition. This option was added in
Connector/NET 5.0.4 and Connector/NET 1.0.10.

default command timeout Sets the default value of the command timeout to be used. This does not
supercede the individual command timeout property on an individual
command object. If you set the command timeout property, that will be
used. This option was added in Connector/NET 5.1.4

The following table lists the valid names for connection pooling values within the ConnectionString. For more information about
connection pooling, see Connection Pooling for the MySQL Data Provider.

Name Default Description

Connection Lifetime 0 When a connection is returned to the pool, its creation time is compared
with the current time, and the connection is destroyed if that time span (in
seconds) exceeds the value specified by Connection Lifetime.
This is useful in clustered configurations to force load balancing between
a running server and a server just brought online. A value of zero (0)
causes pooled connections to have the maximum connection timeout.

Max Pool Size 100 The maximum number of connections allowed in the pool.

Min Pool Size 0 The minimum number of connections allowed in the pool.

Pooling true When true, the MySqlConnection object is drawn from the appro-
priate pool, or if necessary, is created and added to the appropriate pool.
Recognized values are true, false, yes, and no.

Reset Pooled Connections, Reset-
Connections, ResetPooledConnec-
tions

true Specifies whether a ping and a reset should be sent to the server before a
pooled connection is returned. Not resetting will yield faster connection
opens but also will not clear out session items such as temp tables.

Cache Server Configuration,
CacheServerConfiguration,
CacheServerConfig

false Specifies whether server variables should be updated when a pooled con-
nection is returned. Turning this one will yeild faster opens but will also
not catch any server changes made by other connections.

When setting keyword or connection pooling values that require a Boolean value, you can use 'yes' instead of 'true', and 'no' instead of
'false'.

Connectors

1602



Note

The MySQL Data Provider uses the native socket protocol to communicate with MySQL. Therefore, it does not support
the use of an ODBC data source name (DSN) when connecting to MySQL because it does not add an ODBC layer.

Caution

In this release, the application should use caution when constructing a connection string based on user input (for example
when retrieving user ID and password information from a dialog box, and appending it to the connection string). The ap-
plication should ensure that a user cannot embed extra connection string parameters in these values (for example, entering
a password as "validpassword;database=somedb" in an attempt to attach to a different database).

Examples

The following example creates a MySqlConnection and sets some of its properties

Visual Basic example:

Public Sub CreateConnection()
Dim myConnection As New MySqlConnection()
myConnection.ConnectionString = "Persist Security Info=False;database=myDB;server=myHost;Connect Timeout=30;user id=myUser; pwd=myPass"
myConnection.Open()

End Sub 'CreateConnection

C# example:

public void CreateConnection()
{
MySqlConnection myConnection = new MySqlConnection();
myConnection.ConnectionString = "Persist Security Info=False;database=myDB;server=myHost;Connect Timeout=30;user id=myUser; pwd=myPass";
myConnection.Open();

}

Examples

The following example creates a MySqlConnection in Unix environment with Mono installed. MySQL socket filename used in this
example is "/var/lib/mysql/mysql.sock". The actual filename depends on your MySQL configuration.

Visual Basic example:

Public Sub CreateConnection()
Dim myConnection As New MySqlConnection()
myConnection.ConnectionString = "database=myDB;server=/var/lib/mysql/mysql.sock;user id=myUser; pwd=myPass"
myConnection.Open()

End Sub 'CreateConnection

C# example:

public void CreateConnection()
{
MySqlConnection myConnection = new MySqlConnection();
myConnection.ConnectionString = "database=myDB;server=/var/lib/mysql/mysql.sock;user id=myUser; pwd=myPass";
myConnection.Open();

}

27.2.3.3.4. Open

Opens a database connection with the property settings specified by the ConnectionString.

Exception: Cannot open a connection without specifying a data source or server.

Exception: A connection-level error occurred while opening the connection.

The MySqlConnection draws an open connection from the connection pool if one is available. Otherwise, it establishes a new con-
nection to an instance of MySQL.

Connectors

1603



Examples

The following example creates a MySqlConnection, opens it, displays some of its properties, then closes the connection.

Visual Basic example:

Public Sub CreateMySqlConnection(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.Cr + "State: " + myConnection.State.ToString())
myConnection.Close()

End Sub

C# example:

public void CreateMySqlConnection(string myConnString)
{
MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion +

"\nState: " + myConnection.State.ToString());
myConnection.Close();

}

27.2.3.3.5. Database

Gets the name of the current database or the database to be used after a connection is opened.

Returns: The name of the current database or the name of the database to be used after a connection is opened. The default value is an
empty string.

The Database property does not update dynamically. If you change the current database using a SQL statement, then this property
may reflect the wrong value. If you change the current database using the ChangeDatabase method, this property is updated to re-
flect the new database.

Examples

The following example creates a MySqlConnection and displays some of its read-only properties.

Visual Basic example:

Public Sub CreateMySqlConnection()
Dim myConnString As String = _
"Persist Security Info=False;database=test;server=localhost;user id=joeuser;pwd=pass"

Dim myConnection As New MySqlConnection( myConnString )
myConnection.Open()
MessageBox.Show( "Server Version: " + myConnection.ServerVersion _
+ ControlChars.NewLine + "Database: " + myConnection.Database )

myConnection.ChangeDatabase( "test2" )
MessageBox.Show( "ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.NewLine + "Database: " + myConnection.Database )

myConnection.Close()
End Sub

C# example:

public void CreateMySqlConnection()
{
string myConnString =
"Persist Security Info=False;database=test;server=localhost;user id=joeuser;pwd=pass";

MySqlConnection myConnection = new MySqlConnection( myConnString );
myConnection.Open();
MessageBox.Show( "Server Version: " + myConnection.ServerVersion
+ "\nDatabase: " + myConnection.Database );

myConnection.ChangeDatabase( "test2" );
MessageBox.Show( "ServerVersion: " + myConnection.ServerVersion
+ "\nDatabase: " + myConnection.Database );

myConnection.Close();
}

Connectors

1604



27.2.3.3.6. State

Gets the current state of the connection.

Returns: A bitwise combination of the System.Data.ConnectionState values. The default is Closed.

The allowed state changes are:

• From Closed to Open, using the Open method of the connection object.

• From Open to Closed, using either the Close method or the Dispose method of the connection object.

Examples

The following example creates a MySqlConnection, opens it, displays some of its properties, then closes the connection.

Visual Basic example:

Public Sub CreateMySqlConnection(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.Cr + "State: " + myConnection.State.ToString())
myConnection.Close()

End Sub

C# example:

public void CreateMySqlConnection(string myConnString)
{
MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion +

"\nState: " + myConnection.State.ToString());
myConnection.Close();

}

27.2.3.3.7. ServerVersion

Gets a string containing the version of the MySQL server to which the client is connected.

Returns: The version of the instance of MySQL.

Exception: The connection is closed.

Examples

The following example creates a MySqlConnection, opens it, displays some of its properties, then closes the connection.

Visual Basic example:

Public Sub CreateMySqlConnection(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.Cr + "State: " + myConnection.State.ToString())
myConnection.Close()

End Sub

C# example:

public void CreateMySqlConnection(string myConnString)
{
MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion +

"\nState: " + myConnection.State.ToString());

Connectors

1605



myConnection.Close();
}

27.2.3.3.8. Close

Closes the connection to the database. This is the preferred method of closing any open connection.

The Close method rolls back any pending transactions. It then releases the connection to the connection pool, or closes the connection
if connection pooling is disabled.

An application can call Close more than one time. No exception is generated.

Examples

The following example creates a MySqlConnection, opens it, displays some of its properties, then closes the connection.

Visual Basic example:

Public Sub CreateMySqlConnection(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.Cr + "State: " + myConnection.State.ToString())
myConnection.Close()

End Sub

C# example:

public void CreateMySqlConnection(string myConnString)
{
MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion +

"\nState: " + myConnection.State.ToString());
myConnection.Close();

}

27.2.3.3.9. CreateCommand

Creates and returns a MySqlCommand object associated with the MySqlConnection.

Returns: A MySqlCommand object.

27.2.3.3.10. BeginTransaction

Begins a database transaction.

Returns: An object representing the new transaction.

Exception: Parallel transactions are not supported.

This command is equivalent to the MySQL BEGIN TRANSACTION command.

You must explicitly commit or roll back the transaction using the MySqlTransaction.Commit or MySqlTransac-
tion.Rollback method.

Note

If you do not specify an isolation level, the default isolation level is used. To specify an isolation level with the Begin-
Transaction method, use the overload that takes the iso parameter.

Examples

The following example creates a MySqlConnection and a MySqlTransaction. It also demonstrates how to use the Begin-
Transaction, a MySqlTransaction.Commit, and MySqlTransaction.Rollback methods.

Connectors

1606



Visual Basic example:

Public Sub RunTransaction(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()

Dim myCommand As MySqlCommand = myConnection.CreateCommand()
Dim myTrans As MySqlTransaction

' Start a local transaction
myTrans = myConnection.BeginTransaction()
' Must assign both transaction object and connection
' to Command object for a pending local transaction
myCommand.Connection = myConnection
myCommand.Transaction = myTrans

Try
myCommand.CommandText = "Insert into Test (id, desc) VALUES (100, 'Description')"
myCommand.ExecuteNonQuery()
myCommand.CommandText = "Insert into Test (id, desc) VALUES (101, 'Description')"
myCommand.ExecuteNonQuery()
myTrans.Commit()
Console.WriteLine("Both records are written to database.")

Catch e As Exception
Try
myTrans.Rollback()

Catch ex As MySqlException
If Not myTrans.Connection Is Nothing Then
Console.WriteLine("An exception of type " + ex.GetType().ToString() + _

" was encountered while attempting to roll back the transaction.")
End If

End Try

Console.WriteLine("An exception of type " + e.GetType().ToString() + _
"was encountered while inserting the data.")

Console.WriteLine("Neither record was written to database.")
Finally
myConnection.Close()

End Try
End Sub

C# example:

public void RunTransaction(string myConnString)
{
MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MySqlCommand myCommand = myConnection.CreateCommand();
MySqlTransaction myTrans;
// Start a local transaction
myTrans = myConnection.BeginTransaction();
// Must assign both transaction object and connection
// to Command object for a pending local transaction
myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;
try
{
myCommand.CommandText = "insert into Test (id, desc) VALUES (100, 'Description')";
myCommand.ExecuteNonQuery();
myCommand.CommandText = "insert into Test (id, desc) VALUES (101, 'Description')";
myCommand.ExecuteNonQuery();
myTrans.Commit();
Console.WriteLine("Both records are written to database.");

}
catch(Exception e)
{
try
{
myTrans.Rollback();

}
catch (SqlException ex)
{
if (myTrans.Connection != null)
{
Console.WriteLine("An exception of type " + ex.GetType() +

" was encountered while attempting to roll back the transaction.");
}

}

Console.WriteLine("An exception of type " + e.GetType() +
" was encountered while inserting the data.");

Console.WriteLine("Neither record was written to database.");
}
finally
{
myConnection.Close();

Connectors

1607



}
}

27.2.3.3.11. BeginTransaction1

Begins a database transaction with the specified isolation level.

Parameters: The isolation level under which the transaction should run.

Returns: An object representing the new transaction.

Exception: Parallel exceptions are not supported.

This command is equivalent to the MySQL BEGIN TRANSACTION command.

You must explicitly commit or roll back the transaction using the MySqlTransaction.Commit or MySqlTransac-
tion.Rollback method.

Note

If you do not specify an isolation level, the default isolation level is used. To specify an isolation level with the Begin-
Transaction method, use the overload that takes the iso parameter.

Examples

The following example creates a MySqlConnection and a MySqlTransaction. It also demonstrates how to use the Begin-
Transaction, a MySqlTransaction.Commit, and MySqlTransaction.Rollback methods.

Visual Basic example:

Public Sub RunTransaction(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()

Dim myCommand As MySqlCommand = myConnection.CreateCommand()
Dim myTrans As MySqlTransaction

' Start a local transaction
myTrans = myConnection.BeginTransaction()
' Must assign both transaction object and connection
' to Command object for a pending local transaction
myCommand.Connection = myConnection
myCommand.Transaction = myTrans

Try
myCommand.CommandText = "Insert into Test (id, desc) VALUES (100, 'Description')"
myCommand.ExecuteNonQuery()
myCommand.CommandText = "Insert into Test (id, desc) VALUES (101, 'Description')"
myCommand.ExecuteNonQuery()
myTrans.Commit()
Console.WriteLine("Both records are written to database.")

Catch e As Exception
Try
myTrans.Rollback()

Catch ex As MySqlException
If Not myTrans.Connection Is Nothing Then
Console.WriteLine("An exception of type " + ex.GetType().ToString() + _

" was encountered while attempting to roll back the transaction.")
End If

End Try

Console.WriteLine("An exception of type " + e.GetType().ToString() + _
"was encountered while inserting the data.")

Console.WriteLine("Neither record was written to database.")
Finally
myConnection.Close()

End Try
End Sub

C# example:

public void RunTransaction(string myConnString)
{
MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();

Connectors

1608



MySqlCommand myCommand = myConnection.CreateCommand();
MySqlTransaction myTrans;
// Start a local transaction
myTrans = myConnection.BeginTransaction();
// Must assign both transaction object and connection
// to Command object for a pending local transaction
myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;
try
{
myCommand.CommandText = "insert into Test (id, desc) VALUES (100, 'Description')";
myCommand.ExecuteNonQuery();
myCommand.CommandText = "insert into Test (id, desc) VALUES (101, 'Description')";
myCommand.ExecuteNonQuery();
myTrans.Commit();
Console.WriteLine("Both records are written to database.");

}
catch(Exception e)
{
try
{
myTrans.Rollback();

}
catch (SqlException ex)
{
if (myTrans.Connection != null)
{
Console.WriteLine("An exception of type " + ex.GetType() +

" was encountered while attempting to roll back the transaction.");
}

}

Console.WriteLine("An exception of type " + e.GetType() +
" was encountered while inserting the data.");

Console.WriteLine("Neither record was written to database.");
}
finally
{
myConnection.Close();

}
}

27.2.3.3.12. ChangeDatabase

Changes the current database for an open MySqlConnection.

Parameters: The name of the database to use.

The value supplied in the database parameter must be a valid database name. The database parameter cannot contain a null value,
an empty string, or a string with only blank characters.

When you are using connection pooling against MySQL, and you close the connection, it is returned to the connection pool. The next
time the connection is retrieved from the pool, the reset connection request executes before the user performs any operations.

MySQL Enterprise
MySQL Enterprise subscribers will find more information on this subject in the Knowledge Base article, Under-
standing and Using Connection Pooling. Access to the MySQL Knowledge Base collection of articles is one of
the advantages of subscribing to MySQL Enterprise. To subscribe see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

Exception: The database name is not valid.

Exception: The connection is not open.

Exception: Cannot change the database.

Examples

The following example creates a MySqlConnection and displays some of its read-only properties.

Visual Basic example:

Public Sub CreateMySqlConnection()
Dim myConnString As String = _
"Persist Security Info=False;database=test;server=localhost;user id=joeuser;pwd=pass"

Dim myConnection As New MySqlConnection( myConnString )

Connectors

1609

https://kb.mysql.com/view.php?id=4918
https://kb.mysql.com/view.php?id=4918
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


myConnection.Open()
MessageBox.Show( "Server Version: " + myConnection.ServerVersion _
+ ControlChars.NewLine + "Database: " + myConnection.Database )

myConnection.ChangeDatabase( "test2" )
MessageBox.Show( "ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.NewLine + "Database: " + myConnection.Database )

myConnection.Close()
End Sub

C# example:

public void CreateMySqlConnection()
{
string myConnString =
"Persist Security Info=False;database=test;server=localhost;user id=joeuser;pwd=pass";

MySqlConnection myConnection = new MySqlConnection( myConnString );
myConnection.Open();
MessageBox.Show( "Server Version: " + myConnection.ServerVersion
+ "\nDatabase: " + myConnection.Database );

myConnection.ChangeDatabase( "test2" );
MessageBox.Show( "ServerVersion: " + myConnection.ServerVersion
+ "\nDatabase: " + myConnection.Database );

myConnection.Close();
}

27.2.3.3.13. StateChange

Occurs when the state of the connection changes.

The StateChange event fires whenever the State changes from closed to opened, or from opened to closed. StateChange fires
immediately after the MySqlConnection transitions.

If an event handler throws an exception from within the StateChange event, the exception propagates to the caller of the Open or
Close method.

The StateChange event is not raised unless you explicitly call Close or Dispose.

The event handler receives an argument of type System.Data.StateChangeEventArgs containing data related to this event.
The following StateChangeEventArgs properties provide information specific to this event.

Property Description

Sys-
tem.Data.StateChangeEventArgs.CurrentState

Gets the new state of the connection. The connection object will be
in the new state already when the event is fired.

Sys-
tem.Data.StateChangeEventArgs.OriginalState

Gets the original state of the connection.

27.2.3.3.14. InfoMessage

Occurs when MySQL returns warnings as a result of executing a command or query.

27.2.3.3.15. ConnectionTimeout

Gets the time to wait while trying to establish a connection before terminating the attempt and generating an error.

Exception: The value set is less than 0.

A value of 0 indicates no limit, and should be avoided in a MySqlConnection.ConnectionString because an attempt to con-
nect will wait indefinitely.

Examples

The following example creates a MySqlConnection and sets some of its properties in the connection string.

Visual Basic example:

Connectors

1610



Public Sub CreateSqlConnection()
Dim myConnection As New MySqlConnection()
myConnection.ConnectionString = "Persist Security Info=False;Username=user;Password=pass;database=test1;server=localhost;Connect Timeout=30"
myConnection.Open()

End Sub

C# example:

public void CreateSqlConnection()
{
MySqlConnection myConnection = new MySqlConnection();
myConnection.ConnectionString = "Persist Security Info=False;Username=user;»

Password=pass;database=test1;server=localhost;Connect Timeout=30";
myConnection.Open();

}

27.2.3.4. Using MySqlDataAdapter

Represents a set of data commands and a database connection that are used to fill a data set and update a MySQL database. This class
cannot be inherited.

The MySQLDataAdapter, serves as a bridge between a System.Data.DataSet and MySQL for retrieving and saving data. The
MySQLDataAdapter provides this bridge by mapping DbDataAdapter.Fill, which changes the data in the DataSet to match
the data in the data source, and DbDataAdapter.Update, which changes the data in the data source to match the data in the Data-
Set, using the appropriate SQL statements against the data source.

When the MySQLDataAdapter fills a DataSet, it will create the necessary tables and columns for the returned data if they do not
already exist. However, primary key information will not be included in the implicitly created schema unless the Sys-
tem.Data.MissingSchemaAction property is set to System.Data.MissingSchemaAction.AddWithKey. You may
also have the MySQLDataAdapter create the schema of the DataSet, including primary key information, before filling it with data
using System.Data.Common.DbDataAdapter.FillSchema.

MySQLDataAdapter is used in conjunction with MySqlConnection and MySqlCommand to increase performance when con-
necting to a MySQL database.

The MySQLDataAdapter also includes the MySqlDataAdapter.SelectCommand, MySqlDataAd-
apter.InsertCommand, MySqlDataAdapter.DeleteCommand, MySqlDataAdapter.UpdateCommand, and
DataAdapter.TableMappings properties to facilitate the loading and updating of data.

When an instance of MySQLDataAdapter is created, the read/write properties are set to initial values. For a list of these values, see
the MySQLDataAdapter constructor.

Note

Please be aware that the DataColumn class in .NET 1.0 and 1.1 does not allow columns with type of UInt16, UInt32, or
UInt64 to be autoincrement columns. If you plan to use autoincremement columns with MySQL, you should consider us-
ing signed integer columns.

Examples

The following example creates a MySqlCommand and a MySqlConnection. The MySqlConnection is opened and set as the
MySqlCommand.Connection for the MySqlCommand. The example then calls MySqlCommand.ExecuteNonQuery, and
closes the connection. To accomplish this, the ExecuteNonQuery is passed a connection string and a query string that is a SQL IN-
SERT statement.

Visual Basic example:

Public Function SelectRows(dataSet As DataSet, connection As String, query As String) As DataSet
Dim conn As New MySqlConnection(connection)
Dim adapter As New MySqlDataAdapter()
adapter.SelectCommand = new MySqlCommand(query, conn)
adapter.Fill(dataset)
Return dataset

End Function

C# example:

public DataSet SelectRows(DataSet dataset,string connection,string query)

Connectors

1611



{
MySqlConnection conn = new MySqlConnection(connection);
MySqlDataAdapter adapter = new MySqlDataAdapter();
adapter.SelectCommand = new MySqlCommand(query, conn);
adapter.Fill(dataset);
return dataset;

}

27.2.3.4.1. Class MySqlDataAdapter Constructor

Overload methods for MySqlDataAdapter

Initializes a new instance of the MySqlDataAdapter class.

When an instance of MySqlDataAdapter is created, the following read/write properties are set to the following initial values.

Properties Initial Value

MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

You can change the value of any of these properties through a separate call to the property.

Examples

The following example creates a MySqlDataAdapter and sets some of its properties.

Visual Basic example:

Public Sub CreateSqlDataAdapter()
Dim conn As MySqlConnection = New MySqlConnection("Data Source=localhost;" & _
"database=test")
Dim da As MySqlDataAdapter = New MySqlDataAdapter
da.MissingSchemaAction = MissingSchemaAction.AddWithKey

da.SelectCommand = New MySqlCommand("SELECT id, name FROM mytable", conn)
da.InsertCommand = New MySqlCommand("INSERT INTO mytable (id, name) " & _

"VALUES (?id, ?name)", conn)
da.UpdateCommand = New MySqlCommand("UPDATE mytable SET id=?id, name=?name " & _

"WHERE id=?oldId", conn)
da.DeleteCommand = New MySqlCommand("DELETE FROM mytable WHERE id=?id", conn)
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original

End Sub

C# example:

public static void CreateSqlDataAdapter()
{

MySqlConnection conn = new MySqlConnection("Data Source=localhost;database=test");
MySqlDataAdapter da = new MySqlDataAdapter();
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.SelectCommand = new MySqlCommand("SELECT id, name FROM mytable", conn);
da.InsertCommand = new MySqlCommand("INSERT INTO mytable (id, name) " +

"VALUES (?id, ?name)", conn);
da.UpdateCommand = new MySqlCommand("UPDATE mytable SET id=?id, name=?name " +

"WHERE id=?oldId", conn);
da.DeleteCommand = new MySqlCommand("DELETE FROM mytable WHERE id=?id", conn);
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;

}

Connectors

1612



27.2.3.4.2. Class MySqlDataAdapter Constructor Form 1

Initializes a new instance of the MySqlDataAdapter class with the specified MySqlCommand as the SelectCommand property.

Parameters: MySqlCommand that is a SQL SELECT statement or stored procedure and is set as the SelectCommand property of
the MySqlDataAdapter.

When an instance of MySqlDataAdapter is created, the following read/write properties are set to the following initial values.

Properties Initial Value

MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

You can change the value of any of these properties through a separate call to the property.

When SelectCommand (or any of the other command properties) is assigned to a previously created MySqlCommand, the MySql-
Command is not cloned. The SelectCommand maintains a reference to the previously created MySqlCommand object.

Examples

The following example creates a MySqlDataAdapter and sets some of its properties.

Visual Basic example:

Public Sub CreateSqlDataAdapter()
Dim conn As MySqlConnection = New MySqlConnection("Data Source=localhost;" & _
"database=test")

Dim cmd as new MySqlCommand("SELECT id, name FROM mytable", conn)
Dim da As MySqlDataAdapter = New MySqlDataAdapter(cmd)
da.MissingSchemaAction = MissingSchemaAction.AddWithKey

da.InsertCommand = New MySqlCommand("INSERT INTO mytable (id, name) " & _
"VALUES (?id, ?name)", conn)

da.UpdateCommand = New MySqlCommand("UPDATE mytable SET id=?id, name=?name " & _
"WHERE id=?oldId", conn)

da.DeleteCommand = New MySqlCommand("DELETE FROM mytable WHERE id=?id", conn)
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original

End Sub

C# example:

public static void CreateSqlDataAdapter()
{

MySqlConnection conn = new MySqlConnection("Data Source=localhost;database=test");
MySqlCommand cmd = new MySqlCommand("SELECT id, name FROM mytable", conn);
MySqlDataAdapter da = new MySqlDataAdapter(cmd);
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.InsertCommand = new MySqlCommand("INSERT INTO mytable (id, name) " +
"VALUES (?id, ?name)", conn);

da.UpdateCommand = new MySqlCommand("UPDATE mytable SET id=?id, name=?name " +
"WHERE id=?oldId", conn);

da.DeleteCommand = new MySqlCommand("DELETE FROM mytable WHERE id=?id", conn);
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;

}

27.2.3.4.3. Class MySqlDataAdapter Constructor Form 2

Initializes a new instance of the MySqlDataAdapter class with a SelectCommand and a MySqlConnection object.

Connectors

1613



Parameters: A String that is a SQL SELECT statement or stored procedure to be used by the SelectCommand property of the
MySqlDataAdapter.

Parameters: A MySqlConnection that represents the connection.

This implementation of the MySqlDataAdapter opens and closes a MySqlConnection if it is not already open. This can be use-
ful in a an application that must call the DbDataAdapter.Fill method for two or more MySqlDataAdapter objects. If the
MySqlConnection is already open, you must explicitly call MySqlConnection.Close or MySqlConnection.Dispose to
close it.

When an instance of MySqlDataAdapter is created, the following read/write properties are set to the following initial values.

Properties Initial Value

MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

You can change the value of any of these properties through a separate call to the property.

Examples

The following example creates a MySqlDataAdapter and sets some of its properties.

Visual Basic example:

Public Sub CreateSqlDataAdapter()
Dim conn As MySqlConnection = New MySqlConnection("Data Source=localhost;" & _
"database=test")
Dim da As MySqlDataAdapter = New MySqlDataAdapter("SELECT id, name FROM mytable", conn)
da.MissingSchemaAction = MissingSchemaAction.AddWithKey

da.InsertCommand = New MySqlCommand("INSERT INTO mytable (id, name) " & _
"VALUES (?id, ?name)", conn)

da.UpdateCommand = New MySqlCommand("UPDATE mytable SET id=?id, name=?name " & _
"WHERE id=?oldId", conn)

da.DeleteCommand = New MySqlCommand("DELETE FROM mytable WHERE id=?id", conn)
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original

End Sub

C# example:

public static void CreateSqlDataAdapter()
{

MySqlConnection conn = new MySqlConnection("Data Source=localhost;database=test");
MySqlDataAdapter da = new MySqlDataAdapter("SELECT id, name FROM mytable", conn);
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.InsertCommand = new MySqlCommand("INSERT INTO mytable (id, name) " +
"VALUES (?id, ?name)", conn);

da.UpdateCommand = new MySqlCommand("UPDATE mytable SET id=?id, name=?name " +
"WHERE id=?oldId", conn);

da.DeleteCommand = new MySqlCommand("DELETE FROM mytable WHERE id=?id", conn);
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;

}

27.2.3.4.4. Class MySqlDataAdapter Constructor Form 3

Initializes a new instance of the MySqlDataAdapter class with a SelectCommand and a connection string.

Parameters: A string that is a SQL SELECT statement or stored procedure to be used by the SelectCommand property of the

Connectors

1614



MySqlDataAdapter.

Parameters: The connection string

When an instance of MySqlDataAdapter is created, the following read/write properties are set to the following initial values.

Properties Initial Value

MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

You can change the value of any of these properties through a separate call to the property.

Examples

The following example creates a MySqlDataAdapter and sets some of its properties.

Visual Basic example:

Public Sub CreateSqlDataAdapter()
Dim da As MySqlDataAdapter = New MySqlDataAdapter("SELECT id, name FROM mytable", "Data Source=localhost;database=test")
Dim conn As MySqlConnection = da.SelectCommand.Connection
da.MissingSchemaAction = MissingSchemaAction.AddWithKey

da.InsertCommand = New MySqlCommand("INSERT INTO mytable (id, name) " & _
"VALUES (?id, ?name)", conn)

da.UpdateCommand = New MySqlCommand("UPDATE mytable SET id=?id, name=?name " & _
"WHERE id=?oldId", conn)

da.DeleteCommand = New MySqlCommand("DELETE FROM mytable WHERE id=?id", conn)
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original

End Sub

C# example:

public static void CreateSqlDataAdapter()
{

MySqlDataAdapter da = new MySqlDataAdapter("SELECT id, name FROM mytable", "Data Source=localhost;database=test");
MySqlConnection conn = da.SelectCommand.Connection;
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.InsertCommand = new MySqlCommand("INSERT INTO mytable (id, name) " +
"VALUES (?id, ?name)", conn);

da.UpdateCommand = new MySqlCommand("UPDATE mytable SET id=?id, name=?name " +
"WHERE id=?oldId", conn);

da.DeleteCommand = new MySqlCommand("DELETE FROM mytable WHERE id=?id", conn);
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;

}

27.2.3.4.5. DeleteCommand

Gets or sets a SQL statement or stored procedure used to delete records from the data set.

Value: A MySqlCommand used during System.Data.Common.DataAdapter.Update to delete records in the database that
correspond to deleted rows in the DataSet.

During System.Data.Common.DataAdapter.Update, if this property is not set and primary key information is present in the
DataSet, the DeleteCommand can be generated automatically if you set the SelectCommand property and use the MySqlCom-
mandBuilder. Then, any additional commands that you do not set are generated by the MySqlCommandBuilder. This generation
logic requires key column information to be present in the DataSet.

When DeleteCommand is assigned to a previously created MySqlCommand, the MySqlCommand is not cloned. The Delete-

Connectors

1615



Command maintains a reference to the previously created MySqlCommand object.

Examples

The following example creates a MySqlDataAdapter and sets the SelectCommand and DeleteCommand properties. It assumes
you have already created a MySqlConnection object.

Visual Basic example:

Public Shared Function CreateCustomerAdapter(conn As MySqlConnection) As MySqlDataAdapter

Dim da As MySqlDataAdapter = New MySqlDataAdapter()
Dim cmd As MySqlCommand
Dim parm As MySqlParameter
' Create the SelectCommand.
cmd = New MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn)
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15)
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15)
da.SelectCommand = cmd
' Create the DeleteCommand.
cmd = New MySqlCommand("DELETE FROM mytable WHERE id=?id", conn)
parm = cmd.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
parm.SourceVersion = DataRowVersion.Original
da.DeleteCommand = cmd
Return da

End Function

C# example:

public static MySqlDataAdapter CreateCustomerAdapter(MySqlConnection conn)
{
MySqlDataAdapter da = new MySqlDataAdapter();
MySqlCommand cmd;
MySqlParameter parm;
// Create the SelectCommand.
cmd = new MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15);
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15);
da.SelectCommand = cmd;
// Create the DeleteCommand.
cmd = new MySqlCommand("DELETE FROM mytable WHERE id=?id", conn);
parm = cmd.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
parm.SourceVersion = DataRowVersion.Original;
da.DeleteCommand = cmd;
return da;

}

27.2.3.4.6. InsertCommand

Gets or sets a SQL statement or stored procedure used to insert records into the data set.

Value: A MySqlCommand used during System.Data.Common.DataAdapter.Update to insert records into the database that
correspond to new rows in the DataSet.

During System.Data.Common.DataAdapter.Update, if this property is not set and primary key information is present in the
DataSet, the InsertCommand can be generated automatically if you set the SelectCommand property and use the MySqlCom-
mandBuilder. Then, any additional commands that you do not set are generated by the MySqlCommandBuilder. This generation
logic requires key column information to be present in the DataSet.

When InsertCommand is assigned to a previously created MySqlCommand, the MySqlCommand is not cloned. The Insert-
Command maintains a reference to the previously created MySqlCommand object.

Note

If execution of this command returns rows, these rows may be added to the DataSet depending on how you set the
MySqlCommand.UpdatedRowSource property of the MySqlCommand object.

Examples

The following example creates a MySqlDataAdapter and sets the SelectCommand and InsertCommand properties. It assumes
you have already created a MySqlConnection object.

Visual Basic example:

Public Shared Function CreateCustomerAdapter(conn As MySqlConnection) As MySqlDataAdapter

Connectors

1616



Dim da As MySqlDataAdapter = New MySqlDataAdapter()
Dim cmd As MySqlCommand
Dim parm As MySqlParameter
' Create the SelectCommand.
cmd = New MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn)
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15)
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15)
da.SelectCommand = cmd
' Create the InsertCommand.
cmd = New MySqlCommand("INSERT INTO mytable (id,name) VALUES (?id, ?name)", conn)
cmd.Parameters.Add( "?id", MySqlDbType.VarChar, 15, "id" )
cmd.Parameters.Add( "?name", MySqlDbType.VarChar, 15, "name" )
da.InsertCommand = cmd

Return da
End Function

C# example:

public static MySqlDataAdapter CreateCustomerAdapter(MySqlConnection conn)
{
MySqlDataAdapter da = new MySqlDataAdapter();
MySqlCommand cmd;
MySqlParameter parm;
// Create the SelectCommand.
cmd = new MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15);
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15);
da.SelectCommand = cmd;
// Create the InsertCommand.
cmd = new MySqlCommand("INSERT INTO mytable (id,name) VALUES (?id,?name)", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15, "id" );
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15, "name" );

da.InsertCommand = cmd;
return da;

}

27.2.3.4.7. UpdateCommand

Gets or sets a SQL statement or stored procedure used to updated records in the data source.

Value: A MySqlCommand used during System.Data.Common.DataAdapter.Update to update records in the database with
data from the DataSet.

During System.Data.Common.DataAdapter.Update, if this property is not set and primary key information is present in the
DataSet, the UpdateCommand can be generated automatically if you set the SelectCommand property and use the MySqlCom-
mandBuilder. Then, any additional commands that you do not set are generated by the MySqlCommandBuilder. This generation
logic requires key column information to be present in the DataSet.

When UpdateCommand is assigned to a previously created MySqlCommand, the MySqlCommand is not cloned. The Update-
Command maintains a reference to the previously created MySqlCommand object.

Note

If execution of this command returns rows, these rows may be merged with the DataSet depending on how you set the
MySqlCommand.UpdatedRowSource property of the MySqlCommand object.

Examples

The following example creates a MySqlDataAdapter and sets the SelectCommand and UpdateCommand properties. It assumes
you have already created a MySqlConnection object.

Visual Basic example:

Public Shared Function CreateCustomerAdapter(conn As MySqlConnection) As MySqlDataAdapter

Dim da As MySqlDataAdapter = New MySqlDataAdapter()
Dim cmd As MySqlCommand
Dim parm As MySqlParameter
' Create the SelectCommand.
cmd = New MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn)
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15)
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15)
da.SelectCommand = cmd

Connectors

1617



' Create the UpdateCommand.
cmd = New MySqlCommand("UPDATE mytable SET id=?id, name=?name WHERE id=?oldId", conn)
cmd.Parameters.Add( "?id", MySqlDbType.VarChar, 15, "id" )
cmd.Parameters.Add( "?name", MySqlDbType.VarChar, 15, "name" )

parm = cmd.Parameters.Add("?oldId", MySqlDbType.VarChar, 15, "id")
parm.SourceVersion = DataRowVersion.Original

da.UpdateCommand = cmd

Return da
End Function

C# example:

public static MySqlDataAdapter CreateCustomerAdapter(MySqlConnection conn)
{
MySqlDataAdapter da = new MySqlDataAdapter();
MySqlCommand cmd;
MySqlParameter parm;
// Create the SelectCommand.
cmd = new MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15);
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15);
da.SelectCommand = cmd;
// Create the UpdateCommand.
cmd = new MySqlCommand("UPDATE mytable SET id=?id, name=?name WHERE id=?oldId", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15, "id" );
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15, "name" );

parm = cmd.Parameters.Add( "?oldId", MySqlDbType.VarChar, 15, "id" );
parm.SourceVersion = DataRowVersion.Original;

da.UpdateCommand = cmd;
return da;

}

27.2.3.4.8. SelectCommand

Gets or sets a SQL statement or stored procedure used to select records in the data source.

Value: A MySqlCommand used during System.Data.Common.DbDataAdapter.Fill to select records from the database for
placement in the DataSet.

When SelectCommand is assigned to a previously created MySqlCommand, the MySqlCommand is not cloned. The Select-
Command maintains a reference to the previously created MySqlCommand object.

If the SelectCommand does not return any rows, no tables are added to the DataSet, and no exception is raised.

Examples

The following example creates a MySqlDataAdapter and sets the SelectCommand and InsertCommand properties. It assumes
you have already created a MySqlConnection object.

Visual Basic example:

Public Shared Function CreateCustomerAdapter(conn As MySqlConnection) As MySqlDataAdapter

Dim da As MySqlDataAdapter = New MySqlDataAdapter()
Dim cmd As MySqlCommand
Dim parm As MySqlParameter
' Create the SelectCommand.
cmd = New MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn)
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15)
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15)
da.SelectCommand = cmd
' Create the InsertCommand.
cmd = New MySqlCommand("INSERT INTO mytable (id,name) VALUES (?id, ?name)", conn)
cmd.Parameters.Add( "?id", MySqlDbType.VarChar, 15, "id" )
cmd.Parameters.Add( "?name", MySqlDbType.VarChar, 15, "name" )
da.InsertCommand = cmd

Return da
End Function

C# example:

Connectors

1618



public static MySqlDataAdapter CreateCustomerAdapter(MySqlConnection conn)
{
MySqlDataAdapter da = new MySqlDataAdapter();
MySqlCommand cmd;
MySqlParameter parm;
// Create the SelectCommand.
cmd = new MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15);
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15);
da.SelectCommand = cmd;
// Create the InsertCommand.
cmd = new MySqlCommand("INSERT INTO mytable (id,name) VALUES (?id,?name)", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15, "id" );
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15, "name" );

da.InsertCommand = cmd;
return da;

}

27.2.3.5. Using MySqlDataReader

To create a MySQLDataReader, you must call the MySqlCommand.ExecuteReader method of the MySqlCommand object,
rather than directly using a constructor.

While the MySqlDataReader is in use, the associated MySqlConnection is busy serving the MySqlDataReader, and no other
operations can be performed on the MySqlConnection other than closing it. This is the case until the MySqlDataReader.Close
method of the MySqlDataReader is called.

MySqlDataReader.IsClosed and MySqlDataReader.RecordsAffected are the only properties that you can call after the
MySqlDataReader is closed. Though the RecordsAffected property may be accessed at any time while the
MySqlDataReader exists, always call Close before returning the value of RecordsAffected to ensure an accurate return value.

For optimal performance, MySqlDataReader avoids creating unnecessary objects or making unnecessary copies of data. As a result,
multiple calls to methods such as MySqlDataReader.GetValue return a reference to the same object. Use caution if you are
modifying the underlying value of the objects returned by methods such as GetValue.

Examples

The following example creates a MySqlConnection, a MySqlCommand, and a MySqlDataReader. The example reads through
the data, writing it out to the console. Finally, the example closes the MySqlDataReader, then the MySqlConnection.

Visual Basic example:

Public Sub ReadMyData(myConnString As String)
Dim mySelectQuery As String = "SELECT OrderID, CustomerID FROM Orders"
Dim myConnection As New MySqlConnection(myConnString)
Dim myCommand As New MySqlCommand(mySelectQuery, myConnection)
myConnection.Open()
Dim myReader As MySqlDataReader
myReader = myCommand.ExecuteReader()
' Always call Read before accessing data.
While myReader.Read()

Console.WriteLine((myReader.GetInt32(0) & ", " & myReader.GetString(1)))
End While
' always call Close when done reading.
myReader.Close()
' Close the connection when done with it.
myConnection.Close()

End Sub 'ReadMyData

C# example:

public void ReadMyData(string myConnString) {
string mySelectQuery = "SELECT OrderID, CustomerID FROM Orders";
MySqlConnection myConnection = new MySqlConnection(myConnString);
MySqlCommand myCommand = new MySqlCommand(mySelectQuery,myConnection);
myConnection.Open();
MySqlDataReader myReader;
myReader = myCommand.ExecuteReader();
// Always call Read before accessing data.
while (myReader.Read()) {

Console.WriteLine(myReader.GetInt32(0) + ", " + myReader.GetString(1));
}
// always call Close when done reading.
myReader.Close();
// Close the connection when done with it.

Connectors

1619



myConnection.Close();
}

27.2.3.5.1. GetBytes

GetBytes returns the number of available bytes in the field. In most cases this is the exact length of the field. However, the number
returned may be less than the true length of the field if GetBytes has already been used to obtain bytes from the field. This may be the
case, for example, if the MySqlDataReader is reading a large data structure into a buffer. For more information, see the Sequen-
tialAccess setting for MySqlCommand.CommandBehavior.

If you pass a buffer that is a null reference (Nothing in Visual Basic), GetBytes returns the length of the field in bytes.

No conversions are performed; therefore the data retrieved must already be a byte array.

27.2.3.5.2. GetTimeSpan

Gets the value of the specified column as a TimeSpan object.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.3. GetDateTime

Gets the value of the specified column as a System.DateTime object.

Note

MySQL allows date columns to contain the value '0000-00-00' and datetime columns to contain the value '0000-00-00
00:00:00'. The DateTime structure cannot contain or represent these values. To read a datetime value from a column that
might contain zero values, use GetMySqlDateTime. The behavior of reading a zero datetime column using this method
is defined by the ZeroDateTimeBehavior connection string option. For more information on this option, please refer
to MySqlConnection.ConnectionString.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.4. GetMySqlDateTime

Gets the value of the specified column as a MySql.Data.Types.MySqlDateTime object.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.5. GetString

Gets the value of the specified column as a String object.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.6. GetDecimal

Gets the value of the specified column as a Decimal object.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

Connectors

1620



27.2.3.5.7. GetDouble

Gets the value of the specified column as a double-precision floating point number.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.8. GetFloat

Gets the value of the specified column as a single-precision floating point number.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.9. GetGiud

Gets the value of the specified column as a globally-unique identifier (GUID).

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.10. GetInt16

Gets the value of the specified column as a 16-bit signed integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.11. GetInt32

Gets the value of the specified column as a 32-bit signed integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.12. GetInt64

Gets the value of the specified column as a 64-bit signed integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.13. GetUInt16

Gets the value of the specified column as a 16-bit unsigned integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.14. GetUInt32

Gets the value of the specified column as a 32-bit unsigned integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.5.15. GetUInt64

Connectors

1621



Gets the value of the specified column as a 64-bit unsigned integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

27.2.3.6. Using MySqlException

This class is created whenever the MySQL Data Provider encounters an error generated from the server.

Any open connections are not automatically closed when an exception is thrown. If the client application determines that the exception
is fatal, it should close any open MySqlDataReader objects or MySqlConnection objects.

Examples

The following example generates a MySqlException due to a missing server, and then displays the exception.

Visual Basic example:

Public Sub ShowException()
Dim mySelectQuery As String = "SELECT column1 FROM table1"
Dim myConnection As New MySqlConnection ("Data Source=localhost;Database=Sample;")
Dim myCommand As New MySqlCommand(mySelectQuery, myConnection)
Try

myCommand.Connection.Open()
Catch e As MySqlException
MessageBox.Show( e.Message )
End Try

End Sub

C# example:

public void ShowException()
{

string mySelectQuery = "SELECT column1 FROM table1";
MySqlConnection myConnection =

new MySqlConnection("Data Source=localhost;Database=Sample;");
MySqlCommand myCommand = new MySqlCommand(mySelectQuery,myConnection);
try
{

myCommand.Connection.Open();
}
catch (MySqlException e)
{
MessageBox.Show( e.Message );
}

}

27.2.3.7. Using MySqlParameter

Parameter names are not case sensitive.

Examples

The following example creates multiple instances of MySqlParameter through the MySqlParameterCollection collection
within the MySqlDataAdapter. These parameters are used to select data from the data source and place the data in the DataSet.
This example assumes that a DataSet and a MySqlDataAdapter have already been created with the appropriate schema, com-
mands, and connection.

Visual Basic example:

Public Sub AddSqlParameters()
' ...
' create myDataSet and myDataAdapter
' ...
myDataAdapter.SelectCommand.Parameters.Add("@CategoryName", MySqlDbType.VarChar, 80).Value = "toasters"
myDataAdapter.SelectCommand.Parameters.Add("@SerialNum", MySqlDbType.Long).Value = 239

myDataAdapter.Fill(myDataSet)
End Sub 'AddSqlParameters

Connectors

1622



C# example:

public void AddSqlParameters()
{
// ...
// create myDataSet and myDataAdapter
// ...
myDataAdapter.SelectCommand.Parameters.Add("@CategoryName", MySqlDbType.VarChar, 80).Value = "toasters";
myDataAdapter.SelectCommand.Parameters.Add("@SerialNum", MySqlDbType.Long).Value = 239;
myDataAdapter.Fill(myDataSet);

}

27.2.3.8. Using MySqlParameterCollection

The number of the parameters in the collection must be equal to the number of parameter placeholders within the command text, or an
exception will be generated.

Examples

The following example creates multiple instances of MySqlParameter through the MySqlParameterCollection collection
within the MySqlDataAdapter. These parameters are used to select data within the data source and place the data in the DataSet.
This code assumes that a DataSet and a MySqlDataAdapter have already been created with the appropriate schema, commands,
and connection.

Visual Basic example:

Public Sub AddParameters()
' ...
' create myDataSet and myDataAdapter
' ...
myDataAdapter.SelectCommand.Parameters.Add("@CategoryName", MySqlDbType.VarChar, 80).Value = "toasters"
myDataAdapter.SelectCommand.Parameters.Add("@SerialNum", MySqlDbType.Long).Value = 239

myDataAdapter.Fill(myDataSet)
End Sub 'AddSqlParameters

C# example:

public void AddSqlParameters()
{
// ...
// create myDataSet and myDataAdapter
// ...
myDataAdapter.SelectCommand.Parameters.Add("@CategoryName", MySqlDbType.VarChar, 80).Value = "toasters";
myDataAdapter.SelectCommand.Parameters.Add("@SerialNum", MySqlDbType.Long).Value = 239;
myDataAdapter.Fill(myDataSet);

}

27.2.3.9. Using MySqlTransaction

Represents a SQL transaction to be made in a MySQL database. This class cannot be inherited.

The application creates a MySqlTransaction object by calling MySqlConnection.BeginTransaction on the MySqlCon-
nection object. All subsequent operations associated with the transaction (for example, committing or aborting the transaction), are
performed on the MySqlTransaction object.

Note

Once you have started a transaction on a connection all subsequent commands on that connection are applied within the
scope of the transaction. You cannot execute an SQL statement on the same connection outside of the transaction scope. If
you need to do this while executing statements that are part of a transaction, open a second a connection to be used for ex-
ecution the non-transaction statements.

Examples

The following example creates a MySqlConnection and a MySqlTransaction. It also demonstrates how to use the MySql-
Connection.BeginTransaction, MySqlTransaction.Commit, and MySqlTransaction.Rollback methods.

Connectors

1623



Visual Basic example:

Public Sub RunTransaction(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()

Dim myCommand As MySqlCommand = myConnection.CreateCommand()
Dim myTrans As MySqlTransaction

' Start a local transaction
myTrans = myConnection.BeginTransaction()
' Must assign both transaction object and connection
' to Command object for a pending local transaction
myCommand.Connection = myConnection
myCommand.Transaction = myTrans

Try
myCommand.CommandText = "Insert into Region (RegionID, RegionDescription) VALUES (100, 'Description')"
myCommand.ExecuteNonQuery()
myCommand.CommandText = "Insert into Region (RegionID, RegionDescription) VALUES (101, 'Description')"
myCommand.ExecuteNonQuery()
myTrans.Commit()
Console.WriteLine("Both records are written to database.")

Catch e As Exception
Try
myTrans.Rollback()

Catch ex As MySqlException
If Not myTrans.Connection Is Nothing Then
Console.WriteLine("An exception of type " & ex.GetType().ToString() & _

" was encountered while attempting to roll back the transaction.")
End If

End Try

Console.WriteLine("An exception of type " & e.GetType().ToString() & _
"was encountered while inserting the data.")

Console.WriteLine("Neither record was written to database.")
Finally
myConnection.Close()

End Try
End Sub 'RunTransaction

C# example:

public void RunTransaction(string myConnString)
{

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MySqlCommand myCommand = myConnection.CreateCommand();
MySqlTransaction myTrans;
// Start a local transaction
myTrans = myConnection.BeginTransaction();
// Must assign both transaction object and connection
// to Command object for a pending local transaction
myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;
try
{
myCommand.CommandText = "Insert into Region (RegionID, RegionDescription) VALUES (100, 'Description')";
myCommand.ExecuteNonQuery();
myCommand.CommandText = "Insert into Region (RegionID, RegionDescription) VALUES (101, 'Description')";
myCommand.ExecuteNonQuery();
myTrans.Commit();
Console.WriteLine("Both records are written to database.");

}
catch(Exception e)
{
try
{
myTrans.Rollback();

}
catch (MySqlException ex)
{
if (myTrans.Connection != null)
{
Console.WriteLine("An exception of type " + ex.GetType() +

" was encountered while attempting to roll back the transaction.");
}

}

Console.WriteLine("An exception of type " + e.GetType() +
" was encountered while inserting the data.");

Console.WriteLine("Neither record was written to database.");
}
finally
{
myConnection.Close();

Connectors

1624



}
}

27.2.3.9.1. Rollback

Rolls back a transaction from a pending state.

The Rollback method is equivalent to the MySQL statement ROLLBACK. The transaction can only be rolled back from a pending state
(after BeginTransaction has been called, but before Commit is called).

Examples

The following example creates MySqlConnection and a MySqlTransaction. It also demonstrates how to use the MySqlCon-
nection.BeginTransaction, Commit, and Rollback methods.

Visual Basic example:

Public Sub RunSqlTransaction(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()

Dim myCommand As MySqlCommand = myConnection.CreateCommand()
Dim myTrans As MySqlTransaction

' Start a local transaction
myTrans = myConnection.BeginTransaction()

' Must assign both transaction object and connection
' to Command object for a pending local transaction
myCommand.Connection = myConnection
myCommand.Transaction = myTrans

Try
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (100, 'Description')"
myCommand.ExecuteNonQuery()
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (101, 'Description')"
myCommand.ExecuteNonQuery()
myTrans.Commit()
Console.WriteLine("Success.")

Catch e As Exception
Try
myTrans.Rollback()

Catch ex As MySqlException
If Not myTrans.Connection Is Nothing Then
Console.WriteLine("An exception of type " & ex.GetType().ToString() & _

" was encountered while attempting to roll back the transaction.")
End If

End Try

Console.WriteLine("An exception of type " & e.GetType().ToString() & _
"was encountered while inserting the data.")

Console.WriteLine("Neither record was written to database.")
Finally
myConnection.Close()

End Try
End Sub

C# example:

public void RunSqlTransaction(string myConnString)
{

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MySqlCommand myCommand = myConnection.CreateCommand();
MySqlTransaction myTrans;
// Start a local transaction
myTrans = myConnection.BeginTransaction();
// Must assign both transaction object and connection
// to Command object for a pending local transaction
myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;
try
{
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (100, 'Description')";
myCommand.ExecuteNonQuery();
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (101, 'Description')";
myCommand.ExecuteNonQuery();
myTrans.Commit();
Console.WriteLine("Both records are written to database.");

}

Connectors

1625



catch(Exception e)
{
try
{
myTrans.Rollback();

}
catch (MySqlException ex)
{
if (myTrans.Connection != null)
{
Console.WriteLine("An exception of type " + ex.GetType() +

" was encountered while attempting to roll back the transaction.");
}

}

Console.WriteLine("An exception of type " + e.GetType() +
" was encountered while inserting the data.");

Console.WriteLine("Neither record was written to database.");
}
finally
{
myConnection.Close();

}
}

27.2.3.9.2. Commit

Commits the database transaction.

The Commit method is equivalent to the MySQL SQL statement COMMIT.

Examples

The following example creates MySqlConnection and a MySqlTransaction. It also demonstrates how to use the MySqlCon-
nection.BeginTransaction, Commit, and Rollback methods.

Visual Basic example:

Public Sub RunSqlTransaction(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()

Dim myCommand As MySqlCommand = myConnection.CreateCommand()
Dim myTrans As MySqlTransaction

' Start a local transaction
myTrans = myConnection.BeginTransaction()

' Must assign both transaction object and connection
' to Command object for a pending local transaction
myCommand.Connection = myConnection
myCommand.Transaction = myTrans

Try
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (100, 'Description')"
myCommand.ExecuteNonQuery()
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (101, 'Description')"
myCommand.ExecuteNonQuery()
myTrans.Commit()
Console.WriteLine("Success.")

Catch e As Exception
Try
myTrans.Rollback()

Catch ex As MySqlException
If Not myTrans.Connection Is Nothing Then
Console.WriteLine("An exception of type " & ex.GetType().ToString() & _

" was encountered while attempting to roll back the transaction.")
End If

End Try

Console.WriteLine("An exception of type " & e.GetType().ToString() & _
"was encountered while inserting the data.")

Console.WriteLine("Neither record was written to database.")
Finally
myConnection.Close()

End Try
End Sub

C# example:

public void RunSqlTransaction(string myConnString)
{

Connectors

1626



MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MySqlCommand myCommand = myConnection.CreateCommand();
MySqlTransaction myTrans;
// Start a local transaction
myTrans = myConnection.BeginTransaction();
// Must assign both transaction object and connection
// to Command object for a pending local transaction
myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;
try
{
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (100, 'Description')";
myCommand.ExecuteNonQuery();
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (101, 'Description')";
myCommand.ExecuteNonQuery();
myTrans.Commit();
Console.WriteLine("Both records are written to database.");

}
catch(Exception e)
{
try
{
myTrans.Rollback();

}
catch (MySqlException ex)
{
if (myTrans.Connection != null)
{
Console.WriteLine("An exception of type " + ex.GetType() +

" was encountered while attempting to roll back the transaction.");
}

}

Console.WriteLine("An exception of type " + e.GetType() +
" was encountered while inserting the data.");

Console.WriteLine("Neither record was written to database.");
}
finally
{
myConnection.Close();

}
}

27.2.4. Connector/NET Reference
This section of the manual contains a complete reference to the Connector/NET ADO.NET component, automatically generated from
the embedded documentation.

27.2.4.1. MySql.Data.MySqlClient

Namespace hierarchy

Classes

Class Description

MySqlCommand

MySqlCommandBuilder

MySqlConnection

MySqlDataAdapter

MySqlDataReader Provides a means of reading a forward-only stream of rows from a
MySQL database. This class cannot be inherited.

MySqlError Collection of error codes that can be returned by the server

MySqlException The exception that is thrown when MySQL returns an error. This
class cannot be inherited.

MySqlHelper Helper class that makes it easier to work with the provider.

MySqlInfoMessageEventArgs Provides data for the InfoMessage event. This class cannot be in-
herited.

MySqlParameter Represents a parameter to a MySqlCommand , and optionally, its
mapping to DataSetcolumns. This class cannot be inherited.

Connectors

1627



MySqlParameterCollection Represents a collection of parameters relevant to a MySqlCom-
mand as well as their respective mappings to columns in a Data-
Set. This class cannot be inherited.

MySqlRowUpdatedEventArgs Provides data for the RowUpdated event. This class cannot be in-
herited.

MySqlRowUpdatingEventArgs Provides data for the RowUpdating event. This class cannot be in-
herited.

MySqlTransaction

Delegates

Delegate Description

MySqlInfoMessageEventHandler Represents the method that will handle the InfoMessage event of a
MySqlConnection.

MySqlRowUpdatedEventHandler Represents the method that will handle the RowUpdatedevent of a
MySqlDataAdapter .

MySqlRowUpdatingEventHandler Represents the method that will handle the RowUpdatingevent of a
MySqlDataAdapter .

Enumerations

Enumeration Description

MySqlDbType Specifies MySQL specific data type of a field, property, for use in
a MySqlParameter .

MySqlErrorCode

27.2.4.1.1. MySql.Data.MySqlClientHierarchy

See Also

MySql.Data.MySqlClient Namespace

27.2.4.1.2. MySqlCommand Class

For a list of all members of this type, see MySqlCommand Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlCommand_
Inherits Component_
Implements IDbCommand, ICloneable

Syntax: C#

public sealed class MySqlCommand : Component, IDbCommand, ICloneable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed
to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

Connectors

1628



See Also

MySqlCommand Members , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1. MySqlCommand Members

MySqlCommand overview

Public Instance Constructors

MySqlCommand Overloaded. Initializes a new instance of the MySqlCommand
class.

Public Instance Properties

CommandText

CommandTimeout

CommandType

Connection

Container(inherited from Component) Gets the IContainerthat contains the Component.

IsPrepared

Parameters

Site(inherited from Component) Gets or sets the ISiteof the Component.

Transaction

UpdatedRowSource

Public Instance Methods

Cancel Attempts to cancel the execution of a MySqlCommand. This oper-
ation is not supported.

CreateObjRef(inherited from MarshalByRefObject) Creates an object that contains all the relevant information re-
quired to generate a proxy used to communicate with a remote ob-
ject.

CreateParameter Creates a new instance of a MySqlParameter object.

Dispose(inherited from Component) Releases all resources used by the Component.

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

ExecuteNonQuery

ExecuteReader Overloaded.

ExecuteScalar

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetLifetimeService(inherited from MarshalByRefObject) Retrieves the current lifetime service object that controls the life-
time policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

InitializeLifetimeService(inherited from MarshalByRefObject) Obtains a lifetime service object to control the lifetime policy for
this instance.

Prepare

ToString(inherited from Component) Returns a Stringcontaining the name of the Component, if any.
This method should not be overridden.

Connectors

1629



Public Instance Events

Disposed(inherited from Component) Adds an event handler to listen to the Disposedevent on the com-
ponent.

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1. MySqlCommand Constructor

Initializes a new instance of the MySqlCommand class.

Overload List

Initializes a new instance of the MySqlCommand class.

• public MySqlCommand();

• public MySqlCommand(string);

• public MySqlCommand(string,MySqlConnection);

• public MySqlCommand(string,MySqlConnection,MySqlTransaction);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.1. MySqlCommand Constructor ()

Initializes a new instance of the MySqlCommand class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlCommand();

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand Constructor Overload List

27.2.4.1.2.1.1.2. MySqlCommand Constructor (String)

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal cmdText As String _

)

Syntax: C#

public MySqlCommand(
stringcmdText
);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand Constructor Overload List

Connectors

1630



27.2.4.1.2.1.1.3. MySqlCommand Constructor

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal cmdText As String, _
ByVal connection As MySqlConnection _

)

Syntax: C#

public MySqlCommand(
stringcmdText,
MySqlConnectionconnection
);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand Constructor Overload List

27.2.4.1.2.1.1.3.1. MySqlConnection Class

For a list of all members of this type, see MySqlConnection Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlConnection_
Inherits Component_
Implements IDbConnection, ICloneable

Syntax: C#

public sealed class MySqlConnection : Component, IDbConnection, ICloneable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed
to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlConnection Members , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1. MySqlConnection Members

MySqlConnection overview

Public Instance Constructors

MySqlConnection Overloaded. Initializes a new instance of the MySqlConnection
class.

Public Instance Properties

ConnectionString

ConnectionTimeout

Container(inherited from Component) Gets the IContainerthat contains the Component.

Database

Connectors

1631



DataSource Gets the name of the MySQL server to which to connect.

ServerThread Returns the id of the server thread this connection is executing on

ServerVersion

Site(inherited from Component) Gets or sets the ISiteof the Component.

State

UseCompression Indicates if this connection should use compression when commu-
nicating with the server.

Public Instance Methods

BeginTransaction Overloaded.

ChangeDatabase

Close

CreateCommand

CreateObjRef(inherited from MarshalByRefObject) Creates an object that contains all the relevant information re-
quired to generate a proxy used to communicate with a remote ob-
ject.

Dispose(inherited from Component) Releases all resources used by the Component.

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetLifetimeService(inherited from MarshalByRefObject) Retrieves the current lifetime service object that controls the life-
time policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

InitializeLifetimeService(inherited from MarshalByRefObject) Obtains a lifetime service object to control the lifetime policy for
this instance.

Open

Ping Ping

ToString(inherited from Component) Returns a Stringcontaining the name of the Component, if any.
This method should not be overridden.

Public Instance Events

Disposed(inherited from Component) Adds an event handler to listen to the Disposedevent on the com-
ponent.

InfoMessage

StateChange

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.1. MySqlConnection Constructor

Initializes a new instance of the MySqlConnection class.

Overload List

Initializes a new instance of the MySqlConnection class.

Connectors

1632



• public MySqlConnection();

• public MySqlConnection(string);

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.1.1. MySqlConnection Constructor

Initializes a new instance of the MySqlConnection class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlConnection();

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace , MySqlConnection Constructor Overload List

27.2.4.1.2.1.1.3.1.1.1.2. MySqlConnection Constructor

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal connectionString As String _

)

Syntax: C#

public MySqlConnection(
stringconnectionString
);

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace , MySqlConnection Constructor Overload List

27.2.4.1.2.1.1.3.1.1.2. ConnectionString Property

Syntax: Visual Basic

NotOverridable Public Property ConnectionString As String _
_
Implements IDbConnection.ConnectionString

Syntax: C#

public string ConnectionString {get; set;}

Implements

IDbConnection.ConnectionString

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.3. ConnectionTimeout Property

Connectors

1633



Syntax: Visual Basic

NotOverridable Public ReadOnly Property ConnectionTimeout As Integer _
_
Implements IDbConnection.ConnectionTimeout

Syntax: C#

public int ConnectionTimeout {get;}

Implements

IDbConnection.ConnectionTimeout

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.4. Database Property

Syntax: Visual Basic

NotOverridable Public ReadOnly Property Database As String _
_
Implements IDbConnection.Database

Syntax: C#

public string Database {get;}

Implements

IDbConnection.Database

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.5. DataSource Property

Gets the name of the MySQL server to which to connect.

Syntax: Visual Basic

Public ReadOnly Property DataSource As String

Syntax: C#

public string DataSource {get;}

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.6. ServerThread Property

Returns the id of the server thread this connection is executing on

Syntax: Visual Basic

Public ReadOnly Property ServerThread As Integer

Syntax: C#

public int ServerThread {get;}

Connectors

1634



See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.7. ServerVersion Property

Syntax: Visual Basic

Public ReadOnly Property ServerVersion As String

Syntax: C#

public string ServerVersion {get;}

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.8. State Property

Syntax: Visual Basic

NotOverridable Public ReadOnly Property State As ConnectionState _
_
Implements IDbConnection.State

Syntax: C#

public System.Data.ConnectionState State {get;}

Implements

IDbConnection.State

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.9. UseCompression Property

Indicates if this connection should use compression when communicating with the server.

Syntax: Visual Basic

Public ReadOnly Property UseCompression As Boolean

Syntax: C#

public bool UseCompression {get;}

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.10. BeginTransaction Method

Overload List

• public MySqlTransaction BeginTransaction();

• public MySqlTransaction BeginTransaction(IsolationLevel);

Connectors

1635



See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.10.1. MySqlConnection.BeginTransaction Method

Syntax: Visual Basic

Overloads Public Function BeginTransaction() As MySqlTransaction

Syntax: C#

public MySqlTransaction BeginTransaction();

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace , MySqlConnection.BeginTransaction Overload List

27.2.4.1.2.1.1.3.1.1.10.1.1. MySqlTransaction Class

For a list of all members of this type, see MySqlTransaction Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlTransaction_
Implements IDbTransaction, IDisposable

Syntax: C#

public sealed class MySqlTransaction : IDbTransaction, IDisposable

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. Instance members are notguaranteed to
be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlTransaction Members , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.10.1.1.1. MySqlTransaction Members

MySqlTransaction overview

Public Instance Properties

Connection Gets the MySqlConnection object associated with the transaction,
or a null reference (Nothing in Visual Basic) if the transaction is
no longer valid.

IsolationLevel Specifies the IsolationLevelfor this transaction.

Public Instance Methods

Commit

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

Connectors

1636



GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

Rollback

ToString(inherited from Object) Returns a Stringthat represents the current Object.

See Also

MySqlTransaction Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.10.1.1.1.1. Connection Property

Gets the MySqlConnection object associated with the transaction, or a null reference (Nothing in Visual Basic) if the transaction is no
longer valid.

Syntax: Visual Basic

Public ReadOnly Property Connection As MySqlConnection

Syntax: C#

public MySqlConnection Connection {get;}

Property Value

The MySqlConnection object associated with this transaction.

Remarks

A single application may have multiple database connections, each with zero or more transactions. This property enables you to determ-
ine the connection object associated with a particular transaction created by BeginTransaction .

See Also

MySqlTransaction Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.10.1.1.1.2. IsolationLevel Property

Specifies the IsolationLevelfor this transaction.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property IsolationLevel As IsolationLevel _
_
Implements IDbTransaction.IsolationLevel

Syntax: C#

public System.Data.IsolationLevel IsolationLevel {get;}

Property Value

The IsolationLevel for this transaction. The default is ReadCommitted.

Implements

IDbTransaction.IsolationLevel

Remarks

Parallel transactions are not supported. Therefore, the IsolationLevel applies to the entire transaction.

Connectors

1637



See Also

MySqlTransaction Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.10.1.1.1.3. MySqlTransaction.Commit Method

Syntax: Visual Basic

NotOverridable Public Sub Commit() _
_
Implements IDbTransaction.Commit

Syntax: C#

public void Commit();

Implements

IDbTransaction.Commit

See Also

MySqlTransaction Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.10.1.1.1.4. MySqlTransaction.Rollback Method

Syntax: Visual Basic

NotOverridable Public Sub Rollback() _
_
Implements IDbTransaction.Rollback

Syntax: C#

public void Rollback();

Implements

IDbTransaction.Rollback

See Also

MySqlTransaction Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.10.2. MySqlConnection.BeginTransaction Method

Syntax: Visual Basic

Overloads Public Function BeginTransaction( _
ByVal iso As IsolationLevel _

) As MySqlTransaction

Syntax: C#

public MySqlTransaction BeginTransaction(
IsolationLeveliso
);

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace , MySqlConnection.BeginTransaction Overload List

27.2.4.1.2.1.1.3.1.1.11. MySqlConnection.ChangeDatabase Method

Syntax: Visual Basic

Connectors

1638



NotOverridable Public Sub ChangeDatabase( _
ByVal databaseName As String _

) _
_
Implements IDbConnection.ChangeDatabase

Syntax: C#

public void ChangeDatabase(
stringdatabaseName
);

Implements

IDbConnection.ChangeDatabase

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.12. MySqlConnection.Close Method

Syntax: Visual Basic

NotOverridable Public Sub Close() _
_
Implements IDbConnection.Close

Syntax: C#

public void Close();

Implements

IDbConnection.Close

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.13. MySqlConnection.CreateCommand Method

Syntax: Visual Basic

Public Function CreateCommand() As MySqlCommand

Syntax: C#

public MySqlCommand CreateCommand();

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.14. MySqlConnection.Open Method

Syntax: Visual Basic

NotOverridable Public Sub Open() _
_
Implements IDbConnection.Open

Syntax: C#

public void Open();

Connectors

1639



Implements

IDbConnection.Open

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.15. MySqlConnection.Ping Method

Ping

Syntax: Visual Basic

Public Function Ping() As Boolean

Syntax: C#

public bool Ping();

Return Value

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16. MySqlConnection.InfoMessage Event

Syntax: Visual Basic

Public Event InfoMessage As MySqlInfoMessageEventHandler

Syntax: C#

public event MySqlInfoMessageEventHandler InfoMessage;

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16.1. MySqlInfoMessageEventHandler Delegate

Represents the method that will handle the InfoMessage event of a MySqlConnection .

Syntax: Visual Basic

Public Delegate Sub MySqlInfoMessageEventHandler( _
ByVal sender As Object, _
ByVal args As MySqlInfoMessageEventArgs _

)

Syntax: C#

public delegate void MySqlInfoMessageEventHandler(
objectsender,
MySqlInfoMessageEventArgsargs
);

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

Connectors

1640



MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16.1.1. MySqlInfoMessageEventArgs Class

Provides data for the InfoMessage event. This class cannot be inherited.

For a list of all members of this type, see MySqlInfoMessageEventArgs Members .

Syntax: Visual Basic

Public Class MySqlInfoMessageEventArgs_
Inherits EventArgs

Syntax: C#

public class MySqlInfoMessageEventArgs : EventArgs

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. Instance members are notguaranteed to
be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlInfoMessageEventArgs Members , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16.1.1.1. MySqlInfoMessageEventArgs Members

MySqlInfoMessageEventArgs overview

Public Instance Constructors

MySqlInfoMessageEventArgs Constructor Initializes a new instance of the MySqlInfoMessageEventArgs
class.

Public Instance Fields

errors

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

Protected Instance Methods

Finalize(inherited from Object) Allows an Objectto attempt to free resources and perform other
cleanup operations before the Objectis reclaimed by garbage col-
lection.

Connectors

1641



MemberwiseClone(inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlInfoMessageEventArgs Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16.1.1.1.1. MySqlInfoMessageEventArgs Constructor

Initializes a new instance of the MySqlInfoMessageEventArgs class.

Syntax: Visual Basic

Public Sub New()

Syntax: C#

public MySqlInfoMessageEventArgs();

See Also

MySqlInfoMessageEventArgs Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16.1.1.1.2. MySqlInfoMessageEventArgs.errors Field

Syntax: Visual Basic

Public errors As MySqlError()

Syntax: C#

public MySqlError[] errors;

See Also

MySqlInfoMessageEventArgs Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1. MySqlError Class

Collection of error codes that can be returned by the server

For a list of all members of this type, see MySqlError Members .

Syntax: Visual Basic

Public Class MySqlError

Syntax: C#

public class MySqlError

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed
to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

Connectors

1642



MySqlError Members , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1. MySqlError Members

MySqlError overview

Public Instance Constructors

MySqlError Constructor

Public Instance Properties

Code Error code

Level Error level

Message Error message

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

Protected Instance Methods

Finalize(inherited from Object) Allows an Objectto attempt to free resources and perform other
cleanup operations before the Objectis reclaimed by garbage col-
lection.

MemberwiseClone(inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlError Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.1. MySqlError Constructor

Syntax: Visual Basic

Public Sub New( _
ByVal level As String, _
ByVal code As Integer, _
ByVal message As String _

)

Syntax: C#

public MySqlError(
stringlevel,
intcode,
stringmessage
);

Parameters

• level:

Connectors

1643



• code:

• message:

See Also

MySqlError Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.2. Code Property

Error code

Syntax: Visual Basic

Public ReadOnly Property Code As Integer

Syntax: C#

public int Code {get;}

See Also

MySqlError Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.3. Level Property

Error level

Syntax: Visual Basic

Public ReadOnly Property Level As String

Syntax: C#

public string Level {get;}

See Also

MySqlError Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.4. Message Property

Error message

Syntax: Visual Basic

Public ReadOnly Property Message As String

Syntax: C#

public string Message {get;}

See Also

MySqlError Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.3.1.1.17. MySqlConnection.StateChange Event

Syntax: Visual Basic

Public Event StateChange As StateChangeEventHandler

Connectors

1644



Syntax: C#

public event StateChangeEventHandler StateChange;

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.1.4. MySqlCommand Constructor

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal cmdText As String, _
ByVal connection As MySqlConnection, _
ByVal transaction As MySqlTransaction _

)

Syntax: C#

public MySqlCommand(
stringcmdText,
MySqlConnectionconnection,
MySqlTransactiontransaction
);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand Constructor Overload List

27.2.4.1.2.1.2. CommandText Property

Syntax: Visual Basic

NotOverridable Public Property CommandText As String _
_
Implements IDbCommand.CommandText

Syntax: C#

public string CommandText {get; set;}

Implements

IDbCommand.CommandText

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.3. CommandTimeout Property

Syntax: Visual Basic

NotOverridable Public Property CommandTimeout As Integer _
_
Implements IDbCommand.CommandTimeout

Syntax: C#

public int CommandTimeout {get; set;}

Implements

IDbCommand.CommandTimeout

Connectors

1645



See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.4. CommandType Property

Syntax: Visual Basic

NotOverridable Public Property CommandType As CommandType _
_
Implements IDbCommand.CommandType

Syntax: C#

public System.Data.CommandType CommandType {get; set;}

Implements

IDbCommand.CommandType

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.5. Connection Property

Syntax: Visual Basic

Public Property Connection As MySqlConnection

Syntax: C#

public MySqlConnection Connection {get; set;}

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.6. IsPrepared Property

Syntax: Visual Basic

Public ReadOnly Property IsPrepared As Boolean

Syntax: C#

public bool IsPrepared {get;}

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7. Parameters Property

Syntax: Visual Basic

Public ReadOnly Property Parameters As MySqlParameterCollection

Syntax: C#

public MySqlParameterCollection Parameters {get;}

See Also

Connectors

1646



MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1. MySqlParameterCollection Class

Represents a collection of parameters relevant to a MySqlCommand as well as their respective mappings to columns in a DataSet. This
class cannot be inherited.

For a list of all members of this type, see MySqlParameterCollection Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlParameterCollection_
Inherits MarshalByRefObject_
Implements IDataParameterCollection, IList, ICollection, IEnumerable

Syntax: C#

public sealed class MySqlParameterCollection : MarshalByRefObject, IDataParameterCollection, IList, ICollection, IEnumerable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed
to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlParameterCollection Members , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1. MySqlParameterCollection Members

MySqlParameterCollection overview

Public Instance Constructors

MySqlParameterCollection Constructor Initializes a new instance of the MySqlParameterCollection class.

Public Instance Properties

Count Gets the number of MySqlParameter objects in the collection.

Item Overloaded. Gets the MySqlParameter with a specified attribute.
In C#, this property is the indexer for the MySqlParameterCollec-
tion class.

Public Instance Methods

Add Overloaded. Adds the specified MySqlParameter object to the
MySqlParameterCollection .

Clear Removes all items from the collection.

Contains Overloaded. Gets a value indicating whether a MySqlParameter
exists in the collection.

CopyTo Copies MySqlParameter objects from the MySqlParameterCollec-
tion to the specified array.

CreateObjRef(inherited from MarshalByRefObject) Creates an object that contains all the relevant information re-
quired to generate a proxy used to communicate with a remote ob-

Connectors

1647



ject.

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetLifetimeService(inherited from MarshalByRefObject) Retrieves the current lifetime service object that controls the life-
time policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

IndexOf Overloaded. Gets the location of a MySqlParameter in the collec-
tion.

InitializeLifetimeService(inherited from MarshalByRefObject) Obtains a lifetime service object to control the lifetime policy for
this instance.

Insert Inserts a MySqlParameter into the collection at the specified index.

Remove Removes the specified MySqlParameter from the collection.

RemoveAt Overloaded. Removes the specified MySqlParameter from the col-
lection.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.1. MySqlParameterCollection Constructor

Initializes a new instance of the MySqlParameterCollection class.

Syntax: Visual Basic

Public Sub New()

Syntax: C#

public MySqlParameterCollection();

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.2. Count Property

Gets the number of MySqlParameter objects in the collection.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property Count As Integer _
_
Implements ICollection.Count

Syntax: C#

public int Count {get;}

Implements

ICollection.Count

See Also

Connectors

1648



MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3. Item Property

Gets the MySqlParameter with a specified attribute. In C#, this property is the indexer for the MySqlParameterCollection class.

Overload List

Gets the MySqlParameter at the specified index.

• public MySqlParameter this[int] {get; set;}

Gets the MySqlParameter with the specified name.

• public MySqlParameter this[string] {get; set;}

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1. MySqlParameter Class

Represents a parameter to a MySqlCommand , and optionally, its mapping to DataSetcolumns. This class cannot be inherited.

For a list of all members of this type, see MySqlParameter Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlParameter_
Inherits MarshalByRefObject_
Implements IDataParameter, IDbDataParameter, ICloneable

Syntax: C#

public sealed class MySqlParameter : MarshalByRefObject, IDataParameter, IDbDataParameter, ICloneable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed
to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlParameter Members , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1. MySqlParameter Members

MySqlParameter overview

Public Instance Constructors

MySqlParameter Overloaded. Initializes a new instance of the MySqlParameter
class.

Public Instance Properties

Connectors

1649



DbType Gets or sets the DbTypeof the parameter.

Direction Gets or sets a value indicating whether the parameter is input-only,
output-only, bidirectional, or a stored procedure return value para-
meter. As of MySQL version 4.1 and earlier, input-only is the only
valid choice.

IsNullable Gets or sets a value indicating whether the parameter accepts null
values.

IsUnsigned

MySqlDbType Gets or sets the MySqlDbType of the parameter.

ParameterName Gets or sets the name of the MySqlParameter.

Precision Gets or sets the maximum number of digits used to represent the
Value property.

Scale Gets or sets the number of decimal places to which Value is re-
solved.

Size Gets or sets the maximum size, in bytes, of the data within the
column.

SourceColumn Gets or sets the name of the source column that is mapped to the
DataSetand used for loading or returning the Value .

SourceVersion Gets or sets the DataRowVersionto use when loading Value .

Value Gets or sets the value of the parameter.

Public Instance Methods

CreateObjRef(inherited from MarshalByRefObject) Creates an object that contains all the relevant information re-
quired to generate a proxy used to communicate with a remote ob-
ject.

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetLifetimeService(inherited from MarshalByRefObject) Retrieves the current lifetime service object that controls the life-
time policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

InitializeLifetimeService(inherited from MarshalByRefObject) Obtains a lifetime service object to control the lifetime policy for
this instance.

ToString Overridden. Gets a string containing the ParameterName .

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.1. MySqlParameter Constructor

Initializes a new instance of the MySqlParameter class.

Overload List

Initializes a new instance of the MySqlParameter class.

• public MySqlParameter();

Initializes a new instance of the MySqlParameter class with the parameter name and the data type.

Connectors

1650



• public MySqlParameter(string,MySqlDbType);

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType , and the size.

• public MySqlParameter(string,MySqlDbType,int);

Initializes a new instance of the MySqlParameter class with the parameter name, the type of the parameter, the size of the parameter, a
ParameterDirection, the precision of the parameter, the scale of the parameter, the source column, a DataRowVersionto use, and the
value of the parameter.

• public MySqlParameter(string,MySqlDbType,int,ParameterDirection,bool,byte,byte,string,DataRowVersion,object);

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType , the size, and the source column
name.

• public MySqlParameter(string,MySqlDbType,int,string);

Initializes a new instance of the MySqlParameter class with the parameter name and a value of the new MySqlParameter.

• public MySqlParameter(string,object);

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.1.1. MySqlParameter Constructor ()

Initializes a new instance of the MySqlParameter class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlParameter();

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload List

27.2.4.1.2.1.7.1.1.3.1.1.1.2. MySqlParameter Constructor

Initializes a new instance of the MySqlParameter class with the parameter name and the data type.

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal parameterName As String, _
ByVal dbType As MySqlDbType _

)

Syntax: C#

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType
);

Connectors

1651



Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload List

27.2.4.1.2.1.7.1.1.3.1.1.1.2.1. MySqlDbType Enumeration

Specifies MySQL specific data type of a field, property, for use in a MySqlParameter .

Syntax: Visual Basic

Public Enum MySqlDbType

Syntax: C#

public enum MySqlDbType

Members

Member Name Description

VarString A variable-length string containing 0 to 65535 characters

Timestamp A timestamp. The range is '1970-01-01 00:00:01' to sometime in
the year 2038

LongBlob A BLOB column with a maximum length of 4294967295 or 4G
(2^32 - 1) characters

Time
The range is '-838:59:59' to '838:59:59'.

TinyBlob A BLOB column with a maximum length of 255 (2^8 - 1) charac-
ters

Datetime The supported range is '1000-01-01 00:00:00' to '9999-12-31
23:59:59'.

Decimal
A fixed precision and scale numeric value between -1038 -1 and
10 38 -1.

UByte

Blob A BLOB column with a maximum length of 65535 (2^16 - 1)
characters

Double
A normal-size (double-precision) floating-point number. Allow-
able values are -1.7976931348623157E+308 to -
2.2250738585072014E-308, 0, and 2.2250738585072014E-308 to
1.7976931348623157E+308.

Newdate Obsolete Use Datetime or Date type

Byte
The signed range is -128 to 127. The unsigned range is 0 to 255.

Date Date The supported range is '1000-01-01' to '9999-12-31'.

VarChar A variable-length string containing 0 to 255 characters

UInt16

UInt24

Connectors

1652



Int16
A 16-bit signed integer. The signed range is -32768 to 32767. The
unsigned range is 0 to 65535

NewDecimal New Decimal

Set A set. A string object that can have zero or more values, each of
which must be chosen from the list of values 'value1', 'value2', ...
A SET can have a maximum of 64 members.

String Obsolete Use VarChar type

Enum An enumeration. A string object that can have only one value,
chosen from the list of values 'value1', 'value2', ..., NULL or the
special "" error value. An ENUM can have a maximum of 65535
distinct values

Geometry

UInt64

Int64
A 64-bit signed integer.

UInt32

Int24 Specifies a 24 (3 byte) signed or unsigned value.

Bit Bit-field data type

Float
A small (single-precision) floating-point number. Allowable val-
ues are -3.402823466E+38 to -1.175494351E-38, 0, and
1.175494351E-38 to 3.402823466E+38.

Year A year in 2- or 4-digit format (default is 4-digit). The allowable
values are 1901 to 2155, 0000 in the 4-digit year format, and
1970-2069 if you use the 2-digit format (70-69)

Int32
A 32-bit signed integer

MediumBlob A BLOB column with a maximum length of 16777215 (2^24 - 1)
characters

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.1.3. MySqlParameter Constructor (String, MySqlDbType, Int32)

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType , and the size.

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer _

)

Syntax: C#

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize
);

Connectors

1653



Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

• size: The length of the parameter.

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload List

27.2.4.1.2.1.7.1.1.3.1.1.1.4. MySqlParameter Constructor

Initializes a new instance of the MySqlParameter class with the parameter name, the type of the parameter, the size of the parameter, a
ParameterDirection, the precision of the parameter, the scale of the parameter, the source column, a DataRowVersionto use, and the
value of the parameter.

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer, _
ByVal direction As ParameterDirection, _
ByVal isNullable As Boolean, _
ByVal precision As Byte, _
ByVal scale As Byte, _
ByVal sourceColumn As String, _
ByVal sourceVersion As DataRowVersion, _
ByVal value As Object _

)

Syntax: C#

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize,
ParameterDirectiondirection,
boolisNullable,
byteprecision,
bytescale,
stringsourceColumn,
DataRowVersionsourceVersion,
objectvalue
);

Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

• size: The length of the parameter.

• direction: One of the ParameterDirectionvalues.

• isNullable: true if the value of the field can be null, otherwise false.

• precision: The total number of digits to the left and right of the decimal point to which Value is resolved.

• scale: The total number of decimal places to which Value is resolved.

• sourceColumn: The name of the source column.

• sourceVersion: One of the DataRowVersionvalues.

Connectors

1654



• value: An Objectthat is the value of the MySqlParameter .

Exceptions

Exception Type Condition

ArgumentException

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload List

27.2.4.1.2.1.7.1.1.3.1.1.1.4.1. Value Property

Gets or sets the value of the parameter.

Syntax: Visual Basic

NotOverridable Public Property Value As Object _
_
Implements IDataParameter.Value

Syntax: C#

public object Value {get; set;}

Implements

IDataParameter.Value

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.1.5. MySqlParameter Constructor

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType , the size, and the source column
name.

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer, _
ByVal sourceColumn As String _

)

Syntax: C#

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize,
stringsourceColumn
);

Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

• size: The length of the parameter.

Connectors

1655



• sourceColumn: The name of the source column.

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload List

27.2.4.1.2.1.7.1.1.3.1.1.1.6. MySqlParameter Constructor

Initializes a new instance of the MySqlParameter class with the parameter name and a value of the new MySqlParameter.

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal parameterName As String, _
ByVal value As Object _

)

Syntax: C#

public MySqlParameter(
stringparameterName,
objectvalue
);

Parameters

• parameterName: The name of the parameter to map.

• value: An Objectthat is the value of the MySqlParameter .

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload List

27.2.4.1.2.1.7.1.1.3.1.1.2. DbType Property

Gets or sets the DbTypeof the parameter.

Syntax: Visual Basic

NotOverridable Public Property DbType As DbType _
_
Implements IDataParameter.DbType

Syntax: C#

public System.Data.DbType DbType {get; set;}

Implements

IDataParameter.DbType

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.3. Direction Property

Gets or sets a value indicating whether the parameter is input-only, output-only, bidirectional, or a stored procedure return value para-
meter. As of MySQL version 4.1 and earlier, input-only is the only valid choice.

Syntax: Visual Basic

NotOverridable Public Property Direction As ParameterDirection _

Connectors

1656



_
Implements IDataParameter.Direction

Syntax: C#

public System.Data.ParameterDirection Direction {get; set;}

Implements

IDataParameter.Direction

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.4. IsNullable Property

Gets or sets a value indicating whether the parameter accepts null values.

Syntax: Visual Basic

NotOverridable Public Property IsNullable As Boolean _
_
Implements IDataParameter.IsNullable

Syntax: C#

public bool IsNullable {get; set;}

Implements

IDataParameter.IsNullable

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.5. IsUnsigned Property

Syntax: Visual Basic

Public Property IsUnsigned As Boolean

Syntax: C#

public bool IsUnsigned {get; set;}

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.6. MySqlDbType Property

Gets or sets the MySqlDbType of the parameter.

Syntax: Visual Basic

Public Property MySqlDbType As MySqlDbType

Syntax: C#

public MySqlDbType MySqlDbType {get; set;}

Connectors

1657



See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.7. ParameterName Property

Gets or sets the name of the MySqlParameter.

Syntax: Visual Basic

NotOverridable Public Property ParameterName As String _
_
Implements IDataParameter.ParameterName

Syntax: C#

public string ParameterName {get; set;}

Implements

IDataParameter.ParameterName

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.8. Precision Property

Gets or sets the maximum number of digits used to represent the Value property.

Syntax: Visual Basic

NotOverridable Public Property Precision As Byte _
_
Implements IDbDataParameter.Precision

Syntax: C#

public byte Precision {get; set;}

Implements

IDbDataParameter.Precision

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.9. Scale Property

Gets or sets the number of decimal places to which Value is resolved.

Syntax: Visual Basic

NotOverridable Public Property Scale As Byte _
_
Implements IDbDataParameter.Scale

Syntax: C#

public byte Scale {get; set;}

Implements

IDbDataParameter.Scale

Connectors

1658



See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.10. Size Property

Gets or sets the maximum size, in bytes, of the data within the column.

Syntax: Visual Basic

NotOverridable Public Property Size As Integer _
_
Implements IDbDataParameter.Size

Syntax: C#

public int Size {get; set;}

Implements

IDbDataParameter.Size

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.11. SourceColumn Property

Gets or sets the name of the source column that is mapped to the DataSetand used for loading or returning the Value .

Syntax: Visual Basic

NotOverridable Public Property SourceColumn As String _
_
Implements IDataParameter.SourceColumn

Syntax: C#

public string SourceColumn {get; set;}

Implements

IDataParameter.SourceColumn

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.12. SourceVersion Property

Gets or sets the DataRowVersionto use when loading Value .

Syntax: Visual Basic

NotOverridable Public Property SourceVersion As DataRowVersion _
_
Implements IDataParameter.SourceVersion

Syntax: C#

public System.Data.DataRowVersion SourceVersion {get; set;}

Implements

IDataParameter.SourceVersion

Connectors

1659



See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.1.1.13. MySqlParameter.ToString Method

Overridden. Gets a string containing the ParameterName .

Syntax: Visual Basic

Overrides Public Function ToString() As String

Syntax: C#

public override string ToString();

Return Value

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.3.2. Item Property (Int32)

Gets the MySqlParameter at the specified index.

Syntax: Visual Basic

Overloads Public Default Property Item( _
ByVal index As Integer _

) As MySqlParameter

Syntax: C#

public MySqlParameter this[
intindex
] {get; set;}

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.Item Overload List

27.2.4.1.2.1.7.1.1.3.3. Item Property (String)

Gets the MySqlParameter with the specified name.

Syntax: Visual Basic

Overloads Public Default Property Item( _
ByVal name As String _

) As MySqlParameter

Syntax: C#

public MySqlParameter this[
stringname
] {get; set;}

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.Item Overload List

27.2.4.1.2.1.7.1.1.4. Add Method

Adds the specified MySqlParameter object to the MySqlParameterCollection .

Connectors

1660



Overload List

Adds the specified MySqlParameter object to the MySqlParameterCollection .

• public MySqlParameter Add(MySqlParameter);

Adds the specified MySqlParameter object to the MySqlParameterCollection .

• public int Add(object);

Adds a MySqlParameter to the MySqlParameterCollection given the parameter name and the data type.

• public MySqlParameter Add(string,MySqlDbType);

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, and the column length.

• public MySqlParameter Add(string,MySqlDbType,int);

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, the column length, and the source
column name.

• public MySqlParameter Add(string,MySqlDbType,int,string);

Adds a MySqlParameter to the MySqlParameterCollection given the specified parameter name and value.

• public MySqlParameter Add(string,object);

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.4.1. MySqlParameterCollection.Add Method

Adds the specified MySqlParameter object to the MySqlParameterCollection .

Syntax: Visual Basic

Overloads Public Function Add( _
ByVal value As MySqlParameter _

) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
MySqlParametervalue
);

Parameters

• value: The MySqlParameter to add to the collection.

Return Value

Connectors

1661



The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.Add Overload List

27.2.4.1.2.1.7.1.1.4.2. MySqlParameterCollection.Add Method

Adds the specified MySqlParameter object to the MySqlParameterCollection .

Syntax: Visual Basic

NotOverridable Overloads Public Function Add( _
ByVal value As Object _

) As Integer _
_
Implements IList.Add

Syntax: C#

public int Add(
objectvalue
);

Parameters

• value: The MySqlParameter to add to the collection.

Return Value

The index of the new MySqlParameter object.

Implements

IList.Add

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.Add Overload List

27.2.4.1.2.1.7.1.1.4.3. MySqlParameterCollection.Add Method

Adds a MySqlParameter to the MySqlParameterCollection given the parameter name and the data type.

Syntax: Visual Basic

Overloads Public Function Add( _
ByVal parameterName As String, _
ByVal dbType As MySqlDbType _

) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType
);

Parameters

• parameterName: The name of the parameter.

• dbType: One of the MySqlDbType values.

Connectors

1662



Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.Add Overload List

27.2.4.1.2.1.7.1.1.4.4. MySqlParameterCollection.Add Method

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, and the column length.

Syntax: Visual Basic

Overloads Public Function Add( _
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer _

) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType,
intsize
);

Parameters

• parameterName: The name of the parameter.

• dbType: One of the MySqlDbType values.

• size: The length of the column.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.Add Overload List

27.2.4.1.2.1.7.1.1.4.5. MySqlParameterCollection.Add Method

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, the column length, and the source
column name.

Syntax: Visual Basic

Overloads Public Function Add( _
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer, _
ByVal sourceColumn As String _

) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType,
intsize,
stringsourceColumn
);

Connectors

1663



Parameters

• parameterName: The name of the parameter.

• dbType: One of the MySqlDbType values.

• size: The length of the column.

• sourceColumn: The name of the source column.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.Add Overload List

27.2.4.1.2.1.7.1.1.4.6. MySqlParameterCollection.Add Method

Adds a MySqlParameter to the MySqlParameterCollection given the specified parameter name and value.

Syntax: Visual Basic

Overloads Public Function Add( _
ByVal parameterName As String, _
ByVal value As Object _

) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
stringparameterName,
objectvalue
);

Parameters

• parameterName: The name of the parameter.

• value: The Value of the MySqlParameter to add to the collection.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.Add Overload List

27.2.4.1.2.1.7.1.1.5. MySqlParameterCollection.Clear Method

Removes all items from the collection.

Syntax: Visual Basic

NotOverridable Public Sub Clear() _
_
Implements IList.Clear

Syntax: C#

public void Clear();

Connectors

1664



Implements

IList.Clear

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.6. Contains Method

Gets a value indicating whether a MySqlParameter exists in the collection.

Overload List

Gets a value indicating whether a MySqlParameter exists in the collection.

• public bool Contains(object);

Gets a value indicating whether a MySqlParameter with the specified parameter name exists in the collection.

• public bool Contains(string);

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.6.1. MySqlParameterCollection.Contains Method

Gets a value indicating whether a MySqlParameter exists in the collection.

Syntax: Visual Basic

NotOverridable Overloads Public Function Contains( _
ByVal value As Object _

) As Boolean _
_
Implements IList.Contains

Syntax: C#

public bool Contains(
objectvalue
);

Parameters

• value: The value of the MySqlParameter object to find.

Return Value

true if the collection contains the MySqlParameter object; otherwise, false.

Implements

IList.Contains

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.Contains Overload List

27.2.4.1.2.1.7.1.1.6.2. MySqlParameterCollection.Contains Method

Connectors

1665



Gets a value indicating whether a MySqlParameter with the specified parameter name exists in the collection.

Syntax: Visual Basic

NotOverridable Overloads Public Function Contains( _
ByVal name As String _

) As Boolean _
_
Implements IDataParameterCollection.Contains

Syntax: C#

public bool Contains(
stringname
);

Parameters

• name: The name of the MySqlParameter object to find.

Return Value

true if the collection contains the parameter; otherwise, false.

Implements

IDataParameterCollection.Contains

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.Contains Overload List

27.2.4.1.2.1.7.1.1.7. MySqlParameterCollection.CopyTo Method

Copies MySqlParameter objects from the MySqlParameterCollection to the specified array.

Syntax: Visual Basic

NotOverridable Public Sub CopyTo( _
ByVal array As Array, _
ByVal index As Integer _

) _
_
Implements ICollection.CopyTo

Syntax: C#

public void CopyTo(
Arrayarray,
intindex
);

Parameters

• array:

• index:

Implements

ICollection.CopyTo

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

Connectors

1666



27.2.4.1.2.1.7.1.1.8. IndexOf Method

Gets the location of a MySqlParameter in the collection.

Overload List

Gets the location of a MySqlParameter in the collection.

• public int IndexOf(object);

Gets the location of the MySqlParameter in the collection with a specific parameter name.

• public int IndexOf(string);

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.8.1. MySqlParameterCollection.IndexOf Method

Gets the location of a MySqlParameter in the collection.

Syntax: Visual Basic

NotOverridable Overloads Public Function IndexOf( _
ByVal value As Object _

) As Integer _
_
Implements IList.IndexOf

Syntax: C#

public int IndexOf(
objectvalue
);

Parameters

• value: The MySqlParameter object to locate.

Return Value

The zero-based location of the MySqlParameter in the collection.

Implements

IList.IndexOf

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.IndexOf Overload List

27.2.4.1.2.1.7.1.1.8.2. MySqlParameterCollection.IndexOf Method

Gets the location of the MySqlParameter in the collection with a specific parameter name.

Syntax: Visual Basic

NotOverridable Overloads Public Function IndexOf( _
ByVal parameterName As String _

) As Integer _
_
Implements IDataParameterCollection.IndexOf

Connectors

1667



Syntax: C#

public int IndexOf(
stringparameterName
);

Parameters

• parameterName: The name of the MySqlParameter object to retrieve.

Return Value

The zero-based location of the MySqlParameter in the collection.

Implements

IDataParameterCollection.IndexOf

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.IndexOf Overload List

27.2.4.1.2.1.7.1.1.9. MySqlParameterCollection.Insert Method

Inserts a MySqlParameter into the collection at the specified index.

Syntax: Visual Basic

NotOverridable Public Sub Insert( _
ByVal index As Integer, _
ByVal value As Object _

) _
_
Implements IList.Insert

Syntax: C#

public void Insert(
intindex,
objectvalue
);

Parameters

• index:

• value:

Implements

IList.Insert

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.10. MySqlParameterCollection.Remove Method

Removes the specified MySqlParameter from the collection.

Syntax: Visual Basic

NotOverridable Public Sub Remove( _
ByVal value As Object _

) _

Connectors

1668



_
Implements IList.Remove

Syntax: C#

public void Remove(
objectvalue
);

Parameters

• value:

Implements

IList.Remove

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.11. RemoveAt Method

Removes the specified MySqlParameter from the collection.

Overload List

Removes the specified MySqlParameter from the collection using a specific index.

• public void RemoveAt(int);

Removes the specified MySqlParameter from the collection using the parameter name.

• public void RemoveAt(string);

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.7.1.1.11.1. MySqlParameterCollection.RemoveAt Method

Removes the specified MySqlParameter from the collection using a specific index.

Syntax: Visual Basic

NotOverridable Overloads Public Sub RemoveAt( _
ByVal index As Integer _

) _
_
Implements IList.RemoveAt

Syntax: C#

public void RemoveAt(
intindex
);

Parameters

• index: The zero-based index of the parameter.

Connectors

1669



Implements

IList.RemoveAt

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.RemoveAt Overload List

27.2.4.1.2.1.7.1.1.11.2. MySqlParameterCollection.RemoveAt Method

Removes the specified MySqlParameter from the collection using the parameter name.

Syntax: Visual Basic

NotOverridable Overloads Public Sub RemoveAt( _
ByVal name As String _

) _
_
Implements IDataParameterCollection.RemoveAt

Syntax: C#

public void RemoveAt(
stringname
);

Parameters

• name: The name of the MySqlParameter object to retrieve.

Implements

IDataParameterCollection.RemoveAt

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollection.RemoveAt Overload List

27.2.4.1.2.1.8. Transaction Property

Syntax: Visual Basic

Public Property Transaction As MySqlTransaction

Syntax: C#

public MySqlTransaction Transaction {get; set;}

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.9. UpdatedRowSource Property

Syntax: Visual Basic

NotOverridable Public Property UpdatedRowSource As UpdateRowSource _
_
Implements IDbCommand.UpdatedRowSource

Syntax: C#

public System.Data.UpdateRowSource UpdatedRowSource {get; set;}

Connectors

1670



Implements

IDbCommand.UpdatedRowSource

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.10. MySqlCommand.Cancel Method

Attempts to cancel the execution of a MySqlCommand. This operation is not supported.

Syntax: Visual Basic

NotOverridable Public Sub Cancel() _
_
Implements IDbCommand.Cancel

Syntax: C#

public void Cancel();

Implements

IDbCommand.Cancel

Remarks

Cancelling an executing command is currently not supported on any version of MySQL.

Exceptions

Exception Type Condition

NotSupportedException This operation is not supported.

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.11. MySqlCommand.CreateParameter Method

Creates a new instance of a MySqlParameter object.

Syntax: Visual Basic

Public Function CreateParameter() As MySqlParameter

Syntax: C#

public MySqlParameter CreateParameter();

Return Value

A MySqlParameter object.

Remarks

This method is a strongly-typed version of CreateParameter.

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

Connectors

1671



27.2.4.1.2.1.12. MySqlCommand.ExecuteNonQuery Method

Syntax: Visual Basic

NotOverridable Public Function ExecuteNonQuery() As Integer _
_
Implements IDbCommand.ExecuteNonQuery

Syntax: C#

public int ExecuteNonQuery();

Implements

IDbCommand.ExecuteNonQuery

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13. ExecuteReader Method

Overload List

• public MySqlDataReader ExecuteReader();

• public MySqlDataReader ExecuteReader(CommandBehavior);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1. MySqlCommand.ExecuteReader Method

Syntax: Visual Basic

Overloads Public Function ExecuteReader() As MySqlDataReader

Syntax: C#

public MySqlDataReader ExecuteReader();

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand.ExecuteReader Overload List

27.2.4.1.2.1.13.1.1. MySqlDataReader Class

Provides a means of reading a forward-only stream of rows from a MySQL database. This class cannot be inherited.

For a list of all members of this type, see MySqlDataReader Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlDataReader_
Inherits MarshalByRefObject_
Implements IEnumerable, IDataReader, IDisposable, IDataRecord

Syntax: C#

public sealed class MySqlDataReader : MarshalByRefObject, IEnumerable, IDataReader, IDisposable, IDataRecord

Thread Safety

Connectors

1672



Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed
to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlDataReader Members , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1. MySqlDataReader Members

MySqlDataReader overview

Public Instance Properties

Depth Gets a value indicating the depth of nesting for the current row.
This method is not supported currently and always returns 0.

FieldCount Gets the number of columns in the current row.

HasRows Gets a value indicating whether the MySqlDataReader contains
one or more rows.

IsClosed Gets a value indicating whether the data reader is closed.

Item Overloaded. Overloaded. Gets the value of a column in its native
format. In C#, this property is the indexer for the MySqlDataRead-
er class.

RecordsAffected Gets the number of rows changed, inserted, or deleted by execu-
tion of the SQL statement.

Public Instance Methods

Close Closes the MySqlDataReader object.

CreateObjRef(inherited from MarshalByRefObject) Creates an object that contains all the relevant information re-
quired to generate a proxy used to communicate with a remote ob-
ject.

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetBoolean Gets the value of the specified column as a Boolean.

GetByte Gets the value of the specified column as a byte.

GetBytes Reads a stream of bytes from the specified column offset into the
buffer an array starting at the given buffer offset.

GetChar Gets the value of the specified column as a single character.

GetChars Reads a stream of characters from the specified column offset into
the buffer as an array starting at the given buffer offset.

GetDataTypeName Gets the name of the source data type.

GetDateTime

GetDecimal

GetDouble

GetFieldType Gets the Type that is the data type of the object.

GetFloat

GetGuid

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a

Connectors

1673



hash table.

GetInt16

GetInt32

GetInt64

GetLifetimeService(inherited from MarshalByRefObject) Retrieves the current lifetime service object that controls the life-
time policy for this instance.

GetMySqlDateTime

GetName Gets the name of the specified column.

GetOrdinal Gets the column ordinal, given the name of the column.

GetSchemaTable Returns a DataTable that describes the column metadata of the
MySqlDataReader.

GetString

GetTimeSpan

GetType(inherited from Object) Gets the Typeof the current instance.

GetUInt16

GetUInt32

GetUInt64

GetValue Gets the value of the specified column in its native format.

GetValues Gets all attribute columns in the collection for the current row.

InitializeLifetimeService(inherited from MarshalByRefObject) Obtains a lifetime service object to control the lifetime policy for
this instance.

IsDBNull Gets a value indicating whether the column contains non-existent
or missing values.

NextResult Advances the data reader to the next result, when reading the res-
ults of batch SQL statements.

Read Advances the MySqlDataReader to the next record.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.1. Depth Property

Gets a value indicating the depth of nesting for the current row. This method is not supported currently and always returns 0.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property Depth As Integer _
_
Implements IDataReader.Depth

Syntax: C#

public int Depth {get;}

Implements

IDataReader.Depth

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

Connectors

1674



27.2.4.1.2.1.13.1.1.1.2. FieldCount Property

Gets the number of columns in the current row.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property FieldCount As Integer _
_
Implements IDataRecord.FieldCount

Syntax: C#

public int FieldCount {get;}

Implements

IDataRecord.FieldCount

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.3. HasRows Property

Gets a value indicating whether the MySqlDataReader contains one or more rows.

Syntax: Visual Basic

Public ReadOnly Property HasRows As Boolean

Syntax: C#

public bool HasRows {get;}

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.4. IsClosed Property

Gets a value indicating whether the data reader is closed.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property IsClosed As Boolean _
_
Implements IDataReader.IsClosed

Syntax: C#

public bool IsClosed {get;}

Implements

IDataReader.IsClosed

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.5. Item Property

Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the MySqlDataReader class.

Connectors

1675



Overload List

Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the MySqlDataReader class.

• public object this[int] {get;}

Gets the value of a column in its native format. In C#, this property is the indexer for the MySqlDataReader class.

• public object this[string] {get;}

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.5.1. Item Property (Int32)

Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the MySqlDataReader class.

Syntax: Visual Basic

NotOverridable Overloads Public Default ReadOnly Property Item( _
ByVal i As Integer _

) _
_
Implements IDataRecord.Item As Object _

_
Implements IDataRecord.Item

Syntax: C#

public object this[
inti
] {get;}

Implements

IDataRecord.Item

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace , MySqlDataReader.Item Overload List

27.2.4.1.2.1.13.1.1.1.5.2. Item Property (String)

Gets the value of a column in its native format. In C#, this property is the indexer for the MySqlDataReader class.

Syntax: Visual Basic

NotOverridable Overloads Public Default ReadOnly Property Item( _
ByVal name As String _

) _
_
Implements IDataRecord.Item As Object _

_
Implements IDataRecord.Item

Syntax: C#

public object this[
stringname
] {get;}

Implements

IDataRecord.Item

Connectors

1676



See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace , MySqlDataReader.Item Overload List

27.2.4.1.2.1.13.1.1.1.6. RecordsAffected Property

Gets the number of rows changed, inserted, or deleted by execution of the SQL statement.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property RecordsAffected As Integer _
_
Implements IDataReader.RecordsAffected

Syntax: C#

public int RecordsAffected {get;}

Implements

IDataReader.RecordsAffected

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.7. MySqlDataReader.Close Method

Closes the MySqlDataReader object.

Syntax: Visual Basic

NotOverridable Public Sub Close() _
_
Implements IDataReader.Close

Syntax: C#

public void Close();

Implements

IDataReader.Close

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.8. MySqlDataReader.GetBoolean Method

Gets the value of the specified column as a Boolean.

Syntax: Visual Basic

NotOverridable Public Function GetBoolean( _
ByVal i As Integer _

) As Boolean _
_
Implements IDataRecord.GetBoolean

Syntax: C#

public bool GetBoolean(
inti
);

Connectors

1677



Parameters

• i:

Return Value

Implements

IDataRecord.GetBoolean

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.9. MySqlDataReader.GetByte Method

Gets the value of the specified column as a byte.

Syntax: Visual Basic

NotOverridable Public Function GetByte( _
ByVal i As Integer _

) As Byte _
_
Implements IDataRecord.GetByte

Syntax: C#

public byte GetByte(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetByte

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.10. MySqlDataReader.GetBytes Method

Reads a stream of bytes from the specified column offset into the buffer an array starting at the given buffer offset.

Syntax: Visual Basic

NotOverridable Public Function GetBytes( _
ByVal i As Integer, _
ByVal dataIndex As Long, _
ByVal buffer As Byte(), _
ByVal bufferIndex As Integer, _
ByVal length As Integer _

) As Long _
_
Implements IDataRecord.GetBytes

Syntax: C#

public long GetBytes(
inti,

Connectors

1678



longdataIndex,
byte[]buffer,
intbufferIndex,
intlength
);

Parameters

• i: The zero-based column ordinal.

• dataIndex: The index within the field from which to begin the read operation.

• buffer: The buffer into which to read the stream of bytes.

• bufferIndex: The index for buffer to begin the read operation.

• length: The maximum length to copy into the buffer.

Return Value

The actual number of bytes read.

Implements

IDataRecord.GetBytes

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.11. MySqlDataReader.GetChar Method

Gets the value of the specified column as a single character.

Syntax: Visual Basic

NotOverridable Public Function GetChar( _
ByVal i As Integer _

) As Char _
_
Implements IDataRecord.GetChar

Syntax: C#

public char GetChar(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetChar

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.12. MySqlDataReader.GetChars Method

Connectors

1679



Reads a stream of characters from the specified column offset into the buffer as an array starting at the given buffer offset.

Syntax: Visual Basic

NotOverridable Public Function GetChars( _
ByVal i As Integer, _
ByVal fieldOffset As Long, _
ByVal buffer As Char(), _
ByVal bufferoffset As Integer, _
ByVal length As Integer _

) As Long _
_
Implements IDataRecord.GetChars

Syntax: C#

public long GetChars(
inti,
longfieldOffset,
char[]buffer,
intbufferoffset,
intlength
);

Parameters

• i:

• fieldOffset:

• buffer:

• bufferoffset:

• length:

Return Value

Implements

IDataRecord.GetChars

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.13. MySqlDataReader.GetDataTypeName Method

Gets the name of the source data type.

Syntax: Visual Basic

NotOverridable Public Function GetDataTypeName( _
ByVal i As Integer _

) As String _
_
Implements IDataRecord.GetDataTypeName

Syntax: C#

public string GetDataTypeName(
inti
);

Parameters

• i:

Connectors

1680



Return Value

Implements

IDataRecord.GetDataTypeName

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.14. MySqlDataReader.GetDateTime Method

Syntax: Visual Basic

NotOverridable Public Function GetDateTime( _
ByVal index As Integer _

) As Date _
_
Implements IDataRecord.GetDateTime

Syntax: C#

public DateTime GetDateTime(
intindex
);

Implements

IDataRecord.GetDateTime

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.15. MySqlDataReader.GetDecimal Method

Syntax: Visual Basic

NotOverridable Public Function GetDecimal( _
ByVal index As Integer _

) As Decimal _
_
Implements IDataRecord.GetDecimal

Syntax: C#

public decimal GetDecimal(
intindex
);

Implements

IDataRecord.GetDecimal

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.16. MySqlDataReader.GetDouble Method

Syntax: Visual Basic

NotOverridable Public Function GetDouble( _
ByVal index As Integer _

) As Double _
_
Implements IDataRecord.GetDouble

Connectors

1681



Syntax: C#

public double GetDouble(
intindex
);

Implements

IDataRecord.GetDouble

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.17. MySqlDataReader.GetFieldType Method

Gets the Type that is the data type of the object.

Syntax: Visual Basic

NotOverridable Public Function GetFieldType( _
ByVal i As Integer _

) As Type _
_
Implements IDataRecord.GetFieldType

Syntax: C#

public Type GetFieldType(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetFieldType

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.18. MySqlDataReader.GetFloat Method

Syntax: Visual Basic

NotOverridable Public Function GetFloat( _
ByVal index As Integer _

) As Single _
_
Implements IDataRecord.GetFloat

Syntax: C#

public float GetFloat(
intindex
);

Implements

IDataRecord.GetFloat

Connectors

1682



See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.19. MySqlDataReader.GetGuid Method

Syntax: Visual Basic

NotOverridable Public Function GetGuid( _
ByVal index As Integer _

) As Guid _
_
Implements IDataRecord.GetGuid

Syntax: C#

public Guid GetGuid(
intindex
);

Implements

IDataRecord.GetGuid

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.20. MySqlDataReader.GetInt16 Method

Syntax: Visual Basic

NotOverridable Public Function GetInt16( _
ByVal index As Integer _

) As Short _
_
Implements IDataRecord.GetInt16

Syntax: C#

public short GetInt16(
intindex
);

Implements

IDataRecord.GetInt16

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.21. MySqlDataReader.GetInt32 Method

Syntax: Visual Basic

NotOverridable Public Function GetInt32( _
ByVal index As Integer _

) As Integer _
_
Implements IDataRecord.GetInt32

Syntax: C#

public int GetInt32(
intindex
);

Connectors

1683



Implements

IDataRecord.GetInt32

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.22. MySqlDataReader.GetInt64 Method

Syntax: Visual Basic

NotOverridable Public Function GetInt64( _
ByVal index As Integer _

) As Long _
_
Implements IDataRecord.GetInt64

Syntax: C#

public long GetInt64(
intindex
);

Implements

IDataRecord.GetInt64

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.23. MySqlDataReader.GetMySqlDateTime Method

Syntax: Visual Basic

Public Function GetMySqlDateTime( _
ByVal index As Integer _

) As MySqlDateTime

Syntax: C#

public MySqlDateTime GetMySqlDateTime(
intindex
);

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.24. MySqlDataReader.GetName Method

Gets the name of the specified column.

Syntax: Visual Basic

NotOverridable Public Function GetName( _
ByVal i As Integer _

) As String _
_
Implements IDataRecord.GetName

Syntax: C#

public string GetName(
inti
);

Connectors

1684



Parameters

• i:

Return Value

Implements

IDataRecord.GetName

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.25. MySqlDataReader.GetOrdinal Method

Gets the column ordinal, given the name of the column.

Syntax: Visual Basic

NotOverridable Public Function GetOrdinal( _
ByVal name As String _

) As Integer _
_
Implements IDataRecord.GetOrdinal

Syntax: C#

public int GetOrdinal(
stringname
);

Parameters

• name:

Return Value

Implements

IDataRecord.GetOrdinal

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.26. MySqlDataReader.GetSchemaTable Method

Returns a DataTable that describes the column metadata of the MySqlDataReader.

Syntax: Visual Basic

NotOverridable Public Function GetSchemaTable() As DataTable _
_
Implements IDataReader.GetSchemaTable

Syntax: C#

public DataTable GetSchemaTable();

Return Value

Implements

Connectors

1685



IDataReader.GetSchemaTable

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.27. MySqlDataReader.GetString Method

Syntax: Visual Basic

NotOverridable Public Function GetString( _
ByVal index As Integer _

) As String _
_
Implements IDataRecord.GetString

Syntax: C#

public string GetString(
intindex
);

Implements

IDataRecord.GetString

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.28. MySqlDataReader.GetTimeSpan Method

Syntax: Visual Basic

Public Function GetTimeSpan( _
ByVal index As Integer _

) As TimeSpan

Syntax: C#

public TimeSpan GetTimeSpan(
intindex
);

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.29. MySqlDataReader.GetUInt16 Method

Syntax: Visual Basic

Public Function GetUInt16( _
ByVal index As Integer _

) As UInt16

Syntax: C#

public ushort GetUInt16(
intindex
);

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.30. MySqlDataReader.GetUInt32 Method

Connectors

1686



Syntax: Visual Basic

Public Function GetUInt32( _
ByVal index As Integer _

) As UInt32

Syntax: C#

public uint GetUInt32(
intindex
);

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.31. MySqlDataReader.GetUInt64 Method

Syntax: Visual Basic

Public Function GetUInt64( _
ByVal index As Integer _

) As UInt64

Syntax: C#

public ulong GetUInt64(
intindex
);

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.32. MySqlDataReader.GetValue Method

Gets the value of the specified column in its native format.

Syntax: Visual Basic

NotOverridable Public Function GetValue( _
ByVal i As Integer _

) As Object _
_
Implements IDataRecord.GetValue

Syntax: C#

public object GetValue(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetValue

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

Connectors

1687



27.2.4.1.2.1.13.1.1.1.33. MySqlDataReader.GetValues Method

Gets all attribute columns in the collection for the current row.

Syntax: Visual Basic

NotOverridable Public Function GetValues( _
ByVal values As Object() _

) As Integer _
_
Implements IDataRecord.GetValues

Syntax: C#

public int GetValues(
object[]values
);

Parameters

• values:

Return Value

Implements

IDataRecord.GetValues

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.34. MySqlDataReader.IsDBNull Method

Gets a value indicating whether the column contains non-existent or missing values.

Syntax: Visual Basic

NotOverridable Public Function IsDBNull( _
ByVal i As Integer _

) As Boolean _
_
Implements IDataRecord.IsDBNull

Syntax: C#

public bool IsDBNull(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.IsDBNull

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

Connectors

1688



27.2.4.1.2.1.13.1.1.1.35. MySqlDataReader.NextResult Method

Advances the data reader to the next result, when reading the results of batch SQL statements.

Syntax: Visual Basic

NotOverridable Public Function NextResult() As Boolean _
_
Implements IDataReader.NextResult

Syntax: C#

public bool NextResult();

Return Value

Implements

IDataReader.NextResult

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.1.1.1.36. MySqlDataReader.Read Method

Advances the MySqlDataReader to the next record.

Syntax: Visual Basic

NotOverridable Public Function Read() As Boolean _
_
Implements IDataReader.Read

Syntax: C#

public bool Read();

Return Value

Implements

IDataReader.Read

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.13.2. MySqlCommand.ExecuteReader Method

Syntax: Visual Basic

Overloads Public Function ExecuteReader( _
ByVal behavior As CommandBehavior _

) As MySqlDataReader

Syntax: C#

public MySqlDataReader ExecuteReader(
CommandBehaviorbehavior
);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand.ExecuteReader Overload List

Connectors

1689



27.2.4.1.2.1.14. MySqlCommand.ExecuteScalar Method

Syntax: Visual Basic

NotOverridable Public Function ExecuteScalar() As Object _
_
Implements IDbCommand.ExecuteScalar

Syntax: C#

public object ExecuteScalar();

Implements

IDbCommand.ExecuteScalar

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.2.1.15. MySqlCommand.Prepare Method

Syntax: Visual Basic

NotOverridable Public Sub Prepare() _
_
Implements IDbCommand.Prepare

Syntax: C#

public void Prepare();

Implements

IDbCommand.Prepare

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3. MySqlCommandBuilder Class

For a list of all members of this type, see MySqlCommandBuilder Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlCommandBuilder_
Inherits Component

Syntax: C#

public sealed class MySqlCommandBuilder : Component

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. Instance members are notguaranteed to
be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

Connectors

1690



MySqlCommandBuilder Members , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1. MySqlCommandBuilder Members

MySqlCommandBuilder overview

Public Static (Shared) Methods

DeriveParameters Overloaded. Retrieves parameter information from the stored pro-
cedure specified in the MySqlCommand and populates the Para-
meters collection of the specified MySqlCommand object. This
method is not currently supported since stored procedures are not
available in MySql.

Public Instance Constructors

MySqlCommandBuilder Overloaded. Initializes a new instance of the MySqlCommand-
Builder class.

Public Instance Properties

Container(inherited from Component) Gets the IContainerthat contains the Component.

DataAdapter

QuotePrefix

QuoteSuffix

Site(inherited from Component) Gets or sets the ISiteof the Component.

Public Instance Methods

CreateObjRef(inherited from MarshalByRefObject) Creates an object that contains all the relevant information re-
quired to generate a proxy used to communicate with a remote ob-
ject.

Dispose(inherited from Component) Releases all resources used by the Component.

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetDeleteCommand

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetInsertCommand

GetLifetimeService(inherited from MarshalByRefObject) Retrieves the current lifetime service object that controls the life-
time policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

GetUpdateCommand

InitializeLifetimeService(inherited from MarshalByRefObject) Obtains a lifetime service object to control the lifetime policy for
this instance.

RefreshSchema

ToString(inherited from Component) Returns a Stringcontaining the name of the Component, if any.
This method should not be overridden.

Public Instance Events

Disposed(inherited from Component) Adds an event handler to listen to the Disposedevent on the com-

Connectors

1691



ponent.

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.1. DeriveParameters Method

Retrieves parameter information from the stored procedure specified in the MySqlCommand and populates the Parameters collection of
the specified MySqlCommand object. This method is not currently supported since stored procedures are not available in MySql.

Overload List

Retrieves parameter information from the stored procedure specified in the MySqlCommand and populates the Parameters collection of
the specified MySqlCommand object. This method is not currently supported since stored procedures are not available in MySql.

• public static void DeriveParameters(MySqlCommand);

• public static void DeriveParameters(MySqlCommand,bool);

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.1.1. MySqlCommandBuilder.DeriveParameters Method

Retrieves parameter information from the stored procedure specified in the MySqlCommand and populates the Parameters collection of
the specified MySqlCommand object. This method is not currently supported since stored procedures are not available in MySql.

Syntax: Visual Basic

Overloads Public Shared Sub DeriveParameters( _
ByVal command As MySqlCommand _

)

Syntax: C#

public static void DeriveParameters(
MySqlCommandcommand
);

Parameters

• command: The MySqlCommand referencing the stored procedure from which the parameter information is to be derived. The de-
rived parameters are added to the Parameters collection of the MySqlCommand.

Exceptions

Exception Type Condition

InvalidOperationException The command text is not a valid stored procedure name.

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuilder.DeriveParameters Overload List

27.2.4.1.3.1.1.2. MySqlCommandBuilder.DeriveParameters Method

Syntax: Visual Basic

Overloads Public Shared Sub DeriveParameters( _

Connectors

1692



ByVal command As MySqlCommand, _
ByVal useProc As Boolean _

)

Syntax: C#

public static void DeriveParameters(
MySqlCommandcommand,
booluseProc
);

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuilder.DeriveParameters Overload List

27.2.4.1.3.1.2. MySqlCommandBuilder Constructor

Initializes a new instance of the MySqlCommandBuilder class.

Overload List

Initializes a new instance of the MySqlCommandBuilder class.

• public MySqlCommandBuilder();

• public MySqlCommandBuilder(MySqlDataAdapter);

• public MySqlCommandBuilder(MySqlDataAdapter,bool);

• public MySqlCommandBuilder(bool);

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.1. MySqlCommandBuilder Constructor

Initializes a new instance of the MySqlCommandBuilder class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlCommandBuilder();

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuilder Constructor Overload List

27.2.4.1.3.1.2.2. MySqlCommandBuilder Constructor

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal adapter As MySqlDataAdapter _

)

Syntax: C#

public MySqlCommandBuilder(
MySqlDataAdapteradapter
);

Connectors

1693



See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuilder Constructor Overload List

27.2.4.1.3.1.2.2.1. MySqlDataAdapter Class

For a list of all members of this type, see MySqlDataAdapter Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlDataAdapter_
Inherits DbDataAdapter

Syntax: C#

public sealed class MySqlDataAdapter : DbDataAdapter

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. Instance members are notguaranteed to
be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlDataAdapter Members , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1. MySqlDataAdapter Members

MySqlDataAdapter overview

Public Instance Constructors

MySqlDataAdapter Overloaded. Initializes a new instance of the MySqlDataAdapter
class.

Public Instance Properties

AcceptChangesDuringFill(inherited from DataAdapter) Gets or sets a value indicating whether AcceptChangesis called on
a DataRowafter it is added to the DataTableduring any of the Fill
operations.

AcceptChangesDuringUpdate(inherited from DataAdapter) Gets or sets whether AcceptChangesis called during a Update.

Container(inherited from Component) Gets the IContainerthat contains the Component.

ContinueUpdateOnError(inherited from DataAdapter) Gets or sets a value that specifies whether to generate an exception
when an error is encountered during a row update.

DeleteCommand Overloaded.

FillLoadOption(inherited from DataAdapter) Gets or sets the LoadOptionthat determines how the adapter fills
the DataTablefrom the DbDataReader.

InsertCommand Overloaded.

MissingMappingAction(inherited from DataAdapter) Determines the action to take when incoming data does not have a
matching table or column.

MissingSchemaAction(inherited from DataAdapter) Determines the action to take when existing DataSetschema does
not match incoming data.

ReturnProviderSpecificTypes(inherited from DataAdapter) Gets or sets whether the Fillmethod should return provider-specific
values or common CLS-compliant values.

Connectors

1694



SelectCommand Overloaded.

Site(inherited from Component) Gets or sets the ISiteof the Component.

TableMappings(inherited from DataAdapter) Gets a collection that provides the master mapping between a
source table and a DataTable.

UpdateBatchSize(inherited from DbDataAdapter) Gets or sets a value that enables or disables batch processing sup-
port, and specifies the number of commands that can be executed
in a batch.

UpdateCommand Overloaded.

Public Instance Methods

CreateObjRef(inherited from MarshalByRefObject) Creates an object that contains all the relevant information re-
quired to generate a proxy used to communicate with a remote ob-
ject.

Dispose(inherited from Component) Releases all resources used by the Component.

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

Fill(inherited from DbDataAdapter) Overloaded. Adds or refreshes rows in the DataSetto match those
in the data source using the DataSetname, and creates a Data-
Tablenamed "Table."

FillSchema(inherited from DbDataAdapter) Overloaded. Configures the schema of the specified DataTable-
based on the specified SchemaType.

GetFillParameters(inherited from DbDataAdapter) Gets the parameters set by the user when executing an SQL SE-
LECT statement.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetLifetimeService(inherited from MarshalByRefObject) Retrieves the current lifetime service object that controls the life-
time policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

InitializeLifetimeService(inherited from MarshalByRefObject) Obtains a lifetime service object to control the lifetime policy for
this instance.

ResetFillLoadOption(inherited from DataAdapter) Resets FillLoadOptionto its default state and causes Fillto honor
AcceptChangesDuringFill.

ShouldSerializeAcceptChangesDuringFill(inherited from DataAd-
apter)

Determines whether the AcceptChangesDuringFillproperty should
be persisted.

ShouldSerializeFillLoadOption(inherited from DataAdapter) Determines whether the FillLoadOptionproperty should be per-
sisted.

ToString(inherited from Component) Returns a Stringcontaining the name of the Component, if any.
This method should not be overridden.

Update(inherited from DbDataAdapter) Overloaded. Calls the respective INSERT, UPDATE, or DELETE
statements for each inserted, updated, or deleted row in the spe-
cified DataSet.

Public Instance Events

Disposed(inherited from Component) Adds an event handler to listen to the Disposedevent on the com-
ponent.

FillError(inherited from DataAdapter) Returned when an error occurs during a fill operation.

RowUpdated Occurs during Update after a command is executed against the
data source. The attempt to update is made, so the event fires.

RowUpdating Occurs during Update before a command is executed against the

Connectors

1695



data source. The attempt to update is made, so the event fires.

Protected Internal Instance Properties

FillCommandBehavior(inherited from DbDataAdapter) Gets or sets the behavior of the command used to fill the data ad-
apter.

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.1. MySqlDataAdapter Constructor

Initializes a new instance of the MySqlDataAdapter class.

Overload List

Initializes a new instance of the MySqlDataAdapter class.

• public MySqlDataAdapter();

• public MySqlDataAdapter(MySqlCommand);

• public MySqlDataAdapter(string,MySqlConnection);

• public MySqlDataAdapter(string,string);

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.1.1. MySqlDataAdapter Constructor

Initializes a new instance of the MySqlDataAdapter class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlDataAdapter();

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace , MySqlDataAdapter Constructor Overload List

27.2.4.1.3.1.2.2.1.1.1.2. MySqlDataAdapter Constructor

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal selectCommand As MySqlCommand _

)

Syntax: C#

public MySqlDataAdapter(
MySqlCommandselectCommand
);

Connectors

1696



See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace , MySqlDataAdapter Constructor Overload List

27.2.4.1.3.1.2.2.1.1.1.3. MySqlDataAdapter Constructor

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal selectCommandText As String, _
ByVal connection As MySqlConnection _

)

Syntax: C#

public MySqlDataAdapter(
stringselectCommandText,
MySqlConnectionconnection
);

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace , MySqlDataAdapter Constructor Overload List

27.2.4.1.3.1.2.2.1.1.1.4. MySqlDataAdapter Constructor

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal selectCommandText As String, _
ByVal selectConnString As String _

)

Syntax: C#

public MySqlDataAdapter(
stringselectCommandText,
stringselectConnString
);

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace , MySqlDataAdapter Constructor Overload List

27.2.4.1.3.1.2.2.1.1.2. DeleteCommand Property

Syntax: Visual Basic

Overloads Public Property DeleteCommand As MySqlCommand

Syntax: C#

new public MySqlCommand DeleteCommand {get; set;}

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.3. InsertCommand Property

Syntax: Visual Basic

Overloads Public Property InsertCommand As MySqlCommand

Syntax: C#

Connectors

1697



new public MySqlCommand InsertCommand {get; set;}

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.4. SelectCommand Property

Syntax: Visual Basic

Overloads Public Property SelectCommand As MySqlCommand

Syntax: C#

new public MySqlCommand SelectCommand {get; set;}

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.5. UpdateCommand Property

Syntax: Visual Basic

Overloads Public Property UpdateCommand As MySqlCommand

Syntax: C#

new public MySqlCommand UpdateCommand {get; set;}

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.6. MySqlDataAdapter.RowUpdated Event

Occurs during Update after a command is executed against the data source. The attempt to update is made, so the event fires.

Syntax: Visual Basic

Public Event RowUpdated As MySqlRowUpdatedEventHandler

Syntax: C#

public event MySqlRowUpdatedEventHandler RowUpdated;

Event Data

The event handler receives an argument of type MySqlRowUpdatedEventArgs containing data related to this event. The following
MySqlRowUpdatedEventArgsproperties provide information specific to this event.

Property Description

Command Gets or sets the MySqlCommand executed when Update is called.

Errors Gets any errors generated by the .NET Framework data provider
when the Commandwas executed.

RecordsAffected Gets the number of rows changed, inserted, or deleted by execu-
tion of the SQL statement.

Row Gets the DataRowsent through an Update.

RowCount Gets the number of rows processed in a batch of updated records.

StatementType Gets the type of SQL statement executed.

Connectors

1698



Status Gets the UpdateStatusof the Commandproperty.

TableMapping Gets the DataTableMappingsent through an Update.

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.6.1. MySqlRowUpdatedEventHandler Delegate

Represents the method that will handle the RowUpdatedevent of a MySqlDataAdapter .

Syntax: Visual Basic

Public Delegate Sub MySqlRowUpdatedEventHandler( _
ByVal sender As Object, _
ByVal e As MySqlRowUpdatedEventArgs _

)

Syntax: C#

public delegate void MySqlRowUpdatedEventHandler(
objectsender,
MySqlRowUpdatedEventArgse
);

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.6.1.1. MySqlRowUpdatedEventArgs Class

Provides data for the RowUpdated event. This class cannot be inherited.

For a list of all members of this type, see MySqlRowUpdatedEventArgs Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlRowUpdatedEventArgs_
Inherits RowUpdatedEventArgs

Syntax: C#

public sealed class MySqlRowUpdatedEventArgs : RowUpdatedEventArgs

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. Instance members are notguaranteed to
be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlRowUpdatedEventArgs Members , MySql.Data.MySqlClient Namespace

Connectors

1699



27.2.4.1.3.1.2.2.1.1.6.1.1.1. MySqlRowUpdatedEventArgs Members

MySqlRowUpdatedEventArgs overview

Public Instance Constructors

MySqlRowUpdatedEventArgs Constructor Initializes a new instance of the MySqlRowUpdatedEventArgs
class.

Public Instance Properties

Command Overloaded. Gets or sets the MySqlCommand executed when Up-
date is called.

Errors(inherited from RowUpdatedEventArgs) Gets any errors generated by the .NET Framework data provider
when the Commandwas executed.

RecordsAffected(inherited from RowUpdatedEventArgs) Gets the number of rows changed, inserted, or deleted by execu-
tion of the SQL statement.

Row(inherited from RowUpdatedEventArgs) Gets the DataRowsent through an Update.

RowCount(inherited from RowUpdatedEventArgs) Gets the number of rows processed in a batch of updated records.

StatementType(inherited from RowUpdatedEventArgs) Gets the type of SQL statement executed.

Status(inherited from RowUpdatedEventArgs) Gets the UpdateStatusof the Commandproperty.

TableMapping(inherited from RowUpdatedEventArgs) Gets the DataTableMappingsent through an Update.

Public Instance Methods

CopyToRows(inherited from RowUpdatedEventArgs) Overloaded. Copies references to the modified rows into the
provided array.

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

See Also

MySqlRowUpdatedEventArgs Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.6.1.1.1.1. MySqlRowUpdatedEventArgs Constructor

Initializes a new instance of the MySqlRowUpdatedEventArgs class.

Syntax: Visual Basic

Public Sub New( _
ByVal row As DataRow, _
ByVal command As IDbCommand, _
ByVal statementType As StatementType, _
ByVal tableMapping As DataTableMapping _

)

Syntax: C#

public MySqlRowUpdatedEventArgs(
DataRowrow,
IDbCommandcommand,
StatementTypestatementType,
DataTableMappingtableMapping

Connectors

1700



);

Parameters

• row: The DataRowsent through an Update.

• command: The IDbCommandexecuted when Updateis called.

• statementType: One of the StatementTypevalues that specifies the type of query executed.

• tableMapping: The DataTableMappingsent through an Update.

See Also

MySqlRowUpdatedEventArgs Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.6.1.1.1.2. Command Property

Gets or sets the MySqlCommand executed when Update is called.

Syntax: Visual Basic

Overloads Public ReadOnly Property Command As MySqlCommand

Syntax: C#

new public MySqlCommand Command {get;}

See Also

MySqlRowUpdatedEventArgs Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.7. MySqlDataAdapter.RowUpdating Event

Occurs during Update before a command is executed against the data source. The attempt to update is made, so the event fires.

Syntax: Visual Basic

Public Event RowUpdating As MySqlRowUpdatingEventHandler

Syntax: C#

public event MySqlRowUpdatingEventHandler RowUpdating;

Event Data

The event handler receives an argument of type MySqlRowUpdatingEventArgs containing data related to this event. The following
MySqlRowUpdatingEventArgsproperties provide information specific to this event.

Property Description

Command Gets or sets the MySqlCommand to execute when performing the
Update.

Errors Gets any errors generated by the .NET Framework data provider
when the Commandexecutes.

Row Gets the DataRowthat will be sent to the server as part of an insert,
update, or delete operation.

StatementType Gets the type of SQL statement to execute.

Status Gets or sets the UpdateStatusof the Commandproperty.

TableMapping Gets the DataTableMappingto send through the Update.

Connectors

1701



See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.7.1. MySqlRowUpdatingEventHandler Delegate

Represents the method that will handle the RowUpdatingevent of a MySqlDataAdapter .

Syntax: Visual Basic

Public Delegate Sub MySqlRowUpdatingEventHandler( _
ByVal sender As Object, _
ByVal e As MySqlRowUpdatingEventArgs _

)

Syntax: C#

public delegate void MySqlRowUpdatingEventHandler(
objectsender,
MySqlRowUpdatingEventArgse
);

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.7.1.1. MySqlRowUpdatingEventArgs Class

Provides data for the RowUpdating event. This class cannot be inherited.

For a list of all members of this type, see MySqlRowUpdatingEventArgs Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlRowUpdatingEventArgs_
Inherits RowUpdatingEventArgs

Syntax: C#

public sealed class MySqlRowUpdatingEventArgs : RowUpdatingEventArgs

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. Instance members are notguaranteed to
be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlRowUpdatingEventArgs Members , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.7.1.1.1. MySqlRowUpdatingEventArgs Members

MySqlRowUpdatingEventArgs overview

Connectors

1702



Public Instance Constructors

MySqlRowUpdatingEventArgs Constructor Initializes a new instance of the MySqlRowUpdatingEventArgs
class.

Public Instance Properties

Command Overloaded. Gets or sets the MySqlCommand to execute when
performing the Update.

Errors(inherited from RowUpdatingEventArgs) Gets any errors generated by the .NET Framework data provider
when the Commandexecutes.

Row(inherited from RowUpdatingEventArgs) Gets the DataRowthat will be sent to the server as part of an insert,
update, or delete operation.

StatementType(inherited from RowUpdatingEventArgs) Gets the type of SQL statement to execute.

Status(inherited from RowUpdatingEventArgs) Gets or sets the UpdateStatusof the Commandproperty.

TableMapping(inherited from RowUpdatingEventArgs) Gets the DataTableMappingto send through the Update.

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

See Also

MySqlRowUpdatingEventArgs Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.7.1.1.1.1. MySqlRowUpdatingEventArgs Constructor

Initializes a new instance of the MySqlRowUpdatingEventArgs class.

Syntax: Visual Basic

Public Sub New( _
ByVal row As DataRow, _
ByVal command As IDbCommand, _
ByVal statementType As StatementType, _
ByVal tableMapping As DataTableMapping _

)

Syntax: C#

public MySqlRowUpdatingEventArgs(
DataRowrow,
IDbCommandcommand,
StatementTypestatementType,
DataTableMappingtableMapping
);

Parameters

• row: The DataRowto Update.

• command: The IDbCommandto execute during Update.

Connectors

1703



• statementType: One of the StatementTypevalues that specifies the type of query executed.

• tableMapping: The DataTableMappingsent through an Update.

See Also

MySqlRowUpdatingEventArgs Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.2.1.1.7.1.1.1.2. Command Property

Gets or sets the MySqlCommand to execute when performing the Update.

Syntax: Visual Basic

Overloads Public Property Command As MySqlCommand

Syntax: C#

new public MySqlCommand Command {get; set;}

See Also

MySqlRowUpdatingEventArgs Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.2.3. MySqlCommandBuilder Constructor

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal adapter As MySqlDataAdapter, _
ByVal lastOneWins As Boolean _

)

Syntax: C#

public MySqlCommandBuilder(
MySqlDataAdapteradapter,
boollastOneWins
);

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuilder Constructor Overload List

27.2.4.1.3.1.2.4. MySqlCommandBuilder Constructor

Syntax: Visual Basic

Overloads Public Sub New( _
ByVal lastOneWins As Boolean _

)

Syntax: C#

public MySqlCommandBuilder(
boollastOneWins
);

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuilder Constructor Overload List

27.2.4.1.3.1.3. DataAdapter Property

Syntax: Visual Basic

Connectors

1704



Public Property DataAdapter As MySqlDataAdapter

Syntax: C#

public MySqlDataAdapter DataAdapter {get; set;}

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.4. QuotePrefix Property

Syntax: Visual Basic

Public Property QuotePrefix As String

Syntax: C#

public string QuotePrefix {get; set;}

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.5. QuoteSuffix Property

Syntax: Visual Basic

Public Property QuoteSuffix As String

Syntax: C#

public string QuoteSuffix {get; set;}

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.6. MySqlCommandBuilder.GetDeleteCommand Method

Syntax: Visual Basic

Public Function GetDeleteCommand() As MySqlCommand

Syntax: C#

public MySqlCommand GetDeleteCommand();

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.7. MySqlCommandBuilder.GetInsertCommand Method

Syntax: Visual Basic

Public Function GetInsertCommand() As MySqlCommand

Syntax: C#

public MySqlCommand GetInsertCommand();

Connectors

1705



See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.8. MySqlCommandBuilder.GetUpdateCommand Method

Syntax: Visual Basic

Public Function GetUpdateCommand() As MySqlCommand

Syntax: C#

public MySqlCommand GetUpdateCommand();

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

27.2.4.1.3.1.9. MySqlCommandBuilder.RefreshSchema Method

Syntax: Visual Basic

Public Sub RefreshSchema()

Syntax: C#

public void RefreshSchema();

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

27.2.4.1.4. MySqlException Class

The exception that is thrown when MySQL returns an error. This class cannot be inherited.

For a list of all members of this type, see MySqlException Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlException_
Inherits SystemException

Syntax: C#

public sealed class MySqlException : SystemException

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. Instance members are notguaranteed to
be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlException Members , MySql.Data.MySqlClient Namespace

27.2.4.1.4.1. MySqlException Members

Connectors

1706



MySqlException overview

Public Instance Properties

Data(inherited from Exception) Gets a collection of key/value pairs that provide additional, user-
defined information about the exception.

HelpLink(inherited from Exception) Gets or sets a link to the help file associated with this exception.

InnerException(inherited from Exception) Gets the Exceptioninstance that caused the current exception.

Message(inherited from Exception) Gets a message that describes the current exception.

Number Gets a number that identifies the type of error.

Source(inherited from Exception) Gets or sets the name of the application or the object that causes
the error.

StackTrace(inherited from Exception) Gets a string representation of the frames on the call stack at the
time the current exception was thrown.

TargetSite(inherited from Exception) Gets the method that throws the current exception.

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetBaseException(inherited from Exception) When overridden in a derived class, returns the Exceptionthat is
the root cause of one or more subsequent exceptions.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetObjectData(inherited from Exception) When overridden in a derived class, sets the SerializationInfowith
information about the exception.

GetType(inherited from Exception) Gets the runtime type of the current instance.

ToString(inherited from Exception) Creates and returns a string representation of the current exception.

See Also

MySqlException Class , MySql.Data.MySqlClient Namespace

27.2.4.1.4.1.1. Number Property

Gets a number that identifies the type of error.

Syntax: Visual Basic

Public ReadOnly Property Number As Integer

Syntax: C#

public int Number {get;}

See Also

MySqlException Class , MySql.Data.MySqlClient Namespace

27.2.4.1.5. MySqlHelper Class

Helper class that makes it easier to work with the provider.

For a list of all members of this type, see MySqlHelper Members .

Connectors

1707



Syntax: Visual Basic

NotInheritable Public Class MySqlHelper

Syntax: C#

public sealed class MySqlHelper

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed
to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlHelper Members , MySql.Data.MySqlClient Namespace

27.2.4.1.5.1. MySqlHelper Members

MySqlHelper overview

Public Static (Shared) Methods

ExecuteDataRow Executes a single SQL statement and returns the first row of the
resultset. A new MySqlConnection object is created, opened, and
closed during this method.

ExecuteDataset Overloaded. Executes a single SQL statement and returns the res-
ultset in a DataSet. A new MySqlConnection object is created,
opened, and closed during this method.

ExecuteNonQuery Overloaded. Executes a single command against a MySQL data-
base. The MySqlConnection is assumed to be open when the
method is called and remains open after the method completes.

ExecuteReader Overloaded. Executes a single command against a MySQL data-
base.

ExecuteScalar Overloaded. Execute a single command against a MySQL data-
base.

UpdateDataSet Updates the given table with data from the given DataSet

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

Connectors

1708



27.2.4.1.5.1.1. MySqlHelper.ExecuteDataRow Method

Executes a single SQL statement and returns the first row of the resultset. A new MySqlConnection object is created, opened, and
closed during this method.

Syntax: Visual Basic

Public Shared Function ExecuteDataRow( _
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray parms As MySqlParameter() _

) As DataRow

Syntax: C#

public static DataRow ExecuteDataRow(
stringconnectionString,
stringcommandText,

params MySqlParameter[]parms
);

Parameters

• connectionString: Settings to be used for the connection

• commandText: Command to execute

• parms: Parameters to use for the command

Return Value

DataRow containing the first row of the resultset

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

27.2.4.1.5.1.2. ExecuteDataset Method

Executes a single SQL statement and returns the resultset in a DataSet. The state of the MySqlConnection object remains unchanged
after execution of this method.

Overload List

Executes a single SQL statement and returns the resultset in a DataSet. The state of the MySqlConnection object remains unchanged
after execution of this method.

• public static DataSet ExecuteDataset(MySqlConnection,string);

Executes a single SQL statement and returns the resultset in a DataSet. The state of the MySqlConnection object remains unchanged
after execution of this method.

• public static DataSet ExecuteDataset(MySqlConnection,string,params MySqlParameter[]);

Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection object is created, opened, and closed
during this method.

• public static DataSet ExecuteDataset(string,string);

Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection object is created, opened, and closed

Connectors

1709



during this method.

• public static DataSet ExecuteDataset(string,string,params MySqlParameter[]);

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

27.2.4.1.5.1.2.1. MySqlHelper.ExecuteDataset Method

Executes a single SQL statement and returns the resultset in a DataSet. The state of the MySqlConnection object remains unchanged
after execution of this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset( _
ByVal connection As MySqlConnection, _
ByVal commandText As String _

) As DataSet

Syntax: C#

public static DataSet ExecuteDataset(
MySqlConnectionconnection,
stringcommandText
);

Parameters

• connection: MySqlConnection object to use

• commandText: Command to execute

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteDataset Overload List

27.2.4.1.5.1.2.2. MySqlHelper.ExecuteDataset Method

Executes a single SQL statement and returns the resultset in a DataSet. The state of the MySqlConnection object remains unchanged
after execution of this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset( _
ByVal connection As MySqlConnection, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _

) As DataSet

Syntax: C#

public static DataSet ExecuteDataset(
MySqlConnectionconnection,
stringcommandText,

params MySqlParameter[]commandParameters
);

Parameters

Connectors

1710



• connection: MySqlConnection object to use

• commandText: Command to execute

• commandParameters: Parameters to use for the command

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteDataset Overload List

27.2.4.1.5.1.2.3. MySqlHelper.ExecuteDataset Method

Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection object is created, opened, and closed
during this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset( _
ByVal connectionString As String, _
ByVal commandText As String _

) As DataSet

Syntax: C#

public static DataSet ExecuteDataset(
stringconnectionString,
stringcommandText
);

Parameters

• connectionString: Settings to be used for the connection

• commandText: Command to execute

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteDataset Overload List

27.2.4.1.5.1.2.4. MySqlHelper.ExecuteDataset Method

Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection object is created, opened, and closed
during this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset( _
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _

) As DataSet

Syntax: C#

public static DataSet ExecuteDataset(
stringconnectionString,
stringcommandText,

params MySqlParameter[]commandParameters

Connectors

1711



);

Parameters

• connectionString: Settings to be used for the connection

• commandText: Command to execute

• commandParameters: Parameters to use for the command

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteDataset Overload List

27.2.4.1.5.1.3. ExecuteNonQuery Method

Executes a single command against a MySQL database. The MySqlConnection is assumed to be open when the method is called and re-
mains open after the method completes.

Overload List

Executes a single command against a MySQL database. The MySqlConnection is assumed to be open when the method is called and re-
mains open after the method completes.

• public static int ExecuteNonQuery(MySqlConnection,string,params MySqlParameter[]);

Executes a single command against a MySQL database. A new MySqlConnection is created using the ConnectionString given.

• public static int ExecuteNonQuery(string,string,params MySqlParameter[]);

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

27.2.4.1.5.1.3.1. MySqlHelper.ExecuteNonQuery Method

Executes a single command against a MySQL database. The MySqlConnection is assumed to be open when the method is called and re-
mains open after the method completes.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteNonQuery( _
ByVal connection As MySqlConnection, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _

) As Integer

Syntax: C#

public static int ExecuteNonQuery(
MySqlConnectionconnection,
stringcommandText,

params MySqlParameter[]commandParameters
);

Parameters

Connectors

1712



• connection: MySqlConnection object to use

• commandText: SQL statement to be executed

• commandParameters: Array of MySqlParameter objects to use with the command.

Return Value

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteNonQuery Overload List

27.2.4.1.5.1.3.2. MySqlHelper.ExecuteNonQuery Method

Executes a single command against a MySQL database. A new MySqlConnection is created using the ConnectionString given.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteNonQuery( _
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray parms As MySqlParameter() _

) As Integer

Syntax: C#

public static int ExecuteNonQuery(
stringconnectionString,
stringcommandText,

params MySqlParameter[]parms
);

Parameters

• connectionString: ConnectionString to use

• commandText: SQL statement to be executed

• parms: Array of MySqlParameter objects to use with the command.

Return Value

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteNonQuery Overload List

27.2.4.1.5.1.4. ExecuteReader Method

Executes a single command against a MySQL database.

Overload List

Executes a single command against a MySQL database.

• public static MySqlDataReader ExecuteReader(string,string);

Executes a single command against a MySQL database.

• public static MySqlDataReader ExecuteReader(string,string,params MySqlParameter[]);

See Also

Connectors

1713



MySqlHelper Class , MySql.Data.MySqlClient Namespace

27.2.4.1.5.1.4.1. MySqlHelper.ExecuteReader Method

Executes a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteReader( _
ByVal connectionString As String, _
ByVal commandText As String _

) As MySqlDataReader

Syntax: C#

public static MySqlDataReader ExecuteReader(
stringconnectionString,
stringcommandText
);

Parameters

• connectionString: Settings to use for this command

• commandText: Command text to use

Return Value

MySqlDataReader object ready to read the results of the command

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteReader Overload List

27.2.4.1.5.1.4.2. MySqlHelper.ExecuteReader Method

Executes a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteReader( _
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _

) As MySqlDataReader

Syntax: C#

public static MySqlDataReader ExecuteReader(
stringconnectionString,
stringcommandText,

params MySqlParameter[]commandParameters
);

Parameters

• connectionString: Settings to use for this command

• commandText: Command text to use

• commandParameters: Array of MySqlParameter objects to use with the command

Return Value

Connectors

1714



MySqlDataReader object ready to read the results of the command

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteReader Overload List

27.2.4.1.5.1.5. ExecuteScalar Method

Execute a single command against a MySQL database.

Overload List

Execute a single command against a MySQL database.

• public static object ExecuteScalar(MySqlConnection,string);

Execute a single command against a MySQL database.

• public static object ExecuteScalar(MySqlConnection,string,params MySqlParameter[]);

Execute a single command against a MySQL database.

• public static object ExecuteScalar(string,string);

Execute a single command against a MySQL database.

• public static object ExecuteScalar(string,string,params MySqlParameter[]);

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

27.2.4.1.5.1.5.1. MySqlHelper.ExecuteScalar Method

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar( _
ByVal connection As MySqlConnection, _
ByVal commandText As String _

) As Object

Syntax: C#

public static object ExecuteScalar(
MySqlConnectionconnection,
stringcommandText
);

Parameters

• connection: MySqlConnection object to use

• commandText: Command text to use for the command

Return Value

Connectors

1715



The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteScalar Overload List

27.2.4.1.5.1.5.2. MySqlHelper.ExecuteScalar Method

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar( _
ByVal connection As MySqlConnection, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _

) As Object

Syntax: C#

public static object ExecuteScalar(
MySqlConnectionconnection,
stringcommandText,

params MySqlParameter[]commandParameters
);

Parameters

• connection: MySqlConnection object to use

• commandText: Command text to use for the command

• commandParameters: Parameters to use for the command

Return Value

The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteScalar Overload List

27.2.4.1.5.1.5.3. MySqlHelper.ExecuteScalar Method

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar( _
ByVal connectionString As String, _
ByVal commandText As String _

) As Object

Syntax: C#

public static object ExecuteScalar(
stringconnectionString,
stringcommandText
);

Parameters

• connectionString: Settings to use for the update

• commandText: Command text to use for the update

Connectors

1716



Return Value

The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteScalar Overload List

27.2.4.1.5.1.5.4. MySqlHelper.ExecuteScalar Method

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar( _
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _

) As Object

Syntax: C#

public static object ExecuteScalar(
stringconnectionString,
stringcommandText,

params MySqlParameter[]commandParameters
);

Parameters

• connectionString: Settings to use for the command

• commandText: Command text to use for the command

• commandParameters: Parameters to use for the command

Return Value

The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteScalar Overload List

27.2.4.1.5.1.6. MySqlHelper.UpdateDataSet Method

Updates the given table with data from the given DataSet

Syntax: Visual Basic

Public Shared Sub UpdateDataSet( _
ByVal connectionString As String, _
ByVal commandText As String, _
ByVal ds As DataSet, _
ByVal tablename As String _

)

Syntax: C#

public static void UpdateDataSet(
stringconnectionString,
stringcommandText,
DataSetds,
stringtablename
);

Parameters

Connectors

1717



• connectionString: Settings to use for the update

• commandText: Command text to use for the update

• ds: DataSetcontaining the new data to use in the update

• tablename: Tablename in the data set to update

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

27.2.4.1.6. MySqlErrorCode Enumeration

Syntax: Visual Basic

Public Enum MySqlErrorCode

Syntax: C#

public enum MySqlErrorCode

Members

Member Name Description

PacketTooLarge

PasswordNotAllowed

DuplicateKeyEntry

HostNotPrivileged

PasswordNoMatch

AnonymousUser

DuplicateKey

KeyNotFound

DuplicateKeyName

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

27.2.4.2. MySql.Data.Types

Namespace hierarchy

Classes

Class Description

MySqlConversionException Summary description for MySqlConversionException.

MySqlDateTime Summary description for MySqlDateTime.

MySqlValue

Connectors

1718



27.2.4.2.1. MySql.Data.TypesHierarchy

See Also

MySql.Data.Types Namespace

27.2.4.2.2. MySqlConversionException Class

Summary description for MySqlConversionException.

For a list of all members of this type, see MySqlConversionException Members .

Syntax: Visual Basic

Public Class MySqlConversionException_
Inherits ApplicationException

Syntax: C#

public class MySqlConversionException : ApplicationException

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. Instance members are notguaranteed to
be thread-safe.

Requirements

Namespace: MySql.Data.Types

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlConversionException Members , MySql.Data.Types Namespace

27.2.4.2.2.1. MySqlConversionException Members

MySqlConversionException overview

Public Instance Constructors

MySqlConversionException Constructor Ctor

Public Instance Properties

Data(inherited from Exception) Gets a collection of key/value pairs that provide additional, user-
defined information about the exception.

HelpLink(inherited from Exception) Gets or sets a link to the help file associated with this exception.

InnerException(inherited from Exception) Gets the Exceptioninstance that caused the current exception.

Message(inherited from Exception) Gets a message that describes the current exception.

Source(inherited from Exception) Gets or sets the name of the application or the object that causes
the error.

StackTrace(inherited from Exception) Gets a string representation of the frames on the call stack at the
time the current exception was thrown.

TargetSite(inherited from Exception) Gets the method that throws the current exception.

Public Instance Methods

Connectors

1719



Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetBaseException(inherited from Exception) When overridden in a derived class, returns the Exceptionthat is
the root cause of one or more subsequent exceptions.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetObjectData(inherited from Exception) When overridden in a derived class, sets the SerializationInfowith
information about the exception.

GetType(inherited from Exception) Gets the runtime type of the current instance.

ToString(inherited from Exception) Creates and returns a string representation of the current exception.

Protected Instance Properties

HResult(inherited from Exception) Gets or sets HRESULT, a coded numerical value that is assigned
to a specific exception.

Protected Instance Methods

Finalize(inherited from Object) Allows an Objectto attempt to free resources and perform other
cleanup operations before the Objectis reclaimed by garbage col-
lection.

MemberwiseClone(inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlConversionException Class , MySql.Data.Types Namespace

27.2.4.2.2.1.1. MySqlConversionException Constructor

Syntax: Visual Basic

Public Sub New( _
ByVal msg As String _

)

Syntax: C#

public MySqlConversionException(
stringmsg
);

See Also

MySqlConversionException Class , MySql.Data.Types Namespace

27.2.4.2.3. MySqlDateTime Class

Summary description for MySqlDateTime.

For a list of all members of this type, see MySqlDateTime Members .

Syntax: Visual Basic

Public Class MySqlDateTime_
Inherits MySqlValue_
Implements IConvertible, IComparable

Syntax: C#

Connectors

1720



public class MySqlDateTime : MySqlValue, IConvertible, IComparable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed
to be thread-safe.

Requirements

Namespace: MySql.Data.Types

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlDateTime Members , MySql.Data.Types Namespace

27.2.4.2.3.1. MySqlDateTime Members

MySqlDateTime overview

Public Static (Shared) Type Conversions

Explicit MySqlDateTime to DateTime Conversion

Public Instance Properties

Day Returns the day portion of this datetime

Hour Returns the hour portion of this datetime

IsNull (inherited from MySqlValue)

IsValidDateTime Indicates if this object contains a value that can be represented as a
DateTime

Minute Returns the minute portion of this datetime

Month Returns the month portion of this datetime

Second Returns the second portion of this datetime

ValueAsObject (inherited from MySqlValue) Returns the value of this field as an object

Year Returns the year portion of this datetime

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetDateTime Returns this value as a DateTime

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString Returns a MySQL specific string representation of this value

Protected Instance Fields

classType (inherited from MySqlValue) The system type represented by this value

dbType (inherited from MySqlValue) The generic dbtype of this value

isNull (inherited from MySqlValue) Is this value null

Connectors

1721



mySqlDbType (inherited from MySqlValue) The specific MySQL db type

mySqlTypeName (inherited from MySqlValue) The MySQL specific typename of this value

objectValue (inherited from MySqlValue)

Protected Instance Methods

Finalize(inherited from Object) Allows an Objectto attempt to free resources and perform other
cleanup operations before the Objectis reclaimed by garbage col-
lection.

MemberwiseClone(inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

27.2.4.2.3.1.1. MySqlDateTime Explicit MySqlDateTime to DateTime Conversion

Syntax: Visual Basic

MySqlDateTime.op_Explicit(val)

Syntax: C#

public static explicit operator DateTime(
MySqlDateTimeval
);

Parameters

• val:

Return Value

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

27.2.4.2.3.1.2. Day Property

Returns the day portion of this datetime

Syntax: Visual Basic

Public Property Day As Integer

Syntax: C#

public int Day {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

27.2.4.2.3.1.3. Hour Property

Returns the hour portion of this datetime

Syntax: Visual Basic

Connectors

1722



Public Property Hour As Integer

Syntax: C#

public int Hour {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

27.2.4.2.3.1.4. IsNull Property

Syntax: Visual Basic

Public Property IsNull As Boolean

Syntax: C#

public bool IsNull {get; set;}

See Also

MySqlValue Class , MySql.Data.Types Namespace

27.2.4.2.3.1.4.1. MySqlValue Class

For a list of all members of this type, see MySqlValue Members .

Syntax: Visual Basic

MustInherit Public Class MySqlValue

Syntax: C#

public abstract class MySqlValue

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed
to be thread-safe.

Requirements

Namespace: MySql.Data.Types

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlValue Members , MySql.Data.Types Namespace

27.2.4.2.3.1.4.1.1. MySqlValue Members

MySqlValue overview

Protected Static (Shared) Fields

numberFormat

Public Instance Constructors

MySqlValue Constructor Initializes a new instance of the MySqlValue class.

Connectors

1723



Public Instance Properties

IsNull

ValueAsObject Returns the value of this field as an object

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to the current Ob-
ject.

GetHashCode(inherited from Object) Serves as a hash function for a particular type. GetHashCodeis
suitable for use in hashing algorithms and data structures like a
hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString Returns a string representation of this value

Protected Instance Fields

classType The system type represented by this value

dbType The generic dbtype of this value

isNull Is this value null

mySqlDbType The specific MySQL db type

mySqlTypeName The MySQL specific typename of this value

objectValue

Protected Instance Methods

Finalize(inherited from Object) Allows an Objectto attempt to free resources and perform other
cleanup operations before the Objectis reclaimed by garbage col-
lection.

MemberwiseClone(inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlValue Class , MySql.Data.Types Namespace

27.2.4.2.3.1.4.1.1.1. MySqlValue.numberFormat Field

Syntax: Visual Basic

Protected Shared numberFormat As NumberFormatInfo

Syntax: C#

protected static NumberFormatInfo numberFormat;

See Also

MySqlValue Class , MySql.Data.Types Namespace

27.2.4.2.3.1.4.1.1.2. MySqlValue Constructor

Initializes a new instance of the MySqlValue class.

Syntax: Visual Basic

Connectors

1724



Public Sub New()

Syntax: C#

public MySqlValue();

See Also

MySqlValue Class , MySql.Data.Types Namespace

27.2.4.2.3.1.4.1.1.3. ValueAsObject Property

Returns the value of this field as an object

Syntax: Visual Basic

Public ReadOnly Property ValueAsObject As Object

Syntax: C#

public object ValueAsObject {get;}

See Also

MySqlValue Class , MySql.Data.Types Namespace

27.2.4.2.3.1.4.1.1.4. MySqlValue.ToString Method

Returns a string representation of this value

Syntax: Visual Basic

Overrides Public Function ToString() As String

Syntax: C#

public override string ToString();

See Also

MySqlValue Class , MySql.Data.Types Namespace

27.2.4.2.3.1.4.1.1.5. MySqlValue.classType Field

The system type represented by this value

Syntax: Visual Basic

Protected classType As Type

Syntax: C#

protected Type classType;

See Also

MySqlValue Class , MySql.Data.Types Namespace

27.2.4.2.3.1.4.1.1.6. MySqlValue.dbType Field

The generic dbtype of this value

Syntax: Visual Basic

Connectors

1725



Protected dbType As DbType

Syntax: C#

protected DbType dbType;

See Also

MySqlValue Class , MySql.Data.Types Namespace

27.2.4.2.3.1.4.1.1.7. MySqlValue.mySqlDbType Field

The specific MySQL db type

Syntax: Visual Basic

Protected mySqlDbType As MySqlDbType

Syntax: C#

protected MySqlDbType mySqlDbType;

See Also

MySqlValue Class , MySql.Data.Types Namespace

27.2.4.2.3.1.4.1.1.8. MySqlValue.mySqlTypeName Field

The MySQL specific typename of this value

Syntax: Visual Basic

Protected mySqlTypeName As String

Syntax: C#

protected string mySqlTypeName;

See Also

MySqlValue Class , MySql.Data.Types Namespace

27.2.4.2.3.1.4.1.1.9. MySqlValue.objectValue Field

Syntax: Visual Basic

Protected objectValue As Object

Syntax: C#

protected object objectValue;

See Also

MySqlValue Class , MySql.Data.Types Namespace

27.2.4.2.3.1.5. IsValidDateTime Property

Indicates if this object contains a value that can be represented as a DateTime

Syntax: Visual Basic

Public ReadOnly Property IsValidDateTime As Boolean

Connectors

1726



Syntax: C#

public bool IsValidDateTime {get;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

27.2.4.2.3.1.6. Minute Property

Returns the minute portion of this datetime

Syntax: Visual Basic

Public Property Minute As Integer

Syntax: C#

public int Minute {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

27.2.4.2.3.1.7. Month Property

Returns the month portion of this datetime

Syntax: Visual Basic

Public Property Month As Integer

Syntax: C#

public int Month {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

27.2.4.2.3.1.8. Second Property

Returns the second portion of this datetime

Syntax: Visual Basic

Public Property Second As Integer

Syntax: C#

public int Second {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

27.2.4.2.3.1.9. Year Property

Returns the year portion of this datetime

Syntax: Visual Basic

Public Property Year As Integer

Connectors

1727



Syntax: C#

public int Year {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

27.2.4.2.3.1.10. MySqlDateTime.GetDateTime Method

Returns this value as a DateTime

Syntax: Visual Basic

Public Function GetDateTime() As Date

Syntax: C#

public DateTime GetDateTime();

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

27.2.4.2.3.1.11. MySqlDateTime.ToString Method

Returns a MySQL specific string representation of this value

Syntax: Visual Basic

Overrides Public Function ToString() As String

Syntax: C#

public override string ToString();

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

27.2.5. Connector/NET Notes and Tips
In this section we will cover some of the more common use cases for Connector/NET, including BLOB handling, date handling, and us-
ing Connector/NET with common tools such as Crystal Reports.

27.2.5.1. Connecting to MySQL Using Connector/NET

27.2.5.1.1. Introduction

All interaction between a .NET application and the MySQL server is routed through a MySqlConnection object. Before your applic-
ation can interact with the server, a MySqlConnection object must be instanced, configured, and opened.

Even when using the MySqlHelper class, a MySqlConnection object is created by the helper class.

In this section, we will describe how to connect to MySQL using the MySqlConnection object.

27.2.5.1.2. Creating a Connection String

The MySqlConnection object is configured using a connection string. A connection string contains sever key/value pairs, separated
by semicolons. Each key/value pair is joined with an equals sign.

The following is a sample connection string:

Connectors

1728



Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;

In this example, the MySqlConnection object is configured to connect to a MySQL server at 127.0.0.1, with a username of
root and a password of 12345. The default database for all statements will be the test database.

The following options are typically used (a full list of options is available in the API documentation for Section 27.2.3.3.3,
“ConnectionString”):

• Server: The name or network address of the instance of MySQL to which to connect. The default is localhost. Aliases include
host, Data Source, DataSource, Address, Addr and Network Address.

• Uid: The MySQL user account to use when connecting. Aliases include User Id, Username and User name.

• Pwd: The password for the MySQL account being used. Alias Password can also be used.

• Database: The default database that all statements are applied to. Default is mysql. Alias Initial Catalog can also be
used.

• Port: The port MySQL is using to listen for connections. Default is 3306. Specify -1 for this value to use a named-pipe connec-
tion.

27.2.5.1.3. Opening a Connection

Once you have created a connection string it can be used to open a connection to the MySQL server.

The following code is used to create a MySqlConnection object, assign the connection string, and open the connection.

Visual Basic Example

Dim conn As New MySql.Data.MySqlClient.MySqlConnection
Dim myConnectionString as String

myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"

Try
conn.ConnectionString = myConnectionString
conn.Open()

Catch ex As MySql.Data.MySqlClient.MySqlException
MessageBox.Show(ex.Message)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;

myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn = new MySql.Data.MySqlClient.MySqlConnection();
conn.ConnectionString = myConnectionString;
conn.Open();

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message);
}

You can also pass the connection string to the constructor of the MySqlConnection class:

Visual Basic Example

Dim myConnectionString as String

Connectors

1729



myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"

Try
Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
conn.Open()

Catch ex As MySql.Data.MySqlClient.MySqlException
MessageBox.Show(ex.Message)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;

myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
conn.Open();

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message);
}

Once the connection is open it can be used by the other Connector/NET classes to communicate with the MySQL server.

27.2.5.1.4. Handling Connection Errors

Because connecting to an external server is unpredictable, it is important to add error handling to your .NET application. When there is
an error connecting, the MySqlConnection class will return a MySqlException object. This object has two properties that are of
interest when handling errors:

• Message: A message that describes the current exception.

• Number: The MySQL error number.

When handling errors, you can your application's response based on the error number. The two most common error numbers when con-
necting are as follows:

• 0: Cannot connect to server.

• 1045: Invalid username and/or password.

The following code shows how to adapt the application's response based on the actual error:

Visual Basic Example

Dim myConnectionString as String

myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"

Try
Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
conn.Open()

Catch ex As MySql.Data.MySqlClient.MySqlException
Select Case ex.Number

Case 0
MessageBox.Show("Cannot connect to server. Contact administrator")

Case 1045
MessageBox.Show("Invalid username/password, please try again")

End Select
End Try

Connectors

1730



C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;

myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
conn.Open();

}
catch (MySql.Data.MySqlClient.MySqlException ex)

{
switch (ex.Number)
{

case 0:
MessageBox.Show("Cannot connect to server. Contact administrator");

case 1045:
MessageBox.Show("Invalid username/password, please try again");

}
}

Important

Note that if you are using multilanguage databases you must specify the character set in the connection string. If you do
not specify the character set, the connection defaults to the latin1 charset. You can specify the character set as part of
the connection string, for example:

MySqlConnection myConnection = new MySqlConnection("server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;Charset=latin1;");

27.2.5.2. Using the Connector/NET with Prepared Statements

27.2.5.2.1. Introduction

As of MySQL 4.1, it is possible to use prepared statements with Connector/NET. Use of prepared statements can provide significant
performance improvements on queries that are executed more than once.

Prepared execution is faster than direct execution for statements executed more than once, primarily because the query is parsed only
once. In the case of direct execution, the query is parsed every time it is executed. Prepared execution also can provide a reduction of
network traffic because for each execution of the prepared statement, it is necessary only to send the data for the parameters.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer between client and server more effi-
cient.

27.2.5.2.2. Preparing Statements in Connector/NET

To prepare a statement, create a command object and set the .CommandText property to your query.

After entering your statement, call the .Prepare method of the MySqlCommand object. After the statement is prepared, add para-
meters for each of the dynamic elements in the query.

After you enter your query and enter parameters, execute the statement using the .ExecuteNonQuery(), .ExecuteScalar(),
or .ExecuteReader methods.

For subsequent executions, you need only modify the values of the parameters and call the execute method again, there is no need to set
the .CommandText property or redefine the parameters.

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

conn.ConnectionString = strConnection

Try

Connectors

1731



conn.Open()
cmd.Connection = conn

cmd.CommandText = "INSERT INTO myTable VALUES(NULL, ?number, ?text)"
cmd.Prepare()

cmd.Parameters.Add("?number", 1)
cmd.Parameters.Add("?text", "One")

For i = 1 To 1000
cmd.Parameters["?number"].Value = i
cmd.Parameters["?text"].Value = "A string value"

cmd.ExecuteNonQuery()
Next

Catch ex As MySqlException
MessageBox.Show("Error " & ex.Number & " has occurred: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString = strConnection;

try
{

conn.Open();
cmd.Connection = conn;

cmd.CommandText = "INSERT INTO myTable VALUES(NULL, ?number, ?text)";
cmd.Prepare();

cmd.Parameters.Add("?number", 1);
cmd.Parameters.Add("?text", "One");

for (int i=1; i <= 1000; i++)
{

cmd.Parameters["?number"].Value = i;
cmd.Parameters["?text"].Value = "A string value";

cmd.ExecuteNonQuery();
}

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

27.2.5.3. Accessing Stored Procedures with Connector/NET

27.2.5.3.1. Introduction

With the release of MySQL version 5 the MySQL server now supports stored procedures with the SQL 2003 stored procedure syntax.

A stored procedure is a set of SQL statements that can be stored in the server. Once this has been done, clients don't need to keep reissu-
ing the individual statements but can refer to the stored procedure instead.

Stored procedures can be particularly useful in situations such as the following:

• When multiple client applications are written in different languages or work on different platforms, but need to perform the same
database operations.

• When security is paramount. Banks, for example, use stored procedures for all common operations. This provides a consistent and
secure environment, and procedures can ensure that each operation is properly logged. In such a setup, applications and users would
not get any access to the database tables directly, but can only execute specific stored procedures.

Connector/NET supports the calling of stored procedures through the MySqlCommand object. Data can be passed in and our of a
MySQL stored procedure through use of the MySqlCommand.Parameters collection.

Connectors

1732



Note

When you call a stored procedure, the command object makes an additional SELECT call to determine the parameters of
the stored procedure. You must ensure that the user calling the procedure has the SELECT privilege on the mysql.proc
table to enable them to verify the parameters. Failure to do this will result in an error when calling the procedure.

This section will not provide in-depth information on creating Stored Procedures. For such information, please refer to ht-
tp://dev.mysql.com/doc/mysql/en/stored-procedures.html.

A sample application demonstrating how to use stored procedures with Connector/NET can be found in the Samples directory of your
Connector/NET installation.

27.2.5.3.2. Creating Stored Procedures from Connector/NET

Stored procedures in MySQL can be created using a variety of tools. First, stored procedures can be created using the mysql com-
mand-line client. Second, stored procedures can be created using the MySQL Query Browser GUI client. Finally, stored procedures
can be created using the .ExecuteNonQuery method of the MySqlCommand object:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
conn.Open()
cmd.Connection = conn

cmd.CommandText = "CREATE PROCEDURE add_emp(" _
& "IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT) " _
& "BEGIN INSERT INTO emp(first_name, last_name, birthdate) " _
& "VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END"

cmd.ExecuteNonQuery()
Catch ex As MySqlException

MessageBox.Show("Error " & ex.Number & " has occurred: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn.Open();
cmd.Connection = conn;

cmd.CommandText = "CREATE PROCEDURE add_emp(" +
"IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT) " +
"BEGIN INSERT INTO emp(first_name, last_name, birthdate) " +
"VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END";

cmd.ExecuteNonQuery();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,

"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}

It should be noted that, unlike the command-line and GUI clients, you are not required to specify a special delimiter when creating
stored procedures in Connector/NET.

27.2.5.3.3. Calling a Stored Procedure from Connector/NET

Connectors

1733

http://dev.mysql.com/doc/mysql/en/stored-procedures.html
http://dev.mysql.com/doc/mysql/en/stored-procedures.html


To call a stored procedure using Connector/NET, create a MySqlCommand object and pass the stored procedure name as the
.CommandText property. Set the .CommandType property to CommandType.StoredProcedure.

After the stored procedure is named, create one MySqlCommand parameter for every parameter in the stored procedure. IN parameters
are defined with the parameter name and the object containing the value, OUT parameters are defined with the parameter name and the
datatype that is expected to be returned. All parameters need the parameter direction defined.

After defining parameters, call the stored procedure by using the MySqlCommand.ExecuteNonQuery() method:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
conn.Open()
cmd.Connection = conn

cmd.CommandText = "add_emp"
cmd.CommandType = CommandType.StoredProcedure

cmd.Parameters.Add("?lname", 'Jones')
cmd.Parameters["?lname"].Direction = ParameterDirection.Input

cmd.Parameters.Add("?fname", 'Tom')
cmd.Parameters["?fname"].Direction = ParameterDirection.Input

cmd.Parameters.Add("?bday", #12/13/1977 2:17:36 PM#)
cmd.Parameters["?bday"].Direction = ParameterDirection.Input

cmd.Parameters.Add("?empno", MySqlDbType.Int32)
cmd.Parameters["?empno"].Direction = ParameterDirection.Output

cmd.ExecuteNonQuery()

MessageBox.Show(cmd.Parameters["?empno"].Value)
Catch ex As MySqlException

MessageBox.Show("Error " & ex.Number & " has occurred: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn.Open();
cmd.Connection = conn;

cmd.CommandText = "add_emp";
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add("?lname", "Jones");
cmd.Parameters["?lname"].Direction = ParameterDirection.Input;

cmd.Parameters.Add("?fname", "Tom");
cmd.Parameters["?fname"].Direction = ParameterDirection.Input;

cmd.Parameters.Add("?bday", DateTime.Parse("12/13/1977 2:17:36 PM"));
cmd.Parameters["?bday"].Direction = ParameterDirection.Input;

cmd.Parameters.Add("?empno", MySqlDbType.Int32);
cmd.Parameters["?empno"].Direction = ParameterDirection.Output;

cmd.ExecuteNonQuery();

MessageBox.Show(cmd.Parameters["?empno"].Value);
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

Connectors

1734



}

Once the stored procedure is called, the values of output parameters can be retrieved by using the .Value property of the MySqlCon-
nector.Parameters collection.

27.2.5.4. Handling BLOB Data With Connector/NET

27.2.5.4.1. Introduction

One common use for MySQL is the storage of binary data in BLOB columns. MySQL supports four different BLOB datatypes:
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB.

Data stored in a BLOB column can be accessed using Connector/NET and manipulated using client-side code. There are no special re-
quirements for using Connector/NET with BLOB data.

Simple code examples will be presented within this section, and a full sample application can be found in the Samples directory of the
Connector/NET installation.

27.2.5.4.2. Preparing the MySQL Server

The first step is using MySQL with BLOB data is to configure the server. Let's start by creating a table to be accessed. In my file tables,
I usually have four columns: an AUTO_INCREMENT column of appropriate size (UNSIGNED SMALLINT) to serve as a primary key
to identify the file, a VARCHAR column that stores the filename, an UNSIGNED MEDIUMINT column that stores the size of the file,
and a MEDIUMBLOB column that stores the file itself. For this example, I will use the following table definition:

CREATE TABLE file(
file_id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
file_name VARCHAR(64) NOT NULL,
file_size MEDIUMINT UNSIGNED NOT NULL,
file MEDIUMBLOB NOT NULL);

After creating a table, you may need to modify the max_allowed_packet system variable. This variable determines how large of a pack-
et (i.e. a single row) can be sent to the MySQL server. By default, the server will only accept a maximum size of 1 meg from our client
application. If you do not intend to exceed 1 meg, this should be fine. If you do intend to exceed 1 meg in your file transfers, this num-
ber has to be increased.

The max_allowed_packet option can be modified using MySQL Administrator's Startup Variables screen. Adjust the Maximum al-
lowed option in the Memory section of the Networking tab to an appropriate setting. After adjusting the value, click the APPLY
CHANGES button and restart the server using the Service Control screen of MySQL Administrator. You can also adjust this value
directly in the my.cnf file (add a line that reads max_allowed_packet=xxM), or use the SET max_allowed_packet=xxM; syntax from
within MySQL.

Try to be conservative when setting max_allowed_packet, as transfers of BLOB data can take some time to complete. Try to set a value
that will be adequate for your intended use and increase the value if necessary.

27.2.5.4.3. Writing a File to the Database

To write a file to a database we need to convert the file to a byte array, then use the byte array as a parameter to an INSERT query.

The following code opens a file using a FileStream object, reads it into a byte array, and inserts it into the file table:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

Dim SQL As String

Dim FileSize As UInt32
Dim rawData() As Byte
Dim fs As FileStream

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
fs = New FileStream("c:\image.png", FileMode.Open, FileAccess.Read)
FileSize = fs.Length

Connectors

1735



rawData = New Byte(FileSize) {}
fs.Read(rawData, 0, FileSize)
fs.Close()

conn.Open()

SQL = "INSERT INTO file VALUES(NULL, ?FileName, ?FileSize, ?File)"

cmd.Connection = conn
cmd.CommandText = SQL
cmd.Parameters.Add("?FileName", strFileName)
cmd.Parameters.Add("?FileSize", FileSize)
cmd.Parameters.Add("?File", rawData)

cmd.ExecuteNonQuery()

MessageBox.Show("File Inserted into database successfully!", _
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)

conn.Close()
Catch ex As Exception

MessageBox.Show("There was an error: " & ex.Message, "Error", _
MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

fs = new FileStream(@"c:\image.png", FileMode.Open, FileAccess.Read);
FileSize = fs.Length;

rawData = new byte[FileSize];
fs.Read(rawData, 0, FileSize);
fs.Close();

conn.Open();

SQL = "INSERT INTO file VALUES(NULL, ?FileName, ?FileSize, ?File)";

cmd.Connection = conn;
cmd.CommandText = SQL;
cmd.Parameters.Add("?FileName", strFileName);
cmd.Parameters.Add("?FileSize", FileSize);
cmd.Parameters.Add("?File", rawData);

cmd.ExecuteNonQuery();

MessageBox.Show("File Inserted into database successfully!",
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);

conn.Close();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

The Read method of the FileStream object is used to load the file into a byte array which is sized according to the Length prop-
erty of the FileStream object.

After assigning the byte array as a parameter of the MySqlCommand object, the ExecuteNonQuery method is called and the BLOB
is inserted into the file table.

27.2.5.4.4. Reading a BLOB from the Database to a File on Disk

Connectors

1736



Once a file is loaded into the file table, we can use the MySqlDataReader class to retrieve it.

The following code retrieves a row from the file table, then loads the data into a FileStream object to be written to disk:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myData As MySqlDataReader
Dim SQL As String
Dim rawData() As Byte
Dim FileSize As UInt32
Dim fs As FileStream

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

SQL = "SELECT file_name, file_size, file FROM file"

Try
conn.Open()

cmd.Connection = conn
cmd.CommandText = SQL

myData = cmd.ExecuteReader

If Not myData.HasRows Then Throw New Exception("There are no BLOBs to save")

myData.Read()

FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"))
rawData = New Byte(FileSize) {}

myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, FileSize)

fs = New FileStream("C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write)
fs.Write(rawData, 0, FileSize)
fs.Close()

MessageBox.Show("File successfully written to disk!", "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)

myData.Close()
conn.Close()

Catch ex As Exception
MessageBox.Show("There was an error: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataReader myData;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

SQL = "SELECT file_name, file_size, file FROM file";

try
{

conn.Open();

cmd.Connection = conn;
cmd.CommandText = SQL;

myData = cmd.ExecuteReader();

if (! myData.HasRows)
throw new Exception("There are no BLOBs to save");

myData.Read();

FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"));
rawData = new byte[FileSize];

Connectors

1737



myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, FileSize);

fs = new FileStream(@"C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write);
fs.Write(rawData, 0, FileSize);
fs.Close();

MessageBox.Show("File successfully written to disk!",
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);

myData.Close();
conn.Close();

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

After connecting, the contents of the file table are loaded into a MySqlDataReader object. The GetBytes method of the
MySqlDataReader is used to load the BLOB into a byte array, which is then written to disk using a FileStream object.

The GetOrdinal method of the MySqlDataReader can be used to determine the integer index of a named column. Use of the Get-
Ordinal method prevents errors if the column order of the SELECT query is changed.

27.2.5.5. Using Connector/NET with Crystal Reports

27.2.5.5.1. Introduction

Crystal Reports is a common tool used by Windows application developers to perform reporting and document generation. In this sec-
tion we will show how to use Crystal Reports XI with MySQL and Connector/NET.

27.2.5.5.2. Creating a Data Source

When creating a report in Crystal Reports there are two options for accessing the MySQL data while designing your report.

The first option is to use Connector/ODBC as an ADO data source when designing your report. You will be able to browse your data-
base and choose tables and fields using drag and drop to build your report. The disadvantage of this approach is that additional work
must be performed within your application to produce a data set that matches the one expected by your report.

The second option is to create a data set in VB.NET and save it as XML. This XML file can then be used to design a report. This works
quite well when displaying the report in your application, but is less versatile at design time because you must choose all relevant
columns when creating the data set. If you forget a column you must re-create the data set before the column can be added to the report.

The following code can be used to create a data set from a query and write it to disk:

Visual Basic Example

Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=world"

Try
conn.Open()
cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _

& "country.name, country.population, country.continent " _
& "FROM country, city ORDER BY country.continent, country.name"

cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myData.WriteXml("C:\dataset.xml", XmlWriteMode.WriteSchema)
Catch ex As Exception

MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

Connectors

1738



C# Example

DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{
cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
"country.name, country.population, country.continent " +
"FROM country, city ORDER BY country.continent, country.name";
cmd.Connection = conn;

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

myData.WriteXml(@"C:\dataset.xml", XmlWriteMode.WriteSchema);
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

The resulting XML file can be used as an ADO.NET XML datasource when designing your report.

If you choose to design your reports using Connector/ODBC, it can be downloaded from dev.mysql.com.

27.2.5.5.3. Creating the Report

For most purposes the Standard Report wizard should help with the initial creation of a report. To start the wizard, open Crystal Reports
and choose the New > Standard Report option from the File menu.

The wizard will first prompt you for a data source. If you are using Connector/ODBC as your data source, use the OLEDB provider for
ODBC option from the OLE DB (ADO) tree instead of the ODBC (RDO) tree when choosing a data source. If using a saved data set,
choose the ADO.NET (XML) option and browse to your saved data set.

The remainder of the report creation process is done automatically by the wizard.

After the report is created, choose the Report Options... entry of the File menu. Un-check the Save Data With Report option. This pre-
vents saved data from interfering with the loading of data within our application.

27.2.5.5.4. Displaying the Report

To display a report we first populate a data set with the data needed for the report, then load the report and bind it to the data set. Finally
we pass the report to the crViewer control for display to the user.

The following references are needed in a project that displays a report:

• CrytalDecisions.CrystalReports.Engine

• CrystalDecisions.ReportSource

• CrystalDecisions.Shared

• CrystalDecisions.Windows.Forms

The following code assumes that you created your report using a data set saved using the code shown in Section 27.2.5.5.2, “Creating a
Data Source”, and have a crViewer control on your form named myViewer.

Visual Basic Example

Imports CrystalDecisions.CrystalReports.Engine

Connectors

1739

http://dev.mysql.com/downloads/connector/odbc/3.51.html


Imports System.Data
Imports MySql.Data.MySqlClient

Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = _
"server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
conn.Open()

cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _
& "country.name, country.population, country.continent " _
& "FROM country, city ORDER BY country.continent, country.name"

cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myReport.Load(".\world_report.rpt")
myReport.SetDataSource(myData)
myViewer.ReportSource = myReport

Catch ex As Exception
MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;

ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
"country.name, country.population, country.continent " +
"FROM country, city ORDER BY country.continent, country.name";

cmd.Connection = conn;

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

myReport.Load(@".\world_report.rpt");
myReport.SetDataSource(myData);
myViewer.ReportSource = myReport;

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

A new data set it generated using the same query used to generate the previously saved data set. Once the data set is filled, a ReportDoc-
ument is used to load the report file and bind it to the data set. The ReportDocument is the passed as the ReportSource of the crViewer.

This same approach is taken when a report is created from a single table using Connector/ODBC. The data set replaces the table used in
the report and the report is displayed properly.

When a report is created from multiple tables using Connector/ODBC, a data set with multiple tables must be created in our application.
This allows each table in the report data source to be replaced with a report in the data set.

We populate a data set with multiple tables by providing multiple SELECT statements in our MySqlCommand object. These SELECT

Connectors

1740



statements are based on the SQL query shown in Crystal Reports in the Database menu's Show SQL Query option. Assume the follow-
ing query:

SELECT `country`.`Name`, `country`.`Continent`, `country`.`Population`, `city`.`Name`, `city`.`Population`
FROM `world`.`country` `country` LEFT OUTER JOIN `world`.`city` `city` ON `country`.`Code`=`city`.`CountryCode`
ORDER BY `country`.`Continent`, `country`.`Name`, `city`.`Name`

This query is converted to two SELECT queries and displayed with the following code:

Visual Basic Example

Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient

Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=world"

Try
conn.Open()
cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER BY countrycode, name; " _

& "SELECT name, population, code, continent FROM country ORDER BY continent, name"
cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myReport.Load(".\world_report.rpt")
myReport.Database.Tables(0).SetDataSource(myData.Tables(0))
myReport.Database.Tables(1).SetDataSource(myData.Tables(1))
myViewer.ReportSource = myReport

Catch ex As Exception
MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;

ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER " +
"BY countrycode, name; SELECT name, population, code, continent FROM " +
"country ORDER BY continent, name";

cmd.Connection = conn;

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

myReport.Load(@".\world_report.rpt");
myReport.Database.Tables(0).SetDataSource(myData.Tables(0));
myReport.Database.Tables(1).SetDataSource(myData.Tables(1));
myViewer.ReportSource = myReport;

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

Connectors

1741



It is important to order the SELECT queries in alphabetical order, as this is the order the report will expect its source tables to be in. One
SetDataSource statement is needed for each table in the report.

This approach can cause performance problems because Crystal Reports must bind the tables together on the client-side, which will be
slower than using a pre-saved data set.

27.2.5.6. Handling Date and Time Information in Connector/NET

27.2.5.6.1. Introduction

MySQL and the .NET languages handle date and time information differently, with MySQL allowing dates that cannot be represented
by a .NET data type, such as '0000-00-00 00:00:00'. These differences can cause problems if not properly handled.

In this section we will demonstrate how to properly handle date and time information when using Connector/NET.

27.2.5.6.2. Problems when Using Invalid Dates

The differences in date handling can cause problems for developers who use invalid dates. Invalid MySQL dates cannot be loaded into
native .NET DateTime objects, including NULL dates.

Because of this issue, .NET DataSet objects cannot be populated by the Fill method of the MySqlDataAdapter class as invalid
dates will cause a System.ArgumentOutOfRangeException exception to occur.

27.2.5.6.3. Restricting Invalid Dates

The best solution to the date problem is to restrict users from entering invalid dates. This can be done on either the client or the server
side.

Restricting invalid dates on the client side is as simple as always using the .NET DateTime class to handle dates. The DateTime
class will only allow valid dates, ensuring that the values in your database are also valid. The disadvantage of this is that it is not useful
in a mixed environment where .NET and non .NET code are used to manipulate the database, as each application must perform its own
date validation.

Users of MySQL 5.0.2 and higher can use the new traditional SQL mode to restrict invalid date values. For information on using
the traditional SQL mode, see Section 5.1.6, “SQL Modes”.

27.2.5.6.4. Handling Invalid Dates

Although it is strongly recommended that you avoid the use of invalid dates within your .NET application, it is possible to use invalid
dates by means of the MySqlDateTime datatype.

The MySqlDateTime datatype supports the same date values that are supported by the MySQL server. The default behavior of Con-
nector/NET is to return a .NET DateTime object for valid date values, and return an error for invalid dates. This default can be modified
to cause Connector/NET to return MySqlDateTime objects for invalid dates.

To instruct Connector/NET to return a MySqlDateTime object for invalid dates, add the following line to your connection string:

Allow Zero Datetime=True

Please note that the use of the MySqlDateTime class can still be problematic. The following are some known issues:

1. Data binding for invalid dates can still cause errors (zero dates like 0000-00-00 do not seem to have this problem).

2. The ToString method return a date formatted in the standard MySQL format (for example, 2005-02-23 08:50:25). This
differs from the ToString behavior of the .NET DateTime class.

3. The MySqlDateTime class supports NULL dates, while the .NET DateTime class does not. This can cause errors when trying to
convert a MySQLDateTime to a DateTime if you do not check for NULL first.

Because of the known issues, the best recommendation is still to use only valid dates in your application.

Connectors

1742



27.2.5.6.5. Handling NULL Dates

The .NET DateTime datatype cannot handle NULL values. As such, when assigning values from a query to a DateTime variable,
you must first check whether the value is in fact NULL.

When using a MySqlDataReader, use the .IsDBNull method to check whether a value is NULL before making the assignment:

Visual Basic Example

If Not myReader.IsDBNull(myReader.GetOrdinal("mytime")) Then
myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"))

Else
myTime = DateTime.MinValue

End If

C# Example

if (! myReader.IsDBNull(myReader.GetOrdinal("mytime")))
myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"));

else
myTime = DateTime.MinValue;

NULL values will work in a data set and can be bound to form controls without special handling.

27.2.5.7. Frequently Asked Questions

The following details a number of frequently asked questions about Connector/NET.

Questions

• 28.2.5.7.1: How do I obtain the value of an auto-incremented column?

Questions and Answers

28.2.5.7.1: How do I obtain the value of an auto-incremented column?

When using the commandBuilder you should make sure that you set the ReturnGeneratedIdentifiers property to true.

Then, you can use an active view on a table to access the updated ID. For example:

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
da = new MySql.Data.MySqlClient.MySqlDataAdapter();
cmdBuilder = new MySql.Data.MySqlClient.MySqlCommandBuilder();
SystemDataDataSet = new System.Data.DataSet();
SystemDataDataView = new System.Data.DataView();

...
cmd.Connection = conn;
cmd.CommandText = "SELECT * FROM contacts";

da.SelectCommand = cmd;
da.Fill(SystemDataDataSet, "contacts");

cmdBuilder.DataAdapter = da;
cmdBuilder.ReturnGeneratedIdentifiers = true;
cmdBuilder.DataAdapter.SelectCommand.CommandText = "SELECT * FROM contacts";

cmdBuilder.RefreshSchema();

SystemDataDataView = SystemDataDataSet.Tables["contacts"].DefaultView;

SystemDataDataRow = SystemDataDataView.Table.NewRow();
SystemDataDataRow["status"] = 1;

SystemDataDataView.Table.Rows.Add(SystemDataDataRow);
da.Update(SystemDataDataSet, "contacts");
System.Console.WriteLine("ID after update: " + SystemDataDataRow["id"]);

The SystemDataDataRow object in this instance provides the interface to the updated auto-increment value in the id column.

Connectors

1743



27.2.6. Connector/NET Support
The developers of Connector/NET greatly value the input of our users in the software development process. If you find Connector/NET
lacking some feature important to you, or if you discover a bug and need to file a bug report, please use the instructions in Section 1.7,
“How to Report Bugs or Problems”.

27.2.6.1. Connector/NET Community Support

• Community support for Connector/NET can be found through the forums at http://forums.mysql.com.

• Community support for Connector/NET can also be found through the mailing lists at http://lists.mysql.com.

• Paid support is available from MySQL AB. Additional information is available at http://www.mysql.com/support/.

27.2.6.2. How to report Connector/NET Problems or Bugs

If you encounter difficulties or problems with Connector/NET, contact the Connector/NET community Section 27.2.6.1,
“Connector/NET Community Support”.

You should first try to execute the same SQL statements and commands from the mysql client program or from admndemo. This
helps you determine whether the error is in Connector/NET or MySQL.

If reporting a problem, you should ideally include the following information with the email:

• Operating system and version

• Connector/NET version

• MySQL server version

• Copies of error messages or other unexpected output

• Simple reproducible sample

Remember that the more information you can supply to us, the more likely it is that we can fix the problem.

If you believe the problem to be a bug, then you must report the bug through http://bugs.mysql.com/.

27.2.6.3. Connector/NET Change History

The Connector/NET Change History (Changelog) is located with the main Changelog for MySQL. See Section C.3, “MySQL Connect-
or/NET Change History”.

27.3. MySQL Visual Studio Plugin
The MySQL Visual Studio Plugin is a DDEX provider; a plug-in for Visual Studio 2005 that allows developers to maintain database
structures, and supports built-in data-driven application development tools.

The current version of the MySQL Visual Studio Plugin includes only database maintenance tools. Data-driven application develop-
ment tools are not supported.

The MySQL DDEX Provider operates as a standard extension to the Visual Studio Data Designer functionality available through the
Server Explorer menu of Visual Studio 2005, and enables developers to create database objects and data within a MySQL database.

The MySQL Visual Studio Plugin is designed to work with MySQL version 5.0, but is also compatible with MySQL 4.1.1 and provides
limited compatibility with MySQL 5.1.

27.3.1. Installing the MySQL Visual Studio Plugin
The MySQL Visual Studio Plugin requires one of Visual Studio 2005 Standard, Professional or Team Developer Edition to be installed.

Connectors

1744

http://forums.mysql.com
http://lists.mysql.com
http://www.mysql.com/support/
http://bugs.mysql.com/


Other editions of Visual Studio 2005 are not supported.

Note

Starting with Connector/NET 5.1.2, the Visual Studio Plugin is included in the installation. If you have installed Connect-
or/NET 5.1.2, then you do not need to separately install the Visual Studio Plugin.

Here is the list of components that should already be installed before starting the installation of the MySQL Visual Studio Plugin:

• Visual Studio 2005 Standard, Professional or Team Developer Edition.

• MySQL Server 4.1.1 or later (either installed on the same machine, or a separate server).

• MySQL Connector/NET 5.0.

Note

When installing Connector/NET you must ensure that the connector is installed into the Global Assembly Cache (GAC).
The Connector/NET installer handles this for you automatically, but in a custom installation the option may have been dis-
abled.

The user used to connect to the MySQL server must have the following privileges to use the functionality provided by the MySQL
Visual Studio Plugin:

• The SELECT privilege for the INFORMATION_SCHEMA database.

• The EXECUTE privilege for the SHOW CREATE TABLE statement.

• The SELECT privilege for the mysql.proc table (required for operations with stored procedures and functions).

• The SELECT privilege for the mysql.func table (required for operations with User Defined Functions (UDF)).

• The EXECUTE privilege for the SHOW ENGINE STATUS statement (required for retrieving extended error information).

• Appropriate privileges for performed operations (e.g. the SELECT privilege is required to browse data from a table etc.).

The MySQL Visual Studio Plugin is delivered as a MSI package that can be used to install, uninstall or reinstall the Provider. If you are
not using Windows XP or Windows Server 2003 you upgrade the Windows Installer system to the latest version (see ht-
tp://support.microsoft.com/default.aspx?scid=kb;EN-US;292539 for details).

The MSI-package is named MySQL.VisualStudio.msi. To install the MySQL Visual Studio Plugin, right click on the MSI file
and select INSTALL. The installation process is as follow:

1. The standard Welcome dialog is opened. Click Next to continue installation.

2. The License agreement (GNU GPL) window is opened. Accept the agreement and click NEXT to continue.

3. The destination folder choice dialog is opened. Here you can point out the folder where the MySQL Visual Studio Plugin will be
installed. The default destination folder is %ProgramFilesDir%\MySQL\MySQL DDEX Data Provider, where
%ProgramFilesDir% is the Program Files folder of the installation machine. After choosing the destination folder, click NEXT
to continue.

4. The installer will ask to confirm that installation. Click Install to start installation process.

5. The installation will now take place. At the end of this step the Visual Studio command table is rebuilt (this process may take sev-
eral minutes).

6. Once installation is complete, click FINISH to end the installation process.

To uninstall the MySQL Visual Studio Plugin, you can use either Add/Remove Programs component of the Control Panel or the same

Connectors

1745

http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539
http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539


MSI-package. Choose the REMOVE option, and the Provider will be uninstalled automatically.

To repair the Provider, right click the MSI-package and choose the REPAIR option. The MySQL Visual Studio Plugin will be repaired
automatically.

The installation package includes the following files:

• MySQL.VisualStudio.dll — the MySQL DDEX Provider assembly.

• MySQL.Data.dll — the assembly containing the MySQL Connector .NET which is used by the Provider.

• MySql.VisualStudio.dll.config — the configuration file for the MySQL Visual Studio Plugin. This file contains default
values for the provider GUI layout.

Note

Do not remove this file before the first use of the Provider.

• Register.reg — the file with registry entries that can be used to register the MySQL DDEX Provider in the case of the manual
installation.

• Install.js — the script used to register the Connector .NET as an ADO.NET data provider in the machine.config file.

• Release notes.doc — the document with release notes.

To install the Provider manually, copy all files of the installation package in a desired folder, then set the full path to the Provider as-
sembly as a value of the CodeBase entry. For example:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\8.0\Packages\{79A115C9-B133-4891-9E7B-242509DAD272}]@="MySql.Data.VisualStudio.MySqlDataProviderPackage"
"InprocServer32"="C:\\WINNT\\system32\\mscoree.dll"
"Class"="MySql.Data.VisualStudio.MySqlDataProviderPackage"
"CodeBase"="C:\\MySqlDdexProvider\\MySql.VisualStudio.dll"

Then import information from the Register.reg file to the registry by clicking of the file. At the confirmation dialog choose Yes. Next
you must run the command devenv.exe /setup within a Command Prompt to rebuild the Visual Studio command table.

27.3.2. Creating a connection to the MySQL server
Once the MySQL Visual Studio Plugin is installed, you can use it to create, modify and delete connections to MySQL databases. To
create a connection with a MySQL database, perform the following steps:

1. Start Visual Studio 2005 and open Server Explorer window by choosing the SERVER EXPLORER option from the VIEW menu.

2. Right click on the DATA CONNECTIONS node and choose the ADD CONNECTION button.

3. The Add Connection dialog is opened. Press the CHANGE button to choose MySQL Database as a data source.

4. Change Data Source dialog is opened. Choose MySQL Database in the list of data sources (or the other option, if MySQL Data-
base is absent), and then choose .NET FRAMEWORK DATA PROVIDER FOR MYSQL in the combo box of data providers.

Connectors

1746



Press OK to confirm your choice.

5. Enter the connection settings: the server host name (for example, localhost if the MySQL server is installed on the local machine),
the user name, the password, and the default database schema. Note that you must specify the default schema name to open the
connection.

6. You can also set the port to connect with the MySQL server by pressing the ADVANCED button. To test a connection with the
MySQL server, ser the server host name, the user name, and the password, and press the TEST CONNECTION button. If the test fails,
check the connection values that you have supplied are correct and that the corresponding user and privileges have been configured
on the MySQL server.

Connectors

1747



7. After you set all settings and test the connection, press OK. The newly created connection is displayed in Server Explorer. Now
you can work with the MySQL server through standard Server Explorer interface.

After a connection is successfully established, all the connection settings are saved. When you next open Visual Studio, the connection
to the MySQL server will appear within Server Explorer so that you can re-establish a connection to the MySQL server.

To modify and delete a connection, use the SERVER EXPLORER context menu for the corresponding node. You can modify any of the
settings just by overwriting the existing values with new ones. Note that a connection should be modified or deleted only if no active ed-
itor for it's objects is opened. Otherwise your data could be lost.

27.3.3. Using the MySQL Visual Studio Plugin
To work with a MySQL server using the MySQL Visual Studio Plugin, open the Visual Studio 2005, open the SERVER EXPLORER, and
select the required connection. The working area of the MySQL Visual Studio Plugin consists of three parts.

• Database objects (tables, views, stored routines, triggers, and user defined functions) are displayed in the Server Explorer tree. Here
you can choose an object and edit its properties and definition.

• Properties of a selected database object are displayed in the PROPERTIES panel. Certain properties can be edited directly within this
window.

• The editor panel provides direct access to the SQL statement and definition of specific objects. Fore example, the SQL statements
within a stored procedure definition are shown and edited within this panel.

27.3.3.1. Editing Tables

Connectors

1748



The Table Editor can be accessed through a mouse action on table-type node of Server Explorer. To create a new table, right click on
the TABLES node (under the connection node) and choose the CREATE TABLE command from a context menu. To modify an existing ta-
ble, double click on a node of the table you wish to modify, or right click on this node and choose the ALTER TABLE command from a
context menu. Either of the commands opens the Table Editor.

The MySQL Visual Studio Plugin Table Editor is implemented in a similar fashion to the standard Query Browser Table Editor, but
with minor differences.

The Table Editor consists of the following parts:

• Columns Editor — for column creation, modification and deletion.

• Indexes tab — for table/column index management.

• Foreign Keys tab — for configuration of foreign keys.

• Column Details tab — used to set advanced column options.

• Properties window — used to set table properties.

To save changes you have made in the Table Editor, use either Save or Save All buttons of the Visual Studio main toolbar, or just press
Ctrl+S. Before changes are saved, a confirmation dialog will be displayed to confirm that you want to update the corresponding object
within the MySQL database.

27.3.3.1.1. Column Editor

You can use the Column Editor to set or change the name, data type, default value and other properties of a table column. To set the

Connectors

1749



properties of an individual column, select the column using the mouse. Alternatively, you can move through the grid using Tab and
Shift+Tab keys.

• To set or change the name, data type, default value and comment of a column, select the appropriate cell and edit the desired value.

• To set or unset flag-type column properties (i.e., primary key, NOT NULL, auto-incremented, flags), check or uncheck the corres-
ponding checkboxes. Note that the available column flags will depend on the columns data type.

• To reorder columns, index columns or foreign key columns in the Column Editor, select the whole column you wish to reorder by
clicking on the selector column at the left of the column grid. Then move the column by using Ctrl+Up (to move the column up)
and Ctrl+Down (to move the column down) keys.

• To delete a column, select it by clicking on the selector column at the left of the column grid, then press the Delete button on a key-
board.

27.3.3.1.2. Indexes tab

Index management is performed via the Indexes tab.

• To add an index, press the + button and set the properties in the INDEX SETTINGS groupbox at the right. You can set the index name,
index kind, index type and a set of index columns.

• To remove an index, select the index from the list and press the - button.

• To change index settings, select the index from the list; detailed information about the index is displayed in the INDEX SETTINGS
panel.

You cannot change a table column to an index column using drag and drop. Instead, you can add new index columns to a table and set
their table columns by using the embedded editor within the Indexes tab

27.3.3.1.3. Foreign Keys tab

Foreign Key management is performed via the Foreign Keys tab.

• To add a foreign key, press the + button and set properties in the FOREIGN KEYS SETTINGS panel. You can set the foreign key
name, referenced table name, foreign key columns and actions on update and delete.

• To remove a foreign key, select the foreign key and press the - button.

• To change foreign key settings, select the foreign key and use the FOREIGN KEYS SETTINGS panel to edit the properties.

• When a foreign key is changed, the MySQL Visual Studio Plugin generates two queries: the first query drops the changed keys and
the second one recreates the new values. The reason for such a behavior is to avoid the Bug#8377 and Bug#8919.

Note

If changed values are for some reason inconsistent and cause the second query to fail, all affected foreign keys will be
dropped. If this is the case, the MySQL Visual Studio Plugin will mark them as new in the Table Editor, and you will have
to recreate them later. But if you close the Table Editor without saving, these foreign keys will be lost.

27.3.3.1.4. Column Details tab

The Column Details tab can be used to set column options. Besides the main column properties that are presented in the Column Editor,
in the Column Details tab you can set two additional properties options: the character set and the collation sequence.

27.3.3.1.5. Table Properties window

There is no separate tab for table options and advanced options. All table options can be browsed and changed using the PROPERTIES
window of Visual Studio 2005.

Connectors

1750

http://bugs.mysql.com/8377
http://bugs.mysql.com/8919


The following table properties can be set:

• AUTO INCREMENT

• AVERAGE ROW LENGTH

• CHARACTER SET

• CHECKSUM FOR ROWS

• COLLATION

• COMMENT

• CONNECTION

• DATA DIRECTORY

• DELAY KEY UPDATES

• ENGINE

• INDEX DIRECTORY

• INSERT METHOD

• MAXIMUM ROWS

• MINIMUM ROWS

• NAME

• PACK KEYS

• PASSWORD

• ROW FORMAT

• UNION

Some of these properties can have arbitrary text values, others accept values from a predefined set.

The properties SCHEMA and SERVER are read only.

27.3.3.2. Editing Table Data

The Table Data Editor, allows a user to browse, create and edit data of tables. The Table Data Editor is implemented as a simple data
grid with auto generated columns.

To access the Table Data Editor, right click on a node representing the table or view in Server Explorer. From the nodes context menu,
choose the BROWSE or EDIT DATA command. For tables and updatable views, this command opens the Table Data Editor in edit mode.
For non-updatable views, this command opens the Table Data Editor in read-only mode.

When in the edit mode, you can modify table data by modifying the displayed table contents directly. To add a row, set desired values
in the last row of the grid. To modify values, set new values in appropriate cells. To delete a row, select it by clicking on the selector
column at the left of the grid, then press the DELETE button.

To save changes you have made in the Table Data Editor, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or
just press Ctrl+S. A confirmation dialog will confirm whether you want the changes saved to the database.

27.3.3.3. Editing Views

To create a new view, right click the Views node under the connection node in Server Explorer. From the nodes context menu, choose
the CREATE VIEW command. This command opens the SQL Editor.

Connectors

1751



To modify an existing view, double click on a node of the view you wish to modify, or right click on this node and choose the ALTER
VIEW command from a context menu. Either of the commands opens the SQL Editor.

To create or alter the view definition using SQL Editor, type the appropriate SQL statement in the SQL Editor.

Note

You should enter only the defining statement itself, without the CREATE VIEW AS preface.

All other view properties can be set in the PROPERTIES window. These properties are:

• ALGORITHM

• CHECK OPTION

• DEFINER

• NAME

• SECURITY TYPE

Some of these properties can have arbitrary text values, others accept values from a predefined set.

The properties IS UPDATABLE, SCHEMA and SERVER are readonly.

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. A con-
firmation dialog will confirm whether you want the changes saved to the database.

27.3.3.4. Editing Stored Procedures and Functions

To create a new stored procedure, right click the Stored Procedures node under the connection node in Server Explorer. From the nodes
context menu, choose the CREATE ROUTINE command. This command opens the SQL Editor.

To create a new stored function, right click the FUNCTIONS node under the connection node in Server Explorer. From the node's context
menu, choose the CREATE ROUTINE command.

To modify an existing stored routine (procedure or function), double click on a node of the routine you wish to modify, or right click on
this node and choose the ALTER ROUTINE command from a context menu. Either of the commands opens the SQL Editor.

To create or alter the routine definition using SQL Editor, type this definition in the SQL Editor using standard SQL.

All other routine properties can be set in the PROPERTIES window. These properties are:

• Comment

• Data Access

• Definer

• Is Deterministic

• Security Type

Some of these properties can have arbitrary text values, others accept values only from a predefined set.

Also you can set all the options directly in the SQL Editor, using the standard CREATE PROCEDURE or CREATE FUNCTION state-
ment. However, it is recommended to use the PROPERTIES window instead.

Note

You should never add the CREATE preface to the routine definition.

Connectors

1752



The properties NAME, SCHEMA and SERVER in the PROPERTIES window are read-only. Set or change the procedure name in the SQL
editor.

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. A con-
firmation dialog will confirm whether you want the changes saved to the database..

27.3.3.5. Editing Triggers

To create a new trigger, right click on a node of a table for which you wish to add a trigger. From the node's context menu, choose the
CREATE TRIGGER command. This command opens the SQL Editor.

To modify an existing trigger, double click on a node of the trigger you wish to modify, or right click on this node and choose the
ALTER TRIGGER command from a context menu. Either of the commands opens the SQL Editor.

To create or alter the trigger definition using SQL Editor, type the trigger statement in the SQL Editor using standard SQL.

Note

You should enter only the trigger statement, that is the part of the CREATE TRIGGER query that is placed after the FOR
EACH ROW clause.

All other trigger properties are set in the PROPERTIES window. These properties are:

• DEFINER

• EVENT MANIPULATION

• NAME

• TIMING

Some of these properties can have arbitrary text values, others accept values only from a predefined set.

The properties EVENT TABLE, SCHEMA and SERVER in the PROPERTIES window are read-only.

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. A con-
firmation dialog will confirm whether you want the changes saved to the database.

27.3.3.6. Editing User Defined Functions (UDF)

To create a new User Defined Function (UDF), right click the UDFs node under the connection node in Server Explorer. From the
node's context menu, choose the CREATE UDF command. This command opens the UDF Editor.

To modify an existing UDF, double click on a node of the UDF you wish to modify, or right click on this node and choose the Alter
UDF command from a context menu. Either of the commands opens the UDF Editor.

The UDF editor allows you to set the following properties through the properties panel:

• NAME

• SO-NAME (DLL NAME)

• RETURN TYPE

• IS AGGREGATE

The property Server in the PROPERTIES window is read-only.

To save changes you have made, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. A con-
firmation dialog will confirm whether you want the changes saved to the database.

Connectors

1753



27.3.3.7. Dropping database objects

Tables, views, stored routines, triggers, an UDFs can be dropped with the appropriate DROP command from its context menu: DROP
TABLE, DROP VIEW, DROP ROUTINE, DROP TRIGGER, DROP UDF.

You will be asked to confirm the execution of the corresponding drop query in a confirmation dialog.

Dropping of multiple objects is not supported.

27.3.3.8. Cloning database objects

Tables, views, stored procedures and functions can be cloned with the appropriate CLONE command from its context menu: CLONE
TABLE, CLONE VIEW, CLONE ROUTINE. The clone commands open the corresponding editor for a new object: the TABLE EDITOR for
cloning a table and the SQL Editor for cloning a view or a routine.

To save the cloned object, use either SAVE or SAVE ALL buttons of the Visual Studio main toolbar, or just press Ctrl+S. A confirmation
dialog will confirm whether you want the changes saved to the database.

27.3.4. Visual Studio Plugin Support
If you have a comment, or if you discover a bug, please, use our MySQL bug tracking system (http://bugs.mysql.com) to report problem
or add your suggestion.

27.3.4.1. Visual Studio Plugin FAQ

Questions

• 28.3.4.1.1: When creating a connection, typing the connection details causes the connection window to immediately close.

Questions and Answers

28.3.4.1.1: When creating a connection, typing the connection details causes the connection window to immediately close.

There are known issues with versions of Connector/NET earlier than 5.0.2. Connector/NET 1.0.x is known not to work. If you have any
of these versions installed, or have previously upgraded from an earlier version, uninstall Connector/NET completely and then install
Connector/NET 5.0.2.

27.4. MySQL Connector/J
MySQL provides connectivity for client applications developed in the Java programming language via a JDBC driver, which is called
MySQL Connector/J.

MySQL Connector/J is a JDBC Type 4 driver. Different versions are available that are compatible with the JDBC-3.0 and JDBC-4.0
specifications. The Type 4 designation means that the driver is pure-Java implementation of the MySQL protocol and does not rely on
the MySQL client libraries.

Although JDBC is useful by itself, we would hope that if you are not familiar with JDBC that after reading the first few sections of this
manual, that you would avoid using naked JDBC for all but the most trivial problems and consider using one of the popular persistence
frameworks such as Hibernate, Spring's JDBC templates or Ibatis SQL Maps to do the majority of repetitive work and heavier lifting
that is sometimes required with JDBC.

This section is not designed to be a complete JDBC tutorial. If you need more information about using JDBC you might be interested in
the following online tutorials that are more in-depth than the information presented here:

• JDBC Basics — A tutorial from Sun covering beginner topics in JDBC

• JDBC Short Course — A more in-depth tutorial from Sun and JGuru

Key topics:

Connectors

1754

http://bugs.mysql.com
http://www.hibernate.org/
http://www.springframework.org/
http://ibatis.apache.org/
http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html
http://java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html


• For help with connection strings, connection options setting up your connection through JDBC, see Section 27.4.4.1,
“Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J”.

• For tips on using Connector/J and JDBC with generic J2EE toolkits, see Section 27.4.5.2, “Using Connector/J with J2EE and Other
Java Frameworks”.

• Developers using the Tomcat server platform, see Section 27.4.5.2.2, “Using Connector/J with Tomcat”.

• Developers using JBoss, see Section 27.4.5.2.3, “Using Connector/J with JBoss”.

• Developers using Spring, see Section 27.4.5.2.4, “Using Connector/J with Spring”.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about using JDBC with MySQL in the Knowledge
Base articles about JDBC. Access to the MySQL Knowledge Base collection of articles is one of the advant-
ages of subscribing to MySQL Enterprise. For more information see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

27.4.1. Connector/J Versions
There are currently four versions of MySQL Connector/J available:

• Connector/J 5.1 is the Type IV pure Java JDBC driver and provides compatibility with all the functionality of MySQL, including
4.1, 5.0, 5.1 and the 6.0 alpha release featuring the new Falcon storage engine. Connector/J 5.1 provides ease of development fea-
tures, including auto-registration with the Driver Manager, standardized validity checks, categorized SQLExceptions, support for the
JDBC-4.0 XML processing, per connection client information, NCHAR, NVARCHAR and NCLOB types. This release also includes all
bug fixes up to and including Connector/J 5.0.6.

• Connector/J 5.0 provides support for all the functionality offered by Connector/J 3.1 and includes distributed transaction (XA) sup-
port.

• Connector/J 3.1 was designed for connectivity to MySQL 4.1 and MySQL 5.0 servers and provides support for all the functionality
in MySQL 5.0 except distributed transaction (XA) support.

• Connector/J 3.0 provides core functionality and was designed with connectivity to MySQL 3.x or MySQL 4.1 servers, although it
will provide basic compatibility with later versions of MySQL. Connector/J 3.0 does not support server-side prepared statements,
and does not support any of the features in versions of MySQL later than 4.1.

The current recommended version for Connector/J is 5.1. This guide covers all three connector versions, with specific notes given
where a setting applies to a specific option.

27.4.1.1. Java Versions Supported

MySQL Connector/J supports Java-2 JVMs, including:

• JDK 1.2.x (only for Connector/J 3.1.x or earlier)

• JDK 1.3.x

• JDK 1.4.x

• JDK 1.5.x

• JDK 1.6.x

If you are building Connector/J from source using the source distribution (see Section 27.4.2.4, “Installing from the Development
Source Tree”) then you must use JDK 1.4.x or newer to compiler the Connector package. For Connector/J 5.1 you must use JDK-1.6.x.

MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.x.

Connectors

1755

https://kb.mysql.com/search.php?cat=search&category=10
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


Because of the implementation of java.sql.Savepoint, Connector/J 3.1.0 and newer will not run on JDKs older than 1.4 unless
the class verifier is turned off (by setting the -Xverify:none option to the Java runtime). This is because the class verifier will try to
load the class definition for java.sql.Savepoint even though it is not accessed by the driver unless you actually use savepoint
functionality.

Caching functionality provided by Connector/J 3.1.0 or newer is also not available on JVMs older than 1.4.x, as it relies on
java.util.LinkedHashMap which was first available in JDK-1.4.0.

27.4.2. Connector/J Installation
You can install the Connector/J package using two methods, using either the binary or source distribution. The binary distribution
provides the easiest methods for installation; the source distribution enables you to customize your installation further. With either solu-
tion, you must manually add the Connector/J location to your Java CLASSPATH.

If you are upgrading from a previous version, read the upgrade information before continuing. See Section 27.4.2.3, “Upgrading from
an Older Version”.

27.4.2.1. Installing Connector/J from a Binary Distribution

The easiest method of installation is to use the binary distribution of the Connector/J package. The binary distribution is available either
as a Tar/Gzip or Zip file which you must extract to a suitable location and then optionally make the information about the package
available by changing your CLASSPATH (see Section 27.4.2.2, “Installing the Driver and Configuring the CLASSPATH”).

MySQL Connector/J is distributed as a .zip or .tar.gz archive containing the sources, the class files, and the JAR archive named
mysql-connector-java-[version]-bin.jar, and starting with Connector/J 3.1.8 a debug build of the driver in a file named
mysql-connector-java-[version]-bin-g.jar.

Starting with Connector/J 3.1.9, the .class files that constitute the JAR files are only included as part of the driver JAR file.

You should not use the debug build of the driver unless instructed to do so when reporting a problem or a bug to MySQL AB, as it is
not designed to be run in production environments, and will have adverse performance impact when used. The debug binary also de-
pends on the Aspect/J runtime library, which is located in the src/lib/aspectjrt.jar file that comes with the Connector/J dis-
tribution.

You will need to use the appropriate graphical or command-line utility to extract the distribution (for example, WinZip for the .zip
archive, and tar for the .tar.gz archive). Because there are potentially long filenames in the distribution, we use the GNU tar archive
format. You will need to use GNU tar (or an application that understands the GNU tar archive format) to unpack the .tar.gz variant of
the distribution.

27.4.2.2. Installing the Driver and Configuring the CLASSPATH

Once you have extracted the distribution archive, you can install the driver by placing mysql-connect-
or-java-[version]-bin.jar in your classpath, either by adding the full path to it to your CLASSPATH environment variable,
or by directly specifying it with the command line switch -cp when starting your JVM.

If you are going to use the driver with the JDBC DriverManager, you would use com.mysql.jdbc.Driver as the class that imple-
ments java.sql.Driver.

You can set the CLASSPATH environment variable under UNIX, Linux or Mac OS X either locally for a user within their .profile,
.login or other login file. You can also set it globally by editing the global /etc/profile file.

For example, under a C shell (csh, tcsh) you would add the Connector/J driver to your CLASSPATH using the following:

shell> setenv CLASSPATH /path/mysql-connector-java-[ver]-bin.jar:$CLASSPATH

Or with a Bourne-compatible shell (sh, ksh, bash):

export set CLASSPATH=/path/mysql-connector-java-[ver]-bin.jar:$CLASSPATH

Within Windows 2000, Windows XP and Windows Server 2003, you must set the environment variable through the System control
panel.

If you want to use MySQL Connector/J with an application server such as Tomcat or JBoss, you will have to read your vendor's docu-
mentation for more information on how to configure third-party class libraries, as most application servers ignore the CLASSPATH en-

Connectors

1756



vironment variable. For configuration examples for some J2EE application servers, see Section 27.4.5.2, “Using Connector/J with J2EE
and Other Java Frameworks”. However, the authoritative source for JDBC connection pool configuration information for your particu-
lar application server is the documentation for that application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the driver's .jar file in the WEB-
INF/lib subdirectory of your webapp, as this is a standard location for third party class libraries in J2EE web applications.

You can also use the MysqlDataSource or MysqlConnectionPoolDataSource classes in the com.mysql.jdbc.jdbc2.optional
package, if your J2EE application server supports or requires them. Starting with Connector/J 5.0.0, the
javax.sql.XADataSource interface is implemented via the
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource class, which supports XA distributed transactions when used in
combination with MySQL server version 5.0.

The various MysqlDataSource classes support the following parameters (through standard set mutators):

• user

• password

• serverName (see the previous section about fail-over hosts)

• databaseName

• port

27.4.2.3. Upgrading from an Older Version

MySQL AB tries to keep the upgrade process as easy as possible, however as is the case with any software, sometimes changes need to
be made in new versions to support new features, improve existing functionality, or comply with new standards.

This section has information about what users who are upgrading from one version of Connector/J to another (or to a new version of the
MySQL server, with respect to JDBC functionality) should be aware of.

27.4.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1

Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible. Major changes are isolated to new
functionality exposed in MySQL-4.1 and newer, which includes Unicode character sets, server-side prepared statements, SQLState
codes returned in error messages by the server and various performance enhancements that can be enabled or disabled via configuration
properties.

• Unicode Character Sets — See the next section, as well as Section 9.1, “Character Set Support”, for information on this new fea-
ture of MySQL. If you have something misconfigured, it will usually show up as an error with a message similar to Illegal mix
of collations.

• Server-side Prepared Statements — Connector/J 3.1 will automatically detect and use server-side prepared statements when they
are available (MySQL server version 4.1.0 and newer).

Starting with version 3.1.7, the driver scans SQL you are preparing via all variants of Connection.prepareStatement() to
determine if it is a supported type of statement to prepare on the server side, and if it is not supported by the server, it instead pre-
pares it as a client-side emulated prepared statement. You can disable this feature by passing emulateUnsupportedPstmts=false in
your JDBC URL.

If your application encounters issues with server-side prepared statements, you can revert to the older client-side emulated prepared
statement code that is still presently used for MySQL servers older than 4.1.0 with the connection property useServerPrepSt-
mts=false

• Datetimes with all-zero components (0000-00-00 ...) — These values can not be represented reliably in Java. Connector/J
3.0.x always converted them to NULL when being read from a ResultSet.

Connector/J 3.1 throws an exception by default when these values are encountered as this is the most correct behavior according to
the JDBC and SQL standards. This behavior can be modified using the zeroDateTimeBehavior configuration property. The allow-
able values are:

Connectors

1757



• exception (the default), which throws an SQLException with an SQLState of S1009.

• convertToNull, which returns NULL instead of the date.

• round, which rounds the date to the nearest closest value which is 0001-01-01.

Starting with Connector/J 3.1.7, ResultSet.getString() can be decoupled from this behavior via noDatetimeString-
Sync=true (the default value is false) so that you can get retrieve the unaltered all-zero value as a String. It should be noted that
this also precludes using any time zone conversions, therefore the driver will not allow you to enable noDatetimeStringSync and
useTimezone at the same time.

• New SQLState Codes — Connector/J 3.1 uses SQL:1999 SQLState codes returned by the MySQL server (if supported), which are
different from the legacy X/Open state codes that Connector/J 3.0 uses. If connected to a MySQL server older than MySQL-4.1.0
(the oldest version to return SQLStates as part of the error code), the driver will use a built-in mapping. You can revert to the old
mapping by using the configuration property useSqlStateCodes=false.

• ResultSet.getString() — Calling ResultSet.getString() on a BLOB column will now return the address of the
byte[] array that represents it, instead of a String representation of the BLOB. BLOBs have no character set, so they can't be conver-
ted to java.lang.Strings without data loss or corruption.

To store strings in MySQL with LOB behavior, use one of the TEXT types, which the driver will treat as a java.sql.Clob.

• Debug builds — Starting with Connector/J 3.1.8 a debug build of the driver in a file named
mysql-connector-java-[version]-bin-g.jar is shipped alongside the normal binary jar file that is named mysql-
connector-java-[version]-bin.jar.

Starting with Connector/J 3.1.9, we don't ship the .class files unbundled, they are only available in the JAR archives that ship with
the driver.

You should not use the debug build of the driver unless instructed to do so when reporting a problem or bug to MySQL AB, as it is
not designed to be run in production environments, and will have adverse performance impact when used. The debug binary also de-
pends on the Aspect/J runtime library, which is located in the src/lib/aspectjrt.jar file that comes with the Connector/J
distribution.

27.4.2.3.2. Upgrading to MySQL Connector/J 5.1.x

• In Connector/J 5.0.x and earlier, the alias for a table in a SELECT statement is returned when accessing the result set metadata using
ResultSetMetaData.getColumnName(). This behavior however is not JDBC compliant, and in Connector/J 5.1 this beha-
vior was changed so that the original table name, rather than the alias, is returned.

The JDBC-compliant behavior is designed to let API users reconstruct the DML statement based on the metadata within Result-
Set and ResultSetMetaData.

You can get the alias for a column in a result set by calling ResultSetMetaData.getColumnLabel(). If you want to use
the old non-compliant behavior with ResultSetMetaData.getColumnName(), use the useOldAliasMetadataBeha-
vior option and set the value to true.

In Connector/J 5.0.x the default value of useOldAliasMetadataBehavior was true, but in Connector/J 5.1 this was changed
to a default value of false.

27.4.2.3.3. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

• Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character encoding was not supported by the
server, however the JDBC driver could use it, allowing storage of multiple character sets in latin1 tables on the server.

Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this functionality, and can not up-
grade them to use the official Unicode character support in MySQL server version 4.1 or newer, you should add the following prop-
erty to your connection URL:

useOldUTF8Behavior=true

Connectors

1758



• Server-side Prepared Statements - Connector/J 3.1 will automatically detect and use server-side prepared statements when they are
available (MySQL server version 4.1.0 and newer). If your application encounters issues with server-side prepared statements, you
can revert to the older client-side emulated prepared statement code that is still presently used for MySQL servers older than 4.1.0
with the following connection property:

useServerPrepStmts=false

27.4.2.4. Installing from the Development Source Tree

Caution

You should read this section only if you are interested in helping us test our new code. If you just want to get MySQL
Connector/J up and running on your system, you should use a standard release distribution.

To install MySQL Connector/J from the development source tree, make sure that you have the following prerequisites:

• Subversion, to check out the sources from our repository (available from http://subversion.tigris.org/).

• Apache Ant version 1.6 or newer (available from http://ant.apache.org/).

• JDK-1.4.2 or later. Although MySQL Connector/J can be installed on older JDKs, to compile it from source you must have at least
JDK-1.4.2.

The Subversion source code repository for MySQL Connector/J is located at http://svn.mysql.com/svnpublic/connector-j. In general,
you should not check out the entire repository because it contains every branch and tag for MySQL Connector/J and is quite large.

To check out and compile a specific branch of MySQL Connector/J, follow these steps:

1. Check out the latest code from the branch that you want with the following command (replacing [major] and [minor] with
appropriate version numbers):

shell> svn co »
http://svn.mysql.com/svnpublic/connector-j/branches/branch_[major]_[minor]/connector-j

This creates a connector-j subdirectory in the current directory that contains the latest sources for the requested branch.

2. Change location to the connector-j directory to make it your current working directory:

shell> cd connector-j

3. Issue the following command to compile the driver and create a .jar file suitable for installation:

shell> ant dist

This creates a build directory in the current directory, where all build output will go. A directory is created in the build direct-
ory that includes the version number of the sources you are building from. This directory contains the sources, compiled .class
files, and a .jar file suitable for deployment. For other possible targets, including ones that will create a fully packaged distribu-
tion, issue the following command:

shell> ant -projecthelp

4. A newly created .jar file containing the JDBC driver will be placed in the directory
build/mysql-connector-java-[version].

Install the newly created JDBC driver as you would a binary .jar file that you download from MySQL by following the instruc-
tions in Section 27.4.2.2, “Installing the Driver and Configuring the CLASSPATH”.

If you want to build the Connector/J 5.1 branch then you must have a compatible JDK 6.0 installed.

Connectors

1759

http://subversion.tigris.org/
http://ant.apache.org/
http://svn.mysql.com/svnpublic/connector-j


27.4.3. Connector/J Examples
Examples of using Connector/J are located throughout this document, this section provides a summary and links to these examples.

• Example 27.1, “Obtaining a connection from the DriverManager”

• Example 27.2, “Using java.sql.Statement to execute a SELECT query”

• Example 27.3, “Stored Procedures”

• Example 27.4, “Using Connection.prepareCall()”

• Example 27.5, “Registering output parameters”

• Example 27.6, “Setting CallableStatement input parameters”

• Example 27.7, “Retrieving results and output parameter values”

• Example 27.8, “Retrieving AUTO_INCREMENT column values using Statement.getGeneratedKeys()”

• Example 27.9, “Retrieving AUTO_INCREMENT column values using SELECT LAST_INSERT_ID()”

• Example 27.10, “Retrieving AUTO_INCREMENT column values in Updatable ResultSets”

• Example 27.11, “Using a connection pool with a J2EE application server”

• Example 27.12, “Example of transaction with retry logic”

27.4.4. Connector/J (JDBC) Reference
This section of the manual contains reference material for MySQL Connector/J, some of which is automatically generated during the
Connector/J build process.

27.4.4.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Con-
nector/J

The name of the class that implements java.sql.Driver in MySQL Connector/J is com.mysql.jdbc.Driver. The
org.gjt.mm.mysql.Driver class name is also usable to remain backward-compatible with MM.MySQL. You should use this
class name when registering the driver, or when otherwise configuring software to use MySQL Connector/J.

The JDBC URL format for MySQL Connector/J is as follows, with items in square brackets ([, ]) being optional:

jdbc:mysql://[host][,failoverhost...][:port]/[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the hostname is not specified, it defaults to 127.0.0.1. If the port is not specified, it defaults to 3306, the default port number for
MySQL servers.

jdbc:mysql://[host:port],[host:port].../[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the database is not specified, the connection will be made with no default database. In this case, you will need to either call the set-
Catalog() method on the Connection instance or fully-specify table names using the database name (i.e. SELECT db-
name.tablename.colname FROM dbname.tablename...) in your SQL. Not specifying the database to use upon connec-
tion is generally only useful when building tools that work with multiple databases, such as GUI database managers.

MySQL Connector/J has fail-over support. This allows the driver to fail-over to any number of slave hosts and still perform read-only
queries. Fail-over only happens when the connection is in an autoCommit(true) state, because fail-over can not happen reliably
when a transaction is in progress. Most application servers and connection pools set autoCommit to true at the end of every transac-
tion/connection use.

The fail-over functionality has the following behavior:

Connectors

1760



• If the URL property autoReconnect is false: Failover only happens at connection initialization, and failback occurs when the driver
determines that the first host has become available again.

• If the URL property autoReconnect is true: Failover happens when the driver determines that the connection has failed (before every
query), and falls back to the first host when it determines that the host has become available again (after queriesBe-
foreRetryMaster queries have been issued).

In either case, whenever you are connected to a "failed-over" server, the connection will be set to read-only state, so queries that would
modify data will have exceptions thrown (the query will never be processed by the MySQL server).

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless otherwise noted, properties can be
set for a DataSource object or for a Connection object.

Configuration Properties can be set in one of the following ways:

• Using the set*() methods on MySQL implementations of java.sql.DataSource (which is the preferred method when using imple-
mentations of java.sql.DataSource):

• com.mysql.jdbc.jdbc2.optional.MysqlDataSource

• com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource

• As a key/value pair in the java.util.Properties instance passed to DriverManager.getConnection() or
Driver.connect()

• As a JDBC URL parameter in the URL given to java.sql.DriverManager.getConnection(),
java.sql.Driver.connect() or the MySQL implementations of the javax.sql.DataSource setURL() method.

Note

If the mechanism you use to configure a JDBC URL is XML-based, you will need to use the XML character literal &amp;
to separate configuration parameters, as the ampersand is a reserved character for XML.

The properties are listed in the following tables.

Connection/Authentication.

Property Name Definition Default
Value

Since Ver-
sion

user The user to connect as all versions

password The password to use when connecting all versions

socketFactory The name of the class that the driver should use for creating socket
connections to the server. This class must implement the interface
'com.mysql.jdbc.SocketFactory' and have public no-args construct-
or.

com.mysql.j
dbc.Standar
dSocket-
Factory

3.0.3

connectTimeout Timeout for socket connect (in milliseconds), with 0 being no
timeout. Only works on JDK-1.4 or newer. Defaults to '0'.

0 3.0.1

socketTimeout Timeout on network socket operations (0, the default means no
timeout).

0 3.0.1

connectionLifecycleInterceptors A comma-delimited list of classes that implement
"com.mysql.jdbc.ConnectionLifecycleInterceptor" that should no-
tified of connection lifecycle events (creation, destruction, com-
mit, rollback, setCatalog and setAutoCommit) and potentially alter
the execution of these commands. ConnectionLifecycleIntercept-
ors are "stackable", more than one interceptor may be specified via
the configuration property as a comma-delimited list, with the in-
terceptors executed in order from left to right.

5.1.4

useConfigs Load the comma-delimited list of configuration properties before
parsing the URL or applying user-specified properties. These con-

3.1.5

Connectors

1761



figurations are explained in the 'Configurations' of the documenta-
tion.

interactiveClient Set the CLIENT_INTERACTIVE flag, which tells MySQL to
timeout connections based on INTERACTIVE_TIMEOUT instead
of WAIT_TIMEOUT

false 3.1.0

localSocketAddress Hostname or IP address given to explicitly configure the interface
that the driver will bind the client side of the TCP/IP connection to
when connecting.

5.0.5

propertiesTransform An implementation of
com.mysql.jdbc.ConnectionPropertiesTransform that the driver
will use to modify URL properties passed to the driver before at-
tempting a connection

3.1.4

useCompression Use zlib compression when communicating with the server
(true/false)? Defaults to 'false'.

false 3.0.17

Networking.

Property Name Definition Default
Value

Since Ver-
sion

tcpKeepAlive If connecting using TCP/IP, should the driver set
SO_KEEPALIVE?

true 5.0.7

tcpNoDelay If connecting using TCP/IP, should the driver set
SO_TCP_NODELAY (disabling the Nagle Algorithm)?

true 5.0.7

tcpRcvBuf If connecting using TCP/IP, should the driver set SO_RCV_BUF
to the given value? The default value of '0', means use the platform
default value for this property)

0 5.0.7

tcpSndBuf If connecting using TCP/IP, shuold the driver set SO_SND_BUF
to the given value? The default value of '0', means use the platform
default value for this property)

0 5.0.7

tcpTrafficClass If connecting using TCP/IP, should the driver set traffic class or
type-of-service fields ?See the documentation for
java.net.Socket.setTrafficClass() for more information.

0 5.0.7

High Availability and Clustering.

Property Name Definition Default
Value

Since Ver-
sion

autoReconnect Should the driver try to re-establish stale and/or dead connections?
If enabled the driver will throw an exception for a queries issued
on a stale or dead connection, which belong to the current transac-
tion, but will attempt reconnect before the next query issued on the
connection in a new transaction. The use of this feature is not re-
commended, because it has side effects related to session state and
data consistency when applications don't handle SQLExceptions
properly, and is only designed to be used when you are unable to
configure your application to handle SQLExceptions resulting
from dead and stale connections properly. Alternatively, investig-
ate setting the MySQL server variable "wait_timeout" to some
high value rather than the default of 8 hours.

false 1.1

autoReconnectForPools Use a reconnection strategy appropriate for connection pools
(defaults to 'false')

false 3.1.3

failOverReadOnly When failing over in autoReconnect mode, should the connection
be set to 'read-only'?

true 3.0.12

maxReconnects Maximum number of reconnects to attempt if autoReconnect is
true, default is '3'.

3 1.1

Connectors

1762



reconnectAtTxEnd If autoReconnect is set to true, should the driver attempt reconnec-
tions at the end of every transaction?

false 3.0.10

initialTimeout If autoReconnect is enabled, the initial time to wait between re-
connect attempts (in seconds, defaults to '2').

2 1.1

roundRobinLoadBalance When autoReconnect is enabled, and failoverReadonly is false,
should we pick hosts to connect to on a round-robin basis?

false 3.1.2

queriesBeforeRetryMaster Number of queries to issue before falling back to master when
failed over (when using multi-host failover). Whichever condition
is met first, 'queriesBeforeRetryMaster' or 'secondsBeforeRetry-
Master' will cause an attempt to be made to reconnect to the mas-
ter. Defaults to 50.

50 3.0.2

secondsBeforeRetryMaster How long should the driver wait, when failed over, before attempt-
ing

30 3.0.2

resourceId A globally unique name that identifies the resource that this data-
source or connection is connected to, used for XARe-
source.isSameRM() when the driver can't determine this value
based on hostnames used in the URL

5.0.1

Security.

Property Name Definition Default
Value

Since Ver-
sion

allowMultiQueries Allow the use of ';' to delimit multiple queries during one state-
ment (true/false), defaults to 'false'

false 3.1.1

useSSL Use SSL when communicating with the server (true/false), de-
faults to 'false'

false 3.0.2

requireSSL Require SSL connection if useSSL=true? (defaults to 'false'). false 3.1.0

allowLoadLocalInfile Should the driver allow use of 'LOAD DATA LOCAL INFILE...'
(defaults to 'true').

true 3.0.3

allowUrlInLocalInfile Should the driver allow URLs in 'LOAD DATA LOCAL INFILE'
statements?

false 3.1.4

clientCertificateKeyStorePassword Password for the client certificates KeyStore 5.1.0

clientCertificateKeyStoreType KeyStore type for client certificates (NULL or empty means use
default, standard keystore types supported by the JVM are "JKS"
and "PKCS12", your environment may have more available de-
pending on what security products are installed and available to
the JVM.

5.1.0

clientCertificateKeyStoreUrl URL to the client certificate KeyStore (if not specified, use de-
faults)

5.1.0

trustCertificateKeyStorePassword Password for the trusted root certificates KeyStore 5.1.0

trustCertificateKeyStoreType KeyStore type for trusted root certificates (NULL or empty means
use default, standard keystore types supported by the JVM are
"JKS" and "PKCS12", your environment may have more available
depending on what security products are installed and available to
the JVM.

5.1.0

trustCertificateKeyStoreUrl URL to the trusted root certificate KeyStore (if not specified, use
defaults)

5.1.0

paranoid Take measures to prevent exposure sensitive information in error
messages and clear data structures holding sensitive data when
possible? (defaults to 'false')

false 3.0.1

Performance Extensions.

Property Name Definition Default Since Ver-

Connectors

1763



Value sion

callableStmtCacheSize If 'cacheCallableStmts' is enabled, how many callable statements
should be cached?

100 3.1.2

metadataCacheSize The number of queries to cache ResultSetMetadata for if
cacheResultSetMetaData is set to 'true' (default 50)

50 3.1.1

prepStmtCacheSize If prepared statement caching is enabled, how many prepared
statements should be cached?

25 3.0.10

prepStmtCacheSqlLimit If prepared statement caching is enabled, what's the largest SQL
the driver will cache the parsing for?

256 3.0.10

alwaysSendSetIsolation Should the driver always communicate with the database when
Connection.setTransactionIsolation() is called? If set to false, the
driver will only communicate with the database when the reques-
ted transaction isolation is different than the whichever is newer,
the last value that was set via Connec-
tion.setTransactionIsolation(), or the value that was read from the
server when the connection was established.

true 3.1.7

maintainTimeStats Should the driver maintain various internal timers to enable idle
time calculations as well as more verbose error messages when the
connection to the server fails? Setting this property to false re-
moves at least two calls to System.getCurrentTimeMillis() per
query.

true 3.1.9

useCursorFetch If connected to MySQL > 5.0.2, and setFetchSize() > 0 on a state-
ment, should that statement use cursor-based fetching to retrieve
rows?

false 5.0.0

blobSendChunkSize Chunk to use when sending BLOB/CLOBs via ServerPrepared-
Statements

1048576 3.1.9

cacheCallableStmts Should the driver cache the parsing stage of CallableStatements false 3.1.2

cachePrepStmts Should the driver cache the parsing stage of PreparedStatements of
client-side prepared statements, the "check" for suitability of serv-
er-side prepared and server-side prepared statements themselves?

false 3.0.10

cacheResultSetMetadata Should the driver cache ResultSetMetaData for Statements and
PreparedStatements? (Req. JDK-1.4+, true/false, default 'false')

false 3.1.1

cacheServerConfiguration Should the driver cache the results of 'SHOW VARIABLES' and
'SHOW COLLATION' on a per-URL basis?

false 3.1.5

defaultFetchSize The driver will call setFetchSize(n) with this value on all newly-
created Statements

0 3.1.9

dontTrackOpenResources The JDBC specification requires the driver to automatically track
and close resources, however if your application doesn't do a good
job of explicitly calling close() on statements or result sets, this
can cause memory leakage. Setting this property to true relaxes
this constraint, and can be more memory efficient for some applic-
ations.

false 3.1.7

dynamicCalendars Should the driver retrieve the default calendar when required, or
cache it per connection/session?

false 3.1.5

elideSetAutoCommits If using MySQL-4.1 or newer, should the driver only issue 'set
autocommit=n' queries when the server's state doesn't match the
requested state by Connection.setAutoCommit(boolean)?

false 3.1.3

enableQueryTimeouts When enabled, query timeouts set via State-
ment.setQueryTimeout() use a shared java.util.Timer instance for
scheduling. Even if the timeout doesn't expire before the query is
processed, there will be memory used by the TimerTask for the
given timeout which won't be reclaimed until the time the timeout
would have expired if it hadn't been cancelled by the driver. High-
load environments might want to consider disabling this function-
ality.

true 5.0.6

holdResultsOpenOverStatementClose Should the driver close result sets on Statement.close() as required false 3.1.7

Connectors

1764



by the JDBC specification?

largeRowSizeThreshold What size result set row should the JDBC driver consider "large",
and thus use a more memory-efficient way of representing the row
internally?

2048 5.1.1

loadBalanceStrategy If using a load-balanced connection to connect to SQL nodes in a
MySQL Cluster/NDB configuration (by using the URL prefix "jd-
bc:mysql:loadbalance://"), which load balancing algorithm should
the driver use: (1) "random" - the driver will pick a random host
for each request. This tends to work better than round-robin, as the
randomness will somewhat account for spreading loads where re-
quests vary in response time, while round-robin can sometimes
lead to overloaded nodes if there are variations in response times
across the workload. (2) "bestResponseTime" - the driver will
route the request to the host that had the best response time for the
previous transaction.

random 5.0.6

locatorFetchBufferSize If 'emulateLocators' is configured to 'true', what size buffer should
be used when fetching BLOB data for getBinaryInputStream?

1048576 3.2.1

rewriteBatchedStatements Should the driver use multiqueries (irregardless of the setting of
"allowMultiQueries") as well as rewriting of prepared statements
for INSERT into multi-value inserts when executeBatch() is
called? Notice that this has the potential for SQL injection if using
plain java.sql.Statements and your code doesn't sanitize input cor-
rectly. Notice that for prepared statements, server-side prepared
statements can not currently take advantage of this rewrite option,
and that if you don't specify stream lengths when using Prepared-
Statement.set*Stream(), the driver won't be able to determine the
optimum number of parameters per batch and you might receive
an error from the driver that the resultant packet is too large. State-
ment.getGeneratedKeys() for these rewritten statements only
works when the entire batch includes INSERT statements.

false 3.1.13

useDirectRowUnpack Use newer result set row unpacking code that skips a copy from
network buffers to a MySQL packet instance and instead reads dir-
ectly into the result set row data buffers.

true 5.1.1

useDynamicCharsetInfo Should the driver use a per-connection cache of character set in-
formation queried from the server when necessary, or use a built-
in static mapping that is more efficient, but isn't aware of custom
character sets or character sets implemented after the release of the
JDBC driver?

true 5.0.6

useFastDateParsing Use internal String->Date/Time/Timestamp conversion routines to
avoid excessive object creation?

true 5.0.5

useFastIntParsing Use internal String->Integer conversion routines to avoid excess-
ive object creation?

true 3.1.4

useJvmCharsetConverters Always use the character encoding routines built into the JVM,
rather than using lookup tables for single-byte character sets?

false 5.0.1

useLocalSessionState Should the driver refer to the internal values of autocommit and
transaction isolation that are set by Connection.setAutoCommit()
and Connection.setTransactionIsolation() and transaction state as
maintained by the protocol, rather than querying the database or
blindly sending commands to the database for commit() or roll-
back() method calls?

false 3.1.7

useReadAheadInput Use newer, optimized non-blocking, buffered input stream when
reading from the server?

true 3.1.5

Debugging/Profiling.

Property Name Definition Default
Value

Since Ver-
sion

logger The name of a class that implements "com.mysql.jdbc.log.Log" com.mysql.j 3.1.1

Connectors

1765



that will be used to log messages to. (default is
"com.mysql.jdbc.log.StandardLogger", which logs to STDERR)

dbc.log.Sta
ndardLog-
ger

gatherPerfMetrics Should the driver gather performance metrics, and report them via
the configured logger every 'reportMetricsIntervalMillis' milli-
seconds?

false 3.1.2

profileSQL Trace queries and their execution/fetch times to the configured
logger (true/false) defaults to 'false'

false 3.1.0

profileSql Deprecated, use 'profileSQL' instead. Trace queries and their exe-
cution/fetch times on STDERR (true/false) defaults to 'false'

2.0.14

reportMetricsIntervalMillis If 'gatherPerfMetrics' is enabled, how often should they be logged
(in ms)?

30000 3.1.2

maxQuerySizeToLog Controls the maximum length/size of a query that will get logged
when profiling or tracing

2048 3.1.3

packetDebugBufferSize The maximum number of packets to retain when 'enablePacketDe-
bug' is true

20 3.1.3

slowQueryThresholdMillis If 'logSlowQueries' is enabled, how long should a query (in ms)
before it is logged as 'slow'?

2000 3.1.2

slowQueryThresholdNanos If 'useNanosForElapsedTime' is set to true, and this property is set
to a non-zero value, the driver will use this threshold (in nano-
second units) to determine if a query was slow.

0 5.0.7

useUsageAdvisor Should the driver issue 'usage' warnings advising proper and effi-
cient usage of JDBC and MySQL Connector/J to the log
(true/false, defaults to 'false')?

false 3.1.1

autoGenerateTestcaseScript Should the driver dump the SQL it is executing, including server-
side prepared statements to STDERR?

false 3.1.9

autoSlowLog Instead of using slowQueryThreshold* to determine if a query is
slow enough to be logged, maintain statistics that allow the driver
to determine queries that are outside the 99th percentile?

true 5.1.4

clientInfoProvider The name of a class that implements the
com.mysql.jdbc.JDBC4ClientInfoProvider interface in order to
support JDBC-4.0's Connection.get/setClientInfo() methods

com.mysql.j
dbc.JDBC4
Com-
mentCli-
entInfoPro-
vider

5.1.0

dumpMetadataOnColumnNotFound Should the driver dump the field-level metadata of a result set into
the exception message when ResultSet.findColumn() fails?

false 3.1.13

dumpQueriesOnException Should the driver dump the contents of the query sent to the server
in the message for SQLExceptions?

false 3.1.3

enablePacketDebug When enabled, a ring-buffer of 'packetDebugBufferSize' packets
will be kept, and dumped when exceptions are thrown in key areas
in the driver's code

false 3.1.3

explainSlowQueries If 'logSlowQueries' is enabled, should the driver automatically is-
sue an 'EXPLAIN' on the server and send the results to the con-
figured log at a WARN level?

false 3.1.2

includeInnodbStatusInDeadlockExcep-
tions

Include the output of "SHOW ENGINE INNODB STATUS" in
exception messages when deadlock exceptions are detected?

false 5.0.7

logSlowQueries Should queries that take longer than 'slowQueryThresholdMillis'
be logged?

false 3.1.2

logXaCommands Should the driver log XA commands sent by MysqlXaConnection
to the server, at the DEBUG level of logging?

false 5.0.5

resultSetSizeThreshold If the usage advisor is enabled, how many rows should a result set
contain before the driver warns that it is suspiciously large?

100 5.0.5

traceProtocol Should trace-level network protocol be logged? false 3.1.2

useNanosForElapsedTime For profiling/debugging functionality that measures elapsed time, false 5.0.7

Connectors

1766



should the driver try to use nanoseconds resolution if available
(JDK >= 1.5)?

Miscellaneous.

Property Name Definition Default
Value

Since Ver-
sion

useUnicode Should the driver use Unicode character encodings when handling
strings? Should only be used when the driver can't determine the
character set mapping, or you are trying to 'force' the driver to use
a character set that MySQL either doesn't natively support (such as
UTF-8), true/false, defaults to 'true'

true 1.1g

characterEncoding If 'useUnicode' is set to true, what character encoding should the
driver use when dealing with strings? (defaults is to 'autodetect')

1.1g

characterSetResults Character set to tell the server to return results as. 3.0.13

connectionCollation If set, tells the server to use this collation via 'set colla-
tion_connection'

3.0.13

useBlobToStoreUTF8OutsideBMP Tells the driver to treat [MEDIUM/LONG]BLOB columns as
[LONG]VARCHAR columns holding text encoded in UTF-8 that
has characters outside the BMP (4-byte encodings), which MySQL
server can't handle natively.

false 5.1.3

utf8OutsideBmpExcludedColumnNam
ePattern

When "useBlobToStoreUTF8OutsideBMP" is set to "true",
column names matching the given regex will still be treated as
BLOBs unless they match the regex specified for
"utf8OutsideBmpIncludedColumnNamePattern". The regex must
follow the patterns used for the java.util.regex package.

5.1.3

utf8OutsideBmpIncludedColumnName
Pattern

Used to specify exclusion rules to
"utf8OutsideBmpExcludedColumnNamePattern". The regex must
follow the patterns used for the java.util.regex package.

5.1.3

sessionVariables A comma-separated list of name/value pairs to be sent as SET
SESSION ... to the server when the driver connects.

3.1.8

allowNanAndInf Should the driver allow NaN or +/- INF values in PreparedState-
ment.setDouble()?

false 3.1.5

autoClosePStmtStreams Should the driver automatically call .close() on streams/readers
passed as arguments via set*() methods?

false 3.1.12

autoDeserialize Should the driver automatically detect and de-serialize objects
stored in BLOB fields?

false 3.1.5

blobsAreStrings Should the driver always treat BLOBs as Strings - specifically to
work around dubious metadata returned by the server for GROUP
BY clauses?

false 5.0.8

capitalizeTypeNames Capitalize type names in DatabaseMetaData? (usually only useful
when using WebObjects, true/false, defaults to 'false')

true 2.0.7

clobCharacterEncoding The character encoding to use for sending and retrieving TEXT,
MEDIUMTEXT and LONGTEXT values instead of the con-
figured connection characterEncoding

5.0.0

clobberStreamingResults This will cause a 'streaming' ResultSet to be automatically closed,
and any outstanding data still streaming from the server to be dis-
carded if another query is executed before all the data has been
read from the server.

false 3.0.9

continueBatchOnError Should the driver continue processing batch commands if one
statement fails. The JDBC spec allows either way (defaults to
'true').

true 3.0.3

createDatabaseIfNotExist Creates the database given in the URL if it doesn't yet exist. As-
sumes the configured user has permissions to create databases.

false 3.1.9

emptyStringsConvertToZero Should the driver allow conversions from empty string fields to true 3.1.8

Connectors

1767



numeric values of '0'?

emulateLocators Should the driver emulate java.sql.Blobs with locators? With this
feature enabled, the driver will delay loading the actual Blob data
until the one of the retrieval methods (getInputStream(), get-
Bytes(), and so forth) on the blob data stream has been accessed.
For this to work, you must use a column alias with the value of the
column to the actual name of the Blob. The feature also has the
following restrictions: The SELECT that created the result set
must reference only one table, the table must have a primary key;
the SELECT must alias the original blob column name, specified
as a string, to an alternate name; the SELECT must cover all
columns that make up the primary key.

false 3.1.0

emulateUnsupportedPstmts Should the driver detect prepared statements that are not supported
by the server, and replace them with client-side emulated ver-
sions?

true 3.1.7

functionsNeverReturnBlobs Should the driver always treat data from functions returning
BLOBs as Strings - specifically to work around dubious metadata
returned by the server for GROUP BY clauses?

false 5.0.8

generateSimpleParameterMetadata Should the driver generate simplified parameter metadata for Pre-
paredStatements when no metadata is available either because the
server couldn't support preparing the statement, or server-side pre-
pared statements are disabled?

false 5.0.5

ignoreNonTxTables Ignore non-transactional table warning for rollback? (defaults to
'false').

false 3.0.9

jdbcCompliantTruncation Should the driver throw java.sql.DataTruncation exceptions when
data is truncated as is required by the JDBC specification when
connected to a server that supports warnings (MySQL 4.1.0 and
newer)? This property has no effect if the server sql-mode includes
STRICT_TRANS_TABLES.

true 3.1.2

maxRows The maximum number of rows to return (0, the default means re-
turn all rows).

-1 all versions

netTimeoutForStreamingResults What value should the driver automatically set the server setting
'net_write_timeout' to when the streaming result sets feature is in
use? (value has unit of seconds, the value '0' means the driver will
not try and adjust this value)

600 5.1.0

noAccessToProcedureBodies When determining procedure parameter types for CallableState-
ments, and the connected user can't access procedure bodies
through "SHOW CREATE PROCEDURE" or select on
mysql.proc should the driver instead create basic metadata (all
parameters reported as IN VARCHARs, but allowing registerOut-
Parameter() to be called on them anyway) instead of throwing an
exception?

false 5.0.3

noDatetimeStringSync Don't ensure that Result-
Set.getDatetimeType().toString().equals(ResultSet.getString())

false 3.1.7

noTimezoneConversionForTimeType Don't convert TIME values using the server timezone if 'use-
Timezone'='true'

false 5.0.0

nullCatalogMeansCurrent When DatabaseMetadataMethods ask for a 'catalog' parameter,
does the value null mean use the current catalog? (this is not JD-
BC-compliant, but follows legacy behavior from earlier versions
of the driver)

true 3.1.8

nullNamePatternMatchesAll Should DatabaseMetaData methods that accept *pattern paramet-
ers treat null the same as '%' (this is not JDBC-compliant, however
older versions of the driver accepted this departure from the spe-
cification)

true 3.1.8

overrideSupportsIntegrityEnhance-
mentFacility

Should the driver return "true" for Database-
MetaData.supportsIntegrityEnhancementFacility() even if the
database doesn't support it to workaround applications that require
this method to return "true" to signal support of foreign keys, even

false 3.1.12

Connectors

1768



though the SQL specification states that this facility contains much
more than just foreign key support (one such application being
OpenOffice)?

padCharsWithSpace If a result set column has the CHAR type and the value does not
fill the amount of characters specified in the DDL for the column,
should the driver pad the remaining characters with space (for AN-
SI compliance)?

false 5.0.6

pedantic Follow the JDBC spec to the letter. false 3.0.0

pinGlobalTxToPhysicalConnection When using XAConnections, should the driver ensure that opera-
tions on a given XID are always routed to the same physical con-
nection? This allows the XAConnection to support "XA START ...
JOIN" after "XA END" has been called

false 5.0.1

populateInsertRowWithDefaultValues When using ResultSets that are CONCUR_UPDATABLE, should
the driver pre-populate the "insert" row with default values from
the DDL for the table used in the query so those values are imme-
diately available for ResultSet accessors? This functionality re-
quires a call to the database for metadata each time a result set of
this type is created. If disabled (the default), the default values will
be populated by the an internal call to refreshRow() which pulls
back default values and/or values changed by triggers.

false 5.0.5

processEscapeCodesForPrepStmts Should the driver process escape codes in queries that are pre-
pared?

true 3.1.12

relaxAutoCommit If the version of MySQL the driver connects to does not support
transactions, still allow calls to commit(), rollback() and setAuto-
Commit() (true/false, defaults to 'false')?

false 2.0.13

retainStatementAfterResultSetClose Should the driver retain the Statement reference in a ResultSet
after ResultSet.close() has been called. This is not JDBC-com-
pliant after JDBC-4.0.

false 3.1.11

rollbackOnPooledClose Should the driver issue a rollback() when the logical connection in
a pool is closed?

true 3.0.15

runningCTS13 Enables workarounds for bugs in Sun's JDBC compliance testsuite
version 1.3

false 3.1.7

serverTimezone Override detection/mapping of timezone. Used when timezone
from server doesn't map to Java timezone

3.0.2

statementInterceptors A comma-delimited list of classes that implement
"com.mysql.jdbc.StatementInterceptor" that should be placed "in
between" query execution to influence the results. StatementInter-
ceptors are "chainable", the results returned by the "current" inter-
ceptor will be passed on to the next in in the chain, from left-
to-right order, as specified in this property.

5.1.1

strictFloatingPoint Used only in older versions of compliance test false 3.0.0

strictUpdates Should the driver do strict checking (all primary keys selected) of
updatable result sets (true, false, defaults to 'true')?

true 3.0.4

tinyInt1isBit Should the driver treat the datatype TINYINT(1) as the BIT type
(because the server silently converts BIT -> TINYINT(1) when
creating tables)?

true 3.0.16

transformedBitIsBoolean If the driver converts TINYINT(1) to a different type, should it use
BOOLEAN instead of BIT for future compatibility with MySQL-
5.0, as MySQL-5.0 has a BIT type?

false 3.1.9

treatUtilDateAsTimestamp Should the driver treat java.util.Date as a TIMESTAMP for the
purposes of PreparedStatement.setObject()?

true 5.0.5

ultraDevHack Create PreparedStatements for prepareCall() when required, be-
cause UltraDev is broken and issues a prepareCall() for _all_ state-
ments? (true/false, defaults to 'false')

false 2.0.3

useGmtMillisForDatetimes Convert between session timezone and GMT before creating Date
and Timestamp instances (value of "false" is legacy behavior,

false 3.1.12

Connectors

1769



"true" leads to more JDBC-compliant behavior.

useHostsInPrivileges Add '@hostname' to users in Database-
MetaData.getColumn/TablePrivileges() (true/false), defaults to
'true'.

true 3.0.2

useInformationSchema When connected to MySQL-5.0.7 or newer, should the driver use
the INFORMATION_SCHEMA to derive information used by
DatabaseMetaData?

false 5.0.0

useJDBCCompliantTimezoneShift Should the driver use JDBC-compliant rules when converting
TIME/TIMESTAMP/DATETIME values' timezone information
for those JDBC arguments which take a java.util.Calendar argu-
ment? (Notice that this option is exclusive of the "use-
Timezone=true" configuration option.)

false 5.0.0

useOldAliasMetadataBehavior Should the driver use the legacy behavior for "AS" clauses on
columns and tables, and only return aliases (if any) for ResultSet-
MetaData.getColumnName() or ResultSet-
MetaData.getTableName() rather than the original column/table
name?

false 5.0.4

useOldUTF8Behavior Use the UTF-8 behavior the driver did when communicating with
4.0 and older servers

false 3.1.6

useOnlyServerErrorMessages Don't prepend 'standard' SQLState error messages to error mes-
sages returned by the server.

true 3.0.15

useSSPSCompatibleTimezoneShift If migrating from an environment that was using server-side pre-
pared statements, and the configuration property "useJDBCCompli-
antTimeZoneShift" set to "true", use compatible behavior when
not using server-side prepared statements when sending
TIMESTAMP values to the MySQL server.

false 5.0.5

useServerPrepStmts Use server-side prepared statements if the server supports them? false 3.1.0

useSqlStateCodes Use SQL Standard state codes instead of 'legacy' X/Open/SQL
state codes (true/false), default is 'true'

true 3.1.3

useStreamLengthsInPrepStmts Honor stream length parameter in PreparedStatement/Result-
Set.setXXXStream() method calls (true/false, defaults to 'true')?

true 3.0.2

useTimezone Convert time/date types between client and server timezones
(true/false, defaults to 'false')?

false 3.0.2

useUnbufferedInput Don't use BufferedInputStream for reading data from the server true 3.0.11

yearIsDateType Should the JDBC driver treat the MySQL type "YEAR" as a
java.sql.Date, or as a SHORT?

true 3.1.9

zeroDateTimeBehavior What should happen when the driver encounters DATETIME val-
ues that are composed entirely of zeroes (used by MySQL to rep-
resent invalid dates)? Valid values are "exception", "round" and
"convertToNull".

exception 3.1.4

Connector/J also supports access to MySQL via named pipes on Windows NT/2000/XP using the NamedPipeSocketFactory as a plu-
gin-socket factory via the socketFactory property. If you don't use a namedPipePath property, the default of '\\.\pipe\MySQL' will be
used. If you use the NamedPipeSocketFactory, the hostname and port number values in the JDBC url will be ignored. You can
enable this feature using:

socketFactory=com.mysql.jdbc.NamedPipeSocketFactory

Named pipes only work when connecting to a MySQL server on the same physical machine as the one the JDBC driver is being used
on. In simple performance tests, it appears that named pipe access is between 30%-50% faster than the standard TCP/IP access.

You can create your own socket factories by following the example code in com.mysql.jdbc.NamedPipeSocketFactory, or
com.mysql.jdbc.StandardSocketFactory.

27.4.4.2. JDBC API Implementation Notes

Connectors

1770



MySQL Connector/J passes all of the tests in the publicly-available version of Sun's JDBC compliance test suite. However, in many
places the JDBC specification is vague about how certain functionality should be implemented, or the specification allows leeway in
implementation.

This section gives details on a interface-by-interface level about how certain implementation decisions may affect how you use MySQL
Connector/J.

• Blob

Starting with Connector/J version 3.1.0, you can emulate Blobs with locators by adding the property 'emulateLocators=true' to your
JDBC URL. Using this method, the driver will delay loading the actual Blob data until you retrieve the other data and then use re-
trieval methods (getInputStream(), getBytes(), and so forth) on the blob data stream.

For this to work, you must use a column alias with the value of the column to the actual name of the Blob, for example:

SELECT id, 'data' as blob_data from blobtable

For this to work, you must also follow follow these rules:

• The SELECT must also reference only one table, the table must have a primary key.

• The SELECT must alias the original blob column name, specified as a string, to an alternate name.

• The SELECT must cover all columns that make up the primary key.

The Blob implementation does not allow in-place modification (they are copies, as reported by the Database-
MetaData.locatorsUpdateCopies() method). Because of this, you should use the corresponding PreparedState-
ment.setBlob() or ResultSet.updateBlob() (in the case of updatable result sets) methods to save changes back to the
database.

MySQL Enterprise
MySQL Enterprise subscribers will find more information about type conversion in the Knowledge Base article,
Type Conversions Supported by MySQL Connector/J. To subscribe to MySQL Enterprise see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

• CallableStatement

Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL version 5.0 or newer via the
CallableStatement interface. Currently, the getParameterMetaData() method of CallableStatement is not sup-
ported.

• Clob

The Clob implementation does not allow in-place modification (they are copies, as reported by the Database-
MetaData.locatorsUpdateCopies() method). Because of this, you should use the PreparedState-
ment.setClob() method to save changes back to the database. The JDBC API does not have a ResultSet.updateClob()
method.

• Connection

Unlike older versions of MM.MySQL the isClosed() method does not ping the server to determine if it is alive. In accordance
with the JDBC specification, it only returns true if closed() has been called on the connection. If you need to determine if the
connection is still valid, you should issue a simple query, such as SELECT 1. The driver will throw an exception if the connection
is no longer valid.

• DatabaseMetaData

Foreign Key information (getImportedKeys()/getExportedKeys() and getCrossReference()) is only available
from InnoDB tables. However, the driver uses SHOW CREATE TABLE to retrieve this information, so when other storage engines
support foreign keys, the driver will transparently support them as well.

• PreparedStatement

PreparedStatements are implemented by the driver, as MySQL does not have a prepared statement feature. Because of this, the

Connectors

1771

https://kb.mysql.com/view.php?id=4929
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


driver does not implement getParameterMetaData() or getMetaData() as it would require the driver to have a complete
SQL parser in the client.

Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and binary-encoded result sets are used when the
server supports them.

Take care when using a server-side prepared statement with large parameters that are set via setBinaryStream(), setAs-
ciiStream(), setUnicodeStream(), setBlob(), or setClob(). If you want to re-execute the statement with any large
parameter changed to a non-large parameter, it is necessary to call clearParameters() and set all parameters again. The reas-
on for this is as follows:

• During both server-side prepared statements and client-side emulation, large data is exchanged only when PreparedState-
ment.execute() is called.

• Once that has been done, the stream used to read the data on the client side is closed (as per the JDBC spec), and can't be read
from again.

• If a parameter changes from large to non-large, the driver must reset the server-side state of the prepared statement to allow the
parameter that is being changed to take the place of the prior large value. This removes all of the large data that has already been
sent to the server, thus requiring the data to be re-sent, via the setBinaryStream(), setAsciiStream(), setU-
nicodeStream(), setBlob() or setClob() methods.

Consequently, if you want to change the type of a parameter to a non-large one, you must call clearParameters() and set all
parameters of the prepared statement again before it can be re-executed.

• ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most efficient way to operate, and
due to the design of the MySQL network protocol is easier to implement. If you are working with ResultSets that have a large num-
ber of rows or large values, and can not allocate heap space in your JVM for the memory required, you can tell the driver to stream
the results back one row at a time.

To enable this functionality, you need to create a Statement instance in the following manner:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY);

stmt.setFetchSize(Integer.MIN_VALUE);

The combination of a forward-only, read-only result set, with a fetch size of Integer.MIN_VALUE serves as a signal to the driver
to stream result sets row-by-row. After this any result sets created with the statement will be retrieved row-by-row.

There are some caveats with this approach. You will have to read all of the rows in the result set (or close it) before you can issue
any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be MyISAM table-level locks or row-level locks in some
other storage engine such as InnoDB) is when the statement completes.

If the statement is within scope of a transaction, then locks are released when the transaction completes (which implies that the state-
ment needs to complete first). As with most other databases, statements are not complete until all the results pending on the state-
ment are read or the active result set for the statement is closed.

Therefore, if using streaming results, you should process them as quickly as possible if you want to maintain concurrent access to
the tables referenced by the statement producing the result set.

• ResultSetMetaData

The isAutoIncrement() method only works when using MySQL servers 4.0 and newer.

• Statement

When using versions of the JDBC driver earlier than 3.2.1, and connected to server versions earlier than 5.0.3, the setFetchS-
ize() method has no effect, other than to toggle result set streaming as described above.

Connector/J 5.0.0 and later include support for both Statement.cancel() and Statement.setQueryTimeout(). Both
require MySQL 5.0.0 or newer server, and require a separate connection to issue the KILL QUERY statement. In the case of

Connectors

1772



setQueryTimeout(), the implementation creates an additional thread to handle the timeout functionality.

Note

Failures to cancel the statement for setQueryTimeout() may manifest themselves as RuntimeException rather
than failing silently, as there is currently no way to unblock the thread that is executing the query being cancelled due to
timeout expiration and have it throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver doesn't emulate them, so "setCursorName()" has no effect.

Connector/J 5.1.3 and later include two additional methods:

• setLocalInfileInputStream() sets an InputStream instance that will be used to send data to the MySQL server for
a LOAD DATA LOCAL INFILE statement rather than a FileInputStream or URLInputStream that represents the
path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE statement, and will automatically
be closed by the driver, so it needs to be reset before each call to execute*() that would cause the MySQL server to request
data to fulfill the request for LOAD DATA LOCAL INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or URLInputStream as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send data in response to a
LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set via setLocalInfileInputStream().

27.4.4.3. Java, JDBC and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java data types.

In general, any MySQL data type can be converted to a java.lang.String, and any numerical type can be converted to any of the Java nu-
merical types, although round-off, overflow, or loss of precision may occur.

Starting with Connector/J 3.1.0, the JDBC driver will issue warnings or throw DataTruncation exceptions as is required by the JDBC
specification unless the connection was configured not to do so by using the property jdbcCompliantTruncation and setting it to false.

The conversions that are always guaranteed to work are listed in the following table:

Connection Properties - Miscellaneous.

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM, and SET java.lang.String, java.io.InputStream,
java.io.Reader, java.sql.Blob, java.sql.Clob

FLOAT, REAL, DOUBLE PRECISION, NUMERIC,
DECIMAL, TINYINT, SMALLINT, MEDIUMINT, IN-
TEGER, BIGINT

java.lang.String, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Double, java.math.BigDecimal

DATE, TIME, DATETIME, TIMESTAMP java.lang.String, java.sql.Date,
java.sql.Timestamp

Note

Round-off, overflow or loss of precision may occur if you choose a Java numeric data type that has less precision or capa-
city than the MySQL data type you are converting to/from.

The ResultSet.getObject() method uses the type conversions between MySQL and Java types, following the JDBC specifica-
tion where appropriate. The value returned by ResultSetMetaData.GetColumnClassName() is also shown below. For more
information on the java.sql.Types classes see Java 2 Platform Types.

MySQL Types to Java Types for ResultSet.getObject().

MySQL Type Name Return value of GetColumn- Returned as Java Class

Connectors

1773

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html


ClassName

BIT(1) (new in MySQL-5.0) BIT java.lang.Boolean

BIT( > 1) (new in MySQL-5.0) BIT byte[]

TINYINT TINYINT java.lang.Boolean if the configuration property tiny-
Int1isBit is set to true (the default) and the storage size is 1,
or java.lang.Integer if not.

BOOL, BOOLEAN TINYINT See TINYINT, above as these are aliases for TINYINT(1), cur-
rently.

SMALLINT[(M)]
[UNSIGNED]

SMALLINT [UNSIGNED] java.lang.Integer (regardless if UNSIGNED or not)

MEDIUMINT[(M)]
[UNSIGNED]

MEDIUMINT [UNSIGNED] java.lang.Integer, if UNSIGNED java.lang.Long
(C/J 3.1 and earlier), or java.lang.Integer for C/J 5.0 and
later

INT,INTEGER[(M)]
[UNSIGNED]

INTEGER [UNSIGNED] java.lang.Integer, if UNSIGNED java.lang.Long

BIGINT[(M)] [UNSIGNED] BIGINT [UNSIGNED] java.lang.Long, if UNSIGNED
java.math.BigInteger

FLOAT[(M,D)] FLOAT java.lang.Float

DOUBLE[(M,B)] DOUBLE java.lang.Double

DECIMAL[(M[,D])] DECIMAL java.math.BigDecimal

DATE DATE java.sql.Date

DATETIME DATETIME java.sql.Timestamp

TIMESTAMP[(M)] TIMESTAMP java.sql.Timestamp

TIME TIME java.sql.Time

YEAR[(2|4)] YEAR If yearIsDateType configuration property is set to false, then
the returned object type is java.sql.Short. If set to true (the
default) then an object of type java.sql.Date (with the date
set to January 1st, at midnight).

CHAR(M) CHAR java.lang.String (unless the character set for the column is
BINARY, then byte[] is returned.

VARCHAR(M) [BINARY] VARCHAR java.lang.String (unless the character set for the column is
BINARY, then byte[] is returned.

BINARY(M) BINARY byte[]

VARBINARY(M) VARBINARY byte[]

TINYBLOB TINYBLOB byte[]

TINYTEXT VARCHAR java.lang.String

BLOB BLOB byte[]

TEXT VARCHAR java.lang.String

MEDIUMBLOB MEDIUMBLOB byte[]

MEDIUMTEXT VARCHAR java.lang.String

LONGBLOB LONGBLOB byte[]

LONGTEXT VARCHAR java.lang.String

ENUM('value1','value2',...) CHAR java.lang.String

SET('value1','value2',...) CHAR java.lang.String

27.4.4.4. Using Character Sets and Unicode

All strings sent from the JDBC driver to the server are converted automatically from native Java Unicode form to the client character
encoding, including all queries sent via Statement.execute(), Statement.executeUpdate(), State-

Connectors

1774



ment.executeQuery() as well as all PreparedStatement and CallableStatement parameters with the exclusion of
parameters set using setBytes(), setBinaryStream(), setAsciiStream(), setUnicodeStream() and setBlob().

Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which could either be automatically de-
tected from the server configuration, or could be configured by the user through the useUnicode and characterEncoding prop-
erties.

Starting with MySQL Server 4.1, Connector/J supports a single character encoding between client and server, and any number of char-
acter encodings for data returned by the server to the client in ResultSets.

The character encoding between client and server is automatically detected upon connection. The encoding used by the driver is spe-
cified on the server via the character_set system variable for server versions older than 4.1.0 and character_set_server
for server versions 4.1.0 and newer. For more information, see Section 9.1.3.1, “Server Character Set and Collation”.

To override the automatically-detected encoding on the client side, use the characterEncoding property in the URL used to con-
nect to the server.

When specifying character encodings on the client side, Java-style names should be used. The following table lists Java-style names for
MySQL character sets:

MySQL to Java Encoding Name Translations.

MySQL Character Set Name Java-Style Character Encoding Name

ascii US-ASCII

big5 Big5

gbk GBK

sjis SJIS (or Cp932 or MS932 for MySQL Server < 4.1.11)

cp932 Cp932 or MS932 (MySQL Server > 4.1.11)

gb2312 EUC_CN

ujis EUC_JP

euckr EUC_KR

latin1 ISO8859_1

latin2 ISO8859_2

greek ISO8859_7

hebrew ISO8859_8

cp866 Cp866

tis620 TIS620

cp1250 Cp1250

cp1251 Cp1251

cp1257 Cp1257

macroman MacRoman

macce MacCentralEurope

utf8 UTF-8

ucs2 UnicodeBig

Warning

Do not issue the query 'set names' with Connector/J, as the driver will not detect that the character set has changed, and
will continue to use the character set detected during the initial connection setup.

To allow multiple character sets to be sent from the client, the UTF-8 encoding should be used, either by configuring utf8 as the de-
fault server character set, or by configuring the JDBC driver to use UTF-8 through the characterEncoding property.

27.4.4.5. Connecting Securely Using SSL

Connectors

1775



SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC driver and the server. The perform-
ance penalty for enabling SSL is an increase in query processing time between 35% and 50%, depending on the size of the query, and
the amount of data it returns.

For SSL Support to work, you must have the following:

• A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not currently work with a JDK that
you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the following JSSE bug: ht-
tp://developer.java.sun.com/developer/bugParade/bugs/4273544.html

• A MySQL server that supports SSL and has been compiled and configured to do so, which is MySQL-4.0.4 or later, see Sec-
tion 5.5.7, “Using Secure Connections”, for more information.

• A client certificate (covered later in this section)

The system works through two Java truststore files, one file contains the certificate information for the server (truststore in the ex-
amples below). The other file contains the certificate for the client (keystore in the examples below). All Java truststore files are
password protected by supplying a suitable password to the keytool when you create the files. You need the file names and associ-
ated passwords to create an SSL connection.

You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL server CA Certificate is located
in the SSL subdirectory of the MySQL source distribution. This is what SSL will use to determine if you are communicating with a se-
cure MySQL server. Alternatively, use the CA Certificate that you have generated or been provided with by your SSL provider.

To use Java's keytool to create a truststore in the current directory , and import the server's CA certificate (cacert.pem), you can
do the following (assuming that keytool is in your path. The keytool should be located in the bin subdirectory of your JDK or
JRE):

shell> keytool -import -alias mysqlServerCACert \
-file cacert.pem -keystore truststore

You will need to enter the password when prompted for the keystore file. Interaction with keytool will look like this:

Enter keystore password: *********
Owner: EMAILADDRESS=walrus@example.com, CN=Walrus,

O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Issuer: EMAILADDRESS=walrus@example.com, CN=Walrus,

O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Serial number: 0
Valid from:

Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:

MD5: 61:91:A0:F2:03:07:61:7A:81:38:66:DA:19:C4:8D:AB
SHA1: 25:77:41:05:D5:AD:99:8C:14:8C:CA:68:9C:2F:B8:89:C3:34:4D:6C

Trust this certificate? [no]: yes
Certificate was added to keystore

You then have two options, you can either import the client certificate that matches the CA certificate you just imported, or you can cre-
ate a new client certificate.

To import an existing certificate, the certificate should be in DER format. You can use openssl to convert an existing certificate into
the new format. For example:

shell> openssl x509 -outform DER -in client-cert.pem -out client.cert

You now need to import the converted certificate into your keystore using keytool:

shell> keytool -import -file client.cert -keystore keystore -alias mysqlClientCertificate

To generate your own client certificate, use keytool to create a suitable certificate and add it to the keystore file:

shell> keytool -genkey -keyalg rsa \
-alias mysqlClientCertificate -keystore keystore

Keytool will prompt you for the following information, and create a keystore named keystore in the current directory.

Connectors

1776

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://developer.java.sun.com/developer/bugParade/bugs/4273544.html


You should respond with information that is appropriate for your situation:

Enter keystore password: *********
What is your first and last name?
[Unknown]: Matthews

What is the name of your organizational unit?
[Unknown]: Software Development

What is the name of your organization?
[Unknown]: MySQL AB

What is the name of your City or Locality?
[Unknown]: Flossmoor

What is the name of your State or Province?
[Unknown]: IL

What is the two-letter country code for this unit?
[Unknown]: US

Is <CN=Matthews, OU=Software Development, O=MySQL AB,
L=Flossmoor, ST=IL, C=US> correct?
[no]: y

Enter key password for <mysqlClientCertificate>
(RETURN if same as keystore password):

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the following system properties when
you start your JVM, replacing path_to_keystore_file with the full path to the keystore file you created, path_to_truststore_file with the
path to the truststore file you created, and using the appropriate password values for each property. You can do this either on the com-
mand line:

-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=password

Or you can set the values directly within the application:

System.setProperty("javax.net.ssl.keyStore","path_to_keystore_file");
System.setProperty("javax.net.ssl.keyStorePassword","password");
System.setProperty("javax.net.ssl.trustStore","path_to_truststore_file");
System.setProperty("javax.net.ssl.trustStorePassword","password");

You will also need to set useSSL to true in your connection parameters for MySQL Connector/J, either by adding useSSL=true to
your URL, or by setting the property useSSL to true in the java.util.Properties instance you pass to DriverMan-
ager.getConnection().

You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the following key events:

...
*** ClientHello, v3.1
RandomCookie: GMT: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, »
54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, »
217, 219, 239, 202, 19, 121, 78 }

Session ID: {}
Cipher Suites: { 0, 5, 0, 4, 0, 9, 0, 10, 0, 18, 0, 19, 0, 3, 0, 17 }
Compression Methods: { 0 }
***
[write] MD5 and SHA1 hashes: len = 59
0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A 0C ...7..=.......J.
0010: 36 F4 00 A8 37 67 D7 40 10 8A E1 BE 84 99 02 D9 6...7g.@........
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00 ....yN..........
0030: 0A 00 12 00 13 00 03 00 11 01 00 ...........
main, WRITE: SSL v3.1 Handshake, length = 59
main, READ: SSL v3.1 Handshake, length = 74
*** ServerHello, v3.1
RandomCookie: GMT: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, »

202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, »
132, 110, 82, 148, 160, 92 }

Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, »
182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, »
219, 158, 177, 187, 143}

Cipher Suite: { 0, 5 }
Compression Method: 0
***
%% Created: [Session-1, SSL_RSA_WITH_RC4_128_SHA]
** SSL_RSA_WITH_RC4_128_SHA
[read] MD5 and SHA1 hashes: len = 74
0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.C.t2.g.d
0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA 03 :.O..d.B..S..*..
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7F FC FE B2 .nR..\ ..T5Q....
0030: B3 44 3F B6 9E 1E 0B 96 4F AA 4C FF 5C 0F E2 18 .D?.....O.L.\...
0040: 11 B1 DB 9E B1 BB 8F 00 05 00 ..........
main, READ: SSL v3.1 Handshake, length = 1712

Connectors

1777



...

JSSE provides debugging (to STDOUT) when you set the following system property: -Djavax.net.debug=all This will tell you
what keystores and truststores are being used, as well as what is going on during the SSL handshake and certificate exchange. It will be
helpful when trying to determine what is not working when trying to get an SSL connection to happen.

27.4.4.6. Using Master/Slave Replication with ReplicationConnection

Starting with Connector/J 3.1.7, we've made available a variant of the driver that will automatically send queries to a read/write master,
or a failover or round-robin loadbalanced set of slaves based on the state of Connection.getReadOnly() .

An application signals that it wants a transaction to be read-only by calling Connection.setReadOnly(true), this replication-
aware connection will use one of the slave connections, which are load-balanced per-vm using a round-robin scheme (a given connec-
tion is sticky to a slave unless that slave is removed from service). If you have a write transaction, or if you have a read that is time-
sensitive (remember, replication in MySQL is asynchronous), set the connection to be not read-only, by calling Connec-
tion.setReadOnly(false) and the driver will ensure that further calls are sent to the master MySQL server. The driver takes
care of propagating the current state of autocommit, isolation level, and catalog between all of the connections that it uses to accomplish
this load balancing functionality.

To enable this functionality, use the " com.mysql.jdbc.ReplicationDriver " class when configuring your application server's
connection pool or when creating an instance of a JDBC driver for your standalone application. Because it accepts the same URL
format as the standard MySQL JDBC driver, ReplicationDriver does not currently work with java.sql.DriverManager -
based connection creation unless it is the only MySQL JDBC driver registered with the DriverManager .

Here is a short, simple example of how ReplicationDriver might be used in a standalone application.

import java.sql.Connection;
import java.sql.ResultSet;
import java.util.Properties;

import com.mysql.jdbc.ReplicationDriver;

public class ReplicationDriverDemo {

public static void main(String[] args) throws Exception {
ReplicationDriver driver = new ReplicationDriver();

Properties props = new Properties();

// We want this for failover on the slaves
props.put("autoReconnect", "true");

// We want to load balance between the slaves
props.put("roundRobinLoadBalance", "true");

props.put("user", "foo");
props.put("password", "bar");

//
// Looks like a normal MySQL JDBC url, with a
// comma-separated list of hosts, the first
// being the 'master', the rest being any number
// of slaves that the driver will load balance against
//

Connection conn =
driver.connect("jdbc:mysql://master,slave1,slave2,slave3/test",

props);

//
// Perform read/write work on the master
// by setting the read-only flag to "false"
//

conn.setReadOnly(false);
conn.setAutoCommit(false);
conn.createStatement().executeUpdate("UPDATE some_table ....");
conn.commit();

//
// Now, do a query from a slave, the driver automatically picks one
// from the list
//

conn.setReadOnly(true);

ResultSet rs =
conn.createStatement().executeQuery("SELECT a,b FROM alt_table");

Connectors

1778



.......
}

}

You may also want to investigate the Load Balancing JDBC Pool (lbpol) tool, which provides a wrapper around the standard JDBC
driver and allows you to use DB connection pools that includes checks for system failures and uneven load distribution. For more in-
formation, see Load Balancing JDBC Pool (lbpool).

27.4.4.7. Mapping MySQL Error Numbers to SQLStates

The table below provides a mapping of the MySQL Error Numbers to SQL States

Table 27.1. Mapping of MySQL Error Numbers to SQLStates

My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

102
2

ER_DUP
_KEY

S10
00

230
00

103
7

ER_OUT
OFMEM
ORY

S10
01

HY
001

103
8

ER_OUT
_OF_SO
RT-
MEMOR
Y

S10
01

HY
001

104
0

ER_CON
_COUNT
_ERROR

080
04

080
04

104
2

ER_BAD
_HOST_
ERROR

080
04

08S
01

104
3

ER_HAN
DSHAK
E_ERRO
R

080
04

08S
01

104
4

ER_DBA
CCESS_
DENIED
_ERROR

S10
00

420
00

104
5

ER_ACC
ESS_DE
NIED_E
RROR

280
00

280
00

104
7

ER_UNK
NOWN_
COM_E
RROR

08S
01

HY
000

105
0

ER_TAB
LE_EXIS
TS_ERR
OR

S10
00

42S
01

105 ER_BAD 42S 42S

Connectors

1779

http://code.tailrank.com/lbpool


My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

1 _TABLE
_ERROR

02 02

105
2

ER_NON
_UNIQ_
ERROR

S10
00

230
00

105
3

ER_SER
VER_SH
UT-
DOWN

S10
00

08S
01

105
4

ER_BAD
_FIELD_
ERROR

S00
22

42S
22

105
5

ER_WR
ONG_FI
ELD_WI
TH_GRO
UP

S10
09

420
00

105
6

ER_WR
ONG_G
ROUP_F
IELD

S10
09

420
00

105
7

ER_WR
ONG_SU
M_SELE
CT

S10
09

420
00

105
8

ER_WR
ONG_V
ALUE_C
OUNT

21S
01

21S
01

105
9

ER_TOO
_LONG_
IDENT

S10
09

420
00

106
0

ER_DUP
_FIELD
NAME

S10
09

42S
21

106
1

ER_DUP
_KEYN
AME

S10
09

420
00

106
2

ER_DUP
_ENTRY

S10
09

230
00

106
3

ER_WR
ONG_FI
ELD_SP
EC

S10
09

420
00

106
4

ER_PAR
SE_ERR
OR

420
00

420
00

106
5

ER_EMP
TY_QUE
RY

420
00

420
00

Connectors

1780



My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

106
6

ER_NON
UNIQ_T
ABLE

S10
09

420
00

106
7

ER_INV
AL-
ID_DEF
AULT

S10
09

420
00

106
8

ER_MU
LTIPLE_
PRI_KE
Y

S10
09

420
00

106
9

ER_TOO
_MANY
_KEYS

S10
09

420
00

107
0

ER_TOO
_MANY
_KEY_P
ARTS

S10
09

420
00

107
1

ER_TOO
_LONG_
KEY

S10
09

420
00

107
2

ER_KEY
_COLU
MN_DO
ES_NOT
_EXITS

S10
09

420
00

107
3

ER_BLO
B_USED
_AS_KE
Y

S10
09

420
00

107
4

ER_TOO
_BIG_FI
ELDLEN
GTH

S10
09

420
00

107
5

ER_WR
ONG_A
UTO_KE
Y

S10
09

420
00

108
0

ER_FOR
CING_C
LOSE

S10
00

08S
01

108
1

ER_IPSO
CK_ERR
OR

08S
01

08S
01

108
2

ER_NO_
SUCH_I
NDEX

S10
09

42S
12

108
3

ER_WR
ONG_FI
ELD_TE
RMIN-

S10
09

420
00

Connectors

1781



My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

ATORS

108
4

ER_BLO
BS_AND
_NO_TE
RMIN-
ATED

S10
09

420
00

109
0

ER_CAN
T_REM
OVE_AL
L_FIELD
S

S10
00

420
00

109
1

ER_CAN
T_DROP
_FIELD_
OR_KEY

S10
00

420
00

110
1

ER_BLO
B_CANT
_HAVE_
DE-
FAULT

S10
00

420
00

110
2

ER_WR
ONG_D
B_NAM
E

S10
00

420
00

110
3

ER_WR
ONG_T
ABLE_N
AME

S10
00

420
00

110
4

ER_TOO
_BIG_SE
LECT

S10
00

420
00

110
6

ER_UNK
NOWN_
PRO-
CED-
URE

S10
00

420
00

110
7

ER_WR
ONG_PA
RAM-
COUNT_
TO_PRO
CED-
URE

S10
00

420
00

110
9

ER_UNK
NOWN_
TABLE

S10
00

42S
02

111
0

ER_FIEL
D_SPECI
FIED_T
WICE

S10
00

420
00

111 ER_UNS S10 420

Connectors

1782



My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

2 UPPOR-
TED_EX
TEN-
SION

00 00

111
3

ER_TAB
LE_MUS
T_HAVE
_COLU
MNS

S10
00

420
00

111
5

ER_UNK
NOWN_
CHAR-
AC-
TER_SE
T

S10
00

420
00

111
8

ER_TOO
_BIG_R
OWSIZE

S10
00

420
00

112
0

ER_WR
ONG_O
UTER_J
OIN

S10
00

420
00

112
1

ER_NUL
L_COLU
MN_IN_
INDEX

S10
00

420
00

112
9

ER_HOS
T_IS_BL
OCKED

080
04

HY
000

113
0

ER_HOS
T_NOT_
PRIV-
ILEGED

080
04

HY
000

113
1

ER_PAS
SWORD
_ANON
YM-
OUS_US
ER

S10
00

420
00

113
2

ER_PAS
SWORD
_NOT_A
LLOWE
D

S10
00

420
00

113
3

ER_PAS
SWORD
_NO_M
ATCH

S10
00

420
00

113
6

ER_WR
ONG_V
ALUE_C
OUNT_

S10
00

21S
01

Connectors

1783



My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

ON_RO
W

113
8

ER_INV
AL-
ID_USE_
OF_NUL
L

S10
00

420
00

113
9

ER_REG
EXP_ER
ROR

S10
00

420
00

114
0

ER_MIX
_OF_GR
OUP_FU
NC_AN
D_FIEL
DS

S10
00

420
00

114
1

ER_NON
EXIST-
ING_GR
ANT

S10
00

420
00

114
2

ER_TAB
LEAC-
CESS_D
ENIED_
ERROR

S10
00

420
00

114
3

ER_COL
UM-
NAC-
CESS_D
ENIED_
ERROR

S10
00

420
00

114
4

ER_ILLE
GAL_GR
ANT_FO
R_TABL
E

S10
00

420
00

114
5

ER_GRA
NT_WR
ONG_H
OST_OR
_USER

S10
00

420
00

114
6

ER_NO_
SUCH_T
ABLE

S10
00

42S
02

114
7

ER_NON
EXIST-
ING_TA
BLE_GR
ANT

S10
00

420
00

114
8

ER_NOT
_ALLO
WED_C

S10
00

420
00

Connectors

1784



My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

OM-
MAND

114
9

ER_SYN
TAX_ER
ROR

S10
00

420
00

115
2

ER_ABO
RT-
ING_CO
NNEC-
TION

S10
00

08S
01

115
3

ER_NET
_PACKE
T_TOO_
LARGE

S10
00

08S
01

115
4

ER_NET
_READ_
ER-
ROR_FR
OM_PIP
E

S10
00

08S
01

115
5

ER_NET
_FCNTL
_ERROR

S10
00

08S
01

115
6

ER_NET
_PACKE
TS_OUT
_OF_OR
DER

S10
00

08S
01

115
7

ER_NET
_UNCO
MPRESS
_ERROR

S10
00

08S
01

115
8

ER_NET
_READ_
ERROR

S10
00

08S
01

115
9

ER_NET
_READ_
INTER-
RUPTED

S10
00

08S
01

116
0

ER_NET
_ERROR
_ON_W
RITE

S10
00

08S
01

116
1

ER_NET
_WRITE
_INTER
RUPTED

S10
00

08S
01

116
2

ER_TOO
_LONG_
STRING

S10
00

420
00

116 ER_TAB S10 420

Connectors

1785



My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

3 LE_CAN
T_HAN
DLE_BL
OB

00 00

116
4

ER_TAB
LE_CAN
T_HAN
DLE_AU
TO_INC
RE-
MENT

S10
00

420
00

116
6

ER_WR
ONG_C
OLUMN
_NAME

S10
00

420
00

116
7

ER_WR
ONG_K
EY_COL
UMN

S10
00

420
00

116
9

ER_DUP
_UNIQU
E

S10
00

230
00

117
0

ER_BLO
B_KEY_
WITHO
UT_LEN
GTH

S10
00

420
00

117
1

ER_PRI
MARY_
CANT_H
AVE_N
ULL

S10
00

420
00

117
2

ER_TOO
_MANY
_ROWS

S10
00

420
00

117
3

ER_REQ
UIRES_P
RIMAR
Y_KEY

S10
00

420
00

117
7

ER_CHE
CK_NO_
SUCH_T
ABLE

S10
00

420
00

117
8

ER_CHE
CK_NOT
_IMPLE
MEN-
TED

S10
00

420
00

117
9

ER_CAN
T_DO_T
HIS_DU
RING_A

S10
00

250
00

Connectors

1786



My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

N_TRAN
SAC-
TION

118
4

ER_NE
W_ABO
RT-
ING_CO
NNEC-
TION

S10
00

08S
01

118
9

ER_MAS
TER_NE
T_READ

S10
00

08S
01

119
0

ER_MAS
TER_NE
T_WRIT
E

S10
00

08S
01

120
3

ER_TOO
_MANY
_USER_
CON-
NEC-
TIONS

S10
00

420
00

120
5

ER_LOC
K_WAIT
_TIMEO
UT

410
00

410
00

120
7

ER_REA
D_ONL
Y_TRAN
SAC-
TION

S10
00

250
00

121
1

ER_NO_
PERMIS-
SION_T
O_CREA
TE_USE
R

S10
00

420
00

121
3

ER_LOC
K_DEA
DLOCK

410
00

400
01

121
6

ER_NO_
REFER-
EN-
CED_RO
W

S10
00

230
00

121
7

ER_RO
W_IS_R
EFER-
ENCED

S10
00

230
00

121
8

ER_CON
NECT_T
O_MAS

S10
00

08S
01

Connectors

1787



My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

TER

122
2

ER_WR
ONG_N
UM-
BER_OF
_COLU
MNS_IN
_SELEC
T

S10
00

210
00

122
6

ER_USE
R_LIMIT
_REACH
ED

S10
00

420
00

123
0

ER_NO_
DE-
FAULT

S10
00

420
00

123
1

ER_WR
ONG_V
ALUE_F
OR_VA
R

S10
00

420
00

123
2

ER_WR
ONG_T
YPE_FO
R_VAR

S10
00

420
00

123
4

ER_CAN
T_USE_
OP-
TION_H
ERE

S10
00

420
00

123
5

ER_NOT
_SUPPO
RTED_Y
ET

S10
00

420
00

123
9

ER_WR
ONG_FK
_DEF

S10
00

420
00

124
1

ER_OPE
RAND_
COLUM
NS

S10
00

210
00

124
2

ER_SUB
QUERY_
NO_1_R
OW

S10
00

210
00

124
7

ER_ILLE
GAL_RE
FER-
ENCE

S10
00

42S
22

124
8

ER_DER
IVED_M

S10
00

420
00

Connectors

1788



My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

UST_HA
VE_ALI
AS

124
9

ER_SEL
ECT_RE
DUCED

S10
00

010
00

125
0

ER_TAB
LE-
NAME_
NOT_AL
LOWED
_HERE

S10
00

420
00

125
1

ER_NOT
_SUPPO
RTED_A
UTH_M
ODE

S10
00

080
04

125
2

ER_SPA
TIAL_C
ANT_H
AVE_N
ULL

S10
00

420
00

125
3

ER_COL
LA-
TION_C
HAR-
SET_MI
SMATC
H

S10
00

420
00

126
1

ER_WA
RN_TOO
_FEW_R
ECORDS

S10
00

010
00

126
2

ER_WA
RN_TOO
_MANY
_RECOR
DS

S10
00

010
00

126
3

ER_WA
RN_NUL
L_TO_N
OT-
NULL

S10
00

010
00

126
4

ER_WA
RN_DAT
A_OUT_
OF_RAN
GE

S10
00

010
00

126
5

ER_WA
RN_DAT
A_TRUN
CATED

S10
00

010
00

Connectors

1789



My
SQ
L
Er-
ror
Nu
mb
er

MySQL
Error
Name

Leg
acy
(X/
Op
en)
SQ
LSt
ate

SQ
L
Sta
nd-
ard
SQ
LSt
ate

128
0

ER_WR
ONG_N
AME_F
OR_IND
EX

S10
00

420
00

128
1

ER_WR
ONG_N
AME_F
OR_CAT
ALOG

S10
00

420
00

128
6

ER_UNK
NOWN_
STOR-
AGE_EN
GINE

S10
00

420
00

27.4.5. Connector/J Notes and Tips

27.4.5.1. Basic JDBC Concepts

This section provides some general JDBC background.

27.4.5.1.1. Connecting to MySQL Using the DriverManager Interface

When you are using JDBC outside of an application server, the DriverManager class manages the establishment of Connections.

The DriverManager needs to be told which JDBC drivers it should try to make Connections with. The easiest way to do this is to
use Class.forName() on the class that implements the java.sql.Driver interface. With MySQL Connector/J, the name of this
class is com.mysql.jdbc.Driver. With this method, you could use an external configuration file to supply the driver class name
and driver parameters to use when connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the main() method of your application:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

// Notice, do not import com.mysql.jdbc.*
// or you will have problems!

public class LoadDriver {
public static void main(String[] args) {

try {
// The newInstance() call is a work around for some
// broken Java implementations

Class.forName("com.mysql.jdbc.Driver").newInstance();
} catch (Exception ex) {

// handle the error
}

}

After the driver has been registered with the DriverManager, you can obtain a Connection instance that is connected to a particu-
lar database by calling DriverManager.getConnection():

Example 27.1. Obtaining a connection from the DriverManager

Connectors

1790



This example shows how you can obtain a Connection instance from the DriverManager. There are a few different signatures for
the getConnection() method. You should see the API documentation that comes with your JDK for more specific information on
how to use them.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

...
try {

Connection conn =
DriverManager.getConnection("jdbc:mysql://localhost/test?" +

"user=monty&password=greatsqldb");

// Do something with the Connection

...
} catch (SQLException ex) {

// handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());

}

Once a Connection is established, it can be used to create Statement and PreparedStatement objects, as well as retrieve
metadata about the database. This is explained in the following sections.

27.4.5.1.2. Using Statements to Execute SQL

Statement objects allow you to execute basic SQL queries and retrieve the results through the ResultSet class which is described
later.

To create a Statement instance, you call the createStatement() method on the Connection object you have retrieved via
one of the DriverManager.getConnection() or DataSource.getConnection() methods described earlier.

Once you have a Statement instance, you can execute a SELECT query by calling the executeQuery(String) method with the
SQL you want to use.

To update data in the database, use the executeUpdate(String SQL) method. This method returns the number of rows affected
by the update statement.

If you don't know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT, then you can use the ex-
ecute(String SQL) method. This method will return true if the SQL query was a SELECT, or false if it was an UPDATE,
INSERT, or DELETE statement. If the statement was a SELECT query, you can retrieve the results by calling the getResultSet()
method. If the statement was an UPDATE, INSERT, or DELETE statement, you can retrieve the affected rows count by calling getUp-
dateCount() on the Statement instance.

Example 27.2. Using java.sql.Statement to execute a SELECT query

// assume that conn is an already created JDBC connection
Statement stmt = null;
ResultSet rs = null;

try {
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT foo FROM bar");

// or alternatively, if you don't know ahead of time that
// the query will be a SELECT...

if (stmt.execute("SELECT foo FROM bar")) {
rs = stmt.getResultSet();

}

// Now do something with the ResultSet ....
} finally {

// it is a good idea to release
// resources in a finally{} block
// in reverse-order of their creation
// if they are no-longer needed

if (rs != null) {
try {

rs.close();

Connectors

1791



} catch (SQLException sqlEx) { // ignore }

rs = null;
}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException sqlEx) { // ignore }

stmt = null;
}

}

27.4.5.1.3. Using CallableStatements to Execute Stored Procedures

Starting with MySQL server version 5.0 when used with Connector/J 3.1.1 or newer, the java.sql.CallableStatement inter-
face is fully implemented with the exception of the getParameterMetaData() method.

For more information on MySQL stored procedures, please refer to http://dev.mysql.com/doc/mysql/en/stored-procedures.html.

Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.

Note

Current versions of MySQL server do not return enough information for the JDBC driver to provide result set metadata for
callable statements. This means that when using CallableStatement, ResultSetMetaData may return NULL.

The following example shows a stored procedure that returns the value of inOutParam incremented by 1, and the string passed in via
inputParam as a ResultSet:

Example 27.3. Stored Procedures

CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), \
INOUT inOutParam INT)

BEGIN
DECLARE z INT;
SET z = inOutParam + 1;
SET inOutParam = z;

SELECT inputParam;

SELECT CONCAT('zyxw', inputParam);
END

To use the demoSp procedure with Connector/J, follow these steps:

1. Prepare the callable statement by using Connection.prepareCall() .

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter placeholders are not optional:

Example 27.4. Using Connection.prepareCall()

import java.sql.CallableStatement;

...

//
// Prepare a call to the stored procedure 'demoSp'
// with two parameters
//
// Notice the use of JDBC-escape syntax ({call ...})
//

CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");

cStmt.setString(1, "abcdefg");

Connectors

1792

http://dev.mysql.com/doc/mysql/en/stored-procedures.html


Note

Connection.prepareCall() is an expensive method, due to the metadata retrieval that the driver performs to sup-
port output parameters. For performance reasons, you should try to minimize unnecessary calls to Connec-
tion.prepareCall() by reusing CallableStatement instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or INOUT when you created the stored procedure), JDBC
requires that they be specified before statement execution using the various registerOutputParameter() methods in the
CallableStatement interface:

Example 27.5. Registering output parameters

import java.sql.Types;
...
//
// Connector/J supports both named and indexed
// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use
// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//

//
// Registers the second parameter as output, and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter(2, Types.INTEGER);

//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter("inOutParam", Types.INTEGER);
...

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for PreparedStatement objects. However, CallableStatement also supports set-
ting parameters by name:

Example 27.6. Setting CallableStatement input parameters

...

//
// Set a parameter by index
//

cStmt.setString(1, "abcdefg");

//
// Alternatively, set a parameter using
// the parameter name
//

cStmt.setString("inputParameter", "abcdefg");

//
// Set the 'in/out' parameter using an index
//

cStmt.setInt(2, 1);

Connectors

1793



//
// Alternatively, set the 'in/out' parameter
// by name
//

cStmt.setInt("inOutParam", 1);

...

4. Execute the CallableStatement, and retrieve any result sets or output parameters.

Although CallableStatement supports calling any of the Statement execute methods (executeUpdate(), ex-
ecuteQuery() or execute()), the most flexible method to call is execute(), as you do not need to know ahead of time if
the stored procedure returns result sets:

Example 27.7. Retrieving results and output parameter values

...

boolean hadResults = cStmt.execute();

//
// Process all returned result sets
//

while (hadResults) {
ResultSet rs = cStmt.getResultSet();

// process result set
...

hadResults = cStmt.getMoreResults();
}

//
// Retrieve output parameters
//
// Connector/J supports both index-based and
// name-based retrieval
//

int outputValue = cStmt.getInt(2); // index-based

outputValue = cStmt.getInt("inOutParam"); // name-based

...

27.4.5.1.4. Retrieving AUTO_INCREMENT Column Values

Before version 3.0 of the JDBC API, there was no standard way of retrieving key values from databases that supported auto increment
or identity columns. With older JDBC drivers for MySQL, you could always use a MySQL-specific method on the Statement inter-
face, or issue the query SELECT LAST_INSERT_ID() after issuing an INSERT to a table that had an AUTO_INCREMENT key. Us-
ing the MySQL-specific method call isn't portable, and issuing a SELECT to get the AUTO_INCREMENT key's value requires another
round-trip to the database, which isn't as efficient as possible. The following code snippets demonstrate the three different ways to re-
trieve AUTO_INCREMENT values. First, we demonstrate the use of the new JDBC-3.0 method getGeneratedKeys() which is now
the preferred method to use if you need to retrieve AUTO_INCREMENT keys and have access to JDBC-3.0. The second example shows
how you can retrieve the same value using a standard SELECT LAST_INSERT_ID() query. The final example shows how updatable
result sets can retrieve the AUTO_INCREMENT value when using the insertRow() method.

Example 27.8. Retrieving AUTO_INCREMENT column values using Statement.getGeneratedKeys()

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets assuming you have a

Connectors

1794



// Connection 'conn' to a MySQL database already
// available

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_UPDATABLE);

//
// Issue the DDL queries for the table for this example
//

stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//

stmt.executeUpdate(
"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')",
Statement.RETURN_GENERATED_KEYS);

//
// Example of using Statement.getGeneratedKeys()
// to retrieve the value of an auto-increment
// value
//

int autoIncKeyFromApi = -1;

rs = stmt.getGeneratedKeys();

if (rs.next()) {
autoIncKeyFromApi = rs.getInt(1);

} else {

// throw an exception from here
}

rs.close();

rs = null;

System.out.println("Key returned from getGeneratedKeys():"
+ autoIncKeyFromApi);

} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

Example 27.9. Retrieving AUTO_INCREMENT column values using SELECT LAST_INSERT_ID()

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets.

stmt = conn.createStatement();

//
// Issue the DDL queries for the table for this example
//

Connectors

1795



stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//

stmt.executeUpdate(
"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')");

//
// Use the MySQL LAST_INSERT_ID()
// function to do the same thing as getGeneratedKeys()
//

int autoIncKeyFromFunc = -1;
rs = stmt.executeQuery("SELECT LAST_INSERT_ID()");

if (rs.next()) {
autoIncKeyFromFunc = rs.getInt(1);

} else {
// throw an exception from here

}

rs.close();

System.out.println("Key returned from " +
"'SELECT LAST_INSERT_ID()': " +
autoIncKeyFromFunc);

} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

Example 27.10. Retrieving AUTO_INCREMENT column values in Updatable ResultSets

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets as well as an 'updatable'
// one, assuming you have a Connection 'conn' to
// a MySQL database already available
//

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_UPDATABLE);

//
// Issue the DDL queries for the table for this example
//

stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//

Connectors

1796



// Example of retrieving an AUTO INCREMENT key
// from an updatable result set
//

rs = stmt.executeQuery("SELECT priKey, dataField "
+ "FROM autoIncTutorial");

rs.moveToInsertRow();

rs.updateString("dataField", "AUTO INCREMENT here?");
rs.insertRow();

//
// the driver adds rows at the end
//

rs.last();

//
// We should now be on the row we just inserted
//

int autoIncKeyFromRS = rs.getInt("priKey");

rs.close();

rs = null;

System.out.println("Key returned for inserted row: "
+ autoIncKeyFromRS);

} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

When you run the preceding example code, you should get the following output: Key returned from getGeneratedKeys(): 1 Key
returned from SELECT LAST_INSERT_ID(): 1 Key returned for inserted row: 2 You should be aware, that at times, it can be tricky
to use the SELECT LAST_INSERT_ID() query, as that function's value is scoped to a connection. So, if some other query happens
on the same connection, the value will be overwritten. On the other hand, the getGeneratedKeys() method is scoped by the
Statement instance, so it can be used even if other queries happen on the same connection, but not on the same Statement in-
stance.

27.4.5.2. Using Connector/J with J2EE and Other Java Frameworks

This section describes how to use Connector/J in several contexts.

27.4.5.2.1. General J2EE Concepts

This section provides general background on J2EE concepts that pertain to use of Connector/J.

27.4.5.2.1.1. Understanding Connection Pooling

Connection pooling is a technique of creating and managing a pool of connections that are ready for use by any thread that needs them.

This technique of pooling connections is based on the fact that most applications only need a thread to have access to a JDBC connec-
tion when they are actively processing a transaction, which usually take only milliseconds to complete. When not processing a transac-
tion, the connection would otherwise sit idle. Instead, connection pooling allows the idle connection to be used by some other thread to
do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a connection from the pool.

Connectors

1797



When the thread is finished using the connection, it returns it to the pool, so that it may be used by any other threads that want to use it.

When the connection is loaned out from the pool, it is used exclusively by the thread that requested it. From a programming point of
view, it is the same as if your thread called DriverManager.getConnection() every time it needed a JDBC connection,
however with connection pooling, your thread may end up using either a new, or already-existing connection.

Connection pooling can greatly increase the performance of your Java application, while reducing overall resource usage. The main be-
nefits to connection pooling are:

• Reduced connection creation time

Although this is not usually an issue with the quick connection setup that MySQL offers compared to other databases, creating new
JDBC connections still incurs networking and JDBC driver overhead that will be avoided if connections are recycled.

• Simplified programming model

When using connection pooling, each individual thread can act as though it has created its own JDBC connection, allowing you to
use straight-forward JDBC programming techniques.

• Controlled resource usage

If you don't use connection pooling, and instead create a new connection every time a thread needs one, your application's resource
usage can be quite wasteful and lead to unpredictable behavior under load.

Remember that each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client and server
side. Every connection limits how many resources there are available to your application as well as the MySQL server. Many of these
resources will be used whether or not the connection is actually doing any useful work!

Connection pools can be tuned to maximize performance, while keeping resource utilization below the point where your application
will start to fail rather than just run slower.

Luckily, Sun has standardized the concept of connection pooling in JDBC through the JDBC-2.0 Optional interfaces, and all major ap-
plication servers have implementations of these APIs that work fine with MySQL Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it via the Java Naming and Direct-
ory Interface (JNDI). The following code shows how you might use a connection pool from an application deployed in a J2EE applica-
tion server:

Example 27.11. Using a connection pool with a J2EE application server

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

import javax.naming.InitialContext;
import javax.sql.DataSource;

public class MyServletJspOrEjb {

public void doSomething() throws Exception {
/*
* Create a JNDI Initial context to be able to
* lookup the DataSource
*
* In production-level code, this should be cached as
* an instance or static variable, as it can
* be quite expensive to create a JNDI context.
*
* Note: This code only works when you are using servlets
* or EJBs in a J2EE application server. If you are
* using connection pooling in standalone Java code, you
* will have to create/configure datasources using whatever
* mechanisms your particular connection pooling library
* provides.
*/

InitialContext ctx = new InitialContext();

/*
* Lookup the DataSource, which will be backed by a pool

Connectors

1798



* that the application server provides. DataSource instances
* are also a good candidate for caching as an instance
* variable, as JNDI lookups can be expensive as well.
*/

DataSource ds =
(DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");

/*
* The following code is what would actually be in your
* Servlet, JSP or EJB 'service' method...where you need
* to work with a JDBC connection.
*/

Connection conn = null;
Statement stmt = null;

try {
conn = ds.getConnection();

/*
* Now, use normal JDBC programming to work with
* MySQL, making sure to close each resource when you're
* finished with it, which allows the connection pool
* resources to be recovered as quickly as possible
*/

stmt = conn.createStatement();
stmt.execute("SOME SQL QUERY");

stmt.close();
stmt = null;

conn.close();
conn = null;

} finally {
/*
* close any jdbc instances here that weren't
* explicitly closed during normal code path, so
* that we don't 'leak' resources...
*/

if (stmt != null) {
try {

stmt.close();
} catch (sqlexception sqlex) {

// ignore -- as we can't do anything about it here
}

stmt = null;
}

if (conn != null) {
try {

conn.close();
} catch (sqlexception sqlex) {

// ignore -- as we can't do anything about it here
}

conn = null;
}

}
}

}

As shown in the example above, after obtaining the JNDI InitialContext, and looking up the DataSource, the rest of the code should
look familiar to anyone who has done JDBC programming in the past.

The most important thing to remember when using connection pooling is to make sure that no matter what happens in your code
(exceptions, flow-of-control, and so forth), connections, and anything created by them (such as statements or result sets) are closed, so
that they may be re-used, otherwise they will be stranded, which in the best case means that the MySQL server resources they represent
(such as buffers, locks, or sockets) may be tied up for some time, or worst case, may be tied up forever.

What's the Best Size for my Connection Pool?

As with all other configuration rules-of-thumb, the answer is: it depends. Although the optimal size depends on anticipated load and av-
erage database transaction time, the optimum connection pool size is smaller than you might expect. If you take Sun's Java Petstore
blueprint application for example, a connection pool of 15-20 connections can serve a relatively moderate load (600 concurrent users)
using MySQL and Tomcat with response times that are acceptable.

To correctly size a connection pool for your application, you should create load test scripts with tools such as Apache JMeter or The
Grinder, and load test your application.

Connectors

1799



An easy way to determine a starting point is to configure your connection pool's maximum number of connections to be unbounded, run
a load test, and measure the largest amount of concurrently used connections. You can then work backward from there to determine
what values of minimum and maximum pooled connections give the best performance for your particular application.

27.4.5.2.2. Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at ht-
tp://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time this document was written.

First, install the .jar file that comes with Connector/J in $CATALINA_HOME/common/lib so that it is available to all applications in-
stalled in the container.

Next, Configure the JNDI DataSource by adding a declaration resource to $CATALINA_HOME/conf/server.xml in the context
that defines your web application:

<Context ....>

...

<Resource name="jdbc/MySQLDB"
auth="Container"
type="javax.sql.DataSource"/>

<!-- The name you used above, must match _exactly_ here!

The connection pool will be bound into JNDI with the name
"java:/comp/env/jdbc/MySQLDB"

-->

<ResourceParams name="jdbc/MySQLDB">
<parameter>
<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

</parameter>

<!-- Don't set this any higher than max_connections on your
MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<parameter>
<name>maxActive</name>
<value>10</value>

</parameter>

<!-- You don't want to many idle connections hanging around
if you can avoid it, only enough to soak up a spike in
the load -->

<parameter>
<name>maxIdle</name>
<value>5</value>

</parameter>

<!-- Don't use autoReconnect=true, it's going away eventually
and it's a crutch for older connection pools that couldn't
test connections. You need to decide whether your application
is supposed to deal with SQLExceptions (hint, it should), and
how much of a performance penalty you're willing to pay
to ensure 'freshness' of the connection -->

<parameter>
<name>validationQuery</name>
<value>SELECT 1</value>

</parameter>

<!-- The most conservative approach is to test connections
before they're given to your application. For most applications
this is okay, the query used above is very small and takes
no real server resources to process, other than the time used
to traverse the network.

If you have a high-load application you'll need to rely on
something else. -->

<parameter>
<name>testOnBorrow</name>
<value>true</value>

</parameter>

<!-- Otherwise, or in addition to testOnBorrow, you can test
while connections are sitting idle -->

<parameter>
<name>testWhileIdle</name>

Connectors

1800

http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html


<value>true</value>
</parameter>

<!-- You have to set this value, otherwise even though
you've asked connections to be tested while idle,
the idle evicter thread will never run -->

<parameter>
<name>timeBetweenEvictionRunsMillis</name>
<value>10000</value>

</parameter>

<!-- Don't allow connections to hang out idle too long,
never longer than what wait_timeout is set to on the
server...A few minutes or even fraction of a minute
is sometimes okay here, it depends on your application
and how much spikey load it will see -->

<parameter>
<name>minEvictableIdleTimeMillis</name>
<value>60000</value>

</parameter>

<!-- Username and password used when connecting to MySQL -->

<parameter>
<name>username</name>
<value>someuser</value>
</parameter>

<parameter>
<name>password</name>
<value>somepass</value>
</parameter>

<!-- Class name for the Connector/J driver -->

<parameter>
<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>

</parameter>

<!-- The JDBC connection url for connecting to MySQL, notice
that if you want to pass any other MySQL-specific parameters
you should pass them here in the URL, setting them using the
parameter tags above will have no effect, you will also
need to use &amp; to separate parameter values as the
ampersand is a reserved character in XML -->

<parameter>
<name>url</name>
<value>jdbc:mysql://localhost:3306/test</value>

</parameter>

</ResourceParams>
</Context>

In general, you should follow the installation instructions that come with your version of Tomcat, as the way you configure datasources
in Tomcat changes from time-to-time, and unfortunately if you use the wrong syntax in your XML file, you will most likely end up with
an exception similar to the following:

Error: java.sql.SQLException: Cannot load JDBC driver class 'null ' SQL
state: null

27.4.5.2.3. Using Connector/J with JBoss

These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server, copy the .jar file that comes
with Connector/J to the lib directory for your server configuration (which is usually called default). Then, in the same configura-
tion directory, in the subdirectory named deploy, create a datasource configuration file that ends with "-ds.xml", which tells JBoss to de-
ploy this file as a JDBC Datasource. The file should have the following contents:

<datasources>
<local-tx-datasource>

<!-- This connection pool will be bound into JNDI with the name
"java:/MySQLDB" -->

<jndi-name>MySQLDB</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/dbname</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>user</user-name>
<password>pass</password>

<min-pool-size>5</min-pool-size>

Connectors

1801



<!-- Don't set this any higher than max_connections on your
MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<max-pool-size>20</max-pool-size>

<!-- Don't allow connections to hang out idle too long,
never longer than what wait_timeout is set to on the
server...A few minutes is usually okay here,
it depends on your application
and how much spikey load it will see -->

<idle-timeout-minutes>5</idle-timeout-minutes>

<!-- If you're using Connector/J 3.1.8 or newer, you can use
our implementation of these to increase the robustness
of the connection pool. -->

<exception-sorter-class-name>
com.mysql.jdbc.integration.jboss.ExtendedMysqlExceptionSorter

</exception-sorter-class-name>
<valid-connection-checker-class-name>

com.mysql.jdbc.integration.jboss.MysqlValidConnectionChecker
</valid-connection-checker-class-name>

</local-tx-datasource>
</datasources>

27.4.5.2.4. Using Connector/J with Spring

The Spring Framework is a Java-based application framework designed for assisting in application design by providing a way to config-
ure components. The technique used by Spring is a well known design pattern called Dependency Injection (see Inversion of Control
Containers and the Dependency Injection pattern). This article will focus on Java-oriented access to MySQL databases with Spring 2.0.
For those wondering, there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented programming (AOP). This is one
of the main benefits and the foundation for Spring's resource and transaction management. Spring also provides utilities for integrating
resource management with JDBC and Hibernate.

For the examples in this section the MySQL world sample database will be used. The first task is to set up a MySQL data source
through Spring. Components within Spring use the "bean" terminology. For example, to configure a connection to a MySQL server sup-
porting the world sample database you might use:

<util:map id="dbProps">
<entry key="db.driver" value="com.mysql.jdbc.Driver"/>
<entry key="db.jdbcurl" value="jdbc:mysql://localhost/world"/>
<entry key="db.username" value="myuser"/>
<entry key="db.password" value="mypass"/>

</util:map>

In the above example we are assigning values to properties that will be used in the configuration. For the datasource configuration:

<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">

<property name="driverClassName" value="${db.driver}"/>
<property name="url" value="${db.jdbcurl}"/>
<property name="username" value="${db.username}"/>
<property name="password" value="${db.password}"/>

</bean>

The placeholders are used to provide values for properties of this bean. This means that you can specify all the properties of the config-
uration in one place instead of entering the values for each property on each bean. We do, however, need one more bean to pull this all
together. The last bean is responsible for actually replacing the placeholders with the property values.

<bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<property name="properties" ref="dbProps"/>
</bean>

Now that we have our MySQL data source configured and ready to go, we write some Java code to access it. The example below will

Connectors

1802

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html


retrieve three random cities and their corresponding country using the data source we configured with Spring.

// Create a new application context. this processes the Spring config
ApplicationContext ctx =

new ClassPathXmlApplicationContext("ex1appContext.xml");
// Retrieve the data source from the application context

DataSource ds = (DataSource) ctx.getBean("dataSource");
// Open a database connection using Spring's DataSourceUtils
Connection c = DataSourceUtils.getConnection(ds);
try {

// retrieve a list of three random cities
PreparedStatement ps = c.prepareStatement(

"select City.Name as 'City', Country.Name as 'Country' " +
"from City inner join Country on City.CountryCode = Country.Code " +
"order by rand() limit 3");

ResultSet rs = ps.executeQuery();
while(rs.next()) {

String city = rs.getString("City");
String country = rs.getString("Country");
System.out.printf("The city %s is in %s%n", city, country);

}
} catch (SQLException ex) {

// something has failed and we print a stack trace to analyse the error
ex.printStackTrace();
// ignore failure closing connection
try { c.close(); } catch (SQLException e) { }

} finally {
// properly release our connection
DataSourceUtils.releaseConnection(c, ds);

}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using DataSourceUtils instead of the
DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages this resource in a way similar to
a container managed data source in a J2EE application server. When a connection is opened, it can be subsequently accessed in other
parts of the code if it is synchronized with a transaction. This makes it possible to treat different parts of your application as transaction-
al instead of passing around a database connection.

27.4.5.2.4.1. Using JdbcTemplate

Spring makes extensive use of the Template method design pattern (see Template Method Pattern). Our immediate focus will be on the
JdbcTemplate and related classes, specifically NamedParameterJdbcTemplate. The template classes handle obtaining and re-
leasing a connection for data access when one is needed.

The next example shows how to use NamedParameterJdbcTemplate inside of a DAO (Data Access Object) class to retrieve a
random city given a country code.

public class Ex2JdbcDao {
/**
* Data source reference which will be provided by Spring.
*/
private DataSource dataSource;

/**
* Our query to find a random city given a country code. Notice
* the ":country" parameter towards the end. This is called a
* named parameter.
*/
private String queryString = "select Name from City " +

"where CountryCode = :country order by rand() limit 1";

/**
* Retrieve a random city using Spring JDBC access classes.
*/
public String getRandomCityByCountryCode(String cntryCode) {

// A template that allows using queries with named parameters
NamedParameterJdbcTemplate template =
new NamedParameterJdbcTemplate(dataSource);
// A java.util.Map is used to provide values for the parameters
Map params = new HashMap();
params.put("country", cntryCode);
// We query for an Object and specify what class we are expecting
return (String)template.queryForObject(queryString, params, String.class);

}

/**
* A JavaBean setter-style method to allow Spring to inject the data source.
* @param dataSource
*/
public void setDataSource(DataSource dataSource) {

Connectors

1803

http://en.wikipedia.org/wiki/Template_method_pattern


this.dataSource = dataSource;
}

}

The focus in the above code is on the getRandomCityByCountryCode() method. We pass a country code and use the Named-
ParameterJdbcTemplate to query for a city. The country code is placed in a Map with the key "country", which is the parameter
is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean id="dao" class="code.Ex2JdbcDao">
<property name="dataSource" ref="dataSource"/>

</bean>

At this point, we can just grab a reference to the DAO from Spring and call getRandomCityByCountryCode().

// Create the application context
ApplicationContext ctx =
new ClassPathXmlApplicationContext("ex2appContext.xml");
// Obtain a reference to our DAO
Ex2JdbcDao dao = (Ex2JdbcDao) ctx.getBean("dao");

String countryCode = "USA";

// Find a few random cities in the US
for(int i = 0; i < 4; ++i)

System.out.printf("A random city in %s is %s%n", countryCode,
dao.getRandomCityByCountryCode(countryCode));

This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional JDBC classes including Con-
nection and PreparedStatement.

27.4.5.2.4.2. Transactional JDBC Access

You might be wondering how we can add transactions into our code if we don't deal directly with the JDBC classes. Spring provides a
transaction management package that not only replaces JDBC transaction management, but also allows declarative transaction manage-
ment (configuration instead of code).

In order to use transactional database access, we will need to change the storage engine of the tables in the world database. The down-
loaded script explicitly creates MyISAM tables which do not support transactional semantics. The InnoDB storage engine does support
transactions and this is what we will be using. We can change the storage engine with the following statements.

ALTER TABLE City ENGINE=InnoDB;
ALTER TABLE Country ENGINE=InnoDB;
ALTER TABLE CountryLanguage ENGINE=InnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations. What this means is that we can cre-
ate a Java interface and only use the operations on this interface without any internal knowledge of what the actual implementation is.
We will let Spring manage the implementation and with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
Integer createCity(String name, String countryCode,
String district, Integer population);

}

This interface contains one method that will create a new city record in the database and return the id of the new record. Next you need
to create an implementation of this interface.

public class Ex3DaoImpl implements Ex3Dao {
protected DataSource dataSource;
protected SqlUpdate updateQuery;
protected SqlFunction idQuery;

public Integer createCity(String name, String countryCode,
String district, Integer population) {

updateQuery.update(new Object[] { name, countryCode,
district, population });

return getLastId();
}

Connectors

1804



protected Integer getLastId() {
return idQuery.run();

}
}

You can see that we only operate on abstract query objects here and don't deal directly with the JDBC API. Also, this is the complete
implementation. All of our transaction management will be dealt with in the configuration. To get the configuration started, we need to
create the DAO.

<bean id="dao" class="code.Ex3DaoImpl">
<property name="dataSource" ref="dataSource"/>
<property name="updateQuery">...</property>
<property name="idQuery">...</property>

</bean>

Now you need to set up the transaction configuration. The first thing you must do is create transaction manager to manage the data
source and a specification of what transaction properties are required for for the dao methods.

<bean id="transactionManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>

</bean>

<tx:advice id="txAdvice" transaction-manager="transactionManager">
<tx:attributes>

<tx:method name="*"/>
</tx:attributes>

</tx:advice>

The preceding code creates a transaction manager that handles transactions for the data source provided to it. The txAdvice uses this
transaction manager and the attributes specify to create a transaction for all methods. Finally you need to apply this advice with an AOP
pointcut.

<aop:config>
<aop:pointcut id="daoMethods"

expression="execution(* code.Ex3Dao.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="daoMethods"/>

</aop:config>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To make use of this, you only
have to retrieve the dao from the application context and call a method on the dao instance.

Ex3Dao dao = (Ex3Dao) ctx.getBean("dao");
Integer id = dao.createCity(name, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it's all configured with Spring. This is a
very powerful notion and regarded as one of the most beneficial features of Spring.

27.4.5.2.4.3. Connection Pooling

In many sitations, such as web applications, there will be a large number of small database transactions. When this is the case, it usually
makes sense to create a pool of database connections available for web requests as needed. Although MySQL does not spawn an extra
process when a connection is made, there is still a small amount of overhead to create and set up the connection. Pooling of connections
also alleviates problems such as collecting large amounts of sockets in the TIME_WAIT state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source configuration in the application context.
There are a number of configurations that we can use. The first example is based on the Jakarta Commons DBCP library. The example
below replaces the source configuration that was based on DriverManagerDataSource with DBCP's BasicDataSource.

<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource">
<property name="driverClassName" value="${db.driver}"/>
<property name="url" value="${db.jdbcurl}"/>
<property name="username" value="${db.username}"/>
<property name="password" value="${db.password}"/>
<property name="initialSize" value="3"/>

</bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections to the database instead of cre-
ating a new connection every time one is requested. We have also set a parameter here called initialSize. This tells DBCP that we

Connectors

1805

http://jakarta.apache.org/commons/dbcp/


want three connections in the pool when it is created.

Another way to configure connection pooling is to configure a data source in our J2EE application server. Using JBoss as an example,
you can set up the MySQL connection pool by creating a file called mysql-local-ds.xml and placing it in the server/de-
fault/deploy directory in JBoss. Once we have this setup, we can use JNDI to look it up. With Spring, this lookup is very simple. The
data source configuration looks like this.

<jee:jndi-lookup id="dataSource" jndi-name="java:MySQL_DS"/>

27.4.5.3. Common Problems and Solutions

There are a few issues that seem to be commonly encountered often by users of MySQL Connector/J. This section deals with their
symptoms, and their resolutions.

Questions

• 28.4.5.3.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What's going on? I can connect just fine with the MySQL command-line client.

• 28.4.5.3.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

• 28.4.5.3.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

• 28.4.5.3.4: I have a servlet/application that works fine for a day, and then stops working overnight

• 28.4.5.3.5: I'm trying to use JDBC-2.0 updatable result sets, and I get an exception saying my result set is not updatable.

• 28.4.5.3.6: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection paramters are correct.

• 28.4.5.3.7: I am trying to connect to my MySQL server within my application, but I get the following error and stack trace:

java.net.SocketException
MESSAGE: Software caused connection abort: recv failed

STACKTRACE:

java.net.SocketException: Software caused connection abort: recv failed
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)
at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)

• 28.4.5.3.8: My application is deployed through JBoss and I am using transactions to handle the statements on the MySQL database.
Under heavy loads I am getting a error and stack trace, but these only occur after a fixed period of heavy activity.

• 28.4.5.3.9: When using gcj an java.io.CharConversionException is raised when working with certain character se-
quences.

• 28.4.5.3.10: Updating a table that contains a primary key that is either FLOAT or compound primary key that uses FLOAT fails to
update the table and raises an exception.

Questions and Answers

Connectors

1806



28.4.5.3.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What's going on? I can connect just fine with the MySQL command-line client.

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix Domain Sockets. Therefore, when
MySQL Connector/J connects to MySQL, the security manager in MySQL server will use its grant tables to determine whether the con-
nection should be allowed.

You must add the necessary security credentials to the MySQL server for this to happen, using the GRANT statement to your MySQL
Server. See Section 12.5.1.3, “GRANT Syntax”, for more information.

Note

Testing your connectivity with the mysql command-line client will not work unless you add the --host flag, and use
something other than localhost for the host. The mysql command-line client will use Unix domain sockets if you use
the special hostname localhost. If you are testing connectivity to localhost, use 127.0.0.1 as the hostname in-
stead.

Warning

Changing privileges and permissions improperly in MySQL can potentially cause your server installation to not have op-
timal security properties.

28.4.5.3.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

There are three possible causes for this error:

• The Connector/J driver is not in your CLASSPATH, see Section 27.4.2, “Connector/J Installation”.

• The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

• When using DriverManager, the jdbc.drivers system property has not been populated with the location of the Connector/J
driver.

28.4.5.3.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the "--skip-networking" option set, or your MySQL server
has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served the .class files for the applet. This
means that MySQL must run on the same machine (or you must have some sort of port re-direction) for this to work. This also means
that you will not be able to test applets from your local file system, you must always deploy them to a web server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix domain sockets. TCP/IP com-
munication with MySQL might be affected if MySQL was started with the "--skip-networking" flag, or if it is firewalled.

If MySQL has been started with the "--skip-networking" option set (the Debian Linux package of MySQL server does this for example),
you need to comment it out in the file /etc/mysql/my.cnf or /etc/my.cnf. Of course your my.cnf file might also exist in the data direct-
ory of your MySQL server, or anywhere else (depending on how MySQL was compiled for your system). Binaries created by MySQL
AB always look in /etc/my.cnf and [datadir]/my.cnf. If your MySQL server has been firewalled, you will need to have the firewall con-
figured to allow TCP/IP connections from the host where your Java code is running to the MySQL server on the port that MySQL is
listening to (by default, 3306).

28.4.5.3.4: I have a servlet/application that works fine for a day, and then stops working overnight

Connectors

1807



MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that handles stale connections or use the
"autoReconnect" parameter (see Section 27.4.4.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Con-
nector/J”).

Also, you should be catching SQLExceptions in your application and dealing with them, rather than propagating them all the way until
your application exits, this is just good programming practice. MySQL Connector/J will set the SQLState (see
java.sql.SQLException.getSQLState() in your APIDOCS) to "08S01" when it encounters network-connectivity issues
during the processing of a query. Your application code should then attempt to re-connect to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 27.12. Example of transaction with retry logic

public void doBusinessOp() throws SQLException {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;

//
// How many times do you want to retry the transaction
// (or at least _getting_ a connection)?
//
int retryCount = 5;

boolean transactionCompleted = false;

do {
try {

conn = getConnection(); // assume getting this from a
// javax.sql.DataSource, or the
// java.sql.DriverManager

conn.setAutoCommit(false);

//
// Okay, at this point, the 'retry-ability' of the
// transaction really depends on your application logic,
// whether or not you're using autocommit (in this case
// not), and whether you're using transacational storage
// engines
//
// For this example, we'll assume that it's _not_ safe
// to retry the entire transaction, so we set retry
// count to 0 at this point
//
// If you were using exclusively transaction-safe tables,
// or your application could recover from a connection going
// bad in the middle of an operation, then you would not
// touch 'retryCount' here, and just let the loop repeat
// until retryCount == 0.
//
retryCount = 0;

stmt = conn.createStatement();

String query = "SELECT foo FROM bar ORDER BY baz";

rs = stmt.executeQuery(query);

while (rs.next()) {
}

rs.close();
rs = null;

stmt.close();
stmt = null;

conn.commit();
conn.close();
conn = null;

transactionCompleted = true;
} catch (SQLException sqlEx) {

//
// The two SQL states that are 'retry-able' are 08S01
// for a communications error, and 40001 for deadlock.
//
// Only retry if the error was due to a stale connection,
// communications problem or deadlock
//

Connectors

1808



String sqlState = sqlEx.getSQLState();

if ("08S01".equals(sqlState) || "40001".equals(sqlState)) {
retryCount--;

} else {
retryCount = 0;

}
} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException sqlEx) {

// You'd probably want to log this . . .
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException sqlEx) {

// You'd probably want to log this as well . . .
}

}

if (conn != null) {
try {

//
// If we got here, and conn is not null, the
// transaction should be rolled back, as not
// all work has been done

try {
conn.rollback();

} finally {
conn.close();

}
} catch (SQLException sqlEx) {

//
// If we got an exception here, something
// pretty serious is going on, so we better
// pass it up the stack, rather than just
// logging it. . .

throw sqlEx;
}

}
}

} while (!transactionCompleted && (retryCount > 0));
}

Note

Use of the autoReconnect option is not recommended because there is no safe method of reconnecting to the MySQL
server without risking some corruption of the connection state or database state information. Instead, you should use a con-
nection pool which will enable your application to connect to the MySQL server using an available connection from the
pool. The autoReconnect facility is deprecated, and may be removed in a future release.

28.4.5.3.5: I'm trying to use JDBC-2.0 updatable result sets, and I get an exception saying my result set is not updatable.

Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that have come from queries on tables
that have at least one primary key, the query must select every primary key and the query can only span one table (that is, no joins).
This is outlined in the JDBC specification.

Note that this issue only occurs when using updatable result sets, and is caused because Connector/J is unable to guarantee that it can
identify the correct rows within the result set to be updated without having a unique reference to each row. There is no requirement to
have a unique field on a table if you are using UPDATE or DELETE statements on a table where you can individually specify the criteria
to be matched using a WHERE clause.

28.4.5.3.6: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection paramters are correct.

Make sure that the skip-networking option has not been enabled on your server. Connector/J must be able to communicate with
your server over TCP/IP, named sockets are not supported. Also ensure that you are not filtering connections through a Firewall or other
network security system. For more informaiton, see Section B.1.2.2, “Can't connect to [local] MySQL server”.

28.4.5.3.7: I am trying to connect to my MySQL server within my application, but I get the following error and stack trace:

java.net.SocketException

Connectors

1809



MESSAGE: Software caused connection abort: recv failed

STACKTRACE:

java.net.SocketException: Software caused connection abort: recv failed
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)
at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)

The error probably indicates that you are using a older version of the Connector/J JDBC driver (2.0.14 or 3.0.x) and you are trying to
connect to a MySQL server with version 4.1x or newer. The older drivers are not compatible with 4.1 or newer of MySQL as they do
not support the newer authentication mechanisms.

It is likely that the older version of the Connector/J driver exists within your application directory or your CLASSPATH includes the
older Connector/J package.

28.4.5.3.8: My application is deployed through JBoss and I am using transactions to handle the statements on the MySQL data-
base. Under heavy loads I am getting a error and stack trace, but these only occur after a fixed period of heavy activity.

This is a JBoss, not Connector/J, issue and is connected to the use of transactions. Under heavy loads the time taken for transactions to
complete can increase, and the error is caused because you have exceeded the predefined timeout.

You can increase the timeout value by setting the TransactionTimeout attribute to the TransactionManagerService with-
in the /conf/jboss-service.xml file (pre-4.0.3) or /deploy/jta-service.xml for JBoss 4.0.3 or later. See Transaction-
Timeoute within the JBoss wiki for more information.

28.4.5.3.9: When using gcj an java.io.CharConversionException is raised when working with certain character se-
quences.

This is a known issue with gcj which raises an exception when it reaches an unknown character or one it cannot convert. You should
add useJvmCharsetConverters=true to your connection string to force character conversion outside of the gcj libraries, or try
a different JDK.

28.4.5.3.10: Updating a table that contains a primary key that is either FLOAT or compound primary key that uses FLOAT fails
to update the table and raises an exception.

Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the primary key. If there is no match
then Connector/J considers this a failure condition and raises an exception.

The problem is that rounding differences between supplied values and the values stored in the database may mean that the values never
match, and hence the update fails. The issue will affect all queries, not just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point column in your primary key use
DOUBLE or DECIMAL types in place of FLOAT.

27.4.6. Connector/J Support

27.4.6.1. Connector/J Community Support

MySQL AB provides assistance to the user community by means of its mailing lists. For Connector/J related issues, you can get help
from experienced users by using the MySQL and Java mailing list. Archives and subscription information is available online at ht-
tp://lists.mysql.com/java.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http://lists.mysql.com/. See Section 1.6.1,
“MySQL Mailing Lists”.

Community support from experienced users is also available through the JDBC Forum. You may also find help from other users in the
other MySQL Forums, located at http://forums.mysql.com. See Section 1.6.2, “MySQL Community Support at the MySQL Forums”.

27.4.6.2. How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database. This database is public, and can

Connectors

1810

http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://lists.mysql.com/java
http://lists.mysql.com/java
http://lists.mysql.com/
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://bugs.mysql.com/


be browsed and searched by anyone. If you log in to the system, you will also be able to enter new reports.

If you have found a sensitive security bug in MySQL, you can send email to <security@mysql.com>.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for yourself. A good bug report,
containing a full test case for the bug, makes it very likely that we will fix the bug in the next release.

This section will help you write your report correctly so that you don't waste your time doing things that may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any bug that we are able to repeat
has a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to one containing too little. People
often omit facts because they think they know the cause of a problem and assume that some details don't matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less troublesome to write a couple more
lines in your report than to wait longer for the answer if we must ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or MySQL used, and (b) not fully
describing the platform on which Connector/J is installed (including the JVM version, and the platform type and version number that
MySQL itself is installed on).

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very often we get questions like,
“Why doesn't this work for me?” Then we find that the feature requested wasn't implemented in that MySQL version, or that a bug de-
scribed in a report has already been fixed in newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything without knowing the operating
system and the version number of the platform.

If at all possible, you should create a repeatable, stanalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
'com.mysql.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this class, create your own class that in-
herits from com.mysql.jdbc.util.BaseBugReport and override the methods setUp(), tearDown() and runTest().

In the setUp() method, create code that creates your tables, and populates them with any data needed to demonstrate the bug.

In the runTest() method, create code that demonstrates the bug using the tables and data you created in the setUp method.

In the tearDown() method, drop any tables you created in the setUp() method.

In any of the above three methods, you should use one of the variants of the getConnection() method to create a JDBC connection
to MySQL:

• getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a connection already exists, that con-
nection is returned, otherwise a new connection is created.

• getNewConnection() - Use this if you need to get a new connection for your bug report (i.e. there's more than one connection
involved).

• getConnection(String url) - Returns a connection using the given URL.

• getConnection(String url, Properties props) - Returns a connection using the given URL and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test', override the method getUrl() as well.

Use the assertTrue(boolean expression) and assertTrue(String failureMessage, boolean expres-
sion) methods to create conditions that must be met in your testcase demonstrating the behavior you are expecting (vs. the behavior
you are observing, which is why you are most likely filing a bug report).

Finally, create a main() method that creates a new instance of your testcase, and calls the run method:

public static void main(String[] args) throws Exception {
new MyBugReport().run();

Connectors

1811

http://bugs.mysql.com/


}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting, upload it with your bug report to
http://bugs.mysql.com/.

27.4.6.3. Connector/J Change History

The Connector/J Change History (Changelog) is located with the main Changelog for MySQL. See Section C.5, “MySQL Connector/J
Change History”.

27.5. MySQL Connector/MXJ
MySQL Connector/MXJ is a Java Utility package for deploying and managing a MySQL database. Deploying and using MySQL can be
as easy as adding an additional parameter to the JDBC connection url, which will result in the database being started when the first con-
nection is made. This makes it easy for Java developers to deploy applications which require a database by reducing installation barriers
for their end-users.

MySQL Connector/MXJ makes the MySQL database appear to be a java-based component. It does this by determining what platform
the system is running on, selecting the appropriate binary, and launching the executable. It will also optionally deploy an initial data-
base, with any specified parameters.

Included are instructions for use with a JDBC driver and deploying as a JMX MBean to JBoss.

You can download sources and binaries from: http://dev.mysql.com/downloads/connector/mxj/

This a beta release and feedback is welcome and encouraged.

Please send questions or comments to the MySQL and Java mailing list.

27.5.1. Connector/MXJ Overview
Connector/MXJ consists of a Java class, a copy of the mysqld binary for a specific list of platforms, and associated files and support
utilities. The Java class controls the initialization of an instance of the embedded mysqld binary, and the ongoing management of the
mysqld process. The entire sequence and management can be controlled entirely from within Java using the Connector/MXJ Java
classes. You can see an overview of the contents of the Connector/MXJ package in the figure below.

It is important to note that Connector/MXJ is not an embedded version of MySQL, or a version of MySQL written as part of a Java

Connectors

1812

http://bugs.mysql.com/
http://dev.mysql.com/downloads/connector/mxj/
http://lists.mysql.com/java


class. Connector/MXJ works through the use of an embedded, compiled binary of mysqld as would normally be used when deploying
a standard MySQL installation.

It is the Connector/MXJ wrapper, support classes and tools, that enable Connector/MXJ to appear as a MySQL instance.

When Connector/MXJ is initialized, the corresponding mysqld binary for the current platform is extracted, along with a pre-
configured data directed. Both are contained within the Connector/MXJ JAR file. The mysqld instance is then started, with any addi-
tional options as specified during the initialization, and the MySQL database becomes accessible.

Because Connector/MXJ works in combination with Connector/J, you can access and integrate with the MySQL instance through a JD-
BC connection. When you have finished with the server, the instance is terminated, and, by default, any data created during the session
is retained within the temporary directory created when the instance was started.

Connector/MXJ and the embedded mysqld instance can be deployed in a number of environments where relying on an existing data-
base, or installing a MySQL instance would be impossible, including CD-ROM embedded database applications and temporary data-
base requirements within a Java-based application environment.

27.5.2. Connector/MXJ Versions

• Connector/MXJ 5.x, currently in beta status, includes mysqld version 5.x and includes binaries for Linux x86, Mac OS X PPC,
Windows XP/NT/2000 x86 and Solaris SPARC. Connector/MXJ 5.x requires the Connector/J 5.x package.

The exact version of mysqld included depends on the version of Connector/MXJ

1. Connector/MXJ v5.0.3 included MySQL v5.0.22

2. Connector/MXJ v5.0.4 includes MySQL v5.0.27 (Community) or MySQL v5.0.32 (Enterprise)

3. Connector/MXJ v5.0.6 includes MySQL 5.0.37 (Community)

4. Connector/MXJ v5.0.7 includes MySQL 5.0.41 (Community) or MySQL 5.0.42 (Enterprise)

5. Connector/MXJ v5.0.8 includes MySQL 5.0.45 (Community) or MySQL 5.0.46 (Enterprise)

6. Connector/MXJ v5.0.9 includes MySQL 5.0.51a (Community) or MySQL 5.0.54 (Enterprise)

• Connector/MXJ 1.x includes mysqld version 4.1.13 and includes binaries for Linux x86, Windows XP/NT/2000 x86 and Solaris
SPARC. Connector/MXJ 1.x requires the Connector/J 3.x package.

A summary of the different MySQL versions supplied with each Connector/MXJ release are shown in the table.

Connector/MXJ Version MySQL Version(s)

5.0.8 5.0.45 (CS), 5.0.46 (ES)

5.0.7 5.0.41 (CS), 5.0.42 (ES)

5.0.6 5.0.37 (CS), 5.0.40 (ES)

5.0.5 5.0.37 (CS), 5.0.36 (ES)

5.0.4 5.0.27 (CS), 5.0.32 (ES)

5.0.3 5.0.22

5.0.2 5.0.19

This guide provides information on the Connector/MXJ 5.x release. For information on using the older releases, please see the docu-
mentation included with the appropriate distribution.

27.5.3. Connector/MXJ Installation
Connector/MXJ does not have a installation application or process, but there are some steps you can follow to make the installation and
deployment of Connector/MXJ easier.

Connectors

1813



Before you start, there are some baseline requirements for

• Java Runtime Environment (v1.4.0 or newer) if you are only going to deploy the package.

• Java Development Kit (v1.4.0 or newer) if you want to build Connector/MXJ from source.

• Connector/J 5.0 or newer.

Depending on your target installation/deployment environment you may also require:

• JBoss - 4.0rc1 or newer

• Apache Tomcat - 5.0 or newer

• Sun's JMX reference implementation version 1.2.1 (from http://java.sun.com/products/JavaManagement/)

27.5.3.1. Supported Platforms

Connector/MXJ is compatible with any platform supporting Java and MySQL. By default, Connector/MXJ incorporates the mysqld
binary for a select number of platforms which differs by version. The following platforms have been tested and working as deployment
platforms. Support for all the platforms listed below is not included by default.

• Linux (i386)

• FreeBSD (i386)

• Windows NT (x86), Windows 2000 (x86), Windows XP (x86), Windows Vista (x86)

• Solaris 8, SPARC 32-bit (compatible with Solaris 8, Solaris 9 and Solaris 10 on SPARC 32-bit and 64-bit platforms)

• Mac OS X (PowerPC and Intel)

The Connector/MXJ 5.0.8 release includes mysqld binaries for the following platforms by as standard:

• Linux (i386)

• Windows (x86), compatible with Windows NT, Windows 2000, Windows XP , Windows Vista

• Solaris 8, SPARC 32-bit (compatible with Solaris 8, Solaris 9 and Solaris 10 on SPARC 32-bit and 64-bit platforms)

• Mac OS X (PowerPC and Intel)

For more information on packaging your own Connector/MXJ with the platforms you require, see Section 27.5.6.1, “Creating your own
Connector/MXJ Package”

27.5.3.2. Connector/MXJ Base Installation

Because there is no formal installation process, the method, installation directory, and access methods you use for Connector/MXJ are
entirely up to your individual requirements.

To perform a basic installation, choose a target directory for the files included in the Connector/MXJ package. On Unix/Linux systems
you may opt to use a directory such as /usr/local/connector-mxj; On Windows, you may want to install the files in the base
directory, C:\Connector-MXJ, or within the Program Files directory.

To install the files, for a Connector/MXJ 5.0.4 installation:

1. Download the Connector/MXJ package, either in Tar/Gzip format (ideal for Unix/Linux systems) or Zip format (Windows).

Connectors

1814

http://java.sun.com/products/JavaManagement/


2. Extract the files from the package. This will create a directory mysql-connector-mxj-gpl-[ver]. Copy and optionally re-
name this directory to your desired location.

3. For best results, you should update your global CLASSPATH variable with the location of the required jar files.

Within Unix/Linux you can do this globally by editing the global shell profile, or on a user by user basis by editing their individual
shell profile.

On Windows 2000, Windows NT and Windows XP, you can edit the global CLASSPATH by editing the Environment Vari-
ables configured through the System control panel.

For Connector/MXJ 5.0.6 and later you need the following JAR files in your CLASSPATH:

1. mysql-connector-mxj-gpl-[ver].jar — contains the main Connector/MXJ classes.

2. mysql-connector-mxj-gpl-[ver]-db-files.jar — contains the embedded mysqld and database files.

3. aspectjrt.jar — the AspectJ runtime library, located in lib/aspectjrt.jar in the Connector/MXJ package.

4. mysql-connector-java-[ver]-bin.jar — Connector/J, see Section 27.4, “MySQL Connector/J”.

For Connector/MXJ 5.0.4 and later you need the following JAR files in your CLASSPATH:

1. connector-mxj.jar — contains the main Connector/MXJ classes.

2. connector-mxj-db-files.jar — contains the embedded mysqld and database files.

3. aspectjrt.jar — the AspectJ runtime library, located in lib/aspectjrt.jar in the Connector/MXJ package.

4. mysql-connector-mxj-gpl-[ver].jar — Connector/J, see Section 27.4, “MySQL Connector/J”.

For Connector/MXJ 5.0.3 and earlier, you need the following JAR files:

1. connector-mxj.jar

2. aspectjrt.jar — the AspectJ runtime library, located in lib/aspectjrt.jar in the Connector/MXJ package.

3. mysql-connector-mxj-gpl-[ver].jar — Connector/J, see Section 27.4, “MySQL Connector/J”.

27.5.3.3. Connector/MXJ Quick Start Guide

Once you have extracted the Connector/MXJ and Connector/J components you can run one of the sample applications that initiates a
MySQL instance. You can test the installation by running the ConnectorMXJUrlTestExample:

$ java ConnectorMXJUrlTestExample
jdbc:mysql:mxj://localhost:3336/our_test_app?server.basedir»

=/var/tmp/test-mxj&createDatabaseIfNotExist=true&server.initialize-user=true
[/var/tmp/test-mxj/bin/mysqld][--no-defaults][--port=3336][--socket=mysql.sock]»

[--basedir=/var/tmp/test-mxj][--datadir=/var/tmp/test-mxj/data]»
[--pid-file=/var/tmp/test-mxj/data/MysqldResource.pid]

[MysqldResource] launching mysqld (driver_launched_mysqld_1)
InnoDB: The first specified data file ./ibdata1 did not exist:
InnoDB: a new database to be created!
080220 9:40:20 InnoDB: Setting file ./ibdata1 size to 10 MB
InnoDB: Database physically writes the file full: wait...
080220 9:40:20 InnoDB: Log file ./ib_logfile0 did not exist: new to be created
InnoDB: Setting log file ./ib_logfile0 size to 5 MB
InnoDB: Database physically writes the file full: wait...
080220 9:40:20 InnoDB: Log file ./ib_logfile1 did not exist: new to be created
InnoDB: Setting log file ./ib_logfile1 size to 5 MB
InnoDB: Database physically writes the file full: wait...
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: Creating foreign key constraint system tables
InnoDB: Foreign key constraint system tables created

Connectors

1815



080220 9:40:21 InnoDB: Started; log sequence number 0 0
080220 9:40:21 [Note] /var/tmp/test-mxj/bin/mysqld: ready for connections.
Version: '5.0.51a' socket: 'mysql.sock' port: 3336 MySQL Community Server (GPL)
[MysqldResource] mysqld running as process: 2238
------------------------
SELECT VERSION()
------------------------
5.0.51a
------------------------
[MysqldResource] stopping mysqld (process: 2238)
080220 9:40:27 [Note] /var/tmp/test-mxj/bin/mysqld: Normal shutdown

080220 9:40:27 InnoDB: Starting shutdown...
080220 9:40:29 InnoDB: Shutdown completed; log sequence number 0 43655
080220 9:40:29 [Note] /var/tmp/test-mxj/bin/mysqld: Shutdown complete

[MysqldResource] shutdown complete

The above output shows an instance of MySQL starting, the necessary files being created (log files, InnoDB data files) and the MySQL
database entering the running state. The instance is then shutdown by Connector/MXJ before the example terminates.

27.5.3.4. Deploying Connector/MXJ using Driver Launch

Connector/MXJ and Connector/J work together to enable you to launch an instance of the mysqld server through the use of a keyword
in the JDBC connection string. Deploying Connector/MXJ within a Java application can be automated through this method, making the
deployment of Connector/MXJ a simple process:

1. Download and unzip Connector/MXJ, add mysql-connector-mxj-gpl-[ver].jar to the CLASSPATH.

If you are using Connector/MXJ v5.0.4 or later you will also need to add the mysql-connect-
or-mxj-gpl-[ver]-db-files.jar file to your CLASSPATH.

2. To the JDBC connection string, embed the mxj keyword, for example: jdbc:mysql:mxj://localhost:PORT/DBNAME.

For more details, see Section 27.5.4, “Connector/MXJ Configuration”.

27.5.3.5. Deploying Connector/MXJ within JBoss

For deployment within a JBoss environment, you must configure the JBoss environment to use the Connector/MXJ component within
the JDBC parameters:

1. Download Connector/MXJ and copy the mysql-connector-mxj-gpl-[ver].jar file to the
$JBOSS_HOME/server/default/lib directory.

If you are using Connector/MXJ v5.0.4 or later you will also need to copy the mysql-connect-
or-mxj-gpl-[ver]-db-files.jar file to $JBOSS_HOME/server/default/lib.

2. Download Connector/J and copy the mysql-connector-java-5.1.5-bin.jar file to the
$JBOSS_HOME/server/default/lib directory.

3. Create an MBean service xml file in the $JBOSS_HOME/server/default/deploy directory with any attributes set, for in-
stance the datadir and autostart.

4. Set the JDBC parameters of your web application to use:

String driver = "com.mysql.jdbc.Driver";
String url = "jdbc:mysql:///test?propertiesTransform="+

"com.mysql.management.jmx.ConnectorMXJPropertiesTransform";
String user = "root";
String password = "";
Class.forName(driver);
Connection conn = DriverManager.getConnection(url, user, password);

You may wish to create a separate users and database table spaces for each application, rather than using "root and test".

We highly suggest having a routine backup procedure for backing up the database files in the datadir.

Connectors

1816



27.5.3.6. Verifying Installation using JUnit

The best way to ensure that your platform is supported is to run the JUnit tests. These will test the Connector/MXJ classes and the asso-
ciated components.

27.5.3.6.1. JUnit Test Requirements

The first thing to do is make sure that the components will work on the platform. The MysqldResource class is really a wrapper for
a native version of MySQL, so not all platforms are supported. At the time of this writing, Linux on the i386 architecture has been
tested and seems to work quite well, as does OS X v10.3. There has been limited testing on Windows and Solaris.

Requirements:

1. JDK-1.4 or newer (or the JRE if you aren't going to be compiling the source or JSPs).

2. MySQL Connector/J version 5.0 or newer (from http://dev.mysql.com/downloads/connector/j/) installed and available via your
CLASSPATH.

3. The javax.management classes for JMX version 1.2.1, these are present in the following application servers:

• JBoss - 4.0rc1 or newer.

• Apache Tomcat - 5.0 or newer.

• Sun's JMX reference implementation version 1.2.1 (from http://java.sun.com/products/JavaManagement/).

4. JUnit 3.8.1 (from http://www.junit.org/).

If building from source, All of the requirements from above, plus:

1. Ant version 1.5 or newer (download from http://ant.apache.org/).

27.5.3.6.2. Running the JUnit Tests

1. The tests attempt to launch MySQL on the port 3336. If you have a MySQL running, it may conflict, but this isn't very likely be-
cause the default port for MySQL is 3306. However, You may set the "c-mxj_test_port" Java property to a port of your choosing.
Alternatively, you may wish to start by shutting down any instances of MySQL you have running on the target machine.

The tests suppress output to the console by default. For verbose output, you may set the "c-mxj_test_silent" Java property to
"false".

2. To run the JUnit test suite, the $CLASSPATH must include the following:

• JUnit

• JMX

• Connector/J

• MySQL Connector/MXJ

3. If connector-mxj.jar is not present in your download, unzip MySQL Connector/MXJ source archive.

cd mysqldjmx
ant dist

Then add $TEMP/cmxj/stage/connector-mxj/connector-mxj.jar to the CLASSPATH.

4. if you have junit, execute the unit tests. From the command line, type:

Connectors

1817

http://dev.mysql.com/downloads/connector/j/
http://java.sun.com/products/JavaManagement/
http://www.junit.org/
http://ant.apache.org/


java com.mysql.management.AllTestsSuite

The output should look something like this:

.........................................

.........................................

..........
Time: 259.438

OK (101 tests)

Note that the tests are a bit slow near the end, so please be patient.

27.5.4. Connector/MXJ Configuration

27.5.4.1. Running as part of the JDBC Driver

A feature of the MySQL Connector/J JDBC driver is the ability to specify a connection to an embedded Connector/MXJ instance
through the use of the mxj keyword in the JDBC connection string.

In the following example, we have a program which creates a connection, executes a query, and prints the result to the System.out. The
MySQL database will be deployed and started as part of the connection process, and shutdown as part of the finally block.

You can find this file in the Connector/MXJ package as src/ConnectorMXJUrlTestExample.java.

import java.io.File;
import java.sql.Connection;
import java.sql.DriverManager;

import com.mysql.management.driverlaunched.ServerLauncherSocketFactory;
import com.mysql.management.util.QueryUtil;

public class ConnectorMXJUrlTestExample {
public static String DRIVER = "com.mysql.jdbc.Driver";

public static String JAVA_IO_TMPDIR = "java.io.tmpdir";

public static void main(String[] args) throws Exception {
File ourAppDir = new File(System.getProperty(JAVA_IO_TMPDIR));
File databaseDir = new File(ourAppDir, "test-mxj");
int port = Integer.parseInt(System.getProperty("c-mxj_test_port", "3336"));
String dbName = "our_test_app";

String url = "jdbc:mysql:mxj://localhost:" + port + "/" + dbName //
+ "?" + "server.basedir=" + databaseDir //
+ "&" + "createDatabaseIfNotExist=true"//
+ "&" + "server.initialize-user=true" //

;

System.out.println(url);

String userName = "alice";
String password = "q93uti0opwhkd";

Class.forName(DRIVER);
Connection conn = null;
try {
conn = DriverManager.getConnection(url, userName, password);
String sql = "SELECT VERSION()";
String queryForString = new QueryUtil(conn).queryForString(sql);

System.out.println("------------------------");
System.out.println(sql);
System.out.println("------------------------");
System.out.println(queryForString);
System.out.println("------------------------");
System.out.flush();
Thread.sleep(100); // wait for System.out to finish flush

} finally {
try {
if (conn != null)

conn.close();
} catch (Exception e) {
e.printStackTrace();

}

Connectors

1818



ServerLauncherSocketFactory.shutdown(databaseDir, null);
}

}
}

To run the above program, be sure to have connector-mxj.jar and Connector/J in the CLASSPATH. Then type:

java ConnectorMXJTestExample

27.5.4.2. Running within a Java Object

If you have a java application and wish to “embed” a MySQL database, make use of the
com.mysql.management.MysqldResource class directly. This class may be instantiated with the default (no argument) con-
structor, or by passing in a java.io.File object representing the directory you wish the server to be "unzipped" into. It may also be instan-
tiated with printstreams for "stdout" and "stderr" for logging.

Once instantiated, a java.util.Map, the object will be able to provide a java.util.Map of server options appropriate for the
platform and version of MySQL which you will be using.

The MysqldResource enables you to "start" MySQL with a java.util.Map of server options which you provide, as well as
"shutdown" the database. The following example shows a simplistic way to embed MySQL in an application using plain java objects.

You can find this file in the Connector/MXJ package as src/ConnectorMXJObjectTestExample.java.

import java.io.File;
import java.sql.Connection;
import java.sql.DriverManager;
import java.util.HashMap;
import java.util.Map;

import com.mysql.management.MysqldResource;
import com.mysql.management.MysqldResourceI;
import com.mysql.management.util.QueryUtil;

public class ConnectorMXJObjectTestExample {
public static final String DRIVER = "com.mysql.jdbc.Driver";

public static final String JAVA_IO_TMPDIR = "java.io.tmpdir";

public static void main(String[] args) throws Exception {
File ourAppDir = new File(System.getProperty(JAVA_IO_TMPDIR));
File databaseDir = new File(ourAppDir, "mysql-mxj");
int port = Integer.parseInt(System.getProperty("c-mxj_test_port",

"3336"));
String userName = "alice";
String password = "q93uti0opwhkd";

MysqldResource mysqldResource = startDatabase(databaseDir, port,
userName, password);

Class.forName(DRIVER);
Connection conn = null;
try {

String dbName = "our_test_app";
String url = "jdbc:mysql://localhost:" + port + "/" + dbName //

+ "?" + "createDatabaseIfNotExist=true"//
;
conn = DriverManager.getConnection(url, userName, password);
String sql = "SELECT VERSION()";
String queryForString = new QueryUtil(conn).queryForString(sql);

System.out.println("------------------------");
System.out.println(sql);
System.out.println("------------------------");
System.out.println(queryForString);
System.out.println("------------------------");
System.out.flush();
Thread.sleep(100); // wait for System.out to finish flush

} finally {
try {

if (conn != null) {
conn.close();

}
} catch (Exception e) {

e.printStackTrace();
}
try {

mysqldResource.shutdown();
} catch (Exception e) {

Connectors

1819



e.printStackTrace();
}

}
}

public static MysqldResource startDatabase(File databaseDir, int port,
String userName, String password) {

MysqldResource mysqldResource = new MysqldResource(databaseDir);

Map database_options = new HashMap();
database_options.put(MysqldResourceI.PORT, Integer.toString(port));
database_options.put(MysqldResourceI.INITIALIZE_USER, "true");
database_options.put(MysqldResourceI.INITIALIZE_USER_NAME, userName);
database_options.put(MysqldResourceI.INITIALIZE_PASSWORD, password);

mysqldResource.start("test-mysqld-thread", database_options);

if (!mysqldResource.isRunning()) {
throw new RuntimeException("MySQL did not start.");

}

System.out.println("MySQL is running.");

return mysqldResource;
}

}

27.5.4.3. Setting server options

Of course there are many options we may wish to set for a MySQL database. These options may be specified as part of the JDBC con-
nection string simply by prefixing each server option with server.. In the following example we set two driver parameters and two
server parameters:

String url = "jdbc:mysql://" + hostColonPort + "/"
+ "?"
+ "cacheServerConfiguration=true"
+ "&"
+ "useLocalSessionState=true"
+ "&"
+ "server.basedir=/opt/myapp/db"
+ "&"
+ "server.datadir=/mnt/bigdisk/myapp/data";

Starting with Connector/MXJ 5.0.6 you can use the initializer-user property to a connection string. If set to true, the default an-
onymous and root users will be removed and the user/password combination from the connection URL will be used to create a new
user. For example:

String url = "jdbc:mysql:mxj://localhost:" + port
+ "/alice_db"
+ "?server.datadir=" + dataDir.getPath()
+ "&server.initialize-user=true"
+ "&createDatabaseIfNotExist=true"
;

27.5.5. Connector/MXJ Reference
The following sections include detailed information on the different API interfaces to Connector/MXJ.

27.5.5.1. MysqldResource Constructors

The MysqldResource class supports three different constructor forms:

• public MysqldResource(File baseDir, File dataDir, String mysqlVersionString, PrintStream
out, PrintStream err)

Enables you to set the base directory, data directory, select a server by its version string, standard out and standard error.

• public MysqldResource(File baseDir, File dataDir, String mysqlVersionString)

Enables you to set the base directory, data directory and select a server by its version string. Output for standard out and standard err

Connectors

1820



are directed to System.out and System.err.

• public MysqldResource(File baseDir, File dataDir)

Enables you to set the base directory and data directory. The default MySQL version is selected, and output for standard out and
standard err are directed to System.out and System.err.

• public MysqldResource(File baseDir);

Allows the setting of the "basedir" to deploy the MySQL files to. Output for standard out and standard err are directed to System.out
and System.err.

• public MysqldResource();

The basedir is defaulted to a subdirectory of the java.io.tempdir. Output for standard out and standard err are directed to System.out
and System.err;

27.5.5.2. MysqldResource Methods

MysqldResource API includes the following methods:

• void start(String threadName, Map mysqldArgs);

Deploys and starts MySQL. The "threadName" string is used to name the thread which actually performs the execution of the
MySQL command line. The map is the set of arguments and their values to be passed to the command line.

• void shutdown();

Shuts down the MySQL instance managed by the MysqldResource object.

• Map getServerOptions();

Returns a map of all the options and their current (or default, if not running) options available for the MySQL database.

• boolean isRunning();

Returns true if the MySQL database is running.

• boolean isReadyForConnections();

Returns true once the database reports that is ready for connections.

• void setKillDelay(int millis);

The default “Kill Delay” is 30 seconds. This represents the amount of time to wait between the initial request to shutdown and issu-
ing a “force kill” if the database has not shutdown by itself.

• void addCompletionListenser(Runnable listener);

Allows for applications to be notified when the server process completes. Each ''listener'' will be fired off in its own thread.

• String getVersion();

Returns the version of MySQL.

• void setVersion(int MajorVersion, int minorVersion, int patchLevel);

The standard distribution comes with only one version of MySQL packaged. However, it is possible to package multiple versions,
and specify which version to use.

27.5.6. Connector/MXJ Notes and Tips

Connectors

1821



This section contains notes and tips on using the Connector/MXJ component within your applications.

27.5.6.1. Creating your own Connector/MXJ Package

If you want to create a custom Connector/MXJ package that includes a specific mysqld version or platform then you must extract and
rebuild the mysql-connector-mxj.jar (Connector/MXJ v5.0.3 or earlier) or mysql-connect-
or-mxj-gpl-[ver]-db-files.jar (Connector/MXJ v5.0.4 or later) file.

First, you should create a new directory into which you can extract the current connector-mxj.jar:

shell> mkdir custom-mxj
shell> cd custom-mxj
shell> jar -xf connector-mxj.jar
shell> ls
5-0-22/
ConnectorMXJObjectTestExample.class
ConnectorMXJUrlTestExample.class
META-INF/
TestDb.class
com/
kill.exe

If you are using Connector/MXJ v5.0.4 or later, you should unpack the connector-mxj-db-files.jar:

shell> mkdir custom-mxj
shell> cd custom-mxj
shell> jar -xf connector-mxj-db-files.jar
shell> ls
5-0-51a/
META-INF/
connector-mxj.properties

The MySQL version directory, 5-0-22 or 5-0-51a in the preceding examples, contains all of the files used to create an instance of
MySQL when Connector/MXJ is executed. All of the files in this directory are required for each version of MySQL that you want to
embed. Note as well the format of the version number, which uses hyphens instead of periods to separate the version number compon-
ents.

Within the version specific directory are the platform specific directories, and archives of the data and share directory required by
MySQL for the various platforms. For example, here is the listing for the default Connector/MXJ package:

shell>> ls
Linux-i386/
META-INF/
Mac_OS_X-ppc/
SunOS-sparc/
Win-x86/
com/
data_dir.jar
share_dir.jar
win_share_dir.jar

Platform specific directories are listed by their OS and platform - for example the mysqld for Mac OS X PowerPC is located within
the Mac_OS_X-ppc directory. You can delete directories from this location that you do not require, and add new directories for addi-
tional platforms that you want to support.

To add a platform specific mysqld, create a new directory with the corresponding name for your operating system/platform. For ex-
ample, you could add a directory for Mac OS X/Intel using the directory Mac_OS_X-i386.

On Unix systems, you can determine the platform using uname:

shell> uname -p
i386

In Connector/MXJ v5.0.9 and later, an additional platform-map.properties file is used to associate a specific platform and op-
erating system combination with the directory in which the mysqld for that combination is located. The determined operating system
and platform are on the left, and the directory name where the appropriate mysqld is located is on the right. You can see a sample of the
file below:

Linux-i386=Linux-i386
Linux-x86=Linux-i386
Linux-i686=Linux-i386
Linux-x86_64=Linux-i386

Connectors

1822



Linux-ia64=Linux-i386

#Linux-ppc=Linux-ppc
#Linux-ppc64=Linux-ppc

Mac_OS_X-i386=Mac_OS_X-i386
Mac_OS_X-ppc=Mac_OS_X-ppc
Rhapsody-PowerPC=Mac_OS_X-ppc
#Mac_OS-PowerPC=
#macos-PowerPC=
#MacOS-PowerPC=

SunOS-sparc=SunOS-sparc
Solaris-sparc=SunOS-sparc
SunOS-x86=SunOS-x86
Solaris-x86=SunOS-x86

FreeBSD-x86=FreeBSD-x86

Windows_Vista-x86=Win-x86
Windows_2003-x86=Win-x86
Windows_XP-x86=Win-x86
Windows_2000-x86=Win-x86
Windows_NT-x86=Win-x86
Windows_NT_(unknown)-x86=Win-x86

Now you need to download or compile mysqld for the MySQL version and platform you want to include in your custom connect-
or-mxj.jar package into the new directory.

Create a file called version.txt in the OS/platform directory you have just created that contains the version string/path of the
mysqld binary. For example:

mysql-5.0.22-osx10.3-i386/bin/mysqld

You can now recreate the connector-mxj.jar file with the added mysqld:

shell> cd custom-mxj
shell> jar -cf ../connector-mxj.jar *

For Connector/MXJ v5.0.4 and later, you should repackage to the connector-mxj-db-files.jar:

shell> cd custom-mxj
shell> jar -cf ../mysql-connector-mxj-gpl-[ver]-db-files.jar *

You should test this package using the steps outlined in Section 27.5.3.3, “Connector/MXJ Quick Start Guide”.

Note

Because the mysql-connector-mxj-gpl-[ver]-db-files.jar file is separate from the main Connector/MXJ
classes you can distribute different mysql-connector-mxj-gpl-[ver]-db-files.jar files to different hotsts
or for different projects without having to create a completely new main mysql-connector-mxj-gpl-[ver].jar
file for each one.

27.5.6.2. Deploying Connector/MXJ with a pre-configured database

To include a pre-configured/populated database within your Connector/MXJ JAR file you must create a custom data_dir.jar file,
as included within the main connector-mxj.jar (Connector/MXJ 5.0.3 or earlier) or mysql-connect-
or-mxj-gpl-[ver]-db-files.jar (Connector/MXJ 5.0.4 or later) file:

1. First extract the connector-mxj.jar or mysql-connector-gpl-[ver]-db-files.jar file, as outlined in the previ-
ous section (see Section 27.5.6.1, “Creating your own Connector/MXJ Package”).

2. First, create your database and populate the database with the information you require in an existing instance of MySQL - includ-
ing Connector/MXJ instances. Data file formats are compatible across platforms.

3. Shutdown the instance of MySQL.

4. Create a JAR file of the data directory and databases that you want to include your Connector/MXJ package. You should include
the mysql database, which includes user authentication information, in addition to the specific databases you want to include. For

Connectors

1823



example, to create a JAR of the mysql and mxjtest databases:

shell> jar -cf ../data_dir.jar mysql mxjtest

5. For Connector/MXJ 5.0.3 or earlier, copy the data_dir.jar file into the extracted connector-mxj.jar directory, and then
create an archive for connector-mxj.jar.

For Connector/MXJ 5.0.4 or later, copy the data_dir.jar file into the extracted mysql-connect-
or-mxj-gpl-[ver]-db-files.jar directory, and then create an archive for mysql-connect-
or-mxj-db-gpl-[ver]--files.jar.

Note that if you are create databases using the InnoDB engine, you must include the ibdata.* and ib_logfile* files within the
data_dir.jar archive.

27.5.6.3. Running within a JMX Agent (custom)

As a JMX MBean, MySQL Connector/MXJ requires a JMX v1.2 compliant MBean container, such as JBoss version 4. The MBean will
uses the standard JMX management APIs to present (and allow the setting of) parameters which are appropriate for that platform.

If you are not using the SUN Reference implementation of the JMX libraries, you should skip this section. Or, if you are deploying to
JBoss, you also may wish to skip to the next section.

We want to see the MysqldDynamicMBean in action inside of a JMX agent. In the com.mysql.management.jmx.sunri pack-
age is a custom JMX agent with two MBeans:

1. the MysqldDynamicMBean, and

2. a com.sun.jdmk.comm.HtmlAdaptorServer, which provides a web interface for manipulating the beans inside of a JMX agent.

When this very simple agent is started, it will allow a MySQL database to be started and stopped with a web browser.

1. Complete the testing of the platform as above.

• current JDK, JUnit, Connector/J, MySQL Connector/MXJ

• this section requires the SUN reference implementation of JMX

• PATH, JAVA_HOME, ANT_HOME, CLASSPATH

2. If not building from source, skip to next step

rebuild with the "sunri.present"

ant -Dsunri.present=true dist
re-run tests:
java junit.textui.TestRunner com.mysql.management.AllTestsSuite

3. launch the test agent from the command line:

java com.mysql.management.jmx.sunri.MysqldTestAgentSunHtmlAdaptor &

4. from a browser:

http://localhost:9092/

5. under MysqldAgent,

select "name=mysqld"

Connectors

1824



6. Observe the MBean View

7. scroll to the bottom of the screen press the STARTMYSQLD button

8. click Back to MBean View

9. scroll to the bottom of the screen press STOPMYSQLD button

10. kill the java process running the Test Agent (jmx server)

27.5.6.4. Deployment in a standard JMX Agent environment (JBoss)

Once there is confidence that the MBean will function on the platform, deploying the MBean inside of a standard JMX Agent is the next
step. Included are instructions for deploying to JBoss.

1. Ensure a current version of java development kit (v1.4.x), see above.

• Ensure JAVA_HOME is set (JBoss requires JAVA_HOME)

• Ensure JAVA_HOME/bin is in the PATH (You will NOT need to set your CLASSPATH, nor will you need any of the jars
used in the previous tests).

2. Ensure a current version of JBoss (v4.0RC1 or better)

http://www.jboss.org/index.html
select "Downloads"
select "jboss-4.0.zip"
pick a mirror
unzip ~/dload/jboss-4.0.zip
create a JBOSS_HOME environment variable set to the unzipped directory
unix only:
cd $JBOSS_HOME/bin
chmod +x *.sh

3. Deploy (copy) the connector-mxj.jar to $JBOSS_HOME/server/default/lib.

4. Deploy (copy) mysql-connector-java-3.1.4-beta-bin.jar to $JBOSS_HOME/server/default/lib.

5. Create a mxjtest.war directory in $JBOSS_HOME/server/default/deploy.

6. Deploy (copy) index.jsp to $JBOSS_HOME/server/default/deploy/mxjtest.war.

7. Create a mysqld-service.xml file in $JBOSS_HOME/server/default/deploy.

<?xml version="1.0" encoding="UTF-8"?>
<server>
<mbean code="com.mysql.management.jmx.jboss.JBossMysqldDynamicMBean"

name="mysql:type=service,name=mysqld">
<attribute name="datadir">/tmp/xxx_data_xxx</attribute>
<attribute name="autostart">true</attribute>
</mbean>
</server>

8. Start jboss:

• on unix: $JBOSS_HOME/bin/run.sh

• on windows: %JBOSS_HOME%\bin\run.bat

Be ready: JBoss sends a lot of output to the screen.

9. When JBoss seems to have stopped sending output to the screen, open a web browser to: ht-
tp://localhost:8080/jmx-console

10. Scroll down to the bottom of the page in the mysql section, select the bulleted mysqld link.

11. Observe the JMX MBean View page. MySQL should already be running.

Connectors

1825



12. (If "autostart=true" was set, you may skip this step.) Scroll to the bottom of the screen. You may press the INVOKE button to stop
(or start) MySQL observe Operation completed successfully without a return value. Click Back to
MBean View

13. To confirm MySQL is running, open a web browser to http://localhost:8080/mxjtest/ and you should see that

SELECT 1

returned with a result of

1

14. Guided by the $JBOSS_HOME/server/default/deploy/mxjtest.war/index.jsp you will be able to use MySQL
in your Web Application. There is a test database and a root user (no password) ready to experiment with. Try creating a table,
inserting some rows, and doing some selects.

15. Shut down MySQL. MySQL will be stopped automatically when JBoss is stopped, or: from the browser, scroll down to the bottom
of the MBean View press the stop service INVOKE button to halt the service. Observe Operation completed success-
fully without a return value. Using ps or task manager see that MySQL is no longer running

As of 1.0.6-beta version is the ability to have the MBean start the MySQL database upon start up. Also, we've taken advantage of the
JBoss life-cycle extension methods so that the database will gracefully shut down when JBoss is shutdown.

27.5.7. Connector/MXJ Support
There are a wide variety of options available for obtaining support for using Connector/MXJ. You should contact the Connector/MXJ
community for help before reporting a potential bug or problem. See Section 27.5.7.1, “Connector/MXJ Community Support”.

27.5.7.1. Connector/MXJ Community Support

MySQL AB provides assistance to the user community by means of a number of mailing lists and web based forums.

You can find help and support through the MySQL and Java mailing list.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http://lists.mysql.com/. See Section 1.6.1,
“MySQL Mailing Lists”.

Community support from experienced users is also available through the MyODBC Forum. You may also find help from other users in
the other MySQL Forums, located at http://forums.mysql.com. See Section 1.6.2, “MySQL Community Support at the MySQL For-
ums”.

27.5.7.2. How to Report Connector/MXJ Problems

If you encounter difficulties or problems with Connector/MXJ, contact the Connector/MXJ community Section 27.5.7.1,
“Connector/MXJ Community Support”.

If reporting a problem, you should ideally include the following information with the email:

• Operating system and version

• Connector/MXJ version

• MySQL server version

• Copies of error messages or other unexpected output

• Simple reproducible sample

Remember that the more information you can supply to us, the more likely it is that we can fix the problem.

If you believe the problem to be a bug, then you must report the bug through http://bugs.mysql.com/.

Connectors

1826

http://lists.mysql.com/java
http://lists.mysql.com/
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://bugs.mysql.com/


27.5.7.3. Connector/MXJ Change History

The Connector/MXJ Change History (Changelog) is located with the main Changelog for MySQL. See Section C.6, “MySQL Connect-
or/MXJ Change History”.

27.6. Connector/PHP
The PHP distribution and documentation are available from the PHP Web site. MySQL provides the mysql and mysqli extensions
for the Windows operating system on http://dev.mysql.com/downloads/connector/php/ for MySQL version 4.1.16 and higher, MySQL
5.0.18, and MySQL 5.1. You can find information why you should preferably use the extensions provided by MySQL on that page. For
platforms other than Windows, you should use the mysql or mysqli extensions shipped with the PHP sources. See Section 26.3,
“MySQL PHP API”.

Connectors

1827

http://dev.mysql.com/downloads/connector/php/


Chapter 28. MySQL Proxy
The MySQL Proxy is an application that communicates over the network using the MySQL Network Protocol and provides communic-
ation between one or more MySQL servers and one or more MySQL clients. In the most basic configuration, MySQL Proxy simply
passes on queries from the client to the MySQL Server and returns the responses from the MySQL Server to the client.

Because MySQL Proxy uses the MySQL network protocol, any MySQL compatible client (include the command line client, any clients
using the MySQL client libraries, and any connector that supports the MySQL network protocol) can connect to the proxy without
modification.

In addition to the basic pass-through configuration, the MySQL Proxy is also capable of monitoring and altering the communication
between the client and the server. This interception of the queries enables you to add profiling, and the interception of the exchanges is
scriptable using the Lua scripting language.

By intercepting the queries from the client, the proxy can insert additional queries into the list of queries sent to the server, and remove
the additional results when they are returned by the server. Using this functionality you can add informational statements to each query,
for example to monitor their execution time or progress, and separately log the results, while still returning the results from the original
query to the client.

The proxy allows you to perform additional monitoring, filtering or manipulation on queries without you having to make any modifica-
tions to the client and without the client even being aware that it is communicating with anything but a genuine MySQL server.

Warning

MySQL Proxy is currently an Alpha release and should not be used within production environments.

Important

MySQL Proxy is compatible with MySQL 5.0.x or later. Testing has not been performed with Version 4.1. Please provide
feedback on your experiences via the MySQL Proxy Forum.

28.1. MySQL Proxy Supported Platforms
MySQL Proxy is currently available as a pre-compiled binary for the following platforms:

• Linux (including RedHat, Fedora, Debian, SuSE) and derivatives.

• Mac OS X

• FreeBSD

• IBM AIX

• Sun Solaris

Other Unix/Linux platforms not listed should be compatible by using the source package and building MySQL Proxy locally.

System requirements for the MySQL Proxy application are the same as the main MySQL server. Currently MySQL Proxy is compatible
only with MySQL 5.0.1 and later. MySQL Proxy is provided as a standalone, statically linked binary. You do not need to have MySQL
or Lua installed.

28.2. Installing MySQL Proxy
You have three choices for installing MySQL Proxy:

• Pre-compiled binaries are available for a number of different platforms. See Section 28.2.1, “Installing MySQL Proxy from a binary
distribution”.

• You can install from the source code if you want to build on an environment not supported by the binary distributions. See Sec-
tion 28.2.2, “Installing MySQL Proxy from a source distribution”.

1828

http://forums.mysql.com/list.php?146


• The latest version of the MySQL proxy source code is available through a development repository is the best way to stay up to date
with the latest fixes and revisions. See Section 28.2.3, “Installing MySQL Proxy from the Subversion repository”.

28.2.1. Installing MySQL Proxy from a binary distribution
If you download the binary packages then you need only to extract the package and then copy the mysql-proxy file to your desired
location. For example:

$ tar zxf mysql-proxy-0.5.0.tar.gz
$ cp ./mysql-proxy-0.5.0/sbin/mysql-proxy /usr/local/sbin

28.2.2. Installing MySQL Proxy from a source distribution
If you have downloaded the source package then you will need to compile the MySQL Proxy before using it. To build you will need to
have the following installed:

• libevent 1.x or higher (1.3b or later is preferred)

• lua 5.1.x or higher

• glib2 2.6.0 or higher

• pkg-config

• MySQL 5.0.x or higher developer files

Note

On some operating systems you may need to manually build the required components to get the latest version. If you are
having trouble compiling MySQL Proxy then consider using one of the binary distributions.

Once these components are installed, you need to configure and then build:

$ tar zxf mysql-proxy-0.5.0.tar.gz
$ cd mysql-proxy-0.5.0
$ ./configure
$ make

If you want to test the build, then use the check target to make:

$ make check

The tests try to connect to localhost using the root user. If you need to provide a password, set the MYSQL_PASSWORD environ-
ment variable:

$ MYSQL_PASSWORD=root_pwd make check

You can install using the install target:

$ make install

By default mysql-proxy is installed into /usr/local/sbin/mysql-proxy. The Lua example scripts are copied into /
usr/local/share.

28.2.3. Installing MySQL Proxy from the Subversion repository
The MySQL Proxy source is available through a public Subversion repository and is the quickest way to get hold of the latest releases
and fixes.

To build from the Subversion repository, you need the following components already installed:

MySQL Proxy

1829



• Subversion 1.3.0 or higher

• libtool 1.5 or higher

• autoconf 2.56 or higher

• automake 1.9 or higher

• libevent 1.x or higher (1.3b or later is preferred)

• lua 5.1.x or higher

• glib2 2.4.0 or higher

• pkg-config

• MySQL 5.0.x or higher developer files

To checkout a local copy of the Subversion repository, use svn:

$ svn co http://svn.MySQL.com/svnpublic/mysql-proxy/ mysql-proxy

The above command will download a complete version of the Subversion repository for mysql-proxy. The main source files are loc-
ated within the trunk subdirectory. The configuration scripts need to be generated before you can configure and build
mysql-proxy. The autogen.sh script will generate the configuration scripts for you:

$ sh ./autogen.sh

The script creates the standard configure script, which you can then use to configure and build with make:

$ ./configure
$ make
$ make install

If you want to create a standalone source distribution, identical to the source distribution available for download:

$ make distcheck

The above will create the file mysql-proxy-0.5.0.tar.gz within the current directory.

28.3. MySQL Proxy Command Line Options
To start mysql-proxy you can just run the command directly. However, for most situations you will want to specify at the very least
the address/hostname and port number of the backend MySQL server to which the MySQL Proxy should pass on queries.

You can get a list of the supported command-line options using the --help-all command line option. The majority of these options
set up the environment, either in terms of the address/port number that mysql-proxy should listen on for connections, or the onward
connection to a MySQL server. A full description of the options is shown below:

• --help-all — show all help options.

• --help-admin — show options for the admin-module.

• --help-proxy — Show options for the proxy-module.

• --admin-address=host:port — specify the hostname (or IP address) and port for the administration port. The default is
localhost:4041.

• --proxy-address=host:port — the listening hostname (or IP address) and port of the proxy server. The default is local-
host:4040.

• --proxy-read-only-address=host:port — the listening hostname (or IP address) and port of the proxy server for read-

MySQL Proxy

1830



only connections. The default is localhost:4042.

• --proxy-backend-addresses=host:port — the hostname (or IP address) and port of the MySQL server to connect to.
You can specify multiple backend servers by supplying multiple options. Clients are connected to each backend server in round-
robin fashion. For example, if you specify two servers A and B, the first client connection will go to server A; the second client con-
nection to server B and the third client connection to server A.

• --proxy-skip-profiling — disables profiling of queries (tracking time statistics). The default is for tracking to be enabled.

• --proxy-fix-bug-25371 — gets round an issue when connecting to a MySQL server later than 5.1.12 when using a MySQL
client library of any earlier version.

• --proxy-lua-script=file — specify the Lua script file to be loaded. Note that the script file is not physically loaded and
parsed until a connection is made. Also note that the specified Lua script is reloaded for each connection; if the content of the Lua
script changes while mysql-proxy is running then the updated content will automatically be used when a new connection is
made.

• --daemon — starts the proxy in daemon mode.

• --pid-file=file — sets the name of the file to be used to store the process ID.

• --version — show the version number.

The most common usage is as a simple proxy service (i.e. without addition scripting). For basic proxy operation you must specify at
least one proxy-backend-addresses option to specify the MySQL server to connect to by default:

$ mysql-proxy
--proxy-backend-addresses=MySQL.example.com:3306

The default proxy port is 4040, so you can connect to your MySQL server through the proxy by specifying the hostname and port de-
tails:

$ mysql --host=localhost --port=4040

If your server requires authentication information then this will be passed through natively without alteration by mysql-proxy, so
you must also specify the authentication information if required:

$ mysql --host=localhost --port=4040 \
--user=username --password=password

You can also connect to a read-only port (which filters out UPDATE and INSERT queries) by connecting to the read-only port. By de-
fault the hostname is the default, and the port is 4042, but you can alter the host/port information by using the -
-proxy-read-only-address command line option.

For more detailed information on how to use these command line options, and mysql-proxy in general in combination with Lua
scripts, see Section 28.5, “Using MySQL Proxy”.

28.4. MySQL Proxy Scripting
You can control how MySQL Proxy manipulates and works with the queries and results that are passed on to the MySQL server
through the use of the embedded Lua scripting language. You can find out more about the Lua programming language from the Lua
Website.

The primary interaction between MySQL Proxy and the server is provided by defining one or more functions through an Lua script. A
number of functions are supported, according to different events and operations in the communication sequence between a client and
one or more backend MySQL servers:

• connect_server() — this function is called each time a connection is made to MySQL Proxy from a client. You can use this
function during load-balancing to intercept the original connection and decide which server the client should ultimately be attached
to. If you don't define a special solution, then a simple round-robin style distribution is used by default.

• read_handshake() — this function is called when the initial handshake information is returned by the server. You can capture

MySQL Proxy

1831

http://www.lua.org
http://www.lua.org


the handshake information returned and provide additional checks before the authorization exchange takes place.

• read_auth() — this function is called when the authorization packet (username, password, default database) are submitted by
the client to the server for authentication.

• read_auth_result() — this function is called when the server returns an authorization packet to the client indicating whether
the authorization succeeded.

• read_query() — this function is called each time a query is sent by the client to the server. You can use this to edit and manipu-
late the original query, including adding new queries before and after the original statement. You can also use this function to return
information directly to the client, bypassing the server, which can be useful to filter unwanted queries or queries that exceed known
limits.

• read_query_result() — this function is called each time a result is returned from the server, providing you have manually
injected queries into the query queue. If you have not explicitly inject queries within the read_query() function then this func-
tion is not triggered. You can use this to edit the result set, or to remove or filter the result sets generated from additional queries you
injected into the queue when using read_query().

The table below describes the direction of flow of information at the point when the function is triggered.

Function Supplied Information Direction

connect_server() None Client to Server

read_handshake() Handshake packet Server to Client

read_auth() Authorization packet Client to Server

read_auth_result() Authorization response Server to Client

read_query() Query Client to Server

read_query_result() Query result Server to Client

By default, all functions return a result that indicates that the data should be passed on to the client or server (depending on the direction
of the information being transferred). This return value can be overridden by explicitly returning a constant indicating that a particular
response should be sent. For example, it is possible to construct result set information by hand within read_query() and to return
the resultset directly to the client without ever sending the original query to the server.

In addition to these functions, a number of built-in structures provide control over how MySQL Proxy forwards on queries and returns
the results by providing a simplified interface to elements such as the list of queries and the groups of result sets that are returned.

28.4.1. Proxy Scripting Sequence During Query Injection
The figure below gives an example of how the proxy might be used when injecting queries into the query queue. Because the proxy sits
between the client and MySQL server, what the proxy sends to the server, and the information that the proxy ultimately returns to the
client do not have to match or correlate. Once the client has connected to the proxy, the following sequence occurs for each individual
query sent by the client.

MySQL Proxy

1832



1. The client submits one query to the proxy, the read_query() function within the proxy is triggered. The function adds the
query to the query queue.

2. Once manipulation by read_query() has completed, the queries are submitted, sequentially, to the MySQL server.

3. The MySQL server returns the results from each query, one result set for each query submitted. The read_query_result()
function is triggered for each result set, and each invocation can decide which result set to return to the client

For example, you can queue additional queries into the global query queue to be processed by the server. This can be used to add statist-
ical information by adding queries before and after the original query, changing the original query:

SELECT * FROM City;

Into a sequence of queries:

SELECT NOW();
SELECT * FROM City;
SELECT NOW();

You can also modify the original statement, for example to add EXPLAIN to each statement executed to get information on how the
statement was processed, again altering our original SQL statement into a number of statements:

SELECT * FROM City;
EXPLAIN SELECT * FROM City;

In both of these examples, the client would have received more result sets than expected. Regardless of how you manipulate the incom-
ing query and the returned result, the number of queries returned by the proxy must match the number of original queries sent by the cli-
ent.

You could adjust the client to handle the multiple result sets sent by the proxy, but in most cases you will want the existence of the
proxy to remain transparent. To ensure that the number of queries and result sets match, you can use the MySQL Proxy
read_query_result() to extract the additional result set information and return only the result set the client originally requested
back to the client. You can achieve this by giving each query that you add to the query queue a unique ID, and then filter out queries
that do not match the original query ID when processing them with read_query_result().

MySQL Proxy

1833



28.4.2. Internal Structures
There are a number of internal structures within the scripting element of MySQL Proxy. The primary structure is proxy and this
provides an interface to the many common structures used throughout the script, such as connection lists and configured backend serv-
ers. Other structures, such as the incoming packet from the client and result sets are only available within the context of one of the
scriptable functions.

Attribute Description

connection A structure containing the active client connections. For a list of attributes, see
proxy.connection .

servers A structure containing the list of configured backend servers. For a list of attributes, see
proxy.backends .

queries A structure containing the queue of queries that will be sent to the server during a single client
query. For a list of attributes, see proxy.queries .

PROXY_VERSION The version number of MySQL Proxy, encoded in hex. You can use this to check that the ver-
sion number supports a particular option from within the Lua script. Note that the value is en-
coded as a hex value, so to check the version is at least 0.5.1 you compare against 0x00501.

proxy.connection

The proxy.connection object is read only, and provides information about the current connection.

Attribute Description

thread_id The thread ID of the connection.

backend_ndx The ID of the server used for this connection. This is an ID valid against the list of configured
servers available through the proxy.backends object.

proxy.backends

The proxy.backends table is partially writable and contains an array of all the configured backend servers and the server metadata
(IP address, status, etc.). You can determine the array index of the current connection using
proxy.connection["backend_ndx"] which is the index into this table of the backend server being used by the active connec-
tion.

The attributes for each entry within the proxy.backends table are shown in this table.

Attribute Description

address The hostname/port combination used for this connection

connected_clients The number of clients currently connected.

state The status of the backend server. See Section 28.4.2, “Internal Structures” [1835].

proxy.queries

The proxy.queries object is a queue representing the list of queries to be sent to the server. The queue is not populated automatic-
ally, but if you do not explicitly populate the queue then queries are passed on to the backend server verbatim. Also, if you do not popu-
late the query queue by hand, then the read_query_result() function is not triggered.

The following methods are supported for populating the proxy.queries object.

Function Description

append(id,packet) Appends a query to the end of the query queue. The id is an integer identifier that you can
use to recognize the query results when they are returned by the server. The packet should be
a properly formatted query packet.

prepend(id,packet) Prepends a query to the query queue. The id is an identifier that you can use to recognize the
query results when they are returned by the server. The packet should be a properly formatted
query packet.

MySQL Proxy

1834



Function Description

reset() Empties the query queue.

len() Returns the number of query packets in the queue.

For example, you could append a query packet to the proxy.queries queue by using the append():

proxy.queries:append(1,packet)

Proxy Return State Constants

The following constants are used internally by the proxy to specify the response to send to the client or server. All constants are exposed
as values within the main proxy table.

Constant Description

PROXY_SEND_QUERY Causes the proxy to send the current contents of the queries queue to the server.

PROXY_SEND_RESULT Causes the proxy to send a result set back to the client.

PROXY_IGNORE_RESULT Causes the proxy to drop the result set (nothing is returned to the client).

As constants, these entities are available without qualification in the Lua scripts. For example, at the end of the
read_query_result() you might return PROXY_IGNORE_RESULT:

return proxy.PROXY_IGNORE_RESULT

Packet State Constants

The following states describe the status of a network packet. These items are entries within the main proxy table.

Constant Description

MYSQLD_PACKET_OK The packet is OK.

MYSQLD_PACKET_ERR The packet contains error information.

MYSQLD_PACKET_RAW The packet contains raw data.

Backend State/Type Constants

The following constants are used either to define the status of the backend server (the MySQL server to which the proxy is connected)
or the type of backend server. These items are entries within the main proxy table.

Constant Description

BACKEND_STATE_UNKNOWN The current status is unknown.

BACKEND_STATE_UP The backend is known to be up (available).

BACKEND_STATE_DOWN The backend is known to be down (unavailable).

BACKEND_TYPE_UNKNOWN Backend type is unknown.

BACKEND_TYPE_RW Backend is available for read/write.

BACKEND_TYPE_RO Backend is available only for read-only use.

Server Command Constants

The following values are used in the packets exchanged between the client and server to identify the information in the rest of the pack-
et. These items are entries within the main proxy table. The packet type is defined as the first character in the sent packet. For ex-
ample, when intercepting packets from the client to edit or monitor a query you would check that the first byte of the packet was of type
proxy.COM_QUERY.

MySQL Proxy

1835



Constant Description

COM_SLEEP Sleep

COM_QUIT Quit

COM_INIT_DB Initialize database

COM_QUERY Query

COM_FIELD_LIST Field List

COM_CREATE_DB Create database

COM_DROP_DB Drop database

COM_REFRESH Refresh

COM_SHUTDOWN Shutdown

COM_STATISTICS Statistics

COM_PROCESS_INFO Process List

COM_CONNECT Connect

COM_PROCESS_KILL Kill

COM_DEBUG Debug

COM_PING Ping

COM_TIME Time

COM_DELAYED_INSERT Delayed insert

COM_CHANGE_USER Change user

COM_BINLOG_DUMP Binlog dump

COM_TABLE_DUMP Table dump

COM_CONNECT_OUT Connect out

COM_REGISTER_SLAVE Register slave

COM_STMT_PREPARE Prepare server-side statement

COM_STMT_EXECUTE Execute server-side statement

COM_STMT_SEND_LONG_DATA Long data

COM_STMT_CLOSE Close server-side statement

COM_STMT_RESET Reset statement

COM_SET_OPTION Set option

COM_STMT_FETCH Fetch statement

COM_DAEMON Daemon (MySQL 5.1 only)

COM_ERROR Error

MySQL Type Constants

These constants are used to identify the field types in the query result data returned to clients from the result of a query. These items are
entries within the main proxy table.

Constant Field Type

MYSQL_TYPE_DECIMAL Decimal

MYSQL_TYPE_NEWDECIMAL Decimal (MySQL 5.0 or later)

MYSQL_TYPE_TINY Tiny

MYSQL_TYPE_SHORT Short

MYSQL_TYPE_LONG Long

MYSQL_TYPE_FLOAT Float

MYSQL_TYPE_DOUBLE Double

MySQL Proxy

1836



Constant Field Type

MYSQL_TYPE_NULL Null

MYSQL_TYPE_TIMESTAMP Timestamp

MYSQL_TYPE_LONGLONG Long long

MYSQL_TYPE_INT24 Integer

MYSQL_TYPE_DATE Date

MYSQL_TYPE_TIME Time

MYSQL_TYPE_DATETIME Datetime

MYSQL_TYPE_YEAR Year

MYSQL_TYPE_NEWDATE Date (MySQL 5.0 or later)

MYSQL_TYPE_ENUM Enumeration

MYSQL_TYPE_SET Set

MYSQL_TYPE_TINY_BLOB Tiny Blob

MYSQL_TYPE_MEDIUM_BLOB Medium Blob

MYSQL_TYPE_LONG_BLOB Long Blob

MYSQL_TYPE_BLOB Blob

MYSQL_TYPE_VAR_STRING Varstring

MYSQL_TYPE_STRING String

MYSQL_TYPE_TINY Tiny (compatible with MYSQL_TYPE_CHAR)

MYSQL_TYPE_ENUM Enumeration (compatible with MYSQL_TYPE_INTERVAL)

MYSQL_TYPE_GEOMETRY Geometry

MYSQL_TYPE_BIT Bit

28.4.3. Capturing a connection with connect_server()

When the proxy accepts a connection from a MySQL client, the connect_server() function is called.

There are no arguments to the function, but you can use and if necessary manipulate the information in the proxy.connection ta-
ble, which is unique to each client session.

For example, if you have multiple backend servers then you can set the server to be used by that connection by setting the value of
proxy.connection.backend_ndx to a valid server number. The code below will choose between two servers based on whether
the current time in minutes is odd or even:

function connect_server()
print("--> a client really wants to talk to a server")
if (tonumber(os.date("%M")) % 2 == 0) then

proxy.connection.backend_ndx = 2
print("Choosing backend 2")

else
proxy.connection.backend_ndx = 1
print("Choosing backend 1")

end
print("Using " .. proxy.backends[proxy.connection.backend_ndx].address)

end

In this example the IP address/port combination is also displayed by accessing the information from the internal proxy.backends
table.

28.4.4. Examining the handshake with read_handshake()

Handshake information is sent by the server to the client after the initial connection (through connect_server()) has been made.
The handshake information contains details about the MySQL version, the ID of the thread that will handle the connection information,
and the IP address of the client and server. This information is exposed through a Lua table as the only argument to the function.

MySQL Proxy

1837



• mysqld_version — the version of the MySQL server.

• thread_id — the thread ID.

• scramble — the password scramble buffer.

• server_addr — the IP address of the server.

• client_addr — the IP address of the client.

For example, you can print out the handshake data and refuse clients by IP address with the following function:

function read_handshake( auth )
print("<-- let's send him some information about us")
print(" mysqld-version: " .. auth.mysqld_version)
print(" thread-id : " .. auth.thread_id)
print(" scramble-buf : " .. string.format("%q", auth.scramble))
print(" server-addr : " .. auth.server_addr)
print(" client-addr : " .. auth.client_addr)

if not auth.client_addr:match("^127.0.0.1:") then
proxy.response.type = proxy.MYSQLD_PACKET_ERR
proxy.response.errmsg = "only local connects are allowed"

print("we don't like this client");

return proxy.PROXY_SEND_RESULT
end

end

Note that you have to return an error packet to the client by using proxy.PROXY_SEND_RESULT.

28.4.5. Examining the authentication credentials with read_auth()

The read_auth() function is triggered when an authentication handshake is initiated by the client. In the execution sequence,
read_auth() occurs immediately after read_handshake(), so the server selection has already been made, but the connection
and authorization information has not yet been provided to the backend server.

The function accepts a single argument, an Lua table containing the authorization information for the handshake process. The entries in
the table are:

• username — the user login for connecting to the server.

• password — the password, encrypted, to be used when connecting.

• default_db — the default database to be used once the connection has been made.

For example, you can print the username and password supplied during authorization using:

function read_auth( auth )
print(" username : " .. auth.username)
print(" password : " .. string.format("%q", auth.password))

end

You can interrupt the authentication process within this function and return an error packet back to the client by constructing a new
packet and returning proxy.PROXY_SEND_RESULT:

proxy.response.type = proxy.MYSQLD_PACKET_ERR
proxy.response.errmsg = "Logins are not allowed"
return proxy.PROXY_SEND_RESULT

28.4.6. Accessing authentication information with read_auth_result()

The return packet from the server during authentication is captured by read_auth_result(). The only argument to this function is
the authentication packet returned by the server. As the packet is a raw MySQL network protocol packet, you must access the first byte
to identify the packet type and contents. The MYSQLD_PACKET_ERR and MYSQLD_PACKET_OK constants can be used to identify

MySQL Proxy

1838



whether the authentication was successful:

function read_auth_result( auth )
local state = auth.packet:byte()

if state == proxy.MYSQLD_PACKET_OK then
print("<-- auth ok");

elseif state == proxy.MYSQLD_PACKET_ERR then
print("<-- auth failed");

else
print("<-- auth ... don't know: " .. string.format("%q", auth.packet));

end
end

28.4.7. Manipulating Queries with read_query()

The read_query() function is called once for each query submitted by the client and accepts a single argument, the query packet
that was provided. To access the content of the packet you must parse the packet contents manually.

For example, you can intercept a query packet and print out the contents using the following function definition:

function read_query( packet )
if packet:byte() == proxy.COM_QUERY then

print("we got a normal query: " .. packet:sub(2))
end

end

This example checks the first byte of the packet to determine the type. If the type is COM_QUERY (see Section 28.4.2, “Internal Struc-
tures” [1835]), then we extract the query from the packet and print it out. The structure of the packet type supplied is important. In the
case of a COM_QUERY packet, the remaining contents of the packet are the text of the query string. In this example, no changes have
been made to the query or the list of queries that will ultimately be sent to the MySQL server.

To modify a query, or add new queries, you must populate the query queue (proxy.queries) and then execute the queries that you
have placed into the queue. If you do not modify the original query or the queue, then the query received from the client is sent to the
MySQL server verbatim.

When adding queries to the queue, you should follow these guidelines:

• The packets inserted into the queue must be valid query packets. For each packet, you must set the initial byte to the packet type. If
you are appending a query, you can append the query statement to the rest of the packet.

• Once you add a query to the queue, the queue is used as the source for queries sent to the server. If you add a query to the queue to
add more information, you must also add the original query to the queue or it will not be executed.

• Once the queue has been populated, you must set the return value from read_query() to indicate whether the query queue
should be sent to the server.

• When you add queries to the queue, you should add an ID. The ID you specify is returned with the result set so that you identify
each query and corresponding result set. The ID has no other purpose than as an identifier for correlating the query and resultset.
When operating in a passive mode, during profiling for example, you want to identify the original query and the corresponding res-
ultset so that the results expect by the client can be returned correctly.

• Unless your client is designed to cope with more result sets than queries, you should ensure that the number of queries from the cli-
ent match the number of results sets returned to the client. Using the unique ID and removing result sets you inserted will help.

Normally, the read_query() and read_query_result() function are used in conjunction with each other to inject additional
queries and remove the additional result sets. However, read_query_result() is only called if you populate the query queue
within read_query().

28.4.8. Manipulating Results with read_query_result()

The read_query_result() is called for each result set returned by the server only if you have manually injected queries into the
query queue. If you have not manipulated the query queue then this function is not called. The function supports a single argument, the
result packet, which provides a number of properties:

• id — the ID of the result set, which corresponds to the ID that was set when the query packet was submitted to the server when us-

MySQL Proxy

1839



ing append(id) on the query queue.

• query — the text of the original query.

• query_time — the number of microseconds required to receive the first row of a result set.

• response_time — the number of microseconds required to receive the last row of the result set.

• resultset — the content of the result set data.

By accessing the result information from the MySQL server you can extract the results that match the queries that you injected, return
different result sets (for example, from a modified query), and even create your own result sets.

The Lua script below, for example, will output the query, followed by the query time and response time (i.e. the time to execute the
query and the time to return the data for the query) for each query sent to the server:

function read_query( packet )
if packet:byte() == proxy.COM_QUERY then

print("we got a normal query: " .. packet:sub(2))

proxy.queries:append(1, packet )

return proxy.PROXY_SEND_QUERY
end

end

function read_query_result(inj)
print("query-time: " .. (inj.query_time / 1000) .. "ms")
print("response-time: " .. (inj.response_time / 1000) .. "ms")

end

You can access the rows of returned results from the resultset by accessing the rows property of the resultset property of the result that
is exposed through read_query_result(). For example, you can iterate over the results showing the first column from each row
using this Lua fragment:

for row in inj.resultset.rows do
print("injected query returned: " .. row[0])

end

Just like read_query(), read_query_result() can return different values for each result according to the result returned. If
you have injected additional queries into the query queue, for example, then you will want to remove the results returned from those ad-
ditional queries and only return the results from the query originally submitted by the client.

The example below injects additional SELECT NOW() statements into the query queue, giving them a different ID to the ID of the ori-
ginal query. Within read_query_result(), if the ID for the injected queries is identified, we display the result row, and return the
proxy.PROXY_IGNORE_RESULT from the function so that the result is not returned to the client. If the result is from any other
query, we print out the query time information for the query and return the default, which passes on the result set unchanged. We could
also have explicitly returned proxy.PROXY_IGNORE_RESULT to the MySQL client.

function read_query( packet )
if packet:byte() == proxy.COM_QUERY then

proxy.queries:append(2, string.char(proxy.COM_QUERY) .. "SELECT NOW()" )
proxy.queries:append(1, packet )
proxy.queries:append(2, string.char(proxy.COM_QUERY) .. "SELECT NOW()" )

return proxy.PROXY_SEND_QUERY
end

end

function read_query_result(inj)
if inj.id == 2 then

for row in inj.resultset.rows do
print("injected query returned: " .. row[0])

end
return proxy.PROXY_IGNORE_RESULT

else
print("query-time: " .. (inj.query_time / 1000) .. "ms")
print("response-time: " .. (inj.response_time / 1000) .. "ms")

end
end

For further examples, see Section 28.5, “Using MySQL Proxy”.

MySQL Proxy

1840



28.5. Using MySQL Proxy
There are a number of different ways to use MySQL Proxy. At the most basic level, you can allow MySQL Proxy to pass on queries
from clients to a single server. To use MySQL proxy in this mode, you just have to specify the backend server that the proxy should
connect to on the command line:

$ mysql-proxy --proxy-backend-addresses=sakila:3306

If you specify multiple backend MySQL servers then the proxy will connect each client to each server in a round-robin fashion. For ex-
ample, imagine you have two MySQL servers, A and B. The first client to connect will be connected to server A, the second to server B,
the third to server C. For example:

$ mysql-proxy \
--proxy-backend-addresses=narcissus:3306 \
--proxy-backend-addresses=nostromo:3306

When you have specified multiple servers in this way, the proxy will automatically identify when a MySQL server has become unavail-
able and mark it accordingly. New connections will automatically be attached to a server that is available, and a warning will be repor-
ted to the standard output from mysql-proxy:

network-mysqld.c.367: connect(nostromo:3306) failed: Connection refused
network-mysqld-proxy.c.2405: connecting to backend (nostromo:3306) failed, marking it as down for ...

Lua scripts enable a finer level of control, both over the connections and their distribution and how queries and result sets are processed.
When using an Lua script, you must specify the name of the script on the command line using the --proxy-lua-script option:

$ mysql-proxy --proxy-lua-script=mc.lua --proxy-backend-addresses=sakila:3306

When you specify a script, the script is not executed until a connection is made. This means that faults with the script will not be raised
until the script is executed. Script faults will not affect the distribution of queries to backend MySQL servers.

Note

Because the script is not read until the connection is made, you can modify the contents of the Lua script file while the
proxy is still running and the script will automatically be used for the next connection. This ensures that MySQL Proxy re-
mains available because it does not have to be restarted for the changes to take effect.

28.5.1. Using the Administration Interface
The mysql-proxy administration interface can be accessed using any MySQL client using the standard protocols. You can use the
administration interface to gain information about the proxy server as a whole - standard connections to the proxy are isolated to operate
as if you were connected directly to the backend MySQL server. Currently, the interface supports a limited set of functionality designed
to provide connection and configuration information.

Because connectivity is provided over the standard MySQL protocol, you must access this information using SQL syntax. By default,
the administration port is configured as 4041. You can change this port number using the --admin-address command line option.

To get a list of the currently active connections to the proxy:

mysql> select * from proxy_connections;
+------+--------+-------+------+
| id | type | state | db |
+------+--------+-------+------+
| 0 | server | 0 | |
| 1 | proxy | 0 | |
| 2 | server | 10 | |
+------+--------+-------+------+
3 rows in set (0.00 sec)

To get the current configuration:

mysql> select * from proxy_config;
+----------------------------+----------------------+
| option | value |
+----------------------------+----------------------+
| admin.address | :4041 |
| proxy.address | :4040 |
| proxy.lua_script | mc.lua |

MySQL Proxy

1841



| proxy.backend_addresses[0] | mysql:3306 |
| proxy.fix_bug_25371 | 0 |
| proxy.profiling | 1 |
+----------------------------+----------------------+
6 rows in set (0.01 sec)

MySQL Proxy

1842



Chapter 29. Extending MySQL

29.1. MySQL Internals
This chapter describes a lot of things that you need to know when working on the MySQL code. If you plan to contribute to MySQL de-
velopment, want to have access to the bleeding-edge versions of the code, or just want to keep track of development, follow the instruc-
tions in Section 2.9.3, “Installing from the Development Source Tree”. If you are interested in MySQL internals, you should also sub-
scribe to our internals mailing list. This list has relatively low traffic. For details on how to subscribe, please see Section 1.6.1,
“MySQL Mailing Lists”. All developers at MySQL AB are on the internals list and we help other people who are working on the
MySQL code. Feel free to use this list both to ask questions about the code and to send patches that you would like to contribute to the
MySQL project!

29.1.1. MySQL Threads
The MySQL server creates the following threads:

• Connection manager threads handle client connection requests on the network interfaces that the server listens to. On all platforms,
one manager thread handles TCP/IP connection requests. On Unix, this manager thread also handles Unix socket file connection re-
quests. On Windows, a manager thread handles shared-memory connection requests, and another handles named-pipe connection re-
quests. The server does not create threads to handle interfaces that it does not listen to. For example, a Windows server that does not
have support for named-pipe connections enabled does not create a thread to handle them.

• Connection manager threads associate each client connection with a thread dedicated to it that handles authentication and request
processing for that connection. Manager threads create a new thread when necessary but try to avoid doing so by consulting the
thread cache first to see whether it contains a thread that can be used for the connection. When a connection ends, its thread is re-
turned to the thread cache if the cache is not full.

For information about tuning the parameters that control thread resources, see Section 7.5.7, “How MySQL Uses Threads for Client
Connections”.

• On a master replication server, connections from slave servers are handled like client connections: There is one thread per connected
slave.

• On a slave replication server, an I/O thread is started to connect to the master server and read updates from it. An SQL thread is star-
ted to apply updates read from the master. These two threads run independently and can be started and stopped independently.

• A signal thread handles all signals. This thread also normally handles alarms and calls process_alarm() to force timeouts on
connections that have been idle too long.

• If InnoDB is used, there will be 4 additional threads by default. Those are file I/O threads, controlled by the in-
nodb_file_io_threads parameter. See Section 13.5.4, “InnoDB Startup Options and System Variables”.

• If mysqld is compiled with -DUSE_ALARM_THREAD, a dedicated thread that handles alarms is created. This is only used on
some systems where there are problems with sigwait() or if you want to use the thr_alarm() code in your application
without a dedicated signal handling thread.

• If the server is started with the --flush_time=val option, a dedicated thread is created to flush all tables every val seconds.

• Each table for which INSERT DELAYED statements are issued gets its own thread. See Section 12.2.4.2, “INSERT DELAYED
Syntax”.

• If the event scheduler is active, there is one thread for the scheduler, and a thread for each event currently running. See Section 22.1,
“Event Scheduler Overview”.

mysqladmin processlist only shows the connection, INSERT DELAYED, replication, and event threads.

MySQL Enterprise
For expert advice on thread management subscribe to the MySQL Enterprise Monitor. For more information,
see http://www.mysql.com/products/enterprise/advisors.html.

29.1.2. MySQL Test Suite

1843

http://www.mysql.com/products/enterprise/advisors.html


The test system that is included in Unix source and binary distributions makes it possible for users and developers to perform regression
tests on the MySQL code. These tests can be run on Unix.

The current set of test cases doesn't test everything in MySQL, but it should catch most obvious bugs in the SQL processing code, oper-
ating system or library issues, and is quite thorough in testing replication. Our goal is to have the tests cover 100% of the code. We wel-
come contributions to our test suite. You may especially want to contribute tests that examine the functionality critical to your system
because this ensures that all future MySQL releases work well with your applications.

The test system consists of a test language interpreter (mysqltest), a Perl script to run all tests (mysql-test-run.pl), the actual
test cases written in a special test language, and their expected results. To run the test suite on your system after a build, type make
test from the source root directory, or change location to the mysql-test directory and type ./mysql-test-run.pl. If you
have installed a binary distribution, change location to the mysql-test directory under the installation root directory (for example, /
usr/local/mysql/mysql-test), and run ./mysql-test-run.pl. All tests should succeed. If any do not, feel free to try to
find out why and report the problem if it indicates a bug in MySQL. See Section 1.7, “How to Report Bugs or Problems”.

If one test fails, you should run mysql-test-run.pl with the --force option to check whether any other tests fail.

If you have a copy of mysqld running on the machine where you want to run the test suite, you do not have to stop it, as long as it is
not using ports 9306 or 9307. If either of those ports is taken, you should set the MTR_BUILD_THREAD environment variable to an
appropriate value, and the test suite will use a different set of ports for master, slave, NDB, and Instance Manager). For example:

shell> export MTR_BUILD_THREAD=31
shell> ./mysql-test-run.pl [options] [test_name]

In the mysql-test directory, you can run an individual test case with ./mysql-test-run.pl test_name.

You can use the mysqltest language to write your own test cases. This is documented in the MySQL Test Framework manual, avail-
able at http://dev.mysql.com/doc/.

If you have a question about the test suite, or have a test case to contribute, send an email message to the MySQL internals mailing
list. See Section 1.6.1, “MySQL Mailing Lists”. This list does not accept attachments, so you should FTP all the relevant files to:
ftp://ftp.mysql.com/pub/mysql/upload/

29.2. The MySQL Plugin Interface
MySQL 5.1 and up supports a plugin API that allows the loading and unloading of server components at runtime, without restarting the
server. Currently, the plugin API supports creation of full-text parser plugins. Such a plugin can be used to replace or augment the built-
in full-text parser. For example, a plugin can parse text into words using rules that differ from those used by the built-in parser. This can
be useful if you need to parse text with characteristics different from those expected by the built-in parser.

The plugin interface is intended as the successor to the older user-defined function (UDF) interface. The plugin interface eventually will
include an API for creating UDFs, and it is intended this plugin UDF API will replace the older non-plugin UDF API. After that point,
it will be possible for UDFs to be revised for use as plugin UDFs so that they can take advantage of the better security and versioning
capabilities of the plugin API. Eventually, support for the older UDF API will be phased out.

The plugin interface requires the plugin table in the mysql database. This table is created as part of the MySQL installation process.
If you are upgrading from an older version to MySQL 5.1, you should run the mysql_upgrade command to create this table. See
Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

29.2.1. Characteristics of the Plugin Interface
In some respects, the plugin API is similar to the older user-defined function (UDF) API that it supersedes, but the plugin API has sev-
eral advantages over the older interface:

• The plugin framework is extendable to accommodate different kinds of plugins.

Some aspects of the plugin API are common to all types of plugins, but the API also allows for type-specific interface elements so
that different types of plugins can be created. A plugin with one purpose can have an interface most appropriate to its own require-
ments and not the requirements of some other plugin type.

Although only the interface for full-text parser plugins is implemented currently, others can be added, such as an interface for UDF
plugins.

Extending MySQL

1844

http://dev.mysql.com/doc/
ftp://ftp.mysql.com/pub/mysql/upload/


• The plugin API includes versioning information.

The version information included in the plugin API enables a plugin library and each plugin that it contains to be self-identifying
with respect to the API version that was used to build the library. If the API changes over time, the version numbers will change, but
a server can examine a given plugin library's version information to determine whether it supports the plugins in the library.

There are two types of version numbers. The first is the version for the general plugin framework itself. Each plugin library includes
this kind of version number. The second type of version applies to individual plugins. Each specific type of plugin has a version for
its interface, so each plugin in a library has a type-specific version number. For example, library containing a full-text parsing plugin
has a general plugin API version number, and the plugin has a version number specific to the full-text plugin interface.

• Plugin security is improved relative to the UDF interface.

The older interface for writing non-plugin UDFs allowed libraries to be loaded from any directory searched by the system's dynamic
linker, and the symbols that identified the UDF library were relatively non-specific. The newer rules are more strict. A plugin library
must be installed in a specific dedicated directory for which the location is controlled by the server and cannot be changed at
runtime. Also, the library must contain specific symbols that identify it as a plugin library. The server will not load something as a
plugin if it was not built as a plugin.

The newer plugin interface eliminates the security issues of the older UDF interface. When a UDF plugin type is implemented, that
will allow non-plugin UDFs to be brought into the plugin framework and the older interface to be phased out.

The plugin implementation includes the following components:

Source files (the locations given indicate where the files are found in a MySQL source distribution):

• include/mysql/plugin.h exposes the public plugin API. This file should be examined by anyone who wants to write a plu-
gin library.

• sql/sql_plugin.h and sql/sql_plugin.cc comprise the internal plugin implementation. These files need not be consul-
ted by plugin writers. They may be of interest for those who want to know more about how the server handles plugins.

System table:

• The plugin table in the mysql database lists each installed plugin and is required for plugin use. For new MySQL installations,
this table is created during the installation process. If you are upgrading from a version older than MySQL 5.1, you should run
mysql_upgrade to update your system tables and create the plugin table (see Section 4.4.8, “mysql_upgrade — Check
Tables for MySQL Upgrade”).

SQL statements:

• INSTALL PLUGIN registers a plugin in the plugin table and loads the plugin code.

• UNINSTALL PLUGIN unregisters a plugin from the plugin table and unloads the plugin code.

• The WITH PARSER clause for full-text index creation associates a full-text parser plugin with a given FULLTEXT index.

• SHOW PLUGINS displays information about known plugins. The PLUGINS table in INFORMATION_SCHEMA also contains plu-
gin information.

System variable:

• plugin_dir indicates the location of the directory where all plugins must be installed. The value of this variable can be specified
at server startup with a --plugin_dir=path option. As of MySQL 6.0.5, mysql_config --plugindir displays the de-
fault plugin directory pathname.

29.2.2. Full-Text Parser Plugins

Extending MySQL

1845



MySQL has a built-in parser that it uses by default for full-text operations (parsing text to be indexed, or parsing a query string to de-
termine the terms to be used for a search). For full-text processing, “parsing” means extracting words from text or a query string based
on rules that define which character sequences make up a word and where word boundaries lie.

When parsing for indexing purposes, the parser passes each word to the server, which adds it to a full-text index. When parsing a query
string, the parser passes each word to the server, which accumulates the words for use in a search.

The parsing properties of the built-in full-text parser are described in Section 11.8, “Full-Text Search Functions”. These properties in-
clude rules for determining how to extract words from text. The parser is influenced by certain system variables such as
ft_min_word_len and ft_max_word_len that cause words shorter or longer to be excluded, and by the stopword list that identi-
fies common words to be ignored.

The plugin API enables you to provide a full-text parser of your own so that you have control over the basic duties of a parser. A parser
plugin can operate in either of two roles:

• The plugin can replace the built-in parser. In this role, the plugin reads the input to be parsed, splits it up into words, and passes the
words to the server (either for indexing or for word accumulation).

One reason to use a parser this way is that you need to use different rules from those of the built-in parser for determining how to
split up input into words. For example, the built-in parser considers the text “case-sensitive” to consist of two words “case” and
“sensitive,” whereas an application might need to treat the text as a single word.

• The plugin can act in conjunction with the built-in parser by serving as a front end for it. In this role, the plugin extracts text from
the input and passes the text to the parser, which splits up the text into words using its normal parsing rules. In particular, this pars-
ing will be affected by the ft_xxx system variables and the stopword list.

One reason to use a parser this way is that you need to index content such as PDF documents, XML documents, or .doc files. The
built-in parser is not intended for those types of input but a plugin can pull out the text from these input sources and pass it to the
built-in parser.

It is also possible for a parser plugin to operate in both roles. That is, it could extract text from non-plaintext input (the front end role),
and also parse the text into words (thus replacing the built-in parser).

A full-text plugin is associated with full-text indexes on a per-index basis. That is, when you install a parser plugin initially, that does
not cause it to be used for any full-text operations. It simply becomes available. For example, a full-text parser plugin becomes available
to be named in a WITH PARSER clause when creating individual FULLTEXT indexes. To create such an index at table-creation time,
do this:

CREATE TABLE t
(
doc CHAR(255),
FULLTEXT INDEX (doc) WITH PARSER my_parser

);

Or you can add the index after the table has been created:

ALTER TABLE t ADD FULLTEXT INDEX (doc) WITH PARSER my_parser;

The only SQL change for associating the parser with the index is the WITH PARSER clause. Searches are specified as before, with no
changes needed for queries.

When you associate a parser plugin with a FULLTEXT index, the plugin is required for using the index. If the parser plugin is dropped,
any index associated with it becomes unusable. Any attempt to use it a table for which a plugin is not available results in an error, al-
though DROP TABLE is still possible.

29.2.3. INSTALL PLUGIN Syntax
INSTALL PLUGIN plugin_name SONAME 'plugin_library'

This statement installs a plugin.

plugin_name is the name of the plugin as defined in the plugin declaration structure contained in the library file. Plugin name case
sensitivity is determined by the host system filename semantics.

Extending MySQL

1846



plugin_library is the name of the shared library that contains the plugin code. The name includes the filename extension (for ex-
ample, libmyplugin.so or libmyplugin.dylib).

The shared library must be located in the plugin directory (that is, the directory named by the plugin_dir system variable). The lib-
rary must be in the plugin directory itself, not in a subdirectory. By default, plugin_dir is plugin directory under the directory
named by the pkglibdir configuration variable, but it can be changed by setting the value of plugin_dir at server startup. For ex-
ample, set its value in a my.cnf file:

[mysqld]
plugin_dir=/path/to/plugin/directory

If the value of plugin_dir is a relative pathname, it is taken to be relative to the MySQL base directory (the value of the basedir
system variable).

INSTALL PLUGIN adds a line to the mysql.plugin table that describes the plugin. This table contains the plugin name and lib-
rary filename.

INSTALL PLUGIN also loads and initializes the plugin code to make the plugin available for use. A plugin is initialized by executing
its initialization function, which handles any setup that the plugin must perform before it can be used.

To use INSTALL PLUGIN, you must have the INSERT privilege for the mysql.plugin table.

At server startup, the server loads and initializes any plugin that is listed in the mysql.plugin table. This means that a plugin is in-
stalled with INSTALL PLUGIN only once, not every time the server starts. Plugin loading at startup does not occur if the server is star-
ted with the --skip-grant-tables option.

When the server shuts down, it executes the deinitialization function for each plugin that is loaded so that the plugin has a change to
perform any final cleanup.

To remove a plugin entirely, use the UNINSTALL PLUGIN statement:

To see what plugins are installed, use the SHOW PLUGIN statement.

If you recompile a plugin library and need to reinstall it, you can use either of the following procedures:

• Use UNINSTALL PLUGIN to uninstall all plugins in the library, install the new plugin library file in the plugin directory, and then
use INSTALL PLUGIN to install all plugins in the library. This procedure has the advantage that it can be used without stopping
the server. However, if the plugin library contains many plugins, you must issue many INSTALL PLUGIN and UNINSTALL
PLUGIN statements.

• Alternatively, stop the server, install the new plugin library file in the plugin directory, and then restart the server.

29.2.4. UNINSTALL PLUGIN Syntax
UNINSTALL PLUGIN plugin_name

This statement removes an installed plugin. You cannot uninstall a plugin if any table that uses it is open.

plugin_name must be the name of some plugin that is listed in the mysql.plugin table. The server executes the plugin's deinitial-
ization function and removes the row for the plugin from the mysql.plugin table, so that subsequent server restarts will not load and
initialize the plugin. UNINSTALL PLUGIN does not remove the plugin's shared library file.

To use UNINSTALL PLUGIN, you must have the DELETE privilege for the mysql.plugin table.

Plugin removal has implications for the use of associated tables. For example, if a full-text parser plugin is associated with a FULL-
TEXT index on the table, uninstalling the plugin makes the table unusable. Any attempt to access the table results in an error. The table
cannot even be opened, so you cannot drop an index for which the plugin is used. This means that uninstalling a plugin is something to
do with care unless you do not care about the table contents. If you are uninstalling a plugin with no intention of reinstalling it later and
you care about the table contents, you should dump the table with mysqldump and remove the WITH PARSER clause from the
dumped CREATE TABLE statement so that you can reload the table later. If you do not care about the table, DROP TABLE can be used
even if any plugins associated with the table are missing.

Extending MySQL

1847



29.2.5. Writing Plugins
This section describes the general and type-specific parts of the plugin API. It also provides a step-by-step guide to creating a plugin lib-
rary. For example plugin source code, see the plugin/fulltext directory of a MySQL source distribution.

You can write plugins in C or C++ (or another language that can use C calling conventions). Plugins are loaded and unloaded dynamic-
ally, so your operating system must support dynamic loading and you must have compiled mysqld dynamically (not statically).

A plugin contains code that becomes part of the running server, so when you write a plugin, you are bound by any and all constraints
that otherwise apply to writing server code. For example, you may have problems if you attempt to use functions from the libstdc++
library. These constraints may change in future versions of the server, so it is possible that server upgrades will require revisions to plu-
gins that were originally written for older servers. For information about these constraints, see Section 2.9.2, “Typical configure Op-
tions”, and Section 2.9.4, “Dealing with Problems Compiling MySQL”.

29.2.5.1. General Plugin Structures and Functions

Every plugin must have a general plugin declaration. The declaration corresponds to the st_mysql_plugin structure in the plu-
gin.h file:

struct st_mysql_plugin
{
int type; /* the plugin type (a MYSQL_XXX_PLUGIN value) */
void *info; /* pointer to type-specific plugin descriptor */
const char *name; /* plugin name */
const char *author; /* plugin author (for SHOW PLUGINS) */
const char *descr; /* general descriptive text (for SHOW PLUGINS ) */
int license; /* the plugin license (PLUGIN_LICENSE_XXX) */
int (*init)(void *); /* the function to invoke when plugin is loaded */
int (*deinit)(void *);/* the function to invoke when plugin is unloaded */
unsigned int version; /* plugin version (for SHOW PLUGINS) */
struct st_mysql_show_var *status_vars;
void * __reserved1; /* placeholder for system variables */
void * __reserved2; /* placeholder for config options */

};

The st_mysql_plugin structure is common to every type of plugin. Its members should be filled in as follows:

• type

The plugin type. This must be one of the plugin-type values from plugin.h. For a full-text parser plugin, the type value is
MYSQL_FTPARSER_PLUGIN.

• info

A pointer to the descriptor for the plugin. Unlike the general plugin declaration structure, this descriptor's structure depends on the
particular type of plugin. Each descriptor has a version number that indicates the API version for that type of plugin, plus any other
members needed. The descriptor for full-text plugins is described in Section 29.2.5.2, “Type-Specific Plugin Structures and Func-
tions”.

• name

The plugin name. This is the name that will be listed in the plugin table and by which you refer to the plugin in SQL statements
such as INSTALL PLUGIN and UNINSTALL PLUGIN.

• author

The plugin author. This can be whatever you like.

• desc

A general description of the plugin. This can be whatever you like.

• license

The plugin license type. The value can be one of PLUGIN_LICENSE_PROPRIETARY, PLUGIN_LICENSE_GPL, or PLU-
GIN_LICENSE_BSD.

• init

Extending MySQL

1848



A once-only initialization function. This is executed when the plugin is loaded, which happens for INSTALL PLUGIN or, for plu-
gins listed in the plugin table, at server startup. The function takes no arguments. It returns zero for success and non-zero for fail-
ure. If an init function is unneeded for a plugin, it can be specified as 0.

• deinit

A once-only deinitialization function. This is executed when the plugin is unloaded, which happens for UNINSTALL PLUGIN or,
for plugins listed in the plugin table, at server shutdown. The function takes no arguments. It returns zero for success and non-
zero for failure. If a deinit function is unneeded for a plugin, it can be specified as 0.

• version

The plugin version number. When the plugin is installed, this value can be retrieved from the INFORMATION_SCHEMA.PLUGINS
table. The value includes major and minor numbers. If you write the value as a hex constant, the format is 0xMMNN, where MM and
NN are the major and minor numbers, respectively. For example, 0x0302 represents version 3.2.

• status_vars

A pointer to a structure for status variables associated with the plugin, or 0 if there are no such variables. When the plugin is in-
stalled, these variables are displayed in the output of the SHOW STATUS statement.

• __reserved1, __reserved2

These are placeholders for the future. Currently, they should be set to NULL.

The init and deinit functions in the general plugin declaration are invoked only when loading and unloading the plugin. They have
nothing to do with use of the plugin such as happens when an SQL statement causes the plugin to be invoked.

The status_vars member, if not 0, points to an array of st_mysql_show_var structures, each of which describes one status
variable, followed by a structure with all members set to 0. The st_mysql_show_var structure has this definition:

struct st_mysql_show_var {
const char *name;
char *value;
enum enum_mysql_show_type type;

};

When the plugin is installed, the plugin name and the name value are joined with an underscore to form the name displayed by SHOW
STATUS.

The following table shows the allowable status variable type values and what the corresponding variable should be:

Type Meaning

SHOW_BOOL Pointer to a boolean variable

SHOW_INT Pointer to an integer variable

SHOW_LONG Pointer to a long integer variable

SHOW_LONGLONG Pointer to a longlong integer variable

SHOW_CHAR A string

SHOW_CHAR_PTR Pointer to a string

SHOW_ARRAY Pointer to another st_mysql_show_var array

SHOW_FUNC Pointer to a function

For the SHOW_FUNC type, the function is called and fills in its out parameter, which then provides information about the variable to be
displayed. The function has this signature:

#define SHOW_VAR_FUNC_BUFF_SIZE 1024

typedef int (*mysql_show_var_func) (void *thd,
struct st_mysql_show_var *out,
char *buf);

Extending MySQL

1849



Plugins should consider the thd parameter to be read only.

29.2.5.2. Type-Specific Plugin Structures and Functions

In the st_mysql_plugin structure that defines a plugin's general declaration, the info member points to a type-specific plugin
descriptor. For a full-text parser plugin, the descriptor corresponds to the st_mysql_ftparser structure in the plugin.h file:

struct st_mysql_ftparser
{
int interface_version;
int (*parse)(MYSQL_FTPARSER_PARAM *param);
int (*init)(MYSQL_FTPARSER_PARAM *param);
int (*deinit)(MYSQL_FTPARSER_PARAM *param);

};

As shown by the structure definition, the descriptor has a version number (MYSQL_FTPARSER_INTERFACE_VERSION for full-text
parser plugins) and contains pointers to three functions. The init and deinit members should point to a function or be set to 0 if the
function is not needed. The parse member must point to the function that performs the parsing.

A full-text parser plugin is used in two different contexts, indexing and searching. In both contexts, the server calls the initialization and
deinitialization functions at the beginning and end of processing each SQL statement that causes the plugin to be invoked. However,
during statement processing, the server calls the main parsing function in context-specific fashion:

• For indexing, the server calls the parser for each column value to be indexed.

• For searching, the server calls the parser to parse the search string. The parser might also be called for rows processed by the state-
ment. In natural language mode, there is no need for the server to call the parser. For boolean mode phrase searches or natural lan-
guage searches with query expansion, the parser is used to parse column values for information that is not in the index. Also, if a
boolean mode search is done for a column that has no FULLTEXT index, the built-in parser will be called. (Plugins are associated
with specific indexes. If there is no index, no plugin is used.)

Note that the plugin declaration in the plugin library descriptor has initialization and deinitialization functions, and so does the plugin
descriptor to which it points. These pairs of functions have different purposes and are invoked for different reasons:

• For the plugin declaration in the plugin library descriptor, the initialization and deinitialization functions are invoked when the plu-
gin is loaded and unloaded.

• For the plugin descriptor, the initialization and deinitialization functions are invoked per SQL statement for which the plugin is
used.

Each interface function named in the plugin descriptor should return zero for success or non-zero for failure, and each of them receives
an argument that points to a MYSQL_FTPARSER_PARAM structure containing the parsing context. The structure has this definition:

typedef struct st_mysql_ftparser_param
{
int (*mysql_parse)(struct st_mysql_ftparser_param *,

char *doc, int doc_len);
int (*mysql_add_word)(struct st_mysql_ftparser_param *,

char *word, int word_len,
MYSQL_FTPARSER_BOOLEAN_INFO *boolean_info);

void *ftparser_state;
void *mysql_ftparam;
struct charset_info_st *cs;
char *doc;
int length;
int flags;
enum enum_ftparser_mode mode;

} MYSQL_FTPARSER_PARAM;

Note

The definition shown is current as of MySQL 5.1.12. It is incompatible with versions of MySQL 5.1 older than 5.1.12.

The structure members are used as follows:

Extending MySQL

1850



• mysql_parse

A pointer to a callback function that invokes the server's built-in parser. Use this callback when the plugin acts as a front end to the
built-in parser. That is, when the plugin parsing function is called, it should process the input to extract the text and pass the text to
the mysql_parse callback.

The first parameter for this callback function should be the param value itself:

param->mysql_parse(param, ...);

A front end plugin can extract text and pass it all at once to the built-in parser, or it can extract and pass text to the built-in parser a
piece at a time. However, in this case, the built-in parser treats the pieces of text as though there are implicit word breaks between
them.

• mysql_add_word

A pointer to a callback function that adds a word to a full-text index or to the list of search terms. Use this callback when the parser
plugin replaces the built-in parser. That is, when the plugin parsing function is called, it should parse the input into words and in-
voke the mysql_add_word callback for each word.

The first parameter for this callback function should be the param value itself:

param->mysql_add_word(param, ...);

• ftparser_state

This is a generic pointer. The plugin can set it to point to information to be used internally for its own purposes.

• mysql_ftparam

This is set by the server. It is passed as the first argument to the mysql_parse or mysql_add_word callback.

• cs

A pointer to information about the character set of the text, or 0 if no information is available.

• doc

A pointer to the text to be parsed.

• length

The length of the text to be parsed, in bytes.

• flags

Parser flags. This is zero if there are no special flags. Currently, the only non-zero flag is MYSQL_FTFLAGS_NEED_COPY, which
means that mysql_add_word() must save a copy of the word (that is, it cannot use a pointer to the word because the word is in a
buffer that will be overwritten.) This member was added in MySQL 5.1.12.

This flag might be set or reset by MySQL before calling the parser plugin, by the parser plugin itself, or by the mysql_parse()
function.

• mode

The parsing mode. This value will be one of the folowing constants:

• MYSQL_FTPARSER_SIMPLE_MODE

Parse in fast and simple mode, which is used for indexing and for natural language queries. The parser should pass to the server
only those words that should be indexed. If the parser uses length limits or a stopword list to determine which words to ignore, it
should not pass such words to the server.

• MYSQL_FTPARSER_WITH_STOPWORDS

Extending MySQL

1851



Parse in stopword mode. This is used in boolean searches for phrase matching. The parser should pass all words to the server,
even stopwords or words that are outside any normal length limits.

• MYSQL_FTPARSER_FULL_BOOLEAN_INFO

Parse in boolean mode. This is used for parsing boolean query strings. The parser should recognize not only words but also
boolean-mode operators and pass them to the server as tokens via the mysql_add_word callback. To tell the server what kind
of token is being passed, the plugin needs to fill in a MYSQL_FTPARSER_BOOLEAN_INFO structure and pass a pointer to it.

If the parser is called in boolean mode, the param->mode value will be MYSQL_FTPARSER_FULL_BOOLEAN_INFO. The
MYSQL_FTPARSER_BOOLEAN_INFO structure that the parser uses for passing token information to the server looks like this:

typedef struct st_mysql_ftparser_boolean_info
{
enum enum_ft_token_type type;
int yesno;
int weight_adjust;
bool wasign;
bool trunc;
/* These are parser state and must be removed. */
byte prev;
byte *quot;

} MYSQL_FTPARSER_BOOLEAN_INFO;

The parser should fill in the structure members as follows:

• type

The token type. This should be one of values shown in the following table:

Type Meaning

FT_TOKEN_EOF End of data

FT_TOKEN_WORD A regular word

FT_TOKEN_LEFT_PAREN The beginning of a group or subexpression

FT_TOKEN_RIGHT_PAREN The end of a group or subexpression

FT_TOKEN_STOPWORD A stopword

• yesno

Whether the word must be present for a match to occur. 0 means that the word is optional but increases the match relevance if it is
present. Values larger than 0 mean that the word must be present. Values smaller than 0 mean that the word must not be present.

• weight_adjust

A weighting factor that determines how much a match for the word counts. It can be used to increase or decrease the word's import-
ance in relevance calculations. A value of zero indicates no weight adjustment. Values greater than or less than zero mean higher or
lower weight, respectively. The examples at Section 11.8.2, “Boolean Full-Text Searches”, that use the < and > operators illustrate
how weighting works.

• wasign

The sign of the weighting factor. A negative value acts like the ~ boolean-search operator, which causes the word's contribution to
the relevance to be negative.

• trunc

Whether matching should be done as if the boolean-mode * truncation operator had been given.

Plugins should not use the prev and quot members of the MYSQL_FTPARSER_BOOLEAN_INFO structure.

Extending MySQL

1852



29.2.5.3. Creating a Plugin Library

This section provides a step-by-step procedure for creating a plugin library. It shows how to develop a library that contains a full-text
parsing plugin named simple_parser. This plugin performs parsing based on simpler rules than those used by the MySQL built-in
full-text parser: Words are non-empty runs of whitespace characters.

Each plugin library has the following contents:

• A plugin library descriptor that indicates the version number of the general plugin API that the library uses and that contains a gen-
eral declaration for each plugin in the library.

• Each plugin general declaration contains information that is common to all types of plugin: A value that indicates the plugin type;
the plugin name, author, description, and license type; and pointers to the initialization and deinitialization functions that the server
invokes when it loads and unloads the plugin.

• The plugin general declaration also contains a pointer to a type-specific plugin descriptor. The structure of these descriptors can vary
from one plugin type to another, because each type of plugin can have its own API. A plugin descriptor contains a type-specific API
version number and pointers to the functions that are needed to implement that plugin type. For example, a full-text parser plugin
has initialization and deinitialization functions, and a main parsing function. The server invokes these functions when it uses the plu-
gin to parse text.

• The plugin library contains the interface functions that are referenced by the library descriptor and by the plugin descriptors.

The easiest way to follow the instructions in this section is to use the source code in the plugin/fulltext directory of a MySQL
source distribution. The instructions assume that you make a copy of that directory and use it to build the plugin library. To make a copy
of the directory, use the following commands, which assume that the MySQL source tree is in a directory named mysql-5.1 under
your current directory:

shell> mkdir fulltext_plugin
shell> cp mysql-5.1/plugin/fulltext/* fulltext_plugin

If you are copying files from a BitKeeper source tree, cp will display an error message about the SCCS directory, which you can ig-
nore.

After copying the source files, use the following procedure to create a plugin library:

1. Change location into the fulltext_plugin directory:

shell> cd fulltext_plugin

2. The plugin source file should include the header files that the plugin library needs. The plugin.h file is required, and the library
might require other files as well. For example:

#include <stdlib.h>
#include <ctype.h>
#include <mysql/plugin.h>

3. Set up the plugin library file descriptor.

Every plugin library must include a library descriptor that must define two symbols:

• _mysql_plugin_interface_version_ specifies the version number of the general plugin framework. This is given by
the MYSQL_PLUGIN_INTERFACE_VERSION symbol, which is defined in the plugin.h file.

• _mysql_plugin_declarations_ defines an array of plugin declarations, terminated by a declaration with all members
set to 0. Each declaration is an instance of the st_mysql_plugin structure (also defined in plugin.h). There must be one
of these for each plugin in the library.

If the server does not find these two symbols in a library, it does not accept it as a legal plugin library and rejects it with an error.
This prevents use of a library for plugin purposes unless it was built specifically as a plugin library.

The standard (and most convenient) way to define the two required symbols is by using the mysql_declare_plugin and

Extending MySQL

1853



mysql_declare_plugin_end macros from the plugin.h file:

mysql_declare_plugin
... one or more plugin declarations here ...
mysql_declare_plugin_end;

For example, the library descriptor for a library that contains a single plugin named simple_parser looks like this:

mysql_declare_plugin
{
MYSQL_FTPARSER_PLUGIN, /* type */
&simple_parser_descriptor, /* descriptor */
"simple_parser", /* name */
"MySQL AB", /* author */
"Simple Full-Text Parser", /* description */
PLUGIN_LICENSE_GPL, /* plugin license */
simple_parser_plugin_init, /* init function (when loaded) */
simple_parser_plugin_deinit,/* deinit function (when unloaded) */
0x0001, /* version */
simple_status /* status variables */

}
mysql_declare_plugin_end;

For a full-text parser plugin, the type must be MYSQL_FTPARSER_PLUGIN. This is the value that identifies the plugin as being
legal for use in a WITH PARSER clause when creating a FULLTEXT index. (No other plugin type is legal for this clause.)

The mysql_declare_plugin and mysql_declare_plugin_end macros are defined in plugin.h like this:

#ifndef MYSQL_DYNAMIC_PLUGIN
#define __MYSQL_DECLARE_PLUGIN(NAME, VERSION, PSIZE, DECLS) \
int VERSION= MYSQL_PLUGIN_INTERFACE_VERSION; \
int PSIZE= sizeof(struct st_mysql_plugin); \
struct st_mysql_plugin DECLS[]= {
#else
#define __MYSQL_DECLARE_PLUGIN(NAME, VERSION, PSIZE, DECLS) \
int _mysql_plugin_interface_version_= MYSQL_PLUGIN_INTERFACE_VERSION; \
int _mysql_sizeof_struct_st_plugin_= sizeof(struct st_mysql_plugin); \
struct st_mysql_plugin _mysql_plugin_declarations_[]= {
#endif

#define mysql_declare_plugin(NAME) \
__MYSQL_DECLARE_PLUGIN(NAME, \

builtin_ ## NAME ## _plugin_interface_version, \
builtin_ ## NAME ## _sizeof_struct_st_plugin, \
builtin_ ## NAME ## _plugin)

#define mysql_declare_plugin_end ,{0,0,0,0,0,0,0,0,0}}

One point to note about those definitions is that the _mysql_plugin_interface_version_ symbol is defined only if the
MYSQL_DYNAMIC_PLUGIN symbol is defined. This means that you'll need to provide -DMYSQL_DYNAMIC_PLUGIN as part of
the compilation command when you build the plugin.

When the macros are used as just shown, they expand to the following code, which defines both of the required symbols
(_mysql_plugin_interface_version_ and _mysql_plugin_declarations_):

int _mysql_plugin_interface_version_= MYSQL_PLUGIN_INTERFACE_VERSION;
struct st_mysql_plugin _mysql_plugin_declarations_[]= {
{
MYSQL_FTPARSER_PLUGIN, /* type */
&simple_parser_descriptor, /* descriptor */
"simple_parser", /* name */
"MySQL AB", /* author */
"Simple Full-Text Parser", /* description */
PLUGIN_LICENSE_GPL, /* plugin license */
simple_parser_plugin_init, /* init function (when loaded) */
simple_parser_plugin_deinit,/* deinit function (when unloaded) */
0x0001, /* version */
simple_status /* status variables */

}
,{0,0,0,0,0,0,00,0}

};

The preceding example declares a single plugin in the library descriptor, but it is possible to declare multiple plugins. List the de-
clarations one after the other between mysql_declare_plugin and mysql_declare_plugin_end, separated by com-
mas.

MySQL plugins can be written in C or C++ (or another language that can use C calling conventions). One feature of C++ is that

Extending MySQL

1854



you can use non-constant variables to initialize global structures. However, if you write a C++ plugin, you should not use this fea-
ture. Members of structures such as the st_mysql_plugin structure should be initialized with constant variables. See the dis-
cussion at the end of this section that describes some legal and illegal initializers for plugins.

4. Set up the plugin descriptor.

Each plugin declaration in the library descriptor points to a type-specific descriptor for the corresponding plugin. In the
simple_parser declaration, that descriptor is indicated by &simple_parser_descriptor. The descriptor specifies the
version number for the full-text plugin interface (as given by MYSQL_FTPARSER_INTERFACE_VERSION), and the plugin's
parsing, initialization, and deinitialization functions:

static struct st_mysql_ftparser simple_parser_descriptor=
{
MYSQL_FTPARSER_INTERFACE_VERSION, /* interface version */
simple_parser_parse, /* parsing function */
simple_parser_init, /* parser init function */
simple_parser_deinit /* parser deinit function */

};

5. Set up the plugin interface functions.

The general plugin declaration in the library descriptor names the initialization and deinitialization functions that the server should
invoke when it loads and unloads the plugin. For simple_parser, these functions do nothing but return zero to indicate that
they succeeded:

static int simple_parser_plugin_init(void)
{
return(0);

}

static int simple_parser_plugin_deinit(void)
{
return(0);

}

Because those functions do not actually do anything, you could omit them and specify 0 for each of them in the plugin declaration.

The type-specific plugin descriptor for simple_parser names the initialization, deinitialization, and parsing functions that the
server invokes when the plugin is used. For simple_parser, the initialization and deinitialization functions do nothing:

static int simple_parser_init(MYSQL_FTPARSER_PARAM *param)
{
return(0);

}

static int simple_parser_deinit(MYSQL_FTPARSER_PARAM *param)
{
return(0);

}

Here too, because those functions do nothing, you could omit them and specify 0 for each of them in the plugin descriptor.

The main parsing function, simple_parser_parse(), acts as a replacement for the built-in full-text parser, so it needs to split
text into words and pass each word to the server. The parsing function's first argument is a pointer to a structure that contains the
parsing context. This structure has a doc member that points to the text to be parsed, and a length member that indicates how
long the text is. The simple parsing done by the plugin considers non-empty runs of whitespace characters to be words, so it identi-
fies words like this:

static int simple_parser_parse(MYSQL_FTPARSER_PARAM *param)
{
char *end, *start, *docend= param->doc + param->length;

for (end= start= param->doc;; end++)
{
if (end == docend)
{
if (end > start)
add_word(param, start, end - start);

break;
}
else if (isspace(*end))
{
if (end > start)
add_word(param, start, end - start);

Extending MySQL

1855



start= end + 1;
}

}
return(0);

}

As the parser finds each word, it invokes a function add_word() to pass the word to the server. add_word() is a helper func-
tion only; it is not part of the plugin interface. The parser passes the parsing context pointer to add_word(), as well as a pointer
to the word and a length value:

static void add_word(MYSQL_FTPARSER_PARAM *param, char *word, size_t len)
{
MYSQL_FTPARSER_BOOLEAN_INFO bool_info=
{ FT_TOKEN_WORD, 0, 0, 0, 0, ' ', 0 };

param->mysql_add_word(param, word, len, &bool_info);
}

For boolean-mode parsing, add_word() fills in the members of the bool_info structure as described in Section 29.2.5.2,
“Type-Specific Plugin Structures and Functions”.

6. Set up the status variables, if there are any. For the simple_parser plugin, the following status variable array sets up one status
variable with a value that is static text, and another with a value that is stored in a long integer variable:

long number_of_calls= 0;

struct st_mysql_show_var simple_status[]=
{
{"static", (char *)"just a static text", SHOW_CHAR},
{"called", (char *)&number_of_calls, SHOW_LONG},
{0,0,0}

};

When the plugin is installed, the plugin name and the name value are joined with an underscore to form the name displayed by
SHOW STATUS. For the array just shown, the resulting status variable names are simple_parser_static and
simple_parser_called. This convention means that you can easily display the variables for a plugin using its name:

mysql> SHOW STATUS LIKE 'simple_parser%';
+----------------------+--------------------+
| Variable_name | Value |
+----------------------+--------------------+
| simple_parser_static | just a static text |
| simple_parser_called | 0 |
+----------------------+--------------------+

7. Compile the plugin library as a shared library and install it in the plugin directory.

Note

As mentioned earlier, be sure to specify -DMYSQL_DYNAMIC_PLUGIN as part of the compilation command when you
build the plugin.

The procedure for compiling shared objects varies from system to system. If you build your library using the GNU autotools,
libtool should be able to generate the correct compilation commands for your system. If the library is named mypluglib, you
should end up with a shared object file that has a name something like libmypluglib.so. (The filename might have a different
extension on your system.)

To use the autotools, you'll need to make a few changes to the configuration files at this point to enable the plugin to be compiled
and installed. Assume that your MySQL distribution is installed at a base directory of /usr/local/mysql and that its header
files are located in the include directory under the base directory.

Edit Makefile.am, which should look something like this:

#Makefile.am example for a plugin

pkglibdir=$(libdir)/mysql
INCLUDES= -I$(top_builddir)/include -I$(top_srcdir)/include
#noinst_LTLIBRARIES= mypluglib.la
pkglib_LTLIBRARIES= mypluglib.la
mypluglib_la_SOURCES= plugin_example.c
mypluglib_la_LDFLAGS= -module -rpath $(pkglibdir)

Extending MySQL

1856



mypluglib_la_CFLAGS= -DMYSQL_DYNAMIC_PLUGIN

The mypluglib_la_CFLAGS line takes care of passing the -DMYSQL_DYNAMIC_PLUGIN flag to the compilation command.

Adjust the INCLUDES line to specify the pathname to the installed MySQL header files. Edit it to look like this:

INCLUDES= -I/usr/local/mysql/include

Make sure that the noinst_LTLIBRARIES line is commented out or remove it. Make sure that the pkglib_LTLIBRARIES
line is not commented out; it enables the make install command.

Set up the files needed for the configure command, invoke it, and run make:

shell> autoreconf --force --install --symlink
shell> ./configure --prefix=/usr/local/mysql
shell> make

The --prefix option to configure indicates the MySQL base directory under which the plugin should be installed. You can
see what value to use for this option with SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'basedir';
+---------------+------------------+
| Variable_name | Value |
+---------------+------------------+
| base | /usr/local/mysql |
+---------------+------------------+

The location of the plugin directory where you should install the library is given by the plugin_dir system variable. For ex-
ample:

mysql> SHOW VARIABLES LIKE 'plugin_dir';
+---------------+-----------------------------------+
| Variable_name | Value |
+---------------+-----------------------------------+
| plugin_dir | /usr/local/mysql/lib/mysql/plugin |
+---------------+-----------------------------------+

To install the plugin library, use make:

shell> make install

Verify that make install installed the plugin library in the proper directory. After installing it, make sure that the library per-
missions allow it to be executed by the server.

8. Register the plugin with the server.

The INSTALL PLUGIN statement causes the server to list the plugin in the plugin table and to load the plugin code from the
library file. Use that statement to register simple_parser with the server, and then verify that the plugin is listed in the plu-
gin table:

mysql> INSTALL PLUGIN simple_parser SONAME 'libmypluglib.so';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM mysql.plugin;
+---------------+-----------------+
| name | dl |
+---------------+-----------------+
| simple_parser | libmypluglib.so |
+---------------+-----------------+
1 row in set (0.00 sec)

9. Try the plugin.

Create a table that contains a string column and associate the parser plugin with a FULLTEXT index on the column:

mysql> CREATE TABLE t (c VARCHAR(255),
-> FULLTEXT (c) WITH PARSER simple_parser);

Query OK, 0 rows affected (0.01 sec)

Extending MySQL

1857



Insert some text into the table and try some searches. These should verify that the parser plugin treats all non-whitespace characters
as word characters:

mysql> INSERT INTO t VALUES
-> ('latin1_general_cs is a case-sensitive collation'),
-> ('I\'d like a case of oranges'),
-> ('this is sensitive information'),
-> ('another row'),
-> ('yet another row');

Query OK, 5 rows affected (0.02 sec)
Records: 5 Duplicates: 0 Warnings: 0

mysql> SELECT c FROM t;
+-------------------------------------------------+
| c |
+-------------------------------------------------+
| latin1_general_cs is a case-sensitive collation |
| I'd like a case of oranges |
| this is sensitive information |
| another row |
| yet another row |
+-------------------------------------------------+
5 rows in set (0.00 sec)

mysql> SELECT MATCH(c) AGAINST('case') FROM t;
+--------------------------+
| MATCH(c) AGAINST('case') |
+--------------------------+
| 0 |
| 1.2968142032623 |
| 0 |
| 0 |
| 0 |
+--------------------------+
5 rows in set (0.00 sec)

mysql> SELECT MATCH(c) AGAINST('sensitive') FROM t;
+-------------------------------+
| MATCH(c) AGAINST('sensitive') |
+-------------------------------+
| 0 |
| 0 |
| 1.3253291845322 |
| 0 |
| 0 |
+-------------------------------+
5 rows in set (0.01 sec)

mysql> SELECT MATCH(c) AGAINST('case-sensitive') FROM t;
+------------------------------------+
| MATCH(c) AGAINST('case-sensitive') |
+------------------------------------+
| 1.3109166622162 |
| 0 |
| 0 |
| 0 |
| 0 |
+------------------------------------+
5 rows in set (0.01 sec)

mysql> SELECT MATCH(c) AGAINST('I\'d') FROM t;
+--------------------------+
| MATCH(c) AGAINST('I\'d') |
+--------------------------+
| 0 |
| 1.2968142032623 |
| 0 |
| 0 |
| 0 |
+--------------------------+
5 rows in set (0.01 sec)

Note how neither “case” nor “insensitive” match “case-insensitive” the way that they would for the built-in parser.

MySQL plugins can be written in C or C++ (or another language that can use C calling conventions). One feature of C++ is that you can
use non-constant variables to initialize global structures. However, if you write a C++ plugin, you should not use this feature. Members
of structures such as the st_mysql_plugin structure should be initialized with constant variables. The simple_parser
descriptor shown earlier is allowable in a C++ plugin because it satisfies that requirement:

mysql_declare_plugin
{
MYSQL_FTPARSER_PLUGIN, /* type */

Extending MySQL

1858



&simple_parser_descriptor, /* descriptor */
"simple_parser", /* name */
"MySQL AB", /* author */
"Simple Full-Text Parser", /* description */
PLUGIN_LICENSE_GPL, /* plugin license */
simple_parser_plugin_init, /* init function (when loaded) */
simple_parser_plugin_deinit,/* deinit function (when unloaded) */
0x0001, /* version */
simple_status /* status variables */

}
mysql_declare_plugin_end;

Here is another valid way to write the descriptor. It uses constant variables to indicate the plugin name, author, and description:

const char *simple_parser_name = "simple_parser";
const char *simple_parser_author = "MySQL AB";
const char *simple_parser_description = "Simple Full-Text Parser";

mysql_declare_plugin
{
MYSQL_FTPARSER_PLUGIN, /* type */
&simple_parser_descriptor, /* descriptor */
simple_parser_name, /* name */
simple_parser_author, /* author */
simple_parser_description, /* description */
PLUGIN_LICENSE_GPL, /* plugin license */
simple_parser_plugin_init, /* init function (when loaded) */
simple_parser_plugin_deinit,/* deinit function (when unloaded) */
0x0001, /* version */
simple_status /* status variables */

}
mysql_declare_plugin_end;

However, the following descriptor is invalid. It uses structure members to indicate the plugin name, author, and description, but struc-
tures are not considered constant initializers in C++:

typedef struct
{
const char *name;
const char *author;
const char *description;

} plugin_info;

plugin_info parser_info = {
"simple_parser",
"MySQL AB",
"Simple Full-Text Parser"

};

mysql_declare_plugin
{
MYSQL_FTPARSER_PLUGIN, /* type */
&simple_parser_descriptor, /* descriptor */
parser_info.name, /* name */
parser_info.author, /* author */
parser_info.description, /* description */
PLUGIN_LICENSE_GPL, /* plugin license */
simple_parser_plugin_init, /* init function (when loaded) */
simple_parser_plugin_deinit,/* deinit function (when unloaded) */
0x0001, /* version */
simple_status /* status variables */

}
mysql_declare_plugin_end;

29.3. Adding New Functions to MySQL
There are three ways to add new functions to MySQL:

• You can add functions through the user-defined function (UDF) interface. User-defined functions are compiled as object files and
then added to and removed from the server dynamically using the CREATE FUNCTION and DROP FUNCTION statements. See
Section 29.3.2, “CREATE FUNCTION Syntax”.

• You can add functions as native (built-in) MySQL functions. Native functions are compiled into the mysqld server and become
available on a permanent basis.

• Another way to add functions is by creating stored functions. These are written using SQL statements rather than by compiling ob-
ject code. The syntax for writing stored functions is not covered here. See Chapter 20, Stored Procedures and Functions.

Extending MySQL

1859



Each method of creating compiled functions has advantages and disadvantages:

• If you write user-defined functions, you must install object files in addition to the server itself. If you compile your function into the
server, you don't need to do that.

• Native functions require you to modify a source distribution. UDFs do not. You can add UDFs to a binary MySQL distribution. No
access to MySQL source is necessary.

• If you upgrade your MySQL distribution, you can continue to use your previously installed UDFs, unless you upgrade to a newer
version for which the UDF interface changes. For native functions, you must repeat your modifications each time you upgrade.

Whichever method you use to add new functions, they can be invoked in SQL statements just like native functions such as ABS() or
SOUNDEX().

See Section 8.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server interprets references to different
kinds of functions.

The following sections describe features of the UDF interface, provide instructions for writing UDFs, discuss security precautions that
MySQL takes to prevent UDF misuse, and describe how to add native MySQL functions.

For example source code that illustrates how to write UDFs, take a look at the sql/udf_example.c file that is provided in MySQL
source distributions.

29.3.1. Features of the User-Defined Function Interface
The MySQL interface for user-defined functions provides the following features and capabilities:

• Functions can return string, integer, or real values and can accept arguments of those same types.

• You can define simple functions that operate on a single row at a time, or aggregate functions that operate on groups of rows.

• Information is provided to functions that enables them to check the number, types, and names of the arguments passed to them.

• You can tell MySQL to coerce arguments to a given type before passing them to a function.

• You can indicate that a function returns NULL or that an error occurred.

29.3.2. CREATE FUNCTION Syntax
CREATE [AGGREGATE] FUNCTION function_name RETURNS {STRING|INTEGER|REAL|DECIMAL}

SONAME shared_library_name

A user-defined function (UDF) is a way to extend MySQL with a new function that works like a native (built-in) MySQL function such
as ABS() or CONCAT().

function_name is the name that should be used in SQL statements to invoke the function. The RETURNS clause indicates the type
of the function's return value. DECIMAL is a legal value after RETURNS, but currently DECIMAL functions return string values and
should be written like STRING functions.

shared_library_name is the basename of the shared object file that contains the code that implements the function. The file must
be located in the plugin directory. This directory is given by the value of the plugin_dir system variable.

Note

This is a change in MySQL 5.1. For earlier versions of MySQL, the shared object can be located in any directory that is
searched by your system's dynamic linker.

To create a function, you must have the INSERT and privilege for the mysql database. This is necessary because CREATE FUNC-
TION adds a row to the mysql.func system table that records the function's name, type, and shared library name. If you do not have
this table, you should run the mysql_upgrade command to create it. See Section 4.4.8, “mysql_upgrade — Check Tables for
MySQL Upgrade”.

Extending MySQL

1860



An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP FUNCTION. All active func-
tions are reloaded each time the server starts, unless you start mysqld with the --skip-grant-tables option. In this case, UDF
initialization is skipped and UDFs are unavailable.

For instructions on writing user-defined functions, see Section 29.3.4, “Adding a New User-Defined Function”. For the UDF mechan-
ism to work, functions must be written in C or C++ (or another language that can use C calling conventions), your operating system
must support dynamic loading and you must have compiled mysqld dynamically (not statically).

An AGGREGATE function works exactly like a native MySQL aggregate (summary) function such as SUM or COUNT(). For AGGREG-
ATE to work, your mysql.func table must contain a type column. If your mysql.func table does not have this column, you
should run the mysql_upgrade program to create it (see Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”).

Note

To upgrade the shared library associated with a UDF, issue a DROP FUNCTION statement, upgrade the shared library,
and then issue a CREATE FUNCTION statement. If you upgrade the shared library first and then use DROP FUNCTION,
the server may crash.

29.3.3. DROP FUNCTION Syntax
DROP FUNCTION function_name

This statement drops the user-defined function (UDF) named function_name.

To drop a function, you must have the DELETE privilege for the mysql database. This is because DROP FUNCTION removes a row
from the mysql.func system table that records the function's name, type, and shared library name.

Note

To upgrade the shared library associated with a UDF, issue a DROP FUNCTION statement, upgrade the shared library,
and then issue a CREATE FUNCTION statement. If you upgrade the shared library first and then use DROP FUNCTION,
the server may crash.

DROP FUNCTION is also used to drop stored functions (see Section 20.2.3, “DROP PROCEDURE and DROP FUNCTION Syntax”).

29.3.4. Adding a New User-Defined Function
For the UDF mechanism to work, functions must be written in C or C++ and your operating system must support dynamic loading. The
MySQL source distribution includes a file sql/udf_example.c that defines 5 new functions. Consult this file to see how UDF call-
ing conventions work. UDF-related symbols and data structures are defined in the include/mysql_com.h header file. (You need
not include this header file directly because it is included by mysql.h.)

A UDF contains code that becomes part of the running server, so when you write a UDF, you are bound by any and all constraints that
otherwise apply to writing server code. For example, you may have problems if you attempt to use functions from the libstdc++ lib-
rary. These constraints may change in future versions of the server, so it is possible that server upgrades will require revisions to UDFs
that were originally written for older servers. For information about these constraints, see Section 2.9.2, “Typical configure Op-
tions”, and Section 2.9.4, “Dealing with Problems Compiling MySQL”.

To be able to use UDFs, you need to link mysqld dynamically. Don't configure MySQL using -
-with-mysqld-ldflags=-all-static. If you want to use a UDF that needs to access symbols from mysqld (for example,
the metaphone function in sql/udf_example.c that uses default_charset_info), you must link the program with -
rdynamic (see man dlopen). If you plan to use UDFs, the rule of thumb is to configure MySQL with -
-with-mysqld-ldflags=-rdynamic unless you have a very good reason not to.

For each function that you want to use in SQL statements, you should define corresponding C (or C++) functions. In the following dis-
cussion, the name “xxx” is used for an example function name. To distinguish between SQL and C/C++ usage, XXX() (uppercase) in-
dicates an SQL function call, and xxx() (lowercase) indicates a C/C++ function call.

The C/C++ functions that you write to implement the interface for XXX() are:

• xxx() (required)

The main function. This is where the function result is computed. The correspondence between the SQL function data type and the

Extending MySQL

1861



return type of your C/C++ function is shown here:

SQL Type C/C++ Type

STRING char *

INTEGER long long

REAL double

It is also possible to declare a DECIMAL function, but currently the value is returned as a string, so you should write the UDF as
though it were a STRING function. ROW functions are not implemented.

• xxx_init() (optional)

The initialization function for xxx(). It can be used for the following purposes:

• To check the number of arguments to XXX().

• To check that the arguments are of a required type or, alternatively, to tell MySQL to coerce arguments to the types you want
when the main function is called.

• To allocate any memory required by the main function.

• To specify the maximum length of the result.

• To specify (for REAL functions) the maximum number of decimal places in the result.

• To specify whether the result can be NULL.

• xxx_deinit() (optional)

The deinitialization function for xxx(). It should deallocate any memory allocated by the initialization function.

When an SQL statement invokes XXX(), MySQL calls the initialization function xxx_init() to let it perform any required setup,
such as argument checking or memory allocation. If xxx_init() returns an error, MySQL aborts the SQL statement with an error
message and does not call the main or deinitialization functions. Otherwise, MySQL calls the main function xxx() once for each row.
After all rows have been processed, MySQL calls the deinitialization function xxx_deinit() so that it can perform any required
cleanup.

For aggregate functions that work like SUM(), you must also provide the following functions:

• xxx_clear() (required in 5.1)

Reset the current aggregate value but do not insert the argument as the initial aggregate value for a new group.

• xxx_add() (required)

Add the argument to the current aggregate value.

MySQL handles aggregate UDFs as follows:

1. Call xxx_init() to let the aggregate function allocate any memory it needs for storing results.

2. Sort the table according to the GROUP BY expression.

3. Call xxx_clear() for the first row in each new group.

4. Call xxx_add() for each new row that belongs in the same group.

5. Call xxx() to get the result for the aggregate when the group changes or after the last row has been processed.

Extending MySQL

1862



6. Repeat 3-5 until all rows has been processed

7. Call xxx_deinit() to let the UDF free any memory it has allocated.

All functions must be thread-safe. This includes not just the main function, but the initialization and deinitialization functions as well,
and also the additional functions required by aggregate functions. A consequence of this requirement is that you are not allowed to al-
locate any global or static variables that change! If you need memory, you should allocate it in xxx_init() and free it in
xxx_deinit().

29.3.4.1. UDF Calling Sequences for Simple Functions

This section describes the different functions that you need to define when you create a simple UDF. Section 29.3.4, “Adding a New
User-Defined Function”, describes the order in which MySQL calls these functions.

The main xxx() function should be declared as shown in this section. Note that the return type and parameters differ, depending on
whether you declare the SQL function XXX() to return STRING, INTEGER, or REAL in the CREATE FUNCTION statement:

For STRING functions:

char *xxx(UDF_INIT *initid, UDF_ARGS *args,
char *result, unsigned long *length,
char *is_null, char *error);

For INTEGER functions:

long long xxx(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

For REAL functions:

double xxx(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

DECIMAL functions return string values and should be declared the same way as STRING functions. ROW functions are not implemen-
ted.

The initialization and deinitialization functions are declared like this:

my_bool xxx_init(UDF_INIT *initid, UDF_ARGS *args, char *message);

void xxx_deinit(UDF_INIT *initid);

The initid parameter is passed to all three functions. It points to a UDF_INIT structure that is used to communicate information
between functions. The UDF_INIT structure members follow. The initialization function should fill in any members that it wishes to
change. (To use the default for a member, leave it unchanged.)

• my_bool maybe_null

xxx_init() should set maybe_null to 1 if xxx() can return NULL. The default value is 1 if any of the arguments are de-
clared maybe_null.

• unsigned int decimals

The number of decimal digits to the right of the decimal point. The default value is the maximum number of decimal digits in the ar-
guments passed to the main function. (For example, if the function is passed 1.34, 1.345, and 1.3, the default would be 3, be-
cause 1.345 has 3 decimal digits.

• unsigned int max_length

The maximum length of the result. The default max_length value differs depending on the result type of the function. For string
functions, the default is the length of the longest argument. For integer functions, the default is 21 digits. For real functions, the de-
fault is 13 plus the number of decimal digits indicated by initid->decimals. (For numeric functions, the length includes any
sign or decimal point characters.)

Extending MySQL

1863



If you want to return a blob value, you can set max_length to 65KB or 16MB. This memory is not allocated, but the value is used
to decide which data type to use if there is a need to temporarily store the data.

• char *ptr

A pointer that the function can use for its own purposes. For example, functions can use initid->ptr to communicate allocated
memory among themselves. xxx_init() should allocate the memory and assign it to this pointer:

initid->ptr = allocated_memory;

In xxx() and xxx_deinit(), refer to initid->ptr to use or deallocate the memory.

• my_bool const_item

xxx_init() should set const_item to 1 if xxx() always returns the same value and to 0 otherwise.

29.3.4.2. UDF Calling Sequences for Aggregate Functions

This section describes the different functions that you need to define when you create an aggregate UDF. Section 29.3.4, “Adding a
New User-Defined Function”, describes the order in which MySQL calls these functions.

• xxx_reset()

This function is called when MySQL finds the first row in a new group. It should reset any internal summary variables and then use
the given UDF_ARGS argument as the first value in your internal summary value for the group. Declare xxx_reset() as follows:

char *xxx_reset(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

xxx_reset() is not needed or used in MySQL 5.1, in which the UDF interface uses xxx_clear() instead. However, you can
define both xxx_reset() and xxx_clear() if you want to have your UDF work with older versions of the server. (If you do
include both functions, the xxx_reset() function in many cases can be implemented internally by calling xxx_clear() to re-
set all variables, and then calling xxx_add() to add the UDF_ARGS argument as the first value in the group.)

• xxx_clear()

This function is called when MySQL needs to reset the summary results. It is called at the beginning for each new group but can
also be called to reset the values for a query where there were no matching rows. Declare xxx_clear() as follows:

char *xxx_clear(UDF_INIT *initid, char *is_null, char *error);

is_null is set to point to CHAR(0) before calling xxx_clear().

If something went wrong, you can store a value in the variable to which the error argument points. error points to a single-byte
variable, not to a string buffer.

xxx_clear() is required by MySQL 5.1.

• xxx_add()

This function is called for all rows that belong to the same group, except for the first row. You should use it to add the value in the
UDF_ARGS argument to your internal summary variable.

char *xxx_add(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

The xxx() function for an aggregate UDF should be declared the same way as for a non-aggregate UDF. See Section 29.3.4.1, “UDF
Calling Sequences for Simple Functions”.

For an aggregate UDF, MySQL calls the xxx() function after all rows in the group have been processed. You should normally never
access its UDF_ARGS argument here but instead return a value based on your internal summary variables.

Extending MySQL

1864



Return value handling in xxx() should be done the same way as for a non-aggregate UDF. See Section 29.3.4.4, “UDF Return Values
and Error Handling”.

The xxx_reset() and xxx_add() functions handle their UDF_ARGS argument the same way as functions for non-aggregate UD-
Fs. See Section 29.3.4.3, “UDF Argument Processing”.

The pointer arguments to is_null and error are the same for all calls to xxx_reset(), xxx_clear(), xxx_add() and
xxx(). You can use this to remember that you got an error or whether the xxx() function should return NULL. You should not store a
string into *error! error points to a single-byte variable, not to a string buffer.

*is_null is reset for each group (before calling xxx_clear()). *error is never reset.

If *is_null or *error are set when xxx() returns, MySQL returns NULL as the result for the group function.

29.3.4.3. UDF Argument Processing

The args parameter points to a UDF_ARGS structure that has the members listed here:

• unsigned int arg_count

The number of arguments. Check this value in the initialization function if you require your function to be called with a particular
number of arguments. For example:

if (args->arg_count != 2)
{

strcpy(message,"XXX() requires two arguments");
return 1;

}

For other UDF_ARGS member values that are arrays, array references are zero-based. That is, refer to array members using index
values from 0 to args->arg_count – 1.

• enum Item_result *arg_type

A pointer to an array containing the types for each argument. The possible type values are STRING_RESULT, INT_RESULT,
REAL_RESULT, and DECIMAL_RESULT.

To make sure that arguments are of a given type and return an error if they are not, check the arg_type array in the initialization
function. For example:

if (args->arg_type[0] != STRING_RESULT ||
args->arg_type[1] != INT_RESULT)

{
strcpy(message,"XXX() requires a string and an integer");
return 1;

}

Arguments of type DECIMAL_RESULT are passed as strings, so you should handle them the same way as STRING_RESULT val-
ues.

As an alternative to requiring your function's arguments to be of particular types, you can use the initialization function to set the
arg_type elements to the types you want. This causes MySQL to coerce arguments to those types for each call to xxx(). For ex-
ample, to specify that the first two arguments should be coerced to string and integer, respectively, do this in xxx_init():

args->arg_type[0] = STRING_RESULT;
args->arg_type[1] = INT_RESULT;

Exact-value decimal arguments such as 1.3 or DECIMAL column values are passed with a type of DECIMAL_RESULT. However,
the values are passed as strings. If you want to receive a number, use the initialization function to specify that the argument should
be coerced to a REAL_RESULT value:

args->arg_type[2] = REAL_RESULT;

• char **args

args->args communicates information to the initialization function about the general nature of the arguments passed to your

Extending MySQL

1865



function. For a constant argument i, args->args[i] points to the argument value. (See below for instructions on how to access
the value properly.) For a non-constant argument, args->args[i] is 0. A constant argument is an expression that uses only con-
stants, such as 3 or 4*7-2 or SIN(3.14). A non-constant argument is an expression that refers to values that may change from
row to row, such as column names or functions that are called with non-constant arguments.

For each invocation of the main function, args->args contains the actual arguments that are passed for the row currently being
processed.

If argument i represents NULL, args->args[i] is a null pointer (0). If the argument is not NULL, functions can refer to it as fol-
lows:

• An argument of type STRING_RESULT is given as a string pointer plus a length, to allow handling of binary data or data of ar-
bitrary length. The string contents are available as args->args[i] and the string length is args->lengths[i]. Do not
assume that the string is null-terminated.

• For an argument of type INT_RESULT, you must cast args->args[i] to a long long value:

long long int_val;
int_val = *((long long*) args->args[i]);

• For an argument of type REAL_RESULT, you must cast args->args[i] to a double value:

double real_val;
real_val = *((double*) args->args[i]);

• For an argument of type DECIMAL_RESULT, the value is passed as a string and should be handled like a STRING_RESULT
value.

• ROW_RESULT arguments are not implemented.

• unsigned long *lengths

For the initialization function, the lengths array indicates the maximum string length for each argument. You should not change
these. For each invocation of the main function, lengths contains the actual lengths of any string arguments that are passed for the
row currently being processed. For arguments of types INT_RESULT or REAL_RESULT, lengths still contains the maximum
length of the argument (as for the initialization function).

• char *maybe_null

For the initialization function, the maybe_null array indicates for each argument whether the argument value might be null (0 if
no, 1 if yes).

• char **attributes

args->attributes communicates information information about the names of the UDF arguments. For argument i, the attrib-
ute name is available as a string in args->attributes[i] and the attribute length is args->attribute_lengths[i].
Do not assume that the string is null-terminated.

By default, the name of a UDF argument is the text of the expression used to specify the argument. For UDFs, an argument may
also have an optional [AS] alias_name clause, in which case the argument name is alias_name. The attributes value
for each argument thus depends on whether an alias was given.

Suppose that a UDF my_udf() is invoked as follows:

SELECT my_udf(expr1, expr2 AS alias1, expr3 alias2);

In this case, the attributes and attribute_lengths arrays will have these values:

args->attributes[0] = "expr1"
args->attribute_lengths[0] = 5

args->attributes[1] = "alias1"
args->attribute_lengths[1] = 6

args->attributes[2] = "alias2"
args->attribute_lengths[2] = 6

Extending MySQL

1866



• unsigned long *attribute_lengths

The attribute_lengths array indicates the length of each argument name.

29.3.4.4. UDF Return Values and Error Handling

The initialization function should return 0 if no error occurred and 1 otherwise. If an error occurs, xxx_init() should store a null-
terminated error message in the message parameter. The message is returned to the client. The message buffer is
MYSQL_ERRMSG_SIZE characters long, but you should try to keep the message to less than 80 characters so that it fits the width of a
standard terminal screen.

The return value of the main function xxx() is the function value, for long long and double functions. A string function should
return a pointer to the result and set *result and *length to the contents and length of the return value. For example:

memcpy(result, "result string", 13);
*length = 13;

The result buffer that is passed to the xxx() function is 255 bytes long. If your result fits in this, you don't have to worry about
memory allocation for results.

If your string function needs to return a string longer than 255 bytes, you must allocate the space for it with malloc() in your
xxx_init() function or your xxx() function and free it in your xxx_deinit() function. You can store the allocated memory in
the ptr slot in the UDF_INIT structure for reuse by future xxx() calls. See Section 29.3.4.1, “UDF Calling Sequences for Simple
Functions”.

To indicate a return value of NULL in the main function, set *is_null to 1:

*is_null = 1;

To indicate an error return in the main function, set *error to 1:

*error = 1;

If xxx() sets *error to 1 for any row, the function value is NULL for the current row and for any subsequent rows processed by the
statement in which XXX() was invoked. (xxx() is not even called for subsequent rows.)

29.3.4.5. Compiling and Installing User-Defined Functions

Files implementing UDFs must be compiled and installed on the host where the server runs. This process is described below for the ex-
ample UDF file sql/udf_example.c that is included in the MySQL source distribution.

The immediately following instructions are for Unix. Instructions for Windows are given later in this section.

The udf_example.c file contains the following functions:

• metaphon() returns a metaphon string of the string argument. This is something like a soundex string, but it's more tuned for
English.

• myfunc_double() returns the sum of the ASCII values of the characters in its arguments, divided by the sum of the length of its
arguments.

• myfunc_int() returns the sum of the length of its arguments.

• sequence([const int]) returns a sequence starting from the given number or 1 if no number has been given.

• lookup() returns the IP number for a hostname.

• reverse_lookup() returns the hostname for an IP number. The function may be called either with a single string argument of
the form 'xxx.xxx.xxx.xxx' or with four numbers.

A dynamically loadable file should be compiled as a sharable object file, using a command something like this:

Extending MySQL

1867



shell> gcc -shared -o udf_example.so udf_example.c

If you are using gcc with configure and libtool (which is how MySQL is configured), you should be able to create
udf_example.so with a simpler command:

shell> make udf_example.la

After you compile a shared object containing UDFs, you must install it and tell MySQL about it. Compiling a shared object from
udf_example.c using gcc directly produces a file named udf_example.so. Compiling the shared object using make produces
a file named something like udf_example.so.0.0.0 in the .libs directory (the exact name may vary from platform to plat-
form). Copy the shared object to the server's plugin directory and name it udf_example.so. This directory is given by the value of
the plugin_dir system variable.

Note

This is a change in MySQL 5.1. For earlier versions of MySQL, the shared object can be located in any directory that is
searched by your system's dynamic linker.

On some systems, the ldconfig program that configures the dynamic linker does not recognize a shared object unless its name begins
with lib. In this case you should rename a file such as udf_example.so to libudf_example.so.

On Windows, you can compile user-defined functions by using the following procedure:

1. You need to obtain the BitKeeper source repository for MySQL 5.1. See Section 2.9.3, “Installing from the Development Source
Tree”.

2. You must obtain the CMake build utility from http://www.cmake.org. (Version 2.4.2 or later is required).

3. In the source repository, look in the sql directory. There are files named udf_example.def udf_example.c there. Copy
both files from this directory to your working directory.

4. Create a CMake makefile with these contents:

PROJECT(udf_example)

# Path for MySQL include directory
INCLUDE_DIRECTORIES("c:/mysql/include")

ADD_DEFINITIONS("-DHAVE_DLOPEN")
ADD_LIBRARY(udf_example MODULE udf_example.c udf_example.def)
TARGET_LINK_LIBRARIES(udf_example wsock32)

5. Create the VC project and solution files:

cmake -G "<Generator>"

Invoking cmake --help shows you a list of valid Generators.

6. Create udf_example.dll:

devenv udf_example.sln /build Release

After the shared object file has been installed, notify mysqld about the new functions with these statements:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_double RETURNS REAL SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION lookup RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION reverse_lookup

-> RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE AGGREGATE FUNCTION avgcost

-> RETURNS REAL SONAME 'udf_example.so';

Functions can be deleted using DROP FUNCTION:

Extending MySQL

1868

http://www.cmake.org


mysql> DROP FUNCTION metaphon;
mysql> DROP FUNCTION myfunc_double;
mysql> DROP FUNCTION myfunc_int;
mysql> DROP FUNCTION lookup;
mysql> DROP FUNCTION reverse_lookup;
mysql> DROP FUNCTION avgcost;

The CREATE FUNCTION and DROP FUNCTION statements update the func system table in the mysql database. The function's
name, type and shared library name are saved in the table. You must have the INSERT and DELETE privileges for the mysql database
to create and drop functions.

You should not use CREATE FUNCTION to add a function that has previously been created. If you need to reinstall a function, you
should remove it with DROP FUNCTION and then reinstall it with CREATE FUNCTION. You would need to do this, for example, if
you recompile a new version of your function, so that mysqld gets the new version. Otherwise, the server continues to use the old ver-
sion.

An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP FUNCTION. All active func-
tions are reloaded each time the server starts, unless you start mysqld with the --skip-grant-tables option. In this case, UDF
initialization is skipped and UDFs are unavailable.

If the new function will be referred to in statements that will be replicated to slave servers, you must ensure that every slave server also
has the function available. Otherwise, replication will fail on the slaves when they attempt to invoke the function.

29.3.4.6. User-Defined Function Security Precautions

MySQL takes the following measures to prevent misuse of user-defined functions.

You must have the INSERT privilege to be able to use CREATE FUNCTION and the DELETE privilege to be able to use DROP
FUNCTION. This is necessary because these statements add and delete rows from the mysql.func table.

UDFs should have at least one symbol defined in addition to the xxx symbol that corresponds to the main xxx() function. These aux-
iliary symbols correspond to the xxx_init(), xxx_deinit(), xxx_reset(), xxx_clear(), and xxx_add() functions.
mysqld also supports an --allow-suspicious-udfs option that controls whether UDFs that have only an xxx symbol can be
loaded. By default, the option is off, to prevent attempts at loading functions from shared object files other than those containing legit-
imate UDFs. If you have older UDFs that contain only the xxx symbol and that cannot be recompiled to include an auxiliary symbol, it
may be necessary to specify the --allow-suspicious-udfs option. Otherwise, you should avoid enabling this capability.

UDF object files cannot be placed in arbitrary directories. They must be located in the server's plugin directory. This directory is given
by the value of the plugin_dir system variable.

Note

This is a change in MySQL 5.1. For earlier versions of MySQL, the shared object can be located in any directory that is
searched by your system's dynamic linker.

29.3.5. Adding a New Native Function
To add a new native MySQL function, use the procedure described here, which requires that you use a source distribution. You cannot
add native functions to a binary distribution because it is necessary to modify MySQL source code and compile MySQL from the modi-
fied source. If you migrate to another version of MySQL (for example, when a new version is released), you must repeat the procedure
with the new version.

If the new native function will be referred to in statements that will be replicated to slave servers, you must ensure that every slave serv-
er also has the function available. Otherwise, replication will fail on the slaves when they attempt to invoke the function.

To add a new native function, follow these steps to modify source files in the sql directory. For MySQL 5.1, the first two steps apply
only as of 5.1.13. For older versions, see the instructions in the corresponding section of the MySQL 5.0 manual.

1. Create a subclass for the function in item_create.cc:

• If the function takes a fixed number of arguments, create a subclass of Create_func_arg0, Create_func_arg1, Cre-
ate_func_arg2, or Create_func_arg3, respectively, depending on whether the function takes zero, one, two, or three
arguments. For examples, see the Create_func_uuid, Create_func_abs, Create_func_pow, and Cre-
ate_func_lpad classes.

Extending MySQL

1869



• If the function takes a variable number of arguments, create a subclass of Create_native_func. For an example, see
Create_func_concat.

2. To provide a name by which the function can be referred to in SQL statements, register the name in item_create.cc by
adding a line to this array:

static Native_func_registry func_array[]

You can register several names for the same function. For example, see the lines for "LCASE" and "LOWER", which are aliases
for Create_func_lcase.

3. In item_func.h, declare a class inheriting from Item_num_func or Item_str_func, depending on whether your function
returns a number or a string.

4. In item_func.cc, add one of the following declarations, depending on whether you are defining a numeric or string function:

double Item_func_newname::val()
longlong Item_func_newname::val_int()
String *Item_func_newname::Str(String *str)

If you inherit your object from any of the standard items (like Item_num_func), you probably only have to define one of these
functions and let the parent object take care of the other functions. For example, the Item_str_func class defines a val()
function that executes atof() on the value returned by ::str().

5. If the function is non-deterministic, include the following statement in the item constructor to indicate that function results should
not be cached:

current_thd->lex->safe_to_cache_query=0;

A function is non-deterministic if, given fixed values for its arguments, it can return different results for different invocations.

6. You should probably also define the following object function:

void Item_func_newname::fix_length_and_dec()

This function should at least calculate max_length based on the given arguments. max_length is the maximum number of
characters the function may return. This function should also set maybe_null = 0 if the main function can't return a NULL
value. The function can check whether any of the function arguments can return NULL by checking the arguments' maybe_null
variable. Look at Item_func_mod::fix_length_and_dec for a typical example of how to do this.

All functions must be thread-safe. In other words, do not use any global or static variables in the functions without protecting them with
mutexes.

If you want to return NULL from ::val(), ::val_int(), or ::str(), you should set null_value to 1 and return 0.

For ::str() object functions, there are additional considerations to be aware of:

• The String *str argument provides a string buffer that may be used to hold the result. (For more information about the
String type, take a look at the sql_string.h file.)

• The ::str() function should return the string that holds the result, or (char*) 0 if the result is NULL.

• All current string functions try to avoid allocating any memory unless absolutely necessary!

29.4. Adding New Procedures to MySQL
In MySQL, you can define a procedure in C++ that can access and modify the data in a query before it is sent to the client. The modific-
ation can be done on a row-by-row or GROUP BY level.

We have created an example procedure to show you what can be done.

Extending MySQL

1870



Additionally, we recommend that you take a look at mylua. With this you can use the LUA language to load a procedure at runtime in-
to mysqld.

29.4.1. PROCEDURE ANALYSE

analyse([max_elements[,max_memory]])

This procedure is defined in the sql/sql_analyse.cc file. It examines the result from a query and returns an analysis of the results
that suggests optimal data types for each column. To obtain this analysis, append PROCEDURE ANALYSE to the end of a SELECT
statement:

SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max_elements,[max_memory]])

For example:

SELECT col1, col2 FROM table1 PROCEDURE ANALYSE(10, 2000);

The results show some statistics for the values returned by the query, and propose an optimal data type for the columns. This can be
helpful for checking your existing tables, or after importing new data. You may need to try different settings for the arguments so that
PROCEDURE ANALYSE() does not suggest the ENUM data type when it is not appropriate.

The arguments are optional and are used as follows:

• max_elements (default 256) is the maximum number of distinct values that analyse notices per column. This is used by ana-
lyse to check whether the optimal data type should be of type ENUM.

• max_memory (default 8192) is the maximum amount of memory that analyse should allocate per column while trying to find all
distinct values.

29.4.2. Writing a Procedure
For the moment, the only documentation for this is the source.

You can find all information about procedures by examining the following files:

• sql/sql_analyse.cc

• sql/procedure.h

• sql/procedure.cc

• sql/sql_select.cc

29.5. Debugging and Porting MySQL
This appendix helps you port MySQL to other operating systems. Do check the list of currently supported operating systems first. See
Section 2.1.1, “Operating Systems Supported by MySQL Community Server”. If you have created a new port of MySQL, please let us
know so that we can list it here and on our Web site (http://www.mysql.com/), recommending it to other users.

Note: If you create a new port of MySQL, you are free to copy and distribute it under the GPL license, but it does not make you a copy-
right holder of MySQL.

A working POSIX thread library is needed for the server. On Solaris 2.5 we use Sun PThreads (the native thread support in 2.4 and
earlier versions is not good enough), on Linux we use LinuxThreads by Xavier Leroy, <Xavier.Leroy@inria.fr>.

The hard part of porting to a new Unix variant without good native thread support is probably to port MIT-pthreads. See mit-
pthreads/README and Programming POSIX Threads (http://www.humanfactor.com/pthreads/).

Up to MySQL 4.0.2, the MySQL distribution included a patched version of Chris Provenzano's Pthreads from MIT (see the MIT

Extending MySQL

1871

http://www.mysql.com/
http://www.humanfactor.com/pthreads/


Pthreads Web page at http://www.mit.edu/afs/sipb/project/pthreads/ and a programming introduction at ht-
tp://www.mit.edu:8001/people/proven/IAP_2000/). These can be used for some operating systems that do not have POSIX threads. See
Section 2.9.5, “MIT-pthreads Notes”.

It is also possible to use another user level thread package named FSU Pthreads (see http://moss.csc.ncsu.edu/~mueller/pthreads/). This
implementation is being used for the SCO port.

See the thr_lock.c and thr_alarm.c programs in the mysys directory for some tests/examples of these problems.

Both the server and the client need a working C++ compiler. We use gcc on many platforms. Other compilers that are known to work
are SPARCworks, Sun Forte, Irix cc, HP-UX aCC, IBM AIX xlC_r), Intel ecc/icc and Compaq cxx).

Important

If you are trying to build MySQL 5.1 with icc on the IA64 platform, and need support for MySQL Cluster, you should
first ensure that you are using icc version 9.1.043 or later. (For details, see Bug#21875.)

To compile only the client use ./configure --without-server.

There is currently no support for only compiling the server, nor is it likely to be added unless someone has a good reason for it.

If you want/need to change any Makefile or the configure script you also need GNU Automake and Autoconf. See Section 2.9.3,
“Installing from the Development Source Tree”.

All steps needed to remake everything from the most basic files.

/bin/rm */.deps/*.P
/bin/rm -f config.cache
aclocal
autoheader
aclocal
automake
autoconf
./configure --with-debug=full --prefix='your installation directory'

# The makefiles generated above need GNU make 3.75 or newer.
# (called gmake below)
gmake clean all install init-db

If you run into problems with a new port, you may have to do some debugging of MySQL! See Section 29.5.1, “Debugging a MySQL
Server”.

Note

Before you start debugging mysqld, first get the test programs mysys/thr_alarm and mysys/thr_lock to work.
This ensures that your thread installation has even a remote chance to work!

29.5.1. Debugging a MySQL Server
If you are using some functionality that is very new in MySQL, you can try to run mysqld with the --skip-new (which disables all
new, potentially unsafe functionality) or with --safe-mode which disables a lot of optimization that may cause problems. See Sec-
tion B.1.4.2, “What to Do If MySQL Keeps Crashing”.

If mysqld doesn't want to start, you should verify that you don't have any my.cnf files that interfere with your setup! You can check
your my.cnf arguments with mysqld --print-defaults and avoid using them by starting with mysqld --no-defaults
....

If mysqld starts to eat up CPU or memory or if it “hangs,” you can use mysqladmin processlist status to find out if
someone is executing a query that takes a long time. It may be a good idea to run mysqladmin -i10 processlist status in
some window if you are experiencing performance problems or problems when new clients can't connect.

The command mysqladmin debug dumps some information about locks in use, used memory and query usage to the MySQL log
file. This may help solve some problems. This command also provides some useful information even if you haven't compiled MySQL
for debugging!

If the problem is that some tables are getting slower and slower you should try to optimize the table with OPTIMIZE TABLE or my-
isamchk. See Chapter 5, MySQL Server Administration. You should also check the slow queries with EXPLAIN.

Extending MySQL

1872

http://www.mit.edu/afs/sipb/project/pthreads/
http://www.mit.edu:8001/people/proven/IAP_2000/
http://www.mit.edu:8001/people/proven/IAP_2000/
http://moss.csc.ncsu.edu/~mueller/pthreads/
http://bugs.mysql.com/21875


You should also read the OS-specific section in this manual for problems that may be unique to your environment. See Section 2.13,
“Operating System-Specific Notes”.

29.5.1.1. Compiling MySQL for Debugging

If you have some very specific problem, you can always try to debug MySQL. To do this you must configure MySQL with the -
-with-debug or the --with-debug=full option. You can check whether MySQL was compiled with debugging by doing:
mysqld --help. If the --debug flag is listed with the options then you have debugging enabled. mysqladmin ver also lists the
mysqld version as mysql ... --debug in this case.

If you are using gcc, the recommended configure line is:

CC=gcc CFLAGS="-O2" CXX=gcc CXXFLAGS="-O2 -felide-constructors \
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql \
--with-debug --with-extra-charsets=complex

This avoids problems with the libstdc++ library and with C++ exceptions (many compilers have problems with C++ exceptions in
threaded code) and compile a MySQL version with support for all character sets.

If you suspect a memory overrun error, you can configure MySQL with --with-debug=full, which installs a memory allocation
(SAFEMALLOC) checker. However, running with SAFEMALLOC is quite slow, so if you get performance problems you should start
mysqld with the --skip-safemalloc option. This disables the memory overrun checks for each call to malloc() and free().

If mysqld stops crashing when you compile it with --with-debug, you probably have found a compiler bug or a timing bug within
MySQL. In this case, you can try to add -g to the CFLAGS and CXXFLAGS variables above and not use --with-debug. If mysqld
dies, you can at least attach to it with gdb or use gdb on the core file to find out what happened.

When you configure MySQL for debugging you automatically enable a lot of extra safety check functions that monitor the health of
mysqld. If they find something “unexpected,” an entry is written to stderr, which mysqld_safe directs to the error log! This also
means that if you are having some unexpected problems with MySQL and are using a source distribution, the first thing you should do
is to configure MySQL for debugging! (The second thing is to send mail to a MySQL mailing list and ask for help. See Section 1.6.1,
“MySQL Mailing Lists”. If you believe that you have found a bug, please use the instructions at Section 1.7, “How to Report Bugs or
Problems”.

In the Windows MySQL distribution, mysqld.exe is by default compiled with support for trace files.

29.5.1.2. Creating Trace Files

If the mysqld server doesn't start or if you can cause it to crash quickly, you can try to create a trace file to find the problem.

To do this, you must have a mysqld that has been compiled with debugging support. You can check this by executing mysqld -V. If
the version number ends with -debug, it's compiled with support for trace files. (On Windows, the debugging server is named
mysqld-debug rather than mysqld as of MySQL 4.1.)

Start the mysqld server with a trace log in /tmp/mysqld.trace on Unix or C:\mysqld.trace on Windows:

shell> mysqld --debug

On Windows, you should also use the --standalone flag to not start mysqld as a service. In a console window, use this command:

C:\> mysqld-debug --debug --standalone

After this, you can use the mysql.exe command-line tool in a second console window to reproduce the problem. You can stop the
mysqld server with mysqladmin shutdown.

Note that the trace file become very big! If you want to generate a smaller trace file, you can use debugging options something like this:

mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

This only prints information with the most interesting tags to the trace file.

If you make a bug report about this, please only send the lines from the trace file to the appropriate mailing list where something seems
to go wrong! If you can't locate the wrong place, you can ftp the trace file, together with a full bug report, to
ftp://ftp.mysql.com/pub/mysql/upload/ so that a MySQL developer can take a look at it.

Extending MySQL

1873

ftp://ftp.mysql.com/pub/mysql/upload/


The trace file is made with the DBUG package by Fred Fish. See Section 29.5.3, “The DBUG Package”.

29.5.1.3. Using pdb to create a Windows crashdump

Starting with MySQL 5.1.12 the Program Database files (extension pdb) are included in the Noinstall distribution of MySQL. These
files provide information for debugging your MySQL installation in the event of a problem.

The PDB file contains more detailed information about mysqld and other tools that enables more detailed trace and dump files to be
created. You can use these with Dr Watson, WinDbg and Visual Studio to debug mysqld.

For more information on PDB files, see Microsoft Knowledge Base Article 121366. For more information on the debugging options
available, see Debugging Tools for Windows.

Dr Watson is installed with all Windows distributions, but if you have installed Windows development tools, Dr Watson may have been
replaced with WinDbg, the debugger included with Visual Studio, or the debugging tools provided with Borland or Delphi.

To generate a crash file using Dr Watson, follow these steps:

1. Start Dr Watson by running drwtsn32.exe interactively using the -i option:

C:\> drwtsn32 -i

2. Set the LOG FILE PATH to the directory where you want to store trace files.

3. Make sure DUMP ALL THREAD CONTEXTS and APPEND TO EXISTING LOG FILE.

4. Uncheck DUMP SUMBOL TABLE, VISUAL NOTIFICATION, SOUND NOTIFICATION and CREATE CRASH DUMP FILE.

5. Set the NUMBER OF INSTRUCTIONS to a suitable value to capture enough calls in the stacktrace. A value of at 25 should be
enough.

Note that the file generated can be very large.

29.5.1.4. Debugging mysqld under gdb

On most systems you can also start mysqld from gdb to get more information if mysqld crashes.

With some older gdb versions on Linux you must use run --one-thread if you want to be able to debug mysqld threads. In this
case, you can only have one thread active at a time. We recommend you to upgrade to gdb 5.1 ASAP as thread debugging works much
better with this version!

NPTL threads (the new thread library on Linux) may cause problems while running mysqld under gdb. Some symptoms are:

• mysqld hangs during startup (before it writes ready for connections).

• mysqld crashes during a pthread_mutex_lock() or pthread_mutex_unlock() call.

In this case, you should set the following environment variable in the shell before starting gdb:

LD_ASSUME_KERNEL=2.4.1
export LD_ASSUME_KERNEL

When running mysqld under gdb, you should disable the stack trace with --skip-stack-trace to be able to catch segfaults
within gdb.

In MySQL 4.0.14 and above you should use the --gdb option to mysqld. This installs an interrupt handler for SIGINT (needed to
stop mysqld with ^C to set breakpoints) and disable stack tracing and core file handling.

It's very hard to debug MySQL under gdb if you do a lot of new connections the whole time as gdb doesn't free the memory for old
threads. You can avoid this problem by starting mysqld with thread_cache_size set to a value equal to max_connections +
1. In most cases just using --thread_cache_size=5' helps a lot!

Extending MySQL

1874

http://support.microsoft.com/kb/121366/
http://www.microsoft.com/whdc/devtools/debugging/default.mspx


If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld with the --core-file op-
tion. This core file can be used to make a backtrace that may help you find out why mysqld died:

shell> gdb mysqld core
gdb> backtrace full
gdb> quit

See Section B.1.4.2, “What to Do If MySQL Keeps Crashing”.

If you are using gdb 4.17.x or above on Linux, you should install a .gdb file, with the following information, in your current direct-
ory:

set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint

If you have problems debugging threads with gdb, you should download gdb 5.x and try this instead. The new gdb version has very
improved thread handling!

Here is an example how to debug mysqld:

shell> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes

Include the above output in a bug report, which you can file using the instructions in Section 1.7, “How to Report Bugs or Problems”.

If mysqld hangs you can try to use some system tools like strace or /usr/proc/bin/pstack to examine where mysqld has
hung.

strace /tmp/log libexec/mysqld

If you are using the Perl DBI interface, you can turn on debugging information by using the trace method or by setting the
DBI_TRACE environment variable.

29.5.1.5. Using a Stack Trace

On some operating systems, the error log contains a stack trace if mysqld dies unexpectedly. You can use this to find out where (and
maybe why) mysqld died. See Section 5.2.2, “The Error Log”. To get a stack trace, you must not compile mysqld with the -
fomit-frame-pointer option to gcc. See Section 29.5.1.1, “Compiling MySQL for Debugging”.

If the error file contains something like the following:

mysqld got signal 11;
The manual section 'Debugging a MySQL server' tells you how to
use a stack trace and/or the core file to produce a readable
backtrace that may help in finding out why mysqld died
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...
stack range sanity check, ok, backtrace follows
0x40077552
0x81281a0
0x8128f47
0x8127be0
0x8127995
0x8104947
0x80ff28f
0x810131b
0x80ee4bc
0x80c3c91
0x80c6b43
0x80c1fd9
0x80c1686

Extending MySQL

1875



you can find where mysqld died by doing the following:

1. Copy the preceding numbers to a file, for example mysqld.stack.

2. Make a symbol file for the mysqld server:

nm -n libexec/mysqld > /tmp/mysqld.sym

If you have not linked mysqld statically, use the following command:

nm -D -n libexec/mysqld > /tmp/mysqld.sym

If you want to decode C++ symbols, use the --demangle, if available, to nm. If your version of nm does not have this option,
you will need to use the c++filt command after the stack dump has been produced to demangle the C++ names.

Note that most MySQL binary distributions (except for the "debug" packages, where this information is included inside of the bin-
aries themselves) ship with the above file, named mysqld.sym.gz. In this case, you can simply unpack it by doing:

gunzip < bin/mysqld.sym.gz > /tmp/mysqld.sym

3. Execute the following line:

resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack

If you were not able to include demangled C++ names in your symbol file, use c++filt on the output:

resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack|c++filt

This prints out where mysqld died. If this doesn't help you find out why mysqld died, you should make a bug report and include
the output from the above command with the bug report.

Note however that in most cases it does not help us to just have a stack trace to find the reason for the problem. To be able to locate
the bug or provide a workaround, we would in most cases need to know the query that killed mysqld and preferable a test case so
that we can repeat the problem! See Section 1.7, “How to Report Bugs or Problems”.

29.5.1.6. Using Server Logs to Find Causes of Errors in mysqld

Note that before starting mysqld with --log you should check all your tables with myisamchk. See Chapter 5, MySQL Server Ad-
ministration.

If mysqld dies or hangs, you should start mysqld with --log. When mysqld dies again, you can examine the end of the log file for
the query that killed mysqld.

If you are using --log without a file name, the log is stored in the database directory as host_name.log In most cases it is the last
query in the log file that killed mysqld, but if possible you should verify this by restarting mysqld and executing the found query
from the mysql command-line tools. If this works, you should also test all complicated queries that didn't complete.

You can also try the command EXPLAIN on all SELECT statements that takes a long time to ensure that mysqld is using indexes
properly. See Section 12.3.2, “EXPLAIN Syntax”.

You can find the queries that take a long time to execute by starting mysqld with --log-slow-queries. See Section 5.2.5, “The
Slow Query Log”.

If you find the text mysqld restarted in the error log file (normally named hostname.err) you probably have found a query
that causes mysqld to fail. If this happens, you should check all your tables with myisamchk (see Chapter 5, MySQL Server Adminis-
tration), and test the queries in the MySQL log files to see whether one fails. If you find such a query, try first upgrading to the newest
MySQL version. If this doesn't help and you can't find anything in the mysql mail archive, you should report the bug to a MySQL
mailing list. The mailing lists are described at http://lists.mysql.com/, which also has links to online list archives.

If you have started mysqld with --myisam-recover, MySQL automatically checks and tries to repair MyISAM tables if they are
marked as 'not closed properly' or 'crashed'. If this happens, MySQL writes an entry in the hostname.err file 'Warning:

Extending MySQL

1876

http://lists.mysql.com/


Checking table ...' which is followed by Warning: Repairing table if the table needs to be repaired. If you get a lot
of these errors, without mysqld having died unexpectedly just before, then something is wrong and needs to be investigated further.
See Section 5.1.2, “Command Options”.

It is not a good sign if mysqld did die unexpectedly, but in this case, you should not investigate the Checking table... mes-
sages, but instead try to find out why mysqld died.

29.5.1.7. Making a Test Case If You Experience Table Corruption

If you get corrupted tables or if mysqld always fails after some update commands, you can test whether this bug is reproducible by do-
ing the following:

• Take down the MySQL daemon (with mysqladmin shutdown).

• Make a backup of the tables (to guard against the very unlikely case that the repair does something bad).

• Check all tables with myisamchk -s database/*.MYI. Repair any wrong tables with myisamchk -r database/ta-
ble.MYI.

• Make a second backup of the tables.

• Remove (or move away) any old log files from the MySQL data directory if you need more space.

• Start mysqld with --log-bin. See Section 5.2.4, “The Binary Log”. If you want to find a query that crashes mysqld, you
should use --log --log-bin.

• When you have gotten a crashed table, stop the mysqld server.

• Restore the backup.

• Restart the mysqld server without --log-bin

• Re-execute the commands with mysqlbinlog binary-log-file | mysql. The binary log is saved in the MySQL data-
base directory with the name hostname-bin.#.

• If the tables are corrupted again or you can get mysqld to die with the above command, you have found reproducible bug that
should be easy to fix! FTP the tables and the binary log to ftp://ftp.mysql.com/pub/mysql/upload/ and report it in our bugs database
using the instructions given in Section 1.7, “How to Report Bugs or Problems”. (Please note that the /pub/mysql/upload/ FTP
directory is not listable, so you'll not see what you've uploaded in your FTP client.) If you are a support customer, you can use the
MySQL Customer Support Center https://support.mysql.com/ to alert the MySQL team about the problem and have it fixed as soon
as possible.

You can also use the script mysql_find_rows to just execute some of the update statements if you want to narrow down the prob-
lem.

29.5.2. Debugging a MySQL Client
To be able to debug a MySQL client with the integrated debug package, you should configure MySQL with --with-debug or -
-with-debug=full. See Section 2.9.2, “Typical configure Options”.

Before running a client, you should set the MYSQL_DEBUG environment variable:

shell> MYSQL_DEBUG=d:t:O,/tmp/client.trace
shell> export MYSQL_DEBUG

This causes clients to generate a trace file in /tmp/client.trace.

If you have problems with your own client code, you should attempt to connect to the server and run your query using a client that is
known to work. Do this by running mysql in debugging mode (assuming that you have compiled MySQL with debugging on):

shell> mysql --debug=d:t:O,/tmp/client.trace

This provides useful information in case you mail a bug report. See Section 1.7, “How to Report Bugs or Problems”.

Extending MySQL

1877

ftp://ftp.mysql.com/pub/mysql/upload/
https://support.mysql.com/


If your client crashes at some 'legal' looking code, you should check that your mysql.h include file matches your MySQL library file.
A very common mistake is to use an old mysql.h file from an old MySQL installation with new MySQL library.

29.5.3. The DBUG Package
The MySQL server and most MySQL clients are compiled with the DBUG package originally created by Fred Fish. When you have
configured MySQL for debugging, this package makes it possible to get a trace file of what the program is debugging. See Sec-
tion 29.5.1.2, “Creating Trace Files”.

This section summaries the argument values that you can specify in debug options on the command line for MySQL programs that have
been built with debugging support. For more information about programming with the DBUG package, see the DBUG manual in the
dbug directory of MySQL source distributions. It's best to use a recent distribution to get the most updated DBUG manual.

You use the debug package by invoking a program with the --debug="..." or the -#... option.

Most MySQL programs have a default debug string that is used if you don't specify an option to --debug. The default trace file is usu-
ally /tmp/program_name.trace on Unix and \program_name.trace on Windows.

The debug control string is a sequence of colon-separated fields as follows:

<field_1>:<field_2>:...:<field_N>

Each field consists of a mandatory flag character followed by an optional “,” and comma-separated list of modifiers:

flag[,modifier,modifier,...,modifier]

The currently recognized flag characters are:

Flag Description

d Enable output from DBUG_<N> macros for the current state. May be followed by a list of keywords which selects output only
for the DBUG macros with that keyword. An empty list of keywords implies output for all macros.

D Delay after each debugger output line. The argument is the number of tenths of seconds to delay, subject to machine capabilit-
ies. For example, -#D,20 specifies a delay of two seconds.

f Limit debugging, tracing, and profiling to the list of named functions. Note that a null list disables all functions. The appropriate
d or t flags must still be given; this flag only limits their actions if they are enabled.

F Identify the source file name for each line of debug or trace output.

i Identify the process with the PID or thread ID for each line of debug or trace output.

g Enable profiling. Create a file called dbugmon.out containing information that can be used to profile the program. May be
followed by a list of keywords that select profiling only for the functions in that list. A null list implies that all functions are
considered.

L Identify the source file line number for each line of debug or trace output.

n Print the current function nesting depth for each line of debug or trace output.

N Number each line of debug output.

o Redirect the debugger output stream to the specified file. The default output is stderr.

O Like o, but the file is really flushed between each write. When needed, the file is closed and reopened between each write.

p Limit debugger actions to specified processes. A process must be identified with the DBUG_PROCESS macro and match one in
the list for debugger actions to occur.

P Print the current process name for each line of debug or trace output.

r When pushing a new state, do not inherit the previous state's function nesting level. Useful when the output is to start at the left
margin.

S Do function _sanity(_file_,_line_) at each debugged function until _sanity() returns something that differs from
0. (Mostly used with safemalloc to find memory leaks)

t Enable function call/exit trace lines. May be followed by a list (containing only one modifier) giving a numeric maximum trace
level, beyond which no output occurs for either debugging or tracing macros. The default is a compile time option.

Extending MySQL

1878



Some examples of debug control strings that might appear on a shell command line (the -# is typically used to introduce a control
string to an application program) are:

-#d:t
-#d:f,main,subr1:F:L:t,20
-#d,input,output,files:n
-#d:t:i:O,\\mysqld.trace

In MySQL, common tags to print (with the d option) are enter, exit, error, warning, info, and loop.

29.5.4. Comments about RTS Threads
I have tried to use the RTS thread packages with MySQL but stumbled on the following problems:

They use old versions of many POSIX calls and it is very tedious to make wrappers for all functions. I am inclined to think that it would
be easier to change the thread libraries to the newest POSIX specification.

Some wrappers are currently written. See mysys/my_pthread.c for more info.

At least the following should be changed:

pthread_get_specific should use one argument. sigwait should take two arguments. A lot of functions (at least
pthread_cond_wait, pthread_cond_timedwait()) should return the error code on error. Now they return -1 and set er-
rno.

Another problem is that user-level threads use the ALRM signal and this aborts a lot of functions (read, write, open...). MySQL
should do a retry on interrupt on all of these but it is not that easy to verify it.

The biggest unsolved problem is the following:

To get thread-level alarms I changed mysys/thr_alarm.c to wait between alarms with pthread_cond_timedwait(), but
this aborts with error EINTR. I tried to debug the thread library as to why this happens, but couldn't find any easy solution.

If someone wants to try MySQL with RTS threads I suggest the following:

• Change functions MySQL uses from the thread library to POSIX. This shouldn't take that long.

• Compile all libraries with the -DHAVE_rts_threads.

• Compile thr_alarm.

• If there are some small differences in the implementation, they may be fixed by changing my_pthread.h and my_pthread.c.

• Run thr_alarm. If it runs without any “warning,” “error,” or aborted messages, you are on the right track. Here is a successful
run on Solaris:

Main thread: 1
Thread 0 (5) started
Thread: 5 Waiting
process_alarm
Thread 1 (6) started
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 1 (1) sec
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 2 (2) sec
Thread: 6 Simulation of no alarm needed
Thread: 6 Slept for 0 (3) sec
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 4 (4) sec
Thread: 6 Waiting
process_alarm
thread_alarm
Thread: 5 Slept for 10 (10) sec

Extending MySQL

1879



Thread: 5 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 5 (5) sec
Thread: 6 Waiting
process_alarm
process_alarm

...
thread_alarm
Thread: 5 Slept for 0 (1) sec
end

29.5.5. Differences Between Thread Packages
MySQL is very dependent on the thread package used. So when choosing a good platform for MySQL, the thread package is very im-
portant.

There are at least three types of thread packages:

• User threads in a single process. Thread switching is managed with alarms and the threads library manages all non-thread-safe func-
tions with locks. Read, write and select operations are usually managed with a thread-specific select that switches to another thread
if the running threads have to wait for data. If the user thread packages are integrated in the standard libs (FreeBSD and BSDI
threads) the thread package requires less overhead than thread packages that have to map all unsafe calls (MIT-pthreads, FSU
Pthreads and RTS threads). In some environments (for example, SCO), all system calls are thread-safe so the mapping can be done
very easily (FSU Pthreads on SCO). Downside: All mapped calls take a little time and it's quite tricky to be able to handle all situ-
ations. There are usually also some system calls that are not handled by the thread package (like MIT-pthreads and sockets). Thread
scheduling isn't always optimal.

• User threads in separate processes. Thread switching is done by the kernel and all data are shared between threads. The thread pack-
age manages the standard thread calls to allow sharing data between threads. LinuxThreads is using this method. Downside: Lots of
processes. Thread creating is slow. If one thread dies the rest are usually left hanging and you must kill them all before restarting.
Thread switching is somewhat expensive.

• Kernel threads. Thread switching is handled by the thread library or the kernel and is very fast. Everything is done in one process,
but on some systems, ps may show the different threads. If one thread aborts, the whole process aborts. Most system calls are
thread-safe and should require very little overhead. Solaris, HP-UX, AIX and OSF/1 have kernel threads.

In some systems kernel threads are managed by integrating user level threads in the system libraries. In such cases, the thread switching
can only be done by the thread library and the kernel isn't really “thread aware.”

Extending MySQL

1880



Appendix A. MySQL 5.1 Frequently Asked Questions

A.1. MySQL 5.1 FAQ — General
Questions

• 31.1.1: When did MySQL 5.1 become production-ready (GA)?

• 31.1.2: Can MySQL 5.1 do subqueries?

• 31.1.3: Can MySQL 5.1 peform multiple-table inserts, updates, and deletes?

• 31.1.4: Does MySQL 5.1 have a Query Cache? Does it work on Server, Instance or Database?

• 31.1.5: Does MySQL 5.1 have Sequences?

• 31.1.6: Does MySQL 5.1 have a NOW() function with fractions of seconds?

• 31.1.7: Does MySQL 5.1 work with multi-core processors?

• 31.1.8: Is there a hot backup tool for MyISAM like InnoDB Hot Backup?

• 31.1.9: Have there been there any improvements in error reporting when foreign keys fail? Does MySQL now report which column
and reference failed?

• 31.1.10: Can MySQL 5.1 perform ACID transactions?

Questions and Answers

31.1.1: When did MySQL 5.1 become production-ready (GA)?

MySQL 5.0.15 was released for production use on 19 October 2005. We are now working on MySQL 5.1, which is currently in beta.

31.1.2: Can MySQL 5.1 do subqueries?

Yes. See Section 12.2.8, “Subquery Syntax”.

31.1.3: Can MySQL 5.1 peform multiple-table inserts, updates, and deletes?

Yes. For the syntax required to perform multiple-table updates, see Section 12.2.10, “UPDATE Syntax”; for that required to perform
multiple-table deletes, see Section 12.2.1, “DELETE Syntax”.

A multiple-table insert can be accomplished using a trigger whose FOR EACH ROW clause contains multiple INSERT statements with-
in a BEGIN ... END block. See Section 21.3, “Using Triggers”.

31.1.4: Does MySQL 5.1 have a Query Cache? Does it work on Server, Instance or Database?

Yes. The query cache operates on the server level, caching complete result sets matched with the original query string. If an exactly
identical query is made (which often happens, particularly in web applications), no parsing or execution is necessary; the result is sent
directly from the cache. Various tuning options are available. See Section 7.5.4, “The MySQL Query Cache”.

31.1.5: Does MySQL 5.1 have Sequences?

No. However, MySQL has an AUTO_INCREMENT system, which in MySQL 5.1 can also handle inserts in a multi-master replication
setup. With the --auto-increment-increment and --auto-increment-offset startup options, you can set each server to
generate auto-increment values that don't conflict with other servers. The --auto-increment-increment value should be greater
than the number of servers, and each server should have a unique offset.

31.1.6: Does MySQL 5.1 have a NOW() function with fractions of seconds?

No. This is on the MySQL roadmap as a “rolling feature”. This means that it is not a flagship feature, but will be implemented, develop-
ment time permitting. Specific customer demand may change this scheduling.

1881



However, MySQL does parse time strings with a fractional component. See Section 10.3.2, “The TIME Type”.

31.1.7: Does MySQL 5.1 work with multi-core processors?

Yes. MySQL is fully multi-threaded, and will make use of multiple CPUs, provided that the operating system supports them.

31.1.8: Is there a hot backup tool for MyISAM like InnoDB Hot Backup?

This is currently under development for a future MySQL release.

31.1.9: Have there been there any improvements in error reporting when foreign keys fail? Does MySQL now report which
column and reference failed?

The foreign key support in InnoDB has seen improvements in each major version of MySQL. Foreign key support generic to all stor-
age engines is scheduled for MySQL 6.x; this should resolve any inadequacies in the current storage engine specific implementation.

31.1.10: Can MySQL 5.1 perform ACID transactions?

Yes. All current MySQL versions support transactions. The InnoDB storage engine offers full ACID transactions with row-level lock-
ing, multi-versioning, non-locking repeatable reads, and all four SQL standard isolation levels.

The NDB storage engine supports the READ COMMITTED transaction isolation level only.

A.2. MySQL 5.1 FAQ — Storage Engines
Questions

• 31.2.1: Where can I obtain complete documentation for MySQL storage engines and the pluggable storage engine architecture?

• 31.2.2: Are there any new storage engines in MySQL 5.1?

• 31.2.3: Have any storage engines been removed in MySQL 5.1?

• 31.2.4: What are the unique benefits of the ARCHIVE storage engine?

• 31.2.5: Do the new features in MySQL 5.1 apply to all storage engines?

Questions and Answers

31.2.1: Where can I obtain complete documentation for MySQL storage engines and the pluggable storage engine architecture?

See Chapter 13, Storage Engines. That chapter contains information about all MySQL storage engines except for the NDB storage en-
gine used for MySQL Cluster; NDB is covered in Chapter 17, MySQL Cluster.

MySQL Enterprise
For expert advice about the storage engine(s) most suitable to your circumstances subscribe to the MySQL En-
terprise Monitor. For more information see http://www.mysql.com/products/enterprise/advisors.html.

31.2.2: Are there any new storage engines in MySQL 5.1?

No. There have been significant improvements in existing storage engines, in particular for the NDB storage engine that forms the basis
for MySQL Cluster.

The Falcon storage engine is available in MySQL 6.0. See MySQL 6.0 Reference Manual.

31.2.3: Have any storage engines been removed in MySQL 5.1?

Yes. MySQL 5.1 no longer supports the BDB storage engine. Any existing BDB tables should be converted to another storage engine be-
fore upgrading to MySQL 5.1.

31.2.4: What are the unique benefits of the ARCHIVE storage engine?

The ARCHIVE storage engine is ideally suited for storing large amounts of data without indexes; it has a very small footprint, and per-
forms selects using table scans. See Section 13.10, “The ARCHIVE Storage Engine”, for details.

MySQL 5.1 Frequently Asked Questions

1882

http://www.mysql.com/products/enterprise/advisors.html
http://dev.mysql.com/doc/refman/6.0/en/index.html


31.2.5: Do the new features in MySQL 5.1 apply to all storage engines?

The general new features such as views, stored procedures, triggers, INFORMATION_SCHEMA, precision math (DECIMAL column
type), and the BIT column type, apply to all storage engines. There are also additions and changes for specific storage engines.

A.3. MySQL 5.1 FAQ — Server SQL Mode
Questions

• 31.3.1: What are server SQL modes?

• 31.3.2: How many server SQL modes are there?

• 31.3.3: How do you determine the server SQL mode?

• 31.3.4: Is the mode dependent on the database or connection?

• 31.3.5: Can the rules for strict mode be extended?

• 31.3.6: Does strict mode impact performance?

• 31.3.7: What is the default server SQL mode when My SQL 5.1 is installed?

Questions and Answers

31.3.1: What are server SQL modes?

Server SQL modes define what SQL syntax MySQL should support and what kind of data validation checks it should perform. This
makes it easier to use MySQL in different environments and to use MySQL together with other database servers. The MySQL Server
apply these modes individually to different clients. For more information, see Section 5.1.6, “SQL Modes”.

31.3.2: How many server SQL modes are there?

Each mode can be independently switched on and off. See Section 5.1.6, “SQL Modes”, for a complete list of available modes.

31.3.3: How do you determine the server SQL mode?

You can set the default SQL mode (for mysqld startup) with the --sql-mode option. Using the statement SET
[SESSION|GLOBAL] sql_mode='modes', you can change the settings from within a connection, either locally to the connec-
tion, or to take effect globally. You can retrieve the current mode by issuing a SELECT @@sql_mode statement.

31.3.4: Is the mode dependent on the database or connection?

A mode is not linked to a particular database. Modes can be set locally to the session (connection), or globally for the server. you can
change these settings using SET [SESSION|GLOBAL] sql_mode='modes'.

31.3.5: Can the rules for strict mode be extended?

When we refer to strict mode, we mean a mode where at least one of the modes TRADITIONAL, STRICT_TRANS_TABLES, or
STRICT_ALL_TABLES is enabled. Options can be combined, so you can add additional restrictions to a mode. See Section 5.1.6,
“SQL Modes”, for more information.

31.3.6: Does strict mode impact performance?

The intensive validation of input data that some settings requires more time than if the validation is not done. While the performance
impact is not that great, if you do not require such validation (perhaps your application already handles all of this), then MySQL gives
you the option of leaving strict mode disabled. However — if you do require it — strict mode can provide such validation.

31.3.7: What is the default server SQL mode when My SQL 5.1 is installed?

By default, no special modes are enabled. See Section 5.1.6, “SQL Modes”, for information about all available modes and MySQL's de-
fault behavior.

MySQL 5.1 Frequently Asked Questions

1883



A.4. MySQL 5.1 FAQ — Stored Procedures
Questions

• 31.4.1: Does MySQL 5.1 support stored procedures?

• 31.4.2: Where can I find documentation for MySQL stored procedures and stored functions?

• 31.4.3: Is there a discussion forum for MySQL stored procedures?

• 31.4.4: Where can I find the ANSI SQL 2003 specification for stored procedures?

• 31.4.5: How do you manage stored routines?

• 31.4.6: Is there a way to view all stored procedures and stored functions in a given database?

• 31.4.7: Where are stored procedures stored?

• 31.4.8: Is it possible to group stored procedures or stored functions into packages?

• 31.4.9: Can a stored procedure call another stored procedure?

• 31.4.10: Can a stored procedure call a trigger?

• 31.4.11: Can a stored procedure access tables?

• 31.4.12: Do stored procedures have a statement for raising application errors?

• 31.4.13: Do stored procedures provide exception handling?

• 31.4.14: Can MySQL 5.1 stored routines return result sets?

• 31.4.15: Is WITH RECOMPILE supported for stored procedures?

• 31.4.16: Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to a stored procedure in the
database?

• 31.4.17: Can I pass an array as input to a stored procedure?

• 31.4.18: Can I pass a cursor as an IN parameter to a stored procedure?

• 31.4.19: Can I return a cursor as an OUT parameter from a stored procedure?

• 31.4.20: Can I print out a variable's value within a stored routine for debugging purposes?

• 31.4.21: Can I commit or roll back transactions inside a stored procedure?

• 31.4.22: Do MySQL 5.1 stored procedures and functions work with replication?

• 31.4.23: Are stored procedures and functions created on a master server replicated to a slave?

• 31.4.24: How are actions that take place inside stored procedures and functions replicated?

• 31.4.25: Are there special security requirements for using stored procedures and functions together with replication?

• 31.4.26: What limitations exist for replicating stored procedure and function actions?

• 31.4.27: Do the preceding limitations affect MySQL's ability to do point-in-time recovery?

• 31.4.28: What is being done to correct the aforementioned limitations?

Questions and Answers

31.4.1: Does MySQL 5.1 support stored procedures?

MySQL 5.1 Frequently Asked Questions

1884



Yes. MySQL 5.1 supports two types of stored routines — stored procedures and stored functions.

31.4.2: Where can I find documentation for MySQL stored procedures and stored functions?

See Chapter 20, Stored Procedures and Functions.

31.4.3: Is there a discussion forum for MySQL stored procedures?

Yes. See http://forums.mysql.com/list.php?98.

31.4.4: Where can I find the ANSI SQL 2003 specification for stored procedures?

Unfortunately, the official specifications are not freely available (ANSI makes them available for purchase). However, there are books
— such as SQL-99 Complete, Really by Peter Gulutzan and Trudy Pelzer — which give a comprehensive overview of the standard, in-
cluding coverage of stored procedures.

31.4.5: How do you manage stored routines?

It is always good practice to use a clear naming scheme for your stored routines. You can manage stored procedures with CREATE
[FUNCTION|PROCEDURE], ALTER [FUNCTION|PROCEDURE], DROP [FUNCTION|PROCEDURE], and SHOW CREATE
[FUNCTION|PROCEDURE]. You can obtain information about existing stored procedures using the ROUTINES table in the IN-
FORMATION_SCHEMA database (see Section 24.14, “The INFORMATION_SCHEMA ROUTINES Table”).

31.4.6: Is there a way to view all stored procedures and stored functions in a given database?

Yes. For a database named dbname, use this query on the INFORMATION_SCHEMA.ROUTINES table:

SELECT ROUTINE_TYPE, ROUTINE_NAME
FROM INFORMATION_SCHEMA.ROUTINES
WHERE ROUTINE_SCHEMA='dbname';

For more information, see Section 24.14, “The INFORMATION_SCHEMA ROUTINES Table”.

The body of a stored routine can be viewed using SHOW CREATE FUNCTION (for a stored function) or SHOW CREATE PROCED-
URE (for a stored procedure). See Section 12.5.4.8, “SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION Syntax”, for
more information.

31.4.7: Where are stored procedures stored?

In the proc table of the mysql system database. However, you should not access the tables in the system database directly. Instead,
use SHOW CREATE FUNCTION to obtain information about stored functions, and SHOW CREATE PROCEDURE to obtain informa-
tion about stored procedures. See Section 12.5.4.8, “SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION Syntax”, for
more information about these statements.

You can also query the ROUTINES table in the INFORMATION_SCHEMA database — see Section 24.14, “The INFORMA-
TION_SCHEMA ROUTINES Table”, for information about this table.

31.4.8: Is it possible to group stored procedures or stored functions into packages?

No. This is not supported in MySQL 5.1.

31.4.9: Can a stored procedure call another stored procedure?

Yes.

31.4.10: Can a stored procedure call a trigger?

A stored procedure can execute an SQL statement, such as an UPDATE, that causes a trigger to fire.

31.4.11: Can a stored procedure access tables?

Yes. A stored procedure can access one or more tables as required.

31.4.12: Do stored procedures have a statement for raising application errors?

Not in MySQL 5.1. We intend to implement the SQL standard SIGNAL and RESIGNAL statements in a future MySQL release.

MySQL 5.1 Frequently Asked Questions

1885

http://forums.mysql.com/list.php?98


31.4.13: Do stored procedures provide exception handling?

MySQL implements HANDLER definitions according to the SQL standard. See Section 20.2.8.2, “DECLARE Handlers”, for details.

31.4.14: Can MySQL 5.1 stored routines return result sets?

Stored procedures can, but stored functions cannot. If you perform an ordinary SELECT inside a stored procedure, the result set is re-
turned directly to the client. You need to use the MySQL 4.1 (or above) client-server protocol for this to work. This means that — for
instance — in PHP, you need to use the mysqli extension rather than the old mysql extension.

31.4.15: Is WITH RECOMPILE supported for stored procedures?

Not in MySQL 5.1.

31.4.16: Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to a stored procedure in the
database?

There is no equivalent in MySQL 5.1.

31.4.17: Can I pass an array as input to a stored procedure?

Not in MySQL 5.1.

31.4.18: Can I pass a cursor as an IN parameter to a stored procedure?

In MySQL 5.1, cursors are available inside stored procedures only.

31.4.19: Can I return a cursor as an OUT parameter from a stored procedure?

In MySQL 5.1, cursors are available inside stored procedures only. However, if you do not open a cursor on a SELECT, the result will
be sent directly to the client. You can also SELECT INTO variables. See Section 12.2.7, “SELECT Syntax”.

31.4.20: Can I print out a variable's value within a stored routine for debugging purposes?

Yes, you can do this in a stored procedure, but not in a stored function. If you perform an ordinary SELECT inside a stored procedure,
the result set is returned directly to the client. You will need to use the MySQL 4.1 (or above) client-server protocol for this to work.
This means that — for instance — in PHP, you need to use the mysqli extension rather than the old mysql extension.

31.4.21: Can I commit or roll back transactions inside a stored procedure?

Yes. However, you cannot perform transactional operations within a stored function.

31.4.22: Do MySQL 5.1 stored procedures and functions work with replication?

Yes, standard actions carried out in stored procedures and functions are replicated from a master MySQL server to a slave server. There
are a few limitations that are described in detail in Section 20.4, “Binary Logging of Stored Routines and Triggers”.

31.4.23: Are stored procedures and functions created on a master server replicated to a slave?

Yes, creation of stored procedures and functions carried out through normal DDL statements on a master server are replicated to a slave,
so the objects will exist on both servers. ALTER and DROP statements for stored procedures and functions are also replicated.

31.4.24: How are actions that take place inside stored procedures and functions replicated?

MySQL records each DML event that occurs in a stored procedure and replicates those individual actions to a slave server. The actual
calls made to execute stored procedures are not replicated.

Stored functions that change data are logged as function invocations, not as the DML events that occur inside each function.

31.4.25: Are there special security requirements for using stored procedures and functions together with replication?

Yes. Because a slave server has authority to execute any statement read from a master's binary log, special security constraints exist for
using stored functions with replication. If replication or binary logging in general (for the purpose of point-in-time recovery) is active,
then MySQL DBAs have two security options open to them:

1. Any user wishing to create stored functions must be granted the SUPER privilege.

MySQL 5.1 Frequently Asked Questions

1886



2. Alternatively, a DBA can set the log_bin_trust_function_creators system variable to 1, which enables anyone with
the standard CREATE ROUTINE privilege to create stored functions.

31.4.26: What limitations exist for replicating stored procedure and function actions?

Non-deterministic (random) or time-based actions embedded in stored procedures may not replicate properly. By their very nature, ran-
domly produced results are not predictable and cannot be exactly reproduced, and therefore, random actions replicated to a slave will
not mirror those performed on a master. Note that declaring stored functions to be DETERMINISTIC or setting the
log_bin_trust_function_creators system variable to 0 will not allow random-valued operations to be invoked.

In addition, time-based actions cannot be reproduced on a slave because the timing of such actions in a stored procedure is not reprodu-
cible through the binary log used for replication. It records only DML events and does not factor in timing constraints.

Finally, non-transactional tables for which errors occur during large DML actions (such as bulk inserts) may experience replication is-
sues in that a master may be partially updated from DML activity, but no updates are done to the slave because of the errors that oc-
curred. A workaround is for a function's DML actions to be carried out with the IGNORE keyword so that updates on the master that
cause errors are ignored and updates that do not cause errors are replicated to the slave.

31.4.27: Do the preceding limitations affect MySQL's ability to do point-in-time recovery?

The same limitations that affect replication do affect point-in-time recovery.

31.4.28: What is being done to correct the aforementioned limitations?

As of MySQL 5.1.5, you can choose either statement-based replication or row-based replication. The original replication implementa-
tion is based on statement-based binary logging. Row-based binary logging resolves the limitations mentioned earlier.

Beginning with MySQL 5.1.8, mixed replication is also available (by starting the server with --binlog-format=mixed). This hy-
brid, “smart” form of replication “knows” whether statement-level replication can safely be used, or row-level replication is required.

For additional information, see Section 16.1.2, “Replication Formats”.

A.5. MySQL 5.1 FAQ — Triggers
Questions

• 31.5.1: Where can I find the documentation for MySQL 5.1 triggers?

• 31.5.2: Is there a discussion forum for MySQL Triggers?

• 31.5.3: Does MySQL 5.1 have statement-level or row-level triggers?

• 31.5.4: Are there any default triggers?

• 31.5.5: How are triggers managed in MySQL?

• 31.5.6: Is there a way to view all triggers in a given database?

• 31.5.7: Where are triggers stored?

• 31.5.8: Can a trigger call a stored procedure?

• 31.5.9: Can triggers access tables?

• 31.5.10: Can triggers call an external application through a UDF?

• 31.5.11: Is possible for a trigger to update tables on a remote server?

• 31.5.12: Do triggers work with replication?

• 31.5.13: How are actions carried out through triggers on a master replicated to a slave?

Questions and Answers

MySQL 5.1 Frequently Asked Questions

1887



31.5.1: Where can I find the documentation for MySQL 5.1 triggers?

See Chapter 21, Triggers.

31.5.2: Is there a discussion forum for MySQL Triggers?

Yes. It is available at http://forums.mysql.com/list.php?99.

31.5.3: Does MySQL 5.1 have statement-level or row-level triggers?

In MySQL 5.1, all triggers are FOR EACH ROW — that is, the trigger is activated for each row that is inserted, updated, or deleted.
MySQL 5.1 does not support triggers using FOR EACH STATEMENT.

31.5.4: Are there any default triggers?

Not explicitly. MySQL does have specific special behavior for some TIMESTAMP columns, as well as for columns which are defined
using AUTO_INCREMENT.

31.5.5: How are triggers managed in MySQL?

In MySQL 5.1, triggers can be created using the CREATE TRIGGER statement, and dropped using DROP TRIGGER. See Sec-
tion 21.1, “CREATE TRIGGER Syntax”, and Section 21.2, “DROP TRIGGER Syntax”, for more about these statements.

Information about triggers can be obtained by querying the INFORMATION_SCHEMA.TRIGGERS table. See Section 24.16, “The IN-
FORMATION_SCHEMA TRIGGERS Table”.

31.5.6: Is there a way to view all triggers in a given database?

Yes. You can obtain a listing of all triggers defined on database dbname using a query on the INFORMATION_SCHEMA.TRIGGERS
table such as the one shown here:

SELECT TRIGGER_NAME, EVENT_MANIPULATION, EVENT_OBJECT_TABLE, ACTION_STATEMENT
FROM INFORMATION_SCHEMA.TRIGGERS
WHERE TRIGGER_SCHEMA='dbname';

For more information about this table, see Section 24.16, “The INFORMATION_SCHEMA TRIGGERS Table”.

You can also use the SHOW TRIGGERS statement, which is specific to MySQL. See Section 12.5.4.30, “SHOW TRIGGERS Syntax”.

31.5.7: Where are triggers stored?

Triggers for a table are currently stored in .TRG files, with one such file one per table.

31.5.8: Can a trigger call a stored procedure?

Yes.

31.5.9: Can triggers access tables?

A trigger can access both old and new data in its own table. Through a stored procedure, or a multiple-table update or delete statement,
a trigger can also affect other tables.

31.5.10: Can triggers call an external application through a UDF?

No, not at present.

31.5.11: Is possible for a trigger to update tables on a remote server?

Yes. A table on a remote server could be updated using the FEDERATED storage engine. (See Section 13.9, “The FEDERATED Storage
Engine”).

31.5.12: Do triggers work with replication?

Triggers and replication in MySQL 5.1 work in the same way as in most other database systems: Actions carried out through triggers on
a master are not replicated to a slave server. Instead, triggers that exist on tables that reside on a MySQL master server need to be cre-
ated on the corresponding tables on any MySQL slave servers so that the triggers activate on the slaves as well as the master.

MySQL 5.1 Frequently Asked Questions

1888

http://forums.mysql.com/list.php?99


31.5.13: How are actions carried out through triggers on a master replicated to a slave?

First, the triggers that exist on a master must be re-created on the slave server. Once this is done, the replication flow works as any other
standard DML statement that participates in replication. For example, consider a table EMP that has an AFTER insert trigger, which ex-
ists on a master MySQL server. The same EMP table and AFTER insert trigger exist on the slave server as well. The replication flow
would be:

1. An INSERT statement is made to EMP.

2. The AFTER trigger on EMP activates.

3. The INSERT statement is written to the binary log.

4. The replication slave picks up the INSERT statement to EMP and executes it.

5. The AFTER trigger on EMP that exists on the slave activates.

A.6. MySQL 5.1 FAQ — Views
Questions

• 31.6.1: Where can I find documentation covering MySQL Views?

• 31.6.2: Is there a discussion forum for MySQL Views?

• 31.6.3: What happens to a view if an underlying table is dropped or renamed?

• 31.6.4: Does MySQL 5.1 have table snapshots?

• 31.6.5: Does MySQL 5.1 have materialized views?

• 31.6.6: Can you insert into views that are based on joins?

Questions and Answers

31.6.1: Where can I find documentation covering MySQL Views?

See Chapter 23, Views.

31.6.2: Is there a discussion forum for MySQL Views?

Yes. See http://forums.mysql.com/list.php?100

31.6.3: What happens to a view if an underlying table is dropped or renamed?

After a view has been created, it is possible to drop or alter a table or view to which the definition refers. To check a view definition for
problems of this kind, use the CHECK TABLE statement. (See Section 12.5.2.3, “CHECK TABLE Syntax”.)

31.6.4: Does MySQL 5.1 have table snapshots?

No.

31.6.5: Does MySQL 5.1 have materialized views?

No.

31.6.6: Can you insert into views that are based on joins?

It is possible, provided that your INSERT statement has a column list that makes it clear there's only one table involved.

You cannot insert into multiple tables with a single insert on a view.

MySQL 5.1 Frequently Asked Questions

1889

http://forums.mysql.com/list.php?100


A.7. MySQL 5.0 FAQ — INFORMATION_SCHEMA
Questions

• 31.7.1: Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

• 31.7.2: Is there a discussion forum for INFORMATION_SCHEMA?

• 31.7.3: Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

• 31.7.4: What is the difference between the Oracle Data Dictionary and MySQL's INFORMATION_SCHEMA?

• 31.7.5: Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

Questions and Answers

31.7.1: Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

See Chapter 24, INFORMATION_SCHEMA Tables

31.7.2: Is there a discussion forum for INFORMATION_SCHEMA?

See http://forums.mysql.com/list.php?101.

31.7.3: Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

Unfortunately, the official specifications are not freely available. (ANSI makes them available for purchase.) However, there are books
available — such as SQL-99 Complete, Really by Peter Gulutzan and Trudy Pelzer — which give a comprehensive overview of the
standard, including INFORMATION_SCHEMA.

31.7.4: What is the difference between the Oracle Data Dictionary and MySQL's INFORMATION_SCHEMA?

Both Oracle and MySQL provide metadata in tables. However, Oracle and MySQL use different table names and column names.
MySQL's implementation is more similar to those found in DB2 and SQL Server, which also support INFORMATION_SCHEMA as
defined in the SQL standard.

31.7.5: Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

No. Since applications may rely on a certain standard structure, this should not be modified. For this reason, MySQL AB cannot support
bugs or other issues which result from modifying INFORMATION_SCHEMA tables or data.

A.8. MySQL 5.1 FAQ — Migration
Questions

• 31.8.1: Where can I find information on how to migrate from MySQL 5.0 to MySQL 5.1?

• 31.8.2: How has storage engine (table type) support changed in MySQL 5.1 from previous versions?

Questions and Answers

31.8.1: Where can I find information on how to migrate from MySQL 5.0 to MySQL 5.1?

For detailed upgrade information, see Section 2.11, “Upgrading MySQL”. We recommend that you do not skip a major version when
upgrading, but rather complete the process in steps, upgrading from one major version to the next in each step. This may seem more
complicated, but it will you save time and trouble — if you encounter problems during the upgrade, their origin will be easier to identi-
fy, either by you or — if you have a MySQL Network subscription — by MySQL support.

31.8.2: How has storage engine (table type) support changed in MySQL 5.1 from previous versions?

Storage engine support has changed as follows:

MySQL 5.1 Frequently Asked Questions

1890

http://forums.mysql.com/list.php?101


• Support for ISAM tables was removed in MySQL 5.0 and you should now use the MyISAM storage engine in place of ISAM. To
convert a table tblname from ISAM to MyISAM, simply issue a statement such as this one:

ALTER TABLE tblname ENGINE=MYISAM;

• Internal RAID for MyISAM tables was also removed in MySQL 5.0. This was formerly used to allow large tables in filesystems that
did not support file sizes greater than 2GB. All modern filesystems allow for larger tables; in addition, there are now other solutions
such as MERGE tables and views.

• The VARCHAR column type now retains trailing spaces in all storage engines.

• MEMORY tables (formerly known as HEAP tables) can also contain VARCHAR columns.

A.9. MySQL 5.1 FAQ — Security
Questions

• 31.9.1: Where can I find documentation that addresses security issues for MySQL?

• 31.9.2: Does MySQL 5.1 have native support for SSL?

• 31.9.3: Is SSL support be built into MySQL binaries, or must I recompile the binary myself to enable it?

• 31.9.4: Does MySQL 5.1 have built-in authentication against LDAP directories?

• 31.9.5: Does MySQL 5.1 include support for Roles Based Access Control (RBAC)?

Questions and Answers

31.9.1: Where can I find documentation that addresses security issues for MySQL?

The best place to start is Section 5.3, “General Security Issues”.

Other portions of the MySQL Documentation which you may find useful with regard to specific security concerns include the follow-
ing:

• Section 5.3.1, “General Security Guidelines”.

• Section 5.3.2, “Making MySQL Secure Against Attackers”.

• Section B.1.4.1, “How to Reset the Root Password”.

• Section 5.3.5, “How to Run MySQL as a Normal User”.

• Section 29.3.4.6, “User-Defined Function Security Precautions”.

• Section 5.3.3, “Security-Related mysqld Options”.

• Section 5.3.4, “Security Issues with LOAD DATA LOCAL”.

• Section 2.10, “Post-Installation Setup and Testing”.

• Section 2.13.1.11, “SELinux Notes”.

• Section 5.5.7.1, “Basic SSL Concepts”.

MySQL Enterprise
The MySQL Enterprise Monitor enforces best practices for maximizing the security of your servers. For more
information see http://www.mysql.com/products/enterprise/advisors.html.

MySQL 5.1 Frequently Asked Questions

1891

http://www.mysql.com/products/enterprise/advisors.html


31.9.2: Does MySQL 5.1 have native support for SSL?

Most 5.1 binaries have support for SSL connections between the client and server. We can't currently build with the new YaSSL library
everywhere, as it's still quite new and does not compile on all platforms yet. See Section 5.5.7, “Using Secure Connections”.

You can also tunnel a connection via SSH, if (for instance) if the client application doesn't support SSL connections. For an example,
see Section 5.5.7.5, “Connecting to MySQL Remotely from Windows with SSH”.

31.9.3: Is SSL support be built into MySQL binaries, or must I recompile the binary myself to enable it?

Most 5.1 binaries have SSL enabled for client-server connections that are secured, authenticated, or both. However, the YaSSL library
currently does not compile on all platforms. See Section 5.5.7, “Using Secure Connections”, for a complete listing of supported and un-
supported platforms.

31.9.4: Does MySQL 5.1 have built-in authentication against LDAP directories?

No. Support for external authentication methods is on the MySQL roadmap as a “rolling feature”, which means that we plan to imple-
ment it in the future, but we have not yet determined when this will be done.

31.9.5: Does MySQL 5.1 include support for Roles Based Access Control (RBAC)?

No. Support for roles is on the MySQL roadmap as a “rolling feature”, which means that we plan to implement it in the future, but we
have not yet determined when this will be done.

A.10. MySQL 5.1 FAQ — MySQL Cluster
In the following section, we provide answers to questions that are most frequently asked about MySQL Cluster and the NDB storage en-
gine.

Questions

• 31.10.1: What does “NDB” mean?

• 31.10.2: What's the difference in using Cluster vs using replication?

• 31.10.3: Do I need to do any special networking to run Cluster? How do computers in a cluster communicate?

• 31.10.4: How many computers do I need to run a cluster, and why?

• 31.10.5: What do the different computers do in a MySQL Cluster?

• 31.10.6: With which operating systems can I use Cluster?

• 31.10.7: What are the hardware requirements for running MySQL Cluster?

• 31.10.8: How much RAM do I need? Is it possible to use disk memory at all?

• 31.10.9: What filesystems can I use with MySQL Cluster? What about network filesystems or network shares?

• 31.10.10: Can I run MySQL Cluster nodes inside virtual machines (such as those created by VMWare, Parallels, or Xen)?

• 31.10.11: I'm trying to populate a Cluster database. The loading process terminates prematurely and I get an error message like this
one: ERROR 1114: THE TABLE 'MY_CLUSTER_TABLE' IS FULL Why is this happening?

• 31.10.12: MySQL Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or more nodes in remote loca-
tions?

• 31.10.13: Do I have to learn a new programming or query language to use MySQL Cluster?

• 31.10.14: How do I find out what an error or warning message means when using MySQL Cluster?

• 31.10.15: Is MySQL Cluster transaction-safe? What isolation levels are supported?

• 31.10.16: What storage engines are supported by MySQL Cluster?

MySQL 5.1 Frequently Asked Questions

1892



• 31.10.17: Which versions of the MySQL software support Cluster? Do I have to compile from source?

• 31.10.18: In the event of a catastrophic failure — say, for instance, the whole city loses power and my UPS fails — would I lose all
my data?

• 31.10.19: Is it possible to use FULLTEXT indexes with Cluster?

• 31.10.20: Can I run multiple nodes on a single computer?

• 31.10.21: Can I add nodes to a cluster without restarting it?

• 31.10.22: Are there any limitations that I should be aware of when using MySQL Cluster?

• 31.10.23: How do I import an existing MySQL database into a cluster?

• 31.10.24: How do cluster nodes communicate with one another?

• 31.10.25: What is an arbitrator?

• 31.10.26: What data types are supported by MySQL Cluster?

• 31.10.27: How do I start and stop MySQL Cluster?

• 31.10.28: What happens to cluster data when the cluster is shut down?

• 31.10.29: Is it helpful to have more than one management node for a cluster?

• 31.10.30: Can I mix different kinds of hardware and operating systems in one MySQL Cluster?

• 31.10.31: Can I run two data nodes on a single host? Two SQL nodes?

• 31.10.32: Can I use hostnames with MySQL Cluster?

• 31.10.33: How do I handle MySQL users in a Cluster having multiple MySQL servers?

Questions and Answers

31.10.1: What does “NDB” mean?

This stands for “Network Database”. NDB (also known as NDB Cluster or NDBCLUSTER) is the storage engine that enables cluster-
ing in MySQL.

31.10.2: What's the difference in using Cluster vs using replication?

In a replication setup, a master MySQL server updates one or more slaves. Transactions are committed sequentially, and a slow transac-
tion can cause the slave to lag behind the master. This means that if the master fails, it is possible that the slave might not have recorded
the last few transactions. If a transaction-safe engine such as InnoDB is being used, a transaction will either be complete on the slave or
not applied at all, but replication does not guarantee that all data on the master and the slave will be consistent at all times. In MySQL
Cluster, all data nodes are kept in synchrony, and a transaction committed by any one data node is committed for all data nodes. In the
event of a data node failure, all remaining data nodes remain in a consistent state.

In short, whereas standard MySQL replication is asynchronous, MySQL Cluster is synchronous.

We have implemented (asynchronous) replication for Cluster in MySQL 5.1. This includes the capability to replicate both between two
clusters, and from a MySQL cluster to a non-Cluster MySQL server. See Section 17.12, “MySQL Cluster Replication”.

31.10.3: Do I need to do any special networking to run Cluster? How do computers in a cluster communicate?

MySQL Cluster is intended to be used in a high-bandwidth environment, with computers connecting via TCP/IP. Its performance de-
pends directly upon the connection speed between the cluster's computers. The minimum connectivity requirements for Cluster include
a typical 100-megabit Ethernet network or the equivalent. We recommend you use gigabit Ethernet whenever available.

The faster SCI protocol is also supported, but requires special hardware. See Section 17.14, “Using High-Speed Interconnects with
MySQL Cluster”, for more information about SCI.

31.10.4: How many computers do I need to run a cluster, and why?

MySQL 5.1 Frequently Asked Questions

1893



A minimum of three computers is required to run a viable cluster. However, the minimum recommended number of computers in a
MySQL Cluster is four: one each to run the management and SQL nodes, and two computers to serve as data nodes. The purpose of the
two data nodes is to provide redundancy; the management node must run on a separate machine to guarantee continued arbitration ser-
vices in the event that one of the data nodes fails.

To provide increased throughput and high availability, you should use multiple SQL nodes (MySQL Servers connected to the cluster). It
is also possible (although not strictly necessary) to run multiple management servers.

31.10.5: What do the different computers do in a MySQL Cluster?

A MySQL Cluster has both a physical and logical organization, with computers being the physical elements. The logical or functional
elements of a cluster are referred to as nodes, and a computer housing a cluster node is sometimes referred to as a cluster host. There are
three types of nodes, each corresponding to a specific role within the cluster. These are:

• Management node (MGM node): Provides management services for the cluster as a whole, including startup, shutdown, backups,
and configuration data for the other nodes. The management node server is implemented as the application ndb_mgmd; the man-
agement client used to control MySQL Cluster via the MGM node is ndb_mgm.

• Data node: Stores and replicates data. Data node functionality is handled by an instance of the NDB data node process ndbd.

• SQL node: This is simply an instance of MySQL Server (mysqld) that is built with support for the NDB Cluster storage engine
and started with the --ndb-cluster option to enable the engine.

31.10.6: With which operating systems can I use Cluster?

MySQL Cluster is supported on most Unix-like operating systems, including Linux, Mac OS X, Solaris, BSD, HP-UX, AIX, and IRIX,
among others, as well as Novell Netware. Cluster is not supported for Windows at this time. However, we are working to add Cluster
support for other platforms, including Windows, and our goal is to offer MySQL Cluster on all platforms for which MySQL itself is
supported.

For more detailed information concerning the level of support which is offered for MySQL Cluster on various operating system ver-
sions, OS distributions, and hardware platforms, please refer to http://www.mysql.com/support/supportedplatforms/cluster.html.

31.10.7: What are the hardware requirements for running MySQL Cluster?

Cluster should run on any platform for which NDB-enabled binaries are available. Naturally, faster CPUs and more memory will im-
prove performance, and 64-bit CPUs will likely be more effective than 32-bit processors. There must be sufficient memory on machines
used for data nodes to hold each node's share of the database (see How much RAM do I Need? for more information). Nodes can com-
municate via a standard TCP/IP network and hardware. For SCI support, special networking hardware is required.

31.10.8: How much RAM do I need? Is it possible to use disk memory at all?

Previous to MySQL 5.1, Cluster was in-memory only. This meant that all table data (including indexes) was stored in RAM. If your
data took up 1GB of space and you wanted to replicate it once in the cluster, you needed 2GB of memory to do so (1 GB per replica).
This was in addition to the memory required by the operating system and any applications running on the cluster computers. This is still
true of in-memory tables.

If a data node's memory usage exceeds what is available in RAM, then the system will attempt to use swap space up to the limit set for
DataMemory. However, this will at best result in severely degraded performance, and may cause the node to be dropped due to slow
response time (missed heartbeats). We do not recommend on relying on disk swapping in a production environment for this reason. In
any case, once the DataMemory limit is reached, any operations requiring additional memory (such as inserts) will fail.

NDB Cluster in MySQL 5.1 includes support for Disk Data, which helps to alleviate these issues. See Section 17.13, “MySQL
Cluster Disk Data Tables”, for more information.

You can use the following formula for obtaining a rough estimate of how much RAM is needed for each data node in the cluster:

(SizeofDatabase × NumberOfReplicas × 1.1 ) / NumberOfDataNodes

To calculate the memory requirements more exactly requires determining, for each table in the cluster database, the storage space re-
quired per row (see Section 10.5, “Data Type Storage Requirements”, for details), and multiplying this by the number of rows. You
must also remember to account for any column indexes as follows:

MySQL 5.1 Frequently Asked Questions

1894

http://www.mysql.com/support/supportedplatforms/cluster.html


• Each primary key or hash index created for an NDBCluster table requires 21–25 bytes per record. These indexes use In-
dexMemory.

• Each ordered index requires 10 bytes storage per record, using DataMemory.

• Creating a primary key or unique index also creates an ordered index, unless this index is created with USING HASH. In other
words:

• A primary key or unique index on a Cluster table normally takes up 31 to 35 bytes per record.

• However, if the primary key or unique index is created with USING HASH, then it requires only 21 to 25 bytes per record.

Note that creating MySQL Cluster tables with USING HASH for all primary keys and unique indexes will generally cause table updates
to run more quickly — in some cases by a much as 20 to 30 percent faster than updates on tables where USING HASH was not used in
creating primary and unique keys. This is due to the fact that less memory is required (because no ordered indexes are created), and that
less CPU must be utilized (because fewer indexes must be read and possibly updated). However, it also means that queries that could
otherwise use range scans must be satisfied by other means, which can result in slower selects.

When calculating Cluster memory requirements, you may find useful the ndb_size.pl utility which is available in recent MySQL
5.1 releases. This Perl script connects to a current (non-Cluster) MySQL database and creates a report on how much space that database
would require if it used the NDBCluster storage engine. For more information, see Section 17.11.15, “ndb_size.pl — NDB-
Cluster Size Requirement Estimator”.

It is especially important to keep in mind that every MySQL Cluster table must have a primary key. The NDB storage engine creates a
primary key automatically if none is defined, and this primary key is created without USING HASH.

There is no easy way to determine exactly how much memory is being used for storage of Cluster indexes at any given time; however,
warnings are written to the Cluster log when 80% of available DataMemory or IndexMemory is in use, and again when use reaches
85%, 90%, and so on.

31.10.9: What filesystems can I use with MySQL Cluster? What about network filesystems or network shares?

Generally, any filesystem that is native to the host operating system should work well with MySQL Cluster. If you find that a given
filesystem works particularly well (or not so especially well) with MySQL Cluster, we invite you to discuss your findings in the
MySQL Cluster Forums.

We do not test MySQL Cluster with FAT or VFAT filesystems on Linux. Because of this, and due to the fact that these are not very use-
ful for any purpose other than sharing disk partitions between Linux and Windows operating systems on multi-boot computers, we do
not recommend their use with MySQL Cluster.

MySQL Cluster is implemented as a shared-nothing solution; the idea behind this is that the failure of a single piece of hardware should
not cause the failure of multiple cluster nodes, or possibly even the failure of the cluster as a whole. For this reason, the use of network
shares or network filesystems is not supported for MySQL Cluster. This also applies to shared storage devices such as SANs.

31.10.10: Can I run MySQL Cluster nodes inside virtual machines (such as those created by VMWare, Parallels, or Xen)?

This is possible but not recommended for a production environment.

We have found that running MySQL Cluster processes inside a virtual machine can give rise to issues with timing and disk subsystems
that have a strong negative impact on the operation of the cluster. The behavior of the cluster is often unpredictable in these cases.

If the issue can be reproduced outside the virtual environment, then we may be able to provide assistance. Otherwise, we cannot support
it at this time.

31.10.11: I'm trying to populate a Cluster database. The loading process terminates prematurely and I get an error message like
this one: ERROR 1114: THE TABLE 'MY_CLUSTER_TABLE' IS FULL Why is this happening?

The cause is very likely to be that your setup does not provide sufficient RAM for all table data and all indexes, including the primary
key required by the NDB storage engine and automatically created in the event that the table definition does not include the definition of
a primary key.

It is also worth noting that all data nodes should have the same amount of RAM, since no data node in a cluster can use more memory
than the least amount available to any individual data node. In other words, if there are four computers hosting Cluster data nodes, and
three of these have 3GB of RAM available to store Cluster data while the remaining data node has only 1GB RAM, then each data node
can devote only 1GB to clustering.

MySQL 5.1 Frequently Asked Questions

1895

http://forums.mysql.com/list.php?25


31.10.12: MySQL Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or more nodes in remote loc-
ations?

It is very unlikely that a cluster would perform reliably under such conditions, as MySQL Cluster was designed and implemented with
the assumption that it would be run under conditions guaranteeing dedicated high-speed connectivity such as that found in a LAN set-
ting using 100 Mbps or gigabit Ethernet — preferably the latter. We neither test nor warrant its performance using anything slower than
this.

Also, it is extremely important to keep in mind that communications between the nodes in a MySQL Cluster are not secure; they are
neither encrypted nor safeguarded by any other protective mechanism. The most secure configuration for a cluster is in a private net-
work behind a firewall, with no direct access to any Cluster data or management nodes from outside. (For SQL nodes, you should take
the same precautions as you would with any other instance of the MySQL server.)

31.10.13: Do I have to learn a new programming or query language to use MySQL Cluster?

No. Although some specialized commands are used to manage and configure the cluster itself, only standard (My)SQL queries and
commands are required for the following operations:

• Creating, altering, and dropping tables (including Disk Data tables and related objects)

• Inserting, updating, and deleting table data

• Creating, changing, and dropping primary and unique indexes

Some specialized configuration parameters and files are required to set up a MySQL Cluster — see Section 17.4.4, “Configuration
File”, for information about these.

A few simple commands are used in the MySQL Cluster management client for tasks such as starting and stopping cluster nodes. See
Section 17.8.2, “Commands in the MySQL Cluster Management Client”.

31.10.14: How do I find out what an error or warning message means when using MySQL Cluster?

There are two ways in which this can be done:

•
From within the mysql client, use SHOW ERRORS or SHOW WARNINGS immediately upon being notified of the error or warning
condition. Errors and warnings also be displayed in MySQL Query Browser.

•
From a system shell prompt, use perror --ndb error_code.

31.10.15: Is MySQL Cluster transaction-safe? What isolation levels are supported?

Yes: For tables created with the NDB storage engine, transactions are supported. In MySQL 5.1, Cluster supports only the READ COM-
MITTED transaction isolation level.

31.10.16: What storage engines are supported by MySQL Cluster?

Clustering in MySQL is supported only by the NDB storage engine. That is, in order for a table to be shared between nodes in a cluster,
it must be created using ENGINE=NDB (or ENGINE=NDBCLUSTER, which is equivalent).

It is possible to create tables using other storage engines (such as MyISAM or InnoDB) on a MySQL server being used for clustering,
but these non-NDB tables will not participate in the cluster; they are local to the individual MySQL server instance on which they are
created.

31.10.17: Which versions of the MySQL software support Cluster? Do I have to compile from source?

Cluster is supported in all server binaries in the 5.1 release series for operating systems on which MySQL Cluster is available. See Sec-
tion 4.3.1, “mysqld — The MySQL Server”. You can determine whether your server has NDB support using either the SHOW VARI-
ABLES LIKE 'have_%' or SHOW ENGINES statement.

You can also obtain NDB support by compiling MySQL from source, but it is not necessary to do so simply to use MySQL Cluster. To

MySQL 5.1 Frequently Asked Questions

1896



download the latest binary, RPM, or source distribution in the MySQL 5.1 series, visit http://dev.mysql.com/downloads/mysql/5.1.html.

31.10.18: In the event of a catastrophic failure — say, for instance, the whole city loses power and my UPS fails — would I lose
all my data?

All committed transactions are logged. Therefore, although it is possible that some data could be lost in the event of a catastrophe, this
should be quite limited. Data loss can be further reduced by minimizing the number of operations per transaction. (It is not a good idea
to perform large numbers of operations per transaction in any case.)

31.10.19: Is it possible to use FULLTEXT indexes with Cluster?

FULLTEXT indexing is not supported by the NDB storage engine in MySQL 5.1, or by any storage engine other than MyISAM. We are
working to add this capability in a future release.

31.10.20: Can I run multiple nodes on a single computer?

It is possible but not advisable. One of the chief reasons to run a cluster is to provide redundancy. To enjoy the full benefits of this re-
dundancy, each node should reside on a separate machine. If you place multiple nodes on a single machine and that machine fails, you
lose all of those nodes. Given that MySQL Cluster can be run on commodity hardware loaded with a low-cost (or even no-cost) operat-
ing system, the expense of an extra machine or two is well worth it to safeguard mission-critical data. It also worth noting that the re-
quirements for a cluster host running a management node are minimal. This task can be accomplished with a 200 MHz Pentium CPU
and sufficient RAM for the operating system plus a small amount of overhead for the ndb_mgmd and ndb_mgm processes.

It is acceptable to run multiple cluster data nodes on a single host for learning about MySQL Cluster, or for testing purposes; however,
this is not supported for production use.

31.10.21: Can I add nodes to a cluster without restarting it?

Not at present. A simple restart is all that is required for adding new MGM or SQL nodes to a Cluster. When adding data nodes the pro-
cess is more complex, and requires the following steps:

1. Make a complete backup of all Cluster data.

2. Completely shut down the cluster and all cluster node processes.

3. Restart the cluster, using the --initial startup option.

Warning

Never use the --initial when starting ndbd except when necessary to clear the data node filesystem. See Sec-
tion 17.7.5.1, “Command Options for ndbd”, for information about when this is required.

4. Restore all cluster data from the backup.

In a future MySQL Cluster release series, we hope to implement a “hot” reconfiguration capability for MySQL Cluster to minimize (if
not eliminate) the requirement for restarting the cluster when adding new nodes. However, this is not planned for MySQL 5.1.

31.10.22: Are there any limitations that I should be aware of when using MySQL Cluster?

Limitations on NDB tables in MySQL 5.1 include:

• Temporary tables are not supported; a CREATE TEMPORARY TABLE statement using ENGINE=NDB or ENGINE=NDBCLUSTER
fails with an error.

• The only types of user-defined partitioning supported for NDB tables are KEY and LINEAR KEY. (Beginning with MySQL 5.1.12,
attempting to create an NDB table using any other partitioning type fails with an error.)

• FULLTEXT indexes and index prefixes are not supported. Only complete columns may be indexed.

• Spatial data types are not supported. See Chapter 19, Spatial Extensions.

• Only complete rollbacks for transactions are supported. Partial rollbacks and rollbacks to save points are not supported.

MySQL 5.1 Frequently Asked Questions

1897

http://dev.mysql.com/downloads/mysql/5.1.html


• The maximum number of attributes allowed per table is 128, and attribute names cannot be any longer than 31 characters. For each
table, the maximum combined length of the table and database names is 122 characters.

• The maximum size for a table row is 8 kilobytes, not counting BLOB values. There is no set limit for the number of rows per table.
Table size limits depend on a number of factors, in particular on the amount of RAM available to each data node.

• The NDB engine does not support foreign key constraints. As with MyISAM tables, these are ignored.

For a complete listing of limitations in MySQL Cluster, see Section 17.15, “Known Limitations of MySQL Cluster”.

31.10.23: How do I import an existing MySQL database into a cluster?

You can import databases into MySQL Cluster much as you would with any other version of MySQL. Other than the limitations men-
tioned elsewhere in this FAQ and in Section 17.15, “Known Limitations of MySQL Cluster”, the only other special requirement is that
any tables to be included in the cluster must use the NDB storage engine. This means that the tables must be created with ENGINE=NDB
or ENGINE=NDBCLUSTER.

It is also possible to convert existing tables using other storage engines to NDB Cluster using one or more ALTER TABLE state-
ment, but this requires an additional workaround. See Section 17.15, “Known Limitations of MySQL Cluster”, for details.

31.10.24: How do cluster nodes communicate with one another?

Cluster nodes can communicate via any of three different protocols: TCP/IP, SHM (shared memory), and SCI (Scalable Coherent Inter-
face). Where available, SHM is used by default between nodes residing on the same cluster host; however, this is considered experi-
mental in MySQL 5.1. SCI is a high-speed (1 gigabit per second and higher), high-availability protocol used in building scalable multi-
processor systems; it requires special hardware and drivers. See Section 17.14, “Using High-Speed Interconnects with MySQL Cluster”,
for more about using SCI as a transport mechanism in MySQL Cluster.

31.10.25: What is an arbitrator?

If one or more nodes in a cluster fail, it is possible that not all cluster nodes will be able to “see” one another. In fact, it is possible that
two sets of nodes might become isolated from one another in a network partitioning, also known as a “split brain” scenario. This type of
situation is undesirable because each set of nodes tries to behave as though it is the entire cluster.

When cluster nodes go down, there are two possibilities. If more than 50% of the remaining nodes can communicate with each other,
we have what is sometimes called a “majority rules” situation, and this set of nodes is considered to be the cluster. The arbitrator comes
into play when there is an even number of nodes: in such cases, the set of nodes to which the arbitrator belongs is considered to be the
cluster, and nodes not belonging to this set are shut down.

The preceding information is somewhat simplified. A more complete explanation taking into account node groups follows:

When all nodes in at least one node group are alive, network partitioning is not an issue, because no one portion of the cluster can form
a functional cluster. The real problem arises when no single node group has all its nodes alive, in which case network partitioning (the
“split-brain” scenario) becomes possible. Then an arbitrator is required. All cluster nodes recognize the same node as the arbitrator,
which is normally the management server; however, it is possible to configure any of the MySQL Servers in the cluster to act as the ar-
bitrator instead. The arbitrator accepts the first set of cluster nodes to contact it, and tells the remaining set to shut down. Arbitrator se-
lection is controlled by the ArbitrationRank configuration parameter for MySQL Server and management server nodes. (See Sec-
tion 17.4.4.4, “Defining the Management Server”, for details.) It should also be noted that the role of arbitrator does not in and of itself
impose any heavy demands upon the host so designated, and thus the arbitrator host does not need to be particularly fast or to have extra
memory especially for this purpose.

31.10.26: What data types are supported by MySQL Cluster?

MySQL Cluster supports all of the usual MySQL data types, with the exception of those associated with MySQL's spatial extensions.
(See Chapter 19, Spatial Extensions.) In addition, there are some differences with regard to indexes when used with NDB tables.

Note

MySQL Cluster Disk Data tables (that is, tables created with TABLESPACE ... STORAGE DISK EN-
GINE=NDBCLUSTER) have only fixed-width rows. This means that (for example) each Disk Data table record containing
a VARCHAR(255) column requires space for 255 characters (as required for the character set and collation being used for
the table), regardless of the actual number of characters stored therein.

See Section 17.15, “Known Limitations of MySQL Cluster”, for more information about these issues.

MySQL 5.1 Frequently Asked Questions

1898



31.10.27: How do I start and stop MySQL Cluster?

It is necessary to start each node in the cluster separately, in the following order:

1. Start the management node with the ndb_mgmd command.

2. Start each data node with the ndbd command.

3. Start each MySQL server (SQL node) using mysqld_safe --user=mysql &.

Each of these commands must be run from a system shell on the machine housing the affected node. (You do not have to be physically
present at the machine — a remote login shell can be used for this purpose.) You can verify that the cluster is running by starting the
MGM management client ndb_mgm on the machine housing the MGM node and issuing the SHOW or ALL STATUS command.

To shut down a running cluster, issue the command SHUTDOWN in the MGM client. Alternatively, you may enter the following com-
mand in a system shell on the machine hosting the MGM node:

shell> ndb_mgm -e "SHUTDOWN"

(Note that the quotation marks are optional here; the SHUTDOWN command itself is not case-sensitive.)

Either of these commands causes the ndb_mgm, ndb_mgm, and any ndbd processes to terminate gracefully. MySQL servers running
as Cluster SQL nodes can be stopped using mysqladmin shutdown.

For more information, see Section 17.8.2, “Commands in the MySQL Cluster Management Client”, and Section 17.3.6, “Safe Shut-
down and Restart”.

31.10.28: What happens to cluster data when the cluster is shut down?

The data that was held in memory by the cluster's data nodes is written to disk, and is reloaded into memory the next time that the
cluster is started.

31.10.29: Is it helpful to have more than one management node for a cluster?

It can be helpful as a fail-safe. Only one MGM node controls the cluster at any given time, but it is possible to configure one MGM as
primary, and one or more additional management nodes to take over in the event that the primary MGM node fails.

See Section 17.4.4, “Configuration File”, for information on how to configure MySQL Cluster management nodes.

31.10.30: Can I mix different kinds of hardware and operating systems in one MySQL Cluster?

Yes, so long as all machines and operating systems have the same “endianness” (all big-endian or all little-endian). It is also possible to
use different MySQL Cluster releases on different nodes. However, we recommend this be done only as part of a rolling upgrade pro-
cedure (see Section 17.6.1, “Performing a Rolling Restart of the Cluster”).

31.10.31: Can I run two data nodes on a single host? Two SQL nodes?

Yes, it is possible to do this. In the case of multiple data nodes, it is advisable (but not required) for each node to use a different data dir-
ectory. If you want to run multiple SQL nodes on one machine, each instance of mysqld must use a different TCP/IP port. However,
running more than one cluster node of a given type per machine is not supported for production use.

31.10.32: Can I use hostnames with MySQL Cluster?

Yes, it is possible to use DNS and DHCP for cluster hosts. However, if your application requires “five nines” availability, we recom-
mend using fixed IP addresses. Making communication between Cluster hosts dependent on services such as DNS and DHCP intro-
duces additional points of failure, and the fewer of these, the better.

31.10.33: How do I handle MySQL users in a Cluster having multiple MySQL servers?

MySQL user accounts and privileges are not automatically propagated between different MySQL servers accessing the same MySQL
Cluster. Therefore, you must make sure that these are copied between the SQL nodes yourself.

A.11. MySQL 5.1 FAQ — MySQL Chinese, Japanese, and Korean Char-

MySQL 5.1 Frequently Asked Questions

1899



acter Sets
This set of Frequently Asked Questions derives from the experience of MySQL's Support and Development groups in handling many
inquiries about CJK (Chinese-Japanese-Korean) issues.

Questions

• 31.11.1: What CJK character sets are available in MySQL?

• 31.11.2: I have inserted CJK characters into my table. Why does SELECT display them as “?” characters?

• 31.11.3: What problems should I be aware of when working with the Big5 Chinese character set?

• 31.11.4: Why do Japanese character set conversions fail?

• 31.11.5: What should I do if I want to convert SJIS 81CA to cp932?

• 31.11.6: How does MySQL represent the Yen (¥) sign?

• 31.11.7: Do MySQL plan to make a separate character set where 5C is the Yen sign, as at least one other major DBMS does?

• 31.11.8: Of what issues should I be aware when working with Korean character sets in MySQL?

• 31.11.9: Why do I get DATA TRUNCATED error messages?

• 31.11.10: Why does my GUI front end or browser not display CJK characters correctly in my application using Access, PHP, or an-
other API?

• 31.11.11: I've upgraded to MySQL 5.1. How can I revert to behavior like that in MySQL 4.0 with regard to character sets?

• 31.11.12: Why do some LIKE and FULLTEXT searches with CJK characters fail?

• 31.11.13: How do I know whether character X is available in all character sets?

• 31.11.14: Why don't CJK strings sort correctly in Unicode? (I)

• 31.11.15: Why don't CJK strings sort correctly in Unicode? (II)

• 31.11.16: Why are my supplementary characters rejected by MySQL?

• 31.11.17: Shouldn't it be “CJKV”?

• 31.11.18: Does MySQL allow CJK characters to be used in database and table names?

• 31.11.19: Where can I find translations of the MySQL Manual into Chinese, Japanese, and Korean?

• 31.11.20: Where can I get help with CJK and related issues in MySQL?

Questions and Answers

31.11.1: What CJK character sets are available in MySQL?

The list of CJK character sets may vary depending on your MySQL version. For example, the eucjpms character set was not suppor-
ted prior to MySQL 5.0.3. However, since the name of the applicable language appears in the DESCRIPTION column for every entry
in the INFORMATION_SCHEMA.CHARACTER_SETS table, you can obtain a current list of all the non-Unicode CJK character sets us-
ing this query:

mysql> SELECT CHARACTER_SET_NAME, DESCRIPTION
-> FROM INFORMATION_SCHEMA.CHARACTER_SETS
-> WHERE DESCRIPTION LIKE '%Chinese%'
-> OR DESCRIPTION LIKE '%Japanese%'
-> OR DESCRIPTION LIKE '%Korean%'
-> ORDER BY CHARACTER_SET_NAME;

+--------------------+---------------------------+
| CHARACTER_SET_NAME | DESCRIPTION |
+--------------------+---------------------------+
| big5 | Big5 Traditional Chinese |
| cp932 | SJIS for Windows Japanese |

MySQL 5.1 Frequently Asked Questions

1900



| eucjpms | UJIS for Windows Japanese |
| euckr | EUC-KR Korean |
| gb2312 | GB2312 Simplified Chinese |
| gbk | GBK Simplified Chinese |
| sjis | Shift-JIS Japanese |
| ujis | EUC-JP Japanese |
+--------------------+---------------------------+
8 rows in set (0.01 sec)

(See Section 24.9, “The INFORMATION_SCHEMA CHARACTER_SETS Table”, for more information.)

MySQL supports the two common variants of the GB (Guojia Biaozhun, or National Standard, or Simplified Chinese) character sets
which are official in the People's Republic of China: gb2312 and gbk. Sometimes people try to insert gbk characters into gb2312,
and it works most of the time because gbk is a superset of gb2312 — but eventually they try to insert a rarer Chinese character and it
doesn't work. (See Bug#16072 for an example).

Here, we try to clarify exactly what characters are legitimate in gb2312 or gbk, with reference to the official documents. Please check
these references before reporting gb2312 or gbk bugs.

• For a complete listing of the gb2312 characters, ordered according to the gb2312_chinese_ci collation: gb2312

• MySQL's gbk is in reality “Microsoft code page 936”. This differs from the official gbk for characters A1A4 (middle dot), A1AA
(em dash), A6E0-A6F5, and A8BB-A8C0. For a listing of the differences, see ht-
tp://recode.progiciels-bpi.ca/showfile.html?name=dist/libiconv/gbk.h.

• For a listing of gbk/Unicode mappings, see ht-
tp://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT.

• For MySQL's listing of gbk characters, see gbk.

31.11.2: I have inserted CJK characters into my table. Why does SELECT display them as “?” characters?

This problem is usually due to a setting in MySQL that doesn't match the settings for the application program or the operating system.
Here are some common steps for correcting these types of issues:

• Be certain of what MySQL version you are using.

Use the statement SELECT VERSION(); to determine this.

• Make sure that the database is actually using the desired character set.

People often think that the client character set is always the same as either the server character set or the character set used for dis-
play purposes. However, both of these are false assumptions. You can make sure by checking the result of SHOW CREATE TABLE
tablename or — better — yet by using this statement:

SELECT character_set_name, collation_name
FROM information_schema.columns
WHERE table_schema = your_database_name

AND table_name = your_table_name
AND column_name = your_column_name;

• Determine the hexadecimal value of the character or characters that are not being displayed correctly.

You can obtain this information for a column column_name in the table table_name using the following query:

SELECT HEX(column_name)
FROM table_name;

3F is the encoding for the ? character; this means that ? is the character actually stored in the column. This most often happens be-
cause of a problem converting a particular character from your client character set to the target character set.

• Make sure that a round trip possible — that is, when you select literal (or _introducer hexadecimal-value), you ob-
tain literal as a result.

For example, the Japanese Katakana character Pe (#') exists in all CJK character sets, and has the code point value (hexadecimal
coding) 0x30da. To test a round trip for this character, use this query:

MySQL 5.1 Frequently Asked Questions

1901

http://bugs.mysql.com/16072
http://www.collation-charts.org/mysql60/by-charset.html#gb2312
http://recode.progiciels-bpi.ca/showfile.html?name=dist/libiconv/gbk.h
http://recode.progiciels-bpi.ca/showfile.html?name=dist/libiconv/gbk.h
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.collation-charts.org/mysql60/by-charset.html#gbk


SELECT '#' AS `#`; /* or SELECT _ucs2 0x30da; */

If the result is not also #, then the round trip has failed.

For bug reports regarding such failures, we might ask you to follow up with SELECT HEX('#');. Then we can determine wheth-
er the client encoding is correct.

• Make sure that the problem is not with the browser or other application, rather than with MySQL.

Use the mysql client program (on Windows: mysql.exe) to accomplish this task. If mysql displays correctly but your applica-
tion doesn't, then your problem is probably due to system settings.

To find out what your settings are, use the SHOW VARIABLES statement, whose output should resemble what is shown here:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+----------------------------------------+
| Variable_name | Value |
+--------------------------+----------------------------------------+
| character_set_client | utf8 |
| character_set_connection | utf8 |
| character_set_database | latin1 |
| character_set_filesystem | binary |
| character_set_results | utf8 |
| character_set_server | latin1 |
| character_set_system | utf8 |
| character_sets_dir | /usr/local/mysql/share/mysql/charsets/ |
+--------------------------+----------------------------------------+
8 rows in set (0.03 sec)

These are typical character-set settings for an international-oriented client (notice the use of utf8 Unicode) connected to a server in
the West (latin1 is a West Europe character set and a default for MySQL).

Although Unicode (usually the utf8 variant on Unix, and the ucs2 variant on Windows) is preferable to Latin, it's often not what
your operating system utilities support best. Many Windows users find that a Microsoft character set, such as cp932 for Japanese
Windows, is what's suitable.

If you cannot control the server settings, and you have no idea what your underlying computer is, then try changing to a common
character set for the country that you're in (euckr = Korea; gb2312 or gbk = People's Republic of China; big5 = Taiwan; sjis,
ujis, cp932, or eucjpms = Japan; ucs2 or utf8 = anywhere). Usually it is necessary to change only the client and connection
and results settings. There is a simple statement which changes all three at once: SET NAMES. For example:

SET NAMES 'big5';

Once the setting is correct, you can make it permanent by editing my.cnf or my.ini. For example you might add lines looking
like these:

[mysqld]
character-set-server=big5
[client]
default-character-set=big5

It is also possible that there are issues with the API configuration setting being used in your application; see Why does my GUI front
end or browser not display CJK characters correctly...? for more information.

31.11.3: What problems should I be aware of when working with the Big5 Chinese character set?

MySQL supports the Big5 character set which is common in Hong Kong and Taiwan (Republic of China). MySQL's big5 is in reality
Microsoft code page 950, which is very similar to the original big5 character set. We changed to this character set starting with
MySQL version 4.1.16 / 5.0.16 (as a result of Bug#12476). For example, the following statements work in current versions of MySQL,
but not in old versions:

mysql> CREATE TABLE big5 (BIG5 CHAR(1) CHARACTER SET BIG5);
Query OK, 0 rows affected (0.13 sec)

mysql> INSERT INTO big5 VALUES (0xf9dc);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM big5;
+------+
| big5 |
+------+

MySQL 5.1 Frequently Asked Questions

1902

http://bugs.mysql.com/12476


| # |
+------+
1 row in set (0.02 sec)

A feature request for adding HKSCS extensions has been filed. People who need this extension may find the suggested patch for
Bug#13577 to be of interest.

31.11.4: Why do Japanese character set conversions fail?

MySQL supports the sjis, ujis, cp932, and eucjpms character sets, as well as Unicode. A common need is to convert between
character sets. For example, there might be a Unix server (typically with sjis or ujis) and a Windows client (typically with cp932).

In the following conversion table, the ucs2 column represents the source, and the sjis, cp932, ujis, and eucjpms columns rep-
resent the destinations — that is, the last 4 columns provide the hexadecimal result when we use CONVERT(ucs2) or we assign a
ucs2 column containing the value to an sjis, cp932, ujis, or eucjpms column.

Character Name ucs2 sjis cp932 ujis eucjpms

BROKEN BAR 00A6 3F 3F 8FA2C3 3F

FULLWIDTH BROKEN BAR FFE4 3F FA55 3F 8FA2

YEN SIGN 00A5 3F 3F 20 3F

FULLWIDTH YEN SIGN FFE5 818F 818F A1EF 3F

TILDE 007E 7E 7E 7E 7E

OVERLINE 203E 3F 3F 20 3F

HORIZONTAL BAR 2015 815C 815C A1BD A1BD

EM DASH 2014 3F 3F 3F 3F

REVERSE SOLIDUS 005C 815F 5C 5C 5C

FULLWIDTH "" FF3C 3F 815F 3F A1C0

WAVE DASH 301C 8160 3F A1C1 3F

FULLWIDTH TILDE FF5E 3F 8160 3F A1C1

DOUBLE VERTICAL LINE 2016 8161 3F A1C2 3F

PARALLEL TO 2225 3F 8161 3F A1C2

MINUS SIGN 2212 817C 3F A1DD 3F

FULLWIDTH HYPHEN-MINUS FF0D 3F 817C 3F A1DD

CENT SIGN 00A2 8191 3F A1F1 3F

FULLWIDTH CENT SIGN FFE0 3F 8191 3F A1F1

POUND SIGN 00A3 8192 3F A1F2 3F

FULLWIDTH POUND SIGN FFE1 3F 8192 3F A1F2

NOT SIGN 00AC 81CA 3F A2CC 3F

FULLWIDTH NOT SIGN FFE2 3F 81CA 3F A2CC

Now consider this portion of the table:

ucs2 sjis cp932

NOT SIGN 00AC 81CA 3F

FULLWIDTH NOT SIGN FFE2 3F 81CA

This means that MySQL converts the NOT SIGN (Unicode U+00AC) to sjis code point 0x81CA and to cp932 code point 3F. (3F
is the question mark (“?”) — this is what is always used when the conversion cannot be performed.

31.11.5: What should I do if I want to convert SJIS 81CA to cp932?

Our answer is: “?”. There are serious complaints about this: many people would prefer a “loose” conversion, so that 81CA (NOT
SIGN) in sjis becomes 81CA (FULLWIDTH NOT SIGN) in cp932. We are considering a change to this behavior.

31.11.6: How does MySQL represent the Yen (¥) sign?

MySQL 5.1 Frequently Asked Questions

1903

http://bugs.mysql.com/13577


A problem arises because some versions of Japanese character sets (both sjis and euc) treat 5C as a reverse solidus (\ — also known
as a backslash), and others treat it as a yen sign (¥).

MySQL follows only one version of the JIS (Japanese Industrial Standards) standard description. In MySQL, 5C is always the reverse
solidus (\).

31.11.7: Do MySQL plan to make a separate character set where 5C is the Yen sign, as at least one other major DBMS does?

This is one possible solution to the Yen sign issue; however, this will not happen in MySQL 5.1 or 5.2.

31.11.8: Of what issues should I be aware when working with Korean character sets in MySQL?

In theory, while there have been several versions of the euckr (Extended Unix Code Korea) character set, only one problem has been
noted.

We use the “ASCII” variant of EUC-KR, in which the code point 0x5c is REVERSE SOLIDUS, that is \, instead of the “KS-Roman”
variant of EUC-KR, in which the code point 0x5c is WON SIGN(#). This means that you cannot convert Unicode U+20A9 to euckr:

mysql> SELECT
-> CONVERT('#' USING euckr) AS euckr,
-> HEX(CONVERT('#' USING euckr)) AS hexeuckr;

+-------+----------+
| euckr | hexeuckr |
+-------+----------+
| ? | 3F |
+-------+----------+
1 row in set (0.00 sec)

MySQL's graphic Korean chart is here: euckr.

31.11.9: Why do I get DATA TRUNCATED error messages?

For illustration, we'll create a table with one Unicode (ucs2) column and one Chinese (gb2312) column.

mysql> CREATE TABLE ch
-> (ucs2 CHAR(3) CHARACTER SET ucs2,
-> gb2312 CHAR(3) CHARACTER SET gb2312);

Query OK, 0 rows affected (0.05 sec)

We'll try to place the rare character # in both columns.

mysql> INSERT INTO ch VALUES ('A#B','A#B');
Query OK, 1 row affected, 1 warning (0.00 sec)

Ah, there's a warning. Let's see what it is.

mysql> SHOW WARNINGS;
+---------+------+---------------------------------------------+
| Level | Code | Message |
+---------+------+---------------------------------------------+
| Warning | 1265 | Data truncated for column 'gb2312' at row 1 |
+---------+------+---------------------------------------------+
1 row in set (0.00 sec)

So it's a warning about the gb2312 column only.

mysql> SELECT ucs2,HEX(ucs2),gb2312,HEX(gb2312) FROM ch;
+-------+--------------+--------+-------------+
| ucs2 | HEX(ucs2) | gb2312 | HEX(gb2312) |
+-------+--------------+--------+-------------+
| A#B | 00416C4C0042 | A?B | 413F42 |
+-------+--------------+--------+-------------+
1 row in set (0.00 sec)

There are several things that need explanation here.

1. The fact that it's a “warning” rather than an “error” is characteristic of MySQL. We like to try to do what we can, to get the best fit,
rather than give up.

2. The # character isn't in the gb2312 character set. We described that problem earlier.

3. Admittedly the message is misleading. We didn't “truncate” in this case, we replaced with a question mark. We've had a complaint
about this message (See Bug#9337). But until we come up with something better, just accept that error/warning code 2165 can
mean a variety of things.

MySQL 5.1 Frequently Asked Questions

1904

http://www.collation-charts.org/mysql60/by-charset.html#euckr
http://bugs.mysql.com/9337


4. With SQL_MODE=TRADITIONAL, there would be an error message, but instead of error 2165 you would see: ERROR 1406
(22001): Data too long for column 'gb2312' at row 1.

31.11.10: Why does my GUI front end or browser not display CJK characters correctly in my application using Access, PHP, or
another API?

Obtain a direct connection to the server using the mysql client (Windows: mysql.exe), and try the same query there. If mysql re-
sponds correctly, then the trouble may be that your application interface requires initialization. Use mysql to tell you what character set
or sets it uses with the statement SHOW VARIABLES LIKE 'char%';. If you are using Access, then you are most likely connect-
ing with MyODBC. In this case, you should check Section 27.1.4, “Connector/ODBC Configuration”. If, for instance, you use big5,
you would enter SET NAMES 'big5'. (Note that no ; is required in this case). If you are using ASP, you might need to add SET
NAMES in the code. Here is an example that has worked in the past:

<%
Session.CodePage=0
Dim strConnection
Dim Conn
strConnection="driver={MySQL ODBC 3.51 Driver};server=server;uid=username;" \

& "pwd=password;database=database;stmt=SET NAMES 'big5';"
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open strConnection
%>

In much the same way, if you are using any character set other than latin1 with Connector/NET, then you must specify the character
set in the connection string. See Section 27.2.5.1, “Connecting to MySQL Using Connector/NET”, for more information.

If you are using PHP, try this:

<?php
$link = mysql_connect($host, $usr, $pwd);

mysql_select_db($db);

if( mysql_error() ) { print "Database ERROR: " . mysql_error(); }
mysql_query("SET NAMES 'utf8'", $link);

?>

In this case, we used SET NAMES to change character_set_client and character_set_connection and charac-
ter_set_results.

We encourage the use of the newer mysqli extension, rather than mysql. Using mysqli, the previous example could be rewritten as
shown here:

<?php
$link = new mysqli($host, $usr, $pwd, $db);

if( mysqli_connect_errno() )
{
printf("Connect failed: %s\n", mysqli_connect_error());
exit();

}

$link->query("SET NAMES 'utf8'");
?>

Another issue often encountered in PHP applications has to do with assumptions made by the browser. Sometimes adding or changing a
<meta> tag suffices to correct the problem: for example, to insure that the user agent interprets page content as UTF-8, you should in-
clude <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> in the <head> of the HTML
page.

If you are using Connector/J, see Section 27.4.4.4, “Using Character Sets and Unicode”.

31.11.11: I've upgraded to MySQL 5.1. How can I revert to behavior like that in MySQL 4.0 with regard to character sets?

In MySQL Version 4.0, there was a single “global” character set for both server and client, and the decision as to which character to use
was made by the server administrator. This changed starting with MySQL Version 4.1. What happens now is a “handshake”, as de-
scribed in Section 9.1.4, “Connection Character Sets and Collations”:

When a client connects, it sends to the server the name of the character set that it wants to use. The server uses the
name to set the character_set_client, character_set_results, and charac-
ter_set_connection system variables. In effect, the server performs a SET NAMES operation using the char-
acter set name.

MySQL 5.1 Frequently Asked Questions

1905



The effect of this is that you cannot control the client character set by starting mysqld with --character-set-server=utf8.
However, some of our Asian customers have said that they prefer the MySQL 4.0 behavior. To make it possible to retain this behavior,
we added a mysqld switch, --character-set-client-handshake, which can be turned off with -
-skip-character-set-client-handshake. If you start mysqld with -
-skip-character-set-client-handshake, then, when a client connects, it sends to the server the name of the character set
that it wants to use — however, the server ignores this request from the client.

By way of example, suppose that your favorite server character set is latin1 (unlikely in a CJK area, but this is the default value).
Suppose further that the client uses utf8 because this is what the client's operating system supports. Now, start the server with lat-
in1 as its default character set:

mysqld --character-set-server=latin1

And then start the client with the default character set utf8:

mysql --default-character-set=utf8

The current settings can be seen by viewing the output of SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+----------------------------------------+
| Variable_name | Value |
+--------------------------+----------------------------------------+
| character_set_client | utf8 |
| character_set_connection | utf8 |
| character_set_database | latin1 |
| character_set_filesystem | binary |
| character_set_results | utf8 |
| character_set_server | latin1 |
| character_set_system | utf8 |
| character_sets_dir | /usr/local/mysql/share/mysql/charsets/ |
+--------------------------+----------------------------------------+
8 rows in set (0.01 sec)

Now stop the client, and then stop the server using mysqladmin. Then start the server again, but this time tell it to skip the handshake
like so:

mysqld --character-set-server=utf8 --skip-character-set-client-handshake

Start the client with utf8 once again as the default character set, then display the current settings:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+----------------------------------------+
| Variable_name | Value |
+--------------------------+----------------------------------------+
| character_set_client | latin1 |
| character_set_connection | latin1 |
| character_set_database | latin1 |
| character_set_filesystem | binary |
| character_set_results | latin1 |
| character_set_server | latin1 |
| character_set_system | utf8 |
| character_sets_dir | /usr/local/mysql/share/mysql/charsets/ |
+--------------------------+----------------------------------------+
8 rows in set (0.01 sec)

As you can see by comparing the differing results from SHOW VARIABLES, the server ignores the client's initial settings if the -
-skip-character-set-client-handshake is used.

31.11.12: Why do some LIKE and FULLTEXT searches with CJK characters fail?

There is a very simple problem with LIKE searches on BINARY and BLOB columns: we need to know the end of a character. With
multi-byte character sets, different characters might have different octet lengths. For example, in utf8, A requires one byte but # re-
quires three bytes, as shown here:

+-------------------------+---------------------------+
| OCTET_LENGTH(_utf8 'A') | OCTET_LENGTH(_utf8 '#') |
+-------------------------+---------------------------+
| 1 | 3 |
+-------------------------+---------------------------+
1 row in set (0.00 sec)

If we don't know where the first character ends, then we don't know where the second character begins, in which case even very simple
searches such as LIKE '_A%' fail. The solution is to use a regular CJK character set in the first place, or to convert to a CJK character
set before comparing.

This is one reason why MySQL cannot allow encodings of nonexistent characters. If it is not strict about rejecting bad input, then it has
no way of knowing where characters end.

MySQL 5.1 Frequently Asked Questions

1906



For FULLTEXT searches, we need to know where words begin and end. With Western languages, this is rarely a problem because most
(if not all) of these use an easy-to-identify word boundary — the space character. However, this is not usually the case with Asian writ-
ing. We could use arbitrary halfway measures, like assuming that all Han characters represent words, or (for Japanese) depending on
changes from Katakana to Hiragana due to grammatical endings. However, the only sure solution requires a comprehensive word list,
which means that we would have to include a dictionary in the server for each Asian language supported. This is simply not feasible.

31.11.13: How do I know whether character X is available in all character sets?

The majority of simplified Chinese and basic non-halfwidth Japanese Kana characters appear in all CJK character sets. This stored pro-
cedure accepts a UCS-2 Unicode character, converts it to all other character sets, and displays the results in hexadecimal.

DELIMITER //

CREATE PROCEDURE p_convert(ucs2_char CHAR(1) CHARACTER SET ucs2)
BEGIN

CREATE TABLE tj
(ucs2 CHAR(1) character set ucs2,
utf8 CHAR(1) character set utf8,
big5 CHAR(1) character set big5,
cp932 CHAR(1) character set cp932,
eucjpms CHAR(1) character set eucjpms,
euckr CHAR(1) character set euckr,
gb2312 CHAR(1) character set gb2312,
gbk CHAR(1) character set gbk,
sjis CHAR(1) character set sjis,
ujis CHAR(1) character set ujis);

INSERT INTO tj (ucs2) VALUES (ucs2_char);

UPDATE tj SET utf8=ucs2,
big5=ucs2,
cp932=ucs2,
eucjpms=ucs2,
euckr=ucs2,
gb2312=ucs2,
gbk=ucs2,
sjis=ucs2,
ujis=ucs2;

/* If there's a conversion problem, UPDATE will produce a warning. */

SELECT hex(ucs2) AS ucs2,
hex(utf8) AS utf8,
hex(big5) AS big5,
hex(cp932) AS cp932,
hex(eucjpms) AS eucjpms,
hex(euckr) AS euckr,
hex(gb2312) AS gb2312,
hex(gbk) AS gbk,
hex(sjis) AS sjis,
hex(ujis) AS ujis

FROM tj;

DROP TABLE tj;

END//

The input can be any single ucs2 character, or it can be the code point value (hexadecimal representation) of that character. For ex-
ample, from Unicode's list of ucs2 encodings and names (http://www.unicode.org/Public/UNIDATA/UnicodeData.txt), we know that
the Katakana character Pe appears in all CJK character sets, and that its code point value is 0x30da. If we use this value as the argu-
ment to p_convert(), the result is as shown here:

mysql> CALL p_convert(0x30da)//
+------+--------+------+-------+---------+-------+--------+------+------+------+
| ucs2 | utf8 | big5 | cp932 | eucjpms | euckr | gb2312 | gbk | sjis | ujis |
+------+--------+------+-------+---------+-------+--------+------+------+------+
| 30DA | E3839A | C772 | 8379 | A5DA | ABDA | A5DA | A5DA | 8379 | A5DA |
+------+--------+------+-------+---------+-------+--------+------+------+------+
1 row in set (0.04 sec)

Since none of the column values is 3F — that is, the question mark character (?) — we know that every conversion worked.

31.11.14: Why don't CJK strings sort correctly in Unicode? (I)

Sometimes people observe that the result of a utf8_unicode_ci or ucs2_unicode_ci search, or of an ORDER BY sort is not
what they think a native would expect. Although we never rule out the possibility that there is a bug, we have found in the past that
many people do not read correctly the standard table of weights for the Unicode Collation Algorithm. MySQL uses the table found at
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. This is not the first table you will find by navigating from the uni-
code.org home page, because MySQL uses the older 4.0.0 “allkeys” table, rather than the more recent 4.1.0 table. This is because we

MySQL 5.1 Frequently Asked Questions

1907

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt


are very wary about changing ordering which affects indexes, lest we bring about situations such as that reported in Bug#16526, illus-
trated as follows:

mysql< CREATE TABLE tj (s1 CHAR(1) CHARACTER SET utf8 COLLATE utf8_unicode_ci);
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO tj VALUES ('#'),('#');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM tj WHERE s1 = '#';
+------+
| s1 |
+------+
| # |
| # |
+------+
2 rows in set (0.00 sec)

The character in the first result row is not the one that we searched for. Why did MySQL retrieve it? First we look for the Unicode code
point value, which is possible by reading the hexadecimal number for the ucs2 version of the characters:

mysql> SELECT s1, HEX(CONVERT(s1 USING ucs2)) FROM tj;
+------+-----------------------------+
| s1 | HEX(CONVERT(s1 USING ucs2)) |
+------+-----------------------------+
| # | 304C |
| # | 304B |
+------+-----------------------------+
2 rows in set (0.03 sec)

Now we search for 304B and 304C in the 4.0.0 allkeys table, and find these lines:

304B ; [.1E57.0020.000E.304B] # HIRAGANA LETTER KA
304C ; [.1E57.0020.000E.304B][.0000.0140.0002.3099] # HIRAGANA LETTER GA; QQCM

The official Unicode names (following the “#” mark) tell us the Japanese syllabary (Hiragana), the informal classification (letter, digit,
or punctuation mark), and the Western identifier (KA or GA, which happen to be voiced and unvoiced components of the same letter
pair). More importantly, the primary weight (the first hexadecimal number inside the square brackets) is 1E57 on both lines. For com-
parisons in both searching and sorting, MySQL pays attention to the primary weight only, ignoring all the other numbers. This means
that we are sorting # and # correctly according to the Unicode specification. If we wanted to distinguish them, we'd have to use a non-
UCA (Unicode Collation Algorithm) collation (utf8_bin or utf8_general_ci), or to compare the HEX() values, or use ORDER
BY CONVERT(s1 USING sjis). Being correct “according to Unicode” isn't enough, of course: the person who submitted the bug
was equally correct. We plan to add another collation for Japanese according to the JIS X 4061 standard, in which voiced/unvoiced let-
ter pairs like KA/GA are distinguishable for ordering purposes.

31.11.15: Why don't CJK strings sort correctly in Unicode? (II)

If you are using Unicode (ucs2 or utf8), and you know what the Unicode sort order is (see Section A.11, “MySQL 5.1 FAQ —
MySQL Chinese, Japanese, and Korean Character Sets”), but MySQL still seems to sort your table incorrectly, then you should first
verify the table character set:

mysql> SHOW CREATE TABLE t\G
******************** 1. row ******************
Table: t
Create Table: CREATE TABLE `t` (
`s1` char(1) CHARACTER SET ucs2 DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Since the character set appears to be correct, let's see what information the INFORMATION_SCHEMA.COLUMNS table can provide
about this column:

mysql> SELECT COLUMN_NAME, CHARACTER_SET_NAME, COLLATION_NAME
-> FROM INFORMATION_SCHEMA.COLUMNS
-> WHERE COLUMN_NAME = 's1'
-> AND TABLE_NAME = 't';

+-------------+--------------------+-----------------+
| COLUMN_NAME | CHARACTER_SET_NAME | COLLATION_NAME |
+-------------+--------------------+-----------------+
| s1 | ucs2 | ucs2_general_ci |
+-------------+--------------------+-----------------+
1 row in set (0.01 sec)

(See Section 24.3, “The INFORMATION_SCHEMA COLUMNS Table”, for more information.)

You can see that the collation is ucs2_general_ci instead of ucs2_unicode_ci. The reason why this is so can be found using
SHOW CHARSET, as shown here:

MySQL 5.1 Frequently Asked Questions

1908

http://bugs.mysql.com/16526


mysql> SHOW CHARSET LIKE 'ucs2%';
+---------+---------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------+-------------------+--------+
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
+---------+---------------+-------------------+--------+
1 row in set (0.00 sec)

For ucs2 and utf8, the default collation is “general”. To specify a Unicode collation, use COLLATE ucs2_unicode_ci.

31.11.16: Why are my supplementary characters rejected by MySQL?

Before MySQL 6.0.4, MySQL does not support supplementary characters — that is, characters which need more than 3 bytes — for
UTF-8. We support only what Unicode calls the Basic Multilingual Plane / Plane 0. Only a few very rare Han characters are supple-
mentary; support for them is uncommon. This has led to reports such as that found in Bug#12600, which we rejected as “not a bug”.
With utf8, we must truncate an input string when we encounter bytes that we don't understand. Otherwise, we wouldn't know how
long the bad multi-byte character is.

One possible workaround is to use ucs2 instead of utf8, in which case the “bad” characters are changed to question marks; however,
no truncation takes place. You can also change the data type to BLOB or BINARY, which perform no validity checking.

As of MySQL 6.0.4, Unicode support is extended to include supplementary characters by means of additional Unicode character sets:
utf16, utf32, and 4-byte utf8. These character sets support supplementary Unicode characters outside the Basic Multilingual Plane
(BMP).

31.11.17: Shouldn't it be “CJKV”?

No. The term “CJKV” (Chinese Japanese Korean Vietnamese) refers to Vietnamese character sets which contain Han (originally
Chinese) characters. MySQL has no plan to support the old Vietnamese script using Han characters. MySQL does of course support the
modern Vietnamese script with Western characters.

Bug#4745 is a request for a specialized Vietnamese collation, which we might add in the future if there is sufficient demand for it.

31.11.18: Does MySQL allow CJK characters to be used in database and table names?

This issue is fixed in MySQL 5.1, by automatically rewriting the names of the corresponding directories and files.

For example, if you create a database named # on a server whose operating system does not support CJK in directory names, MySQL
creates a directory named @0w@00a5@00ae. which is just a fancy way of encoding E6A5AE — that is, the Unicode hexadecimal rep-
resentation for the # character. However, if you run a SHOW DATABASES statement, you can see that the database is listed as #.

31.11.19: Where can I find translations of the MySQL Manual into Chinese, Japanese, and Korean?

A Simplified Chinese version of the Manual, current for MySQL 5.1.12, can be found at http://dev.mysql.com/doc/. The Japanese trans-
lation of the MySQL 4.1 manual can be downloaded from http://dev.mysql.com/doc/.

31.11.20: Where can I get help with CJK and related issues in MySQL?

The following resources are available:

• A listing of MySQL user groups can be found at http://dev.mysql.com/user-groups/.

• You can contact a sales engineer at the MySQL KK Japan office using any of the following:

Tel: +81(0)3-5326-3133
Fax: +81(0)3-5326-3001
Email: dsaito@mysql.com

• View feature requests relating to character set issues at http://tinyurl.com/y6xcuf.

• Visit the MySQL Character Sets, Collation, Unicode Forum. We are also in the process of adding foreign-language forums at ht-
tp://forums.mysql.com/.

A.12. MySQL 5.1 FAQ — Connectors & APIs
For common questions, issues, and answers relating to the MySQL Connectors and other APIs, see the following areas of the Manual:

MySQL 5.1 Frequently Asked Questions

1909

http://bugs.mysql.com/12600
http://bugs.mysql.com/4745
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/user-groups/
http://tinyurl.com/y6xcuf
http://forums.mysql.com/list.php?103
http://forums.mysql.com/
http://forums.mysql.com/


• Section 26.2.14, “Common Questions and Problems When Using the C API”

• Section 26.3.1, “Common Problems with MySQL and PHP”

• Section 27.1.7, “Connector/ODBC Notes and Tips”

• Section 27.2.5, “Connector/NET Notes and Tips”

• Section 27.4.5, “Connector/J Notes and Tips”

• Section 27.5.6, “Connector/MXJ Notes and Tips”

A.13. MySQL 5.1 FAQ — Replication
For answers to common queries and question regarding Replication within MySQL, see Section 16.3.4, “Replication FAQ”.

A.14. MySQL 5.1 FAQ — MySQL, DRBD, and Heartbeat

A.14.1. Distributed Replicated Block Device (DRBD)
In the following section, we provide answers to questions that are most frequently asked about Distributed Replicated Block Device
(DRBD).

Questions

• 31.14.1.1: What is DRBD?

• 31.14.1.2: What are “Block Devices”?

• 31.14.1.3: How is DRBD licensed?

• 31.14.1.4: Where can I download DRBD?

• 31.14.1.5: If I find a bug in DRBD, to whom do I submit the issue?

• 31.14.1.6: Where can I get more technical and business information concerning MySQL and DRBD?

Questions and Answers

31.14.1.1: What is DRBD?

DRBD is an acronym for Distributed Replicated Block Device. DRBD is an open source Linux kernel block device which leverages
synchronous replication to achieve a consistent view of data between two systems, typically an Active and Passive system. DRBD cur-
rently supports all the major flavors of Linux and comes bundled in several major Linux distributions. The DRBD project is maintained
by LINBIT.

31.14.1.2: What are “Block Devices”?

Block devices are the type of device used to represent storage in the Linux Kernel. All physical disk devices present a “block device”
interface. Additionally, virtual disk systems like LVM or DRBD present a “block device” interface. In this way, the file system or other
software that might want to access a disk device can be used with any number of real or virtual devices without having to know any-
thing about their underlying implementation details.

31.14.1.3: How is DRBD licensed?

DRBD is licensed under the GPL.

31.14.1.4: Where can I download DRBD?

Please see http://www.drbd.org/download.html

MySQL 5.1 Frequently Asked Questions

1910

 http://www.drbd.org/
http://www.drbd.org/download.html


31.14.1.5: If I find a bug in DRBD, to whom do I submit the issue?

Bug reports should be submitted to the DRBD mailing list. Please see: http://lists.linbit.com/ .

31.14.1.6: Where can I get more technical and business information concerning MySQL and DRBD?

Please visit: http://mysql.com/drbd/

A.14.2. Linux Heartbeat
In the following section, we provide answers to questions that are most frequently asked about Linux Heartbeat.

Questions

• 31.14.2.1: What is Linux Heartbeat?

• 31.14.2.2: How is Linux Heartbeat licensed?

• 31.14.2.3: Where can I download Linux Heartbeat?

• 31.14.2.4: If I find a bug with Linux Heartbeat, to whom do I submit the issue?

Questions and Answers

31.14.2.1: What is Linux Heartbeat?

The Linux-HA project (http://www.linux-ha.org/) offers a high availability solution commonly referred to as Linux Heartbeat. Linux
Heartbeat ships as part of several Linux distributions, as well as within several embedded high availability systems. This solution can
also be used for other applications besides databases servers, such as mail servers, web servers, file servers, and DNS servers.

Linux Heartbeat implements a heartbeat-protocol. A heartbeat-protocol means that messages are sent at regular intervals between two or
more nodes. If a message is not received from a node within a given interval, then it is assumed the node has failed and some type of
failover or recovery action is required. Linux Heartbeat is typically configured to send these heartbeat messages over standard Ethernet
interfaces, but it does also support other methods, such as serial-line links.

31.14.2.2: How is Linux Heartbeat licensed?

Linux Heartbeat is licensed under the GPL.

31.14.2.3: Where can I download Linux Heartbeat?

Please see http://linux-ha.org/download/index.html.

31.14.2.4: If I find a bug with Linux Heartbeat, to whom do I submit the issue?

Bug reports should be submitted to http://www.linux-ha.org/ClusterResourceManager/BugReports.

A.14.3. DRBD Architecture
In the following section, we provide answers to questions that are most frequently asked about DRBD Architecture.

Questions

• 31.14.3.1: Is an Active/Active option available for MySQL with DRBD?

• 31.14.3.2: What MySQL storage engines are supported with DRBD?

• 31.14.3.3: How long does a failover take?

• 31.14.3.4: How long does it take to resynchronize data after a failure?

• 31.14.3.5: Are there any situations where you shouldn't use DRBD?

MySQL 5.1 Frequently Asked Questions

1911

http://lists.linbit.com/ 
http://mysql.com/drbd/
http://www.linux-ha.org/
http://linux-ha.org/download/index.html
http://www.linux-ha.org/ClusterResourceManager/BugReports


• 31.14.3.6: Are there any limitations to DRBD?

• 31.14.3.7: Where can I find more information on sample architectures?

Questions and Answers

31.14.3.1: Is an Active/Active option available for MySQL with DRBD?

Currently, MySQL does not support Active/Active configurations using DRBD “out of the box”.

31.14.3.2: What MySQL storage engines are supported with DRBD?

All of the MySQL transactional storage engines are supported by DRBD, including InnoDB and Falcon. For archived or read-only data,
MyISAM or Archive can also be used.

31.14.3.3: How long does a failover take?

Failover time is dependent on many things, some of which are configurable. After activating the passive host, MySQL will have to start
and run a normal recovery process. If the InnoDB log files have been configured to a large size and there was heavy write traffic, this
may take a reasonably long period of time. However, under normal circumstances, failover tends to take less than a minute.

31.14.3.4: How long does it take to resynchronize data after a failure?

Resynchronization time depends on how long the two machines are out of communication and how much data was written during that
period of time. Resynchronization time is a function of data to be synced, network speed and disk speed. DRBD maintains a bitmap of
changed blocks on the primary machine, so only those blocks that have changed will need to be transferred.

31.14.3.5: Are there any situations where you shouldn't use DRBD?

See When Not To Use DRBD.

31.14.3.6: Are there any limitations to DRBD?

See DRBD limitations (or are they?).

31.14.3.7: Where can I find more information on sample architectures?

For an example of a Heartbeat R1-compatible resource configuration involving a MySQL database backed by DRBD, see DRBD User's
Guide.

For an example of the same DRBD-backed configuration for a MySQL database in a Heartbeat CRM cluster, see DRBD User's Guide.

A.14.4. DRBD and MySQL Replication
In the following section, we provide answers to questions that are most frequently asked about MySQL Replication Scale-out.

Questions

• 31.14.4.1: What is the difference between MySQL Cluster and DRBD?

• 31.14.4.2: What is the difference between MySQL Replication and DRBD?

• 31.14.4.3: How can I combine MySQL Replication scale-out with DRBD?

Questions and Answers

31.14.4.1: What is the difference between MySQL Cluster and DRBD?

Both MySQL Cluster and DRBD replicate data synchronously. MySQL Cluster leverages a shared-nothing storage architecture in
which the cluster can be architected beyond an Active/Passive configuration. DRBD operates at a much lower level within the “stack”,
at the disk I/O level. For a comparison of various high availability features between these two options, please refer to Chapter 14, High
Availability and Scalability.

MySQL 5.1 Frequently Asked Questions

1912

http://fghaas.wordpress.com/2007/06/26/when-not-to-use-drbd/
http://fghaas.wordpress.com/2007/06/18/drbd-limitations-or-are-they/
http://www.drbd.org/users-guide/s-heartbeat-r1.html
http://www.drbd.org/users-guide/s-heartbeat-r1.html
http://www.drbd.org/users-guide/s-heartbeat-crm.html


31.14.4.2: What is the difference between MySQL Replication and DRBD?

MySQL Replication replicates data asynchronously while DRBD replicates data synchronously. Also, MySQL Replication replicates
MySQL statements, while DRBD replicates the underlying block device that stores the MySQL data files. For a comparison of various
high availability features between these two options, please refer to the high availability comparison grid, Chapter 14, High Availability
and Scalability.

31.14.4.3: How can I combine MySQL Replication scale-out with DRBD?

MySQL Replication is typically deployed in a Master to many Slaves configuration. In this configuration, having many Slaves provides
read scalability. DRBD is used to provide high-availability for the Master MySQL Server in an Active/Passive configuration. This
provides for automatic failover, safeguards against data loss, and automatically synchronizes the failed MySQL Master after a failover.

The most likely scenario in which MySQL Replication scale-out can be leveraged with DRBD is in the form of attaching replicated
MySQL “read-slaves” off of the Active-Master MySQL Server, shown in Figure A.1, “Active-Master MySQL server”. Since DRBD
replicates an entire block device, master information such as the binary logs are also replicated. In this way, all of the slaves can attach
to the Virtual IP Address managed by Linux Heartbeat. In the event of a failure, the asynchronous nature of MySQL Replication allows
the slaves to continue with the new Active machine as their master with no intervention needed.

Figure A.1. Active-Master MySQL server

A.14.5. DRBD and File Systems
In the following section, we provide answers to questions that are most frequently asked about DRBD and file systems.

Questions

• 31.14.5.1: Can XFS be used with DRBD?

Questions and Answers

MySQL 5.1 Frequently Asked Questions

1913



31.14.5.1: Can XFS be used with DRBD?

Yes. XFS uses dynamic block size, thus DRBD 0.7 or later is needed.

A.14.6. DRBD and LVM
In the following section, we provide answers to questions that are most frequently asked about DRBD and LVM.

Questions

• 31.14.6.1: Can I use DRBD on top of LVM?

• 31.14.6.2: Can I use LVM on top of DRBD?

• 31.14.6.3: Can I use DRBD on top of LVM while at the same time running LVM on top of that DRBD?

Questions and Answers

31.14.6.1: Can I use DRBD on top of LVM?

Yes, DRBD supports on-line resizing. If you enlarge your logical volume that acts as a backing device for DRBD, you can enlarge
DRBD itself too, and of course your file system if it supports resizing.

31.14.6.2: Can I use LVM on top of DRBD?

Yes, you can use DRBD as a Physical Volume (PV) for LVM. Depending on the default LVM configuration shipped with your distribu-
tion, you may need to add the /dev/drbd* device files to the filter option in your lvm.conf so LVM scans your DRBDs for
PV signatures.

31.14.6.3: Can I use DRBD on top of LVM while at the same time running LVM on top of that DRBD?

This requires careful tuning of your LVM configuration to avoid duplicate PV scans, but yes, it is possible.

A.14.7. DRBD and Virtualization
In the following section, we provide answers to questions that are most frequently asked about DRBD and virtualization.

Questions

• 31.14.7.1: Can I use DRBD with OpenVZ?

• 31.14.7.2: Can I use DRBD with Xen and/or KVM?

Questions and Answers

31.14.7.1: Can I use DRBD with OpenVZ?

See http://wiki.openvz.org/HA_cluster_with_DRBD_and_Heartbeat.

31.14.7.2: Can I use DRBD with Xen and/or KVM?

Yes. If you are looking for professional consultancy or expert commercial support for Xen- or KVM-based virtualization clusters with
DRBD, contact LINBIT (http://www.linbit.com).

A.14.8. DRBD and Security
In the following section, we provide answers to questions that are most frequently asked about DRBD and security.

Questions

MySQL 5.1 Frequently Asked Questions

1914

http://wiki.openvz.org/HA_cluster_with_DRBD_and_Heartbeat
http://www.linbit.com


• 31.14.8.1: Can I encrypt/compress the exchanged data?

• 31.14.8.2: Does DRBD do mutual node authentication?

Questions and Answers

31.14.8.1: Can I encrypt/compress the exchanged data?

Yes. But there is no option within DRBD to allow for this. You’ll need to leverage a VPN and the network layer should do the rest.

31.14.8.2: Does DRBD do mutual node authentication?

Yes, starting with DRBD 8 shared-secret mutual node authentication is supported.

A.14.9. DRBD and System Requirements
In the following section, we provide answers to questions that are most frequently asked about DRBD and System Requirements.

Questions

• 31.14.9.1: What other packages besides DRBD are required?

• 31.14.9.2: How many machines are required to set up DRBD?

• 31.14.9.3: Does DRBD only run on Linux?

Questions and Answers

31.14.9.1: What other packages besides DRBD are required?

When using pre-built binary packages, none except a matching kernel, plus packages for glibc and your favorite shell. When compil-
ing DRBD from source additional prerequisite packages may be required. They include but are not limited to:

• glib-devel

• openssl

• devel

• libgcrypt-devel

• glib2-devel

• pkgconfig

• ncurses-devel

• rpm-build

• rpm-devel

• redhat-rpm-config

• gcc

• gcc-c++

• bison

• flex

• gnutls-devel

MySQL 5.1 Frequently Asked Questions

1915



• lm_sensors-devel

• net-snmp-devel

• python-devel

• bzip2-devel

• libselinux-devel

• perl-DBI

• libnet

Pre-built x86 and x86_64 packages for specific kernel versions are available with a support subscription from LINBIT. Please note that
if the kernel is upgraded, DRBD must be as well.

31.14.9.2: How many machines are required to set up DRBD?

Two machines are required to achieve the minimum degree of high availability. Although at any one given point in time one will be
primary and one will be secondary, it is better to consider the machines as part of a mirrored pair without a “natural” primary machine.

31.14.9.3: Does DRBD only run on Linux?

DRBD is a Linux Kernel Module, and can work with many popular Linux distributions. DRBD is currently not available for non-Linux
operating systems.

A.14.10. DBRD and Support and Consulting
In the following section, we provide answers to questions that are most frequently asked about DRBD and resources.

Questions

• 31.14.10.1: Does MySQL offer professional consulting to help with designing a DRBD system?

• 31.14.10.2: Does MySQL offer support for DRBD and Linux Heartbeat from MySQL?

• 31.14.10.3: Are pre-built binaries or RPMs available?

• 31.14.10.4: Does MySQL have documentation to help me with the installation and configuration of DRBD and Linux Heartbeat?

• 31.14.10.5: Is there a dedicated discussion forum for MySQL High-Availability?

• 31.14.10.6: Where can I get more information about MySQL for DRBD?

Questions and Answers

31.14.10.1: Does MySQL offer professional consulting to help with designing a DRBD system?

Yes. MySQL offers consulting for the design, installation, configuration, and monitoring of high availability DRBD. For more informa-
tion concerning a High Availability Jumpstart, please see: http://www.mysql.com/consulting/packaged/scaleout.html.

31.14.10.2: Does MySQL offer support for DRBD and Linux Heartbeat from MySQL?

Yes. Support for DRBD and Linux Heartbeat is available with an add-on subscription to MySQL Enterprise called “DRBD for
MySQL”. For more information about support options for DRBD see: http://mysql.com/products/enterprise/features.html.

For the list of supported Linux distributions, please see: http://www.mysql.com/support/supportedplatforms/enterprise.html.

Note

DRBD is only available on Linux. DRBD is not available on Windows, MacOS, Solaris, HPUX, AIX, FreeBSD, or other
non-Linux platforms.

MySQL 5.1 Frequently Asked Questions

1916

http://www.mysql.com/consulting/packaged/scaleout.html
http://mysql.com/products/enterprise/features.html
http://www.mysql.com/support/supportedplatforms/enterprise.html


31.14.10.3: Are pre-built binaries or RPMs available?

Yes. “DRBD for MySQL” is an add-on subscription to MySQL Enterprise, which provides pre-built binaries for DRBD. For more in-
formation see: http://mysql.com/products/enterprise/features.html.

31.14.10.4: Does MySQL have documentation to help me with the installation and configuration of DRBD and Linux Heart-
beat?

For MySQL-specific DRBD documentation, see Section 14.1, “Using MySQL with DRBD for High Availability”.

For general DRBD documentation, see DRBD User's Guide.

31.14.10.5: Is there a dedicated discussion forum for MySQL High-Availability?

Yes, http://forums.mysql.com/list.php?144.

31.14.10.6: Where can I get more information about MySQL for DRBD?

For more information about MySQL for DRBD, including a technical white paper please see: DRBD for MySQL High Availability.

MySQL 5.1 Frequently Asked Questions

1917

http://mysql.com/products/enterprise/features.html
http://www.drbd.org/users-guide/
http://forums.mysql.com/list.php?144
http://www.mysql.com/products/enterprise/drbd.html


Appendix B. Errors, Error Codes, and Common Problems
This appendix lists common problems and errors that may occur and potential resolutions, in addition to listing the errors that may ap-
pear when you call MySQL from any host language. The first section covers problems and resolutions. Detailed information on errors is
provided; The first list displays server error messages. The second list displays client program messages.

MySQL Enterprise
The MySQL Enterprise Monitor provides a “Virtual DBA” to assist with problem solving. For more information,
see http://www.mysql.com/products/enterprise/advisors.html.

B.1. Problems and Common Errors
This section lists some common problems and error messages that you may encounter. It describes how to determine the causes of the
problems and what to do to solve them.

B.1.1. How to Determine What Is Causing a Problem
When you run into a problem, the first thing you should do is to find out which program or piece of equipment is causing it:

• If you have one of the following symptoms, then it is probably a hardware problems (such as memory, motherboard, CPU, or hard
disk) or kernel problem:

• The keyboard doesn't work. This can normally be checked by pressing the Caps Lock key. If the Caps Lock light doesn't change,
you have to replace your keyboard. (Before doing this, you should try to restart your computer and check all cables to the key-
board.)

• The mouse pointer doesn't move.

• The machine doesn't answer to a remote machine's pings.

• Other programs that are not related to MySQL don't behave correctly.

• Your system restarted unexpectedly. (A faulty user-level program should never be able to take down your system.)

In this case, you should start by checking all your cables and run some diagnostic tool to check your hardware! You should also
check whether there are any patches, updates, or service packs for your operating system that could likely solve your problem.
Check also that all your libraries (such as glibc) are up to date.

It's always good to use a machine with ECC memory to discover memory problems early.

• If your keyboard is locked up, you may be able to recover by logging in to your machine from another machine and executing
kbd_mode -a.

• Please examine your system log file (/var/log/messages or similar) for reasons for your problem. If you think the problem is
in MySQL, you should also examine MySQL's log files. See Section 5.2, “MySQL Server Logs”.

• If you don't think you have hardware problems, you should try to find out which program is causing problems. Try using top, ps,
Task Manager, or some similar program, to check which program is taking all CPU or is locking the machine.

• Use top, df, or a similar program to check whether you are out of memory, disk space, file descriptors, or some other critical re-
source.

• If the problem is some runaway process, you can always try to kill it. If it doesn't want to die, there is probably a bug in the operat-
ing system.

If after you have examined all other possibilities and you have concluded that the MySQL server or a MySQL client is causing the prob-
lem, it's time to create a bug report for our mailing list or our support team. In the bug report, try to give a very detailed description of
how the system is behaving and what you think is happening. You should also state why you think that MySQL is causing the problem.
Take into consideration all the situations in this chapter. State any problems exactly how they appear when you examine your system.
Use the “copy and paste” method for any output and error messages from programs and log files.

1918

http://www.mysql.com/products/enterprise/advisors.html


Try to describe in detail which program is not working and all symptoms you see. We have in the past received many bug reports that
state only “the system doesn't work.” This doesn't provide us with any information about what could be the problem.

If a program fails, it's always useful to know the following information:

• Has the program in question made a segmentation fault (did it dump core)?

• Is the program taking up all available CPU time? Check with top. Let the program run for a while, it may simply be evaluating
something computationally intensive.

• If the mysqld server is causing problems, can you get any response from it with mysqladmin -u root ping or mysqlad-
min -u root processlist?

• What does a client program say when you try to connect to the MySQL server? (Try with mysql, for example.) Does the client
jam? Do you get any output from the program?

When sending a bug report, you should follow the outline described in Section 1.7, “How to Report Bugs or Problems”.

B.1.2. Common Errors When Using MySQL Programs
This section lists some errors that users frequently encounter when running MySQL programs. Although the problems show up when
you try to run client programs, the solutions to many of the problems involves changing the configuration of the MySQL server.

B.1.2.1. Access denied

An Access denied error can have many causes. Often the problem is related to the MySQL accounts that the server allows client
programs to use when connecting. See Section 5.4.8, “Causes of Access denied Errors”, and Section 5.4.2, “How the Privilege
System Works”.

B.1.2.2. Can't connect to [local] MySQL server

A MySQL client on Unix can connect to the mysqld server in two different ways: By using a Unix socket file to connect through a file
in the filesystem (default /tmp/mysql.sock), or by using TCP/IP, which connects through a port number. A Unix socket file con-
nection is faster than TCP/IP, but can be used only when connecting to a server on the same computer. A Unix socket file is used if you
don't specify a hostname or if you specify the special hostname localhost.

If the MySQL server is running on Windows, you can connect via TCP/IP. If the server is started with the --enable-named-pipe
option, you can also connect with named pipes if you run the client on the host where the server is running. The name of the named pipe
is MySQL by default. If you don't give a hostname when connecting to mysqld, a MySQL client first tries to connect to the named
pipe. If that doesn't work, it connects to the TCP/IP port. You can force the use of named pipes on Windows by using . as the host-
name.

The error (2002) Can't connect to ... normally means that there is no MySQL server running on the system or that you are us-
ing an incorrect Unix socket filename or TCP/IP port number when trying to connect to the server.

The error (2003) Can't connect to MySQL server on 'server' (10061) indicates that the network connection has
been refused. You should check that there is a MySQL server running, that it has network connections enabled, the network port you
specified is the one configured on the server, and that the TCP/IP port you are using has not been blocked by a firewall or port blocking
service.

Start by checking whether there is a process named mysqld running on your server host. (Use ps xa | grep mysqld on Unix or
the Task Manager on Windows.) If there is no such process, you should start the server. See Section 2.10.2.3, “Starting and
Troubleshooting the MySQL Server”.

If a mysqld process is running, you can check it by trying the following commands. The port number or Unix socket filename might
be different in your setup. host_ip represents the IP number of the machine where the server is running.

shell> mysqladmin version
shell> mysqladmin variables
shell> mysqladmin -h `hostname` version variables
shell> mysqladmin -h `hostname` --port=3306 version
shell> mysqladmin -h host_ip version
shell> mysqladmin --protocol=socket --socket=/tmp/mysql.sock version

Errors, Error Codes, and Common Problems

1919



Note the use of backticks rather than forward quotes with the hostname command; these cause the output of hostname (that is, the
current hostname) to be substituted into the mysqladmin command. If you have no hostname command or are running on Win-
dows, you can manually type the hostname of your machine (without backticks) following the -h option. You can also try -h
127.0.0.1 to connect with TCP/IP to the local host.

Here are some reasons the Can't connect to local MySQL server error might occur:

• mysqld is not running. Check your operating system's process list to ensure the mysqld process is present.

• You're running a MySQL server on Windows with many TCP/IP connections to it. If you're experiencing that quite often your cli-
ents get that error, you can find a workaround here: Section B.1.2.2.1, “Connection to MySQL Server Failing on
Windows”.

• You are running on a system that uses MIT-pthreads. If you are running on a system that doesn't have native threads, mysqld uses
the MIT-pthreads package. See Section 2.1.1, “Operating Systems Supported by MySQL Community Server”. However, not all
MIT-pthreads versions support Unix socket files. On a system without socket file support, you must always specify the hostname
explicitly when connecting to the server. Try using this command to check the connection to the server:

shell> mysqladmin -h `hostname` version

• Someone has removed the Unix socket file that mysqld uses (/tmp/mysql.sock by default). For example, you might have a
cron job that removes old files from the /tmp directory. You can always run mysqladmin version to check whether the
Unix socket file that mysqladmin is trying to use really exists. The fix in this case is to change the cron job to not remove
mysql.sock or to place the socket file somewhere else. See Section B.1.4.5, “How to Protect or Change the MySQL Unix Socket
File”.

• You have started the mysqld server with the --socket=/path/to/socket option, but forgotten to tell client programs the
new name of the socket file. If you change the socket pathname for the server, you must also notify the MySQL clients. You can do
this by providing the same --socket option when you run client programs. You also need to ensure that clients have permission
to access the mysql.sock file. To find out where the socket file is, you can do:

shell> netstat -ln | grep mysql

See Section B.1.4.5, “How to Protect or Change the MySQL Unix Socket File”.

• You are using Linux and one server thread has died (dumped core). In this case, you must kill the other mysqld threads (for ex-
ample, with kill or with the mysql_zap script) before you can restart the MySQL server. See Section B.1.4.2, “What to Do If
MySQL Keeps Crashing”.

• The server or client program might not have the proper access privileges for the directory that holds the Unix socket file or the sock-
et file itself. In this case, you must either change the access privileges for the directory or socket file so that the server and clients
can access them, or restart mysqld with a --socket option that specifies a socket filename in a directory where the server can
create it and where client programs can access it.

If you get the error message Can't connect to MySQL server on some_host, you can try the following things to find out
what the problem is:

• Check whether the server is running on that host by executing telnet some_host 3306 and pressing the Enter key a couple
of times. (3306 is the default MySQL port number. Change the value if your server is listening to a different port.) If there is a
MySQL server running and listening to the port, you should get a response that includes the server's version number. If you get an
error such as telnet: Unable to connect to remote host: Connection refused, then there is no server run-
ning on the given port.

• If the server is running on the local host, try using mysqladmin -h localhost variables to connect using the Unix sock-
et file. Verify the TCP/IP port number that the server is configured to listen to (it is the value of the port variable.)

• Make sure that your mysqld server was not started with the --skip-networking option. If it was, you cannot connect to it us-
ing TCP/IP.

• Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured on the basis of the applic-
ation being executed, or the post number used by MySQL for communication (3306 by default).

Errors, Error Codes, and Common Problems

1920



Under Linux or Unix, check your IP tables (or similar) configuration to ensure that the port has not been blocked.

Under Windows, applications such as ZoneAlarm and the Windows XP personal firewall may need to be configured to allow ex-
ternal access to a MySQL server.

• If you are running under Linux and Security-Enhanced Linux (SELinux) is enabled, make sure you have disabled SELinux protec-
tion for the mysqld process.

B.1.2.2.1. Connection to MySQL Server Failing on Windows

When you're running a MySQL server on Windows with many TCP/IP connections to it, and you're experiencing that quite often your
clients get a Can't connect to MySQL server error, the reason might be that Windows doesn't allow for enough ephemeral
(short-lived) ports to serve those connections.

By default, Windows allows 5000 ephemeral (short-lived) TCP ports to the user. After any port is closed it will remain in a
TIME_WAIT status for 120 seconds. This status allows the connection to be reused at a much lower cost than reinitializing a brand new
connection. However, the port will not be available again until this time expires.

With a small stack of available TCP ports (5000) and a high number of TCP ports being open and closed over a short period of time
along with the TIME_WAIT status you have a good chance for running out of ports. There are two ways to address this problem:

• Reduce the number of TCP ports consumed quickly by investigating connection pooling or persistent connections where possible

• Tune some settings in the Windows registry (see below)

IMPORTANT: The following procedure involves modifying the Windows registry. Before you modify the registry, make sure to
back it up and make sure that you understand how to restore the registry if a problem occurs. For information about how to
back up, restore, and edit the registry, view the following article in the Microsoft Knowledge Base: ht-
tp://support.microsoft.com/kb/256986/EN-US/.

1. Start Registry Editor (Regedt32.exe).

2. Locate the following key in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

3. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: MaxUserPort
Data Type: REG_DWORD
Value: 65534

This sets the number of ephemeral ports available to any user. The valid range is between 5000 and 65534 (decimal). The default
value is 0x1388 (5000 decimal).

4. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: TcpTimedWaitDelay
Data Type: REG_DWORD
Value: 30

This sets the number of seconds to hold a TCP port connection in TIME_WAIT state before closing. The valid range is between 0
(zero) and 300 (decimal). The default value is 0x78 (120 decimal).

5. Quit Registry Editor.

6. Reboot the machine.

Note: Undoing the above should be as simple as deleting the registry entries you've created.

Errors, Error Codes, and Common Problems

1921

http://support.microsoft.com/kb/256986/EN-US/
http://support.microsoft.com/kb/256986/EN-US/


B.1.2.3. Lost connection to MySQL server

An error of the form Lost connection to MySQL server at 'XXX', system error: errno can indicate that the
server's connect_timeout value is set too low.

B.1.2.4. Client does not support authentication protocol

MySQL 5.1 uses an authentication protocol based on a password hashing algorithm that is incompatible with that used by older
(pre-4.1) clients. If you upgrade the server from 4.0, attempts to connect to it with an older client may fail with the following message:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

To solve this problem, you should use one of the following approaches:

• Upgrade all client programs to use a 4.1.1 or newer client library.

• When connecting to the server with a pre-4.1 client program, use an account that still has a pre-4.1-style password.

• Reset the password to pre-4.1 style for each user that needs to use a pre-4.1 client program. This can be done using the SET PASS-
WORD statement and the OLD_PASSWORD() function:

mysql> SET PASSWORD FOR
-> 'some_user'@'some_host' = OLD_PASSWORD('newpwd');

Alternatively, use UPDATE and FLUSH PRIVILEGES:

mysql> UPDATE mysql.user SET Password = OLD_PASSWORD('newpwd')
-> WHERE Host = 'some_host' AND User = 'some_user';

mysql> FLUSH PRIVILEGES;

Substitute the password you want to use for “newpwd” in the preceding examples. MySQL cannot tell you what the original pass-
word was, so you'll need to pick a new one.

• Tell the server to use the older password hashing algorithm:

1. Start mysqld with the --old-passwords option.

2. Assign an old-format password to each account that has had its password updated to the longer 4.1 format. You can identify
these accounts with the following query:

mysql> SELECT Host, User, Password FROM mysql.user
-> WHERE LENGTH(Password) > 16;

For each account record displayed by the query, use the Host and User values and assign a password using the
OLD_PASSWORD() function and either SET PASSWORD or UPDATE, as described earlier.

Note

In older versions of PHP, the mysql extension does not support the authentication protocol in MySQL 4.1.1 and higher.
This is true regardless of the PHP version being used. If you wish to use the mysql extension with MySQL 4.1 or newer,
you may need to follow one of the options discussed above for configuring MySQL to work with old clients. The mysqli
extension (stands for "MySQL, Improved"; added in PHP 5) is compatible with the improved password hashing employed
in MySQL 4.1 and higher, and no special configuration of MySQL need be done to use this MySQL client library. For
more information about the mysqli extension, see http://php.net/mysqli.

It may also be possible to compile the older mysql extension against the new MySQL client library. This is beyond the scope of this
Manual; consult the PHP documentation for more information. You also be able to obtain assistance with these issues in our MySQL
with PHP forum.

For additional background on password hashing and authentication, see Section 5.4.9, “Password Hashing as of MySQL 4.1”.

Errors, Error Codes, and Common Problems

1922

http://php.net/mysqli
http://forums.mysql.com/list.php?52
http://forums.mysql.com/list.php?52


B.1.2.5. Password Fails When Entered Interactively

MySQL client programs prompt for a password when invoked with a --password or -p option that has no following password
value:

shell> mysql -u user_name -p
Enter password:

On some systems, you may find that your password works when specified in an option file or on the command line, but not when you
enter it interactively at the Enter password: prompt. This occurs when the library provided by the system to read passwords limits
password values to a small number of characters (typically eight). That is a problem with the system library, not with MySQL. To work
around it, change your MySQL password to a value that is eight or fewer characters long, or put your password in an option file.

B.1.2.6. Host 'host_name' is blocked

If you get the following error, it means that mysqld has received many connect requests from the host 'host_name' that have been
interrupted in the middle:

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

The number of interrupted connect requests allowed is determined by the value of the max_connect_errors system variable. After
max_connect_errors failed requests, mysqld assumes that something is wrong (for example, that someone is trying to break in),
and blocks the host from further connections until you execute a mysqladmin flush-hosts command or issue a FLUSH HOSTS
statement. See Section 5.1.3, “System Variables”.

By default, mysqld blocks a host after 10 connection errors. You can adjust the value by starting the server like this:

shell> mysqld_safe --max_connect_errors=10000 &

If you get this error message for a given host, you should first verify that there isn't anything wrong with TCP/IP connections from that
host. If you are having network problems, it does you no good to increase the value of the max_connect_errors variable.

B.1.2.7. Too many connections

If you get a Too many connections error when you try to connect to the mysqld server, this means that all available connections
are in use by other clients.

The number of connections allowed is controlled by the max_connections system variable. Beginning with MySQL 5.1.15, its de-
fault value is 151 to improve performance when MySQL is used with the Apache Web server. (Previously, the default was 100.) If you
need to support more connections, you should set a larger value for this variable.

MySQL Enterprise
Subscribers to the MySQL Enterprise Monitor receive advice on dynamically configuring the
max_connections variable — avoiding failed connection attempts. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

mysqld actually allows max_connections+1 clients to connect. The extra connection is reserved for use by accounts that have the
SUPER privilege. By granting the SUPER privilege to administrators and not to normal users (who should not need it), an administrator
can connect to the server and use SHOW PROCESSLIST to diagnose problems even if the maximum number of unprivileged clients
are connected. See Section 12.5.4.25, “SHOW PROCESSLIST Syntax”.

The maximum number of connections MySQL can support depends on the quality of the thread library on a given platform. Linux or
Solaris should be able to support 500-1000 simultaneous connections, depending on how much RAM you have and what your clients
are doing. Static Linux binaries provided by MySQL AB can support up to 4000 connections.

B.1.2.8. Out of memory

If you issue a query using the mysql client program and receive an error like the following one, it means that mysql does not have
enough memory to store the entire query result:

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

Errors, Error Codes, and Common Problems

1923

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


To remedy the problem, first check whether your query is correct. Is it reasonable that it should return so many rows? If not, correct the
query and try again. Otherwise, you can invoke mysql with the --quick option. This causes it to use the mysql_use_result()
C API function to retrieve the result set, which places less of a load on the client (but more on the server).

B.1.2.9. MySQL server has gone away

This section also covers the related Lost connection to server during query error.

The most common reason for the MySQL server has gone away error is that the server timed out and closed the connection. In
this case, you normally get one of the following error codes (which one you get is operating system-dependent):

Error Code Description

CR_SERVER_GONE_ERROR The client couldn't send a question to the server.

CR_SERVER_LOST The client didn't get an error when writing to the server, but it didn't get a full answer
(or any answer) to the question.

By default, the server closes the connection after eight hours if nothing has happened. You can change the time limit by setting the
wait_timeout variable when you start mysqld. See Section 5.1.3, “System Variables”.

If you have a script, you just have to issue the query again for the client to do an automatic reconnection. This assumes that you have
automatic reconnection in the client enabled (which is the default for the mysql command-line client).

Some other common reasons for the MySQL server has gone away error are:

• You (or the db administrator) has killed the running thread with a KILL statement or a mysqladmin kill command.

• You tried to run a query after closing the connection to the server. This indicates a logic error in the application that should be cor-
rected.

• A client application running on a different host does not have the necessary privileges to connect to the MySQL server from that
host.

• You got a timeout from the TCP/IP connection on the client side. This may happen if you have been using the commands:
mysql_options(..., MYSQL_OPT_READ_TIMEOUT,...) or mysql_options(...,
MYSQL_OPT_WRITE_TIMEOUT,...). In this case increasing the timeout may help solve the problem.

• You have encountered a timeout on the server side and the automatic reconnection in the client is disabled (the reconnect flag in
the MYSQL structure is equal to 0).

• You are using a Windows client and the server had dropped the connection (probably because wait_timeout expired) before the
command was issued.

The problem on Windows is that in some cases MySQL doesn't get an error from the OS when writing to the TCP/IP connection to
the server, but instead gets the error when trying to read the answer from the connection.

Prior to MySQL 5.1.8, even if the reconnect flag in the MYSQL structure is equal to 1, MySQL does not automatically reconnect
and re-issue the query as it doesn't know if the server did get the original query or not.

The solution to this is to either do a mysql_ping() on the connection if there has been a long time since the last query (this is
what MyODBC does) or set wait_timeout on the mysqld server so high that it in practice never times out.

• You can also get these errors if you send a query to the server that is incorrect or too large. If mysqld receives a packet that is too
large or out of order, it assumes that something has gone wrong with the client and closes the connection. If you need big queries
(for example, if you are working with big BLOB columns), you can increase the query limit by setting the server's
max_allowed_packet variable, which has a default value of 1MB. You may also need to increase the maximum packet size on
the client end. More information on setting the packet size is given in Section B.1.2.10, “Packet too large”.

An INSERT or REPLACE statement that inserts a great many rows can also cause these sorts of errors. Either one of these state-
ments sends a single request to the server irrespective of the number of rows to be inserted; thus, you can often avoid the error by re-
ducing the number of rows sent per INSERT or REPLACE.

• You also get a lost connection if you are sending a packet 16MB or larger if your client is older than 4.0.8 and your server is 4.0.8

Errors, Error Codes, and Common Problems

1924



and above, or the other way around.

• It is also possible to see this error if hostname lookups fail (for example, if the DNS server on which your server or network relies
goes down). This is because MySQL is dependent on the host system for name resolution, but has no way of knowing whether it is
working — from MySQL's point of view the problem is indistinguishable from any other network timeout.

You may also see the MySQL server has gone away error if MySQL is started with the --skip-networking option.

Another networking issue that can cause this error occurs if the MySQL port (default 3306) is blocked by your firewall, thus pre-
venting any connections at all to the MySQL server.

• You can also encounter this error with applications that fork child processes, all of which try to use the same connection to the
MySQL server. This can be avoided by using a separate connection for each child process.

• You have encountered a bug where the server died while executing the query.

You can check whether the MySQL server died and restarted by executing mysqladmin version and examining the server's up-
time. If the client connection was broken because mysqld crashed and restarted, you should concentrate on finding the reason for the
crash. Start by checking whether issuing the query again kills the server again. See Section B.1.4.2, “What to Do If MySQL Keeps
Crashing”.

You can get more information about the lost connections by starting mysqld with the --log-warnings=2 option. This logs some of
the disconnected errors in the hostname.err file. See Section 5.2.2, “The Error Log”.

If you want to create a bug report regarding this problem, be sure that you include the following information:

• Indicate whether the MySQL server died. You can find information about this in the server error log. See Section B.1.4.2, “What to
Do If MySQL Keeps Crashing”.

• If a specific query kills mysqld and the tables involved were checked with CHECK TABLE before you ran the query, can you
provide a reproducible test case? See MySQL Internals: Porting.

• What is the value of the wait_timeout system variable in the MySQL server? (mysqladmin variables gives you the
value of this variable.)

• Have you tried to run mysqld with the --log option to determine whether the problem query appears in the log?

See also Section B.1.2.11, “Communication Errors and Aborted Connections”, and Section 1.7, “How to Report Bugs or Problems”.

B.1.2.10. Packet too large

A communication packet is a single SQL statement sent to the MySQL server, a single row that is sent to the client, or a binary log
event sent from a master replication server to a slave.

The largest possible packet that can be transmitted to or from a MySQL 5.1 server or client is 1GB.

When a MySQL client or the mysqld server receives a packet bigger than max_allowed_packet bytes, it issues a Packet too
large error and closes the connection. With some clients, you may also get a Lost connection to MySQL server during
query error if the communication packet is too large.

Both the client and the server have their own max_allowed_packet variable, so if you want to handle big packets, you must in-
crease this variable both in the client and in the server.

If you are using the mysql client program, its default max_allowed_packet variable is 16MB. To set a larger value, start mysql
like this:

shell> mysql --max_allowed_packet=32M

That sets the packet size to 32MB.

The server's default max_allowed_packet value is 1MB. You can increase this if the server needs to handle big queries (for ex-
ample, if you are working with big BLOB columns). For example, to set the variable to 16MB, start the server like this:

Errors, Error Codes, and Common Problems

1925

http://forge.mysql.com/wiki/MySQL_Internals_Porting


shell> mysqld --max_allowed_packet=16M

You can also use an option file to set max_allowed_packet. For example, to set the size for the server to 16MB, add the following
lines in an option file:

[mysqld]
max_allowed_packet=16M

It is safe to increase the value of this variable because the extra memory is allocated only when needed. For example, mysqld allocates
more memory only when you issue a long query or when mysqld must return a large result row. The small default value of the vari-
able is a precaution to catch incorrect packets between the client and server and also to ensure that you do not run out of memory by us-
ing large packets accidentally.

You can also get strange problems with large packets if you are using large BLOB values but have not given mysqld access to enough
memory to handle the query. If you suspect this is the case, try adding ulimit -d 256000 to the beginning of the mysqld_safe
script and restarting mysqld.

B.1.2.11. Communication Errors and Aborted Connections

The server error log can be a useful source of information about connection problems. See Section 5.2.2, “The Error Log”. If you start
the server with the --log-warnings option, you might find messages like this in your error log:

010301 14:38:23 Aborted connection 854 to db: 'users' user: 'josh'

If Aborted connections messages appear in the error log, the cause can be any of the following:

• The client program did not call mysql_close() before exiting.

• The client had been sleeping more than wait_timeout or interactive_timeout seconds without issuing any requests to
the server. See Section 5.1.3, “System Variables”.

• The client program ended abruptly in the middle of a data transfer.

When any of these things happen, the server increments the Aborted_clients status variable.

The server increments the Aborted_connects status variable when the following things happen:

• A client doesn't have privileges to connect to a database.

• A client uses an incorrect password.

• A connection packet doesn't contain the right information.

• It takes more than connect_timeout seconds to get a connect packet. See Section 5.1.3, “System Variables”.

If these kinds of things happen, it might indicate that someone is trying to break into your server!

MySQL Enterprise
For reasons of security and performance the advisors provided by the MySQL Enterprise Monitor pay special
attention to the Aborted_connections status variable. For more information, see ht-
tp://www.mysql.com/products/enterprise/advisors.html.

Other reasons for problems with aborted clients or aborted connections:

• Use of Ethernet protocol with Linux, both half and full duplex. Many Linux Ethernet drivers have this bug. You should test for this
bug by transferring a huge file via FTP between the client and server machines. If a transfer goes in burst-pause-burst-pause mode,
you are experiencing a Linux duplex syndrome. The only solution is switching the duplex mode for both your network card and
hub/switch to either full duplex or to half duplex and testing the results to determine the best setting.

• Some problem with the thread library that causes interrupts on reads.

Errors, Error Codes, and Common Problems

1926

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


• Badly configured TCP/IP.

• Faulty Ethernets, hubs, switches, cables, and so forth. This can be diagnosed properly only by replacing hardware.

• The max_allowed_packet variable value is too small or queries require more memory than you have allocated for mysqld.
See Section B.1.2.10, “Packet too large”.

See also Section B.1.2.9, “MySQL server has gone away”.

B.1.2.12. The table is full

The effective maximum table size for MySQL databases is usually determined by operating system constraints on file sizes, not by
MySQL internal limits. The following table lists some examples of operating system file-size limits. This is only a rough guide and is
not intended to be definitive. For the most up-to-date information, be sure to check the documentation specific to your operating system.

Operating System File-size Limit

Win32 w/ FAT/FAT32 2GB/4GB

Win32 w/ NTFS 2TB (possibly larger)

Linux 2.2-Intel 32-bit 2GB (LFS: 4GB)

Linux 2.4+ (using ext3 filesystem) 4TB

Solaris 9/10 16TB

MacOS X w/ HFS+ 2TB

NetWare w/NSS filesystem 8TB

Windows users, please note that FAT and VFAT (FAT32) are not considered suitable for production use with MySQL. Use NTFS in-
stead.

On Linux 2.2, you can get MyISAM tables larger than 2GB in size by using the Large File Support (LFS) patch for the ext2 filesystem.
Most current Linux distributions are based on kernel 2.4 or higher and include all the required LFS patches. On Linux 2.4, patches also
exist for ReiserFS to get support for big files (up to 2TB). With JFS and XFS, petabyte and larger files are possible on Linux.

For a detailed overview about LFS in Linux, have a look at Andreas Jaeger's Large File Support in Linux page at ht-
tp://www.suse.de/~aj/linux_lfs.html.

If you do encounter a full-table error, there are several reasons why it might have occurred:

• The InnoDB storage engine maintains InnoDB tables within a tablespace that can be created from several files. This allows a table
to exceed the maximum individual file size. The tablespace can include raw disk partitions, which allows extremely large tables.
The maximum tablespace size is 64TB.

If you are using InnoDB tables and run out of room in the InnoDB tablespace. In this case, the solution is to extend the InnoDB
tablespace. See Section 13.5.7, “Adding and Removing InnoDB Data and Log Files”.

• You are using MyISAM tables on an operating system that supports files only up to 2GB in size and you have hit this limit for the
data file or index file.

• You are using a MyISAM table and the space required for the table exceeds what is allowed by the internal pointer size. MyISAM
creates tables to allow up to 256GB by default, but this limit can be changed up to the maximum allowable size of 65,536TB (2567 –
1 bytes).

If you need a MyISAM table that is larger than the default limit and your operating system supports large files, the CREATE TABLE
statement supports AVG_ROW_LENGTH and MAX_ROWS options. See Section 12.1.10, “CREATE TABLE Syntax”. The server uses
these options to determine how large a table to allow.

If the pointer size is too small for an existing table, you can change the options with ALTER TABLE to increase a table's maximum
allowable size. See Section 12.1.4, “ALTER TABLE Syntax”.

ALTER TABLE tbl_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;

Errors, Error Codes, and Common Problems

1927

http://www.suse.de/~aj/linux_lfs.html
http://www.suse.de/~aj/linux_lfs.html


You have to specify AVG_ROW_LENGTH only for tables with BLOB or TEXT columns; in this case, MySQL can't optimize the
space required based only on the number of rows.

To change the default size limit for MyISAM tables, set the myisam_data_pointer_size, which sets the number of bytes
used for internal row pointers. The value is used to set the pointer size for new tables if you do not specify the MAX_ROWS option.
The value of myisam_data_pointer_size can be from 2 to 7. A value of 4 allows tables up to 4GB; a value of 6 allows
tables up to 256TB.

You can check the maximum data and index sizes by using this statement:

SHOW TABLE STATUS FROM db_name LIKE 'tbl_name';

You also can use myisamchk -dv /path/to/table-index-file. See Section 12.5.4, “SHOW Syntax”, or Section 4.6.3,
“myisamchk — MyISAM Table-Maintenance Utility”.

Other ways to work around file-size limits for MyISAM tables are as follows:

• If your large table is read only, you can use myisampack to compress it. myisampack usually compresses a table by at least
50%, so you can have, in effect, much bigger tables. myisampack also can merge multiple tables into a single table. See Sec-
tion 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”.

• MySQL includes a MERGE library that allows you to handle a collection of MyISAM tables that have identical structure as a
single MERGE table. See Section 13.6, “The MERGE Storage Engine”.

• You are using the NDB storage engine, in which case you need to increase the values for the DataMemory and IndexMemory
configuration parameters in your config.ini file. See Section 17.4.5.1, “Data Node Configuration Parameters”.

• You are using the MEMORY (HEAP) storage engine; in this case you need to increase the value of the max_heap_table_size
system variable. See Section 5.1.3, “System Variables”.

B.1.2.13. Can't create/write to file

If you get an error of the following type for some queries, it means that MySQL cannot create a temporary file for the result set in the
temporary directory:

Can't create/write to file '\\sqla3fe_0.ism'.

The preceding error is a typical message for Windows; the Unix message is similar.

One fix is to start mysqld with the --tmpdir option or to add the option to the [mysqld] section of your option file. For example,
to specify a directory of C:\temp, use these lines:

[mysqld]
tmpdir=C:/temp

The C:\temp directory must exist and have sufficient space for the MySQL server to write to. See Section 4.2.2.2, “Using Option
Files”.

Another cause of this error can be permissions issues. Make sure that the MySQL server can write to the tmpdir directory.

Check also the error code that you get with perror. One reason the server cannot write to a table is that the filesystem is full:

shell> perror 28
OS error code 28: No space left on device

If you get an error of the following type during startup, it indicates that the filesystem and/or directory used for storing data files is write
protected. Providing the write error is to a test file, This error is not serious and can be safely ignored.

Can't create test file /usr/local/mysql/data/master.lower-test

B.1.2.14. Commands out of sync

Errors, Error Codes, and Common Problems

1928



If you get Commands out of sync; you can't run this command now in your client code, you are calling client func-
tions in the wrong order.

This can happen, for example, if you are using mysql_use_result() and try to execute a new query before you have called
mysql_free_result(). It can also happen if you try to execute two queries that return data without calling
mysql_use_result() or mysql_store_result() in between.

B.1.2.15. Ignoring user

If you get the following error, it means that when mysqld was started or when it reloaded the grant tables, it found an account in the
user table that had an invalid password.

Found wrong password for user 'some_user'@'some_host'; ignoring user

As a result, the account is simply ignored by the permission system.

The following list indicates possible causes of and fixes for this problem:

• You may be running a new version of mysqld with an old user table. You can check this by executing mysqlshow mysql
user to see whether the Password column is shorter than 16 characters. If so, you can correct this condition by running the
scripts/add_long_password script.

• The account has an old password (eight characters long). Update the account in the user table to have a new password.

• You have specified a password in the user table without using the PASSWORD() function. Use mysql to update the account in
the user table with a new password, making sure to use the PASSWORD() function:

mysql> UPDATE user SET Password=PASSWORD('newpwd')
-> WHERE User='some_user' AND Host='some_host';

B.1.2.16. Table 'tbl_name' doesn't exist

If you get either of the following errors, it usually means that no table exists in the default database with the given name:

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

In some cases, it may be that the table does exist but that you are referring to it incorrectly:

• Because MySQL uses directories and files to store databases and tables, database and table names are case sensitive if they are loc-
ated on a filesystem that has case-sensitive filenames.

• Even for filesystems that are not case sensitive, such as on Windows, all references to a given table within a query must use the
same lettercase.

You can check which tables are in the default database with SHOW TABLES. See Section 12.5.4, “SHOW Syntax”.

B.1.2.17. Can't initialize character set

You might see an error like this if you have character set problems:

MySQL Connection Failed: Can't initialize character set charset_name

This error can have any of the following causes:

• The character set is a multi-byte character set and you have no support for the character set in the client. In this case, you need to re-
compile the client by running configure with the --with-charset=charset_name or
--with-extra-charsets=charset_name option. See Section 2.9.2, “Typical configure Options”.

All standard MySQL binaries are compiled with --with-extra-character-sets=complex, which enables support for all

Errors, Error Codes, and Common Problems

1929



multi-byte character sets. See Section 9.2, “The Character Set Used for Data and Sorting”.

• The character set is a simple character set that is not compiled into mysqld, and the character set definition files are not in the place
where the client expects to find them.

In this case, you need to use one of the following methods to solve the problem:

• Recompile the client with support for the character set. See Section 2.9.2, “Typical configure Options”.

• Specify to the client the directory where the character set definition files are located. For many clients, you can do this with the
--character-sets-dir option.

• Copy the character definition files to the path where the client expects them to be.

B.1.2.18. 'FILE' NOT FOUND and Similar Errors

If you get ERROR '...' not found (errno: 23), Can't open file: ... (errno: 24), or any other error with
errno 23 or errno 24 from MySQL, it means that you haven't allocated enough file descriptors for the MySQL server. You can
use the perror utility to get a description of what the error number means:

shell> perror 23
OS error code 23: File table overflow
shell> perror 24
OS error code 24: Too many open files
shell> perror 11
OS error code 11: Resource temporarily unavailable

The problem here is that mysqld is trying to keep open too many files simultaneously. You can either tell mysqld not to open so
many files at once or increase the number of file descriptors available to mysqld.

To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by reducing the value of the ta-
ble_open_cache system variable (the default value is 64). Reducing the value of max_connections also reduces the number of
open files (the default value is 100).

To change the number of file descriptors available to mysqld, you can use the --open-files-limit option to mysqld_safe or
set the open_files_limit system variable. See Section 5.1.3, “System Variables”. The easiest way to set these values is to add an
option to your option file. See Section 4.2.2.2, “Using Option Files”. If you have an old version of mysqld that doesn't support setting
the open files limit, you can edit the mysqld_safe script. There is a commented-out line ulimit -n 256 in the script. You can
remove the “#” character to uncomment this line, and change the number 256 to set the number of file descriptors to be made available
to mysqld.

--open-files-limit and ulimit can increase the number of file descriptors, but only up to the limit imposed by the operating
system. There is also a “hard” limit that can be overridden only if you start mysqld_safe or mysqld as root (just remember that
you also need to start the server with the --user option in this case so that it does not continue to run as root after it starts up). If you
need to increase the operating system limit on the number of file descriptors available to each process, consult the documentation for
your system.

Note

If you run the tcsh shell, ulimit does not work! tcsh also reports incorrect values when you ask for the current limits.
In this case, you should start mysqld_safe using sh.

B.1.2.19. Table-Corruption Issues

If you have started mysqld with --myisam-recover, MySQL automatically checks and tries to repair MyISAM tables if they are
marked as 'not closed properly' or 'crashed'. If this happens, MySQL writes an entry in the hostname.err file 'Warning:
Checking table ...' which is followed by Warning: Repairing table if the table needs to be repaired. If you get a lot
of these errors, without mysqld having died unexpectedly just before, then something is wrong and needs to be investigated further.

See also Section 5.1.2, “Command Options”, and Section 29.5.1.7, “Making a Test Case If You Experience Table Corruption”.

B.1.3. Installation-Related Issues

B.1.3.1. Problems Linking to the MySQL Client Library

Errors, Error Codes, and Common Problems

1930



When you are linking an application program to use the MySQL client library, you might get undefined reference errors for symbols
that start with mysql_, such as those shown here:

/tmp/ccFKsdPa.o: In function `main':
/tmp/ccFKsdPa.o(.text+0xb): undefined reference to `mysql_init'
/tmp/ccFKsdPa.o(.text+0x31): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x57): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x69): undefined reference to `mysql_error'
/tmp/ccFKsdPa.o(.text+0x9a): undefined reference to `mysql_close'

You should be able to solve this problem by adding -Ldir_path -lmysqlclient at the end of your link command, where
dir_path represents the pathname of the directory where the client library is located. To determine the correct directory, try this com-
mand:

shell> mysql_config --libs

The output from mysql_config might indicate other libraries that should be specified on the link command as well.

If you get undefined reference errors for the uncompress or compress function, add -lz to the end of your link command
and try again.

If you get undefined reference errors for a function that should exist on your system, such as connect, check the manual page
for the function in question to determine which libraries you should add to the link command.

You might get undefined reference errors such as the following for functions that don't exist on your system:

mf_format.o(.text+0x201): undefined reference to `__lxstat'

This usually means that your MySQL client library was compiled on a system that is not 100% compatible with yours. In this case, you
should download the latest MySQL source distribution and compile MySQL yourself. See Section 2.9, “MySQL Installation Using a
Source Distribution”.

You might get undefined reference errors at runtime when you try to execute a MySQL program. If these errors specify symbols that
start with mysql_ or indicate that the mysqlclient library can't be found, it means that your system can't find the shared
libmysqlclient.so library. The fix for this is to tell your system to search for shared libraries where the library is located. Use
whichever of the following methods is appropriate for your system:

• Add the path to the directory where libmysqlclient.so is located to the LD_LIBRARY_PATH environment variable.

• Add the path to the directory where libmysqlclient.so is located to the LD_LIBRARY environment variable.

• Copy libmysqlclient.so to some directory that is searched by your system, such as /lib, and update the shared library in-
formation by executing ldconfig.

Another way to solve this problem is by linking your program statically with the -static option, or by removing the dynamic
MySQL libraries before linking your code. Before trying the second method, you should be sure that no other programs are using the
dynamic libraries.

B.1.3.2. Problems with File Permissions

If you have problems with file permissions, the UMASK environment variable might be set incorrectly when mysqld starts. For ex-
ample, MySQL might issue the following error message when you create a table:

ERROR: Can't find file: 'path/with/filename.frm' (Errcode: 13)

The default UMASK value is 0660. You can change this behavior by starting mysqld_safe as follows:

shell> UMASK=384 # = 600 in octal
shell> export UMASK
shell> mysqld_safe &

By default, MySQL creates database directories with an access permission value of 0700. You can modify this behavior by setting the
UMASK_DIR variable. If you set its value, new directories are created with the combined UMASK and UMASK_DIR values. For ex-

Errors, Error Codes, and Common Problems

1931



ample, if you want to give group access to all new directories, you can do this:

shell> UMASK_DIR=504 # = 770 in octal
shell> export UMASK_DIR
shell> mysqld_safe &

In MySQL 3.23.25 and above, MySQL assumes that the value for UMASK and UMASK_DIR is in octal if it starts with a zero.

See Section 2.14, “Environment Variables”.

B.1.4. Administration-Related Issues

B.1.4.1. How to Reset the Root Password

If you have never set a root password for MySQL, the server does not require a password at all for connecting as root. However, it
is recommended to set a password for each account. See Section 5.3.1, “General Security Guidelines”.

If you set a root password previously, but have forgotten what it was, you can set a new password. The next two sections show pro-
cedures for Windows and Unix systems, respectively.

B.1.4.1.1. Resetting the Root Password on Windows Systems

The procedure for resetting the MySQL root account's password on Windows is as follows:

1. Log on to your system as Administrator.

2. Stop the MySQL server if it is running. For a server that is running as a Windows service, go to the Services manager:

Start Menu -> Control Panel -> Administrative Tools -> Services

Then find the MySQL service in the list, and stop it.

If your server is not running as a service, you may need to use the Task Manager to force it to stop.

3. Create a text file and place the following command within it on a single line:

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPassword');

Save the file with any name. For this example the file will be C:\mysql-init.txt.

4. Open a console window to get to the DOS command prompt:

Start Menu -> Run -> cmd

5. We are assuming that you installed MySQL to C:\mysql. If you installed MySQL to another location, adjust the following com-
mands accordingly.

At the DOS command prompt, execute this command:

C:\> C:\mysql\bin\mysqld --init-file=C:\mysql-init.txt

The contents of the file named by the --init-file option are executed at server startup, changing the root password. After
the server has started successfully, you should delete C:\mysql-init.txt.

If you install MySQL using the MySQL Installation Wizard, you may need to specify a --defaults-file option:

C:\> "C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqld.exe"
--defaults-file="C:\Program Files\MySQL\MySQL Server 5.1\my.ini"
--init-file=C:\mysql-init.txt

The appropriate --defaults-file setting can be found using the Services Manager:

Start Menu -> Control Panel -> Administrative Tools -> Services

Errors, Error Codes, and Common Problems

1932



Find the MySQL service in the list, right-click on it, and choose the Properties option. The Path to executable field
contains the --defaults-file setting.

6. Stop the MySQL server, then restart it in normal mode again. If you run the server as a service, start it from the Windows Services
window. If you start the server manually, use whatever command you normally use.

7. You should be able to connect using the new password.

B.1.4.1.2. Resetting the Root Password on Unix Systems

MySQL Enterprise
For expert advice on security-related issues, subscribe to the MySQL Enterprise Monitor. For more information,
see http://www.mysql.com/products/enterprise/advisors.html.

In a Unix environment, the procedure for resetting the MySQL root password is as follows:

1. Log on to your system as either the Unix root user or as the same user that the mysqld server runs as.

2. Locate the .pid file that contains the server's process ID. The exact location and name of this file depend on your distribution,
hostname, and configuration. Common locations are /var/lib/mysql/, /var/run/mysqld/, and /
usr/local/mysql/data/. Generally, the filename has the extension of .pid and begins with either mysqld or your sys-
tem's hostname.

You can stop the MySQL server by sending a normal kill (not kill -9) to the mysqld process, using the pathname of the
.pid file in the following command:

shell> kill `cat /mysql-data-directory/host_name.pid`

Note the use of backticks rather than forward quotes with the cat command; these cause the output of cat to be substituted into
the kill command.

3. Create a text file and place the following command within it on a single line:

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPassword');

Save the file with any name. For this example the file will be ~/mysql-init.

4. Restart the MySQL server with the special --init-file=~/mysql-init option:

shell> mysqld_safe --init-file=~/mysql-init &

The contents of the init-file are executed at server startup, changing the root password. After the server has started successfully you
should delete ~/mysql-init.

5. You should be able to connect using the new password.

Alternatively, on any platform, you can set the new password using the mysql client(but this approach is less secure):

1. Stop mysqld and restart it with the --skip-grant-tables --user=root options (Windows users omit the -
-user=root portion).

2. Connect to the mysqld server with this command:

shell> mysql -u root

3. Issue the following statements in the mysql client:

mysql> UPDATE mysql.user SET Password=PASSWORD('newpwd')
-> WHERE User='root';

mysql> FLUSH PRIVILEGES;

Errors, Error Codes, and Common Problems

1933

http://www.mysql.com/products/enterprise/advisors.html


Replace “newpwd” with the actual root password that you want to use.

4. You should be able to connect using the new password.

B.1.4.2. What to Do If MySQL Keeps Crashing

Each MySQL version is tested on many platforms before it is released. This doesn't mean that there are no bugs in MySQL, but if there
are bugs, they should be very few and can be hard to find. If you have a problem, it always helps if you try to find out exactly what
crashes your system, because you have a much better chance of getting the problem fixed quickly.

First, you should try to find out whether the problem is that the mysqld server dies or whether your problem has to do with your client.
You can check how long your mysqld server has been up by executing mysqladmin version. If mysqld has died and restarted,
you may find the reason by looking in the server's error log. See Section 5.2.2, “The Error Log”.

On some systems, you can find in the error log a stack trace of where mysqld died that you can resolve with the re-
solve_stack_dump program. See MySQL Internals: Porting. Note that the variable values written in the error log may not always
be 100% correct.

Many server crashes are caused by corrupted data files or index files. MySQL updates the files on disk with the write() system call
after every SQL statement and before the client is notified about the result. (This is not true if you are running with -
-delay-key-write, in which case data files are written but not index files.) This means that data file contents are safe even if
mysqld crashes, because the operating system ensures that the unflushed data is written to disk. You can force MySQL to flush
everything to disk after every SQL statement by starting mysqld with the --flush option.

The preceding means that normally you should not get corrupted tables unless one of the following happens:

• The MySQL server or the server host was killed in the middle of an update.

• You have found a bug in mysqld that caused it to die in the middle of an update.

• Some external program is manipulating data files or index files at the same time as mysqld without locking the table properly.

• You are running many mysqld servers using the same data directory on a system that doesn't support good filesystem locks
(normally handled by the lockd lock manager), or you are running multiple servers with external locking disabled.

• You have a crashed data file or index file that contains very corrupt data that confused mysqld.

• You have found a bug in the data storage code. This isn't likely, but it's at least possible. In this case, you can try to change the stor-
age engine to another engine by using ALTER TABLE on a repaired copy of the table.

Because it is very difficult to know why something is crashing, first try to check whether things that work for others crash for you.
Please try the following things:

• Stop the mysqld server with mysqladmin shutdown, run myisamchk --silent --force */*.MYI from the data
directory to check all MyISAM tables, and restart mysqld. This ensures that you are running from a clean state. See Chapter 5,
MySQL Server Administration.

• Start mysqld with the --log option and try to determine from the information written to the log whether some specific query kills
the server. About 95% of all bugs are related to a particular query. Normally, this is one of the last queries in the log file just before
the server restarts. See Section 5.2.3, “The General Query Log”. If you can repeatedly kill MySQL with a specific query, even when
you have checked all tables just before issuing it, then you have been able to locate the bug and should submit a bug report for it.
See Section 1.7, “How to Report Bugs or Problems”.

• Try to make a test case that we can use to repeat the problem. See MySQL Internals: Porting.

• Try running the tests in the mysql-test directory and the MySQL benchmarks. See Section 29.1.2, “MySQL Test Suite”. They
should test MySQL rather well. You can also add code to the benchmarks that simulates your application. The benchmarks can be
found in the sql-bench directory in a source distribution or, for a binary distribution, in the sql-bench directory under your
MySQL installation directory.

Errors, Error Codes, and Common Problems

1934

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://forge.mysql.com/wiki/MySQL_Internals_Porting


• Try the fork_big.pl script. (It is located in the tests directory of source distributions.)

• If you configure MySQL for debugging, it is much easier to gather information about possible errors if something goes wrong. Con-
figuring MySQL for debugging causes a safe memory allocator to be included that can find some errors. It also provides a lot of out-
put about what is happening. Reconfigure MySQL with the --with-debug or --with-debug=full option to configure
and then recompile. See MySQL Internals: Porting.

• Make sure that you have applied the latest patches for your operating system.

• Use the --skip-external-locking option to mysqld. On some systems, the lockd lock manager does not work properly;
the --skip-external-locking option tells mysqld not to use external locking. (This means that you cannot run two
mysqld servers on the same data directory and that you must be careful if you use myisamchk. Nevertheless, it may be instruct-
ive to try the option as a test.)

• Have you tried mysqladmin -u root processlist when mysqld appears to be running but not responding? Sometimes
mysqld is not comatose even though you might think so. The problem may be that all connections are in use, or there may be some
internal lock problem. mysqladmin -u root processlist usually is able to make a connection even in these cases, and
can provide useful information about the current number of connections and their status.

• Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status in a separate window to produce stat-
istics while you run your other queries.

• Try the following:

1. Start mysqld from gdb (or another debugger). See MySQL Internals: Porting.

2. Run your test scripts.

3. Print the backtrace and the local variables at the three lowest levels. In gdb, you can do this with the following commands
when mysqld has crashed inside gdb:

backtrace
info local
up
info local
up
info local

With gdb, you can also examine which threads exist with info threads and switch to a specific thread with thread N,
where N is the thread ID.

• Try to simulate your application with a Perl script to force MySQL to crash or misbehave.

• Send a normal bug report. See Section 1.7, “How to Report Bugs or Problems”. Be even more detailed than usual. Because MySQL
works for many people, it may be that the crash results from something that exists only on your computer (for example, an error that
is related to your particular system libraries).

• If you have a problem with tables containing dynamic-length rows and you are using only VARCHAR columns (not BLOB or TEXT
columns), you can try to change all VARCHAR to CHAR with ALTER TABLE. This forces MySQL to use fixed-size rows. Fixed-
size rows take a little extra space, but are much more tolerant to corruption.

The current dynamic row code has been in use at MySQL AB for several years with very few problems, but dynamic-length rows
are by nature more prone to errors, so it may be a good idea to try this strategy to see whether it helps.

• Do not rule out your server hardware when diagnosing problems. Defective hardware can be the cause of data corruption. Particular
attention should be paid to both RAMS and hard-drives when troubleshooting hardware.

B.1.4.3. How MySQL Handles a Full Disk

This section describes how MySQL responds to disk-full errors (such as “no space left on device”), and to quota-exceeded errors (such
as “write failed” or “user block limit reached”).

This section is relevant for writes to MyISAM tables. It also applies for writes to binary log files and binary log index file, except that
references to “row” and “record” should be understood to mean “event.”

Errors, Error Codes, and Common Problems

1935

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://forge.mysql.com/wiki/MySQL_Internals_Porting


When a disk-full condition occurs, MySQL does the following:

• It checks once every minute to see whether there is enough space to write the current row. If there is enough space, it continues as if
nothing had happened.

• Every 10 minutes it writes an entry to the log file, warning about the disk-full condition.

To alleviate the problem, you can take the following actions:

• To continue, you only have to free enough disk space to insert all records.

• To abort the thread, you must use mysqladmin kill. The thread is aborted the next time it checks the disk (in one minute).

• Other threads might be waiting for the table that caused the disk-full condition. If you have several “locked” threads, killing the one
thread that is waiting on the disk-full condition allows the other threads to continue.

Exceptions to the preceding behavior are when you use REPAIR TABLE or OPTIMIZE TABLE or when the indexes are created in a
batch after LOAD DATA INFILE or after an ALTER TABLE statement. All of these statements may create large temporary files that,
if left to themselves, would cause big problems for the rest of the system. If the disk becomes full while MySQL is doing any of these
operations, it removes the big temporary files and mark the table as crashed. The exception is that for ALTER TABLE, the old table is
left unchanged.

MySQL Enterprise
For early notification of possible problems with your MySQL configuration subscribe to the MySQL Enterprise
Monitor. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

B.1.4.4. Where MySQL Stores Temporary Files

MySQL uses the value of the TMPDIR environment variable as the pathname of the directory in which to store temporary files. If you
don't have TMPDIR set, MySQL uses the system default, which is normally /tmp, /var/tmp, or /usr/tmp. If the filesystem con-
taining your temporary file directory is too small, you can use the --tmpdir option to mysqld to specify a directory in a filesystem
where you have enough space.

In MySQL 5.1, the --tmpdir option can be set to a list of several paths that are used in round-robin fashion. Paths should be separ-
ated by colon characters (“:”) on Unix and semicolon characters (“;”) on Windows, NetWare, and OS/2.

Note

To spread the load effectively, these paths should be located on different physical disks, not different partitions of the same
disk.

If the MySQL server is acting as a replication slave, you should not set --tmpdir to point to a directory on a memory-based filesys-
tem or to a directory that is cleared when the server host restarts. A replication slave needs some of its temporary files to survive a ma-
chine restart so that it can replicate temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory are
lost when the server restarts, replication fails.

MySQL creates all temporary files as hidden files. This ensures that the temporary files are removed if mysqld is terminated. The dis-
advantage of using hidden files is that you do not see a big temporary file that fills up the filesystem in which the temporary file direct-
ory is located.

MySQL Enterprise
Advisors provided by the MySQL Enterprise Monitor automatically detect excessive temporary table storage to
disk. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files. The maximum disk space required is de-
termined by the following expression:

(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2

Errors, Error Codes, and Common Problems

1936

http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html


The row pointer size is usually four bytes, but may grow in the future for really big tables.

For some SELECT queries, MySQL also creates temporary SQL tables. These are not hidden and have names of the form SQL_*.

ALTER TABLE creates a temporary table in the same directory as the original table.

B.1.4.5. How to Protect or Change the MySQL Unix Socket File

The default location for the Unix socket file that the server uses for communication with local clients is /tmp/mysql.sock. (For
some distribution formats, the directory might be different, such as /var/lib/mysql for RPMs.)

On some versions of Unix, anyone can delete files in the /tmp directory or other similar directories used for temporary files. If the
socket file is located in such a directory on your system, this might cause problems.

On most versions of Unix, you can protect your /tmp directory so that files can be deleted only by their owners or the superuser
(root). To do this, set the sticky bit on the /tmp directory by logging in as root and using the following command:

shell> chmod +t /tmp

You can check whether the sticky bit is set by executing ls -ld /tmp. If the last permission character is t, the bit is set.

Another approach is to change the place where the server creates the Unix socket file. If you do this, you should also let client programs
know the new location of the file. You can specify the file location in several ways:

• Specify the path in a global or local option file. For example, put the following lines in /etc/my.cnf:

[mysqld]
socket=/path/to/socket

[client]
socket=/path/to/socket

See Section 4.2.2.2, “Using Option Files”.

• Specify a --socket option on the command line to mysqld_safe and when you run client programs.

• Set the MYSQL_UNIX_PORT environment variable to the path of the Unix socket file.

• Recompile MySQL from source to use a different default Unix socket file location. Define the path to the file with the -
-with-unix-socket-path option when you run configure. See Section 2.9.2, “Typical configure Options”.

You can test whether the new socket location works by attempting to connect to the server with this command:

shell> mysqladmin --socket=/path/to/socket version

B.1.4.6. Time Zone Problems

If you have a problem with SELECT NOW() returning values in UTC and not your local time, you have to tell the server your current
time zone. The same applies if UNIX_TIMESTAMP() returns the wrong value. This should be done for the environment in which the
server runs; for example, in mysqld_safe or mysql.server. See Section 2.14, “Environment Variables”.

You can set the time zone for the server with the --timezone=timezone_name option to mysqld_safe. You can also set it by
setting the TZ environment variable before you start mysqld.

The allowable values for --timezone or TZ are system-dependent. Consult your operating system documentation to see what values
are acceptable.

B.1.5. Query-Related Issues

B.1.5.1. Case Sensitivity in Searches

By default, MySQL searches are not case sensitive. This means that if you search with col_name LIKE 'a%', you get all column

Errors, Error Codes, and Common Problems

1937



values that start with A or a. If you want to make this search case sensitive, make sure that one of the operands has a case sensitive or
binary collation. For example, if you are comparing a column and a string that both have the latin1 character set, you can use the
COLLATE operator to cause either operand to have the latin1_general_cs or latin1_bin collation. For example:

col_name COLLATE latin1_general_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_general_cs
col_name COLLATE latin1_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_bin

If you want a column always to be treated in case-sensitive fashion, declare it with a case sensitive or binary collation. See Sec-
tion 12.1.10, “CREATE TABLE Syntax”.

Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each character's “sort value.” Characters
with the same sort value (such as “E”, “e”, and “é”) are treated as the same character.

B.1.5.2. Problems Using DATE Columns

The format of a DATE value is 'YYYY-MM-DD'. According to standard SQL, no other format is allowed. You should use this format in
UPDATE expressions and in the WHERE clause of SELECT statements. For example:

mysql> SELECT * FROM tbl_name WHERE date >= '2003-05-05';

As a convenience, MySQL automatically converts a date to a number if the date is used in a numeric context (and vice versa). It is also
smart enough to allow a “relaxed” string form when updating and in a WHERE clause that compares a date to a TIMESTAMP, DATE, or
DATETIME column. (“Relaxed form” means that any punctuation character may be used as the separator between parts. For example,
'2004-08-15' and '2004#08#15' are equivalent.) MySQL can also convert a string containing no separators (such as
'20040815'), provided it makes sense as a date.

When you compare a DATE, TIME, DATETIME, or TIMESTAMP to a constant string with the <, <=, =, >=, >, or BETWEEN operators,
MySQL normally converts the string to an internal long integer for faster comparison (and also for a bit more “relaxed” string check-
ing). However, this conversion is subject to the following exceptions:

• When you compare two columns

• When you compare a DATE, TIME, DATETIME, or TIMESTAMP column to an expression

• When you use any other comparison method than those just listed, such as IN or STRCMP().

For these exceptional cases, the comparison is done by converting the objects to strings and performing a string comparison.

To keep things safe, assume that strings are compared as strings and use the appropriate string functions if you want to compare a tem-
poral value to a string.

The special date '0000-00-00' can be stored and retrieved as '0000-00-00'. When using a '0000-00-00' date through My-
ODBC, it is automatically converted to NULL in MyODBC 2.50.12 and above, because ODBC can't handle this kind of date.

Because MySQL performs the conversions described above, the following statements work:

mysql> INSERT INTO tbl_name (idate) VALUES (19970505);
mysql> INSERT INTO tbl_name (idate) VALUES ('19970505');
mysql> INSERT INTO tbl_name (idate) VALUES ('97-05-05');
mysql> INSERT INTO tbl_name (idate) VALUES ('1997.05.05');
mysql> INSERT INTO tbl_name (idate) VALUES ('1997 05 05');
mysql> INSERT INTO tbl_name (idate) VALUES ('0000-00-00');

mysql> SELECT idate FROM tbl_name WHERE idate >= '1997-05-05';
mysql> SELECT idate FROM tbl_name WHERE idate >= 19970505;
mysql> SELECT MOD(idate,100) FROM tbl_name WHERE idate >= 19970505;
mysql> SELECT idate FROM tbl_name WHERE idate >= '19970505';

However, the following does not work:

mysql> SELECT idate FROM tbl_name WHERE STRCMP(idate,'20030505')=0;

STRCMP() is a string function, so it converts idate to a string in 'YYYY-MM-DD' format and performs a string comparison. It does
not convert '20030505' to the date '2003-05-05' and perform a date comparison.

Errors, Error Codes, and Common Problems

1938



If you are using the ALLOW_INVALID_DATES SQL mode, MySQL allows you to store dates that are given only limited checking:
MySQL requires only that the day is in the range from 1 to 31 and the month is in the range from 1 to 12.

This makes MySQL very convenient for Web applications where you obtain year, month, and day in three different fields and you want
to store exactly what the user inserted (without date validation).

If you are not using the NO_ZERO_IN_DATE SQL mode, the day or month part can be zero. This is convenient if you want to store a
birthdate in a DATE column and you know only part of the date.

If you are not using the NO_ZERO_DATE SQL mode, MySQL also allows you to store '0000-00-00' as a “dummy date.” This is in
some cases more convenient than using NULL values.

If the date cannot be converted to any reasonable value, a 0 is stored in the DATE column, which is retrieved as '0000-00-00'. This
is both a speed and a convenience issue. We believe that the database server's responsibility is to retrieve the same date you stored (even
if the data was not logically correct in all cases). We think it is up to the application and not the server to check the dates.

If you want MySQL to check all dates and accept only legal dates (unless overridden by IGNORE), you should set sql_mode to
"NO_ZERO_IN_DATE,NO_ZERO_DATE".

B.1.5.3. Problems with NULL Values

The concept of the NULL value is a common source of confusion for newcomers to SQL, who often think that NULL is the same thing
as an empty string ''. This is not the case. For example, the following statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

Both statements insert a value into the phone column, but the first inserts a NULL value and the second inserts an empty string. The
meaning of the first can be regarded as “phone number is not known” and the meaning of the second can be regarded as “the person is
known to have no phone, and thus no phone number.”

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the IFNULL() function.

In SQL, the NULL value is never true in comparison to any other value, even NULL. An expression that contains NULL always produces
a NULL value unless otherwise indicated in the documentation for the operators and functions involved in the expression. All columns
in the following example return NULL:

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

If you want to search for column values that are NULL, you cannot use an expr = NULL test. The following statement returns no
rows, because expr = NULL is never true for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

To look for NULL values, you must use the IS NULL test. The following statements show how to find the NULL phone number and the
empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

See Section 3.3.4.6, “Working with NULL Values”, for additional information and examples.

You can add an index on a column that can have NULL values if you are using the MyISAM, InnoDB, or MEMORY storage engine. Oth-
erwise, you must declare an indexed column NOT NULL, and you cannot insert NULL into the column.

When reading data with LOAD DATA INFILE, empty or missing columns are updated with ''. If you want a NULL value in a
column, you should use \N in the data file. The literal word “NULL” may also be used under some circumstances. See Section 12.2.5,
“LOAD DATA INFILE Syntax”.

When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in descending order.

Aggregate (summary) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The exception to this is COUNT(*),

Errors, Error Codes, and Common Problems

1939



which counts rows and not individual column values. For example, the following statement produces two counts. The first is a count of
the number of rows in the table, and the second is a count of the number of non-NULL values in the age column:

mysql> SELECT COUNT(*), COUNT(age) FROM person;

For some data types, MySQL handles NULL values specially. If you insert NULL into a TIMESTAMP column, the current date and time
is inserted. If you insert NULL into an integer or floating-point column that has the AUTO_INCREMENT attribute, the next number in
the sequence is inserted.

B.1.5.4. Problems with Column Aliases

You can use an alias to refer to a column in GROUP BY, ORDER BY, or HAVING clauses. Aliases can also be used to give columns
better names:

SELECT SQRT(a*b) AS root FROM tbl_name GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;

Standard SQL doesn't allow you to refer to a column alias in a WHERE clause. This restriction is imposed because when the WHERE
code is executed, the column value may not yet be determined. For example, the following query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name WHERE cnt > 0 GROUP BY id;

The WHERE statement is executed to determine which rows should be included in the GROUP BY part, whereas HAVING is used to de-
cide which rows from the result set should be used.

B.1.5.5. Rollback Failure for Non-Transactional Tables

If you receive the following message when trying to perform a ROLLBACK, it means that one or more of the tables you used in the
transaction do not support transactions:

Warning: Some non-transactional changed tables couldn't be rolled back

These non-transactional tables are not affected by the ROLLBACK statement.

If you were not deliberately mixing transactional and non-transactional tables within the transaction, the most likely cause for this mes-
sage is that a table you thought was transactional actually is not. This can happen if you try to create a table using a transactional storage
engine that is not supported by your mysqld server (or that was disabled with a startup option). If mysqld doesn't support a storage
engine, it instead creates the table as a MyISAM table, which is non-transactional.

You can check the storage engine for a table by using either of these statements:

SHOW TABLE STATUS LIKE 'tbl_name';
SHOW CREATE TABLE tbl_name;

See Section 12.5.4.28, “SHOW TABLE STATUS Syntax”, and Section 12.5.4.9, “SHOW CREATE TABLE Syntax”.

You can check which storage engines your mysqld server supports by using this statement:

SHOW ENGINES;

You can also use the following statement, and check the value of the variable that is associated with the storage engine in which you are
interested:

SHOW VARIABLES LIKE 'have_%';

For example, to determine whether the InnoDB storage engine is available, check the value of the have_innodb variable.

See Section 12.5.4.14, “SHOW ENGINES Syntax”, and Section 12.5.4.31, “SHOW VARIABLES Syntax”.

MySQL Enterprise
Ensure that your data is adequately protected by subscribing to the MySQL Enterprise Monitor. For more in-
formation, see http://www.mysql.com/products/enterprise/advisors.html.

Errors, Error Codes, and Common Problems

1940

http://www.mysql.com/products/enterprise/advisors.html


B.1.5.6. Deleting Rows from Related Tables

If the total length of the DELETE statement for related_table is more than 1MB (the default value of the
max_allowed_packet system variable), you should split it into smaller parts and execute multiple DELETE statements. You prob-
ably get the fastest DELETE by specifying only 100 to 1,000 related_column values per statement if the related_column is in-
dexed. If the related_column isn't indexed, the speed is independent of the number of arguments in the IN clause.

B.1.5.7. Solving Problems with No Matching Rows

If you have a complicated query that uses many tables but that doesn't return any rows, you should use the following procedure to find
out what is wrong:

1. Test the query with EXPLAIN to check whether you can find something that is obviously wrong. See Section 12.3.2, “EXPLAIN
Syntax”.

2. Select only those columns that are used in the WHERE clause.

3. Remove one table at a time from the query until it returns some rows. If the tables are large, it's a good idea to use LIMIT 10
with the query.

4. Issue a SELECT for the column that should have matched a row against the table that was last removed from the query.

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you can't use equality (=) comparisons. This
problem is common in most computer languages because not all floating-point values can be stored with exact precision. In some
cases, changing the FLOAT to a DOUBLE fixes this. See Section B.1.5.8, “Problems with Floating-Point Comparisons”.

6. If you still can't figure out what's wrong, create a minimal test that can be run with mysql test < query.sql that shows
your problems. You can create a test file by dumping the tables with mysqldump --quick db_name tbl_name_1 ...
tbl_name_n > query.sql. Open the file in an editor, remove some insert lines (if there are more than needed to demonstrate
the problem), and add your SELECT statement at the end of the file.

Verify that the test file demonstrates the problem by executing these commands:

shell> mysqladmin create test2
shell> mysql test2 < query.sql

Attach the test file to a bug report, which you can file using the instructions in Section 1.7, “How to Report Bugs or Problems”.

B.1.5.8. Problems with Floating-Point Comparisons

Floating-point numbers sometimes cause confusion because they are approximate. That is, they are not stored as exact values inside
computer architecture. What you can see on the screen usually is not the exact value of the number. The FLOAT and DOUBLE data
types are such. For DECIMAL columns, MySQL performs operations with a precision of 65 decimal digits, which should solve most
common inaccuracy problems.

The following example demonstrates the problem using DOUBLE. It shows that are calculations that are done using floating-point oper-
ations are subject to floating-point error.

mysql> CREATE TABLE t1 (i INT, d1 DOUBLE, d2 DOUBLE);
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),

-> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
-> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
-> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
-> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
-> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
-> FROM t1 GROUP BY i HAVING a <> b;

+------+-------+------+
| i | a | b |
+------+-------+------+
| 1 | 21.4 | 21.4 |
| 2 | 76.8 | 76.8 |
| 3 | 7.4 | 7.4 |
| 4 | 15.4 | 15.4 |
| 5 | 7.2 | 7.2 |
| 6 | -51.4 | 0 |

Errors, Error Codes, and Common Problems

1941



+------+-------+------+

The result is correct. Although the first five records look like they should not satisfy the comparison (the values of a and b do not ap-
pear to be different), they may do so because the difference between the numbers shows up around the tenth decimal or so, depending
on factors such as computer architecture or the compiler version or optimization level. For example, different CPUs may evaluate float-
ing-point numbers differently.

If columns d1 and d2 had been defined as DECIMAL rather than DOUBLE, the result of the SELECT query would have contained only
one row — the last one shown above.

The correct way to do floating-point number comparison is to first decide on an acceptable tolerance for differences between the num-
bers and then do the comparison against the tolerance value. For example, if we agree that floating-point numbers should be regarded
the same if they are same within a precision of one in ten thousand (0.0001), the comparison should be written to find differences larger
than the tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
-> GROUP BY i HAVING ABS(a - b) > 0.0001;

+------+-------+------+
| i | a | b |
+------+-------+------+
| 6 | -51.4 | 0 |
+------+-------+------+
1 row in set (0.00 sec)

Conversely, to get rows where the numbers are the same, the test should find differences within the tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
-> GROUP BY i HAVING ABS(a - b) <= 0.0001;

+------+------+------+
| i | a | b |
+------+------+------+
| 1 | 21.4 | 21.4 |
| 2 | 76.8 | 76.8 |
| 3 | 7.4 | 7.4 |
| 4 | 15.4 | 15.4 |
| 5 | 7.2 | 7.2 |
+------+------+------+
5 rows in set (0.03 sec)

B.1.6. Optimizer-Related Issues
MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many cases, MySQL can calculate the best possible
query plan, but sometimes MySQL doesn't have enough information about the data at hand and has to make “educated” guesses about
the data.

For the cases when MySQL does not do the "right" thing, tools that you have available to help MySQL are:

• Use the EXPLAIN statement to get information about how MySQL processes a query. To use it, just add the keyword EXPLAIN to
the front of your SELECT statement:

mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

EXPLAIN is discussed in more detail in Section 12.3.2, “EXPLAIN Syntax”.

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See Section 12.5.2.1, “ANALYZE TA-
BLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive compared to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

USE INDEX and IGNORE INDEX may also be useful. See Section 12.2.7.2, “Index Hint Syntax”.

• Global and table-level STRAIGHT_JOIN. See Section 12.2.7, “SELECT Syntax”.

• You can tune global or thread-specific system variables. For example, Start mysqld with the --max-seeks-for-key=1000
option or use SET max_seeks_for_key=1000 to tell the optimizer to assume that no key scan causes more than 1,000 key

Errors, Error Codes, and Common Problems

1942



seeks. See Section 5.1.3, “System Variables”.

MySQL Enterprise
For expert advice on configuring MySQL servers for optimal performance, subscribe to the MySQL Enterprise
Monitor. For more information, see http://www.mysql.com/products/enterprise/advisors.html.

B.1.7. Table Definition-Related Issues

B.1.7.1. Problems with ALTER TABLE

ALTER TABLE changes a table to the current character set. If you get a duplicate-key error during ALTER TABLE, the cause is either
that the new character sets maps two keys to the same value or that the table is corrupted. In the latter case, you should run REPAIR
TABLE on the table.

If ALTER TABLE dies with the following error, the problem may be that MySQL crashed during an earlier ALTER TABLE operation
and there is an old table named A-xxx or B-xxx lying around:

Error on rename of './database/name.frm'
to './database/B-xxx.frm' (Errcode: 17)

In this case, go to the MySQL data directory and delete all files that have names starting with A- or B-. (You may want to move them
elsewhere instead of deleting them.)

ALTER TABLE works in the following way:

• Create a new table named A-xxx with the requested structural changes.

• Copy all rows from the original table to A-xxx.

• Rename the original table to B-xxx.

• Rename A-xxx to your original table name.

• Delete B-xxx.

If something goes wrong with the renaming operation, MySQL tries to undo the changes. If something goes seriously wrong (although
this shouldn't happen), MySQL may leave the old table as B-xxx. A simple rename of the table files at the system level should get your
data back.

If you use ALTER TABLE on a transactional table or if you are using Windows or OS/2, ALTER TABLE unlocks the table if you had
done a LOCK TABLE on it. This is done because InnoDB and these operating systems cannot drop a table that is in use.

B.1.7.2. How to Change the Order of Columns in a Table

First, consider whether you really need to change the column order in a table. The whole point of SQL is to abstract the application from
the data storage format. You should always specify the order in which you wish to retrieve your data. The first of the following state-
ments returns columns in the order col_name1, col_name2, col_name3, whereas the second returns them in the order
col_name1, col_name3, col_name2:

mysql> SELECT col_name1, col_name2, col_name3 FROM tbl_name;
mysql> SELECT col_name1, col_name3, col_name2 FROM tbl_name;

If you decide to change the order of table columns anyway, you can do so as follows:

1. Create a new table with the columns in the new order.

2. Execute this statement:

mysql> INSERT INTO new_table
-> SELECT columns-in-new-order FROM old_table;

Errors, Error Codes, and Common Problems

1943

http://www.mysql.com/products/enterprise/advisors.html


3. Drop or rename old_table.

4. Rename the new table to the original name:

mysql> ALTER TABLE new_table RENAME old_table;

SELECT * is quite suitable for testing queries. However, in an application, you should never rely on using SELECT * and retrieving
the columns based on their position. The order and position in which columns are returned does not remain the same if you add, move,
or delete columns. A simple change to your table structure could cause your application to fail.

B.1.7.3. TEMPORARY TABLE Problems

The following list indicates limitations on the use of TEMPORARY tables:

• A TEMPORARY table can only be of type MEMORY, MyISAM, MERGE, or InnoDB.

Temporary tables are not supported for MySQL Cluster.

• You cannot refer to a TEMPORARY table more than once in the same query. For example, the following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The SHOW TABLES statement does not list TEMPORARY tables.

• You cannot use RENAME to rename a TEMPORARY table. However, you can use ALTER TABLE instead:

mysql> ALTER TABLE orig_name RENAME new_name;

• There are known issues in using temporary tables with replication. See Section 16.3.1, “Replication Features and Issues”, for more
information.

B.1.8. Known Issues in MySQL
This section is a list of the known issues in recent versions of MySQL.

For information about platform-specific issues, see the installation and porting instructions in Section 2.13, “Operating System-Specific
Notes”, and MySQL Internals: Porting.

B.1.8.1. Open Issues in MySQL

The following problems are known and fixing them is a high priority:

C API

• Bug#29605: --local-infile=0 checks can be bypassed by sending a FETCH LOCAL FILE response

• --local-infile=0 disables support for LOAD LOCAL INFILE in MySQL clients. However, this is currently enforced only on the
server, which means that a "fake" server (that is, one that disregards the --local-infile setting) can read any files to which clients
have access. It is assumed that this issue affects all MySQL client libraries and applications.

Target fix: 5.1+

• Bug#34655: Compile error

• Target fix: 5.1+

• Bug#30472: libmysql doesn't reset charset, insert_id after succ. mysql_change_user() call

• After mysql_change_user(), the character set variables should be just as after mysql_real_connect(). However, the server sets

Errors, Error Codes, and Common Problems

1944

http://forge.mysql.com/wiki/MySQL_Internals_Porting
http://bugs.mysql.com/29605
http://bugs.mysql.com/34655
http://bugs.mysql.com/30472


them to the global defaults. A workaround would be to explicitly reinitialize character set information explicitly following
mysql_change_user().

Already fixed in: 5.1.23

Client

• Bug#33841: mysql client crashes when returning results for long running queries

• Target fix: 4.1+

• Bug#26215: mysql command line client should not strip comments from SQL statements

• Bug#33057: mysql command line client slows down and uses 100% CPU when restoring dump

• Already fixed in: 5.0+

• Bug#32221: bug25714, mytest, mysql_client_test complaints and crashes

Server

• Bug#34749: Server crash when using NAME_CONST() with an aggregate function

• Target fix: 5.0+

• Bug#30435: loading large LOAD DATA INFILE breaks slave with read_buffer_size set on master

• Target fix: 5.0+

• Bug#35074: max_used_connections is not correct

• Target fix: 5.1+

• Bug#22351: handler::index_next_same() call to key_cmp_if_same() uses the wrong buffer

• Queries against tables partioned by key using multiple columns for both the primary key and the partitioning can return the
wrong number of rows.

Already fixed in: 5.1

• Bug#27545: NAME_CONST() fails to return

• Bug#31177: Server variables can't be set to their current values

• Bug#26447: "ALTER TABLE .. ORDER" does not work with InnoDB and auto_increment keys

• Bug#32051: UNION within EXISTS returns incorrect result

• Bug#32268: Indexed queries give bogus MIN and MAX results

• Bug#32335: inconsistent int > null +1 behavior

• Bug#19723: KILL of active connection yields error on Mac OS X

• Already fixed in: 5.1.?

• Bug#33814: Pre-auth buffer-overflow in mySQL through yaSSL

• Already fixed in: 5.0+

• Bug#32036: EXISTS within a WHERE clause with a UNION crashes MySQL 5.122

Errors, Error Codes, and Common Problems

1945

http://bugs.mysql.com/33841
http://bugs.mysql.com/26215
http://bugs.mysql.com/33057
http://bugs.mysql.com/32221
http://bugs.mysql.com/34749
http://bugs.mysql.com/30435
http://bugs.mysql.com/35074
http://bugs.mysql.com/22351
http://bugs.mysql.com/27545
http://bugs.mysql.com/31177
http://bugs.mysql.com/26447
http://bugs.mysql.com/32051
http://bugs.mysql.com/32268
http://bugs.mysql.com/32335
http://bugs.mysql.com/19723
http://bugs.mysql.com/33814
http://bugs.mysql.com/32036


• Already fixed in: 5.0+

• Bug#27848: rollup in union part causes error with order of union

• Target fix: 5.0+

• Bug#26788: mysqld (debug) aborts when inserting specific numbers into char fields

• Already fixed in: 5.0+

• Bug#32775: problems with SHOW EVENTS and Information_Schema

• Bug#30355: Incorrect ordering of UDF results

• Under some circumstances, a UDF initialization function could be passed incorrect argument lengths.

Already fixed in: 5.1.23

• Bug#24907: unpredictable (display) precision, if input precision increases

• Already fixed in: 5.0+

• Bug#32533: SELECT INTO/LOAD DATA INFILE with FIELDS ENCLOSED BY 8bit char corrupts data

• Bug#32798: DISTINCT in GROUP_CONCAT clause fails when ordering by a column with null values

• Bug#30788: Inconsistent retrieval of char/varchar

• Bug#31036: Using order by with archive table crashes server

• Using ORDER BY as a clause within a SELECT on an archive table where the combined column length of the table is 510 bytes
or larger triggers. the crash. One workaround is to use a subselect on the query.

Already fixed in: 5.1.23

• Bug#33507: Event scheduler creates more threads than max_connections = user lockout

• Target fix: 5.1+

• Bug#30897: GROUP_CONCAT returns extra comma on empty fields

• For a column that contains only empty strings, GROUP_CONCAT() returns "," rather than the correct result of "".

Already fixed in: 5.1.23

• Bug#31153: calling stored procedure crashes server if available memory is low

• Already fixed in: 5.1.23

• Bug#29908: alter view keeps current definer, user can gain additioanl access

• If a user changed a view with ALTER VIEW, the original DEFINER was retained, possibly allowing the new user to gain priv-
ileges. The fix will be to allow only the original view definer to alter the view.

Already fixed in: 5.1.23

• Bug#30152: MySQLD crash duing alter table causes DROP DATABASE to FAIL due to temp file

• Bug#35732: read-only blocks SELECT statements in InnoDB

• Target fix: 5.1.24

• Bug#30384: SQL_BUFFER_RESULT corrups indexes

• Bug#29419: Specifying a join_buffer > 4GB on 64 bit machines not possible.

Errors, Error Codes, and Common Problems

1946

http://bugs.mysql.com/27848
http://bugs.mysql.com/26788
http://bugs.mysql.com/32775
http://bugs.mysql.com/30355
http://bugs.mysql.com/24907
http://bugs.mysql.com/32533
http://bugs.mysql.com/32798
http://bugs.mysql.com/30788
http://bugs.mysql.com/31036
http://bugs.mysql.com/33507
http://bugs.mysql.com/30897
http://bugs.mysql.com/31153
http://bugs.mysql.com/29908
http://bugs.mysql.com/30152
http://bugs.mysql.com/35732
http://bugs.mysql.com/30384
http://bugs.mysql.com/29419


• On 64-bit systems, specifying a join_buffer size greater than 4GB would cause the value to wrap on the 4GB boundary. For ex-
ample, a join_buffer of 5GB would actually only reserve 1GB. On 64-bit systems this restriction will be lifted. On 32-bit sys-
tems, the join_buffer size will be limited to 4GB.

Already fixed in: 5.1.23

Server: CSV

• Bug#32817: though CSV is marked as supported create table is rejected with error 1005.

• Already fixed in: 5.1.23

• Bug#32050: table logging gone wrong.

• Already fixed in: 5.1.23

Server: Charsets

• Bug#32726: crash with cast in order by clause and cp932 charset

• Bug#31070: crash during conversion of charsets

• A fix for this issue has been committed and is expected to appear in MySQL 5.1.23.

Already fixed in: 5.1.23

• Bug#31615: crash after set names ucs2 collate xxx

• Bug#30981: CHAR(0x41 USING ucs2) doesn't add leading zero

• CHAR(str USING ucs2) for strings with an odd number of bytes did not add a leading 0x00 byte. Workaround: Provide an even-
length string.

Already fixed in: 5.1.23

• Bug#30982: CHAR(..USING..) can return a not-well-formed string

• For CHAR(str USING charset) and CONVERT(str USING charset), no check was made that the string contained valid input for
the character set (for example, CHAR(0xFF USING utf8) is invalid). An error should occur if the input is not well-formed.

Already fixed in: 5.1.23

• Bug#30986: Character set introducer followed by a HEX string can return bad result

• For a character set introducer followed by a hex string, no check was made that the string contained valid input for the character
set (for example, _utf8 0xFF is invalid). An error should occur if the input is not well-formed.

Already fixed in: 5.1.23

• Bug#31069: crash in 'sounds like'

• A fix for this issue has been committed and is expected to appear in MySQL 5.1.23.

Already fixed in: 5.1.23

Server: Cluster

• Bug#30366: NDB fails to start on OS X, 64 bit

• Already fixed in: 5.1.23

Errors, Error Codes, and Common Problems

1947

http://bugs.mysql.com/32817
http://bugs.mysql.com/32050
http://bugs.mysql.com/32726
http://bugs.mysql.com/31070
http://bugs.mysql.com/31615
http://bugs.mysql.com/30981
http://bugs.mysql.com/30982
http://bugs.mysql.com/30986
http://bugs.mysql.com/31069
http://bugs.mysql.com/30366


• Bug#29390: too complex interpreted program crashes data nodes

• Interpeted NDB API programs of sufficient size and complexity can in some cases cause data nodes to shut down due to buffer
overruns. Note: This issue has already been fixed in MySQL Cluster Carrier Grade Edition (MySQL 5.1.22-ndb-6.3.4).

Already fixed in: 5.1.23

• Bug#28445: Heartbeat does not start until first API_REGREQ is recevied

• If an API or management node restarts or a network failure occurs, there is a short interval before data nodes can detect this,
which results in a lingering connection.

Already fixed in: 5.1+

• Bug#33168: Incorrectly handled parameters can make the TC crash during node failure

• Bug#31239: Test "ndb_views" returns NDB error 4259 "Invalid set of range scan bounds"

• Target fix: 5.1

• Bug#28647: backup will run forever if disk full and later write succes will kill ndb node

• A Cluster backup fails to stop on its own if the disk on the data node runs out of space. Workaround: Monitor data node disk us-
age during Cluster backups. Note: A fix for this issue has been committed and is expected to appear in the next 5.1 release.

Target fix: 5.1.23

Server: ClusterDD

• Bug#29186: write >4gb into 1 datafile on a 32-bit computer, offset wraps causing corruption

• Creating a Disk Data log file or data file larger than 4 GB on a host running a 32-bit operating system leads to filesystem corrup-
tion on the host. Since this is a limitation of 32-bit operating systems, the workaround is not to create Disk Data files which are
greater than 4 GB in size on such platforms. In the future, we plan to disallow statements creating Disk Data files whose size is
greater than 4 GB on 32-bit hosts.

Target fix: 5.1

Server: ClusterRep

• Bug#31484: Cluster LOST_EVENTS entry not added to binlog on mysqld restart.

• If the master mysqld node disconnects and reconnects to the cluster (for example, if the network connection is broken then re-
established), a LOST_EVENTS entry is added to the binlog. However, when the master mysqld node crashes or has a normal re-
start it does not create the LOST_EVENTS entry. (This has already been fixed in MySQL Cluster Carrier Grade Edition releases
5.1.22-ndb-6.2.8 and 5.1.22-ndb-6.3.6.)

Already fixed in: 5.1.23

• Bug#31958: many parallell create/delete ndb may hang ndbapi

• Under certain conditions, the slave may stop processing relay logs, which results in the logs never being cleared and the slave
eventually running out of disk space. (Note: This issue has already been fixed in MySQL Cluster Carrier Grade versions
5.1.15-ndb-6.1.23 and 5.1.22-ndb-6.2.9.)

Already fixed in: 5.1.23

Server: Compiling

• Bug#15327: configure: --with-tcp-port option being partially ignored

Errors, Error Codes, and Common Problems

1948

http://bugs.mysql.com/29390
http://bugs.mysql.com/28445
http://bugs.mysql.com/33168
http://bugs.mysql.com/31239
http://bugs.mysql.com/28647
http://bugs.mysql.com/29186
http://bugs.mysql.com/31484
http://bugs.mysql.com/31958
http://bugs.mysql.com/15327


• Client programs are not respecting the TCP/IP port number specified via the --with-tcp-port configure option. Workaround: Spe-
cify --port=port_num explicitly when invoking clients.

Already fixed in: 5.1.23

• Bug#30296: Dynamic plugins fail to load on FreeBSD

• (Apparent) workaround: ELF executables need to be linked using the -export-dynamic option to ld(1) for symbols defined in the
executable to become visible to dlsym().

Already fixed in: 5.1.23

• Bug#21158: mysql_config doesn't include -lmygcc

• Target fix: 5.0+

• Bug#18322: Explicit link to libmtmalloc breaks dlopen() applications like DBD::mysql

• Already fixed in: 5.0+

• Bug#32179: aix52 5.0.50 32-bit binary without large file support

Server: DDL

• Bug#28360: RENAME DATABASE destroys routines

• RENAME DATABASE was intended only for updating names of pre-5.1 databases to the new 5.1 identifier encoding. It is be-
ing removed and replaced with ALTER TABLE db_name UPGRADE DATA DIRECTORY NAME.

Already fixed in: 5.1.23

• Bug#17565: RENAME DATABASE destroys events

• RENAME DATABASE was intended only for updating names of pre-5.1 databases to the new 5.1 identifier encoding. It's being
removed and replaced with ALTER TABLE db_name UPGRADE DATA DIRECTORY NAME.

Already fixed in: 5.1.23

• Bug#32633: Can not create any routine if SQL_MODE=no_engine_substitution

• Target fix: 5.1+

• Bug#32158: Crash in open_table_from_share, on mysql_unpack_partition errors

• Bug#30217: Views: changes in metadata behaviour between 5.0 and 5.1

• Target fix: 5.1+

Server: DML

• Bug#30234: Unexpected behavior using DELETE with AS and USING

• Bug#27358: INSERT DELAYED does not honour SQL_MODE of the client

• The SQL_MODE setting is ignored when a client issues INSERT DELAYED. A patch for this bug has been approved for
MySQL 5.0, and is expected to be committed to 5.1 in the near future.

Already fixed in: 5.1.23

• Bug#32482: crash with GROUP BY alias_of_user_variable WITH ROLLUP

• Bug#30776: MOD function produces incorrect results with string arguments

Errors, Error Codes, and Common Problems

1949

http://bugs.mysql.com/30296
http://bugs.mysql.com/21158
http://bugs.mysql.com/18322
http://bugs.mysql.com/32179
http://bugs.mysql.com/28360
http://bugs.mysql.com/17565
http://bugs.mysql.com/32633
http://bugs.mysql.com/32158
http://bugs.mysql.com/30217
http://bugs.mysql.com/30234
http://bugs.mysql.com/27358
http://bugs.mysql.com/32482
http://bugs.mysql.com/30776


• Bug#32030: DELETE does not return an error and deletes rows if error evaluating WHERE

Server: Events

• Bug#31539: ALTER EVENT RENAME TO... resets STATUS to 'ENAMLE'

• Already fixed in: 5.1.23

• Bug#22738: Events: After stop and start disabled events could reside in the queue

• Target fix: 5.1+

• Bug#27407: Events: altering changes 'on completion preserve'

• Already fixed in: 5.1.23

Server: Federated

• Bug#30671: ALTER SERVER causes the Server to crash.

• Issuing an ALTER SERVER statement to modify an existing SERVER specification as used by the Federated storage engine
causes the server to crash.

Already fixed in: 5.1

Server: General

• Bug#30763: Multi-table UPDATE with transaction + non-transactional table assertion failure

• Already fixed in: 5.0+

• Bug#31745: mysqld crash handler does not work on windows

• Target fix: 5.0+

• Bug#5731: key_buffer_size not properly restricted to 4GB

• This issue affects 32-bit platforms only. A fix has been committed that will prevent this buffer from being set too high on a
32-bit operating system. The fix will appear in 5.1.23.

Already fixed in: 5.1.23

• Bug#31928: Search fails on '1000-00-00' date after sql_mode change

• Bug#31137: Assertion failed: primary_key_no == -1 || primary_key_no == 0, file .\ha_innodb.

• Bug#30825: Problems when putting a non-spatial index on a GIS column

• For a spatial column with a regular (non-SPATIAL) index, queries failed if the optimizer tried to use the index. Workaround:
Use IGNORE INDEX or remove the index (queries may be slow but will work).

Already fixed in: 5.1.23

• Bug#32543: ERROR 2006 (HY000) at line 40: MySQL server has gone away

• Bug#31747: Valgrind error in replication tree because engines does not set all null bits

• Already fixed in: 5.1+

• Bug#31081: server crash in regexp function

Errors, Error Codes, and Common Problems

1950

http://bugs.mysql.com/32030
http://bugs.mysql.com/31539
http://bugs.mysql.com/22738
http://bugs.mysql.com/27407
http://bugs.mysql.com/30671
http://bugs.mysql.com/30763
http://bugs.mysql.com/31745
http://bugs.mysql.com/5731
http://bugs.mysql.com/31928
http://bugs.mysql.com/31137
http://bugs.mysql.com/30825
http://bugs.mysql.com/32543
http://bugs.mysql.com/31747
http://bugs.mysql.com/31081


• Using REGEX with ucs2 strings could cause a server crash. Workaround: Use an 8-bit character set if possible.

Already fixed in: 5.1.23

• Bug#30889: filesort and order by with float/numeric crashes server

• The implementation of ROUND() for DECIMAL/NUMERIC arguments could produce results where scale > precision, or where
scale larger than the maximum allowable scale. One symptom is a crash when ORDER BY refers to an expression with
ROUND().

• Bug#30960: processlist state '*** DEAD ***' on recent 5.0.48 windows builds

• Target fix: 5.0+

• Bug#30942: select str_to_date from derived table returns varying results

• When invoked with constant arguments, STR_TO_DATE() could use a cached value for the format string and return incorrect
results.

Already fixed in: 5.1.23

• Bug#32559: connection hangs on query with name_const

• Bug#16918: Aborted_clients > Connections

• The Aborted_clients value could be incremented twice when a client exits without calling mysql_close(), resulting in an artifi-
cially high value.

Already fixed in: 5.1.23

• Bug#28687: Search fails on '0000-00-00' date after sql_mode change

• Indexed and non-indexed searches for '0000-00-00' return different results after inserting '0000-00-00' and then setting the SQL
mode to TRADITIONAL.

Already fixed in: 5.1.23

• Bug#20901: CREATE privilege is enough to insert into a table

• Bug#32374: crash with filesort when selecting from federated table and view

Server: I_S

• Bug#30689: Wrong content in I_S.VIEWS.VIEW_DEFINITION if VIEW is based on I_S

• INFORMATION_SCHEMA.VIEWS.VIEW_DEFINITION was incorrect for views that are defined to select from other IN-
FORMATION_SCHEMA tables.

Already fixed in: 5.1.23

• Bug#25629: CREATE TABLE LIKE does not work with INFORMATION_SCHEMA

Server: InnoDB

• Bug#31540: incorrect auto_increment values used for multi-row insert trigger

Server: Installing

• Bug#31674: service doesn't start after upd 5.1.19 to 5.1.22 because mysqld-nt.exe renamed

Errors, Error Codes, and Common Problems

1951

http://bugs.mysql.com/30889
http://bugs.mysql.com/30960
http://bugs.mysql.com/30942
http://bugs.mysql.com/32559
http://bugs.mysql.com/16918
http://bugs.mysql.com/28687
http://bugs.mysql.com/20901
http://bugs.mysql.com/32374
http://bugs.mysql.com/30689
http://bugs.mysql.com/25629
http://bugs.mysql.com/31540
http://bugs.mysql.com/31674


• Target fix: 5.1.24

• Bug#8543: Incorrect thread_cache_size parameter writen to my.ini

• Target fix: 5.0+

• Bug#28628: Config Wizard can't connect (race condition)

• During the Security Settings phase, a Connection Error can occur because the installer tries to proceed before the MySQL Server
being installed is fully started. Workaround: wait a few moments, then click Retry in the error dialog.

Already fixed in: 5.1

• Bug#31064: mysql_upgrade.exe fails

• Bug#24853: Default port not added to Vista firewall exceptions list

• The effect of this bug is that remote access cannot be enabled automatically for MySQL running on a Windows Vista host. This
is an installer issue. The workaround is to add an exception for port 3306 to the Windows Wista firewall manually.

Already fixed in: 5.1+

• Bug#28854: MySQL.prefPane does not start or stop mysql on osx 10.5

• Target fix: 5.0+

Server: Locking

• Bug#27440: read_only allows create and drop database

• Bug#30294: blackhole engine causes 100% with 2 alter table statements running

• Bug#32395: Alter table under a impending global read lock causes a server crash

• Already fixed in: 5.1+

• Bug#32676: insert delayed crash with wrong column and function specified ..

Server: Logging

• Bug#21557: entries in the general query log truncated at 1000 characters.

• Long statements written to the general query log might be truncated. One effect is that statements cannot be copied-and-pasted
to re-execute them. There is currently no workaround.

Already fixed in: 5.1.23

Server: Memory

• Bug#30590: delete from memory table with composite btree primary key

• Using a MEMORY table where the primary key is a compound key using two or more colums and btree indexing results in
some rows not being deleted when the statement specifies only a single column from the primary key index.

Already fixed in: 5.1.23

Server: Merge

Errors, Error Codes, and Common Problems

1952

http://bugs.mysql.com/8543
http://bugs.mysql.com/28628
http://bugs.mysql.com/31064
http://bugs.mysql.com/24853
http://bugs.mysql.com/28854
http://bugs.mysql.com/27440
http://bugs.mysql.com/30294
http://bugs.mysql.com/32395
http://bugs.mysql.com/32676
http://bugs.mysql.com/21557
http://bugs.mysql.com/30590


• Bug#25700: merge base tables get corrupted by optimize/analyze/repair table

• Bug#26377: Deadlock with MERGE and FLUSH TABLE

• A deadlock can be created if use LOCK TABLES simultaneously on a MERGE and related MYISAM table and then run
FLUSH TABLE, but only if specify the MERGE table before the corresponding MYISAM table in the LOCK TABLES state-
ment. Specifying the MYISAM table before the MERGE table does not cause the same problem.

Already fixed in: 5.1.23

• Bug#26867: LOCK TABLES + REPAIR + merge table result in memory/cpu hogging

• Using a MERGE table, issuing a REPAIR TABLE on one connection while a LOCK TABLES statement is in place and an IN-
SERT statement on the same table is waiting on another connection causes signficant CPU/memory usage.

Already fixed in: 5.1.23

• Bug#25038: Waiting TRUNCATE

• Already fixed in: 5.1.23

• Bug#30273: merge tables: Can't lock file (errno: 155)

• Bug#30275: Merge tables: flush tables or unlock tables causes server to crash

• See description for Bug#26379.

Already fixed in: 5.1.23

• Bug#26379: Combination of FLUSH TABLE and REPAIR TABLE corrupts a MERGE table

• A combination of factors is involved in this issue: (1) the table must be a MERGE table; (2) perform the statements LOCK TA-
BLE, REPAIR TABLE, and FLUSH TABLE on the merge and base tables; (3) perform INSERTs from multiple threads into the
merge table. A fix for this bug has been prepared and is expected to appear in 5.1.23.

Already fixed in: 5.1.23

Server: MyISAM

• Bug#30286: spatial index cause corruption and server crash!

• Setting certain values on a table using a spatial index could cause the server to crash. The cause is the calculation of certain val-
ues which exceed the expected levels when converted to the format used by the spatial indexing, leading to the incorrect key be-
ing written to the database and subsequent index updates failing. There is no known work around.

Already fixed in: 5.1.23

• Bug#28837: MyISAM storage engine error (134) doing delete with self-join

• Bug#30284: spatial key corruption

• Already fixed in: 5.0+

• Bug#31158: Spatial, Union, LONGBLOB vs BLOB bug (crops data)

• Bug#29446: Specifying a myisam_sort_buffer > 4GB on 64 bit machines not possible.

• On 64-bit systems, specifying a myisam_sort_buffer size greater than 4GB would cause the value to wrap on the 4GB boundary.
For example, a join_buffer of 5GB would actually only reserve 1GB. On 64-bit systems this restriction will be lifted. On 32-bit
systems, the myisam_sort_buffer size will be limited to 4GB.

Already fixed in: 5.1.23

• Bug#31305: myisam tables crash when they are near capacity

Errors, Error Codes, and Common Problems

1953

http://bugs.mysql.com/25700
http://bugs.mysql.com/26377
http://bugs.mysql.com/26867
http://bugs.mysql.com/25038
http://bugs.mysql.com/30273
http://bugs.mysql.com/30275
http://bugs.mysql.com/26379
http://bugs.mysql.com/26379
http://bugs.mysql.com/30286
http://bugs.mysql.com/28837
http://bugs.mysql.com/30284
http://bugs.mysql.com/31158
http://bugs.mysql.com/29446
http://bugs.mysql.com/31305


• Bug#30638: why doesn't > 4294967295 rows work in myisam on windows ?

• Inserting more than 2^32 (42924967295) rows into a single MYISAM table on windows, the row count is reset to 0. The data in
the table is still accessible.

Already fixed in: 5.1.23

Server: NDBAPI

• Bug#29283: Ndb_cluster_connection seg faults

• Target fix: 5.1+

Server: Optimizer

• Bug#32403: query causes a crash due to stack and memory corruptions

• Bug#32241: memory corruption due to large index map in 'Range checked for each record'

• Bug#32400: Complex SELECT query returns correct result only on some occasions

• Bug#32556: assert in "using index for group-by" : is_last_prefix <= 0, file .\opt_range.cc

• Bug#31075: crash in get_func_mm_tree

• Queries that contained constructs of the form "WHERE col NOT IN (col, ...)" (where the same column is named both places)
caused a range optimizer crash.

Already fixed in: 5.1.23

• Bug#35952: Regression: 5.1.24 Results not returned for users with select privs as expected

• Target fix: 5.1.25

Server: PS

• Bug#27430: Crash in subquery code when in PS and table DDL changed after PREPARE

• Any user who is able to create/drop/alter tables may trivially crash the server daemon via the use of prepared statements. The
only workaround to this possible DoS is to completely disallow prepared statements by setting the system variable
max_prepared_stmt_count to 0.

Target fix: 5.1.25,6.0

Server: Partition

• Bug#30822: ALTER TABLE COALESCE PARTITION causes segmentation fault

• A fix for this issue has been committed, and is expected to appear in MySQL 5.1.23.

Already fixed in: 5.1

• Bug#32948: FKs allowed to reference partitioned table

• Bug#32247: Test reports wrong value of "AUTO_INCREMENT" (on a partitioned InnoDB table)

• A fix for this issue has been committed, and is expected to appear in MySQL 5.1.23.

Already fixed in: 5.1.23

Errors, Error Codes, and Common Problems

1954

http://bugs.mysql.com/30638
http://bugs.mysql.com/29283
http://bugs.mysql.com/32403
http://bugs.mysql.com/32241
http://bugs.mysql.com/32400
http://bugs.mysql.com/32556
http://bugs.mysql.com/31075
http://bugs.mysql.com/35952
http://bugs.mysql.com/27430
http://bugs.mysql.com/30822
http://bugs.mysql.com/32948
http://bugs.mysql.com/32247


• Bug#29444: crash with partition refering to table in create-select

• The fix for this issue has been committed; the server now checks to insure that an attempt to refer in a PARTITION BY clause to
a column belonging to a different table from that referred to in the partition definitions is not allowed.

Already fixed in: 5.1.23

• Bug#32178: server crash when select from i_s and concurrent partition management

• Performing partition management statements such as ALTER TABLE ... REORGANIZE PARTITION while performing SE-
LECT queries from the INFORMATION_SCHEMA.PARTITIONS table causes mysqld to crash. A fix for this issue has been
committed, and is expected to appear in MySQL 5.1.23.

Already fixed in: 5.1.23

• Bug#30695: Apostrophe in PARTITION clause comment crashes the server

• A patch has been committed for this issue and is expected to appear in 5.1.23 or 5.1.24.

Already fixed in: 5.1.23

• Bug#30583: Partition on DOUBLE key + INNODB + count(*) == crash

• The issue arises with a COUNT() query on an InnoDB table using PARTITION BY KEY(double_column). It does not occur
with MyISAM tables. A fix has been committed and is expected to be part of 5.1.23.

Already fixed in: 5.1.23

• Bug#30459: Partitioning across disks failing on Windows Server (64-bit)

• Target fix: 5.1.24

• Bug#32772: partition crash 1: enum column and double

• Queries involving ordered index scans could cause a server crash when a partitioned table has an ENUM, SET, or DOUBLE
column, even if this column is not used as a partitioning key. A fix has been committed for this issue and is expected to appear
in MySQL 5.1.23.

Already fixed in: 5.1.23

• Bug#29258: Partitions: search fails for maximum unsigned bigint

• If you create a table with PARTITION BY RANGE(unsigned_bigint_column) and PARTITION ... VALUES LESS THAN
MAXVALUE, then try to insert the maximum possible value for BIGINT UNSIGNED (18446744073709551615), the INSERT
statement apparently succeeds (in some cases with a warning, in others without one), but nothing is inserted into the table; the
value is not truncated, and the statement does not produce an error.

Already fixed in: 5.1

Server: Privileges

• Bug#30468: column level privileges not respected when joining tables

• When expanding a * in a USING or NATURAL join, the check for table access for both tables in the join was done using the
grant information of the first table

Already fixed in: 5.1.23

• Bug#35955: Regression: I_S table cause reduced privilege requirements in SELECT.

• Target fix: 6.0

Server: Query Cache

Errors, Error Codes, and Common Problems

1955

http://bugs.mysql.com/29444
http://bugs.mysql.com/32178
http://bugs.mysql.com/30695
http://bugs.mysql.com/30583
http://bugs.mysql.com/30459
http://bugs.mysql.com/32772
http://bugs.mysql.com/29258
http://bugs.mysql.com/30468
http://bugs.mysql.com/35955


• Bug#30887: Server crashes on SET GLOBAL query_cache_size=0

• Target fix: 5.1

• Bug#30768: query cache patch for Bug#21074 crashes on windows

• The pthread_mutex_trylock() implementation is problematic on Windows and can cause a server crash when the query cache is
invalidated. Workaround: Disable the query cache.

Already fixed in: 5.1.23

Server: RBR

• Bug#29020: Event results not correctly replicated to slave in RBR

• When an event has a short schedule (such as EVERY 1 SECONDS), it can sometimes happen that the event executes on the
master but its effects are not propagated to the slave. The fix for this issue depends on the fix for Bug#12713, which is expected
in 5.1.23.

Target fix: 5.1.24

• Bug#27779: Slave cannot read old rows log events.

• A slave running MySQL 5.1.19 or newer cannot read logs generated by a master running MySQL 5.1.18 or earlier. This issue
was apparently introduced by the fix for Bug#22583 in MySQL 5.1.18. Work is in progress on a lasting solution for this issue.

Target fix: 5.1

• Bug#31552: Replication breaks when deleting rows from out-of-sync table without PK

• Target fix: 5.1.23

• Bug#29549: Endians: rpl_ndb_myisam2ndb,rpl_ndb_innodb2ndb and rpl_ndb_mix_innodb failed on

• Row-based logging writes rows incorrectly on big-endian machines where the storage engine sets the low byte first on big-
endian machines, while little-endian machines write the fields in correct order. (The only known storage engine that does this is
NDB.) In effect, this means that row-based replication from or to a big-endian machine where the table uses NDB as storage en-
gine fails if the other engine is either non-NDB or on a little-endian machine. A fix for this issue has been committed to 5.1.23.

Already fixed in: 5.1.23

• Bug#32468: delete rows event on a table with foreign key constraint fails

• The deletion is successful on the master but fails on the slave. A fix for this issue is in progress. See also Bug#31552.

Target fix: 5.1+

• Bug#33375: all_set corrupted on table object

• Already fixed in: 5.1.23

• Bug#31609: Not all RBR slave errors reported as errors

• When using row based replication, the slave stops when attempting to delete non-existent rows from a slave table without a
primary key. Known to occur with MyISAM, InnoDB and NDB tables. A fix for this issue has been committed, and is expected
to appear in MySQL 5.1.23. See also Bug#31552 and Bug#32468.

Target fix: 5.1+

Server: Replication

• Bug#26000: SHOW SLAVE STATUS can crash mysqld during shutdown process

Errors, Error Codes, and Common Problems

1956

http://bugs.mysql.com/30887
http://bugs.mysql.com/30768
http://bugs.mysql.com/21074
http://bugs.mysql.com/29020
http://bugs.mysql.com/12713
http://bugs.mysql.com/27779
http://bugs.mysql.com/22583
http://bugs.mysql.com/31552
http://bugs.mysql.com/29549
http://bugs.mysql.com/32468
http://bugs.mysql.com/31552
http://bugs.mysql.com/33375
http://bugs.mysql.com/31609
http://bugs.mysql.com/31552
http://bugs.mysql.com/32468
http://bugs.mysql.com/26000


• The sequence of events necessary to trigger this issue is unlikely to occur during normal manual operation, but may affect mon-
itoring tools that execute SHOW SLAVE STATUS automatically. A fix has been done for this issue in 5.0 and is expected to be
made to 5.1 in time for the 5.1-GA release.

Already fixed in: 5.0+

• Bug#32205: Replaying statements from mysqlbinlog fails with a syntax error, replicates fine

• Bug#28086: SBR of USER() becomes corrupted on slave

• Workaround: Use row-based rather than statement-based replication of USER().

Already fixed in: 5.1.23

• Bug#26980: binlog_hton->create dangling after int binlog_init(void *p)?

• Target fix: 5.1+

• Bug#23333: stored function + non-transac table + transac table = breaks stmt-based binlog

• An UPDATE statement setting a column of a non-transactional table to the value returned by a stored function that modifies is
not logged if it fails, whereas any query that modifies a non-deterministic table should be logged even if there is an error in the
execution. Otherwise, the master has a row in the non-transactional table that the slave does not have. A fix for this issue is
pending; it is expected to appear in 5.1.23.

Already fixed in: 5.1.23

• Bug#26395: if crash during autocommit update to transactional table on master, slave fails

• When a statement modifies an innodb table in autocommit mode, and the master crashes afterwards, but before writing the cor-
responding log event to disk, then the binlog may contain only the INSERT. In such a case, when the master restarts, InnoDB
will roll back. The slave replicates the INSERT but not the ROLLBACK, and so the result is that on master the statement has
been rolled back while on slave it is executed. This does not occur with AUTOCOMMIT turned off, since explicit BEGIN,
COMMIT, and ROLLBACK statements are generated and logged. A fix is in progress, but it is not known at this whether it will
be ready to appear in 5.1.23.

Target fix: 5.0+

• Bug#32407: Impossible to do point-in-time recovery from older binlog

• Target fix: 5.1+

• Bug#30752: rpl_dual_pos_advance valgrind (jump depends on uninitialized LOG_INFO)

• One thread in the MySQL replication code can read uninitialized memory from the stack of another thread. This appears to be
strictly an internal issue; a fix has been prepared and is expected to be committed to the server code in time for MySQL 5.1.23 or
5.1.24.

Already fixed in: 5.0+

• Bug#26199: Replication of stored procedures with BIT parameters fails

• The workaround is to use parameters of INT types rather than BIT type.

Already fixed in: 5.1+

• Bug#30854: Tables name show as binary in slave err msg on vm-win2003-64-b

• This is probably a memory corruption issue. (The relevant error code is ER_BAD_FIELD_ERROR.)

Already fixed in: 5.1.23

• Bug#31793: log event corruption causes crash

• Already fixed in: 5.1.23

Errors, Error Codes, and Common Problems

1957

http://bugs.mysql.com/32205
http://bugs.mysql.com/28086
http://bugs.mysql.com/26980
http://bugs.mysql.com/23333
http://bugs.mysql.com/26395
http://bugs.mysql.com/32407
http://bugs.mysql.com/30752
http://bugs.mysql.com/26199
http://bugs.mysql.com/30854
http://bugs.mysql.com/31793


• Bug#30790: Suspicious code in rpl_utility.cc

• Already fixed in: 5.1.23

• Bug#32580: mysqlbinlog cannot read binlog event generated by user variable usage

• This occurs when using statement-based or mixed binlogging mode. When a user variable (such as "@something") is used inside
an INSERT statement, the statement is replicated with invalid SQL syntax. A fix for this issue has been committed, and should
appear in MySQL 5.1.23.

Target fix: 5.1.23

• Bug#31581: 5.1-telco-6.1 -> 5.1.22. Slave crashes during starting

• Target fix: 5.1+

• Bug#30998: Drop View breaks replication if view does not exist

• Target fix: 5.0+

• Bug#28618: Skipping into the middle of a group with SQL_SLAVE_SKIP_COUNTER is possible

• A fix for this issue has been committed and is expected to be included in MySQL 5.1.23.

Already fixed in: 5.1.23

• Bug#28597: Replication doesn't start after upgrading to 5.1.18

• This issue was encountered when upgrading the master and slave from MySQL 5.1.16 to 5.1.18. A patch is pending and is ex-
pected to be included in MySQL 5.1.23.

Already fixed in: 5.0+

Server: SP

• Bug#33618: Crash in sp_rcontext

• Target fix: 5.0+

• Bug#12713: Error in a stored function called from a SELECT doesn't cause ROLLBACK of statem

• When AUTOCOMMIT=1, an error in a stored function called from a SELECT statement fails to roll back the statement. This
can have consequences for row-based replication, such as the problem with scheduled events encountered in Bug#29020. A fix
for this issue is expected in 5.1.23.

Target fix: 5.1.23

• Bug#31898: 16M memory allocations for user variables in stored procedure

• Already fixed in: 5.1.23

• Bug#21801: SQL exception handlers and warnings

• Target fix: 5.1.24

Server: Types

• Bug#30587: mysql crashes when trying to group by TIME div NUMBER

• Using GROUP BY on an expression of the form timestamp_col DIV number caused a server crash due to incorrect calculation
of number of decimals.

Already fixed in: 5.1.23

Errors, Error Codes, and Common Problems

1958

http://bugs.mysql.com/30790
http://bugs.mysql.com/32580
http://bugs.mysql.com/31581
http://bugs.mysql.com/30998
http://bugs.mysql.com/28618
http://bugs.mysql.com/28597
http://bugs.mysql.com/33618
http://bugs.mysql.com/12713
http://bugs.mysql.com/29020
http://bugs.mysql.com/31898
http://bugs.mysql.com/21801
http://bugs.mysql.com/30587


• Bug#30782: Truncated UNSIGNED BIGINT columns only in SELECT w/ CASE, JOIN, and ORDER BY

• Bug#32848: Data type conversion bug in union subselects in MySQL 5.0.38

• Bug#32180: DATE_ADD treats datetime numeric argument as DATE instead of DATETIME

• Bug#32282: TEXT silently truncates when value is exactly 65536 bytes

• Bug#32198: Comparison of DATE with DATETIME still not using indexes correctly

• Bug#30955: geomfromtext() crasher

• A fix has been written for this issue and is expected to appear in MySQL 5.1.23 or 5.1.24.

Already fixed in: 5.1.23

libmysqld

• Bug#32624: Error with multi queries in MySQL Embedded Server 5.1.22

• Bug#31868: mysql_server_init crash when language path is not correctly set

• Bug#30430: crash: ./mtr --embeded-server --ps-protocol cache_innodb func_misc ...

• Bug#32063: "create table like" works case-significant only in "embedded" server (libmysqld)

B.1.8.2. Additional Known Issues

The following problems are also known and fixing them is also a high priority:

• MySQL Cluster fails to recover from an out-of-disk failure when using disk data. (Bug#17614)

• Subquery optimization for IN is not as effective as for =.

• Even if you use lower_case_table_names=2 (which enables MySQL to remember the case used for databases and table
names), MySQL does not remember the case used for database names for the function DATABASE() or within the various logs (on
case-insensitive systems).

• Dropping a FOREIGN KEY constraint doesn't work in replication because the constraint may have another name on the slave.

• REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.

• DISTINCT with ORDER BY doesn't work inside GROUP_CONCAT() if you don't use all and only those columns that are in the
DISTINCT list.

• If one user has a long-running transaction and another user drops a table that is updated in the transaction, there is small chance that
the binary log may contain the DROP TABLE command before the table is used in the transaction itself. We plan to fix this by hav-
ing the DROP TABLE command wait until the table is not being used in any transaction.

• When inserting a big integer value (between 263 and 264–1) into a decimal or string column, it is inserted as a negative value because
the number is evaluated in a signed integer context.

• FLUSH TABLES WITH READ LOCK does not block COMMIT if the server is running without binary logging, which may cause a
problem (of consistency between tables) when doing a full backup.

• ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on tables for which you are using INSERT
DELAYED.

• Performing LOCK TABLE ... and FLUSH TABLES ... doesn't guarantee that there isn't a half-finished transaction in progress
on the table.

• Replication uses query-level logging: The master writes the executed queries to the binary log. This is a very fast, compact, and effi-

Errors, Error Codes, and Common Problems

1959

http://bugs.mysql.com/30782
http://bugs.mysql.com/32848
http://bugs.mysql.com/32180
http://bugs.mysql.com/32282
http://bugs.mysql.com/32198
http://bugs.mysql.com/30955
http://bugs.mysql.com/32624
http://bugs.mysql.com/31868
http://bugs.mysql.com/30430
http://bugs.mysql.com/32063
http://bugs.mysql.com/17614


cient logging method that works perfectly in most cases.

It is possible for the data on the master and slave to become different if a query is designed in such a way that the data modification
is non-deterministic (generally not a recommended practice, even outside of replication).

For example:

• CREATE ... SELECT or INSERT ... SELECT statements that insert zero or NULL values into an AUTO_INCREMENT
column.

• DELETE if you are deleting rows from a table that has foreign keys with ON DELETE CASCADE properties.

• REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values in the inserted data.

If and only if the preceding queries have no ORDER BY clause guaranteeing a deterministic order.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows in a different order (which results in
a row having different ranks, hence getting a different number in the AUTO_INCREMENT column), depending on the choices made
by the optimizers on the master and slave.

A query is optimized differently on the master and slave only if:

• The table is stored using a different storage engine on the master than on the slave. (It is possible to use different storage engines
on the master and slave. For example, you can use InnoDB on the master, but MyISAM on the slave if the slave has less avail-
able disk space.)

• MySQL buffer sizes (key_buffer_size, and so on) are different on the master and slave.

• The master and slave run different MySQL versions, and the optimizer code differs between these versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

The easiest way to avoid this problem is to add an ORDER BY clause to the aforementioned non-deterministic queries to ensure that
the rows are always stored or modified in the same order.

In future MySQL versions, we will automatically add an ORDER BY clause when needed.

The following issues are known and will be fixed in due time:

• Log filenames are based on the server hostname (if you don't specify a filename with the startup option). You have to use options
such as --log-bin=old_host_name-bin if you change your hostname to something else. Another option is to rename the
old files to reflect your hostname change (if these are binary logs, you need to edit the binary log index file and fix the binlog names
there as well). See Section 5.1.2, “Command Options”.

• mysqlbinlog does not delete temporary files left after a LOAD DATA INFILE command. See Section 4.6.7, “mysqlbinlog
— Utility for Processing Binary Log Files”.

• RENAME doesn't work with TEMPORARY tables or tables used in a MERGE table.

• Due to the way table format (.frm) files are stored, you cannot use character 255 (CHAR(255)) in table names, column names, or
enumerations. This is scheduled to be fixed in version 5.1 when we implement new table definition format files.

• When using SET CHARACTER SET, you can't use translated characters in database, table, and column names.

• You can't use “_” or “%” with ESCAPE in LIKE ... ESCAPE.

• You cannot build the server in another directory when using MIT-pthreads. Because this requires changes to MIT-pthreads, we are
not likely to fix this. See Section 2.9.5, “MIT-pthreads Notes”.

• BLOB and TEXT values can't reliably be used in GROUP BY, ORDER BY or DISTINCT. Only the first max_sort_length
bytes are used when comparing BLOB values in these cases. The default value of max_sort_length is 1024 and can be changed
at server startup time or at runtime.

• Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long). Which precision you get depends on the

Errors, Error Codes, and Common Problems

1960



function. The general rule is that bit functions are performed with BIGINT precision, IF and ELT() with BIGINT or DOUBLE
precision, and the rest with DOUBLE precision. You should try to avoid using unsigned long long values if they resolve to be larger
than 63 bits (9223372036854775807) for anything other than bit fields.

• You can have up to 255 ENUM and SET columns in one table.

• In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET columns by their string value rather
than by the string's relative position in the set.

• mysqld_safe redirects all messages from mysqld to the mysqld log. One problem with this is that if you execute mysqlad-
min refresh to close and reopen the log, stdout and stderr are still redirected to the old log. If you use --log extensively,
you should edit mysqld_safe to log to host_name.err instead of host_name.log so that you can easily reclaim the space
for the old log by deleting it and executing mysqladmin refresh.

• In an UPDATE statement, columns are updated from left to right. If you refer to an updated column, you get the updated value in-
stead of the original value. For example, the following statement increments KEY by 2, not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

• You can refer to multiple temporary tables in the same query, but you cannot refer to any given temporary table more than once. For
example, the following doesn't work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The optimizer may handle DISTINCT differently when you are using “hidden” columns in a join than when you are not. In a join,
hidden columns are counted as part of the result (even if they are not shown), whereas in normal queries, hidden columns don't par-
ticipate in the DISTINCT comparison. We will probably change this in the future to never compare the hidden columns when ex-
ecuting DISTINCT.

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
WHERE userid = 9 ORDER BY id DESC;

and

SELECT DISTINCT band_downloads.mp3id
FROM band_downloads,band_mp3
WHERE band_downloads.userid = 9
AND band_mp3.id = band_downloads.mp3id
ORDER BY band_downloads.id DESC;

In the second case, using MySQL Server 3.23.x, you may get two identical rows in the result set (because the values in the hidden
id column may differ).

Note that this happens only for queries where that do not have the ORDER BY columns in the result.

• If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCEDURE does not transform the columns.

• Creation of a table of type MERGE doesn't check whether the underlying tables are compatible types.

• If you use ALTER TABLE to add a UNIQUE index to a table used in a MERGE table and then add a normal index on the MERGE ta-
ble, the key order is different for the tables if there was an old, non-UNIQUE key in the table. This is because ALTER TABLE puts
UNIQUE indexes before normal indexes to be able to detect duplicate keys as early as possible.

B.2. Server Error Codes and Messages
MySQL programs have access to several types of error information when the server returns an error. For example, the mysql client
program displays errors using the following format:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Errors, Error Codes, and Common Problems

1961



The message displayed contains three types of information:

• A numeric error value (1146). This number is MySQL-specific and is not portable to other database systems.

• A five-character SQLSTATE value ('42S02'). The values are specified by ANSI SQL and ODBC and are more standardized. Not
all MySQL error numbers are mapped to SQLSTATE error codes. The value 'HY000' (general error) is used for unmapped errors.

• A string that provides a textual description of the error.

Server error information comes from the following source files. For details about the way that error information is defined, see the
MySQL Internals manual, available at http://dev.mysql.com/doc/.

• Error message information is listed in the share/errmsg.txt file. %d and %s represent numbers and strings, respectively, that
are substituted into the Message values when they are displayed.

• The Error values listed in share/errmsg.txt are used to generate the definitions in the include/mysqld_error.h and
include/mysqld_ername.h MySQL source files.

• The SQLSTATE values listed in share/errmsg.txt are used to generate the definitions in the include/sql_state.h
MySQL source file.

Because updates are frequent, it is possible that those files will contain additional error information not listed here.

• Error: 1000 SQLSTATE: HY000 (ER_HASHCHK)

Message: hashchk

• Error: 1001 SQLSTATE: HY000 (ER_NISAMCHK)

Message: isamchk

• Error: 1002 SQLSTATE: HY000 (ER_NO)

Message: NO

• Error: 1003 SQLSTATE: HY000 (ER_YES)

Message: YES

• Error: 1004 SQLSTATE: HY000 (ER_CANT_CREATE_FILE)

Message: Can't create file '%s' (errno: %d)

• Error: 1005 SQLSTATE: HY000 (ER_CANT_CREATE_TABLE)

Message: Can't create table '%s' (errno: %d)

• Error: 1006 SQLSTATE: HY000 (ER_CANT_CREATE_DB)

Message: Can't create database '%s' (errno: %d)

• Error: 1007 SQLSTATE: HY000 (ER_DB_CREATE_EXISTS)

Message: Can't create database '%s'; database exists

• Error: 1008 SQLSTATE: HY000 (ER_DB_DROP_EXISTS)

Message: Can't drop database '%s'; database doesn't exist

• Error: 1009 SQLSTATE: HY000 (ER_DB_DROP_DELETE)

Message: Error dropping database (can't delete '%s', errno: %d)

Errors, Error Codes, and Common Problems

1962

http://dev.mysql.com/doc/


• Error: 1010 SQLSTATE: HY000 (ER_DB_DROP_RMDIR)

Message: Error dropping database (can't rmdir '%s', errno: %d)

• Error: 1011 SQLSTATE: HY000 (ER_CANT_DELETE_FILE)

Message: Error on delete of '%s' (errno: %d)

• Error: 1012 SQLSTATE: HY000 (ER_CANT_FIND_SYSTEM_REC)

Message: Can't read record in system table

• Error: 1013 SQLSTATE: HY000 (ER_CANT_GET_STAT)

Message: Can't get status of '%s' (errno: %d)

• Error: 1014 SQLSTATE: HY000 (ER_CANT_GET_WD)

Message: Can't get working directory (errno: %d)

• Error: 1015 SQLSTATE: HY000 (ER_CANT_LOCK)

Message: Can't lock file (errno: %d)

• Error: 1016 SQLSTATE: HY000 (ER_CANT_OPEN_FILE)

Message: Can't open file: '%s' (errno: %d)

• Error: 1017 SQLSTATE: HY000 (ER_FILE_NOT_FOUND)

Message: Can't find file: '%s' (errno: %d)

• Error: 1018 SQLSTATE: HY000 (ER_CANT_READ_DIR)

Message: Can't read dir of '%s' (errno: %d)

• Error: 1019 SQLSTATE: HY000 (ER_CANT_SET_WD)

Message: Can't change dir to '%s' (errno: %d)

• Error: 1020 SQLSTATE: HY000 (ER_CHECKREAD)

Message: Record has changed since last read in table '%s'

• Error: 1021 SQLSTATE: HY000 (ER_DISK_FULL)

Message: Disk full (%s); waiting for someone to free some space...

• Error: 1022 SQLSTATE: 23000 (ER_DUP_KEY)

Message: Can't write; duplicate key in table '%s'

• Error: 1023 SQLSTATE: HY000 (ER_ERROR_ON_CLOSE)

Message: Error on close of '%s' (errno: %d)

• Error: 1024 SQLSTATE: HY000 (ER_ERROR_ON_READ)

Message: Error reading file '%s' (errno: %d)

• Error: 1025 SQLSTATE: HY000 (ER_ERROR_ON_RENAME)

Message: Error on rename of '%s' to '%s' (errno: %d)

• Error: 1026 SQLSTATE: HY000 (ER_ERROR_ON_WRITE)

Message: Error writing file '%s' (errno: %d)

Errors, Error Codes, and Common Problems

1963



• Error: 1027 SQLSTATE: HY000 (ER_FILE_USED)

Message: '%s' is locked against change

• Error: 1028 SQLSTATE: HY000 (ER_FILSORT_ABORT)

Message: Sort aborted

• Error: 1029 SQLSTATE: HY000 (ER_FORM_NOT_FOUND)

Message: View '%s' doesn't exist for '%s'

• Error: 1030 SQLSTATE: HY000 (ER_GET_ERRNO)

Message: Got error %d from storage engine

• Error: 1031 SQLSTATE: HY000 (ER_ILLEGAL_HA)

Message: Table storage engine for '%s' doesn't have this option

• Error: 1032 SQLSTATE: HY000 (ER_KEY_NOT_FOUND)

Message: Can't find record in '%s'

• Error: 1033 SQLSTATE: HY000 (ER_NOT_FORM_FILE)

Message: Incorrect information in file: '%s'

• Error: 1034 SQLSTATE: HY000 (ER_NOT_KEYFILE)

Message: Incorrect key file for table '%s'; try to repair it

• Error: 1035 SQLSTATE: HY000 (ER_OLD_KEYFILE)

Message: Old key file for table '%s'; repair it!

• Error: 1036 SQLSTATE: HY000 (ER_OPEN_AS_READONLY)

Message: Table '%s' is read only

• Error: 1037 SQLSTATE: HY001 (ER_OUTOFMEMORY)

Message: Out of memory; restart server and try again (needed %d bytes)

• Error: 1038 SQLSTATE: HY001 (ER_OUT_OF_SORTMEMORY)

Message: Out of sort memory; increase server sort buffer size

• Error: 1039 SQLSTATE: HY000 (ER_UNEXPECTED_EOF)

Message: Unexpected EOF found when reading file '%s' (errno: %d)

• Error: 1040 SQLSTATE: 08004 (ER_CON_COUNT_ERROR)

Message: Too many connections

• Error: 1041 SQLSTATE: HY000 (ER_OUT_OF_RESOURCES)

Message: Out of memory; check if mysqld or some other process uses all available memory; if not, you may have to use 'ulimit' to
allow mysqld to use more memory or you can add more swap space

• Error: 1042 SQLSTATE: 08S01 (ER_BAD_HOST_ERROR)

Message: Can't get hostname for your address

• Error: 1043 SQLSTATE: 08S01 (ER_HANDSHAKE_ERROR)

Errors, Error Codes, and Common Problems

1964



Message: Bad handshake

• Error: 1044 SQLSTATE: 42000 (ER_DBACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' to database '%s'

• Error: 1045 SQLSTATE: 28000 (ER_ACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' (using password: %s)

• Error: 1046 SQLSTATE: 3D000 (ER_NO_DB_ERROR)

Message: No database selected

• Error: 1047 SQLSTATE: 08S01 (ER_UNKNOWN_COM_ERROR)

Message: Unknown command

• Error: 1048 SQLSTATE: 23000 (ER_BAD_NULL_ERROR)

Message: Column '%s' cannot be null

• Error: 1049 SQLSTATE: 42000 (ER_BAD_DB_ERROR)

Message: Unknown database '%s'

• Error: 1050 SQLSTATE: 42S01 (ER_TABLE_EXISTS_ERROR)

Message: Table '%s' already exists

• Error: 1051 SQLSTATE: 42S02 (ER_BAD_TABLE_ERROR)

Message: Unknown table '%s'

• Error: 1052 SQLSTATE: 23000 (ER_NON_UNIQ_ERROR)

Message: Column '%s' in %s is ambiguous

• Error: 1053 SQLSTATE: 08S01 (ER_SERVER_SHUTDOWN)

Message: Server shutdown in progress

• Error: 1054 SQLSTATE: 42S22 (ER_BAD_FIELD_ERROR)

Message: Unknown column '%s' in '%s'

• Error: 1055 SQLSTATE: 42000 (ER_WRONG_FIELD_WITH_GROUP)

Message: '%s' isn't in GROUP BY

• Error: 1056 SQLSTATE: 42000 (ER_WRONG_GROUP_FIELD)

Message: Can't group on '%s'

• Error: 1057 SQLSTATE: 42000 (ER_WRONG_SUM_SELECT)

Message: Statement has sum functions and columns in same statement

• Error: 1058 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT)

Message: Column count doesn't match value count

• Error: 1059 SQLSTATE: 42000 (ER_TOO_LONG_IDENT)

Message: Identifier name '%s' is too long

Errors, Error Codes, and Common Problems

1965



• Error: 1060 SQLSTATE: 42S21 (ER_DUP_FIELDNAME)

Message: Duplicate column name '%s'

• Error: 1061 SQLSTATE: 42000 (ER_DUP_KEYNAME)

Message: Duplicate key name '%s'

• Error: 1062 SQLSTATE: 23000 (ER_DUP_ENTRY)

Message: Duplicate entry '%s' for key %d

• Error: 1063 SQLSTATE: 42000 (ER_WRONG_FIELD_SPEC)

Message: Incorrect column specifier for column '%s'

• Error: 1064 SQLSTATE: 42000 (ER_PARSE_ERROR)

Message: %s near '%s' at line %d

• Error: 1065 SQLSTATE: 42000 (ER_EMPTY_QUERY)

Message: Query was empty

• Error: 1066 SQLSTATE: 42000 (ER_NONUNIQ_TABLE)

Message: Not unique table/alias: '%s'

• Error: 1067 SQLSTATE: 42000 (ER_INVALID_DEFAULT)

Message: Invalid default value for '%s'

• Error: 1068 SQLSTATE: 42000 (ER_MULTIPLE_PRI_KEY)

Message: Multiple primary key defined

• Error: 1069 SQLSTATE: 42000 (ER_TOO_MANY_KEYS)

Message: Too many keys specified; max %d keys allowed

• Error: 1070 SQLSTATE: 42000 (ER_TOO_MANY_KEY_PARTS)

Message: Too many key parts specified; max %d parts allowed

• Error: 1071 SQLSTATE: 42000 (ER_TOO_LONG_KEY)

Message: Specified key was too long; max key length is %d bytes

• Error: 1072 SQLSTATE: 42000 (ER_KEY_COLUMN_DOES_NOT_EXITS)

Message: Key column '%s' doesn't exist in table

• Error: 1073 SQLSTATE: 42000 (ER_BLOB_USED_AS_KEY)

Message: BLOB column '%s' can't be used in key specification with the used table type

• Error: 1074 SQLSTATE: 42000 (ER_TOO_BIG_FIELDLENGTH)

Message: Column length too big for column '%s' (max = %d); use BLOB or TEXT instead

• Error: 1075 SQLSTATE: 42000 (ER_WRONG_AUTO_KEY)

Message: Incorrect table definition; there can be only one auto column and it must be defined as a key

• Error: 1076 SQLSTATE: HY000 (ER_READY)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d

Errors, Error Codes, and Common Problems

1966



• Error: 1077 SQLSTATE: HY000 (ER_NORMAL_SHUTDOWN)

Message: %s: Normal shutdown

• Error: 1078 SQLSTATE: HY000 (ER_GOT_SIGNAL)

Message: %s: Got signal %d. Aborting!

• Error: 1079 SQLSTATE: HY000 (ER_SHUTDOWN_COMPLETE)

Message: %s: Shutdown complete

• Error: 1080 SQLSTATE: 08S01 (ER_FORCING_CLOSE)

Message: %s: Forcing close of thread %ld user: '%s'

• Error: 1081 SQLSTATE: 08S01 (ER_IPSOCK_ERROR)

Message: Can't create IP socket

• Error: 1082 SQLSTATE: 42S12 (ER_NO_SUCH_INDEX)

Message: Table '%s' has no index like the one used in CREATE INDEX; recreate the table

• Error: 1083 SQLSTATE: 42000 (ER_WRONG_FIELD_TERMINATORS)

Message: Field separator argument is not what is expected; check the manual

• Error: 1084 SQLSTATE: 42000 (ER_BLOBS_AND_NO_TERMINATED)

Message: You can't use fixed rowlength with BLOBs; please use 'fields terminated by'

• Error: 1085 SQLSTATE: HY000 (ER_TEXTFILE_NOT_READABLE)

Message: The file '%s' must be in the database directory or be readable by all

• Error: 1086 SQLSTATE: HY000 (ER_FILE_EXISTS_ERROR)

Message: File '%s' already exists

• Error: 1087 SQLSTATE: HY000 (ER_LOAD_INFO)

Message: Records: %ld Deleted: %ld Skipped: %ld Warnings: %ld

• Error: 1088 SQLSTATE: HY000 (ER_ALTER_INFO)

Message: Records: %ld Duplicates: %ld

• Error: 1089 SQLSTATE: HY000 (ER_WRONG_SUB_KEY)

Message: Incorrect sub part key; the used key part isn't a string, the used length is longer than the key part, or the storage engine
doesn't support unique sub keys

• Error: 1090 SQLSTATE: 42000 (ER_CANT_REMOVE_ALL_FIELDS)

Message: You can't delete all columns with ALTER TABLE; use DROP TABLE instead

• Error: 1091 SQLSTATE: 42000 (ER_CANT_DROP_FIELD_OR_KEY)

Message: Can't DROP '%s'; check that column/key exists

• Error: 1092 SQLSTATE: HY000 (ER_INSERT_INFO)

Message: Records: %ld Duplicates: %ld Warnings: %ld

• Error: 1093 SQLSTATE: HY000 (ER_UPDATE_TABLE_USED)

Errors, Error Codes, and Common Problems

1967



Message: You can't specify target table '%s' for update in FROM clause

• Error: 1094 SQLSTATE: HY000 (ER_NO_SUCH_THREAD)

Message: Unknown thread id: %lu

• Error: 1095 SQLSTATE: HY000 (ER_KILL_DENIED_ERROR)

Message: You are not owner of thread %lu

• Error: 1096 SQLSTATE: HY000 (ER_NO_TABLES_USED)

Message: No tables used

• Error: 1097 SQLSTATE: HY000 (ER_TOO_BIG_SET)

Message: Too many strings for column %s and SET

• Error: 1098 SQLSTATE: HY000 (ER_NO_UNIQUE_LOGFILE)

Message: Can't generate a unique log-filename %s.(1-999)

• Error: 1099 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED_FOR_WRITE)

Message: Table '%s' was locked with a READ lock and can't be updated

• Error: 1100 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED)

Message: Table '%s' was not locked with LOCK TABLES

• Error: 1101 SQLSTATE: 42000 (ER_BLOB_CANT_HAVE_DEFAULT)

Message: BLOB/TEXT column '%s' can't have a default value

• Error: 1102 SQLSTATE: 42000 (ER_WRONG_DB_NAME)

Message: Incorrect database name '%s'

• Error: 1103 SQLSTATE: 42000 (ER_WRONG_TABLE_NAME)

Message: Incorrect table name '%s'

• Error: 1104 SQLSTATE: 42000 (ER_TOO_BIG_SELECT)

Message: The SELECT would examine more than MAX_JOIN_SIZE rows; check your WHERE and use SET
SQL_BIG_SELECTS=1 or SET SQL_MAX_JOIN_SIZE=# if the SELECT is okay

• Error: 1105 SQLSTATE: HY000 (ER_UNKNOWN_ERROR)

Message: Unknown error

• Error: 1106 SQLSTATE: 42000 (ER_UNKNOWN_PROCEDURE)

Message: Unknown procedure '%s'

• Error: 1107 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_PROCEDURE)

Message: Incorrect parameter count to procedure '%s'

• Error: 1108 SQLSTATE: HY000 (ER_WRONG_PARAMETERS_TO_PROCEDURE)

Message: Incorrect parameters to procedure '%s'

• Error: 1109 SQLSTATE: 42S02 (ER_UNKNOWN_TABLE)

Message: Unknown table '%s' in %s

Errors, Error Codes, and Common Problems

1968



• Error: 1110 SQLSTATE: 42000 (ER_FIELD_SPECIFIED_TWICE)

Message: Column '%s' specified twice

• Error: 1111 SQLSTATE: HY000 (ER_INVALID_GROUP_FUNC_USE)

Message: Invalid use of group function

• Error: 1112 SQLSTATE: 42000 (ER_UNSUPPORTED_EXTENSION)

Message: Table '%s' uses an extension that doesn't exist in this MySQL version

• Error: 1113 SQLSTATE: 42000 (ER_TABLE_MUST_HAVE_COLUMNS)

Message: A table must have at least 1 column

• Error: 1114 SQLSTATE: HY000 (ER_RECORD_FILE_FULL)

Message: The table '%s' is full

• Error: 1115 SQLSTATE: 42000 (ER_UNKNOWN_CHARACTER_SET)

Message: Unknown character set: '%s'

• Error: 1116 SQLSTATE: HY000 (ER_TOO_MANY_TABLES)

Message: Too many tables; MySQL can only use %d tables in a join

• Error: 1117 SQLSTATE: HY000 (ER_TOO_MANY_FIELDS)

Message: Too many columns

• Error: 1118 SQLSTATE: 42000 (ER_TOO_BIG_ROWSIZE)

Message: Row size too large. The maximum row size for the used table type, not counting BLOBs, is %ld. You have to change
some columns to TEXT or BLOBs

• Error: 1119 SQLSTATE: HY000 (ER_STACK_OVERRUN)

Message: Thread stack overrun: Used: %ld of a %ld stack. Use 'mysqld -O thread_stack=#' to specify a bigger stack if needed

• Error: 1120 SQLSTATE: 42000 (ER_WRONG_OUTER_JOIN)

Message: Cross dependency found in OUTER JOIN; examine your ON conditions

• Error: 1121 SQLSTATE: 42000 (ER_NULL_COLUMN_IN_INDEX)

Message: Table handler doesn't support NULL in given index. Please change column '%s' to be NOT NULL or use another handler

• Error: 1122 SQLSTATE: HY000 (ER_CANT_FIND_UDF)

Message: Can't load function '%s'

• Error: 1123 SQLSTATE: HY000 (ER_CANT_INITIALIZE_UDF)

Message: Can't initialize function '%s'; %s

• Error: 1124 SQLSTATE: HY000 (ER_UDF_NO_PATHS)

Message: No paths allowed for shared library

• Error: 1125 SQLSTATE: HY000 (ER_UDF_EXISTS)

Message: Function '%s' already exists

• Error: 1126 SQLSTATE: HY000 (ER_CANT_OPEN_LIBRARY)

Errors, Error Codes, and Common Problems

1969



Message: Can't open shared library '%s' (errno: %d %s)

• Error: 1127 SQLSTATE: HY000 (ER_CANT_FIND_DL_ENTRY)

Message: Can't find symbol '%s' in library

• Error: 1128 SQLSTATE: HY000 (ER_FUNCTION_NOT_DEFINED)

Message: Function '%s' is not defined

• Error: 1129 SQLSTATE: HY000 (ER_HOST_IS_BLOCKED)

Message: Host '%s' is blocked because of many connection errors; unblock with 'mysqladmin flush-hosts'

• Error: 1130 SQLSTATE: HY000 (ER_HOST_NOT_PRIVILEGED)

Message: Host '%s' is not allowed to connect to this MySQL server

• Error: 1131 SQLSTATE: 42000 (ER_PASSWORD_ANONYMOUS_USER)

Message: You are using MySQL as an anonymous user and anonymous users are not allowed to change passwords

• Error: 1132 SQLSTATE: 42000 (ER_PASSWORD_NOT_ALLOWED)

Message: You must have privileges to update tables in the mysql database to be able to change passwords for others

• Error: 1133 SQLSTATE: 42000 (ER_PASSWORD_NO_MATCH)

Message: Can't find any matching row in the user table

• Error: 1134 SQLSTATE: HY000 (ER_UPDATE_INFO)

Message: Rows matched: %ld Changed: %ld Warnings: %ld

• Error: 1135 SQLSTATE: HY000 (ER_CANT_CREATE_THREAD)

Message: Can't create a new thread (errno %d); if you are not out of available memory, you can consult the manual for a possible
OS-dependent bug

• Error: 1136 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT_ON_ROW)

Message: Column count doesn't match value count at row %ld

• Error: 1137 SQLSTATE: HY000 (ER_CANT_REOPEN_TABLE)

Message: Can't reopen table: '%s'

• Error: 1138 SQLSTATE: 22004 (ER_INVALID_USE_OF_NULL)

Message: Invalid use of NULL value

• Error: 1139 SQLSTATE: 42000 (ER_REGEXP_ERROR)

Message: Got error '%s' from regexp

• Error: 1140 SQLSTATE: 42000 (ER_MIX_OF_GROUP_FUNC_AND_FIELDS)

Message: Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) with no GROUP columns is illegal if there is no GROUP BY
clause

• Error: 1141 SQLSTATE: 42000 (ER_NONEXISTING_GRANT)

Message: There is no such grant defined for user '%s' on host '%s'

• Error: 1142 SQLSTATE: 42000 (ER_TABLEACCESS_DENIED_ERROR)

Errors, Error Codes, and Common Problems

1970



Message: %s command denied to user '%s'@'%s' for table '%s'

• Error: 1143 SQLSTATE: 42000 (ER_COLUMNACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for column '%s' in table '%s'

• Error: 1144 SQLSTATE: 42000 (ER_ILLEGAL_GRANT_FOR_TABLE)

Message: Illegal GRANT/REVOKE command; please consult the manual to see which privileges can be used

• Error: 1145 SQLSTATE: 42000 (ER_GRANT_WRONG_HOST_OR_USER)

Message: The host or user argument to GRANT is too long

• Error: 1146 SQLSTATE: 42S02 (ER_NO_SUCH_TABLE)

Message: Table '%s.%s' doesn't exist

• Error: 1147 SQLSTATE: 42000 (ER_NONEXISTING_TABLE_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on table '%s'

• Error: 1148 SQLSTATE: 42000 (ER_NOT_ALLOWED_COMMAND)

Message: The used command is not allowed with this MySQL version

• Error: 1149 SQLSTATE: 42000 (ER_SYNTAX_ERROR)

Message: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right
syntax to use

• Error: 1150 SQLSTATE: HY000 (ER_DELAYED_CANT_CHANGE_LOCK)

Message: Delayed insert thread couldn't get requested lock for table %s

• Error: 1151 SQLSTATE: HY000 (ER_TOO_MANY_DELAYED_THREADS)

Message: Too many delayed threads in use

• Error: 1152 SQLSTATE: 08S01 (ER_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' (%s)

• Error: 1153 SQLSTATE: 08S01 (ER_NET_PACKET_TOO_LARGE)

Message: Got a packet bigger than 'max_allowed_packet' bytes

• Error: 1154 SQLSTATE: 08S01 (ER_NET_READ_ERROR_FROM_PIPE)

Message: Got a read error from the connection pipe

• Error: 1155 SQLSTATE: 08S01 (ER_NET_FCNTL_ERROR)

Message: Got an error from fcntl()

• Error: 1156 SQLSTATE: 08S01 (ER_NET_PACKETS_OUT_OF_ORDER)

Message: Got packets out of order

• Error: 1157 SQLSTATE: 08S01 (ER_NET_UNCOMPRESS_ERROR)

Message: Couldn't uncompress communication packet

• Error: 1158 SQLSTATE: 08S01 (ER_NET_READ_ERROR)

Message: Got an error reading communication packets

Errors, Error Codes, and Common Problems

1971



• Error: 1159 SQLSTATE: 08S01 (ER_NET_READ_INTERRUPTED)

Message: Got timeout reading communication packets

• Error: 1160 SQLSTATE: 08S01 (ER_NET_ERROR_ON_WRITE)

Message: Got an error writing communication packets

• Error: 1161 SQLSTATE: 08S01 (ER_NET_WRITE_INTERRUPTED)

Message: Got timeout writing communication packets

• Error: 1162 SQLSTATE: 42000 (ER_TOO_LONG_STRING)

Message: Result string is longer than 'max_allowed_packet' bytes

• Error: 1163 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_BLOB)

Message: The used table type doesn't support BLOB/TEXT columns

• Error: 1164 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_AUTO_INCREMENT)

Message: The used table type doesn't support AUTO_INCREMENT columns

• Error: 1165 SQLSTATE: HY000 (ER_DELAYED_INSERT_TABLE_LOCKED)

Message: INSERT DELAYED can't be used with table '%s' because it is locked with LOCK TABLES

• Error: 1166 SQLSTATE: 42000 (ER_WRONG_COLUMN_NAME)

Message: Incorrect column name '%s'

• Error: 1167 SQLSTATE: 42000 (ER_WRONG_KEY_COLUMN)

Message: The used storage engine can't index column '%s'

• Error: 1168 SQLSTATE: HY000 (ER_WRONG_MRG_TABLE)

Message: Unable to open underlying table which is differently defined or of non-MyISAM type or doesn't exist

• Error: 1169 SQLSTATE: 23000 (ER_DUP_UNIQUE)

Message: Can't write, because of unique constraint, to table '%s'

• Error: 1170 SQLSTATE: 42000 (ER_BLOB_KEY_WITHOUT_LENGTH)

Message: BLOB/TEXT column '%s' used in key specification without a key length

• Error: 1171 SQLSTATE: 42000 (ER_PRIMARY_CANT_HAVE_NULL)

Message: All parts of a PRIMARY KEY must be NOT NULL; if you need NULL in a key, use UNIQUE instead

• Error: 1172 SQLSTATE: 42000 (ER_TOO_MANY_ROWS)

Message: Result consisted of more than one row

• Error: 1173 SQLSTATE: 42000 (ER_REQUIRES_PRIMARY_KEY)

Message: This table type requires a primary key

• Error: 1174 SQLSTATE: HY000 (ER_NO_RAID_COMPILED)

Message: This version of MySQL is not compiled with RAID support

• Error: 1175 SQLSTATE: HY000 (ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE)

Message: You are using safe update mode and you tried to update a table without a WHERE that uses a KEY column

Errors, Error Codes, and Common Problems

1972



• Error: 1176 SQLSTATE: 42000 (ER_KEY_DOES_NOT_EXITS)

Message: Key '%s' doesn't exist in table '%s'

• Error: 1177 SQLSTATE: 42000 (ER_CHECK_NO_SUCH_TABLE)

Message: Can't open table

• Error: 1178 SQLSTATE: 42000 (ER_CHECK_NOT_IMPLEMENTED)

Message: The storage engine for the table doesn't support %s

• Error: 1179 SQLSTATE: 25000 (ER_CANT_DO_THIS_DURING_AN_TRANSACTION)

Message: You are not allowed to execute this command in a transaction

• Error: 1180 SQLSTATE: HY000 (ER_ERROR_DURING_COMMIT)

Message: Got error %d during COMMIT

• Error: 1181 SQLSTATE: HY000 (ER_ERROR_DURING_ROLLBACK)

Message: Got error %d during ROLLBACK

• Error: 1182 SQLSTATE: HY000 (ER_ERROR_DURING_FLUSH_LOGS)

Message: Got error %d during FLUSH_LOGS

• Error: 1183 SQLSTATE: HY000 (ER_ERROR_DURING_CHECKPOINT)

Message: Got error %d during CHECKPOINT

• Error: 1184 SQLSTATE: 08S01 (ER_NEW_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' host: '%s' (%s)

• Error: 1185 SQLSTATE: HY000 (ER_DUMP_NOT_IMPLEMENTED)

Message: The storage engine for the table does not support binary table dump

• Error: 1186 SQLSTATE: HY000 (ER_FLUSH_MASTER_BINLOG_CLOSED)

Message: Binlog closed, cannot RESET MASTER

• Error: 1187 SQLSTATE: HY000 (ER_INDEX_REBUILD)

Message: Failed rebuilding the index of dumped table '%s'

• Error: 1188 SQLSTATE: HY000 (ER_MASTER)

Message: Error from master: '%s'

• Error: 1189 SQLSTATE: 08S01 (ER_MASTER_NET_READ)

Message: Net error reading from master

• Error: 1190 SQLSTATE: 08S01 (ER_MASTER_NET_WRITE)

Message: Net error writing to master

• Error: 1191 SQLSTATE: HY000 (ER_FT_MATCHING_KEY_NOT_FOUND)

Message: Can't find FULLTEXT index matching the column list

• Error: 1192 SQLSTATE: HY000 (ER_LOCK_OR_ACTIVE_TRANSACTION)

Message: Can't execute the given command because you have active locked tables or an active transaction

Errors, Error Codes, and Common Problems

1973



• Error: 1193 SQLSTATE: HY000 (ER_UNKNOWN_SYSTEM_VARIABLE)

Message: Unknown system variable '%s'

• Error: 1194 SQLSTATE: HY000 (ER_CRASHED_ON_USAGE)

Message: Table '%s' is marked as crashed and should be repaired

• Error: 1195 SQLSTATE: HY000 (ER_CRASHED_ON_REPAIR)

Message: Table '%s' is marked as crashed and last (automatic?) repair failed

• Error: 1196 SQLSTATE: HY000 (ER_WARNING_NOT_COMPLETE_ROLLBACK)

Message: Some non-transactional changed tables couldn't be rolled back

• Error: 1197 SQLSTATE: HY000 (ER_TRANS_CACHE_FULL)

Message: Multi-statement transaction required more than 'max_binlog_cache_size' bytes of storage; increase this mysqld variable
and try again

• Error: 1198 SQLSTATE: HY000 (ER_SLAVE_MUST_STOP)

Message: This operation cannot be performed with a running slave; run STOP SLAVE first

• Error: 1199 SQLSTATE: HY000 (ER_SLAVE_NOT_RUNNING)

Message: This operation requires a running slave; configure slave and do START SLAVE

• Error: 1200 SQLSTATE: HY000 (ER_BAD_SLAVE)

Message: The server is not configured as slave; fix in config file or with CHANGE MASTER TO

• Error: 1201 SQLSTATE: HY000 (ER_MASTER_INFO)

Message: Could not initialize master info structure; more error messages can be found in the MySQL error log

• Error: 1202 SQLSTATE: HY000 (ER_SLAVE_THREAD)

Message: Could not create slave thread; check system resources

• Error: 1203 SQLSTATE: 42000 (ER_TOO_MANY_USER_CONNECTIONS)

Message: User %s already has more than 'max_user_connections' active connections

• Error: 1204 SQLSTATE: HY000 (ER_SET_CONSTANTS_ONLY)

Message: You may only use constant expressions with SET

• Error: 1205 SQLSTATE: HY000 (ER_LOCK_WAIT_TIMEOUT)

Message: Lock wait timeout exceeded; try restarting transaction

• Error: 1206 SQLSTATE: HY000 (ER_LOCK_TABLE_FULL)

Message: The total number of locks exceeds the lock table size

• Error: 1207 SQLSTATE: 25000 (ER_READ_ONLY_TRANSACTION)

Message: Update locks cannot be acquired during a READ UNCOMMITTED transaction

• Error: 1208 SQLSTATE: HY000 (ER_DROP_DB_WITH_READ_LOCK)

Message: DROP DATABASE not allowed while thread is holding global read lock

• Error: 1209 SQLSTATE: HY000 (ER_CREATE_DB_WITH_READ_LOCK)

Errors, Error Codes, and Common Problems

1974



Message: CREATE DATABASE not allowed while thread is holding global read lock

• Error: 1210 SQLSTATE: HY000 (ER_WRONG_ARGUMENTS)

Message: Incorrect arguments to %s

• Error: 1211 SQLSTATE: 42000 (ER_NO_PERMISSION_TO_CREATE_USER)

Message: '%s'@'%s' is not allowed to create new users

• Error: 1212 SQLSTATE: HY000 (ER_UNION_TABLES_IN_DIFFERENT_DIR)

Message: Incorrect table definition; all MERGE tables must be in the same database

• Error: 1213 SQLSTATE: 40001 (ER_LOCK_DEADLOCK)

Message: Deadlock found when trying to get lock; try restarting transaction

• Error: 1214 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_FT)

Message: The used table type doesn't support FULLTEXT indexes

• Error: 1215 SQLSTATE: HY000 (ER_CANNOT_ADD_FOREIGN)

Message: Cannot add foreign key constraint

• Error: 1216 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW)

Message: Cannot add or update a child row: a foreign key constraint fails

• Error: 1217 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED)

Message: Cannot delete or update a parent row: a foreign key constraint fails

• Error: 1218 SQLSTATE: 08S01 (ER_CONNECT_TO_MASTER)

Message: Error connecting to master: %s

• Error: 1219 SQLSTATE: HY000 (ER_QUERY_ON_MASTER)

Message: Error running query on master: %s

• Error: 1220 SQLSTATE: HY000 (ER_ERROR_WHEN_EXECUTING_COMMAND)

Message: Error when executing command %s: %s

• Error: 1221 SQLSTATE: HY000 (ER_WRONG_USAGE)

Message: Incorrect usage of %s and %s

• Error: 1222 SQLSTATE: 21000 (ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT)

Message: The used SELECT statements have a different number of columns

• Error: 1223 SQLSTATE: HY000 (ER_CANT_UPDATE_WITH_READLOCK)

Message: Can't execute the query because you have a conflicting read lock

• Error: 1224 SQLSTATE: HY000 (ER_MIXING_NOT_ALLOWED)

Message: Mixing of transactional and non-transactional tables is disabled

• Error: 1225 SQLSTATE: HY000 (ER_DUP_ARGUMENT)

Message: Option '%s' used twice in statement

Errors, Error Codes, and Common Problems

1975



• Error: 1226 SQLSTATE: 42000 (ER_USER_LIMIT_REACHED)

Message: User '%s' has exceeded the '%s' resource (current value: %ld)

• Error: 1227 SQLSTATE: 42000 (ER_SPECIFIC_ACCESS_DENIED_ERROR)

Message: Access denied; you need the %s privilege for this operation

• Error: 1228 SQLSTATE: HY000 (ER_LOCAL_VARIABLE)

Message: Variable '%s' is a SESSION variable and can't be used with SET GLOBAL

• Error: 1229 SQLSTATE: HY000 (ER_GLOBAL_VARIABLE)

Message: Variable '%s' is a GLOBAL variable and should be set with SET GLOBAL

• Error: 1230 SQLSTATE: 42000 (ER_NO_DEFAULT)

Message: Variable '%s' doesn't have a default value

• Error: 1231 SQLSTATE: 42000 (ER_WRONG_VALUE_FOR_VAR)

Message: Variable '%s' can't be set to the value of '%s'

• Error: 1232 SQLSTATE: 42000 (ER_WRONG_TYPE_FOR_VAR)

Message: Incorrect argument type to variable '%s'

• Error: 1233 SQLSTATE: HY000 (ER_VAR_CANT_BE_READ)

Message: Variable '%s' can only be set, not read

• Error: 1234 SQLSTATE: 42000 (ER_CANT_USE_OPTION_HERE)

Message: Incorrect usage/placement of '%s'

• Error: 1235 SQLSTATE: 42000 (ER_NOT_SUPPORTED_YET)

Message: This version of MySQL doesn't yet support '%s'

• Error: 1236 SQLSTATE: HY000 (ER_MASTER_FATAL_ERROR_READING_BINLOG)

Message: Got fatal error %d: '%s' from master when reading data from binary log

• Error: 1237 SQLSTATE: HY000 (ER_SLAVE_IGNORED_TABLE)

Message: Slave SQL thread ignored the query because of replicate-*-table rules

• Error: 1238 SQLSTATE: HY000 (ER_INCORRECT_GLOBAL_LOCAL_VAR)

Message: Variable '%s' is a %s variable

• Error: 1239 SQLSTATE: 42000 (ER_WRONG_FK_DEF)

Message: Incorrect foreign key definition for '%s': %s

• Error: 1240 SQLSTATE: HY000 (ER_KEY_REF_DO_NOT_MATCH_TABLE_REF)

Message: Key reference and table reference don't match

• Error: 1241 SQLSTATE: 21000 (ER_OPERAND_COLUMNS)

Message: Operand should contain %d column(s)

• Error: 1242 SQLSTATE: 21000 (ER_SUBQUERY_NO_1_ROW)

Message: Subquery returns more than 1 row

Errors, Error Codes, and Common Problems

1976



• Error: 1243 SQLSTATE: HY000 (ER_UNKNOWN_STMT_HANDLER)

Message: Unknown prepared statement handler (%.*s) given to %s

• Error: 1244 SQLSTATE: HY000 (ER_CORRUPT_HELP_DB)

Message: Help database is corrupt or does not exist

• Error: 1245 SQLSTATE: HY000 (ER_CYCLIC_REFERENCE)

Message: Cyclic reference on subqueries

• Error: 1246 SQLSTATE: HY000 (ER_AUTO_CONVERT)

Message: Converting column '%s' from %s to %s

• Error: 1247 SQLSTATE: 42S22 (ER_ILLEGAL_REFERENCE)

Message: Reference '%s' not supported (%s)

• Error: 1248 SQLSTATE: 42000 (ER_DERIVED_MUST_HAVE_ALIAS)

Message: Every derived table must have its own alias

• Error: 1249 SQLSTATE: 01000 (ER_SELECT_REDUCED)

Message: Select %u was reduced during optimization

• Error: 1250 SQLSTATE: 42000 (ER_TABLENAME_NOT_ALLOWED_HERE)

Message: Table '%s' from one of the SELECTs cannot be used in %s

• Error: 1251 SQLSTATE: 08004 (ER_NOT_SUPPORTED_AUTH_MODE)

Message: Client does not support authentication protocol requested by server; consider upgrading MySQL client

• Error: 1252 SQLSTATE: 42000 (ER_SPATIAL_CANT_HAVE_NULL)

Message: All parts of a SPATIAL index must be NOT NULL

• Error: 1253 SQLSTATE: 42000 (ER_COLLATION_CHARSET_MISMATCH)

Message: COLLATION '%s' is not valid for CHARACTER SET '%s'

• Error: 1254 SQLSTATE: HY000 (ER_SLAVE_WAS_RUNNING)

Message: Slave is already running

• Error: 1255 SQLSTATE: HY000 (ER_SLAVE_WAS_NOT_RUNNING)

Message: Slave already has been stopped

• Error: 1256 SQLSTATE: HY000 (ER_TOO_BIG_FOR_UNCOMPRESS)

Message: Uncompressed data size too large; the maximum size is %d (probably, length of uncompressed data was corrupted)

• Error: 1257 SQLSTATE: HY000 (ER_ZLIB_Z_MEM_ERROR)

Message: ZLIB: Not enough memory

• Error: 1258 SQLSTATE: HY000 (ER_ZLIB_Z_BUF_ERROR)

Message: ZLIB: Not enough room in the output buffer (probably, length of uncompressed data was corrupted)

• Error: 1259 SQLSTATE: HY000 (ER_ZLIB_Z_DATA_ERROR)

Message: ZLIB: Input data corrupted

Errors, Error Codes, and Common Problems

1977



• Error: 1260 SQLSTATE: HY000 (ER_CUT_VALUE_GROUP_CONCAT)

Message: %d line(s) were cut by GROUP_CONCAT()

• Error: 1261 SQLSTATE: 01000 (ER_WARN_TOO_FEW_RECORDS)

Message: Row %ld doesn't contain data for all columns

• Error: 1262 SQLSTATE: 01000 (ER_WARN_TOO_MANY_RECORDS)

Message: Row %ld was truncated; it contained more data than there were input columns

• Error: 1263 SQLSTATE: 22004 (ER_WARN_NULL_TO_NOTNULL)

Message: Column set to default value; NULL supplied to NOT NULL column '%s' at row %ld

• Error: 1264 SQLSTATE: 22003 (ER_WARN_DATA_OUT_OF_RANGE)

Message: Out of range value for column '%s' at row %ld

• Error: 1265 SQLSTATE: 01000 (WARN_DATA_TRUNCATED)

Message: Data truncated for column '%s' at row %ld

• Error: 1266 SQLSTATE: HY000 (ER_WARN_USING_OTHER_HANDLER)

Message: Using storage engine %s for table '%s'

• Error: 1267 SQLSTATE: HY000 (ER_CANT_AGGREGATE_2COLLATIONS)

Message: Illegal mix of collations (%s,%s) and (%s,%s) for operation '%s'

• Error: 1268 SQLSTATE: HY000 (ER_DROP_USER)

Message: Cannot drop one or more of the requested users

• Error: 1269 SQLSTATE: HY000 (ER_REVOKE_GRANTS)

Message: Can't revoke all privileges for one or more of the requested users

• Error: 1270 SQLSTATE: HY000 (ER_CANT_AGGREGATE_3COLLATIONS)

Message: Illegal mix of collations (%s,%s), (%s,%s), (%s,%s) for operation '%s'

• Error: 1271 SQLSTATE: HY000 (ER_CANT_AGGREGATE_NCOLLATIONS)

Message: Illegal mix of collations for operation '%s'

• Error: 1272 SQLSTATE: HY000 (ER_VARIABLE_IS_NOT_STRUCT)

Message: Variable '%s' is not a variable component (can't be used as XXXX.variable_name)

• Error: 1273 SQLSTATE: HY000 (ER_UNKNOWN_COLLATION)

Message: Unknown collation: '%s'

• Error: 1274 SQLSTATE: HY000 (ER_SLAVE_IGNORED_SSL_PARAMS)

Message: SSL parameters in CHANGE MASTER are ignored because this MySQL slave was compiled without SSL support; they
can be used later if MySQL slave with SSL is started

• Error: 1275 SQLSTATE: HY000 (ER_SERVER_IS_IN_SECURE_AUTH_MODE)

Message: Server is running in --secure-auth mode, but '%s'@'%s' has a password in the old format; please change the password to
the new format

• Error: 1276 SQLSTATE: HY000 (ER_WARN_FIELD_RESOLVED)

Errors, Error Codes, and Common Problems

1978



Message: Field or reference '%s%s%s%s%s' of SELECT #%d was resolved in SELECT #%d

• Error: 1277 SQLSTATE: HY000 (ER_BAD_SLAVE_UNTIL_COND)

Message: Incorrect parameter or combination of parameters for START SLAVE UNTIL

• Error: 1278 SQLSTATE: HY000 (ER_MISSING_SKIP_SLAVE)

Message: It is recommended to use --skip-slave-start when doing step-by-step replication with START SLAVE UNTIL; otherwise,
you will get problems if you get an unexpected slave's mysqld restart

• Error: 1279 SQLSTATE: HY000 (ER_UNTIL_COND_IGNORED)

Message: SQL thread is not to be started so UNTIL options are ignored

• Error: 1280 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_INDEX)

Message: Incorrect index name '%s'

• Error: 1281 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_CATALOG)

Message: Incorrect catalog name '%s'

• Error: 1282 SQLSTATE: HY000 (ER_WARN_QC_RESIZE)

Message: Query cache failed to set size %lu; new query cache size is %lu

• Error: 1283 SQLSTATE: HY000 (ER_BAD_FT_COLUMN)

Message: Column '%s' cannot be part of FULLTEXT index

• Error: 1284 SQLSTATE: HY000 (ER_UNKNOWN_KEY_CACHE)

Message: Unknown key cache '%s'

• Error: 1285 SQLSTATE: HY000 (ER_WARN_HOSTNAME_WONT_WORK)

Message: MySQL is started in --skip-name-resolve mode; you must restart it without this switch for this grant to work

• Error: 1286 SQLSTATE: 42000 (ER_UNKNOWN_STORAGE_ENGINE)

Message: Unknown table engine '%s'

• Error: 1287 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX)

Message: '%s' is deprecated; use '%s' instead

• Error: 1288 SQLSTATE: HY000 (ER_NON_UPDATABLE_TABLE)

Message: The target table %s of the %s is not updatable

• Error: 1289 SQLSTATE: HY000 (ER_FEATURE_DISABLED)

Message: The '%s' feature is disabled; you need MySQL built with '%s' to have it working

• Error: 1290 SQLSTATE: HY000 (ER_OPTION_PREVENTS_STATEMENT)

Message: The MySQL server is running with the %s option so it cannot execute this statement

• Error: 1291 SQLSTATE: HY000 (ER_DUPLICATED_VALUE_IN_TYPE)

Message: Column '%s' has duplicated value '%s' in %s

• Error: 1292 SQLSTATE: 22007 (ER_TRUNCATED_WRONG_VALUE)

Message: Truncated incorrect %s value: '%s'

Errors, Error Codes, and Common Problems

1979



• Error: 1293 SQLSTATE: HY000 (ER_TOO_MUCH_AUTO_TIMESTAMP_COLS)

Message: Incorrect table definition; there can be only one TIMESTAMP column with CURRENT_TIMESTAMP in DEFAULT or
ON UPDATE clause

• Error: 1294 SQLSTATE: HY000 (ER_INVALID_ON_UPDATE)

Message: Invalid ON UPDATE clause for '%s' column

• Error: 1295 SQLSTATE: HY000 (ER_UNSUPPORTED_PS)

Message: This command is not supported in the prepared statement protocol yet

• Error: 1296 SQLSTATE: HY000 (ER_GET_ERRMSG)

Message: Got error %d '%s' from %s

• Error: 1297 SQLSTATE: HY000 (ER_GET_TEMPORARY_ERRMSG)

Message: Got temporary error %d '%s' from %s

• Error: 1298 SQLSTATE: HY000 (ER_UNKNOWN_TIME_ZONE)

Message: Unknown or incorrect time zone: '%s'

• Error: 1299 SQLSTATE: HY000 (ER_WARN_INVALID_TIMESTAMP)

Message: Invalid TIMESTAMP value in column '%s' at row %ld

• Error: 1300 SQLSTATE: HY000 (ER_INVALID_CHARACTER_STRING)

Message: Invalid %s character string: '%s'

• Error: 1301 SQLSTATE: HY000 (ER_WARN_ALLOWED_PACKET_OVERFLOWED)

Message: Result of %s() was larger than max_allowed_packet (%ld) - truncated

• Error: 1302 SQLSTATE: HY000 (ER_CONFLICTING_DECLARATIONS)

Message: Conflicting declarations: '%s%s' and '%s%s'

• Error: 1303 SQLSTATE: 2F003 (ER_SP_NO_RECURSIVE_CREATE)

Message: Can't create a %s from within another stored routine

• Error: 1304 SQLSTATE: 42000 (ER_SP_ALREADY_EXISTS)

Message: %s %s already exists

• Error: 1305 SQLSTATE: 42000 (ER_SP_DOES_NOT_EXIST)

Message: %s %s does not exist

• Error: 1306 SQLSTATE: HY000 (ER_SP_DROP_FAILED)

Message: Failed to DROP %s %s

• Error: 1307 SQLSTATE: HY000 (ER_SP_STORE_FAILED)

Message: Failed to CREATE %s %s

• Error: 1308 SQLSTATE: 42000 (ER_SP_LILABEL_MISMATCH)

Message: %s with no matching label: %s

• Error: 1309 SQLSTATE: 42000 (ER_SP_LABEL_REDEFINE)

Errors, Error Codes, and Common Problems

1980



Message: Redefining label %s

• Error: 1310 SQLSTATE: 42000 (ER_SP_LABEL_MISMATCH)

Message: End-label %s without match

• Error: 1311 SQLSTATE: 01000 (ER_SP_UNINIT_VAR)

Message: Referring to uninitialized variable %s

• Error: 1312 SQLSTATE: 0A000 (ER_SP_BADSELECT)

Message: PROCEDURE %s can't return a result set in the given context

• Error: 1313 SQLSTATE: 42000 (ER_SP_BADRETURN)

Message: RETURN is only allowed in a FUNCTION

• Error: 1314 SQLSTATE: 0A000 (ER_SP_BADSTATEMENT)

Message: %s is not allowed in stored procedures

• Error: 1315 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_IGNORED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE has been ignored

• Error: 1316 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_TRANSLATED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE has been translated to SET
SQL_LOG_BIN

• Error: 1317 SQLSTATE: 70100 (ER_QUERY_INTERRUPTED)

Message: Query execution was interrupted

• Error: 1318 SQLSTATE: 42000 (ER_SP_WRONG_NO_OF_ARGS)

Message: Incorrect number of arguments for %s %s; expected %u, got %u

• Error: 1319 SQLSTATE: 42000 (ER_SP_COND_MISMATCH)

Message: Undefined CONDITION: %s

• Error: 1320 SQLSTATE: 42000 (ER_SP_NORETURN)

Message: No RETURN found in FUNCTION %s

• Error: 1321 SQLSTATE: 2F005 (ER_SP_NORETURNEND)

Message: FUNCTION %s ended without RETURN

• Error: 1322 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_QUERY)

Message: Cursor statement must be a SELECT

• Error: 1323 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_SELECT)

Message: Cursor SELECT must not have INTO

• Error: 1324 SQLSTATE: 42000 (ER_SP_CURSOR_MISMATCH)

Message: Undefined CURSOR: %s

• Error: 1325 SQLSTATE: 24000 (ER_SP_CURSOR_ALREADY_OPEN)

Message: Cursor is already open

Errors, Error Codes, and Common Problems

1981



• Error: 1326 SQLSTATE: 24000 (ER_SP_CURSOR_NOT_OPEN)

Message: Cursor is not open

• Error: 1327 SQLSTATE: 42000 (ER_SP_UNDECLARED_VAR)

Message: Undeclared variable: %s

• Error: 1328 SQLSTATE: HY000 (ER_SP_WRONG_NO_OF_FETCH_ARGS)

Message: Incorrect number of FETCH variables

• Error: 1329 SQLSTATE: 02000 (ER_SP_FETCH_NO_DATA)

Message: No data - zero rows fetched, selected, or processed

• Error: 1330 SQLSTATE: 42000 (ER_SP_DUP_PARAM)

Message: Duplicate parameter: %s

• Error: 1331 SQLSTATE: 42000 (ER_SP_DUP_VAR)

Message: Duplicate variable: %s

• Error: 1332 SQLSTATE: 42000 (ER_SP_DUP_COND)

Message: Duplicate condition: %s

• Error: 1333 SQLSTATE: 42000 (ER_SP_DUP_CURS)

Message: Duplicate cursor: %s

• Error: 1334 SQLSTATE: HY000 (ER_SP_CANT_ALTER)

Message: Failed to ALTER %s %s

• Error: 1335 SQLSTATE: 0A000 (ER_SP_SUBSELECT_NYI)

Message: Subquery value not supported

• Error: 1336 SQLSTATE: 0A000 (ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: %s is not allowed in stored function or trigger

• Error: 1337 SQLSTATE: 42000 (ER_SP_VARCOND_AFTER_CURSHNDLR)

Message: Variable or condition declaration after cursor or handler declaration

• Error: 1338 SQLSTATE: 42000 (ER_SP_CURSOR_AFTER_HANDLER)

Message: Cursor declaration after handler declaration

• Error: 1339 SQLSTATE: 20000 (ER_SP_CASE_NOT_FOUND)

Message: Case not found for CASE statement

• Error: 1340 SQLSTATE: HY000 (ER_FPARSER_TOO_BIG_FILE)

Message: Configuration file '%s' is too big

• Error: 1341 SQLSTATE: HY000 (ER_FPARSER_BAD_HEADER)

Message: Malformed file type header in file '%s'

• Error: 1342 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_COMMENT)

Message: Unexpected end of file while parsing comment '%s'

Errors, Error Codes, and Common Problems

1982



• Error: 1343 SQLSTATE: HY000 (ER_FPARSER_ERROR_IN_PARAMETER)

Message: Error while parsing parameter '%s' (line: '%s')

• Error: 1344 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER)

Message: Unexpected end of file while skipping unknown parameter '%s'

• Error: 1345 SQLSTATE: HY000 (ER_VIEW_NO_EXPLAIN)

Message: EXPLAIN/SHOW can not be issued; lacking privileges for underlying table

• Error: 1346 SQLSTATE: HY000 (ER_FRM_UNKNOWN_TYPE)

Message: File '%s' has unknown type '%s' in its header

• Error: 1347 SQLSTATE: HY000 (ER_WRONG_OBJECT)

Message: '%s.%s' is not %s

• Error: 1348 SQLSTATE: HY000 (ER_NONUPDATEABLE_COLUMN)

Message: Column '%s' is not updatable

• Error: 1349 SQLSTATE: HY000 (ER_VIEW_SELECT_DERIVED)

Message: View's SELECT contains a subquery in the FROM clause

• Error: 1350 SQLSTATE: HY000 (ER_VIEW_SELECT_CLAUSE)

Message: View's SELECT contains a '%s' clause

• Error: 1351 SQLSTATE: HY000 (ER_VIEW_SELECT_VARIABLE)

Message: View's SELECT contains a variable or parameter

• Error: 1352 SQLSTATE: HY000 (ER_VIEW_SELECT_TMPTABLE)

Message: View's SELECT refers to a temporary table '%s'

• Error: 1353 SQLSTATE: HY000 (ER_VIEW_WRONG_LIST)

Message: View's SELECT and view's field list have different column counts

• Error: 1354 SQLSTATE: HY000 (ER_WARN_VIEW_MERGE)

Message: View merge algorithm can't be used here for now (assumed undefined algorithm)

• Error: 1355 SQLSTATE: HY000 (ER_WARN_VIEW_WITHOUT_KEY)

Message: View being updated does not have complete key of underlying table in it

• Error: 1356 SQLSTATE: HY000 (ER_VIEW_INVALID)

Message: View '%s.%s' references invalid table(s) or column(s) or function(s) or definer/invoker of view lack rights to use them

• Error: 1357 SQLSTATE: HY000 (ER_SP_NO_DROP_SP)

Message: Can't drop or alter a %s from within another stored routine

• Error: 1358 SQLSTATE: HY000 (ER_SP_GOTO_IN_HNDLR)

Message: GOTO is not allowed in a stored procedure handler

• Error: 1359 SQLSTATE: HY000 (ER_TRG_ALREADY_EXISTS)

Message: Trigger already exists

Errors, Error Codes, and Common Problems

1983



• Error: 1360 SQLSTATE: HY000 (ER_TRG_DOES_NOT_EXIST)

Message: Trigger does not exist

• Error: 1361 SQLSTATE: HY000 (ER_TRG_ON_VIEW_OR_TEMP_TABLE)

Message: Trigger's '%s' is view or temporary table

• Error: 1362 SQLSTATE: HY000 (ER_TRG_CANT_CHANGE_ROW)

Message: Updating of %s row is not allowed in %strigger

• Error: 1363 SQLSTATE: HY000 (ER_TRG_NO_SUCH_ROW_IN_TRG)

Message: There is no %s row in %s trigger

• Error: 1364 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_FIELD)

Message: Field '%s' doesn't have a default value

• Error: 1365 SQLSTATE: 22012 (ER_DIVISION_BY_ZERO)

Message: Division by 0

• Error: 1366 SQLSTATE: HY000 (ER_TRUNCATED_WRONG_VALUE_FOR_FIELD)

Message: Incorrect %s value: '%s' for column '%s' at row %ld

• Error: 1367 SQLSTATE: 22007 (ER_ILLEGAL_VALUE_FOR_TYPE)

Message: Illegal %s '%s' value found during parsing

• Error: 1368 SQLSTATE: HY000 (ER_VIEW_NONUPD_CHECK)

Message: CHECK OPTION on non-updatable view '%s.%s'

• Error: 1369 SQLSTATE: HY000 (ER_VIEW_CHECK_FAILED)

Message: CHECK OPTION failed '%s.%s'

• Error: 1370 SQLSTATE: 42000 (ER_PROCACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for routine '%s'

• Error: 1371 SQLSTATE: HY000 (ER_RELAY_LOG_FAIL)

Message: Failed purging old relay logs: %s

• Error: 1372 SQLSTATE: HY000 (ER_PASSWD_LENGTH)

Message: Password hash should be a %d-digit hexadecimal number

• Error: 1373 SQLSTATE: HY000 (ER_UNKNOWN_TARGET_BINLOG)

Message: Target log not found in binlog index

• Error: 1374 SQLSTATE: HY000 (ER_IO_ERR_LOG_INDEX_READ)

Message: I/O error reading log index file

• Error: 1375 SQLSTATE: HY000 (ER_BINLOG_PURGE_PROHIBITED)

Message: Server configuration does not permit binlog purge

• Error: 1376 SQLSTATE: HY000 (ER_FSEEK_FAIL)

Message: Failed on fseek()

Errors, Error Codes, and Common Problems

1984



• Error: 1377 SQLSTATE: HY000 (ER_BINLOG_PURGE_FATAL_ERR)

Message: Fatal error during log purge

• Error: 1378 SQLSTATE: HY000 (ER_LOG_IN_USE)

Message: A purgeable log is in use, will not purge

• Error: 1379 SQLSTATE: HY000 (ER_LOG_PURGE_UNKNOWN_ERR)

Message: Unknown error during log purge

• Error: 1380 SQLSTATE: HY000 (ER_RELAY_LOG_INIT)

Message: Failed initializing relay log position: %s

• Error: 1381 SQLSTATE: HY000 (ER_NO_BINARY_LOGGING)

Message: You are not using binary logging

• Error: 1382 SQLSTATE: HY000 (ER_RESERVED_SYNTAX)

Message: The '%s' syntax is reserved for purposes internal to the MySQL server

• Error: 1383 SQLSTATE: HY000 (ER_WSAS_FAILED)

Message: WSAStartup Failed

• Error: 1384 SQLSTATE: HY000 (ER_DIFF_GROUPS_PROC)

Message: Can't handle procedures with different groups yet

• Error: 1385 SQLSTATE: HY000 (ER_NO_GROUP_FOR_PROC)

Message: Select must have a group with this procedure

• Error: 1386 SQLSTATE: HY000 (ER_ORDER_WITH_PROC)

Message: Can't use ORDER clause with this procedure

• Error: 1387 SQLSTATE: HY000 (ER_LOGGING_PROHIBIT_CHANGING_OF)

Message: Binary logging and replication forbid changing the global server %s

• Error: 1388 SQLSTATE: HY000 (ER_NO_FILE_MAPPING)

Message: Can't map file: %s, errno: %d

• Error: 1389 SQLSTATE: HY000 (ER_WRONG_MAGIC)

Message: Wrong magic in %s

• Error: 1390 SQLSTATE: HY000 (ER_PS_MANY_PARAM)

Message: Prepared statement contains too many placeholders

• Error: 1391 SQLSTATE: HY000 (ER_KEY_PART_0)

Message: Key part '%s' length cannot be 0

• Error: 1392 SQLSTATE: HY000 (ER_VIEW_CHECKSUM)

Message: View text checksum failed

• Error: 1393 SQLSTATE: HY000 (ER_VIEW_MULTIUPDATE)

Message: Can not modify more than one base table through a join view '%s.%s'

Errors, Error Codes, and Common Problems

1985



• Error: 1394 SQLSTATE: HY000 (ER_VIEW_NO_INSERT_FIELD_LIST)

Message: Can not insert into join view '%s.%s' without fields list

• Error: 1395 SQLSTATE: HY000 (ER_VIEW_DELETE_MERGE_VIEW)

Message: Can not delete from join view '%s.%s'

• Error: 1396 SQLSTATE: HY000 (ER_CANNOT_USER)

Message: Operation %s failed for %s

• Error: 1397 SQLSTATE: XAE04 (ER_XAER_NOTA)

Message: XAER_NOTA: Unknown XID

• Error: 1398 SQLSTATE: XAE05 (ER_XAER_INVAL)

Message: XAER_INVAL: Invalid arguments (or unsupported command)

• Error: 1399 SQLSTATE: XAE07 (ER_XAER_RMFAIL)

Message: XAER_RMFAIL: The command cannot be executed when global transaction is in the %s state

• Error: 1400 SQLSTATE: XAE09 (ER_XAER_OUTSIDE)

Message: XAER_OUTSIDE: Some work is done outside global transaction

• Error: 1401 SQLSTATE: XAE03 (ER_XAER_RMERR)

Message: XAER_RMERR: Fatal error occurred in the transaction branch - check your data for consistency

• Error: 1402 SQLSTATE: XA100 (ER_XA_RBROLLBACK)

Message: XA_RBROLLBACK: Transaction branch was rolled back

• Error: 1403 SQLSTATE: 42000 (ER_NONEXISTING_PROC_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on routine '%s'

• Error: 1404 SQLSTATE: HY000 (ER_PROC_AUTO_GRANT_FAIL)

Message: Failed to grant EXECUTE and ALTER ROUTINE privileges

• Error: 1405 SQLSTATE: HY000 (ER_PROC_AUTO_REVOKE_FAIL)

Message: Failed to revoke all privileges to dropped routine

• Error: 1406 SQLSTATE: 22001 (ER_DATA_TOO_LONG)

Message: Data too long for column '%s' at row %ld

• Error: 1407 SQLSTATE: 42000 (ER_SP_BAD_SQLSTATE)

Message: Bad SQLSTATE: '%s'

• Error: 1408 SQLSTATE: HY000 (ER_STARTUP)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d %s

• Error: 1409 SQLSTATE: HY000 (ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR)

Message: Can't load value from file with fixed size rows to variable

• Error: 1410 SQLSTATE: 42000 (ER_CANT_CREATE_USER_WITH_GRANT)

Message: You are not allowed to create a user with GRANT

Errors, Error Codes, and Common Problems

1986



• Error: 1411 SQLSTATE: HY000 (ER_WRONG_VALUE_FOR_TYPE)

Message: Incorrect %s value: '%s' for function %s

• Error: 1412 SQLSTATE: HY000 (ER_TABLE_DEF_CHANGED)

Message: Table definition has changed, please retry transaction

• Error: 1413 SQLSTATE: 42000 (ER_SP_DUP_HANDLER)

Message: Duplicate handler declared in the same block

• Error: 1414 SQLSTATE: 42000 (ER_SP_NOT_VAR_ARG)

Message: OUT or INOUT argument %d for routine %s is not a variable or NEW pseudo-variable in BEFORE trigger

• Error: 1415 SQLSTATE: 0A000 (ER_SP_NO_RETSET)

Message: Not allowed to return a result set from a %s

• Error: 1416 SQLSTATE: 22003 (ER_CANT_CREATE_GEOMETRY_OBJECT)

Message: Cannot get geometry object from data you send to the GEOMETRY field

• Error: 1417 SQLSTATE: HY000 (ER_FAILED_ROUTINE_BREAK_BINLOG)

Message: A routine failed and has neither NO SQL nor READS SQL DATA in its declaration and binary logging is enabled; if non-
transactional tables were updated, the binary log will miss their changes

• Error: 1418 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_ROUTINE)

Message: This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA in its declaration and binary logging is
enabled (you *might* want to use the less safe log_bin_trust_function_creators variable)

• Error: 1419 SQLSTATE: HY000 (ER_BINLOG_CREATE_ROUTINE_NEED_SUPER)

Message: You do not have the SUPER privilege and binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

• Error: 1420 SQLSTATE: HY000 (ER_EXEC_STMT_WITH_OPEN_CURSOR)

Message: You can't execute a prepared statement which has an open cursor associated with it. Reset the statement to re-execute it.

• Error: 1421 SQLSTATE: HY000 (ER_STMT_HAS_NO_OPEN_CURSOR)

Message: The statement (%lu) has no open cursor.

• Error: 1422 SQLSTATE: HY000 (ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: Explicit or implicit commit is not allowed in stored function or trigger.

• Error: 1423 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_VIEW_FIELD)

Message: Field of view '%s.%s' underlying table doesn't have a default value

• Error: 1424 SQLSTATE: HY000 (ER_SP_NO_RECURSION)

Message: Recursive stored functions and triggers are not allowed.

• Error: 1425 SQLSTATE: 42000 (ER_TOO_BIG_SCALE)

Message: Too big scale %d specified for column '%s'. Maximum is %d.

• Error: 1426 SQLSTATE: 42000 (ER_TOO_BIG_PRECISION)

Message: Too big precision %d specified for column '%s'. Maximum is %d.

Errors, Error Codes, and Common Problems

1987



• Error: 1427 SQLSTATE: 42000 (ER_M_BIGGER_THAN_D)

Message: For float(M,D), double(M,D) or decimal(M,D), M must be >= D (column '%s').

• Error: 1428 SQLSTATE: HY000 (ER_WRONG_LOCK_OF_SYSTEM_TABLE)

Message: You can't combine write-locking of system tables with other tables or lock types

• Error: 1429 SQLSTATE: HY000 (ER_CONNECT_TO_FOREIGN_DATA_SOURCE)

Message: Unable to connect to foreign data source: %s

• Error: 1430 SQLSTATE: HY000 (ER_QUERY_ON_FOREIGN_DATA_SOURCE)

Message: There was a problem processing the query on the foreign data source. Data source error: %s

• Error: 1431 SQLSTATE: HY000 (ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST)

Message: The foreign data source you are trying to reference does not exist. Data source error: %s

• Error: 1432 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE)

Message: Can't create federated table. The data source connection string '%s' is not in the correct format

• Error: 1433 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID)

Message: The data source connection string '%s' is not in the correct format

• Error: 1434 SQLSTATE: HY000 (ER_CANT_CREATE_FEDERATED_TABLE)

Message: Can't create federated table. Foreign data src error: %s

• Error: 1435 SQLSTATE: HY000 (ER_TRG_IN_WRONG_SCHEMA)

Message: Trigger in wrong schema

• Error: 1436 SQLSTATE: HY000 (ER_STACK_OVERRUN_NEED_MORE)

Message: Thread stack overrun: %ld bytes used of a %ld byte stack, and %ld bytes needed. Use 'mysqld -O thread_stack=#' to spe-
cify a bigger stack.

• Error: 1437 SQLSTATE: 42000 (ER_TOO_LONG_BODY)

Message: Routine body for '%s' is too long

• Error: 1438 SQLSTATE: HY000 (ER_WARN_CANT_DROP_DEFAULT_KEYCACHE)

Message: Cannot drop default keycache

• Error: 1439 SQLSTATE: 42000 (ER_TOO_BIG_DISPLAYWIDTH)

Message: Display width out of range for column '%s' (max = %d)

• Error: 1440 SQLSTATE: XAE08 (ER_XAER_DUPID)

Message: XAER_DUPID: The XID already exists

• Error: 1441 SQLSTATE: 22008 (ER_DATETIME_FUNCTION_OVERFLOW)

Message: Datetime function: %s field overflow

• Error: 1442 SQLSTATE: HY000 (ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG)

Message: Can't update table '%s' in stored function/trigger because it is already used by statement which invoked this stored func-
tion/trigger.

• Error: 1443 SQLSTATE: HY000 (ER_VIEW_PREVENT_UPDATE)

Errors, Error Codes, and Common Problems

1988



Message: The definition of table '%s' prevents operation %s on table '%s'.

• Error: 1444 SQLSTATE: HY000 (ER_PS_NO_RECURSION)

Message: The prepared statement contains a stored routine call that refers to that same statement. It's not allowed to execute a pre-
pared statement in such a recursive manner

• Error: 1445 SQLSTATE: HY000 (ER_SP_CANT_SET_AUTOCOMMIT)

Message: Not allowed to set autocommit from a stored function or trigger

• Error: 1446 SQLSTATE: HY000 (ER_MALFORMED_DEFINER)

Message: Definer is not fully qualified

• Error: 1447 SQLSTATE: HY000 (ER_VIEW_FRM_NO_USER)

Message: View '%s'.'%s' has no definer information (old table format). Current user is used as definer. Please recreate the view!

• Error: 1448 SQLSTATE: HY000 (ER_VIEW_OTHER_USER)

Message: You need the SUPER privilege for creation view with '%s'@'%s' definer

• Error: 1449 SQLSTATE: HY000 (ER_NO_SUCH_USER)

Message: There is no '%s'@'%s' registered

• Error: 1450 SQLSTATE: HY000 (ER_FORBID_SCHEMA_CHANGE)

Message: Changing schema from '%s' to '%s' is not allowed.

• Error: 1451 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED_2)

Message: Cannot delete or update a parent row: a foreign key constraint fails (%s)

• Error: 1452 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW_2)

Message: Cannot add or update a child row: a foreign key constraint fails (%s)

• Error: 1453 SQLSTATE: 42000 (ER_SP_BAD_VAR_SHADOW)

Message: Variable '%s' must be quoted with `...`, or renamed

• Error: 1454 SQLSTATE: HY000 (ER_TRG_NO_DEFINER)

Message: No definer attribute for trigger '%s'.'%s'. The trigger will be activated under the authorization of the invoker, which may
have insufficient privileges. Please recreate the trigger.

• Error: 1455 SQLSTATE: HY000 (ER_OLD_FILE_FORMAT)

Message: '%s' has an old format, you should re-create the '%s' object(s)

• Error: 1456 SQLSTATE: HY000 (ER_SP_RECURSION_LIMIT)

Message: Recursive limit %d (as set by the max_sp_recursion_depth variable) was exceeded for routine %s

• Error: 1457 SQLSTATE: HY000 (ER_SP_PROC_TABLE_CORRUPT)

Message: Failed to load routine %s. The table mysql.proc is missing, corrupt, or contains bad data (internal code %d)

• Error: 1458 SQLSTATE: 42000 (ER_SP_WRONG_NAME)

Message: Incorrect routine name '%s'

• Error: 1459 SQLSTATE: HY000 (ER_TABLE_NEEDS_UPGRADE)

Errors, Error Codes, and Common Problems

1989



Message: Table upgrade required. Please do "REPAIR TABLE `%s`" to fix it!

• Error: 1460 SQLSTATE: 42000 (ER_SP_NO_AGGREGATE)

Message: AGGREGATE is not supported for stored functions

• Error: 1461 SQLSTATE: 42000 (ER_MAX_PREPARED_STMT_COUNT_REACHED)

Message: Can't create more than max_prepared_stmt_count statements (current value: %lu)

• Error: 1462 SQLSTATE: HY000 (ER_VIEW_RECURSIVE)

Message: `%s`.`%s` contains view recursion

• Error: 1463 SQLSTATE: 42000 (ER_NON_GROUPING_FIELD_USED)

Message: non-grouping field '%s' is used in %s clause

• Error: 1464 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_SPKEYS)

Message: The used table type doesn't support SPATIAL indexes

• Error: 1465 SQLSTATE: HY000 (ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA)

Message: Triggers can not be created on system tables

• Error: 1466 SQLSTATE: HY000 (ER_REMOVED_SPACES)

Message: Leading spaces are removed from name '%s'

• Error: 1467 SQLSTATE: HY000 (ER_AUTOINC_READ_FAILED)

Message: Failed to read auto-increment value from storage engine

• Error: 1468 SQLSTATE: HY000 (ER_USERNAME)

Message: user name

• Error: 1469 SQLSTATE: HY000 (ER_HOSTNAME)

Message: host name

• Error: 1470 SQLSTATE: HY000 (ER_WRONG_STRING_LENGTH)

Message: String '%s' is too long for %s (should be no longer than %d)

• Error: 1471 SQLSTATE: HY000 (ER_NON_INSERTABLE_TABLE)

Message: The target table %s of the %s is not insertable-into

• Error: 1472 SQLSTATE: HY000 (ER_ADMIN_WRONG_MRG_TABLE)

Message: Table '%s' is differently defined or of non-MyISAM type or doesn't exist

• Error: 1473 SQLSTATE: HY000 (ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT)

Message: Too high level of nesting for select

• Error: 1474 SQLSTATE: HY000 (ER_NAME_BECOMES_EMPTY)

Message: Name '%s' has become ''

• Error: 1475 SQLSTATE: HY000 (ER_AMBIGUOUS_FIELD_TERM)

Message: First character of the FIELDS TERMINATED string is ambiguous; please use non-optional and non-empty FIELDS EN-
CLOSED BY

Errors, Error Codes, and Common Problems

1990



• Error: 1476 SQLSTATE: HY000 (ER_FOREIGN_SERVER_EXISTS)

Message: The foreign server, %s, you are trying to create already exists.

• Error: 1477 SQLSTATE: HY000 (ER_FOREIGN_SERVER_DOESNT_EXIST)

Message: The foreign server name you are trying to reference does not exist. Data source error: %s

• Error: 1478 SQLSTATE: HY000 (ER_ILLEGAL_HA_CREATE_OPTION)

Message: Table storage engine '%s' does not support the create option '%s'

• Error: 1479 SQLSTATE: HY000 (ER_PARTITION_REQUIRES_VALUES_ERROR)

Message: Syntax error: %s PARTITIONING requires definition of VALUES %s for each partition

• Error: 1480 SQLSTATE: HY000 (ER_PARTITION_WRONG_VALUES_ERROR)

Message: Only %s PARTITIONING can use VALUES %s in partition definition

• Error: 1481 SQLSTATE: HY000 (ER_PARTITION_MAXVALUE_ERROR)

Message: MAXVALUE can only be used in last partition definition

• Error: 1482 SQLSTATE: HY000 (ER_PARTITION_SUBPARTITION_ERROR)

Message: Subpartitions can only be hash partitions and by key

• Error: 1483 SQLSTATE: HY000 (ER_PARTITION_SUBPART_MIX_ERROR)

Message: Must define subpartitions on all partitions if on one partition

• Error: 1484 SQLSTATE: HY000 (ER_PARTITION_WRONG_NO_PART_ERROR)

Message: Wrong number of partitions defined, mismatch with previous setting

• Error: 1485 SQLSTATE: HY000 (ER_PARTITION_WRONG_NO_SUBPART_ERROR)

Message: Wrong number of subpartitions defined, mismatch with previous setting

• Error: 1486 SQLSTATE: HY000 (ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR)

Message: Constant/Random expression in (sub)partitioning function is not allowed

• Error: 1487 SQLSTATE: HY000 (ER_NO_CONST_EXPR_IN_RANGE_OR_LIST_ERROR)

Message: Expression in RANGE/LIST VALUES must be constant

• Error: 1488 SQLSTATE: HY000 (ER_FIELD_NOT_FOUND_PART_ERROR)

Message: Field in list of fields for partition function not found in table

• Error: 1489 SQLSTATE: HY000 (ER_LIST_OF_FIELDS_ONLY_IN_HASH_ERROR)

Message: List of fields is only allowed in KEY partitions

• Error: 1490 SQLSTATE: HY000 (ER_INCONSISTENT_PARTITION_INFO_ERROR)

Message: The partition info in the frm file is not consistent with what can be written into the frm file

• Error: 1491 SQLSTATE: HY000 (ER_PARTITION_FUNC_NOT_ALLOWED_ERROR)

Message: The %s function returns the wrong type

• Error: 1492 SQLSTATE: HY000 (ER_PARTITIONS_MUST_BE_DEFINED_ERROR)

Message: For %s partitions each partition must be defined

Errors, Error Codes, and Common Problems

1991



• Error: 1493 SQLSTATE: HY000 (ER_RANGE_NOT_INCREASING_ERROR)

Message: VALUES LESS THAN value must be strictly increasing for each partition

• Error: 1494 SQLSTATE: HY000 (ER_INCONSISTENT_TYPE_OF_FUNCTIONS_ERROR)

Message: VALUES value must be of same type as partition function

• Error: 1495 SQLSTATE: HY000 (ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR)

Message: Multiple definition of same constant in list partitioning

• Error: 1496 SQLSTATE: HY000 (ER_PARTITION_ENTRY_ERROR)

Message: Partitioning can not be used stand-alone in query

• Error: 1497 SQLSTATE: HY000 (ER_MIX_HANDLER_ERROR)

Message: The mix of handlers in the partitions is not allowed in this version of MySQL

• Error: 1498 SQLSTATE: HY000 (ER_PARTITION_NOT_DEFINED_ERROR)

Message: For the partitioned engine it is necessary to define all %s

• Error: 1499 SQLSTATE: HY000 (ER_TOO_MANY_PARTITIONS_ERROR)

Message: Too many partitions (including subpartitions) were defined

• Error: 1500 SQLSTATE: HY000 (ER_SUBPARTITION_ERROR)

Message: It is only possible to mix RANGE/LIST partitioning with HASH/KEY partitioning for subpartitioning

• Error: 1501 SQLSTATE: HY000 (ER_CANT_CREATE_HANDLER_FILE)

Message: Failed to create specific handler file

• Error: 1502 SQLSTATE: HY000 (ER_BLOB_FIELD_IN_PART_FUNC_ERROR)

Message: A BLOB field is not allowed in partition function

• Error: 1503 SQLSTATE: HY000 (ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF)

Message: A %s must include all columns in the table's partitioning function

• Error: 1504 SQLSTATE: HY000 (ER_NO_PARTS_ERROR)

Message: Number of %s = 0 is not an allowed value

• Error: 1505 SQLSTATE: HY000 (ER_PARTITION_MGMT_ON_NONPARTITIONED)

Message: Partition management on a not partitioned table is not possible

• Error: 1506 SQLSTATE: HY000 (ER_FOREIGN_KEY_ON_PARTITIONED)

Message: Foreign key condition is not yet supported in conjunction with partitioning

• Error: 1507 SQLSTATE: HY000 (ER_DROP_PARTITION_NON_EXISTENT)

Message: Error in list of partitions to %s

• Error: 1508 SQLSTATE: HY000 (ER_DROP_LAST_PARTITION)

Message: Cannot remove all partitions, use DROP TABLE instead

• Error: 1509 SQLSTATE: HY000 (ER_COALESCE_ONLY_ON_HASH_PARTITION)

Message: COALESCE PARTITION can only be used on HASH/KEY partitions

Errors, Error Codes, and Common Problems

1992



• Error: 1510 SQLSTATE: HY000 (ER_REORG_HASH_ONLY_ON_SAME_NO)

Message: REORGANISE PARTITION can only be used to reorganise partitions not to change their numbers

• Error: 1511 SQLSTATE: HY000 (ER_REORG_NO_PARAM_ERROR)

Message: REORGANISE PARTITION without parameters can only be used on auto-partitioned tables using HASH PARTITIONs

• Error: 1512 SQLSTATE: HY000 (ER_ONLY_ON_RANGE_LIST_PARTITION)

Message: %s PARTITION can only be used on RANGE/LIST partitions

• Error: 1513 SQLSTATE: HY000 (ER_ADD_PARTITION_SUBPART_ERROR)

Message: Trying to Add partition(s) with wrong number of subpartitions

• Error: 1514 SQLSTATE: HY000 (ER_ADD_PARTITION_NO_NEW_PARTITION)

Message: At least one partition must be added

• Error: 1515 SQLSTATE: HY000 (ER_COALESCE_PARTITION_NO_PARTITION)

Message: At least one partition must be coalesced

• Error: 1516 SQLSTATE: HY000 (ER_REORG_PARTITION_NOT_EXIST)

Message: More partitions to reorganise than there are partitions

• Error: 1517 SQLSTATE: HY000 (ER_SAME_NAME_PARTITION)

Message: Duplicate partition name %s

• Error: 1518 SQLSTATE: HY000 (ER_NO_BINLOG_ERROR)

Message: It is not allowed to shut off binlog on this command

• Error: 1519 SQLSTATE: HY000 (ER_CONSECUTIVE_REORG_PARTITIONS)

Message: When reorganising a set of partitions they must be in consecutive order

• Error: 1520 SQLSTATE: HY000 (ER_REORG_OUTSIDE_RANGE)

Message: Reorganize of range partitions cannot change total ranges except for last partition where it can extend the range

• Error: 1521 SQLSTATE: HY000 (ER_PARTITION_FUNCTION_FAILURE)

Message: Partition function not supported in this version for this handler

• Error: 1522 SQLSTATE: HY000 (ER_PART_STATE_ERROR)

Message: Partition state cannot be defined from CREATE/ALTER TABLE

• Error: 1523 SQLSTATE: HY000 (ER_LIMITED_PART_RANGE)

Message: The %s handler only supports 32 bit integers in VALUES

• Error: 1524 SQLSTATE: HY000 (ER_PLUGIN_IS_NOT_LOADED)

Message: Plugin '%s' is not loaded

• Error: 1525 SQLSTATE: HY000 (ER_WRONG_VALUE)

Message: Incorrect %s value: '%s'

• Error: 1526 SQLSTATE: HY000 (ER_NO_PARTITION_FOR_GIVEN_VALUE)

Message: Table has no partition for value %s

Errors, Error Codes, and Common Problems

1993



• Error: 1527 SQLSTATE: HY000 (ER_FILEGROUP_OPTION_ONLY_ONCE)

Message: It is not allowed to specify %s more than once

• Error: 1528 SQLSTATE: HY000 (ER_CREATE_FILEGROUP_FAILED)

Message: Failed to create %s

• Error: 1529 SQLSTATE: HY000 (ER_DROP_FILEGROUP_FAILED)

Message: Failed to drop %s

• Error: 1530 SQLSTATE: HY000 (ER_TABLESPACE_AUTO_EXTEND_ERROR)

Message: The handler doesn't support autoextend of tablespaces

• Error: 1531 SQLSTATE: HY000 (ER_WRONG_SIZE_NUMBER)

Message: A size parameter was incorrectly specified, either number or on the form 10M

• Error: 1532 SQLSTATE: HY000 (ER_SIZE_OVERFLOW_ERROR)

Message: The size number was correct but we don't allow the digit part to be more than 2 billion

• Error: 1533 SQLSTATE: HY000 (ER_ALTER_FILEGROUP_FAILED)

Message: Failed to alter: %s

• Error: 1534 SQLSTATE: HY000 (ER_BINLOG_ROW_LOGGING_FAILED)

Message: Writing one row to the row-based binary log failed

• Error: 1535 SQLSTATE: HY000 (ER_BINLOG_ROW_WRONG_TABLE_DEF)

Message: Table definition on master and slave does not match: %s

• Error: 1536 SQLSTATE: HY000 (ER_BINLOG_ROW_RBR_TO_SBR)

Message: Slave running with --log-slave-updates must use row-based binary logging to be able to replicate row-based binary log
events

• Error: 1537 SQLSTATE: HY000 (ER_EVENT_ALREADY_EXISTS)

Message: Event '%s' already exists

• Error: 1538 SQLSTATE: HY000 (ER_EVENT_STORE_FAILED)

Message: Failed to store event %s. Error code %d from storage engine.

• Error: 1539 SQLSTATE: HY000 (ER_EVENT_DOES_NOT_EXIST)

Message: Unknown event '%s'

• Error: 1540 SQLSTATE: HY000 (ER_EVENT_CANT_ALTER)

Message: Failed to alter event '%s'

• Error: 1541 SQLSTATE: HY000 (ER_EVENT_DROP_FAILED)

Message: Failed to drop %s

• Error: 1542 SQLSTATE: HY000 (ER_EVENT_INTERVAL_NOT_POSITIVE_OR_TOO_BIG)

Message: INTERVAL is either not positive or too big

• Error: 1543 SQLSTATE: HY000 (ER_EVENT_ENDS_BEFORE_STARTS)

Errors, Error Codes, and Common Problems

1994



Message: ENDS is either invalid or before STARTS

• Error: 1544 SQLSTATE: HY000 (ER_EVENT_EXEC_TIME_IN_THE_PAST)

Message: Event execution time is in the past. Event has been disabled

• Error: 1545 SQLSTATE: HY000 (ER_EVENT_OPEN_TABLE_FAILED)

Message: Failed to open mysql.event

• Error: 1546 SQLSTATE: HY000 (ER_EVENT_NEITHER_M_EXPR_NOR_M_AT)

Message: No datetime expression provided

• Error: 1547 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_CORRUPTED)

Message: Column count of mysql.%s is wrong. Expected %d, found %d. The table is probably corrupted

• Error: 1548 SQLSTATE: HY000 (ER_CANNOT_LOAD_FROM_TABLE)

Message: Cannot load from mysql.%s. The table is probably corrupted

• Error: 1549 SQLSTATE: HY000 (ER_EVENT_CANNOT_DELETE)

Message: Failed to delete the event from mysql.event

• Error: 1550 SQLSTATE: HY000 (ER_EVENT_COMPILE_ERROR)

Message: Error during compilation of event's body

• Error: 1551 SQLSTATE: HY000 (ER_EVENT_SAME_NAME)

Message: Same old and new event name

• Error: 1552 SQLSTATE: HY000 (ER_EVENT_DATA_TOO_LONG)

Message: Data for column '%s' too long

• Error: 1553 SQLSTATE: HY000 (ER_DROP_INDEX_FK)

Message: Cannot drop index '%s': needed in a foreign key constraint

• Error: 1554 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX_WITH_VER)

Message: The syntax '%s' is deprecated and will be removed in MySQL %s. Please use %s instead

• Error: 1555 SQLSTATE: HY000 (ER_CANT_WRITE_LOCK_LOG_TABLE)

Message: You can't write-lock a log table. Only read access is possible

• Error: 1556 SQLSTATE: HY000 (ER_CANT_LOCK_LOG_TABLE)

Message: You can't use locks with log tables.

• Error: 1557 SQLSTATE: 23000 (ER_FOREIGN_DUPLICATE_KEY)

Message: Upholding foreign key constraints for table '%s', entry '%s', key %d would lead to a duplicate entry

• Error: 1558 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE)

Message: Column count of mysql.%s is wrong. Expected %d, found %d. Created with MySQL %d, now running %d. Please use
mysql_upgrade to fix this error.

• Error: 1559 SQLSTATE: HY000 (ER_TEMP_TABLE_PREVENTS_SWITCH_OUT_OF_RBR)

Message: Cannot switch out of the row-based binary log format when the session has open temporary tables

Errors, Error Codes, and Common Problems

1995



• Error: 1560 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_FORMAT)

Message: Cannot change the binary logging format inside a stored function or trigger

• Error: 1561 SQLSTATE: HY000 (ER_NDB_CANT_SWITCH_BINLOG_FORMAT)

Message: The NDB cluster engine does not support changing the binlog format on the fly yet

• Error: 1562 SQLSTATE: HY000 (ER_PARTITION_NO_TEMPORARY)

Message: Cannot create temporary table with partitions

• Error: 1563 SQLSTATE: HY000 (ER_PARTITION_CONST_DOMAIN_ERROR)

Message: Partition constant is out of partition function domain

• Error: 1564 SQLSTATE: HY000 (ER_PARTITION_FUNCTION_IS_NOT_ALLOWED)

Message: This partition function is not allowed

• Error: 1565 SQLSTATE: HY000 (ER_DDL_LOG_ERROR)

Message: Error in DDL log

• Error: 1566 SQLSTATE: HY000 (ER_NULL_IN_VALUES_LESS_THAN)

Message: Not allowed to use NULL value in VALUES LESS THAN

• Error: 1567 SQLSTATE: HY000 (ER_WRONG_PARTITION_NAME)

Message: Incorrect partition name

• Error: 1568 SQLSTATE: 25001 (ER_CANT_CHANGE_TX_ISOLATION)

Message: Transaction isolation level can't be changed while a transaction is in progress

• Error: 1569 SQLSTATE: HY000 (ER_DUP_ENTRY_AUTOINCREMENT_CASE)

Message: ALTER TABLE causes auto_increment resequencing, resulting in duplicate entry '%s' for key '%s'

• Error: 1570 SQLSTATE: HY000 (ER_EVENT_MODIFY_QUEUE_ERROR)

Message: Internal scheduler error %d

• Error: 1571 SQLSTATE: HY000 (ER_EVENT_SET_VAR_ERROR)

Message: Error during starting/stopping of the scheduler. Error code %u

• Error: 1572 SQLSTATE: HY000 (ER_PARTITION_MERGE_ERROR)

Message: Engine cannot be used in partitioned tables

• Error: 1573 SQLSTATE: HY000 (ER_CANT_ACTIVATE_LOG)

Message: Cannot activate '%s' log

• Error: 1574 SQLSTATE: HY000 (ER_RBR_NOT_AVAILABLE)

Message: The server was not built with row-based replication

• Error: 1575 SQLSTATE: HY000 (ER_BASE64_DECODE_ERROR)

Message: Decoding of base64 string failed

• Error: 1576 SQLSTATE: HY000 (ER_EVENT_RECURSION_FORBIDDEN)

Message: Recursion of EVENT DDL statements is forbidden when body is present

Errors, Error Codes, and Common Problems

1996



• Error: 1577 SQLSTATE: HY000 (ER_EVENTS_DB_ERROR)

Message: Cannot proceed because system tables used by Event Scheduler were found damaged at server start

• Error: 1578 SQLSTATE: HY000 (ER_ONLY_INTEGERS_ALLOWED)

Message: Only integers allowed as number here

• Error: 1579 SQLSTATE: HY000 (ER_UNSUPORTED_LOG_ENGINE)

Message: This storage engine cannot be used for log tables"

• Error: 1580 SQLSTATE: HY000 (ER_BAD_LOG_STATEMENT)

Message: You cannot '%s' a log table if logging is enabled

• Error: 1581 SQLSTATE: HY000 (ER_CANT_RENAME_LOG_TABLE)

Message: Cannot rename '%s'. When logging enabled, rename to/from log table must rename two tables: the log table to an archive
table and another table back to '%s'

• Error: 1582 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT)

Message: Incorrect parameter count in the call to native function '%s'

• Error: 1583 SQLSTATE: 42000 (ER_WRONG_PARAMETERS_TO_NATIVE_FCT)

Message: Incorrect parameters in the call to native function '%s'

• Error: 1584 SQLSTATE: 42000 (ER_WRONG_PARAMETERS_TO_STORED_FCT)

Message: Incorrect parameters in the call to stored function '%s'

• Error: 1585 SQLSTATE: HY000 (ER_NATIVE_FCT_NAME_COLLISION)

Message: This function '%s' has the same name as a native function

• Error: 1586 SQLSTATE: 23000 (ER_DUP_ENTRY_WITH_KEY_NAME)

Message: Duplicate entry '%s' for key '%s'

• Error: 1587 SQLSTATE: HY000 (ER_BINLOG_PURGE_EMFILE)

Message: Too many files opened, please execute the command again

• Error: 1588 SQLSTATE: HY000 (ER_EVENT_CANNOT_CREATE_IN_THE_PAST)

Message: Event execution time is in the past and ON COMPLETION NOT PRESERVE is set. The event was dropped immediately
after creation.

• Error: 1589 SQLSTATE: HY000 (ER_EVENT_CANNOT_ALTER_IN_THE_PAST)

Message: Event execution time is in the past and ON COMPLETION NOT PRESERVE is set. The event was dropped immediately
after creation.

• Error: 1590 SQLSTATE: HY000 (ER_SLAVE_INCIDENT)

Message: The incident %s occured on the master. Message: %s

• Error: 1591 SQLSTATE: HY000 (ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT)

Message: Table has no partition for some existing values

• Error: 1592 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_STATEMENT)

Message: Statement is not safe to log in statement format.

Errors, Error Codes, and Common Problems

1997



• Error: 1593 SQLSTATE: HY000 (ER_SLAVE_FATAL_ERROR)

Message: Fatal error: %s

• Error: 1594 SQLSTATE: HY000 (ER_SLAVE_RELAY_LOG_READ_FAILURE)

Message: Relay log read failure: %s

• Error: 1595 SQLSTATE: HY000 (ER_SLAVE_RELAY_LOG_WRITE_FAILURE)

Message: Relay log write failure: %s

• Error: 1596 SQLSTATE: HY000 (ER_SLAVE_CREATE_EVENT_FAILURE)

Message: Failed to create %s

• Error: 1597 SQLSTATE: HY000 (ER_SLAVE_MASTER_COM_FAILURE)

Message: Master command %s failed: %s

• Error: 1598 SQLSTATE: HY000 (ER_BINLOG_LOGGING_IMPOSSIBLE)

Message: Binary logging not possible. Message: %s

• Error: 1599 SQLSTATE: HY000 (ER_VIEW_NO_CREATION_CTX)

Message: View `%s`.`%s` has no creation context

• Error: 1600 SQLSTATE: HY000 (ER_VIEW_INVALID_CREATION_CTX)

Message: Creation context of view `%s`.`%s' is invalid

• Error: 1601 SQLSTATE: HY000 (ER_SR_INVALID_CREATION_CTX)

Message: Creation context of stored routine `%s`.`%s` is invalid

• Error: 1602 SQLSTATE: HY000 (ER_TRG_CORRUPTED_FILE)

Message: Corrupted TRG file for table `%s`.`%s`

• Error: 1603 SQLSTATE: HY000 (ER_TRG_NO_CREATION_CTX)

Message: Triggers for table `%s`.`%s` have no creation context

• Error: 1604 SQLSTATE: HY000 (ER_TRG_INVALID_CREATION_CTX)

Message: Trigger creation context of table `%s`.`%s` is invalid

• Error: 1605 SQLSTATE: HY000 (ER_EVENT_INVALID_CREATION_CTX)

Message: Creation context of event `%s`.`%s` is invalid

• Error: 1606 SQLSTATE: HY000 (ER_TRG_CANT_OPEN_TABLE)

Message: Cannot open table for trigger `%s`.`%s`

• Error: 1607 SQLSTATE: HY000 (ER_CANT_CREATE_SROUTINE)

Message: Cannot create stored routine `%s`. Check warnings

B.3. Client Error Codes and Messages
Client error information comes from the following source files:

Errors, Error Codes, and Common Problems

1998



• The Error values and the symbols in parentheses correspond to definitions in the include/errmsg.h MySQL source file.

• The Message values correspond to the error messages that are listed in the libmysql/errmsg.c file. %d and %s represent num-
bers and strings, respectively, that are substituted into the messages when they are displayed.

Because updates are frequent, it is possible that those files will contain additional error information not listed here.

• Error: 2000 (CR_UNKNOWN_ERROR)

Message: Unknown MySQL error

• Error: 2001 (CR_SOCKET_CREATE_ERROR)

Message: Can't create UNIX socket (%d)

• Error: 2002 (CR_CONNECTION_ERROR)

Message: Can't connect to local MySQL server through socket '%s' (%d)

• Error: 2003 (CR_CONN_HOST_ERROR)

Message: Can't connect to MySQL server on '%s' (%d)

• Error: 2004 (CR_IPSOCK_ERROR)

Message: Can't create TCP/IP socket (%d)

• Error: 2005 (CR_UNKNOWN_HOST)

Message: Unknown MySQL server host '%s' (%d)

• Error: 2006 (CR_SERVER_GONE_ERROR)

Message: MySQL server has gone away

• Error: 2007 (CR_VERSION_ERROR)

Message: Protocol mismatch; server version = %d, client version = %d

• Error: 2008 (CR_OUT_OF_MEMORY)

Message: MySQL client ran out of memory

• Error: 2009 (CR_WRONG_HOST_INFO)

Message: Wrong host info

• Error: 2010 (CR_LOCALHOST_CONNECTION)

Message: Localhost via UNIX socket

• Error: 2011 (CR_TCP_CONNECTION)

Message: %s via TCP/IP

• Error: 2012 (CR_SERVER_HANDSHAKE_ERR)

Message: Error in server handshake

• Error: 2013 (CR_SERVER_LOST)

Message: Lost connection to MySQL server during query

• Error: 2014 (CR_COMMANDS_OUT_OF_SYNC)

Errors, Error Codes, and Common Problems

1999



Message: Commands out of sync; you can't run this command now

• Error: 2015 (CR_NAMEDPIPE_CONNECTION)

Message: Named pipe: %s

• Error: 2016 (CR_NAMEDPIPEWAIT_ERROR)

Message: Can't wait for named pipe to host: %s pipe: %s (%lu)

• Error: 2017 (CR_NAMEDPIPEOPEN_ERROR)

Message: Can't open named pipe to host: %s pipe: %s (%lu)

• Error: 2018 (CR_NAMEDPIPESETSTATE_ERROR)

Message: Can't set state of named pipe to host: %s pipe: %s (%lu)

• Error: 2019 (CR_CANT_READ_CHARSET)

Message: Can't initialize character set %s (path: %s)

• Error: 2020 (CR_NET_PACKET_TOO_LARGE)

Message: Got packet bigger than 'max_allowed_packet' bytes

• Error: 2021 (CR_EMBEDDED_CONNECTION)

Message: Embedded server

• Error: 2022 (CR_PROBE_SLAVE_STATUS)

Message: Error on SHOW SLAVE STATUS:

• Error: 2023 (CR_PROBE_SLAVE_HOSTS)

Message: Error on SHOW SLAVE HOSTS:

• Error: 2024 (CR_PROBE_SLAVE_CONNECT)

Message: Error connecting to slave:

• Error: 2025 (CR_PROBE_MASTER_CONNECT)

Message: Error connecting to master:

• Error: 2026 (CR_SSL_CONNECTION_ERROR)

Message: SSL connection error

• Error: 2027 (CR_MALFORMED_PACKET)

Message: Malformed packet

• Error: 2028 (CR_WRONG_LICENSE)

Message: This client library is licensed only for use with MySQL servers having '%s' license

• Error: 2029 (CR_NULL_POINTER)

Message: Invalid use of null pointer

• Error: 2030 (CR_NO_PREPARE_STMT)

Message: Statement not prepared

Errors, Error Codes, and Common Problems

2000



• Error: 2031 (CR_PARAMS_NOT_BOUND)

Message: No data supplied for parameters in prepared statement

• Error: 2032 (CR_DATA_TRUNCATED)

Message: Data truncated

• Error: 2033 (CR_NO_PARAMETERS_EXISTS)

Message: No parameters exist in the statement

• Error: 2034 (CR_INVALID_PARAMETER_NO)

Message: Invalid parameter number

• Error: 2035 (CR_INVALID_BUFFER_USE)

Message: Can't send long data for non-string/non-binary data types (parameter: %d)

• Error: 2036 (CR_UNSUPPORTED_PARAM_TYPE)

Message: Using unsupported buffer type: %d (parameter: %d)

• Error: 2037 (CR_SHARED_MEMORY_CONNECTION)

Message: Shared memory: %s

• Error: 2038 (CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR)

Message: Can't open shared memory; client could not create request event (%lu)

• Error: 2039 (CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR)

Message: Can't open shared memory; no answer event received from server (%lu)

• Error: 2040 (CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR)

Message: Can't open shared memory; server could not allocate file mapping (%lu)

• Error: 2041 (CR_SHARED_MEMORY_CONNECT_MAP_ERROR)

Message: Can't open shared memory; server could not get pointer to file mapping (%lu)

• Error: 2042 (CR_SHARED_MEMORY_FILE_MAP_ERROR)

Message: Can't open shared memory; client could not allocate file mapping (%lu)

• Error: 2043 (CR_SHARED_MEMORY_MAP_ERROR)

Message: Can't open shared memory; client could not get pointer to file mapping (%lu)

• Error: 2044 (CR_SHARED_MEMORY_EVENT_ERROR)

Message: Can't open shared memory; client could not create %s event (%lu)

• Error: 2045 (CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR)

Message: Can't open shared memory; no answer from server (%lu)

• Error: 2046 (CR_SHARED_MEMORY_CONNECT_SET_ERROR)

Message: Can't open shared memory; cannot send request event to server (%lu)

• Error: 2047 (CR_CONN_UNKNOW_PROTOCOL)

Message: Wrong or unknown protocol

Errors, Error Codes, and Common Problems

2001



• Error: 2048 (CR_INVALID_CONN_HANDLE)

Message: Invalid connection handle

• Error: 2049 (CR_SECURE_AUTH)

Message: Connection using old (pre-4.1.1) authentication protocol refused (client option 'secure_auth' enabled)

• Error: 2050 (CR_FETCH_CANCELED)

Message: Row retrieval was canceled by mysql_stmt_close() call

• Error: 2051 (CR_NO_DATA)

Message: Attempt to read column without prior row fetch

• Error: 2052 (CR_NO_STMT_METADATA)

Message: Prepared statement contains no metadata

• Error: 2053 (CR_NO_RESULT_SET)

Message: Attempt to read a row while there is no result set associated with the statement

• Error: 2054 (CR_NOT_IMPLEMENTED)

Message: This feature is not implemented yet

• Error: 2055 (CR_SERVER_LOST_EXTENDED)

Message: Lost connection to MySQL server at '%s', system error: %d

• Error: 2056 (CR_STMT_CLOSED)

Message: Statement closed indirectly because of a preceeding %s() call

Errors, Error Codes, and Common Problems

2002



Appendix C. MySQL Change History
This appendix lists the changes from version to version in the MySQL source code through the latest version of MySQL 5.1, which is
currently MySQL 5.1.25-rc. Starting with MySQL 5.0, we began offering a new version of the Manual for each new series of MySQL
releases (5.0, 5.1, and so on). For information about changes in previous release series of the MySQL database software, see the corres-
ponding version of this Manual. For information about legacy versions of the MySQL software through the 4.1 series, see MySQL 3.23,
4.0, 4.1 Reference Manual.

We update this section as we add new features in the 5.1 series, so that everybody can follow the development process.

Note that we tend to update the manual at the same time we make changes to MySQL. If you find a recent version of MySQL listed
here that you can't find on our download page (http://dev.mysql.com/downloads/), it means that the version has not yet been released.

The date mentioned with a release version is the date of the last BitKeeper ChangeSet on which the release was based, not the date
when the packages were made available. The binaries are usually made available a few days after the date of the tagged ChangeSet, be-
cause building and testing all packages takes some time.

The manual included in the source and binary distributions may not be fully accurate when it comes to the release changelog entries, be-
cause the integration of the manual happens at build time. For the most up-to-date release changelog, please refer to the online version
instead.

C.1. Changes in release 5.1.x (Development)
An overview of which features were added in MySQL 5.1 can be found here: Section 1.5.1, “What's New in MySQL 5.1”.

For a full list of changes, please refer to the changelog sections for each individual 5.1.x release.

C.1.1. Changes in MySQL 5.1.24-maria (Not yet released)
The following changes apply only to builds of MySQL 5.1.24 that include the MARIA storage engine.

Bugs fixed:

• When creating tables not using the MARIA engine, it would be possible to create a table using the TRANSACTIONAL option, even
though this option is not supported by non-MARIA tables. A warning will now be produced when using these options, but the option
will still be recorded within the options for the table to allow for correct modification during ALTER TABLE operations.
(Bug#34395)

C.1.2. Changes in MySQL 5.1.24 (08 April 2008)
Functionality added or changed:

• Cluster API: Important Change: Because NDB_LE_MemoryUsage.page_size_kb shows memory page sizes in bytes rather
than kilobytes, it has been renamed to page_size_bytes. The name page_size_kb is now deprecated and thus subject to re-
moval in a future release, although it currently remains supported for reasons of backwards compatibility. See The
Ndb_logevent_type Type, for more information about NDB_LE_MemoryUsage. (Bug#30271)

• Replication: Introduced the slave_exec_mode system variable to control whether idempotent or strict mode is used for replica-
tion conflict resolution. Idempotent mode suppresses duplicate-key, no-key-found, and some other errors, and is needed for circular
replication, multi-master replication, and some other complex replication setups when using MySQL Cluster. Strict mode is the de-
fault. (Bug#31609)

• Replication: When running the server with --binlog-format=MIXED or --binlog-format=STATEMENT, a query that re-
ferred to a system variable used the slave's value when replayed on the slave. This meant that, if the value of a system variable was
inserted into a table, the slave differed from the master. Now, statements that refer to a system variable are marked as “unsafe”,
which means that:

• When the server is using --binlog-format=MIXED, the row-based format is used automatically to replicate these state-
ments.

2003

http://dev.mysql.com/downloads/
http://bugs.mysql.com/34395
http://dev.mysql.com/doc/ndbapi/en/ndb-logevent-type.html
http://dev.mysql.com/doc/ndbapi/en/ndb-logevent-type.html
http://bugs.mysql.com/30271
http://bugs.mysql.com/31609


• When the server is using --binlog-format=STATEMENT, these statements produce a warning.
(Bug#31168)

See also Bug#34732

• The ndbd and ndb_mgmd manpages have been reclassified from volume 1 to volume 8. (Bug#34642)

• For binary .tar.gz packages, mysqld and other binaries now are compiled with debugging symbols included to enable easier
use with a debugger. (Bug#33252)

• Formerly, when the MySQL server crashed, the generated stack dump was numeric and required external tools to properly resolve
the names of functions. This is not very helpful to users having a limited knowledge of debugging techniques. In addition, the gener-
ated stack trace contained only the names of functions and was formatted differently for each platform due to different stack layouts.

Now it is possible to take advantage of newer versions of the GNU C Library provide a set of functions to obtain and manipulate
stack traces from within the program. On systems that use the ELF binary format, the stack trace contains important information
such as the shared object where the call was generated, an offset into the function, and the actual return address. Having the function
name also makes possible the name demangling of C++ functions.

The library generates meaningful stack traces on the following platforms: i386, x86_64, PowerPC, IA64, Alpha, and S390. On other
platforms, a numeric stack trace is still produced, and the use of the resolve_stack_dump utility is still required. (Bug#31891)

• mysqltest now has mkdir and rmdir commands for creating and removing directories. (Bug#31004)

• The server uses less memory when loading privileges containing table grants. (Patch provided by Google.) (Bug#25175)

• Added the Uptime_since_flush_status status variable, which indicates the number of seconds since the most recent
FLUSH STATUS statement. (From Jeremy Cole) (Bug#24822)

• Potential memory leaks in SHOW PROFILE were eliminated. (Bug#24795)

• SHOW OPEN TABLES now supports FROM and LIKE clauses. (Bug#12183)

• Formerly it was possible to specify an innodb_flush_method value of fdatasync to obtain the default flush behavior of us-
ing fdatasync() for flushing. This is no longer possible because it can be confusing that a value of fdatasync causes use of
fsync() rather than fdatasync().

• The use on InnoDB hash indexes now can be controlled by setting the new innodb_adaptive_hash_index system variable
at server startup. By default, this variable is enabled. See Section 13.5.13.3, “Adaptive Hash Indexes”.

Bugs fixed:

• Important Change: Security Fix: It was possible to circumvent privileges through the creation of MyISAM tables employing the
DATA DIRECTORY and INDEX DIRECTORY options to overwrite existing table files in the MySQL data directory. Use of the
MySQL data directory in DATA DIRECTORY and INDEX DIRECTORY is now disallowed. This is now also true of these options
when used with partitioned tables and individual partitions of such tables. (Bug#32167)

• Partitioning: Incompatible Change: The following statements did not function correctly with corrupted or crashed tables and have
been removed:

• ALTER TABLE ... ANALYZE PARTITION

• ALTER TABLE ... CHECK PARTITION

• ALTER TABLE ... OPTIMIZE PARTITION

• ALTER TABLE ... REPAIR PARTITION
ALTER TABLE ... REBUILD PARTITION is unaffected by this change and continues to be available. This statement and
ALTER TABLE ... REORGANIZE PARTITION may be used to analyze and optimize partitioned tables, since these operations
cause the partition files to be rebuilt. In addition, it remains possible to use mysqlcheck on partitioned tables and myisamchk on
partitioned MyISAM tables. (Bug#20129)

• Incompatible Change: In MySQL 5.1.23, the last_errno and last_error members of the NET structure in mysql_com.h

MySQL Change History

2004

http://bugs.mysql.com/31168
http://bugs.mysql.com/34732
http://bugs.mysql.com/34642
http://bugs.mysql.com/33252
http://bugs.mysql.com/31891
http://bugs.mysql.com/31004
http://bugs.mysql.com/25175
http://bugs.mysql.com/24822
http://bugs.mysql.com/24795
http://bugs.mysql.com/12183
http://bugs.mysql.com/32167
http://bugs.mysql.com/20129


were renamed to client_last_errno and client_last_error. This was found to cause problems for connectors that use
the internal NET structure for error handling. The change has been reverted. (Bug#34655)

See also Bug#12713

• Incompatible Change: For packages that are built within their own prefix (for example, /usr/local/mysql) the plugin direct-
ory will be lib/plugin. For packages that are built to be installed into a system-wide prefix (such as RPM packages with a prefix
of /usr), the plugin directory will be lib/mysql/plugin to ensure a clean /usr/lib hierarchy. In both cases, the
$pkglibdir configuration setting is used at build time to set the plugin directory.

The current plugin directory location is available as the value of the plugin_dir system variable as before, but the
mysql_config script now has a --plugindir option that can be used externally to the server by third-party plugin writers to
obtain the default plugin directory pathname and configure their installation directory appropriately. (Bug#31736)

• Important Change: Replication: When the master crashed during an update on a transactional table while in AUTOCOMMIT mode,
the slave failed. This fix causes every transaction (including AUTOCOMMIT transactions) to be recorded in the binlog as starting
with a BEGIN and ending with a COMMIT or ROLLBACK. (Bug#26395)

• Disk Data: Important Change: It is no longer possible on 32-bit systems to issue statements appearing to create Disk Data log files
or data files greater than 4 GB in size. (Trying to create log files or data files larger than 4 GB on 32-bit systems led to unrecover-
able data node failures; such statements now fail with NDB error 1515.) (Bug#29186)

• Important Change: It was possible to use FRAC_SECOND as a synonym for MICROSECOND with DATE_ADD(), DATE_SUB(),
and INTERVAL; now, using FRAC_SECOND with anything other than TIMESTAMPADD() or TIMESTAMPDIFF() produces a
syntax error.

It is now possible (and preferable) to use MICROSECOND with TIMESTAMPADD() and TIMESTAMPDIFF(), and
FRAC_SECOND is now deprecated. (Bug#33834)

• Important Change: InnoDB free space information is now shown in the Data_free column of SHOW TABLE STATUS and in
the DATA_FREE column of the INFORMATION_SCHEMA.TABLES table. (Bug#32440)

This regression was introduced by Bug#11379

• Important Change: The server handled truncation of values having excess trailing spaces into CHAR, VARCHAR, and TEXT
columns in different ways. This behavior has now been made consistent for columns of all three of these types, and now follows the
existing behavior of VARCHAR columns in this regard; that is, a Note is always issued whenever such truncation occurs.

This change does not affect columns of these three types when using a binary encoding; BLOB columns are also unaffected by the
change, since they always use a binary encoding. (Bug#30059)

• Important Change: An AFTER UPDATE trigger was not invoked when the UPDATE did not make any changes to the table for
which the trigger was defined. Now AFTER UPDATE triggers behave the same in this regard as do BEFORE UPDATE triggers,
which are invoked whether the UPDATE makes any changes in the table or not. (Bug#23771)

• Partitioning: MySQL Cluster: When partition pruning on an NDB table resulted in an ordered index scan spanning only one parti-
tion, any descending flag for the scan was wrongly discarded, causing ORDER BY DESC to be treated as ORDER BY ASC,
MAX() to be handled incorrectly, and similar problems. (Bug#33061)

• MySQL Cluster: Upgrades of a cluster using while a DataMemory setting in excess of 16 GB caused data nodes to fail.
(Bug#34378)

• MySQL Cluster: Performing many SQL statements on NDB tables while in AUTOCOMMIT mode caused a memory leak in
mysqld. (Bug#34275)

• MySQL Cluster: In certain rare circumstances, a race condition could occur between an aborted insert and a delete leading a data
node crash. (Bug#34260)

• MySQL Cluster: Multi-table updates using ordered indexes during handling of node failures could cause other data nodes to fail.
(Bug#34216)

• MySQL Cluster: When configured with NDB support, MySQL failed to compile using gcc 4.3 on 64bit FreeBSD systems.
(Bug#34169)

• MySQL Cluster: The failure of a DDL statement could sometimes lead to node failures when attempting to execute subsequent
DDL statements. (Bug#34160)

MySQL Change History

2005

http://bugs.mysql.com/34655
http://bugs.mysql.com/12713
http://bugs.mysql.com/31736
http://bugs.mysql.com/26395
http://bugs.mysql.com/29186
http://bugs.mysql.com/33834
http://bugs.mysql.com/32440
http://bugs.mysql.com/11379
http://bugs.mysql.com/30059
http://bugs.mysql.com/23771
http://bugs.mysql.com/33061
http://bugs.mysql.com/34378
http://bugs.mysql.com/34275
http://bugs.mysql.com/34260
http://bugs.mysql.com/34216
http://bugs.mysql.com/34169
http://bugs.mysql.com/34160


• MySQL Cluster: Extremely long SELECT statements (where the text of the statement was in excess of 50000 characters) against
NDB tables returned empty results. (Bug#34107)

• MySQL Cluster: When configured with NDB support, MySQL failed to compile on 64bit FreeBSD systems. (Bug#34046)

See also Bug#32175

• MySQL Cluster: High numbers of insert operations, delete operations, or both could cause NDB error 899 (ROWID ALREADY AL-

LOCATED) to occur unnecessarily. (Bug#34033)

• MySQL Cluster: A periodic failure to flush the send buffer by the NDB TCP transporter could cause a unnecessary delay of 10 ms
between operations. (Bug#34005)

• MySQL Cluster: A race condition could occur (very rarely) when the release of a GCI was followed by a data node failure.
(Bug#33793)

• MySQL Cluster: Some tuple scans caused the wrong memory page to be accessed, leading to invalid results. This issue could affect
both in-memory and Disk Data tables. (Bug#33739)

• MySQL Cluster: Statements executing multiple inserts performed poorly on NDB tables having AUTO_INCREMENT columns.
(Bug#33534)

• MySQL Cluster: When all data and SQL nodes in the cluster were shut down abnormally (that is, other than by using STOP in the
cluster management client), ndb_mgm used excessive amounts of CPU. (Bug#33237)

• MySQL Cluster: The ndb_waiter utility polled ndb_mgmd excessively when obtaining the status of cluster data nodes.
(Bug#32025)

See also Bug#32023

• MySQL Cluster: Transaction atomicity was sometimes not preserved between reads and inserts under high loads. (Bug#31477)

• MySQL Cluster: Numerous NDBCLUSTER test failures occurred in builds compiled using icc on IA64 platforms. (Bug#31239)

• MySQL Cluster: The server failed to reject properly the creation of an NDB table having an unindexed AUTO_INCREMENT
column. (Bug#30417)

• MySQL Cluster: Having tables with a great many columns could cause Cluster backups to fail. (Bug#30172)

• MySQL Cluster: Issuing an INSERT ... ON DUPLICATE KEY UPDATE concurrently with or following a TRUNCATE state-
ment on an NDB table failed with NDB error 4350 TRANSACTION ALREADY ABORTED. (Bug#29851)

• MySQL Cluster: The Cluster backup process could not detect when there was no more disk space and instead continued to run un-
til killed manually. Now the backup fails with an appropriate error when disk space is exhausted. (Bug#28647)

• MySQL Cluster: It was possible in config.ini to define cluster nodes having node IDs greater than the maximum allowed
value. (Bug#28298)

• MySQL Cluster: CREATE TABLE and ALTER TABLE statements using ENGINE=NDB or ENGINE=NDBCLUSTER caused
mysqld to fail on Solaris 10 for x86 platforms. (Bug#19911)

• Partitioning: In some cases, matching rows from a partitioned MyISAM using a BIT column as the primary key were not found by
queries. (Bug#34358)

• Partitioning: Enabling innodb_file_per_table produced problems with partitioning and tablespace operations on parti-
tioned InnoDB tables, in some cases leading to corrupt partitions or causing the server to crash. (Bug#33429)

• Partitioning: A table defined using PARTITION BY KEY and having a BIT column referenced in the partitioning key did not be-
have correctly; some rows could be inserted into the wrong partition, causing wrong results to be returned from queries.
(Bug#33379)

• Partitioning: When ALTER TABLE DROP PARTITION was executed on a table on which there was a trigger, the statement
failed with an error. This occurred even if the trigger did not reference any tables. (Bug#32943)

• Partitioning: Currently, all partitions of a partitioned table must use the same storage engine. One may optinally specify the storage
engine on a per-partition basis; however, where this is the done, the storage engine must be the same as used by the table as a whole.

MySQL Change History

2006

http://bugs.mysql.com/34107
http://bugs.mysql.com/34046
http://bugs.mysql.com/32175
http://bugs.mysql.com/34033
http://bugs.mysql.com/34005
http://bugs.mysql.com/33793
http://bugs.mysql.com/33739
http://bugs.mysql.com/33534
http://bugs.mysql.com/33237
http://bugs.mysql.com/32025
http://bugs.mysql.com/32023
http://bugs.mysql.com/31477
http://bugs.mysql.com/31239
http://bugs.mysql.com/30417
http://bugs.mysql.com/30172
http://bugs.mysql.com/29851
http://bugs.mysql.com/28647
http://bugs.mysql.com/28298
http://bugs.mysql.com/19911
http://bugs.mysql.com/34358
http://bugs.mysql.com/33429
http://bugs.mysql.com/33379
http://bugs.mysql.com/32943


ALTER TABLE did not enforce these rules correctly, the result being that incaccurate error messages were shown when trying to
use the statement to change the storage engine used by an individual partition or partitions. (Bug#31931)

• Partitioning: Using the DATA DIRECTORY and INDEX DIRECTORY options for partitions with CREATE TABLE or ALTER
TABLE statements appeared to work on Windows, although they are not supported by MySQL on Windows systems, and sub-
sequent attempts to use the tables referenced caused errors. Now these options are disabled on Windows, and attempting to use them
generates a warning. (Bug#30459)

• Replication: INSERT_ID was not written to the binary log for inserts into BLACKHOLE tables. (Bug#35178)

• Replication: When using statement-based replication and a DELETE, UPDATE, or INSERT ... SELECT statement using a
LIMIT clause is encountered, a warning that the statement is not safe to replicate in statement mode is now issued; when using
MIXED mode, the statement is now replicated using the row-based format. (Bug#34768)

• Replication: mysqlbinlog did not output the values of auto_increment_increment and auto_increment_offset
when both were equal to their default values (for both of these variables, the default is 1). This meant that a binary log recorded by a
client using the defaults for both variables and then replayed on another client using its own values for either or both of these vari-
ables produced erroneous results. (Bug#34732)

See also Bug#31168

• Replication: When the Windows version of mysqlbinlog read 4.1 binlogs containing LOAD DATA INFILE statements, it out-
put backslashes as path separators, causing problems for client programs expecting forward slashes. In such cases, it now converts
\\ to / in directory paths. (Bug#34355)

• Replication: SHOW SLAVE STATUS failed when slave I/O was about to terminate. (Bug#34305)

• Replication: The character sets and collations used for constant identifiers in stored procedures were not replicated correctly.
(Bug#34289)

• Replication: mysqlbinlog from a 5.1 or later MySQL distribution could not read binary logs generated by a 4.1 server when the
logs contained LOAD DATA INFILE statements. (Bug#34141)

This regression was introduced by Bug#32407

• Replication: A CREATE USER, DROP USER, or RENAME USER statement that fails on the master, or that is a duplicate of any of
these statements, is no longer written to the binlog; previously, either of these occurrences could cause the slave to fail.

(Bug#33862)

See also Bug#29749

• Replication: SHOW BINLOG EVENTS could fail when the binlog contained one or more events whose size was close to the value
of max_allowed_packet. (Bug#33413)

• Replication: An extraneous ROLLBACK statement was written to the binary log by a connection that did not use any transactional
tables. (Bug#33329)

• Replication: mysqlbinlog failed to release all of its memory after terminating abnormally. (Bug#33247)

• Replication: When a stored routine or trigger, running on a master that used MySQL 5.0 or MySQL 5.1.11 or earlier, performed an
insert on an AUTO_INCREMENT column, the INSERT_ID value was not replicated correctly to a slave running MySQL 5.1.12 or
later (including any MySQL 6.0 release). (Bug#33029)

See also Bug#19630

• Replication: The error message generated due to lack of a default value for an extra column was not sufficiently informative.
(Bug#32971)

• Replication: When a user variable was used inside an INSERT statement, the corresponding binlog event was not written to the
binlog correctly. (Bug#32580)

• Replication: When using row-based replication, deletes from a table with a foreign key constraint failed on the slave. (Bug#32468)

• Replication: The --base64-output option for mysqlbinlog was not honored for all types of events. This interfered in some
cases with performing point-in-time recovery. (Bug#32407)

MySQL Change History

2007

http://bugs.mysql.com/31931
http://bugs.mysql.com/30459
http://bugs.mysql.com/35178
http://bugs.mysql.com/34768
http://bugs.mysql.com/34732
http://bugs.mysql.com/31168
http://bugs.mysql.com/34355
http://bugs.mysql.com/34305
http://bugs.mysql.com/34289
http://bugs.mysql.com/34141
http://bugs.mysql.com/32407
http://bugs.mysql.com/33862
http://bugs.mysql.com/29749
http://bugs.mysql.com/33413
http://bugs.mysql.com/33329
http://bugs.mysql.com/33247
http://bugs.mysql.com/33029
http://bugs.mysql.com/19630
http://bugs.mysql.com/32971
http://bugs.mysql.com/32580
http://bugs.mysql.com/32468
http://bugs.mysql.com/32407


• Replication: SQL statements containing comments using -- syntax were not replayable by mysqlbinlog, even though such
statements replicated correctly. (Bug#32205)

• Replication: When using row-based replication from a master running MySQL 5.1.21 or earlier to a slave running 5.1.22 or later,
updates of integer columns failed on the slave with ERROR IN UNKNOWN EVENT: ROW APPLICATION FAILED. (Bug#31583)

This regression was introduced by Bug#21842

• Replication: Replicating write, update, or delete events from a master running MySQL 5.1.15 or earlier to a slave running 5.1.16 or
later caused the slave to crash. (Bug#31581)

• Replication: When using row-based replication, the slave stopped when attempting to delete non-existent rows from a slave table
without a primary key. In addition, no error was reported when this occurred. (Bug#31552)

• Replication: Errors due to server ID conflicts were reported only in the slave's error log; now these errors are also shown in the
Server_IO_State column in the output of SHOW SLAVE STATUS. (Bug#31316)

• Replication: STOP SLAVE did not stop connection attempts properly. If the IO slave thread was attempting to connect, STOP
SLAVE waited for the attempt to finish, sometimes for a long period of time, rather than stopping the slave immediately.
(Bug#31024)

See also Bug#30932

• Replication: Issuing a DROP VIEW statement caused replication to fail if the view did not actually exist. (Bug#30998)

• Replication: The effects of scheduled events were not always correctly reproduced on the slave when using row-based replication.
(Bug#29020)

• Replication: Setting server_id did not update its value for the current session. (Bug#28908)

• Replication: Slaves running MySQL 5.1.18 and later could not read binary logs from older versions of the server. (Bug#27779,
Bug#32434)

This regression was introduced by Bug#22583

• Replication: MASTER_POS_WAIT() did not return NULL when the server was not a slave. (Bug#26622)

• Replication: Network timeouts between the master and the slave could result in corruption of the relay log. (Bug#26489)

• Replication: The inspecific error message WRONG PARAMETERS TO FUNCTION REGISTER_SLAVE resulted when START SLAVE
failed to register on the master due to excess length of any the slave server options --report-host, --report-user, or -
-report-password. An error message specific to each of these options is now returned in such cases. The new error messages
are:

• FAILED TO REGISTER SLAVE: TOO LONG 'REPORT-HOST'

• FAILED TO REGISTER SLAVE: TOO LONG 'REPORT-USER'

• FAILED TO REGISTER SLAVE; TOO LONG 'REPORT-PASSWORD'
(Bug#22989)

See also Bug#19328

• Replication: START SLAVE UNTIL MASTER_LOG_POS=position issued on a slave that was using -
-log-slave-updates and that was involved in circular replication would cause the slave to run and stop one event later than
that specified by the value of position. (Bug#13861)

• Replication: PURGE BINARY LOGS TO and PURGE BINARY LOGS BEFORE did not handle missing binary log files cor-
rectly or in the same way. Now for both of these statements, if any files listed in the .index file are missing from the filesystem,
the statement fails with an error.

• Cluster Replication: Disk Data: Statements violating unique keys on Disk Data tables (such as attempting to insert NULL into a
NOT NULL column) could cause data nodes to fail. When the statement was executed from the binlog, this could also result in fail-
ure of the slave cluster. (Bug#34118)

• Disk Data: Updating in-memory columns of one or more rows of Disk Data table, followed by deletion of these rows and re-

MySQL Change History

2008

http://bugs.mysql.com/32205
http://bugs.mysql.com/31583
http://bugs.mysql.com/21842
http://bugs.mysql.com/31581
http://bugs.mysql.com/31552
http://bugs.mysql.com/31316
http://bugs.mysql.com/31024
http://bugs.mysql.com/30932
http://bugs.mysql.com/30998
http://bugs.mysql.com/29020
http://bugs.mysql.com/28908
http://bugs.mysql.com/27779
http://bugs.mysql.com/32434
http://bugs.mysql.com/22583
http://bugs.mysql.com/26622
http://bugs.mysql.com/26489
http://bugs.mysql.com/22989
http://bugs.mysql.com/19328
http://bugs.mysql.com/13861
http://bugs.mysql.com/34118


insertion of them, caused data node failures. (Bug#33619)

• Cluster Replication: Setting --replicate-ignore-db=mysql caused the mysql.ndb_apply_status table not to be
replicated, breaking Cluster Replication. (Bug#28170)

• Cluster API: When reading a BIT(64) value using NdbOperation:getValue(), 12 bytes were written to the buffer rather
than the expected 8 bytes. (Bug#33750)

• Manually replacing a binary log file with a directory having the same name caused an error that was not handled correctly.
(Bug#35675)

• Using LOAD DATA INFILE with a view could crash the server. (Bug#35469)

• Selecting from INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS could cause a server crash. (Bug#35406)

See also Bug#35108

• For a TERMPORARY table, DELETE with no WHERE clause could fail when preceded by DELETE statements with a WHERE clause.
(Bug#35392)

• If the server crashed with an InnoDB error due to unavailability of undo slots, errors could persist during rollback when the server
was restarted: There are two UNDO slot caches (for INSERT and UPDATE). If all slots end up in one of the slot cashes, a request for
a slot from the other slot cache would fail. This can happen if the request is for an UPDATE slot and all slots are in the INSERT slot
cache, or vice versa. (Bug#35352)

• In some cases, when too many clients tried to connect to the server, the proper SQLSTATE code was not returned. (Bug#35289)

• Memory-allocation failures for attempts to set key_buffer_size to large values could result in a server crash. (Bug#35272)

• In some cases, mysqld would crash during replication startup because InnoDB tried to parse a NULL query and failed.
(Bug#35226)

• For InnoDB tables, ALTER TABLE DROP failed if the name of the column to be dropped began with “foreign”. (Bug#35220)

• Queries could return different results depending on whether ORDER BY columns were indexed. (Bug#35206)

• When a view containing a reference to DUAL was created, the reference was removed when the definition was stored, causing some
queries against the view to fail with invalid SQL syntax errors. (Bug#35193)

• SELECT ... FROM INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS caused the server to crash if the table refer-
enced by a foreign key had been dropped. This issue was observed on Windows platforms only. (Bug#35108)

See also Bug#35406

• Non-connection threads were being counted in the value of the Max_used_connections status variable. (Bug#35074)

• A query that performed a ref_or_null join where the second table used a key having one or columns that could be NULL and
had a column value that was NULL caused the server to crash. (Bug#34945)

This regression was introduced by Bug#12144

• For some queries, the optimizer used an ordered index scan for GROUP BY or DISTINCT when it was supposed to use a loose in-
dex scan, leading to incorrect results. (Bug#34928)

• Creating a foreign key on an InnoDB table that was created with an explicit AUTO_INCREMENT value caused that value to be re-
set to 1. (Bug#34920)

• mysqldump failed to return an error code when using the --master-data option without binary logging being enabled on the
server. (Bug#34909)

• Under some circumstances, the value of mysql_insert_id() following a SELECT ... INSERT statement could return an
incorrect value. This could happen when the last SELECT ... INSERT did not involve an AUTO_INCREMENT column, but the
value of mysql_insert_id() was changed by some previous statements. (Bug#34889)

• Table and database names were mixed up in some places of the subquery transformation procedure. This could affect debugging
trace output and further extensions of that procedure. (Bug#34830)

MySQL Change History

2009

http://bugs.mysql.com/33619
http://bugs.mysql.com/28170
http://bugs.mysql.com/33750
http://bugs.mysql.com/35675
http://bugs.mysql.com/35469
http://bugs.mysql.com/35406
http://bugs.mysql.com/35108
http://bugs.mysql.com/35392
http://bugs.mysql.com/35352
http://bugs.mysql.com/35289
http://bugs.mysql.com/35272
http://bugs.mysql.com/35226
http://bugs.mysql.com/35220
http://bugs.mysql.com/35206
http://bugs.mysql.com/35193
http://bugs.mysql.com/35108
http://bugs.mysql.com/35406
http://bugs.mysql.com/35074
http://bugs.mysql.com/34945
http://bugs.mysql.com/12144
http://bugs.mysql.com/34928
http://bugs.mysql.com/34920
http://bugs.mysql.com/34909
http://bugs.mysql.com/34889
http://bugs.mysql.com/34830


• If fsync() returned ENOLCK, InnoDB could treat this as fatal and cause abnormal server termination. InnoDB now retries the
operation. (Bug#34823)

• CREATE SERVER and ALTER SERVER could crash the server if out-of-memory conditions occurred. (Bug#34790)

• A malformed URL used for a FEDERATED table's CONNECTION option value in a CREATE TABLE statement was not handled
correctly and could crash the server. (Bug#34788)

• Queries such as SELECT ROW(1, 2) IN (SELECT t1.a, 2) FROM t1 GROUP BY t1.a (combining row constructors
and subqueries in the FROM clause) could lead to assertion failure or unexpected error messages. (Bug#34763)

• Using NAME_CONST() with a negative number and an aggregate function caused MySQL to crash. This could also have a negative
impact on replication. (Bug#34749)

• A memory-handling error associated with use of GROUP_CONCAT() in subqueries could result in a server crash. (Bug#34747)

• For an indexed integer column col_name and a value N that is one greater than the maximum value allowed for the data type of
col_name, conditions of the form WHERE col_name < N failed to return rows where the value of col_name is N - 1.
(Bug#34731)

• A server running with the --debug option could attempt to dereference a null pointer when opening tables, resulting in a crash.
(Bug#34726)

• Assigning an “incremental” value to the debug system variable did not add the new value to the current value. For example, if the
current debug value was 'T', the statement SET debug = '+P' resulted in a value of 'P' rather than the correct value of
'P:T'. (Bug#34678)

• For debug builds, reading from INFORMATION_SCHEMA.TABLES or INFORMATION_SCHEMA.COLUMNS could cause asser-
tion failures. This could happen under rare circumstances when INFORMATION_SCHEMA fails to get information about a table (for
example, when a connection is killed). (Bug#34656)

• Executing a TRUNCATE statement on a table having both a foreign key reference and a DELETE trigger crashed the server.
(Bug#34643)

• Some subqueries using an expression that included an aggregate function could fail or in some cases lead to a crash of the server.
(Bug#34620)

• Dangerous pointer arithmetic crashed the server on some systems. (Bug#34598)

• Creating a view inside a stored procedure could lead to a crash of the MySQL Server. (Bug#34587)

• CAST(AVG(arg) AS DECIMAL) produced incorrect results for non-DECIMAL arguments. (Bug#34512)

• The per-thread debugging settings stack was not being deallocated before thread termination, resulting in a stack memory leak.
(Bug#34424)

• Executing an ALTER VIEW statement on a table crashed the server. (Bug#34337)

• InnoDB could crash if overflow occurred for an AUTO_INCREMENT column. (Bug#34335)

• For InnoDB, exporting and importing a table could corrupt TINYBLOB columns, and a subsequent ALTER TABLE could corrupt
TINYTEXT columns as well. (Bug#34300)

• DEFAULT 0 was not allowed for the YEAR data type. (Bug#34274)

• Under some conditions, a SET GLOBAL innodb_commit_concurrency or SET GLOBAL in-
nodb_autoextend_increment statement could fail. (Bug#34223)

• mysqldump attempts to set the character_set_results system variable after connecting to the server. This failed for pre-
4.1 servers that have no such variable, but mysqldump did not account for this and 1) failed to dump database contents; 2) failed to
produce any error message alerting the user to the problem. (Bug#34192)

• Use of stored functions in the WHERE clause for SHOW OPEN TABLES caused a server crash. (Bug#34166)

• For a FEDERATED table with an index on a nullable column, accessing the table could crash a server, return an incorrect result set,
or return ERROR 1030 (HY000): Got error 1430 from storage engine. (Bug#33946)

MySQL Change History

2010

http://bugs.mysql.com/34823
http://bugs.mysql.com/34790
http://bugs.mysql.com/34788
http://bugs.mysql.com/34763
http://bugs.mysql.com/34749
http://bugs.mysql.com/34747
http://bugs.mysql.com/34731
http://bugs.mysql.com/34726
http://bugs.mysql.com/34678
http://bugs.mysql.com/34656
http://bugs.mysql.com/34643
http://bugs.mysql.com/34620
http://bugs.mysql.com/34598
http://bugs.mysql.com/34587
http://bugs.mysql.com/34512
http://bugs.mysql.com/34424
http://bugs.mysql.com/34337
http://bugs.mysql.com/34335
http://bugs.mysql.com/34300
http://bugs.mysql.com/34274
http://bugs.mysql.com/34223
http://bugs.mysql.com/34192
http://bugs.mysql.com/34166
http://bugs.mysql.com/33946


• Passing anything other than a integer to a LIMIT clause in a prepared statement would fail. (This limitation was introduced to avoid
replication problems; for example, replicating the statement with a string argument would cause a parse failure in the slave). Now,
arguments to the LIMIT clause are converted to integer values, and these converted values are used when logging the statement.
(Bug#33851)

• An internal buffer in mysql was too short. Overextending it could cause stack problems or segmentation violations on some archi-
tectures. (This is not a problem that could be exploited to run arbitrary code.) (Bug#33841)

• A query using WHERE (column1='string1' AND column2=constant1) OR (column1='string2' AND
column2=constant2), where col1 used a binary collation and string1 matched string2 except for case, failed to match
any records even when matches were found by a query using the equivalent clause WHERE column2=constant1 OR
column2=constant2. (Bug#33833)

• Large unsigned integers were improperly handled for prepared statements, resulting in truncation or conversion to negative num-
bers. (Bug#33798)

• Reuse of prepared statements could cause a memory leak in the embedded server. (Bug#33796)

• The server crashed when executing a query that had a subquery containing an equality X=Y where Y referred to a named select list
expression from the parent select. The server crashed when trying to use the X=Y equality for ref-based access. (Bug#33794)

• Some queries using a combination of IN, CONCAT(), and an implicit type conversion could return an incorrect result. (Bug#33764)

• In some cases a query that produced a result set when using ORDER BY ASC did not return any results when this was changed to
ORDER BY DESC. (Bug#33758)

• Disabling concurrent inserts caused some cacheable queries not to be saved in the query cache. (Bug#33756)

• The UPDATE statement allowed NULL to be assigned to NOT NULL columns (the default data type value was assigned). An error
occurs now. (Bug#33699)

• ORDER BY ... DESC sorts could produce misordered results. (Bug#33697)

• The server could crash when REPEAT or another control instruction was used in conjunction with labels and a LEAVE instruction.
(Bug#33618)

• The parser allowed control structures in compound statements to have mismatched beginning and ending labels. (Bug#33618)

• make_binary_distribution passed the --print-libgcc-file option to the C compiler, but this does not work with
the ICC compiler. (Bug#33536)

• Threads created by the event scheduler were incorrectly counted against the max_connections thread limit, which could lead to
client lockout. (Bug#33507)

• Dropping a function after dropping the function's creator could cause the server to crash. (Bug#33464)

• Certain combinations of views, subselects with outer references and stored routines or triggers could cause the server to crash.
(Bug#33389)

• SET GLOBAL myisam_max_sort_file_size=DEFAULT set myisam_max_sort_file_size to an incorrect value.
(Bug#33382)

See also Bug#31177

• ENUM- or SET-valued plugin variables could not be set from the command line. (Bug#33358)

• For InnoDB tables, there was a race condition involving the data dictionary and repartitioning. (Bug#33349)

• Loading plugins via command-line options to mysqld could cause an assertion failure. (Bug#33345)

• SLEEP(0) failed to return on 64-bit Mac OS X due to a bug in pthread_cond_timedwait(). (Bug#33304)

• Using Control-R in the mysql client caused it to crash. (Bug#33288)

• For MyISAM tables, CHECK TABLE (non-QUICK) and any form of REPAIR TABLE incorrected treated rows as corrupted under
the combination of the following conditions:

MySQL Change History

2011

http://bugs.mysql.com/33851
http://bugs.mysql.com/33841
http://bugs.mysql.com/33833
http://bugs.mysql.com/33798
http://bugs.mysql.com/33796
http://bugs.mysql.com/33794
http://bugs.mysql.com/33764
http://bugs.mysql.com/33758
http://bugs.mysql.com/33756
http://bugs.mysql.com/33699
http://bugs.mysql.com/33697
http://bugs.mysql.com/33618
http://bugs.mysql.com/33618
http://bugs.mysql.com/33536
http://bugs.mysql.com/33507
http://bugs.mysql.com/33464
http://bugs.mysql.com/33389
http://bugs.mysql.com/33382
http://bugs.mysql.com/31177
http://bugs.mysql.com/33358
http://bugs.mysql.com/33349
http://bugs.mysql.com/33345
http://bugs.mysql.com/33304
http://bugs.mysql.com/33288


• The table had dynamic row format

• The table had a CHAR (not VARCHAR) column longer than 127 bytes (for multi-byte character sets this could be less than 127
characters)

• The table had rows with a signifcant length of more than 127 bytes significant length in that CHAR column (that is, a byte bey-
ond byte position 127 must be a non-space character)

This problem affected CHECK TABLE, REPAIR TABLE, OPTIMIZE TABLE, ALTER TABLE. CHECK TABLE reported and
marked the table as crashed if any row was present that fulfilled the third condition. The other statements deleted these rows.
(Bug#33222)

• Granting the UPDATE privilege on one column of a view caused the server to crash. (Bug#33201)

• For DECIMAL columns used with the ROUND(X,D) or TRUNCATE(X,D) function with a non-constant value of D, adding an OR-
DER BY for the function result produced misordered output. (Bug#33143)

See also Bug#33402, Bug#30617

• The CSV engine did not honor update requests for BLOB columns when the new column value had the same length as the value to
be updated. (Bug#33067)

• After receiving a SIGHUP signal, the server could crash, and user-specified log options were ignored when reopening the logs.
(Bug#33065)

• When MySQL was built with OpenSSL, the SSL library was not properly initialized with information of which endpoint it was
(server or client), causing connection failures. (Bug#33050)

• Under some circumstances a combination of aggregate functions and GROUP BY in a SELECT query over a view could lead to in-
correct calculation of the result type of the aggregate function. This in turn could lead to incorrect results, or to crashes on debug
builds of the server. (Bug#33049)

• For DISTINCT queries, 4.0 and 4.1 stopped reading joined tables as soon as the first matching row was found. However, this op-
timzation was lost in MySQL 5.0, which instead read all matching rows. This fix for this regression may result in a major improve-
ment in performance for DISTINCT queries in cases where many rows match. (Bug#32942)

• Repeated creation and deletion of views within prepared statements could eventually crash the server. (Bug#32890)

See also Bug#34587

• Incorrect assertions could cause a server crash for DELETE triggers for transactional tables. (Bug#32790)

• In some cases where setting a system variable failed, no error was sent to the client, causing the client to hang. (Bug#32757)

• Enabling the PAD_CHAR_TO_FULL_LENGTH SQL mode caused privilege-loading operations (such as FLUSH PRIVILEGES) to
include trailing spaces from grant table values stored in CHAR columns. Authentication for incoming connections failed as a result.
Now privilege loading does not include trailing spaces, regardless of SQL mode. (Bug#32753)

• The SHOW ENGINE INNODB STATUS and SHOW ENGINE INNODB MUTEX statements incorrectly required the SUPER priv-
ilege rather than the PROCESS privilege. (Bug#32710)

• Inserting strings with a common prefix into a table that used the ucs2 character set corrupted the table. (Bug#32705)

• Tables in the mysql database that stored the current sql_mode value as part of stored program definitions were not updated with
newer mode values (NO_ENGINE_SUBSTITUTION, PAD_CHAR_TO_FULL_LENGTH). This causes various problems defining
stored programs if those modes were included in the current sql_mode value. (Bug#32633)

• A view created with a string literal for one of the columns picked up the connection character set, but not the collation. Comparison
to that field therefore used the default collation for that character set, causing an error if the connection collation was not compatible
with the default collation. The problem was caused by text literals in a view being dumped with a character set introducer even
when this was not necessary, sometimes leading to a loss of collation information. Now the character set introducer is dumped only
if it was included in the original query. (Bug#32538)

See also Bug#21505

MySQL Change History

2012

http://bugs.mysql.com/33222
http://bugs.mysql.com/33201
http://bugs.mysql.com/33143
http://bugs.mysql.com/33402
http://bugs.mysql.com/30617
http://bugs.mysql.com/33067
http://bugs.mysql.com/33065
http://bugs.mysql.com/33050
http://bugs.mysql.com/33049
http://bugs.mysql.com/32942
http://bugs.mysql.com/32890
http://bugs.mysql.com/34587
http://bugs.mysql.com/32790
http://bugs.mysql.com/32757
http://bugs.mysql.com/32753
http://bugs.mysql.com/32710
http://bugs.mysql.com/32705
http://bugs.mysql.com/32633
http://bugs.mysql.com/32538
http://bugs.mysql.com/21505


• Queries using LIKE on tables having indexed CHAR columns using either of the eucjpms or ujis character sets did not return
correct results. (Bug#32510)

• Executing a prepared statement associated with a materialized cursor sent to the client a metadata packet with incorrect table and
database names. The problem occurred because the server sent the the name of the temporary table used by the cursor instead of the
table name of the original table.

The same problem occured when selecting from a view, in which case the name of the table name was sent, rather than the name of
the view. (Bug#32265)

• InnoDB adaptive hash latches could be held too long, resulting in a server crash. This fix may also provide significant performance
improvements on systems on which many queries using filesorts with temporary tables are being performed. (Bug#32149)

• On Windows, mysqltest_embedded.exe did not properly execute the send command. (Bug#32044)

• A variable named read_only could be declared even though that is a reserved word. (Bug#31947)

• On Windows, the build process failed with four parallel build threads. (Bug#31929)

• Queries testing numeric constants containing leading zeroes against ZEROFILL columns were not evaluated correctly.
(Bug#31887)

• If an error occurred during file creation, the server sometimes did not remove the file, resulting in an unused file in the filesystem.
(Bug#31781)

• The mysqld crash handler failed on Windows. (Bug#31745)

• The server returned the error message OUT OF MEMORY; RESTART SERVER AND TRY AGAIN when the actual problem was that the
sort buffer was too small. Now an appropriate error message is returned in such cases. (Bug#31590)

• A table having an index that included a BLOB or TEXT column, and that was originally created with a MySQL server using version
4.1 or earlier, could not be opened by a 5.1 or later server. (Bug#31331)

• The -, *, and / operators and the functions POW() and EXP() could misbehave when used with floating-point numbers. Previ-
ously they might return +INF, -INF, or NaN in cases of numeric overflow (including that caused by division by zero) or when in-
valid arguments were used. Now NULL is returned in all such cases. (Bug#31236)

• The mysql_change_user() C API function caused global Com_xxx status variable values to be incorrect. (Bug#31222)

• When sorting privilege table rows, the server treated escaped wildcard characters (\% and \_) the same as unescaped wildcard char-
acters (% and _), resulting in incorrect row ordering. (Bug#31194)

• On WIndows, SHOW PROCESSLIST could display process entries with a State value of *** DEAD ***. (Bug#30960)

• ROUND(X,D) or TRUNCATE(X,D) for non-constant values of D could crash the server if these functions were used in an ORDER
BY that was resolved using filesort. (Bug#30889)

• Resetting the query cache by issuing a SET GLOBAL query_cache_size=0 statement caused the server to crash if it concur-
rently was saving a new result set to the query cache. (Bug#30887)

• Manifest problems prevented MySQLInstanceConfig.exe from running on Windows Vista. (Bug#30823)

• If an alias was used to refer to the value returned by a stored function within a subselect, the outer select recognized the alias but
failed to retrieve the value assigned to it in the subselect. (Bug#30787)

• Binary logging for a stored procedure differed depending on whether or not execution occurred in a prepared statement.
(Bug#30604)

• Replication of LOAD DATA INFILE could fail when read_buffer_size was larger than max_allowed_packet.
(Bug#30435)

• An orphaned PID file from a no-longer-running process could cause mysql.server to wait for that process to exit even though it
does not exist. (Bug#30378)

• The Table_locks_waited waited variable was not incremented in the cases that a lock had to be waited for but the waiting
thread was killed or the request was aborted. (Bug#30331)

MySQL Change History

2013

http://bugs.mysql.com/32510
http://bugs.mysql.com/32265
http://bugs.mysql.com/32149
http://bugs.mysql.com/32044
http://bugs.mysql.com/31947
http://bugs.mysql.com/31929
http://bugs.mysql.com/31887
http://bugs.mysql.com/31781
http://bugs.mysql.com/31745
http://bugs.mysql.com/31590
http://bugs.mysql.com/31331
http://bugs.mysql.com/31236
http://bugs.mysql.com/31222
http://bugs.mysql.com/31194
http://bugs.mysql.com/30960
http://bugs.mysql.com/30889
http://bugs.mysql.com/30887
http://bugs.mysql.com/30823
http://bugs.mysql.com/30787
http://bugs.mysql.com/30604
http://bugs.mysql.com/30435
http://bugs.mysql.com/30378
http://bugs.mysql.com/30331


• The Com_create_function status variable was not incremented properly. (Bug#30252)

• mysqld displayed the --enable-pstack option in its help message even if MySQL was configured without -
-with-pstack. (Bug#29836)

• The mysql_config command would output CFLAGS values that were incompatible with C++ for the HP-UX platform.
(Bug#29645)

• Replication crashed with the NDB storage engine when mysqld was started with --character-set-server=ucs2.
(Bug#29562)

• Views were treated as insertable even if some base table columns with no default value were omitted from the view definition. (This
is contrary to the condition for insertability that a view must contain all columns in the base table that do not have a default value.)
(Bug#29477)

• myisamchk always reported the character set for a table as latin1_swedish_ci (8) regardless of the table' actual character
set. (Bug#29182)

• InnoDB could return an incorrect rows-updated value for UPDATE statements. (Bug#29157)

• The MySQL preferences pane did not work to start or stop MySQL on Mac OS X 10.5 (Leopard). (Bug#28854)

• For upgrading to a new major version using RPM packages (such as 4.1 to 5.0), if the installation procedure found an existing
MySQL server running, it could fail to shut down the old server, but also erroneously removed the server's socket file. Now the pro-
cedure checks for an existing server package from a different vendor or major MySQL version. In such case, it refuses to install the
server and recommends how to safely remove the old packages before installing the new ones. (Bug#28555)

• mysqlhotcopy silently skipped databases with names consisting of two alphanumeric characters. (Bug#28460)

• No information was written to the general query log for the COM_STMT_CLOSE, COM_STMT_RESET, and
COM_STMT_SEND_LONG_DATA commands. (These occur when a client invokes the mysql_stmt_close(),
mysql_stmt_reset() and mysql_stmt_send_long_data() C API functions.) (Bug#28386)

• Previously, the parser accepted the ODBC { OJ ... LEFT OUTER JOIN ...} syntax for writing left outer joins. The parser
now allows { OJ ... } to be used to write other types of joins, such as INNER JOIN or RIGHT OUTER JOIN. This helps
with compatibility with some third-party applications, but is not official ODBC syntax. (Bug#28317)

• The FEDERATED storage engine did not perform identifier quoting for column names that are reserved words when sending state-
ments to the remote server. (Bug#28269)

• The SQL parser did not accept an empty UNION=() clause. This meant that, when there were no underlying tables specified for a
MERGE table, SHOW CREATE TABLE and mysqldump both output statements that could not be executed.

Now it is possible to execute a CREATE TABLE or ALTER TABLE statement with an empty UNION=() clause. However, SHOW
CREATE TABLE and mysqldump do not output the UNION=() clause if there are no underlying tables specified for a MERGE ta-
ble. This also means it is now possible to remove the underlying tables for a MERGE table using ALTER TABLE ...
UNION=(). (Bug#28248)

• The utf8_general_ci collation incorrectly did not sort "U+00DF SHARP S" equal to 's'. (Bug#27877)

• It was possible to exhaust memory by repeatedly running index_merge queries and never performing any FLUSH TABLES
statements. (Bug#27732)

• When utf8 was set as the connection character set, using SPACE() with a non-Unicode column produced an error. (Bug#27580)

See also Bug#23637

• The parser rules for the SHOW PROFILE statement were revised to work with older versions of bison. (Bug#27433)

• resolveip failed to produce correct results for hostnames that begin with a digit. (Bug#27427)

• In ORDER BY clauses, mixing aggregate functions and non-grouping columns is not allowed if the ONLY_FULL_GROUP_BY SQL
mode is enabled. However, in some cases, no error was thrown because of insufficient checking. (Bug#27219)

• Memory corruption, a crash of the MySQL server, or both, could take place if a low-level I/O error occurred while an ARCHIVE ta-
ble was being opened. (Bug#26978)

MySQL Change History

2014

http://bugs.mysql.com/30252
http://bugs.mysql.com/29836
http://bugs.mysql.com/29645
http://bugs.mysql.com/29562
http://bugs.mysql.com/29477
http://bugs.mysql.com/29182
http://bugs.mysql.com/29157
http://bugs.mysql.com/28854
http://bugs.mysql.com/28555
http://bugs.mysql.com/28460
http://bugs.mysql.com/28386
http://bugs.mysql.com/28317
http://bugs.mysql.com/28269
http://bugs.mysql.com/28248
http://bugs.mysql.com/27877
http://bugs.mysql.com/27732
http://bugs.mysql.com/27580
http://bugs.mysql.com/23637
http://bugs.mysql.com/27433
http://bugs.mysql.com/27427
http://bugs.mysql.com/27219
http://bugs.mysql.com/26978


• SHOW PROFILE hung if executed before enabling the @@profiling session variable. (Bug#26938)

• DROP DATABASE failed for attempts to drop databases with names that contained the legacy #mysql50# name prefix.
(Bug#26703)

• config-win.h unconditionally defined bool as BOOL, causing problems on systems where bool is 1 byte and BOOL is 4 bytes.
(Bug#26461)

• On Windows, for distributions built with debugging support, mysql could crash if the user typed Control-C. (Bug#26243)

• When symbolic links were disabled, either with a server startup option or by enabling the NO_DIR_IN_CREATE SQL mode, CRE-
ATE TABLE silently ignored the DATA DIRECTORY and INDEX DIRECTORY table options. Now the server issues a warning if
symbolic links are disabled when these table options are used. (Bug#25677)

• Attempting to create an index with a prefix on a DECIMAL column appeared to succeed with an inaccurate warning message. Now,
this action fails with the error INCORRECT PREFIX KEY; THE USED KEY PART ISN'T A STRING, THE USED LENGTH IS LONGER

THAN THE KEY PART, OR THE STORAGE ENGINE DOESN'T SUPPORT UNIQUE PREFIX KEYS. (Bug#25426)

• mysqlcheck -A -r did not correctly identify all tables that needed repairing. (Bug#25347)

• On Windows, an error in configure.js caused installation of source distributions to fail. (Bug#25340)

• The Qcache_free_blocks status variable did not display a value of 0 if the query cache was disabled. (Bug#25132)

• The client library had no way to return an error if no connection had been established. This caused problems such as
mysql_library_init() failing silently if no errmsg.sys file was available. (Bug#25097)

• On Mac OS X, the StartupItem for MySQL did not work. (Bug#25008)

• For Windows 64-bit builds, enabling shared-memory support caused client connections to fail. (Bug#24992)

• mysql did not use its completion table. Also, the table contained few entries. (Bug#24624)

• If a user installed MySQL Server and set a password for the root user, and then uninstalled and reinstalled MySQL Server to the
same location, the user could not use the MySQL Instance Config wizard to configure the server because the uninstall operation left
the previous data directory intact. The config wizard assumed that any new install (not an upgrade) would have the default data dir-
ectory where the root user has no password. The installer now writes a registry key named FoundExistingDataDir. If the in-
staller finds an existing data directory, the key will have a value of 1, otherwise it will have a value of 0. When MySQLInstance-
Config.exe is run, it will attempt to read the key. If it can read the key, and the value is 1 and there is no existing instance of the
server (indicating a new installation), the Config Wizard will allow the user to input the old password so the server can be con-
figured. (Bug#24215)

• Logging of statements to log tables was incorrect for statements that contained utf8-incompatible binary strings. Incompatible se-
quences are hex-encoded now. (Bug#23924)

• The MySQL header files contained some duplicate macro definitions that could cause compilation problems. (Bug#23839)

• SHOW COLUMNS on a TEMPOARY table caused locking issues. (Bug#23588)

• For distributions compiled with the bundled libedit library, there were difficulties using the mysql client to enter input for non-
ASCII or multi-byte characters. (Bug#23097)

• perror reported incomplete or inaccurate information. (Bug#23028, Bug#25177)

• InnoDB exhibited thread thrashing with more than 50 concurrent connections under an update-intensive workload. (Bug#22868)

• After stopping and starting the event scheduler, disabled events could remain in the execution queue. (Bug#22738)

• The server produced a confusing error message when attempting to open a table that required a storage engine that was not loaded.
(Bug#22708)

• For views or stored programs created with an invalid DEFINER value, the error message was confusing (did not tie the problem to
the DEFINER clause) and has been improved. (Bug#21854)

• Warnings for deprecated syntax constructs used in stored routines make sense to report only when the routine is being created, but
they were also being reported when the routine was parsed for loading into the execution cache. Now they are reported only at

MySQL Change History

2015

http://bugs.mysql.com/26938
http://bugs.mysql.com/26703
http://bugs.mysql.com/26461
http://bugs.mysql.com/26243
http://bugs.mysql.com/25677
http://bugs.mysql.com/25426
http://bugs.mysql.com/25347
http://bugs.mysql.com/25340
http://bugs.mysql.com/25132
http://bugs.mysql.com/25097
http://bugs.mysql.com/25008
http://bugs.mysql.com/24992
http://bugs.mysql.com/24624
http://bugs.mysql.com/24215
http://bugs.mysql.com/23924
http://bugs.mysql.com/23839
http://bugs.mysql.com/23588
http://bugs.mysql.com/23097
http://bugs.mysql.com/23028
http://bugs.mysql.com/25177
http://bugs.mysql.com/22868
http://bugs.mysql.com/22738
http://bugs.mysql.com/22708
http://bugs.mysql.com/21854


routine creation time. (Bug#21801)

• Renaming a column that appeared in a foreign key definition did not update that definition with the new column name. This oc-
curred with both referenced and referencing tables. (Bug#21704)

• On Mac OS X, mysqld did not react to Ctrl-C when run under gdb, even when run with the --gdb option. (Bug#21567)

• CREATE ... SELECT did not always set DEFAULT column values in the new table. (Bug#21380)

• mysql_config output did not include -lmygcc on some platforms when it was needed. (Bug#21158)

• mysql-stress-test.pl and mysqld_multi.server.sh were missing from some binary distributions. (Bug#21023,
Bug#25486)

• The BENCHMARK() function, invoked with more than 2147483648 iterations (the size of a signed 32-bit integer), terminated pre-
maturely. (Bug#20752)

• MySQLInstanceConfig.exe could lose the innodb_data_home_dir setting when reconfiguring an instance.
(Bug#19797)

• DROP DATABASE did not drop orphaned FOREIGN KEY constraints. (Bug#18942)

• CREATE TABLE allowed 0 as the default value for a TIMESTAMP column when the server was running in NO_ZERO_DATE
mode. (Bug#18834)

• A SET column whose definition specified 64 elements could not be updated using integer values. (Bug#15409)

• If a SELECT calls a stored function in a transaction, and a statement within the function fails, that statement should roll back. Fur-
thermore, if ROLLBACK is executed after that, the entire transaction should be rolled back. Before this fix, the failed statement did
not roll back when it failed (even though it might ultimately get rolled back by a ROLLBACK later that rolls back the entire transac-
tion). (Bug#12713)

See also Bug#34655

• The parser incorrectly allowed SQLSTATE '00000' to be specified for a condition handler. (This is incorrect because the condi-
tion must be a failure condition and '00000' indicates success.) (Bug#8759)

• MySQLInstanceConfig.exe did not save the innodb_data_home_dir value to the my.ini file under certain circum-
stances. (Bug#6627)

C.1.3. Changes in MySQL 5.1.24 Carrier Grade Edition
This section contains change history information for MySQL Cluster 5.1 Carrier Grade Edition releases based on MySQL 5.1.24.

C.1.3.1. Changes in MySQL 5.1.24-ndb-6.3.13 (10 April 2008)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since MySQL Cluster
5.1 Carrier Grade Edition 5.1.23-ndb-6.3.10. This include all bugfixes and improvements that were originally scheduled to appear in
MySQL 5.1.23-ndb-6.3.11 and MySQL 5.1.23-ndb-6.3.12.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.24-ndb-6.3.13. MySQL Cluster 5.1 Carrier Grade Edition
5.1.24-ndb-6.3.13 — like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile
and install using the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1,
“Building MySQL Cluster from Source Code”. You can download source code archives for this release in two versions. The version
that you should use depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use
MySQL Cluster 5.1 Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.24-ndb-6.3.13/mysqlcom-5.1.24-ndb-6.3.13-telco.tar.gz in this directory contains the complete com-
mercial source archive.

Important

MySQL Change History

2016

http://bugs.mysql.com/21801
http://bugs.mysql.com/21704
http://bugs.mysql.com/21567
http://bugs.mysql.com/21380
http://bugs.mysql.com/21158
http://bugs.mysql.com/21023
http://bugs.mysql.com/25486
http://bugs.mysql.com/20752
http://bugs.mysql.com/19797
http://bugs.mysql.com/18942
http://bugs.mysql.com/18834
http://bugs.mysql.com/15409
http://bugs.mysql.com/12713
http://bugs.mysql.com/34655
http://bugs.mysql.com/8759
http://bugs.mysql.com/6627
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/


The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.24-ndb-6.3.13/mysql-5.1.24-ndb-6.3.13-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.19-ndb-6.3.0, MySQL 5.1.19-ndb-6.3.1, MySQL
5.1.22-ndb-6.3.2, MySQL 5.1.22-ndb-6.3.3, MySQL 5.1.22-ndb-6.3.4, and MySQL 5.1.22-ndb-6.3.5, MySQL 5.1.22-ndb-6.3.6, and
MySQL 5.1.23-ndb-6.3.7, MySQL 5.1.23-ndb-6.3.8, MySQL 5.1.23-ndb-6.3.9, and MySQL 5.1.23-ndb-6.3.10, as well as all bugfixes
and feature changes which were originally scheduled to appear in MySQL 5.1.23-ndb-6.3.11 and MySQL 5.1.23-ndb-6.3.12 before
these were withdrawn due to issues uncovered soon after they were released. MySQL 5.1.24-ndb-6.3.13 also includes all bugfixes and
feature enhancements that were made in the mainline MySQL 5.1.21, 5.1.22, 5.1.23, and 5.1.24 releases; information about these can be
found in Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)”, Section C.1.6, “Changes in MySQL 5.1.22 (24 September
2007: Release Candidate)”, Section C.1.4, “Changes in MySQL 5.1.23 (29 January 2008)”, and Section C.1.2, “Changes in MySQL
5.1.24 (08 April 2008)”.

Bugs fixed:

• Important Change: MySQL Cluster: mysqld_safe now traps Signal 13 (SIGPIPE) so that this signal no longer kills the
MySQL server process. (Bug#33984)

• MySQL Cluster: Node or system restarts could fail due an unitialized variable in the DTUP kernel block. This issue was found in
mysql-5.1.23-ndb-6.3.11. (Bug#35797)

• MySQL Cluster: If an error occured while executing a statement involving a BLOB or TEXT column of an NDB table, a memory
leak could result. (Bug#35593)

• MySQL Cluster: It was not possible to determine the value used for the --ndb-cluster-connection-pool option in the
mysql client. Now this value is reported as a system status variable. (Bug#35573)

• MySQL Cluster: The ndb_waiter utility wrongly calculated timeouts. (Bug#35435)

• MySQL Cluster: A SELECT on a table with a non-indexed, large VARCHAR column which resulted in condition pushdown on this
column could cause mysqld to crash. (Bug#35413)

• MySQL Cluster: ndb_restore incorrectly handled some datatypes when applying log files from backups. (Bug#35343)

• MySQL Cluster: In some circumstances, a stopped data node was handled incorrectly, leading to redo log space being exhausted
following an initial restart of the node, or an initial or partial restart of the cluster (the wrong CGI might be used in such cases). This
could happen, for example, when a node was stopped following the creation of a new table, but before a new LCP could be ex-
ecuted. (Bug#35241)

• MySQL Cluster: SELECT ... LIKE ... queries yielded incorrect results when used on NDB tables. As part of this fix, condi-
tion pushdown of such queries has been disabled; re-enabling it is expected to be done as part of a later, permanent fix for this issue.

MySQL Change History

2017

http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/
http://bugs.mysql.com/33984
http://bugs.mysql.com/35797
http://bugs.mysql.com/35593
http://bugs.mysql.com/35573
http://bugs.mysql.com/35435
http://bugs.mysql.com/35413
http://bugs.mysql.com/35343
http://bugs.mysql.com/35241


(Bug#35185)

• MySQL Cluster: ndb_mgmd reported errors to STDOUT rather than to STDERR. (Bug#35169)

• MySQL Cluster: Nested multi-range reads failed when the second multi-range read released the first read's unprocessed operations,
sometimes leading to a SQL node crash. (Bug#35137)

• MySQL Cluster: In some situations, a problem with synchronizing checkpoints between nodes could cause a system restart or a
node restart to fail with ERROR 630 DURING RESTORE OF TX. (Bug#34756)

• MySQL Cluster: When a secondary index on a DECIMAL column was used to retrieve data from an NDB table, no results were re-
turned even if the target table had a matched value in the column that was defined with the secondary index. (Bug#34515)

• MySQL Cluster: An UPDATE on an NDB table that set a new value for a unique key column could cause subsequent queries to fail.
(Bug#34208)

• MySQL Cluster: If a data node in one node group was placed in the “not started” state (using node_id RESTART -n), it was
not possible to stop a data node in a different node group. (Bug#34201)

• MySQL Cluster: If a START BACKUP command was issued while ndb_restore was running, the backup being restored could
be overwritten. (Bug#26498)

• MySQL Cluster: REPLACE statements did not work correctly with NDBCLUSTER tables when all columns were not explicitly lis-
ted. (Bug#22045)

• Replication: The failure of a CREATE TABLE ... ENGINE=InnoDB ... SELECT statement caused the slave to lose data.
(Bug#35762)

• Replication: A CHANGE MASTER statement with no MASTER_HEARTBEAT_PERIOD option failed to reset the heartbeat period
to its default value. (Bug#34686)

• Cluster Replication: In some cases, when updating only one or some columns in a table, the complete row was written to the binary
log instead of only the updated column or columns, even when ndb_log_updated_only was set to 1. (Bug#35208)

• Cluster Replication: The --ndb-wait-connected option caused the server to wait for a partial connection plus an additional
3 seconds for a complete connection to the cluster. This could lead to issues with setting up the binary log. (Bug#34757)

• Cluster API: Some ordered index scans could return tuples out of order. (Bug#35908)

• Cluster API: NdbScanFilter::getNdbOperation(), which was inadvertently removed in mysql-5.1.23-ndb-6.3.11, has
been restored. (Bug#35854)

• Cluster API: NdbApi.hpp depended on ndb_global.h, which was not actually installed, causing the compilation of programs
that used NdbApi.hpp to fail. (Bug#35853)

• Cluster API: mgmapi.h contained constructs which only worked in C++, but not in C. (Bug#27004)

• Executing a FLUSH PRIVILEGES statement after creating a temporary table in the mysql database with the same name as one of
the MySQL system tables caused the server to crash.

Note

While it is possible to shadow a system table in this way, the temporary table exists only for the current user and connec-
tion, and does not effect any user privileges.

(Bug#33275)

C.1.3.2. Changes in MySQL 5.1.24-ndb-6.2.16 (Not yet released)

This is a new Beta development release, fixing recently discovered bugs.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

MySQL Change History

2018

http://bugs.mysql.com/35185
http://bugs.mysql.com/35169
http://bugs.mysql.com/35137
http://bugs.mysql.com/34756
http://bugs.mysql.com/34515
http://bugs.mysql.com/34208
http://bugs.mysql.com/34201
http://bugs.mysql.com/26498
http://bugs.mysql.com/22045
http://bugs.mysql.com/35762
http://bugs.mysql.com/34686
http://bugs.mysql.com/35208
http://bugs.mysql.com/34757
http://bugs.mysql.com/35908
http://bugs.mysql.com/35854
http://bugs.mysql.com/35853
http://bugs.mysql.com/27004
http://bugs.mysql.com/33275
http://bugs.mysql.com/


This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, MySQL 5.1.19-ndb-6.2.4, MySQL
5.1.22-ndb-6.2.5, MySQL 5.1.22-ndb-6.2.6, MySQL 5.1.22-ndb-6.2.7, MySQL 5.1.22-ndb-6.2.8, MySQL 5.1.23-ndb-6.2.9, MySQL
5.1.23-ndb-6.2.10, MySQL 5.1.23-ndb-6.2.11, MySQL 5.1.23-ndb-6.2.12, MySQL 5.1.23-ndb-6.2.13, MySQL 5.1.23-ndb-6.2.14, and
MySQL 5.1.23-ndb-6.2.15, as well as all bugfixes and feature changes which were added in the mainline 5.1.20, 5.1.21, 5.1.22, 5.1.23,
and 5.1.24 releases; information about these can be found in Section C.1.9, “Changes in MySQL 5.1.20 (25 June 2007)”, Section C.1.8,
“Changes in MySQL 5.1.21 (16 August 2007)”Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”,
Section C.1.4, “Changes in MySQL 5.1.23 (29 January 2008)”, and Section C.1.2, “Changes in MySQL 5.1.24 (08 April 2008)”. Also
included are most (but not all) bugfixes made in the MCCGE 6.1.x series through MySQL 5.1.15-ndb-6.1.16.

Bugs fixed:

• MySQL Cluster: If an error occured while executing a statement involving a BLOB or TEXT column of an NDB table, a memory
leak could result. (Bug#35593)

• MySQL Cluster: The ndb_waiter utility wrongly calculated timeouts. (Bug#35435)

• MySQL Cluster: ndb_restore incorrectly handled some datatypes when applying log files from backups. (Bug#35343)

• MySQL Cluster: In some circumstances, a stopped data node was handled incorrectly, leading to redo log space being exhausted
following an initial restart of the node, or an initial or partial restart of the cluster (the wrong CGI might be used in such cases). This
could happen, for example, when a node was stopped following the creation of a new table, but before a new LCP could be ex-
ecuted. (Bug#35241)

• MySQL Cluster: SELECT ... LIKE ... queries yielded incorrect results when used on NDB tables. As part of this fix, condi-
tion pushdown of such queries has been disabled; re-enabling it is expected to be done as part of a later, permanent fix for this issue.
(Bug#35185)

• MySQL Cluster: ndb_mgmd reported errors to STDOUT rather than to STDERR. (Bug#35169)

• MySQL Cluster: Nested multi-range reads failed when the second multi-range read released the first read's unprocessed operations,
sometimes leading to a SQL node crash. (Bug#35137)

• MySQL Cluster: In some situations, a problem with synchronizing checkpoints between nodes could cause a system restart or a
node restart to fail with ERROR 630 DURING RESTORE OF TX. (Bug#34756)

• MySQL Cluster: When a secondary index on a DECIMAL column was used to retrieve data from an NDB table, no results were re-
turned even if the target table had a matched value in the column that was defined with the secondary index. (Bug#34515)

• MySQL Cluster: An UPDATE on an NDB table that set a new value for a unique key column could cause subsequent queries to fail.
(Bug#34208)

• MySQL Cluster: If a data node in one node group was placed in the “not started” state (using node_id RESTART -n), it was
not possible to stop a data node in a different node group. (Bug#34201)

• Cluster Replication: In some cases, when updating only one or some columns in a table, the complete row was written to the binary
log instead of only the updated column or columns, even when ndb_log_updated_only was set to 1. (Bug#35208)

• Cluster API: mgmapi.h contained constructs which only worked in C++, but not in C. (Bug#27004)

C.1.4. Changes in MySQL 5.1.23 (29 January 2008)
Functionality added or changed:

• Important Change: Partitioning: Security Fix: It was possible, by creating a partitioned table using the DATA DIRECTORY and
INDEX DIRECTORY options to gain privileges on other tables having the same name as the partitioned table. As a result of this
fix, any table-level DATA DIRECTORY or INDEX DIRECTORY options are now ignored for partitioned tables. (Bug#32091,
CVE-2007-5970)

See also Bug#29325, Bug#32111

• Incompatible Change: In MySQL 5.1.6, when log tables were implemented, the default log destination for the general query and

MySQL Change History

2019

http://bugs.mysql.com/35593
http://bugs.mysql.com/35435
http://bugs.mysql.com/35343
http://bugs.mysql.com/35241
http://bugs.mysql.com/35185
http://bugs.mysql.com/35169
http://bugs.mysql.com/35137
http://bugs.mysql.com/34756
http://bugs.mysql.com/34515
http://bugs.mysql.com/34208
http://bugs.mysql.com/34201
http://bugs.mysql.com/35208
http://bugs.mysql.com/27004
http://bugs.mysql.com/32091
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5970
http://bugs.mysql.com/29325
http://bugs.mysql.com/32111


slow query log was TABLE. This default has been changed to FILE, which is compatible with MySQL 5.0, but incompatible with
earlier releases of MySQL 5.1 from 5.1.6 to 5.1.20. If you are upgrading from MySQL 5.0 to this release, no logging option changes
should be necessary. However, if you are upgrading from 5.1.6 through 5.1.20 to this release and were using TABLE logging, use
the --log-output=TABLE option explicitly to preserve your server's table-logging behavior.

In MySQL 5.1.x, this bug was addressed twice because it turned out that the default was set in two places, only one of which was
fixed the first time. (Bug#29993)

• Incompatible Change

The parser accepted statements that contained /* ... */ that were not properly closed with */, such as SELECT 1 /* + 2.
Statements that contain unclosed /*-comments now are rejected with a syntax error.

This fix has the potential to cause incompatibilities. Because of Bug#26302, which caused the trailing */ to be truncated from com-
ments in views, stored routines, triggers, and events, it is possible that objects of those types may have been stored with definitions
that now will be rejected as syntactically invalid. Such objects should be dropped and re-created so that their definitions do not con-
tain truncated comments. (Bug#28779)

• MySQL Cluster: The following improvements have been made in the ndb_size.pl utility:

• The script can now be used with multiple databases; lists of databases and tables can also be excluded from analysis.

• Schema name information has been added to index table calculations.

• The database name is now an optional parameter, the exclusion of which causes all databases to be examined.

• If selecting from INFORMATION_SCHEMA fails, the script now attempts to fall back to SHOW TABLES.

• A --real_table_name option has been added; this designates a table to handle unique index size calculations.

• The report title has been amended to cover cases where more than one database is being analyzed.

Support for a --socket option was also added.

For more information, see Section 17.11.15, “ndb_size.pl — NDBCluster Size Requirement Estimator”. (Bug#28683,
Bug#28253)

• MySQL Cluster: Mapping of NDB error codes to MySQL storage engine error codes has been improved. (Bug#28423)

• MySQL Cluster: The output from the cluster management client showing the progress of data node starts has been improved.
(Bug#23354)

• Partitioning: Error messages for partitioning syntax errors have been made more descriptive. (Bug#29368)

• Replication: Replication of the following now switches to row-based logging in MIXED mode, and generates a warning in STATE-
MENT mode:

• USER()

• CURRENT_USER()

• CURRENT_USER

• FOUND_ROWS()

• ROW_COUNT()

See Section 5.2.4.3, “Mixed Binary Logging Format”, for more information. (Bug#12092, Bug#28086, Bug#30244)

• mysqltest now has a change_user command to change the user for the current connection. (It invokes the
mysql_change_user() C API function.) (Bug#31608)

• mysql-test-run.pl now allows a suite name prefix to be specified in command-line arguments that name test cases. The test
name syntax now is [suite_name.]test_name[.suffix]. For example, mysql-test-run.pl binlog.mytest
runs the mytest.test test in the binlog test suite. (Bug#31400)

MySQL Change History

2020

http://bugs.mysql.com/29993
http://bugs.mysql.com/26302
http://bugs.mysql.com/28779
http://bugs.mysql.com/28683
http://bugs.mysql.com/28253
http://bugs.mysql.com/28423
http://bugs.mysql.com/23354
http://bugs.mysql.com/29368
http://bugs.mysql.com/12092
http://bugs.mysql.com/28086
http://bugs.mysql.com/30244
http://bugs.mysql.com/31608
http://bugs.mysql.com/31400


• The --event-scheduler option without a value disabled the event scheduler. Now it enables the event scheduler. (Bug#31332)

• mysqldump produces a -- Dump completed on DATE comment at the end of the dump if --comments is given. The date
causes dump files for identical data take at different times to appear to be different. The new options --dump-date and -
-skip-dump-date control whether the date is added to the comment. --skip-dump-date suppresses date printing. The de-
fault is --dump-date (include the date in the comment). (Bug#31077)

• Server parser performance was improved for expression parsing by lowering the number of state transitions and reductions needed.
(Bug#30625)

• Server parser performance was improved for identifier lists, expression lists, and UDF expression lists. (Bug#30333)

• Server parser performance was improved for boolean expressions. (Bug#30237)

• The LAST_EXECUTED column of the INFORMATION_SCHEMA.EVENTS table now indicates when the event started executing
rather than when it finished executing. As a result, the ENDS column is never less than LAST_EXECUTED. (Bug#29830)

• The mysql_odbc_escape_string() C API function has been removed. It has multi-byte character escaping issues, doesn't
honor the NO_BACKSLASH_ESCAPES SQL mode and is not needed anymore by Connector/ODBC as of 3.51.17. (Bug#29592)

• If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database directory. By default, if
MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies to .MYI files for tables created with no INDEX
DIRECTORY option. To suppress this behavior, start the server with the new --keep_files_on_create option, in which case
MyISAM will not overwrite existing files and returns an error instead. (Bug#29325)

• The default value of the connect_timeout system variable was increased from 5 to 10 seconds. This might help in cases where
clients frequently encounter errors of the form Lost connection to MySQL server at 'XXX', system error:
errno. (Bug#28359)

• MySQL now can be compiled with gcc 4.2.x. There was a problem involving a conflict with the min() and max() macros in
my_global.h. (Bug#28184)

• The argument for the mysql-test-run.pl --do-test and --skip-test options is now interpreted as a Perl regular ex-
pression if there is a pattern metacharacter in the argument value. This allows more flexible specification of which tests to perform
or skip.

Bugs fixed:

• Security Fix: Replication: It was possible for any connected user to issue a BINLOG statement, which could be used to escalate
privileges.

Use of the BINLOG statement now requires the SUPER privilege. (Bug#31611, CVE-2007-6313)

• Security Fix: Three vulnerabilities in yaSSL versions 1.7.5 and earlier were discovered that could lead to a server crash or execu-
tion of unauthorized code. The exploit requires a server with yaSSL enabled and TCP/IP connections enabled, but does not require
valid MySQL account credentials. The exploit does not apply to OpenSSL.

Note

The proof-of-concept exploit is freely available on the Internet. Everyone with a vulnerable MySQL configuration is ad-
vised to upgrade immediately.

(Bug#33814, CVE-2008-0226, CVE-2008-0227)

• Security Fix: Using RENAME TABLE against a table with explicit DATA DIRECTORY and INDEX DIRECTORY options can be
used to overwrite system table information by replacing the symbolic link points. the file to which the symlink points.

MySQL will now return an error when the file to which the symlink points already exists. (Bug#32111, CVE-2007-5969)

• Security Fix: ALTER VIEW retained the original DEFINER value, even when altered by another user, which could allow that user
to gain the access rights of the view. Now ALTER VIEW is allowed only to the original definer or users with the SUPER privilege.
(Bug#29908)

• Security Fix: When using a FEDERATED table, the local server could be forced to crash if the remote server returned a result with

MySQL Change History

2021

http://bugs.mysql.com/31332
http://bugs.mysql.com/31077
http://bugs.mysql.com/30625
http://bugs.mysql.com/30333
http://bugs.mysql.com/30237
http://bugs.mysql.com/29830
http://bugs.mysql.com/29592
http://bugs.mysql.com/29325
http://bugs.mysql.com/28359
http://bugs.mysql.com/28184
http://bugs.mysql.com/31611
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6313
http://bugs.mysql.com/33814
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0226
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0227
http://bugs.mysql.com/32111
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5969
http://bugs.mysql.com/29908


fewer columns than expected. (Bug#29801)

• Security Enhancement: It was possible to force an error message of excessive length which could lead to a buffer overflow. This
has been made no longer possible as a security precaution. (Bug#32707)

• Important Change: Incompatible Change: A number of problems existed in the implementation of MERGE tables that could cause
problems. The problems are summarized below:

• Bug#26379 - Combination of FLUSH TABLE and REPAIR TABLE corrupts a MERGE table. This was caused in a number of
situations:

1. A thread trying to lock a MERGE table performs busy waiting while REPAIR TABLE or a similar table administration task
is ongoing on one or more of its MyISAM tables.

2. A thread trying to lock a MERGE table performs busy waiting until all threads that did REPAIR TABLE or similar table ad-
ministration tasks on one or more of its MyISAM tables in LOCK TABLES segments do UNLOCK TABLES. The differ-
ence against problem #1 is that the busy waiting takes place after the administration task. It is terminated by UNLOCK
TABLES only.

3. Two FLUSH TABLES within a LOCK TABLES segment can invalidate the lock. This does not require a MERGE table. The
first FLUSH TABLES can be replaced by any statement that requires other threads to reopen the table. In 5.0 and 5.1 a
single FLUSH TABLES can provoke the problem.

• Bug#26867 - Simultaneously executing LOCK TABLES and REPAIR TABLE on a MERGE table would result in memory/cpu
hogging.

Trying DML on a MERGE table, which has a child locked and repaired by another thread, made an infinite loop in the server.

• Bug#26377 - Deadlock with MERGE and FLUSH TABLE

Locking a MERGE table and its children in parent-child order and flushing the child deadlocked the server.

• Bug#25038 - Waiting TRUNCATE

Truncating a MERGE child, while the MERGE table was in use, let the truncate fail instead of waiting for the table to become
free.

• Bug#25700 - MERGE base tables get corrupted by OPTIMIZE/ANALYZE/REPAIR TABLE

Repairing a child of an open MERGE table corrupted the child. It was necessary to FLUSH the child first.

• Bug#30275 - MERGE tables: FLUSH TABLES or UNLOCK TABLES causes server to crash.

Flushing and optimizing locked MERGE children crashed the server.

• Bug#19627 - temporary merge table locking

Use of a temporary MERGE table with non-temporary children could corrupt the children.

Temporary tables are never locked. Creation of tables with non-temporary children of a temporary MERGE table is now prohib-
ited.

• Bug#27660 - Falcon: MERGE table possible

It was possible to create a MERGE table with non-MyISAM children.

• Bug#30273 - MERGE tables: Can't lock file (errno: 155)

This was a Windows-only bug. Table administration statements sometimes failed with "Can't lock file (errno: 155)".

The fix introduces the following changes in behavior:

• This patch changes the behavior of temporary MERGE tables. Temporary MERGE must have temporary children. The old behavi-
or was wrong. A temporary table is not locked. Hence even non-temporary children were not locked. See Bug#19627.

• You cannot change the union list of a non-temporary MERGE table when LOCK TABLES is in effect. The following does not

MySQL Change History

2022

http://bugs.mysql.com/29801
http://bugs.mysql.com/32707
http://bugs.mysql.com/26379
http://bugs.mysql.com/26867
http://bugs.mysql.com/26377
http://bugs.mysql.com/25038
http://bugs.mysql.com/25700
http://bugs.mysql.com/30275
http://bugs.mysql.com/19627
http://bugs.mysql.com/27660
http://bugs.mysql.com/30273
http://bugs.mysql.com/19627


work:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ...;
LOCK TABLES t1 WRITE, t2 WRITE, m1 WRITE;
ALTER TABLE m1 ... UNION=(t1,t2) ...;

However, you can do this with a temporary MERGE table.

• You cannot create a MERGE table with CREATE ... SELECT, neither as a temporary MERGE table, nor as a non-temporary
MERGE table. For example:

CREATE TABLE m1 ... ENGINE=MRG_MYISAM ... SELECT ...;

gives error message: table is not BASE TABLE.

(Bug#19627, Bug#25038, Bug#25700, Bug#26377, Bug#26379, Bug#26867, Bug#27660, Bug#30275, Bug#30491)

• Incompatible Change: It is no longer possible to create CSV tables with NULL columns. However, for backwards compatibility,
you can continue to use such tables that were created in previous MySQL releases. (Bug#32050)

• Incompatible Change: Inserting a row with a NULL value for a DATETIME column results in a CSV file that the storage engine
cannot read.

All CSV tables now need to be defined with each column marked as NOT NULL. An error is raised if you try to create a CSV table
with columns that are not defined with NOT NULL. (Bug#31473, Bug#32817)

• Incompatible Change: SET PASSWORD statements now cause an implicit commit, and thus are prohibited within stored functions
and triggers. (Bug#30904)

• Incompatible Change: The mysql_install_db script could fail to locate some components (including resolveip) during
execution if the --basedir option was specified on the command-line or within the my.cnf file. This was due to a conflict when
comparing the compiled-in values and the supplied values.

The --source-install command-line option to the script has been removed and replaced with the --srcdir option.
mysql_install_db now locates components either using the compiled-in options, the --basedir option or --srcdir op-
tion. (Bug#30759)

• Incompatible Change: Within a stored routine, it is no longer allowable to declare a cursor for a SHOW statement. This happened to
work in some instances, but is no longer supported. (Bug#29223)

• Incompatible Change: Several type-preserving functions and operators returned an incorrect result type that does not match their
argument types: COALESCE(), IF(), IFNULL(), LEAST(), GREATEST(), CASE. These now aggregate using the precise SQL
types of their arguments rather than the internal type. In addition, the result type of the STR_TO_DATE() function is now DATE-
TIME by default. (Bug#27216)

• Incompatible Change: GRANT and REVOKE statements now cause an implicit commit, and thus are prohibited within stored func-
tions and triggers. (Bug#21975, Bug#21422, Bug#17244)

• Incompatible Change: It was possible for option files to be read twice at program startup, if some of the standard option file loca-
tions turned out to be the same directory. Now duplicates are removed from the list of files to be read.

Also, users could not override system-wide settings using ~/.my.cnf because SYSCONFDIR/my.cnf was read last. The latter
file now is read earlier so that ~/.my.cnf can override system-wide settings. (Bug#20748)

• Important Change: MySQL Cluster: AUTO_INCREMENT columns had the following problems when used in NDB tables:

• The AUTO_INCREMENT counter was not updated correctly when such a column was updated.

• AUTO_INCREMENT values were not prefetched beyond statement boundaries.

• AUTO_INCREMENT values were not handled correctly with INSERT IGNORE statements.

• After being set, ndb_autoincrement_prefetch_sz showed a value of 1, regardless of the value it had actually been set
to.

As part of this fix, the behavior of ndb_autoincrement_prefetch_sz has changed. Setting this to less than 32 no longer has
any effect on prefetching within statements (where IDs are now always obtained in batches of 32 or more), but only between state-
ments. The default value for this variable has also changed, and is now 1. (Bug#25176, Bug#31956, Bug#32055)

MySQL Change History

2023

http://bugs.mysql.com/19627
http://bugs.mysql.com/25038
http://bugs.mysql.com/25700
http://bugs.mysql.com/26377
http://bugs.mysql.com/26379
http://bugs.mysql.com/26867
http://bugs.mysql.com/27660
http://bugs.mysql.com/30275
http://bugs.mysql.com/30491
http://bugs.mysql.com/32050
http://bugs.mysql.com/31473
http://bugs.mysql.com/32817
http://bugs.mysql.com/30904
http://bugs.mysql.com/30759
http://bugs.mysql.com/29223
http://bugs.mysql.com/27216
http://bugs.mysql.com/21975
http://bugs.mysql.com/21422
http://bugs.mysql.com/17244
http://bugs.mysql.com/20748
http://bugs.mysql.com/25176
http://bugs.mysql.com/31956
http://bugs.mysql.com/32055


• Partitioning: Important Note: An apostrophe or single quote character (') used in the DATA DIRECTORY, INDEX
DIRECTORY, or COMMENT for a PARTITION clause caused the server to crash. When used as part of a CREATE TABLE state-
ment, the crash was immediate. When used in an ALTER TABLE statement, the crash did not occur until trying to perform a SE-
LECT or DML statement on the table. In either case, the server could not be completely restarted until the .FRM file corresponding
to the newly created or altered table was deleted.

Note

Upgrading to the current (or later) release solves this problem only for tables that are newly created or altered. Tables cre-
ated or altered in previous versions of the server to include ' characters in PARTITION options must still be removed by
deleting the corresponding .FRM files and re-creating them afterwards.

(Bug#30695)

• Important Note: The RENAME DATABASE statement was removed and replaced with ALTER DATABASE db_name UP-
GRADE DATA DIRECTORY NAME. The RENAME DATABASE statement was intended for upgrading database directory names to
the encoding format used in 5.1 for representing identifiers in the filesystem (see Section 8.2.3, “Mapping of Identifiers to File-
names”). However, the statement was found to be dangerous because it could result in loss of database contents. See Sec-
tion 12.1.18, “RENAME DATABASE Syntax” and Section 12.1.1, “ALTER DATABASE Syntax”. (Bug#17565, Bug#21741,
Bug#28360)

• Replication: MySQL Cluster: Row-based replication from or to a big-endian machine where the table used the NDB storage engine
failed, if the same table on the other machine was either non-NDB or the other machine was little-endian. (Bug#29549, Bug#30790)

See also Bug#24231, Bug#30024, Bug#30133, Bug#30134

• MySQL Cluster: An improperly reset internal signal was observed as a hang when using events in the NDB API but could result in
various errors. (Bug#33206)

• MySQL Cluster: Incorrectly handled parameters could lead to a crash in the Transaction Coordinator during a node failure, causing
other data nodes to fail. (Bug#33168)

• MySQL Cluster: A memory leak occurred if a subscription start request was received by the subscription manager before the node
making the request was fully connected to the cluster. (Bug#32652)

• MySQL Cluster: A local checkpoint could sometimes be started before the previous LCP was restorable from a global checkpoint.
(Bug#32519)

• MySQL Cluster: High numbers of API nodes on a slow or congested network could cause connection negotiation to time out pre-
maturely, leading to the following issues:

• Excessive retries

• Excessive CPU usage

• Partially connected API nodes
(Bug#32359)

• MySQL Cluster: The failure of a master node could lead to subsequent failures in local checkpointing. (Bug#32160)

• MySQL Cluster: The management server was slow to respond when no data nodes were connected to the cluster. This was most
noticeable when running SHOW in the management client. (Bug#32023)

• MySQL Cluster: An error with an if statement in sql/ha_ndbcluster.cc could potentially lead to an infinite loop in case
of failure when working with AUTO_INCREMENT columns in NDB tables. (Bug#31810)

• MySQL Cluster: The NDB storage engine code was not safe for strict-alias optimization in gcc 4.2.1. (Bug#31761)

• MySQL Cluster: It was possible in some cases for a node group to be “lost” due to missed local checkpoints following a system re-
start. (Bug#31525)

• MySQL Cluster: A query against a table with TEXT or BLOB columns that would return more than a certain amount of data failed
with GOT ERROR 4350 'TRANSACTION ALREADY ABORTED' FROM NDBCLUSTER. (Bug#31482)

This regression was introduced by Bug#29102

MySQL Change History

2024

http://bugs.mysql.com/30695
http://bugs.mysql.com/17565
http://bugs.mysql.com/21741
http://bugs.mysql.com/28360
http://bugs.mysql.com/29549
http://bugs.mysql.com/30790
http://bugs.mysql.com/24231
http://bugs.mysql.com/30024
http://bugs.mysql.com/30133
http://bugs.mysql.com/30134
http://bugs.mysql.com/33206
http://bugs.mysql.com/33168
http://bugs.mysql.com/32652
http://bugs.mysql.com/32519
http://bugs.mysql.com/32359
http://bugs.mysql.com/32160
http://bugs.mysql.com/32023
http://bugs.mysql.com/31810
http://bugs.mysql.com/31761
http://bugs.mysql.com/31525
http://bugs.mysql.com/31482
http://bugs.mysql.com/29102


• MySQL Cluster: NDB tables having names containing non-alphanumeric characters (such as “ $ ”) were not discovered correctly.
(Bug#31470)

• MySQL Cluster: A node failure during a local checkpoint could lead to a subsequent failure of the cluster during a system restart.
(Bug#31257)

• MySQL Cluster: When handling BLOB columns, the addition of read locks to the lock queue was not handled correctly.
(Bug#30764)

• MySQL Cluster: Discovery of NDB tables did not work correctly with INFORMATION_SCHEMA. (Bug#30667)

• MySQL Cluster: A filesystem close operation could fail during a node or system restart. (Bug#30646)

• MySQL Cluster: Transaction timeouts were not handled well in some circumstances, leading to excessive number of transactions
being aborted unnecessarily. (Bug#30379)

• MySQL Cluster: The cluster management client could not connect, and would hang instead. This issue affected Mac OS X 64-bit
only. (Bug#30366)

• MySQL Cluster: Attempting to restore a backup made on a cluster host using one endian to a machine using the other endian could
cause the cluster to fail. (Bug#29674)

• MySQL Cluster: Log event requests to ndb_mgmd could time out, causing it to fail. (Bug#29621)

• MySQL Cluster: In some cases, the cluster managment server logged entries multiple times following a restart of mgmd.
(Bug#29565)

• MySQL Cluster: ndb_mgm --help did not display any information about the -a option. (Bug#29509)

• MySQL Cluster: An interpreted program of sufficient size and complexity could cause all cluster data nodes to shut down due to
buffer overruns. (Bug#29390)

• MySQL Cluster: ndb_size.pl failed on tables with FLOAT columns whose definitions included commas (for example,
FLOAT(6,2)). (Bug#29228)

• MySQL Cluster: The error message for NDB error code 275 (OUT OF TRANSACTION RECORDS FOR COMPLETE PHASE) was missing.
(Bug#29139)

• MySQL Cluster: Reads on BLOB columns were not locked when they needed to be to guarantee consistency. (Bug#29102)

See also Bug#31482

• MySQL Cluster: A query using joins between several large tables and requiring unique index lookups failed to complete, eventu-
ally returning UKNOWN ERROR after a very long period of time. This occurred due to inadequate handling of instances where the
Transaction Coordinator ran out of TransactionBufferMemory, when the cluster should have returned NDB error code 4012
(REQUEST NDBD TIME-OUT). (Bug#28804)

• MySQL Cluster: There was a short interval during the startup process prior to the beginning of heartbeat detection such that, were
an API or management node to reboot or a network failure to occur, data nodes could not detect this, with the result that there could
be a lingering connection. (Bug#28445)

• MySQL Cluster: The description of the --print option provided in the output from ndb_restore --help was incorrect.
(Bug#27683)

• MySQL Cluster: Restoring a backup made on a cluster host using one endian to a machine using the other endian failed for BLOB
and DATETIME columns. (Bug#27543, Bug#30024)

• MySQL Cluster: An invalid subselect on an NDB table could cause mysqld to crash. (Bug#27494)

• MySQL Cluster: An attempt to perform a SELECT ... FROM INFORMATION_SCHEMA.TABLES whose result included in-
formation about NDB tables for which the user had no privileges crashed the MySQL Server on which the query was performed.
(Bug#26793)

• MySQL Cluster: Performing DELETE operations after a data node had been shut down could lead to inconsistent data following a
restart of the node. (Bug#26450)

MySQL Change History

2025

http://bugs.mysql.com/31470
http://bugs.mysql.com/31257
http://bugs.mysql.com/30764
http://bugs.mysql.com/30667
http://bugs.mysql.com/30646
http://bugs.mysql.com/30379
http://bugs.mysql.com/30366
http://bugs.mysql.com/29674
http://bugs.mysql.com/29621
http://bugs.mysql.com/29565
http://bugs.mysql.com/29509
http://bugs.mysql.com/29390
http://bugs.mysql.com/29228
http://bugs.mysql.com/29139
http://bugs.mysql.com/29102
http://bugs.mysql.com/31482
http://bugs.mysql.com/28804
http://bugs.mysql.com/28445
http://bugs.mysql.com/27683
http://bugs.mysql.com/27543
http://bugs.mysql.com/30024
http://bugs.mysql.com/27494
http://bugs.mysql.com/26793
http://bugs.mysql.com/26450


• MySQL Cluster: UPDATE IGNORE could sometimes fail on NDB tables due to the use of unitialized data when checking for du-
plicate keys to be ignored. (Bug#25817)

• MySQL Cluster: The cluster log was formatted inconsistently and contained extraneous newline characters. (Bug#25064)

• MySQL Cluster: A restart of the cluster failed when more than 1 REDO phase was in use. (Bug#22696)

• MySQL Cluster: When inserting a row into an NDB table with a duplicate value for a non-primary unique key, the error issued
would reference the wrong key.

This improves on an initial fix for this issue made in MySQL 5.1.13. (Bug#21072)

• MySQL Cluster: An insufficiently descriptive and potentially misleading Error 4006 (CONNECT FAILURE - OUT OF CONNECTION

OBJECTS...) was produced when either of the following two conditions occurred:

1. There were no more transaction records in the transaction coordinator

2. an Ndb object in the NDB API was initialized with insufficient parallellism
Separate error messages are now generated for each of these two cases. (Bug#11313)

• Partitioning: Replication: Replication of partitioned tables using the InnoDB storage engine failed with binlog-format=ROW
or binlog-format=MIXED. (Bug#28430)

• Partitioning: It was possible to partition a table to which a foreign key referred. (Bug#32948)

• Partitioning: A query of the form SELECT col1 FROM table GROUP BY (SELECT col2 FROM table LIMIT 1);
against a partitioned table having a SET column crashed the server. (Bug#32772)

• Partitioning: SHOW CREATE TABLE misreported the value of AUTO_INCREMENT for partitioned tables using either of the In-
noDB or ARCHIVE storage engines. (Bug#32247)

• Partitioning: Selecting from INFORMATION_SCHEMA.PARTITIONS while partition management statements (for example, AL-
TER TABLE ... ADD PARTITION) were executing caused the server to crash. (Bug#32178)

• Partitioning: An error in the internal function mysql_unpack_partition() led to a fatal error in subsequent calls to
open_table_from_share(). (Bug#32158)

• Partitioning: Repeated updates of a table that was partitioned by KEY on a TIMESTAMP column eventually crashed the server.
(Bug#32067)

• Partitioning: Changing the storage engine used by a table having subpartitions led to a server crash. (Bug#31893)

• Partitioning: ORDER BY ... DESC did not always work correctly when selecting from partitioned tables. (Bug#31890)

See also Bug#31001

• Partitioning: Selecting from a table partitioned by KEY on a VARCHAR column whose size was greater than 65530 caused the serv-
er to crash. (Bug#31705)

• Partitioning: INSERT DELAYED on a partitioned table crashed the server. The server now rejects the statement with an error.
(Bug#31210)

• Partitioning: Using ALTER TABLE to partition an existing table having an AUTO_INCREMENT column could crash the server.
(Bug#30878)

This regression was introduced by Bug#27405

• Partitioning: ALTER TABLE ... COALESCE PARTITION on a table partitioned by [LINEAR] HASH or [LINEAR] KEY
caused the server to crash. (Bug#30822)

• Partitioning: LIKE queries on tables partitioned by KEY and using third-party storage engines could return incomplete results.
(Bug#30480)

See also Bug#29320, Bug#29493, Bug#30563

• Partitioning: It was not possible to insert the greatest possible value for a given data type into a partitioned table. For example, con-

MySQL Change History

2026

http://bugs.mysql.com/25817
http://bugs.mysql.com/25064
http://bugs.mysql.com/22696
http://bugs.mysql.com/21072
http://bugs.mysql.com/11313
http://bugs.mysql.com/28430
http://bugs.mysql.com/32948
http://bugs.mysql.com/32772
http://bugs.mysql.com/32247
http://bugs.mysql.com/32178
http://bugs.mysql.com/32158
http://bugs.mysql.com/32067
http://bugs.mysql.com/31893
http://bugs.mysql.com/31890
http://bugs.mysql.com/31001
http://bugs.mysql.com/31705
http://bugs.mysql.com/31210
http://bugs.mysql.com/30878
http://bugs.mysql.com/27405
http://bugs.mysql.com/30822
http://bugs.mysql.com/30480
http://bugs.mysql.com/29320
http://bugs.mysql.com/29493
http://bugs.mysql.com/30563


sider a table defined as shown here:

CREATE TABLE t (c BIGINT UNSIGNED)
PARTITION BY RANGE(c) (
PARTITION p0 VALUES LESS THAN MAXVALUE

);

The largest possible value for a BIGINT UNSIGNED column is 18446744073709551615, but the statement INSERT INTO t
VALUES (18446744073709551615); would fail, even though the same statement succeeded were t not a partitioned table.

In other words, MAXVALUE was treated as being equal to the greatest possible value, rather than as a least upper bound.
(Bug#29258)

• Replication: When dropping a database containing a stored procedure while using row-cased replication, the delete of the stored
procedure from the mysql.proc table was recorded in the binary log following the DROP DATABASE statement. To correct this
issue, DROP DATABASE now uses statement-based replication. (Bug#32435)

• Replication: It was possible for the name of the relay log file to exceed the amount of memory reserved for it, possibly leading to a
crash of the server. (Bug#31836)

See also Bug#28597

• Replication: Corruption of log events caused the server to crash on 64-bit Linux systems having 4 GB of memory or more.
(Bug#31793)

• Replication: Trying to replicate an update of a row that was missing on the slave led to a failure on the slave. (Bug#31702)

• Replication: Table names were displayed as binary “garbage” characters in slave error messages. The issue was observed on 64-bit
Windows but may have effected other platforms. (Bug#30854)

• Replication: One thread could read uninitialized memory from the stack of another thread. This issue was only known to occur in a
mysqld process acting as both a master and a slave. (Bug#30752)

• Replication: It was possible to set SQL_SLAVE_SKIP_COUNTER such that the slave would jump into the middle of a transaction.
This fix improves on one made for this bug in MySQL 5.1.20; the previous fix insured that the slave could not be made to jump into
the middle of an event group, but the slave failed to recognize that BEGIN, COMMIT, and ROLLBACK statements could begin or end
an event group. (Bug#28618)

See also Bug#12691

• Replication: Due a previous change in how the default name and location of the binlog file were determined, replication failed fol-
lowing some upgrades. (Bug#28597, Bug#28603)

See also Bug#31836

This regression was introduced by Bug#20166

• Replication: Stored procedures having BIT parameters were not replicated correctly. (Bug#26199)

• Replication: Issuing SHOW SLAVE STATUS as mysqld was shutting down could cause a crash. (Bug#26000)

• Replication: If a temporary error occured inside an event group on an event that was not the first event of the group, the slave could
get caught in an endless loop because the retry counter was reset whenever an event was executed successfully. (Bug#24860)

See also Bug#12691, Bug#23171

• Replication: An UPDATE statement using a stored function that modified a non-transactional table was not logged if it failed. This
caused the copy of the non-transactional table on the master have a row that the copy on the slave did not. (Bug#23333)

See also Bug#12713

• Replication: A replication slave sometimes failed to reconnect because it was unable to run SHOW SLAVE HOSTS. It was not ne-
cessary to run this statement on slaves (since the master should track connection IDs), and the execution of this statement by slaves
was removed. (Bug#21132)

See also Bug#13963, Bug#21869

MySQL Change History

2027

http://bugs.mysql.com/29258
http://bugs.mysql.com/32435
http://bugs.mysql.com/31836
http://bugs.mysql.com/28597
http://bugs.mysql.com/31793
http://bugs.mysql.com/31702
http://bugs.mysql.com/30854
http://bugs.mysql.com/30752
http://bugs.mysql.com/28618
http://bugs.mysql.com/12691
http://bugs.mysql.com/28597
http://bugs.mysql.com/28603
http://bugs.mysql.com/31836
http://bugs.mysql.com/20166
http://bugs.mysql.com/26199
http://bugs.mysql.com/26000
http://bugs.mysql.com/24860
http://bugs.mysql.com/12691
http://bugs.mysql.com/23171
http://bugs.mysql.com/23333
http://bugs.mysql.com/12713
http://bugs.mysql.com/21132
http://bugs.mysql.com/13963
http://bugs.mysql.com/21869


• Replication: A replication slave sometimes stopped for changes that were idempotent (that is, such changes should have been con-
sidered “safe”), even though it should have simply noted that the change was already done, and continued operation. (Bug#19958)

• Cluster Replication: A replication slave could return “garbage” data that was not in recognizable row format due to a problem with
the internal all_set() method. (Bug#33375)

• Cluster Replication: Memory was mistakenly freed for NdbBlob objects when adding an index while replicating the cluster,
which could cause mysqld to crash. (Bug#33142)

See also Bug#18106

• Cluster Replication: Under certain conditions, the slave stopped processing relay logs. This resulted in the logs never being cleared
and the slave eventually running out of disk space. (Bug#31958)

• Cluster Replication: A node failure during replication could lead to buckets out of order; now active subscribers are checked for,
rather than empty buckets. (Bug#31701)

• Cluster Replication: Replicating NDB tables with extra VARCHAR columns on the master caused the slave to fail. (Bug#31646)

See also Bug#29549

• Cluster Replication: When the master mysqld crashed or was restarted, no LOST_EVENTS entry was made in the binlog.
(Bug#31484)

See also Bug#21494

• Cluster Replication: Incorrect handling of INSERT plus DELETE operations with regard to local checkpoints caused data node
failures in multi-master replication setups. (Bug#30914)

• Cluster Replication: An issue with the mysql.ndb_apply_status table could cause NDB schema autodiscovery to fail in cer-
tain rare circumstances. (Bug#20872)

• Cluster API: A call to CHECK_TIMEDOUT_RET() in mgmapi.cpp should have been a call to
DBUG_CHECK_TIMEDOUT_RET(). (Bug#30681)

• Cluster API: An Ndb object in the NDB API was initialized with insufficient parallellism

• API: When the language option was not set correctly, API programs calling mysql_server_init() crashed. This issue was
observed only on Windows platforms. (Bug#31868)

• Corrected a typecast involving bool on Mac OS X 10.5 (Leopard), which evaluated differently from earlier Mac OS X versions.
(Bug#38217)

• Use of uninitialized memory for filesort in a subquery caused a server crash. (Bug#33675)

• CREATE TABLE ... SELECT created tables that for date columns used the obsolete Field_date type instead of
Field_newdate. (Bug#33256)

• Some valid SELECT statements could not be used as views due to incorrect column reference resolution. (Bug#33133)

• The fix for Bug#11230 and Bug#26215 introduced a significant input-parsing slowdown for the mysql client. This has been cor-
rected. (Bug#33057)

• The correct data type for a NULL column resulting from a UNION could be determined incorrectly in some cases: 1) Not correctly
inferred as NULL depending on the number of selects; 2) Not inferred correctly as NULL if one select used a subquery. (Bug#32848)

• For queries containing GROUP_CONCAT(DISTINCT col_list ORDER BY col_list), there was a limitation that the
DISTINCT columns had to be the same as ORDER BY columns. Incorrect results could be returned if this was not true.
(Bug#32798)

• SHOW EVENTS and selecting from the INFORMATION_SCHEMA.EVENTS table failed if the current database was INFORMA-
TION_SCHEMA. (Bug#32775)

• Use of the cp932 character set with CAST() in an ORDER BY clause could cause a server crash. (Bug#32726)

• A subquery using an IS NULL check of a column defined as NOT NULL in a table used in the FROM clause of the outer query pro-

MySQL Change History

2028

http://bugs.mysql.com/19958
http://bugs.mysql.com/33375
http://bugs.mysql.com/33142
http://bugs.mysql.com/18106
http://bugs.mysql.com/31958
http://bugs.mysql.com/31701
http://bugs.mysql.com/31646
http://bugs.mysql.com/29549
http://bugs.mysql.com/31484
http://bugs.mysql.com/21494
http://bugs.mysql.com/30914
http://bugs.mysql.com/20872
http://bugs.mysql.com/30681
http://bugs.mysql.com/31868
http://bugs.mysql.com/38217
http://bugs.mysql.com/33675
http://bugs.mysql.com/33256
http://bugs.mysql.com/33133
http://bugs.mysql.com/11230
http://bugs.mysql.com/26215
http://bugs.mysql.com/33057
http://bugs.mysql.com/32848
http://bugs.mysql.com/32798
http://bugs.mysql.com/32775
http://bugs.mysql.com/32726


duced an invalid result. (Bug#32694)

• mysqld_safe looked for error messages in the wrong location. (Bug#32679)

• Specifying a non-existent column for an INSERT DELAYED statement caused a server crash rather than producing an error.
(Bug#32676)

• An issue with the NO_ENGINE_SUBSTITUTION sql_mode database can cause the creation of stored routines to fail. If you are
having problems with creating stored routines while using this sql_mode value, remove this value from your sql_mode setting.
(Bug#32633)

• Use of CLIENT_MULTI_QUERIES caused libmysqld to crash. (Bug#32624)

• The INTERVAL() function incorrectly handled NULL values in the value list. (Bug#32560)

• Use of a NULL-returning GROUP BY expression in conjunction with WITH ROLLUP could cause a server crash. (Bug#32558)

See also Bug#31095

• ORDER BY UpdateXML(...) caused the server to crash in queries where UpdateXML() returned NULL. (Bug#32557)

• A SELECT ... GROUP BY bit_column query failed with an assertion if the length of the BIT column used for the GROUP
BY was not an integer multiple of 8. (Bug#32556)

• Using SELECT INTO OUTFILE with 8-bit ENCLOSED BY characters led to corrupted data when the data was reloaded using
LOAD DATA INFILE. This was because SELECT INTO OUTFILE failed to escape the 8-bit characters. (Bug#32533)

• For FLUSH TABLES WITH READ LOCK, the server failed to properly detect write-locked tables when running with low-priority
updates, resulting in a crash or deadlock. (Bug#32528)

• The rules for valid column names were being applied differently for base tables and views. (Bug#32496)

• A query of the form SELECT @user_variable := constant AS alias FROM table GROUP BY alias WITH
ROLLUP crashed the server. (Bug#32482)

• Sending several KILL QUERY statements to target a connection running SELECT SLEEP() could freeze the server. (Bug#32436)

• ssl-cipher values in option files were not being read by libmysqlclient. (Bug#32429)

• Repeated execution of a query containing a CASE expression and numerous AND and OR relations could crash the server. The root
cause of the issue was determined to be that the internal SEL_ARG structure was not properly initialized when created. (Bug#32403)

• Referencing within a subquery an alias used in the SELECT list of the outer query was incorrectly permitted. (Bug#32400)

• If a global read lock acquired with FLUSH TABLES WITH READ LOCK was in effect, executing ALTER TABLE could cause a
server crash. (Bug#32395)

• An ORDER BY query on a view created using a FEDERATED table as a base table caused the server to crash. (Bug#32374)

• The mysqldump utility did not print enough version information about itself at the top of its output. The output now shows the
same information as mysqldump invoked with the -V option, namely the mysqldump version number, the MySQL server ver-
sion, and the distribution. (Bug#32350)

• Comparison of a BIGINT NOT NULL column with a constant arithmetic expression that evaluated to NULL mistakenly caused the
error COLUMN '...' CANNOT BE NULL (error 1048). (Bug#32335)

• Assigning a 65,536-byte string to a TEXT column (which can hold a maximum of 65,535 bytes) resulted in truncation without a
warning. Now a truncation warning is generated. (Bug#32282)

• The LAST_DAY() function returns a DATE value, but internally the value did not have the time fields zeroed and calculations in-
volving the value could return incorrect results. (Bug#32270)

• MIN() and MAX() could return incorrect results when an index was present if a loose index scan was used. (Bug#32268)

• Some uses of user variables in a query could result in a server crash. (Bug#32260)

MySQL Change History

2029

http://bugs.mysql.com/32694
http://bugs.mysql.com/32679
http://bugs.mysql.com/32676
http://bugs.mysql.com/32633
http://bugs.mysql.com/32624
http://bugs.mysql.com/32560
http://bugs.mysql.com/32558
http://bugs.mysql.com/31095
http://bugs.mysql.com/32557
http://bugs.mysql.com/32556
http://bugs.mysql.com/32533
http://bugs.mysql.com/32528
http://bugs.mysql.com/32496
http://bugs.mysql.com/32482
http://bugs.mysql.com/32436
http://bugs.mysql.com/32429
http://bugs.mysql.com/32403
http://bugs.mysql.com/32400
http://bugs.mysql.com/32395
http://bugs.mysql.com/32374
http://bugs.mysql.com/32350
http://bugs.mysql.com/32335
http://bugs.mysql.com/32282
http://bugs.mysql.com/32270
http://bugs.mysql.com/32268
http://bugs.mysql.com/32260


• Memory corruption could occur due to large index map in Range checked for each record status reported by EXPLAIN
SELECT. The problem was based in an incorrectly calculated length of the buffer used to store a hexadecimal representation of an
index map, which could result in buffer overrun and stack corruption under some circumstances. (Bug#32241)

• Various test program cleanups were made: 1) mytest and libmysqltest were removed. 2) bug25714 displays an error mes-
sage when invoked with incorrect arguments or the --help option. 3) mysql_client_test exits cleanly with a proper error
status. (Bug#32221)

• The default grant tables on Windows contained information for host production.mysql.com, which should not be there.
(Bug#32219)

• Under certain conditions, the presence of a GROUP BY clause could cause an ORDER BY clause to be ignored. (Bug#32202)

• For comparisons of the form date_col OP datetime_const (where OP is =, <, >, <=, or >=), the comparison is done using
DATETIME values, per the fix for Bug#27590. However that fix caused any index on date_col not to be used and compromised
performance. Now the index is used again. (Bug#32198)

• DATETIME arguments specified in numeric form were treated by DATE_ADD() as DATE values. (Bug#32180)

• Killing a statement could lead to a race condition in the server. (Bug#32148)

• InnoDB does not support SPATIAL indexes, but could crash when asked to handle one. Now an error is returned. (Bug#32125)

• The server crashed on optimizations involving a join of INT and MEDIUMINT columns and a system variable in the WHERE clause.
(Bug#32103)

• mysql-test-run.pl used the --user option when starting mysqld, which produces warnings if the current user is not
root. Now --user is added only for root. (Bug#32078)

• mysqlslap was missing from the MySQL 5.1.22 Linux RPM packages. (Bug#32077)

• With lower_case_table_names set, CREATE TABLE LIKE was treated differently by libmysqld than by the non-
embedded server. (Bug#32063)

• Within a subquery, UNION was handled differently than at the top level, which could result in incorrect results or a server crash.
(Bug#32036, Bug#32051)

• On 64-bit platforms, assignments of values to enumeration-valued storage engine-specific system variables were not validated and
could result in unexpected values. (Bug#32034)

• A DELETE statement with a subquery in the WHERE clause would sometimes ignore an error during subquery evaluation and pro-
ceed with the delete operation. (Bug#32030)

• Using dates in the range '0000-00-01' to '0000-00-99' range in the WHERE clause could result in an incorrect result set.
(These dates are not in the supported range for DATE, but different results for a given query could occur depending on position of
records containing the dates within a table.) (Bug#32021)

• User-defined functions are not loaded if the server is started with the --skip-grant-tables option, but the server did not
properly handle this case and issued an OUT OF MEMORY error message instead. (Bug#32020)

• If a user-defined function was used in a SELECT statement, and an error occurred during UDF initialization, the error did not ter-
minate execution of the SELECT, but rather was converted to a warning. (Bug#32007)

• HOUR(), MINUTE(), and SECOND() could return non-zero values for DATE arguments. (Bug#31990)

• Changing the SQL mode to cause dates with “zero” parts to be considered invalid (such as '1000-00-00') could result in in-
dexed and non-indexed searches returning different results for a column that contained such dates. (Bug#31928)

• The server used unnecessarily large amounts of memory when user variables were used as an argument to CONCAT() or CON-
CAT_WS(). (Bug#31898)

• In debug builds, testing the result of an IN subquery against NULL caused an assertion failure. (Bug#31884)

• SHOW CREATE TRIGGER caused a server crash. (Bug#31866)

• The server crashed after insertion of a negative value into an AUTO_INCREMENT column of an InnoDB table. (Bug#31860)

MySQL Change History

2030

http://bugs.mysql.com/32241
http://bugs.mysql.com/32221
http://bugs.mysql.com/32219
http://bugs.mysql.com/32202
http://bugs.mysql.com/27590
http://bugs.mysql.com/32198
http://bugs.mysql.com/32180
http://bugs.mysql.com/32148
http://bugs.mysql.com/32125
http://bugs.mysql.com/32103
http://bugs.mysql.com/32078
http://bugs.mysql.com/32077
http://bugs.mysql.com/32063
http://bugs.mysql.com/32036
http://bugs.mysql.com/32051
http://bugs.mysql.com/32034
http://bugs.mysql.com/32030
http://bugs.mysql.com/32021
http://bugs.mysql.com/32020
http://bugs.mysql.com/32007
http://bugs.mysql.com/31990
http://bugs.mysql.com/31928
http://bugs.mysql.com/31898
http://bugs.mysql.com/31884
http://bugs.mysql.com/31866
http://bugs.mysql.com/31860


• For libmysqld applications, handling of mysql_change_user() calls left some pointers improperly updated, leading to
server crashes. (Bug#31850)

• Using ORDER BY led to the wrong result when using the ARCHIVE on a table with a BLOB when the table cache was full. The ta-
ble could also be reported as crashed after the query had completed, even though the table data was intact. (Bug#31833)

• Comparison results for BETWEEN were different from those for operators like < and > for DATETIME-like values with trailing extra
characters such as '2007-10-01 00:00:00 GMT-6'. BETWEEN treated the values as DATETIME, whereas the other operat-
ors performed a binary-string comparison. Now they all uniformly use a DATETIME comparison, but generate warnings for values
with trailing garbage. (Bug#31800)

• Name resolution for correlated subqueries and HAVING clauses failed to distinguish which of two was being performed when there
was a reference to an outer aliased field. This could result in error messages about a HAVING clause for queries that had no such
clause. (Bug#31797)

• With ONLY_FULL_GROUP_BY SQL mode enabled, queries such as SELECT a FROM t1 HAVING COUNT(*)>2 were not
being rejected as they should have been. (Bug#31794)

• The server could crash during filesort for ORDER BY based on expressions with INET_NTOA() or OCT() if those functions
returned NULL. (Bug#31758)

• For tables with certain definitions, UPDATE statements could fail to find the correct record to update and report an error when the
record did in fact exist. (Bug#31747)

• For a fatal error during filesort in find_all_keys(), the error was returned without the necessary handler uninitialization, caus-
ing an assertion failure. Fixed by uninitializing the handler before returning the error. (Bug#31742)

• mysqlslap failed to commit after the final record load. (Bug#31704)

• The examined-rows count was not incremented for const queries. (Bug#31700)

• The server crashed if a thread was killed while locking the general_log table at the beginning of statement processing.
(Bug#31692)

• The mysql_change_user() C API function was subject to buffer overflow. (Bug#31669)

• For SELECT ... INTO OUTFILE, if the ENCLOSED BY string is empty and the FIELDS TERMINATED BY string started
with a special character (one of n, t, r, b, 0, Z, or N), every occurrence of the character within field values would be duplicated.
(Bug#31663)

• SHOW COLUMNS and DESCRIBE displayed null as the column type for a view with no valid definer. This caused mysqldump
to produce a non-reloadable dump file for the view. (Bug#31662)

• The mysqlbug script did not include the correct values of CFLAGS and CXXFLAGS that were used to configure the distribution.
(Bug#31644)

• Queries that include a comparison of an INFORMATION_SCHEMA table column to NULL caused a server crash. (Bug#31633)

• EXPLAIN EXTENDED for SELECT from INFORMATION_SCHEMA tables caused an assertion failure. (Bug#31630)

• ucs2 does not work as a client character set, but attempts to use it as such were not rejected. Now character_set_client
cannot be set to ucs2. This also affects statements such as SET NAMES and SET CHARACTER SET. (Bug#31615)

• A buffer used when setting variables was not dimensioned to accommodate the trailing '\0' byte, so a single-byte buffer overrun
was possible. (Bug#31588)

• HAVING could treat lettercase of table aliases incorrectly if lower_case_table_names was enabled. (Bug#31562)

• Spurious duplicate-key errors could occur for multiple-row inserts into an InnoDB table that activate a trigger. (Bug#31540)

• Using ALTER EVENT to rename a disabled event caused it to become enabled. (Bug#31539)

• The fix for Bug#24989 introduced a problem such that a NULL thread handler could be used during a rollback operation. This prob-
lem is unlikely to be seen in practice. (Bug#31517)

• The length of the result from IFNULL() could be calculated incorrectly because the sign of the result was not taken into account.

MySQL Change History

2031

http://bugs.mysql.com/31850
http://bugs.mysql.com/31833
http://bugs.mysql.com/31800
http://bugs.mysql.com/31797
http://bugs.mysql.com/31794
http://bugs.mysql.com/31758
http://bugs.mysql.com/31747
http://bugs.mysql.com/31742
http://bugs.mysql.com/31704
http://bugs.mysql.com/31700
http://bugs.mysql.com/31692
http://bugs.mysql.com/31669
http://bugs.mysql.com/31663
http://bugs.mysql.com/31662
http://bugs.mysql.com/31644
http://bugs.mysql.com/31633
http://bugs.mysql.com/31630
http://bugs.mysql.com/31615
http://bugs.mysql.com/31588
http://bugs.mysql.com/31562
http://bugs.mysql.com/31540
http://bugs.mysql.com/31539
http://bugs.mysql.com/24989
http://bugs.mysql.com/31517


Bug#31471)

• Queries that used the ref access method or index-based subquery execution over indexes that have DECIMAL columns could fail
with an error Column col_name cannot be null. (Bug#31450)

• InnoDB now tracks locking and use of tables by MySQL only after a table has been successfully locked on behalf of a transaction.
Previously, the locked flag was set and the table in-use counter was updated before checking whether the lock on the table suc-
ceeded. A subsequent failure in obtaining a lock on the table led to an inconsistent state as the table was neither locked nor in use.
(Bug#31444)

• SELECT 1 REGEX NULL caused an assertion failure for debug servers. (Bug#31440)

• The UpdateXML() function did not check for the validity of all its arguments; in some cases, this could lead to a crash of the serv-
er. (Bug#31438)

• The mysql_change_user() C API function caused advisory locks (obtained with GET_LOCK()) to malfunction.
(Bug#31418)

• NDB libraries and include files were missing from some binary tar file distributions. (Bug#31414)

• Executing RENAME while tables were open for use with HANDLER statements could cause a server crash. (Bug#31409)

• mysql-test-run.pl tried to create files in a directory where it could not be expected to have write permission. mysqltest
created .reject files in a directory other than the one where test results go. (Bug#31398)

• For a table that had been opened with HANDLER and marked for reopening after being closed with FLUSH TABLES, DROP TA-
BLE did not properly discard the handler. (Bug#31397)

• Automatically allocated memory for string options associated with a plugin was not freed if the plugin did not get installed.
(Bug#31382)

• INFORMATION_SCHEMA.TABLES was returning incorrect information. (Bug#31381)

• DROP USER caused an increase in memory usage. (Bug#31347)

• mysql_install_db failed if the default storage engine was NDB. Now it explicitly uses MyISAM as the storage engine when
running mysqld --bootstrap. (Bug#31315)

• For InnoDB tables with READ COMMITTED isolation level, UPDATE statements skipped rows locked by another transaction,
rather than waiting for the locks to be released. (Bug#31310)

• For an almost-full MyISAM table, an insert that failed could leave the table in a corrupt state. (Bug#31305)

• myisamchk --unpack could corrupt a table that when unpacked has static (fixed-length) row format. (Bug#31277)

• CONVERT(val, DATETIME) would fail on invalid input, but processing was not aborted for the WHERE clause, leading to a
server crash. (Bug#31253)

• Allocation of an insufficiently large group-by buffer following creation of a temporary table could lead to a server crash.
(Bug#31249)

• Use of DECIMAL(n, n) ZEROFILL in GROUP_CONCAT() could cause a server crash. (Bug#31227)

• When a TIMESTAMP with a non-zero time part was converted to a DATE value, no warning was generated. This caused index look-
ups to assume that this is a valid conversion and was returning rows that match a comparison between a TIMESTAMP value and a
DATE keypart. Now a warning is generated so that TIMESTAMP with a non-zero time part will not match DATE values.
(Bug#31221)

• Server variables could not be set to their current values on Linux platforms. (Bug#31177)

See also Bug#6958

• WIth small values of myisam_sort_buffer_size, REPAIR TABLE for MyISAM tables could cause a server crash.
(Bug#31174)

• Use of the @@hostname system variable in inserts in mysql_system_tables_data.sql did not replicate. The workaround

MySQL Change History

2032

http://bugs.mysql.com/31471
http://bugs.mysql.com/31450
http://bugs.mysql.com/31444
http://bugs.mysql.com/31440
http://bugs.mysql.com/31438
http://bugs.mysql.com/31418
http://bugs.mysql.com/31414
http://bugs.mysql.com/31409
http://bugs.mysql.com/31398
http://bugs.mysql.com/31397
http://bugs.mysql.com/31382
http://bugs.mysql.com/31381
http://bugs.mysql.com/31347
http://bugs.mysql.com/31315
http://bugs.mysql.com/31310
http://bugs.mysql.com/31305
http://bugs.mysql.com/31277
http://bugs.mysql.com/31253
http://bugs.mysql.com/31249
http://bugs.mysql.com/31227
http://bugs.mysql.com/31221
http://bugs.mysql.com/31177
http://bugs.mysql.com/6958
http://bugs.mysql.com/31174


is to select its value into a user variable (which does replicate) and insert that. (Bug#31167)

• If MAKETIME() returned NULL when used in an ORDER BY that was evaluated using filesort, a server crash could result.
(Bug#31160)

• Data in BLOB or GEOMETRY columns could be cropped when performing a UNION query. (Bug#31158)

• LAST_INSERT_ID() execution could be handled improperly in subqueries. (Bug#31157)

• An assertion designed to detect a bug in the ROLLUP implementation would incorrectly be triggered when used in a subquery con-
text with non-cacheable statements. (Bug#31156)

• Selecting spatial types in a UNION could cause a server crash. (Bug#31155)

• Use of GROUP_CONCAT(DISTINCT bit_column) caused an assertion failure. (Bug#31154)

• The server crashed in the parser when running out of memory. Memory handling in the parser has been improved to gracefully re-
turn an error when out-of-memory conditions occur in the parser. (Bug#31153)

• MySQL declares a UNIQUE key as a PRIMARY key if it doesn't have NULL columns and is not a partial key, and the PRIMARY key
must alway be the first key. However, in some cases, a non-first key could be reported as PRIMARY, leading to an assert failure by
InnoDB. This is fixed by correcting the key sort order. (Bug#31137)

• mysqldump failed to handle databases containing a ‘-’ character in the name. (Bug#31113)

• Starting the server using --read-only and with the Event Scheduler enabled caused it to crash.

Note

This issue occurred only when the server had been built with certain nonstandard combinations of configure options.

(Bug#31111)

• GROUP BY NULL WITH ROLLUP could cause a server crash. (Bug#31095)

See also Bug#32558

• A rule to prefer filesort over an indexed ORDER BY when accessing all rows of a table was being used even if a LIMIT clause
was present. (Bug#31094)

• REGEXP operations could cause a server crash for character sets such as ucs2. Now the arguments are converted to utf8 if pos-
sible, to allow correct results to be produced if the resulting strings contain only 8-bit characters. (Bug#31081)

• Expressions of the form WHERE col NOT IN (col, ...), where the same column was named both times, could cause a
server crash in the optimizer. (Bug#31075)

• Internal conversion routines could fail for several multi-byte character sets (big5, cp932, euckr, gb2312, sjis) for empty
strings or during evaluation of SOUNDS LIKE. (Bug#31069, Bug#31070)

• Many nested subqueries in a single query could led to excessive memory consumption and possibly a crash of the server.
(Bug#31048)

• Using ORDER BY with ARCHIVE tables caused a server crash. (Bug#31036)

• A server crash could occur when a non-DETERMINISTIC stored function was used in a GROUP BY clause. (Bug#31035)

• The MOD() function and the % operator crashed the server for a divisor less than 1 with a very long fractional part. (Bug#31019)

• Transactions were committed prematurely when LOCK TABLE and SET AUTOCOMMIT=OFF were used together. (Bug#30996)

• On Windows, the pthread_mutex_trylock() implementation was incorrect. (Bug#30992)

• A character set introducer followed by a hexadecimal or bit-value literal did not check its argument and could return an ill-formed
result for invalid input. (Bug#30986)

• CHAR(str USING charset) did not check its argument and could return an ill-formed result for invalid input. (Bug#30982)

MySQL Change History

2033

http://bugs.mysql.com/31167
http://bugs.mysql.com/31160
http://bugs.mysql.com/31158
http://bugs.mysql.com/31157
http://bugs.mysql.com/31156
http://bugs.mysql.com/31155
http://bugs.mysql.com/31154
http://bugs.mysql.com/31153
http://bugs.mysql.com/31137
http://bugs.mysql.com/31113
http://bugs.mysql.com/31111
http://bugs.mysql.com/31095
http://bugs.mysql.com/32558
http://bugs.mysql.com/31094
http://bugs.mysql.com/31081
http://bugs.mysql.com/31075
http://bugs.mysql.com/31069
http://bugs.mysql.com/31070
http://bugs.mysql.com/31048
http://bugs.mysql.com/31036
http://bugs.mysql.com/31035
http://bugs.mysql.com/31019
http://bugs.mysql.com/30996
http://bugs.mysql.com/30992
http://bugs.mysql.com/30986
http://bugs.mysql.com/30982


• The result from CHAR(str USING ucs2) did not add a leading 0x00 byte for input strings with an odd number of bytes.
(Bug#30981)

• A cluster restart could sometimes fail due to an issue with table IDs. (Bug#30975)

• The GeomFromText() function could cause a server crash if the first argument was NULL or the empty string. (Bug#30955)

• MAKEDATE() incorrectly moved year values in the 100-200 range into the 1970-2069 range. (This is legitimate for 00-99, but
three-digit years should be used unchanged.) (Bug#30951)

• When invoked with constant arguments, STR_TO_DATE() could use a cached value for the format string and return incorrect res-
ults. (Bug#30942)

• GROUP_CONCAT() returned ',' rather than an empty string when the argument column contained only empty strings.
(Bug#30897)

• For MEMORY tables, lookups for NULL values in BTREE indexes could return incorrect results. (Bug#30885)

• A server crash could occur if a stored function that contained a DROP TEMPORARY TABLE statement was invoked by a CREATE
TEMPORARY TABLE statement that created a table of the same name. (Bug#30882)

• Calling NAME_CONST() with non-constant arguments triggered an assertion failure. Non-constant arguments are now disallowed.
(Bug#30832)

• For a spatial column with a regular (non-SPATIAL) index, queries failed if the optimizer tried to use the index. (Bug#30825)

• Values for the --tc-heuristic-recover option incorrectly were treated as values for the --myisam-stats-method op-
tion. (Bug#30821)

• INFORMATION_SCHEMA.SCHEMATA was returning incorrect information. (Bug#30795)

• The optimizer incorrectly optimized conditions out of the WHERE clause in some queries involving subqueries and indexed columns.
(Bug#30788)

• Improper calculation of CASE expression results could lead to value truncation. (Bug#30782)

• On Windows, the pthread_mutex_trylock() implementation was incorrect. One symptom was that invalidating the query
cache could cause a server crash. (Bug#30768)

• A multiple-table UPDATE involving transactional and non-transactional tables caused an assertion failure. (Bug#30763)

• User-supplied names foreign key names might not be set to the right key, leading to foreign keys with no name. (Bug#30747)

• Under some circumstances, CREATE TABLE ... SELECT could crash the server or incorrectly report that the table row size
was too large. (Bug#30736)

• Using the MIN() or MAX() function to select one part of a multi-part key could cause a crash when the function result was NULL.
(Bug#30715)

• The embedded server did not properly check column-level privileges. (Bug#30710)

• INFORMATION_SCHEMA.VIEWS.VIEW_DEFINITION was incorrect for views that were defined to select from other IN-
FORMATION_SCHEMA tables. (Bug#30689)

• Issuing an ALTER SERVER statement to update the settings for a FEDERATED server would cause the mysqld to crash.
(Bug#30671)

• The optimizer could ignore ORDER BY in cases when the result set is ordered by filesort, resulting in rows being returned in
incorrect order. (Bug#30666)

• A different execution plan was displayed for EXPLAIN than would actually have been used for the SELECT because the test of sort
keys for ORDER BY did not consider keys mentioned in IGNORE KEYS FOR ORDER BY. (Bug#30665)

• The thread_handling system variable was treated as having a SESSION value and as being settable at runtime. Now it has
only a GLOBAL read-only value. (Bug#30651)

MySQL Change History

2034

http://bugs.mysql.com/30981
http://bugs.mysql.com/30975
http://bugs.mysql.com/30955
http://bugs.mysql.com/30951
http://bugs.mysql.com/30942
http://bugs.mysql.com/30897
http://bugs.mysql.com/30885
http://bugs.mysql.com/30882
http://bugs.mysql.com/30832
http://bugs.mysql.com/30825
http://bugs.mysql.com/30821
http://bugs.mysql.com/30795
http://bugs.mysql.com/30788
http://bugs.mysql.com/30782
http://bugs.mysql.com/30768
http://bugs.mysql.com/30763
http://bugs.mysql.com/30747
http://bugs.mysql.com/30736
http://bugs.mysql.com/30715
http://bugs.mysql.com/30710
http://bugs.mysql.com/30689
http://bugs.mysql.com/30671
http://bugs.mysql.com/30666
http://bugs.mysql.com/30665
http://bugs.mysql.com/30651


• On Windows, LIMIT arguments greater than 2^32 did not work correctly. (Bug#30639)

• MyISAM tables could not exceed 4294967295 (2^32 - 1) rows on Windows. (Bug#30638)

• A failed HANDLER ... READ operation could leave the table in a locked state. (Bug#30632)

• mysql-test-run.pl could not run mysqld with root privileges. (Bug#30630)

• The mysqld_safe script contained a syntax error. (Bug#30624)

• The optimization that uses a unique index to remove GROUP BY did not ensure that the index was actually used, thus violating the
ORDER BY that is implied by GROUP BY. (Bug#30596)

• SHOW STATUS LIKE 'Ssl_cipher_list' from a MySQL client connected via SSL returned an empty string rather than a
list of available ciphers. (Bug#30593)

• For MEMORY tables, DELETE statements that remove rows based on an index read could fail to remove all matching rows.
(Bug#30590)

• Using GROUP BY on an expression of the form timestamp_col DIV number caused a server crash due to incorrect calcula-
tion of number of decimals. (Bug#30587)

• Executing a SELECT COUNT(*) query on an InnoDB table partitioned by KEY that used a DOUBLE column as the partitioning
key caused the server to crash. (Bug#30583)

• The options available to the CHECK TABLE statement were also allowed in OPTIMIZE TABLE and ANALYZE TABLE state-
ments, but caused corruption during their execution. These options were never supported for the these statements, and an error is
now raised if you try to apply these options to these statements. (Bug#30495)

• A self-referencing trigger on a partitioned table caused the server to crash instead of failing with an error. (Bug#30484)

• The mysql_change_user() C API function did not correctly reset the character set variables to the values they had just after
initially connecting. (Bug#30472)

• When expanding a * in a USING or NATURAL join, the check for table access for both tables in the join was done using only the
grant information of the first table. (Bug#30468)

• When casting a string value to an integer, cases where the input string contained a decimal point and was long enough to overrun the
unsigned long long type were not handled correctly. The position of the decimal point was not taken into account which res-
ulted in miscalculated numbers and incorrect truncation to appropriate SQL data type limits. (Bug#30453)

• Versions of mysqldump from MySQL 4.1 or higher tried to use START TRANSACTION WITH CONSISTENT SNAPSHOT if
the --single-transaction and --master-data options were given, even with servers older than 4.1 that do not support
consistent snapshots. (Bug#30444)

• With libmysqld, use of prepared statements and the query cache at the same time caused problems. (Bug#30430)

• Issuing a DELETE statement having both an ORDER BY clause and a LIMIT clause could cause mysqld to crash. (Bug#30385)

• For CREATE ... SELECT ... FROM, where the resulting table contained indexes, adding SQL_BUFFER_RESULT to the
SELECT part caused index corruption in the table. (Bug#30384)

• The Last_query_cost status variable value can be computed accurately only for simple “flat” queries, not complex queries
such as those with subqueries or UNION. However, the value was not consistently being set to 0 for complex queries. (Bug#30377)

• The optimizer made incorrect assumptions about the value of the is_member value for user-defined functions, sometimes result-
ing in incorrect ordering of UDF results. (Bug#30355)

• Queries that had a GROUP BY clause and selected COUNT(DISTINCT bit_column) returned incorrect results. (Bug#30324)

• Some valid euc-kr characters having the second byte in the ranges [0x41..0x5A] and [0x61..0x7A] were rejected.
(Bug#30315)

• When loading a dynamic plugin on FreeBSD, the plugin would fail to load. This was due to a build error where the required sym-
bols would be not exported correctly. (Bug#30296)

MySQL Change History

2035

http://bugs.mysql.com/30639
http://bugs.mysql.com/30638
http://bugs.mysql.com/30632
http://bugs.mysql.com/30630
http://bugs.mysql.com/30624
http://bugs.mysql.com/30596
http://bugs.mysql.com/30593
http://bugs.mysql.com/30590
http://bugs.mysql.com/30587
http://bugs.mysql.com/30583
http://bugs.mysql.com/30495
http://bugs.mysql.com/30484
http://bugs.mysql.com/30472
http://bugs.mysql.com/30468
http://bugs.mysql.com/30453
http://bugs.mysql.com/30444
http://bugs.mysql.com/30430
http://bugs.mysql.com/30385
http://bugs.mysql.com/30384
http://bugs.mysql.com/30377
http://bugs.mysql.com/30355
http://bugs.mysql.com/30324
http://bugs.mysql.com/30315
http://bugs.mysql.com/30296


• Simultaneous ALTER TABLE statements for BLACKHOLE tables caused 100% CPU use due to locking problems. (Bug#30294)

• Setting certain values on a table using a spatial index could cause the server to crash. (Bug#30286)

• Tables with a GEOMETRY column could be marked as corrupt if you added a non-SPATIAL index on a GEOMETRY column.
(Bug#30284)

• Flushing a merge table between the time it was opened and its child table were actually attached caused the server to crash.
(Bug#30273)

This regression was introduced by Bug#26379

• The query cache does not support retrieval of statements for which column level access control applies, but the server was still cach-
ing such statements, thus wasting memory. (Bug#30269)

• Using DISTINCT or GROUP BY on a BIT column in a SELECT statement caused the column to be cast internally as an integer,
with incorrect results being returned from the query. (Bug#30245)

• Multiple-table DELETE statements could delete rows from the wrong table. (Bug#30234)

• GROUP BY on BIT columns produced incorrect results. (Bug#30219)

• Short-format mysql commands embedded within /*! ... */ comments were parsed incorrectly by mysql, which discarded
the rest of the comment including the terminating */ characters. The result was a malformed (unclosed) comment. Now mysql
does not discard the */ characters. (Bug#30164)

• If the server crashed during an ALTER TABLE statement, leaving a temporary file in the database directory, a subsequent DROP
DATABASE statement failed due to the presence of the temporary file. (Bug#30152)

• When mysqldump wrote DROP DATABASE statements within version-specific comments, it included the terminating semicolon
in the wrong place, causing following statements to fail when the dump file was reloaded. (Bug#30126)

• It was not possible for client applications to distinguish between auto-set and auto-updated TIMESTAMP column values.

To rectify this problem, a new ON_UPDATE_NOW_FLAG flag is set by Field_timestamp constructors whenever a column should be
set to NOW on UPDATE, and the get_schema_column_record() function now reports whether a timestamp column is set to
NOW on UPDATE. In addition, such columns now display on update CURRENT_TIMESTAMP in the Extra column in the out-
put from SHOW COLUMNS. (Bug#30081)

• Some INFORMATION_SCHEMA tables are intended for internal use, but could be accessed by using SHOW statements.
(Bug#30079)

• On some 64-bit systems, inserting the largest negative value into a BIGINT column resulted in incorrect data. (Bug#30069)

• mysqlslap did not properly handle multiple result sets from stored procedures. (Bug#29985)

• Specifying the --without-geometry option for configure caused server compilation to fail. (Bug#29972)

• Statements within stored procedures ignored the value of the low_priority_updates system variable. (Bug#29963)

See also Bug#26162

• With auto-reconnect enabled, row fetching for a prepared statement could crash after reconnect occurred because loss of the state-
ment handler was not accounted for. (Bug#29948)

• mysqldump --skip-events --all-databases dumped data from the mysqld.event table, and when restoring from
this dump, events were created in spite of the --skip-events option. (Bug#29938)

• When mysqlslap was given a query to execute from a file via a --query=file_name option, it executed the query one too
many times. (Bug#29803)

• configure did not find nss on some Linux platforms. (Bug#29658)

• It was possible when creating a partitioned table using CREATE TABLE ... SELECT to refer in the PARTITION BY clause to
columns in the table being selected from, which could cause the server to crash. An example of such a statement is:

CREATE TABLE t1 (b INT)

MySQL Change History

2036

http://bugs.mysql.com/30294
http://bugs.mysql.com/30286
http://bugs.mysql.com/30284
http://bugs.mysql.com/30273
http://bugs.mysql.com/26379
http://bugs.mysql.com/30269
http://bugs.mysql.com/30245
http://bugs.mysql.com/30234
http://bugs.mysql.com/30219
http://bugs.mysql.com/30164
http://bugs.mysql.com/30152
http://bugs.mysql.com/30126
http://bugs.mysql.com/30081
http://bugs.mysql.com/30079
http://bugs.mysql.com/30069
http://bugs.mysql.com/29985
http://bugs.mysql.com/29972
http://bugs.mysql.com/29963
http://bugs.mysql.com/26162
http://bugs.mysql.com/29948
http://bugs.mysql.com/29938
http://bugs.mysql.com/29803
http://bugs.mysql.com/29658


PARTITION BY RANGE(t2.b) (
PARTITION p1 VALUES LESS THAN (10),
PARTITION p2 VALUES LESS THAN (20)

) SELECT * FROM t2;

The fix is to disallow references in PARTITION BY clauses to columns not in the table being created. (Bug#29444)

• If a view used a function in its SELECT statement, the columns from the view were not inserted into the INFORMA-
TION_SCHEMA.COLUMNS table. (Bug#29408)

• The mysql client program now ignores Unicode byte order mark (BOM) characters at the beginning of input files. Previously, it
read them and sent them to the server, resulting in a syntax error.

Presence of a BOM does not cause mysql to change its default character set. To do that, invoke mysql with an option such as -
-default-character-set=utf8. (Bug#29323)

• For transactional tables, an error during a multiple-table DELETE statement did not roll back the statement. (Bug#29136)

• The log and log_slow_queries system variables were displayed by SHOW VARIABLES but could not be accessed in expres-
sions as @@log and @@log_slow_queries. Also, attempting to set them with SET produced an incorrect Unknown system
variable message. Now these variables are treated as synonyms for general_log and slow_query_log, which means that
they can be accessed in expressions and their values can be changed with SET. (Bug#29131)

• Denormalized double-precision numbers cannot be handled properly by old MIPS pocessors. For IRIX, this is now handled by en-
abling a mode to use a software workaround. (Bug#29085)

• SHOW VARIABLES did not display the relay_log, relay_log_index, or relay_log_info_file system variables.
(Bug#28893)

• When doing a DELETE on table that involved a JOIN with MyISAM or MERGE tables and the JOIN referred to the same table, the
operation could fail reporting ERROR 1030 (HY000): Got error 134 from storage engine. This was because
scans on the table contents would change because of rows that had already been deleted. (Bug#28837)

• Killing an SSL connection on platforms where MySQL is compiled with -DSIGNAL_WITH_VIO_CLOSE (Windows, Mac OS X,
and some others) could crash the server. (Bug#28812)

• SHOW VARIABLES did not correctly display the value of the thread_handling system variable. (Bug#28785)

• On Windows, mysql_upgrade created temporary files in C:\ and did not clean them up. (Bug#28774)

• Index hints specified in view definitions were ignored when using the view to select from the base table. (Bug#28702)

• Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view is now disallowed.
(Bug#28701)

• After changing the SQL mode to a restrictive value that would make already-inserted dates in a column be considered invalid,
searches returned different results depending on whether the column was indexed. (Bug#28687)

• When running the MySQL Instance Configuration Wizard, a race condition could exist that would fail to connect to a newly con-
figured instance. This was because mysqld had not completed the startup process before the next stage of the installation process.
(Bug#28628)

• A SELECT in one connection could be blocked by INSERT ... ON DUPLICATE KEY UPDATE in another connection even
when low_priority_updates is set. (Bug#28587)

• mysql_upgrade could run binaries dynamically linked against incorrect versions of shared libraries. (Bug#28560)

• The result from CHAR() was incorrectly assumed in some contexts to return a single-byte result. (Bug#28550)

• mysqldump reversed the event name and program name in one of its error messages. (Bug#28535)

• If a LIMIT clause was present, the server could fail to consider indexes that could be used for ORDER BY or GROUP BY.
(Bug#28404)

• The parser confused user-defined function (UDF) and stored function creation for CREATE FUNCTION and required that there be a
default database when creating UDFs, although there is no such requirement. (Bug#28318, Bug#29816)

MySQL Change History

2037

http://bugs.mysql.com/29444
http://bugs.mysql.com/29408
http://bugs.mysql.com/29323
http://bugs.mysql.com/29136
http://bugs.mysql.com/29131
http://bugs.mysql.com/29085
http://bugs.mysql.com/28893
http://bugs.mysql.com/28837
http://bugs.mysql.com/28812
http://bugs.mysql.com/28785
http://bugs.mysql.com/28774
http://bugs.mysql.com/28702
http://bugs.mysql.com/28701
http://bugs.mysql.com/28687
http://bugs.mysql.com/28628
http://bugs.mysql.com/28587
http://bugs.mysql.com/28560
http://bugs.mysql.com/28550
http://bugs.mysql.com/28535
http://bugs.mysql.com/28404
http://bugs.mysql.com/28318
http://bugs.mysql.com/29816


• Fast-mutex locking was not thread-safe and optimization-safe on some platforms, which could cause program failures such as out-
of-memory errors. (Bug#28284)

• The result of a comparison between VARBINARY and BINARY columns differed depending on whether the VARBINARY column
was indexed. (Bug#28076)

• The metadata in some MYSQL_FIELD members could be incorrect when a temporary table was used to evaluate a query.
(Bug#27990)

• Partition pruning was not used for queries having <= or >= conditions in the WHERE clause on a table using TO_DAYS() in the
partitioning expression. (Bug#27927)

• mysqlbinlog produced incorrectly formatted DATETIME and TIMESTAMP values. (Bug#27894)

• Failure to log to the general_log or slow_log log tables were not logged to the error log at all or were logged incorrectly.
(Bug#27858)

• comp_err created files with permissions such that they might be inaccessible during make install operations. (Bug#27789)

• SHOW COLUMNS returned NULL instead of the empty string for the Default value of columns that had no default specified.
(Bug#27747)

• It was possible to create a view having a column whose name consisted of an empty string or space characters only. (Bug#27695)

See also Bug#31202

• With recent versions of DBD::mysql, mysqlhotcopy generated table names that were doubly qualified with the database name.
(Bug#27694)

• The anonymous accounts were not being created during MySQL installation. (Bug#27692)

• Some SHOW statements and INFORMATION_SCHEMA queries could expose information not allowed by the user's access privileges.
(Bug#27629)

• ALTER TABLE tbl_name ROW_FORMAT=format_type did not cause the table to be rebuilt. (Bug#27610)

• A race condition between killing a statement and the thread executing the statement could lead to a situation such that the binary log
contained an event indicating that the statement was killed, whereas the statement actually executed to completion. (Bug#27571)

• Some character mappings in the ascii.xml file were incorrect. (Bug#27562)

• Some queries using the NAME_CONST() function failed to return either a result or an error to the client, causing it to hang. This
was due to the fact that there was no check to insure that both arguments to this function were constant expressions. (Bug#27545,
Bug#32559)

• With the read_only system variable enabled, CREATE DATABASE and DROP DATABASE were allowed to users who did not
have the SUPER privilege. (Bug#27440)

• For an event with an ON COMPLETION value of PRESERVE, an ALTER EVENT statement that specified no ON COMPLETION
option caused the value to become NOT PRESERVE. (Bug#27407)

• MySQL failed to generate or retrieve an AUTO_INCREMENT primary key for InnoDB tables with user-defined partitioning.
(Bug#27405)

• Changes to the sql_mode system variable were not tracked by INSERT DELAYED. (Bug#27358)

• A SELECT with more than 31 nested dependent subqueries returned an incorrect result. (Bug#27352)

• The ExtractValue() and UpdateXML() functions performed extremely slowly for large amounts of XML data (greater than
64 KB). These functions now execute approximately 2000 times faster than previously. (Bug#27287)

• On Windows, writes to the debug log were using freopen() instead of fflush(), resulting in slower performance.
(Bug#27099)

• For a table that used different full-text parsers for different FULLTEXT indexes, SHOW CREATE TABLE displayed the first parser
name for all of them. (Bug#27040)

MySQL Change History

2038

http://bugs.mysql.com/28284
http://bugs.mysql.com/28076
http://bugs.mysql.com/27990
http://bugs.mysql.com/27927
http://bugs.mysql.com/27894
http://bugs.mysql.com/27858
http://bugs.mysql.com/27789
http://bugs.mysql.com/27747
http://bugs.mysql.com/27695
http://bugs.mysql.com/31202
http://bugs.mysql.com/27694
http://bugs.mysql.com/27692
http://bugs.mysql.com/27629
http://bugs.mysql.com/27610
http://bugs.mysql.com/27571
http://bugs.mysql.com/27562
http://bugs.mysql.com/27545
http://bugs.mysql.com/32559
http://bugs.mysql.com/27440
http://bugs.mysql.com/27407
http://bugs.mysql.com/27405
http://bugs.mysql.com/27358
http://bugs.mysql.com/27352
http://bugs.mysql.com/27287
http://bugs.mysql.com/27099
http://bugs.mysql.com/27040


• STR_TO_DATE() displayed an error message that referred to STR_TO_TIME(). (Bug#27014)

• The mysql_insert_id() C API function sometimes returned different results for libmysqld and libmysqlclient.
(Bug#26921)

• Symbolic links on Windows could fail to work. (Bug#26811)

• mysqld sometimes miscalculated the number of digits required when storing a floating-point number in a CHAR column. This
caused the value to be truncated, or (when using a debug build) caused the server to crash. (Bug#26788)

See also Bug#12860

• LOAD DATA INFILE ran very slowly when reading large files into partitioned tables. (Bug#26527)

• It makes no sense to attempt to use ALTER TABLE ... ORDER BY to order an InnoDB table if there is a user-defined clustered
index, because rows are always ordered by the clustered index. Such attempts now are ignored and produce a warning.

Also, in some cases, InnoDB incorrectly used a secondary index when the clustered index would produce a faster scan. EXPLAIN
output now indicates use of the clustered index (for tables that have one) as lines with a type value of index, a key value of
PRIMARY, and without Using index in the Extra value. (Bug#26447)

• Using HANDLER to open a table having a storage engine not supported by HANDLER properly returned an error, but also improperly
prevented the table from being dropped by other connections. (Bug#25856)

• For a prepared statement stmt, changing the default database following PREPARE stmt but before EXECUTE stmt caused
stmt to be recorded incorrectly in the binary log. (Bug#25843)

• CREATE TABLE LIKE did not work when the source table was an INFORMATION_SCHEMA table. (Bug#25629)

• Threads that were calculating the estimated number of records for a range scan did not respond to the KILL statement. That is, if a
range join type is possible (even if not selected by the optimizer as a join type of choice and thus not shown by EXPLAIN), the
query in the statistics state (shown by the SHOW PROCESSLIST) did not respond to the KILL statement. (Bug#25421)

• For InnoDB tables, CREATE TABLE a AS SELECT * FROM A would fail. (Bug#25164)

• For mysql --show-warnings, warnings were in some cases not displayed. (Bug#25146)

• The returns column of the mysql.proc table was CHAR(64), which is not long enough to store long data types such as ENUM
types. The column has been changed to LONGBLOB and a warning is generated if truncation occurs when storing a row into the
proc table. (Bug#24923)

• If the expected precision of an arithmetic expression exceeded the maximum precision supported by MySQL, the precision of the
result was reduced by an unpredictable or arbitrary amount, rather than to the maximum precision. In some cases, exceeding the
maximum supported precision could also lead to a crash of the server. (Bug#24907)

• For Vista installs, MySQLInstanceConfig.exe did not add the default MySQL port to the firewall exceptions. It now provides
a checkbox that enables the user a choice of whether to do this. (Bug#24853)

• A CREATE TRIGGER statement could cause a deadlock or server crash if it referred to a table for which a table lock had been ac-
quired with LOCK TABLES. (Bug#23713)

• For storage engines that do not redefine handler::index_next_same() and are capable of indexes, statements that include a
WHERE clause might select incorrect data. (Bug#22351)

• The parser treated the INTERVAL() function incorrectly, leading to situations where syntax errors could result depending on which
side of an arithmetic operator the function appeared. (Bug#22312)

• Entries in the general query log were truncated at 1000 characters. (Bug#21557)

• A memory leak occurred when CREATE TEMPORARY TABLE .. SELECT was invoked from a stored function that in turn was
called from CREATE TABLE ... SELECT. (Bug#21136)

• It was possible to execute CREATE TABLE t1 ... SELECT ... FROM t2 with the CREATE privilege for t1 and SELECT
privilege for t2, even in the absence of the INSERT privilege for t1. (Bug#20901)

• Worked around an icc problem with an incorrect machine instruction being generated in the context of software pre-fetching after

MySQL Change History

2039

http://bugs.mysql.com/27014
http://bugs.mysql.com/26921
http://bugs.mysql.com/26811
http://bugs.mysql.com/26788
http://bugs.mysql.com/12860
http://bugs.mysql.com/26527
http://bugs.mysql.com/26447
http://bugs.mysql.com/25856
http://bugs.mysql.com/25843
http://bugs.mysql.com/25629
http://bugs.mysql.com/25421
http://bugs.mysql.com/25164
http://bugs.mysql.com/25146
http://bugs.mysql.com/24923
http://bugs.mysql.com/24907
http://bugs.mysql.com/24853
http://bugs.mysql.com/23713
http://bugs.mysql.com/22351
http://bugs.mysql.com/22312
http://bugs.mysql.com/21557
http://bugs.mysql.com/21136
http://bugs.mysql.com/20901


a subroutine got in-lined. (Upgrading to icc 10.0.026 makes the workaround unnecessary.) (Bug#20803)

• If a column selected by a view referred to a stored function, the data type reported for the column in INFORMA-
TION_SCHEMA.COLUMNS could be incorrect. (Bug#20550)

• The mysql_change_user() C API function changed the value of the SQL_BIG_SELECTS session variable. (Bug#20023)

• Hostnames sometimes were treated as case sensitive in account-management statements (CREATE USER, GRANT, REVOKE, and so
forth). (Bug#19828)

• Issuing an SQL KILL of the active connection caused an error on Mac OS X. (Bug#19723)

• The readline library has been updated to version 5.2. This addresses issues in the mysql client where history and editing within
the client would fail to work as expected. (Bug#18431)

• The -lmtmalloc library was removed from the output of mysql_config on Solaris, as it caused problems when building
DBD::mysql (and possibly other applications) on that platform that tried to use dlopen() to access the client library.
(Bug#18322)

• MySQLInstanceConfig.exe failed to grant certain privileges to the 'root'@'%' account. (Bug#17303)

• The Aborted_clients status variable was incremented twice if a client exited without calling mysql_close(). (Bug#16918)

• Clients were ignoring the TCP/IP port number specified as the default port via the --with-tcp-port configuration option.
(Bug#15327)

• Parameters of type DATETIME or DATE in stored procedures were silently converted to VARBINARY. (Bug#13675)

• Zero-padding of exponent values was not the same across platforms. (Bug#12860)

• Values of types REAL ZEROFILL, DOUBLE ZEROFILL, FLOAT ZEROFILL, were not zero-filled when converted to a charac-
ter representation in the C prepared statement API. (Bug#11589)

• mysql stripped comments from statements sent to the server. Now the --comments or --skip-comments option can be used
to control whether to retain or strip comments. The default is --skip-comments. (Bug#11230, Bug#26215)

• Several buffer-size system variables were either being handled incorrectly for large values (for settings larger than 4GB, they were
truncated to values less than 4GB without a warning), or were limited unnecessarily to 4GB even on 64-bit systems. The following
changes were made:

• For key_buffer_size, values larger than 4GB are allowed on 64-bit platforms.

• For join_buffer_size, sort_buffer_size, and myisam_sort_buffer_size, values larger than 4GB are al-
lowed on 64-bit platforms (except Windows, for which large values are truncated to 4GB with a warning).

In addition, settings for read_buffer_size and read_rnd_buffer_size are limited to 2GB on all platforms. Larger val-
ues are truncated to 2GB with a warning. (Bug#5731, Bug#29419, Bug#29446)

• Executing DISABLE KEYS and ENABLE KEYS on a non-empty table would cause the size of the index file for the table to grow
considerable. This was because the DISABLE KEYS operation would only mark the existing index, without deleting the index
blocks. The ENABLE KEYS operation would re-create the index, adding new blocks, while the previous index blocks would re-
main. Existing indexes are now dropped and recreated when the ENABLE KEYS statement is executed. (Bug#4692)

• Grant table checks failed in libmysqld.

• There were no more transaction records in the transaction coordinator

• Replicating from a master table to a slave table where the size of a CHAR or VARCHAR column was a different size would cause
mysqld to crash. For more information on replicating with different column definitions, see Section 16.3.1.22, “Replication with
Differing Tables on Master and Slave”.

C.1.5. Changes in MySQL 5.1.23 Carrier Grade Edition
This section contains change history information for MySQL Cluster 5.1 Carrier Grade Edition releases based on MySQL 5.1.23.

MySQL Change History

2040

http://bugs.mysql.com/20803
http://bugs.mysql.com/20550
http://bugs.mysql.com/20023
http://bugs.mysql.com/19828
http://bugs.mysql.com/19723
http://bugs.mysql.com/18431
http://bugs.mysql.com/18322
http://bugs.mysql.com/17303
http://bugs.mysql.com/16918
http://bugs.mysql.com/15327
http://bugs.mysql.com/13675
http://bugs.mysql.com/12860
http://bugs.mysql.com/11589
http://bugs.mysql.com/11230
http://bugs.mysql.com/26215
http://bugs.mysql.com/5731
http://bugs.mysql.com/29419
http://bugs.mysql.com/29446
http://bugs.mysql.com/4692


C.1.5.1. Changes in MySQL 5.1.23-ndb-6.3.12 (05 April 2008)

MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.3.12 was pulled due to issues discovered shortly after its release, and is no
longer available. Users of 5.1.23-ndb-6.3.10 and earlier MySQL Cluster 5.1 Carrier Grade Edition 6.x releases should upgrade to
MySQL Cluster 5.1 Carrier Grade Edition 5.1.24-ndb-6.3.13 or later.

For information about bugfixes and feature enhancements that were originally scheduled to appear for the first time in this release, see
Section C.1.3.1, “Changes in MySQL 5.1.24-ndb-6.3.13 (10 April 2008)”.

C.1.5.2. Changes in MySQL 5.1.23-ndb-6.3.11 (28 March 2008)

MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.3.11 was pulled due to issues discovered shortly after its release, and is no
longer available. Users of 5.1.23-ndb-6.3.10 and earlier MySQL Cluster 5.1 Carrier Grade Edition 6.x releases should upgrade to
MySQL Cluster 5.1 Carrier Grade Edition 5.1.24-ndb-6.3.13 or later.

For information about bugfixes and feature enhancements that were originally scheduled to appear for the first time in this release, see
Section C.1.3.1, “Changes in MySQL 5.1.24-ndb-6.3.13 (10 April 2008)”.

C.1.5.3. Changes in MySQL 5.1.23-ndb-6.3.10 (17 February 2008)

This is a new Beta development release, fixing a recently discovered bug.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.3.10. MySQL Cluster 5.1 Carrier Grade Edition
5.1.23-ndb-6.3.10 — like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile
and install using the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1,
“Building MySQL Cluster from Source Code”. You can download source code archives for this release in two versions. The version
that you should use depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use
MySQL Cluster 5.1 Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.3.10/mysqlcom-5.1.23-ndb-6.3.10-telco.tar.gz in this directory contains the complete com-
mercial source archive.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.3.10/mysql-5.1.23-ndb-6.3.10-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.19-ndb-6.3.0, MySQL 5.1.19-ndb-6.3.1, MySQL

MySQL Change History

2041

ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/


5.1.22-ndb-6.3.2, MySQL 5.1.22-ndb-6.3.3, MySQL 5.1.22-ndb-6.3.4, and MySQL 5.1.22-ndb-6.3.5, MySQL 5.1.22-ndb-6.3.6, and
MySQL 5.1.23-ndb-6.3.7, MySQL 5.1.23-ndb-6.3.8, and MySQL 5.1.23-ndb-6.3.9, as well as all bugfixes and feature changes which
were added in the mainline 5.1.21, 5.1.22, and 5.1.23 releases; information about these can be found in Section C.1.8, “Changes in
MySQL 5.1.21 (16 August 2007)”, Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”, and Sec-
tion C.1.4, “Changes in MySQL 5.1.23 (29 January 2008)”.

Bugs fixed:

• MySQL Cluster: Due to the reduction of the number of local checkpoints from 3 to 2 in MySQL 5.1.23-ndb-6.3.8, a data node us-
ing ndbd from MySQL 5.1.23-ndb-6.3.8 or later started using a filesystem from an earlier version could incorrectly invalidate local
checkpoints too early during the startup process, causing the node to fail. (Bug#34596)

C.1.5.4. Changes in MySQL 5.1.23-ndb-6.3.9 (12 February 2008)

This is a new Beta development release, fixing recently discovered bugs.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.3.9. MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.3.9
— like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile and install using
the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1, “Building MySQL
Cluster from Source Code”. You can download source code archives for this release in two versions. The version that you should use
depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use MySQL Cluster 5.1
Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.3.9/mysqlcom-5.1.23-ndb-6.3.9-telco.tar.gz in this directory contains the complete commer-
cial source archive.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.3.9/mysql-5.1.23-ndb-6.3.9-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.19-ndb-6.3.0, MySQL 5.1.19-ndb-6.3.1, MySQL
5.1.22-ndb-6.3.2, MySQL 5.1.22-ndb-6.3.3, MySQL 5.1.22-ndb-6.3.4, and MySQL 5.1.22-ndb-6.3.5, MySQL 5.1.22-ndb-6.3.6, and
MySQL 5.1.23-ndb-6.3.7, and MySQL 5.1.23-ndb-6.3.8, as well as all bugfixes and feature changes which were added in the mainline
5.1.21, 5.1.22, and 5.1.23 releases; information about these can be found in Section C.1.8, “Changes in MySQL 5.1.21 (16 August
2007)”, Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”, and Section C.1.4, “Changes in MySQL
5.1.23 (29 January 2008)”.

MySQL Change History

2042

http://bugs.mysql.com/34596
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/


Functionality added or changed:

• Beginning with this version, MySQL Cluster 5.1 Carrier Grade Edition 6.3.x releases once again include the InnoDB storage en-
gine. In order to enable InnoDB, you must configure the build using --with-innodb.

Bugs fixed:

• MySQL Cluster: Cluster failures could sometimes occur when performing more than three parallel takeovers during node restarts
or system restarts. This affected 5.1.15-ndb-6.1.6-beta 6.3.x releases only. (Bug#34445)

• MySQL Cluster: Upgrades of a cluster using while a DataMemory setting in excess of 16 GB caused data nodes to fail.
(Bug#34378)

• MySQL Cluster: Performing many SQL statements on NDB tables while in AUTOCOMMIT mode caused a memory leak in
mysqld. (Bug#34275)

• MySQL Cluster: Multi-table updates using ordered indexes during handling of node failures could cause other data nodes to fail.
(Bug#34216)

• MySQL Cluster: When configured with NDB support, MySQL failed to compile using gcc 4.3 on 64bit FreeBSD systems.
(Bug#34169)

• MySQL Cluster: The failure of a DDL statement could sometimes lead to node failures when attempting to execute subsequent
DDL statements. (Bug#34160)

• MySQL Cluster: Extremely long SELECT statements (where the text of the statement was in excess of 50000 characters) against
NDB tables returned empty results. (Bug#34107)

• MySQL Cluster: When configured with NDB support, MySQL failed to compile on 64bit FreeBSD systems. (Bug#34046)

See also Bug#32175

• MySQL Cluster: Statements executing multiple inserts performed poorly on NDB tables having AUTO_INCREMENT columns.
(Bug#33534)

• MySQL Cluster: The ndb_waiter utility polled ndb_mgmd excessively when obtaining the status of cluster data nodes.
(Bug#32025)

See also Bug#32023

• MySQL Cluster: Transaction atomicity was sometimes not preserved between reads and inserts under high loads. (Bug#31477)

• MySQL Cluster: Having tables with a great many columns could cause Cluster backups to fail. (Bug#30172)

• Cluster Replication: Disk Data: Statements violating unique keys on Disk Data tables (such as attempting to insert NULL into a
NOT NULL column) could cause data nodes to fail. When the statement was executed from the binlog, this could also result in fail-
ure of the slave cluster. (Bug#34118)

• Disk Data: Updating in-memory columns of one or more rows of Disk Data table, followed by deletion of these rows and re-
insertion of them, caused data node failures. (Bug#33619)

• Cluster Replication: Setting --replicate-ignore-db=mysql caused the mysql.ndb_apply_status table not to be
replicated, breaking Cluster Replication. (Bug#28170)

C.1.5.5. Changes in MySQL 5.1.23-ndb-6.3.8 (29 January 2008)

This is a new Beta development release, fixing recently discovered bugs.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.3.8. MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.3.8
— like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile and install using
the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1, “Building MySQL
Cluster from Source Code”. You can download source code archives for this release in two versions. The version that you should use

MySQL Change History

2043

http://bugs.mysql.com/34445
http://bugs.mysql.com/34378
http://bugs.mysql.com/34275
http://bugs.mysql.com/34216
http://bugs.mysql.com/34169
http://bugs.mysql.com/34160
http://bugs.mysql.com/34107
http://bugs.mysql.com/34046
http://bugs.mysql.com/32175
http://bugs.mysql.com/33534
http://bugs.mysql.com/32025
http://bugs.mysql.com/32023
http://bugs.mysql.com/31477
http://bugs.mysql.com/30172
http://bugs.mysql.com/34118
http://bugs.mysql.com/33619
http://bugs.mysql.com/28170


depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use MySQL Cluster 5.1
Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.3.8/mysqlcom-5.1.23-ndb-6.3.8-telco.tar.gz in this directory contains the complete commer-
cial source archive.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.3.8/mysql-5.1.23-ndb-6.3.8-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.19-ndb-6.3.0, MySQL 5.1.19-ndb-6.3.1, MySQL
5.1.22-ndb-6.3.2, MySQL 5.1.22-ndb-6.3.3, MySQL 5.1.22-ndb-6.3.4, and MySQL 5.1.22-ndb-6.3.5, MySQL 5.1.22-ndb-6.3.6, and
MySQL 5.1.23-ndb-6.3.7, as well as all bugfixes and feature changes which were added in the mainline 5.1.21, 5.1.22, and 5.1.23 re-
leases; information about these can be found in Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)”, Section C.1.6, “Changes
in MySQL 5.1.22 (24 September 2007: Release Candidate)”, and Section C.1.4, “Changes in MySQL 5.1.23 (29 January 2008)”.

Functionality added or changed:

• Cluster API: Important Change: Because NDB_LE_MemoryUsage.page_size_kb shows memory page sizes in bytes rather
than kilobytes, it has been renamed to page_size_bytes. The name page_size_kb is now deprecated and thus subject to re-
moval in a future release, although it currently remains supported for reasons of backwards compatibility. See The
Ndb_logevent_type Type, for more information about NDB_LE_MemoryUsage. (Bug#30271)

• MySQL Cluster: ndb_restore now supports basic attribute promotion; that is, data from a column of a given type can be re-
stored to a column using a “larger” type. For example, Cluster backup data taken from a SMALLINT column can be restored to a
MEDIUMINT, INT, or BIGINT column.

For more information, see Section 17.10.3, “ndb_restore — Restore a Cluster Backup”.

• MySQL Cluster: Now only 2 local checkpoints are stored, rather than 3 as in previous MySQL Cluster versions. This lowers disk
space requirements and reduces the size and number of redo log files needed.

• MySQL Cluster: The mysqld option --ndb-batch-size has been added. This allows for controlling the size of batches used
for running transactions.

• MySQL Cluster: Node recovery can now be done in parallel, rather than sequentially, which can result in much faster recovery
times.

MySQL Change History

2044

ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/
http://dev.mysql.com/doc/ndbapi/en/ndb-logevent-type.html
http://dev.mysql.com/doc/ndbapi/en/ndb-logevent-type.html
http://bugs.mysql.com/30271


• MySQL Cluster: Persistence of NDB tables can now be controlled using the session variables ndb_table_temporary and
ndb_table_no_logging. ndb_table_no_logging causes NDB tables not to be checkpointed to disk;
ndb_table_temporary does the same, and in addition, no schema files are created.

• MySQL Cluster: OPTIMIZE TABLE can now be interrupted. This can be done, for example, by killing the SQL thread perform-
ing the OPTIMIZE operation.

Bugs fixed:

• Disk Data: Important Change: It is no longer possible on 32-bit systems to issue statements appearing to create Disk Data log files
or data files greater than 4 GB in size. (Trying to create log files or data files larger than 4 GB on 32-bit systems led to unrecover-
able data node failures; such statements now fail with NDB error 1515.) (Bug#29186)

• Replication: MySQL Cluster: The code implementing heartbeats did not check for possible errors in some circumstances; this kept
the dump thread hanging while waiting for heartbeats loop even though the slave was no longer connected. (Bug#33332)

• MySQL Cluster: High numbers of insert operations, delete operations, or both could cause NDB error 899 (ROWID ALREADY AL-

LOCATED) to occur unnecessarily. (Bug#34033)

• MySQL Cluster: A periodic failure to flush the send buffer by the NDB TCP transporter could cause a unnecessary delay of 10 ms
between operations. (Bug#34005)

• MySQL Cluster: DROP TABLE did not free all data memory. This bug was observed in MySQL 5.1.23-ndb-6.3.7 only.
(Bug#33802)

• MySQL Cluster: A race condition could occur (very rarely) when the release of a GCI was followed by a data node failure.
(Bug#33793)

• MySQL Cluster: Some tuple scans caused the wrong memory page to be accessed, leading to invalid results. This issue could affect
both in-memory and Disk Data tables. (Bug#33739)

• MySQL Cluster: A failure to initialize an internal variable led to sporadic crashes during cluster testing. (Bug#33715)

• MySQL Cluster: The server failed to reject properly the creation of an NDB table having an unindexed AUTO_INCREMENT
column. (Bug#30417)

• MySQL Cluster: Issuing an INSERT ... ON DUPLICATE KEY UPDATE concurrently with or following a TRUNCATE state-
ment on an NDB table failed with NDB error 4350 TRANSACTION ALREADY ABORTED. (Bug#29851)

• MySQL Cluster: The Cluster backup process could not detect when there was no more disk space and instead continued to run un-
til killed manually. Now the backup fails with an appropriate error when disk space is exhausted. (Bug#28647)

• MySQL Cluster: It was possible in config.ini to define cluster nodes having node IDs greater than the maximum allowed
value. (Bug#28298)

• MySQL Cluster: Under some circumstances, a recovering data node did not use its own data, instead copying data from another
node even when this was not required. This in effect bypassed the optimized node recovery protocol and caused recovery times to be
unnecessarily long. (Bug#26913)

• Cluster Replication: Consecutive DDL statements involving tables (CREATE TABLE, ALTER TABLE, and DROP TABLE) could
be executed so quickly that previous DDL statements upon which they depended were not yet written in the binary log.

For example, if DROP TABLE foo was issued immediately following CREATE TABLE foo, the DROP statement could fail be-
cause the CREATE had not yet been recorded. (Bug#34006)

• Cluster Replication: ndb_restore -e restored excessively large values to the ndb_apply_status table's epoch column
when restoring to a MySQL Cluster version supporting Micro-GCPs from an older version that did not support these.

A workaround when restoring to MySQL Cluster 5.1 Carrier Grade Edition releases supporting micro-GCPs previous to MySQL
5.1.23-ndb-6.3.8 is to perform a 32-bit shift on the epoch column values to reduce them to their proper size. (Bug#33406)

• Cluster API: Transactions containing inserts or reads would hang during NdbTransaction::execute() calls made from
NDB API applications built against a MySQL Cluster version that did not support micro-GCPs accessing a later version that suppor-
ted micro-GCPs. This issue was observed while upgrading from MySQL 5.1.15-ndb-6.1.23 to MySQL 5.1.23-ndb-6.2.10 when the

MySQL Change History

2045

http://bugs.mysql.com/29186
http://bugs.mysql.com/33332
http://bugs.mysql.com/34033
http://bugs.mysql.com/34005
http://bugs.mysql.com/33802
http://bugs.mysql.com/33793
http://bugs.mysql.com/33739
http://bugs.mysql.com/33715
http://bugs.mysql.com/30417
http://bugs.mysql.com/29851
http://bugs.mysql.com/28647
http://bugs.mysql.com/28298
http://bugs.mysql.com/26913
http://bugs.mysql.com/34006
http://bugs.mysql.com/33406


API application built against the earlier version attempted to access a data node already running the later version, even after dis-
abling micro-GCPs by setting TimeBetweenEpochs equal to 0. (Bug#33895)

• Cluster API: When reading a BIT(64) value using NdbOperation:getValue(), 12 bytes were written to the buffer rather
than the expected 8 bytes. (Bug#33750)

C.1.5.6. Changes in MySQL 5.1.23-ndb-6.3.7 (19 December 2007)

This is a new Beta development release, fixing recently discovered bugs.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.3.7. MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.3.7
— like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile and install using
the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1, “Building MySQL
Cluster from Source Code”. You can download source code archives for this release in two versions. The version that you should use
depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use MySQL Cluster 5.1
Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.3.7/mysqlcom-5.1.23-ndb-6.3.7-telco.tar.gz in this directory contains the complete commer-
cial source archive.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.3.7/mysql-5.1.23-ndb-6.3.7-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.19-ndb-6.3.0, MySQL 5.1.19-ndb-6.3.1, MySQL
5.1.22-ndb-6.3.2, MySQL 5.1.22-ndb-6.3.3, MySQL 5.1.22-ndb-6.3.4, MySQL 5.1.22-ndb-6.3.5, and MySQL 5.1.22-ndb-6.3.6, as well
as all bugfixes and feature changes which were added in the mainline 5.1.21, 5.1.22, and 5.1.23 releases; information about these can be
found in Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)”, Section C.1.6, “Changes in MySQL 5.1.22 (24 September
2007: Release Candidate)”, and Section C.1.4, “Changes in MySQL 5.1.23 (29 January 2008)”.

Functionality added or changed:

• MySQL Cluster: Compressed local checkpoints and backups are now supported, resulting in a space savings of 50% or more over
uncompressed LCPs and backups. Cmpression of these can be enabled in the config.ini file using the two new data node con-
figuration parameters CompressedLCP and CompressedBackup, respectively.

MySQL Change History

2046

http://bugs.mysql.com/33895
http://bugs.mysql.com/33750
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/


• MySQL Cluster: OPTIMIZE TABLE is now supported for NDB tables, subject to the following limitations:

• Only in-memory tables are supported. OPTIMIZE still has no effect on Disk Data tables.

• Only variable-length columns are supported. However, you can force columns defined using fixed-length data types to be dy-
namic using the ROW_FORMAT or COLUMN_FORMAT option with a CREATE TABLE or ALTER TABLE statement.

Memory reclaimed from an NDB table using OPTIMIZE is generally available to the cluster, and not confined to the table from
which it was recovered, unlike the case with memory freed using DELETE.

The performance of OPTIMIZE on NDB tables can be regulated by adjusting the value of the ndb_optimization_delay sys-
tem variable.

• MySQL Cluster: It is now possible to cause statements occurring within the same transaction to be run as a batch by setting the ses-
sion variable transaction_allow_batching to 1 or ON.

Note

To use this feature, autocommit must be disabled.

Bugs fixed:

• Important Change: MySQL Cluster: AUTO_INCREMENT columns had the following problems when used in NDB tables:

• The AUTO_INCREMENT counter was not updated correctly when such a column was updated.

• AUTO_INCREMENT values were not prefetched beyond statement boundaries.

• AUTO_INCREMENT values were not handled correctly with INSERT IGNORE statements.

• After being set, ndb_autoincrement_prefetch_sz showed a value of 1, regardless of the value it had actually been set
to.

As part of this fix, the behavior of ndb_autoincrement_prefetch_sz has changed. Setting this to less than 32 no longer has
any effect on prefetching within statements (where IDs are now always obtained in batches of 32 or more), but only between state-
ments. The default value for this variable has also changed, and is now 1. (Bug#25176, Bug#31956, Bug#32055)

• Partitioning: MySQL Cluster: When partition pruning on an NDB table resulted in an ordered index scan spanning only one parti-
tion, any descending flag for the scan was wrongly discarded, causing ORDER BY DESC to be treated as ORDER BY ASC,
MAX() to be handled incorrectly, and similar problems. (Bug#33061)

• MySQL Cluster: When all data and SQL nodes in the cluster were shut down abnormally (that is, other than by using STOP in the
cluster management client), ndb_mgm used excessive amounts of CPU. (Bug#33237)

• MySQL Cluster: When using micro-GCPs, if a node failed while preparing for a global checkpoint, the master node would use the
wrong GCI. (Bug#32922)

• MySQL Cluster: Under some conditions, performing an ALTER TABLE on an NDBCLUSTER table failed with a TABLE IS FULL

error, even when only 25% of DataMemory was in use and the result should have been a table using less memory (for example,
changing a VARCHAR(100) column to VARCHAR(80)). (Bug#32670)

• Cluster Replication: Creating the mysql.ndb_replication table with the wrong number of columns for the primary key
caused mysqld to crash. Now a CREATE TABLE [mysql.]ndb_replication statement that is invalid for this reason fails
with the error BAD SCHEMA FOR MYSQL.NDB_REPLICATION TABLE. MESSAGE: WRONG NUMBER OF PRIMARY KEYS, EXPECTED

NUMBER. (Bug#33159)

• Cluster Replication: Where a table being replicated had a TEXT or BLOB column, an UPDATE on the master that did not refer ex-
plicitly to this column in the WHERE clause stopped the SQL thread on the slave with ERROR IN WRITE_ROWS EVENT: ROW AP-

PLICATION FAILED. GOT ERROR 4288 'BLOB HANDLE FOR COLUMN NOT AVAILABLE' FROM NDBCLUSTER. (Bug#30674)

C.1.5.7. Changes in MySQL 5.1.23-ndb-6.2.15 (Not yet released)

This is a new Beta development release, fixing recently discovered bugs.

Note

MySQL Change History

2047

http://bugs.mysql.com/25176
http://bugs.mysql.com/31956
http://bugs.mysql.com/32055
http://bugs.mysql.com/33061
http://bugs.mysql.com/33237
http://bugs.mysql.com/32922
http://bugs.mysql.com/32670
http://bugs.mysql.com/33159
http://bugs.mysql.com/30674


Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, MySQL 5.1.19-ndb-6.2.4, MySQL
5.1.22-ndb-6.2.5, MySQL 5.1.22-ndb-6.2.6, MySQL 5.1.22-ndb-6.2.7, MySQL 5.1.22-ndb-6.2.8, MySQL 5.1.23-ndb-6.2.9, MySQL
5.1.23-ndb-6.2.10, MySQL 5.1.23-ndb-6.2.11, MySQL 5.1.23-ndb-6.2.12, MySQL 5.1.23-ndb-6.2.13, and MySQL 5.1.23-ndb-6.2.14,
as well as all bugfixes and feature changes which were added in the mainline 5.1.20, 5.1.21, 5.1.22, and 5.1.23 releases; information
about these can be found in Section C.1.9, “Changes in MySQL 5.1.20 (25 June 2007)”, Section C.1.8, “Changes in MySQL 5.1.21 (16
August 2007)”Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”, and Section C.1.4, “Changes in
MySQL 5.1.23 (29 January 2008)”. Also included are most (but not all) bugfixes made in the MCCGE 6.1.x series through MySQL
5.1.15-ndb-6.1.16.

Bugs fixed:

• MySQL Cluster: If an error occured while executing a statement involving a BLOB or TEXT column of an NDB table, a memory
leak could result. (Bug#35593)

• MySQL Cluster: The ndb_waiter utility wrongly calculated timeouts. (Bug#35435)

• MySQL Cluster: ndb_restore incorrectly handled some datatypes when applying log files from backups. (Bug#35343)

• MySQL Cluster: In some circumstances, a stopped data node was handled incorrectly, leading to redo log space being exhausted
following an initial restart of the node, or an initial or partial restart of the cluster (the wrong CGI might be used in such cases). This
could happen, for example, when a node was stopped following the creation of a new table, but before a new LCP could be ex-
ecuted. (Bug#35241)

• MySQL Cluster: SELECT ... LIKE ... queries yielded incorrect results when used on NDB tables. As part of this fix, condi-
tion pushdown of such queries has been disabled; re-enabling it is expected to be done as part of a later, permanent fix for this issue.
(Bug#35185)

• MySQL Cluster: ndb_mgmd reported errors to STDOUT rather than to STDERR. (Bug#35169)

• MySQL Cluster: Nested multi-range reads failed when the second multi-range read released the first read's unprocessed operations,
sometimes leading to a SQL node crash. (Bug#35137)

• MySQL Cluster: In some situations, a problem with synchronizing checkpoints between nodes could cause a system restart or a
node restart to fail with ERROR 630 DURING RESTORE OF TX. (Bug#34756)

• MySQL Cluster: When a secondary index on a DECIMAL column was used to retrieve data from an NDB table, no results were re-
turned even if the target table had a matched value in the column that was defined with the secondary index. (Bug#34515)

• MySQL Cluster: An UPDATE on an NDB table that set a new value for a unique key column could cause subsequent queries to fail.
(Bug#34208)

• MySQL Cluster: If a data node in one node group was placed in the “not started” state (using node_id RESTART -n), it was
not possible to stop a data node in a different node group. (Bug#34201)

• Cluster Replication: In some cases, when updating only one or some columns in a table, the complete row was written to the binary
log instead of only the updated column or columns, even when ndb_log_updated_only was set to 1. (Bug#35208)

• Cluster API: mgmapi.h contained constructs which only worked in C++, but not in C. (Bug#27004)

C.1.5.8. Changes in MySQL 5.1.23-ndb-6.2.14 (05 March 2008)

This is a new Beta development release, fixing recently discovered bugs.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.2.14. MySQL Cluster 5.1 Carrier Grade Edition
5.1.23-ndb-6.2.14 — like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile
and install using the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1,
“Building MySQL Cluster from Source Code”. You can download source code archives for this release in two versions. The version
that you should use depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use

MySQL Change History

2048

http://bugs.mysql.com/
http://bugs.mysql.com/35593
http://bugs.mysql.com/35435
http://bugs.mysql.com/35343
http://bugs.mysql.com/35241
http://bugs.mysql.com/35185
http://bugs.mysql.com/35169
http://bugs.mysql.com/35137
http://bugs.mysql.com/34756
http://bugs.mysql.com/34515
http://bugs.mysql.com/34208
http://bugs.mysql.com/34201
http://bugs.mysql.com/35208
http://bugs.mysql.com/27004


MySQL Cluster 5.1 Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.2.14/mysqlcom-5.1.23-ndb-6.2.14-telco.tar.gz in this directory contains the complete com-
mercial source archive.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.2.14/mysql-5.1.23-ndb-6.2.14-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, MySQL 5.1.19-ndb-6.2.4, MySQL
5.1.22-ndb-6.2.5, MySQL 5.1.22-ndb-6.2.6, MySQL 5.1.22-ndb-6.2.7, MySQL 5.1.22-ndb-6.2.8, MySQL 5.1.23-ndb-6.2.9, MySQL
5.1.23-ndb-6.2.10, MySQL 5.1.23-ndb-6.2.11, MySQL 5.1.23-ndb-6.2.12, and MySQL 5.1.23-ndb-6.2.13, as well as all bugfixes and
feature changes which were added in the mainline 5.1.20, 5.1.21, 5.1.22, and 5.1.23 releases; information about these can be found in
Section C.1.9, “Changes in MySQL 5.1.20 (25 June 2007)”, Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)”Sec-
tion C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”, and Section C.1.4, “Changes in MySQL 5.1.23 (29
January 2008)”. Also included are most (but not all) bugfixes made in the MCCGE 6.1.x series through MySQL 5.1.15-ndb-6.1.16.

Functionality added or changed:

• MySQL Cluster: Added the MaxBufferedEpochs data node configuration parameter, which controls the maximum number of
unprocessed epochs by which a subscribing node can lag. Subscribers which exceed this number are disconnected and forced to re-
connect.

See Section 17.4.4.5, “Defining Data Nodes”, for more information.

• Replication: Introduced the slave_exec_mode system variable to control whether idempotent or strict mode is used for replica-
tion conflict resolution. Idempotent mode suppresses duplicate-key, no-key-found, and some other errors, and is needed for circular
replication, multi-master replication, and some other complex replication setups when using MySQL Cluster. Strict mode is the de-
fault. (Bug#31609)

• Formerly, when the MySQL server crashed, the generated stack dump was numeric and required external tools to properly resolve
the names of functions. This is not very helpful to users having a limited knowledge of debugging techniques. In addition, the gener-
ated stack trace contained only the names of functions and was formatted differently for each platform due to different stack layouts.

Now it is possible to take advantage of newer versions of the GNU C Library provide a set of functions to obtain and manipulate
stack traces from within the program. On systems that use the ELF binary format, the stack trace contains important information
such as the shared object where the call was generated, an offset into the function, and the actual return address. Having the function

MySQL Change History

2049

ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/
http://bugs.mysql.com/31609


name also makes possible the name demangling of C++ functions.

The library generates meaningful stack traces on the following platforms: i386, x86_64, PowerPC, IA64, Alpha, and S390. On other
platforms, a numeric stack trace is still produced, and the use of the resolve_stack_dump utility is still required. (Bug#31891)

• mysqltest now has mkdir and rmdir commands for creating and removing directories. (Bug#31004)

• Added the Uptime_since_flush_status status variable, which indicates the number of seconds since the most recent
FLUSH STATUS statement. (From Jeremy Cole) (Bug#24822)

• Potential memory leaks in SHOW PROFILE were eliminated. (Bug#24795)

Bugs fixed:

• Important Change: Replication: When the master crashed during an update on a transactional table while in AUTOCOMMIT mode,
the slave failed. This fix causes every transaction (including AUTOCOMMIT transactions) to be recorded in the binlog as starting
with a BEGIN and ending with a COMMIT or ROLLBACK. (Bug#26395)

• Replication: When the Windows version of mysqlbinlog read 4.1 binlogs containing LOAD DATA INFILE statements, it out-
put backslashes as path separators, causing problems for client programs expecting forward slashes. In such cases, it now converts
\\ to / in directory paths. (Bug#34355)

• Replication: SHOW SLAVE STATUS failed when slave I/O was about to terminate. (Bug#34305)

• Replication: mysqlbinlog from a 5.1 or later MySQL distribution could not read binary logs generated by a 4.1 server when the
logs contained LOAD DATA INFILE statements. (Bug#34141)

This regression was introduced by Bug#32407

• Replication: A CREATE USER, DROP USER, or RENAME USER statement that fails on the master, or that is a duplicate of any of
these statements, is no longer written to the binlog; previously, either of these occurrences could cause the slave to fail.

(Bug#33862)

See also Bug#29749

• Replication: mysqlbinlog failed to release all of its memory after terminating abnormally. (Bug#33247)

• Replication: The error message generated due to lack of a default value for an extra column was not sufficiently informative.
(Bug#32971)

• Replication: When a user variable was used inside an INSERT statement, the corresponding binlog event was not written to the
binlog correctly. (Bug#32580)

• Replication: When using row-based replication, deletes from a table with a foreign key constraint failed on the slave. (Bug#32468)

• Replication: SQL statements containing comments using -- syntax were not replayable by mysqlbinlog, even though such
statements replicated correctly. (Bug#32205)

• Replication: When using row-based replication from a master running MySQL 5.1.21 or earlier to a slave running 5.1.22 or later,
updates of integer columns failed on the slave with ERROR IN UNKNOWN EVENT: ROW APPLICATION FAILED. (Bug#31583)

This regression was introduced by Bug#21842

• Replication: Replicating write, update, or delete events from a master running MySQL 5.1.15 or earlier to a slave running 5.1.16 or
later caused the slave to crash. (Bug#31581)

• Replication: When using row-based replication, the slave stopped when attempting to delete non-existent rows from a slave table
without a primary key. In addition, no error was reported when this occurred. (Bug#31552)

• Replication: Issuing a DROP VIEW statement caused replication to fail if the view did not actually exist. (Bug#30998)

• Replication: Setting server_id did not update its value for the current session. (Bug#28908)

MySQL Change History

2050

http://bugs.mysql.com/31891
http://bugs.mysql.com/31004
http://bugs.mysql.com/24822
http://bugs.mysql.com/24795
http://bugs.mysql.com/26395
http://bugs.mysql.com/34355
http://bugs.mysql.com/34305
http://bugs.mysql.com/34141
http://bugs.mysql.com/32407
http://bugs.mysql.com/33862
http://bugs.mysql.com/29749
http://bugs.mysql.com/33247
http://bugs.mysql.com/32971
http://bugs.mysql.com/32580
http://bugs.mysql.com/32468
http://bugs.mysql.com/32205
http://bugs.mysql.com/31583
http://bugs.mysql.com/21842
http://bugs.mysql.com/31581
http://bugs.mysql.com/31552
http://bugs.mysql.com/30998
http://bugs.mysql.com/28908


• Replication: Slaves running MySQL 5.1.18 and later could not read binary logs from older versions of the server. (Bug#27779,
Bug#32434)

This regression was introduced by Bug#22583

• Replication: Network timeouts between the master and the slave could result in corruption of the relay log. (Bug#26489)

• Cluster Replication: The --ndb-wait-connected option caused the server to wait for a partial connection plus an additional
3 seconds for a complete connection to the cluster. This could lead to issues with setting up the binary log. (Bug#34757)

• Use of stored functions in the WHERE clause for SHOW OPEN TABLES caused a server crash. (Bug#34166)

• Large unsigned integers were improperly handled for prepared statements, resulting in truncation or conversion to negative num-
bers. (Bug#33798)

• The server crashed when executing a query that had a subquery containing an equality X=Y where Y referred to a named select list
expression from the parent select. The server crashed when trying to use the X=Y equality for ref-based access. (Bug#33794)

• The UPDATE statement allowed NULL to be assigned to NOT NULL columns (the default data type value was assigned). An error
occurs now. (Bug#33699)

• ORDER BY ... DESC sorts could produce misordered results. (Bug#33697)

• The server could crash when REPEAT or another control instruction was used in conjunction with labels and a LEAVE instruction.
(Bug#33618)

• SET GLOBAL myisam_max_sort_file_size=DEFAULT set myisam_max_sort_file_size to an incorrect value.
(Bug#33382)

See also Bug#31177

• Granting the UPDATE privilege on one column of a view caused the server to crash. (Bug#33201)

• For DECIMAL columns used with the ROUND(X,D) or TRUNCATE(X,D) function with a non-constant value of D, adding an OR-
DER BY for the function result produced misordered output. (Bug#33143)

See also Bug#33402, Bug#30617

• The SHOW ENGINE INNODB STATUS and SHOW ENGINE INNODB MUTEX statements incorrectly required the SUPER priv-
ilege rather than the PROCESS privilege. (Bug#32710)

• Tables in the mysql database that stored the current sql_mode value as part of stored program definitions were not updated with
newer mode values (NO_ENGINE_SUBSTITUTION, PAD_CHAR_TO_FULL_LENGTH). This causes various problems defining
stored programs if those modes were included in the current sql_mode value. (Bug#32633)

• ROUND(X,D) or TRUNCATE(X,D) for non-constant values of D could crash the server if these functions were used in an ORDER
BY that was resolved using filesort. (Bug#30889)

• Resetting the query cache by issuing a SET GLOBAL query_cache_size=0 statement caused the server to crash if it concur-
rently was saving a new result set to the query cache. (Bug#30887)

• Replication of LOAD DATA INFILE could fail when read_buffer_size was larger than max_allowed_packet.
(Bug#30435)

• The Table_locks_waited waited variable was not incremented in the cases that a lock had to be waited for but the waiting
thread was killed or the request was aborted. (Bug#30331)

• The Com_create_function status variable was not incremented properly. (Bug#30252)

• mysqld displayed the --enable-pstack option in its help message even if MySQL was configured without -
-with-pstack. (Bug#29836)

• Replication crashed with the NDB storage engine when mysqld was started with --character-set-server=ucs2.
(Bug#29562)

• Views were treated as insertable even if some base table columns with no default value were omitted from the view definition. (This

MySQL Change History

2051

http://bugs.mysql.com/27779
http://bugs.mysql.com/32434
http://bugs.mysql.com/22583
http://bugs.mysql.com/26489
http://bugs.mysql.com/34757
http://bugs.mysql.com/34166
http://bugs.mysql.com/33798
http://bugs.mysql.com/33794
http://bugs.mysql.com/33699
http://bugs.mysql.com/33697
http://bugs.mysql.com/33618
http://bugs.mysql.com/33382
http://bugs.mysql.com/31177
http://bugs.mysql.com/33201
http://bugs.mysql.com/33143
http://bugs.mysql.com/33402
http://bugs.mysql.com/30617
http://bugs.mysql.com/32710
http://bugs.mysql.com/32633
http://bugs.mysql.com/30889
http://bugs.mysql.com/30887
http://bugs.mysql.com/30435
http://bugs.mysql.com/30331
http://bugs.mysql.com/30252
http://bugs.mysql.com/29836
http://bugs.mysql.com/29562


is contrary to the condition for insertability that a view must contain all columns in the base table that do not have a default value.)
(Bug#29477)

• Previously, the parser accepted the ODBC { OJ ... LEFT OUTER JOIN ...} syntax for writing left outer joins. The parser
now allows { OJ ... } to be used to write other types of joins, such as INNER JOIN or RIGHT OUTER JOIN. This helps
with compatibility with some third-party applications, but is not official ODBC syntax. (Bug#28317)

• The parser rules for the SHOW PROFILE statement were revised to work with older versions of bison. (Bug#27433)

• resolveip failed to produce correct results for hostnames that begin with a digit. (Bug#27427)

• SHOW PROFILE hung if executed before enabling the @@profiling session variable. (Bug#26938)

• mysqlcheck -A -r did not correctly identify all tables that needed repairing. (Bug#25347)

• InnoDB exhibited thread thrashing with more than 50 concurrent connections under an update-intensive workload. (Bug#22868)

• Warnings for deprecated syntax constructs used in stored routines make sense to report only when the routine is being created, but
they were also being reported when the routine was parsed for loading into the execution cache. Now they are reported only at
routine creation time. (Bug#21801)

• CREATE ... SELECT did not always set DEFAULT column values in the new table. (Bug#21380)

• If a SELECT calls a stored function in a transaction, and a statement within the function fails, that statement should roll back. Fur-
thermore, if ROLLBACK is executed after that, the entire transaction should be rolled back. Before this fix, the failed statement did
not roll back when it failed (even though it might ultimately get rolled back by a ROLLBACK later that rolls back the entire transac-
tion). (Bug#12713)

See also Bug#34655

C.1.5.9. Changes in MySQL 5.1.23-ndb-6.2.13 (22 February 2008)

This is a new Beta development release, fixing recently discovered bugs.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.2.13. MySQL Cluster 5.1 Carrier Grade Edition
5.1.23-ndb-6.2.13 — like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile
and install using the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1,
“Building MySQL Cluster from Source Code”. You can download source code archives for this release in two versions. The version
that you should use depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use
MySQL Cluster 5.1 Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.2.13/mysqlcom-5.1.23-ndb-6.2.13-telco.tar.gz in this directory contains the complete com-
mercial source archive.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.2.13/mysql-5.1.23-ndb-6.2.13-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

MySQL Change History

2052

http://bugs.mysql.com/29477
http://bugs.mysql.com/28317
http://bugs.mysql.com/27433
http://bugs.mysql.com/27427
http://bugs.mysql.com/26938
http://bugs.mysql.com/25347
http://bugs.mysql.com/22868
http://bugs.mysql.com/21801
http://bugs.mysql.com/21380
http://bugs.mysql.com/12713
http://bugs.mysql.com/34655
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/


The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, MySQL 5.1.19-ndb-6.2.4, MySQL
5.1.22-ndb-6.2.5, MySQL 5.1.22-ndb-6.2.6, MySQL 5.1.22-ndb-6.2.7, MySQL 5.1.22-ndb-6.2.8, MySQL 5.1.23-ndb-6.2.9, MySQL
5.1.23-ndb-6.2.10, MySQL 5.1.23-ndb-6.2.11, and MySQL 5.1.23-ndb-6.2.12, as well as all bugfixes and feature changes which were
added in the mainline 5.1.20, 5.1.21, 5.1.22, and 5.1.23 releases; information about these can be found in Section C.1.9, “Changes in
MySQL 5.1.20 (25 June 2007)”, Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)”, Section C.1.6, “Changes in MySQL
5.1.22 (24 September 2007: Release Candidate)”, and Section C.1.4, “Changes in MySQL 5.1.23 (29 January 2008)”. Also included are
most (but not all) bugfixes made in the MCCGE 6.1.x series through MySQL 5.1.15-ndb-6.1.16.

Bugs fixed:

• MySQL Cluster: A node failure during an initial node restart followed by another node start could cause the master data node to
fail, because it incorrectly gave the node permission to start even if the invalidated node's LCP was still running. (Bug#34702)

C.1.5.10. Changes in MySQL 5.1.23-ndb-6.2.12 (12 February 2008)

This is a new Beta development release, fixing recently discovered bugs.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.2.12. MySQL Cluster 5.1 Carrier Grade Edition
5.1.23-ndb-6.2.12 — like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile
and install using the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1,
“Building MySQL Cluster from Source Code”. You can download source code archives for this release in two versions. The version
that you should use depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use
MySQL Cluster 5.1 Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.2.12/mysqlcom-5.1.23-ndb-6.2.12-telco.tar.gz in this directory contains the complete com-
mercial source archive.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.2.12/mysql-5.1.23-ndb-6.2.12-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

MySQL Change History

2053

http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/
http://bugs.mysql.com/34702
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html


Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, MySQL 5.1.19-ndb-6.2.4, MySQL
5.1.22-ndb-6.2.5, MySQL 5.1.22-ndb-6.2.6, MySQL 5.1.22-ndb-6.2.7, MySQL 5.1.22-ndb-6.2.8, MySQL 5.1.23-ndb-6.2.9, MySQL
5.1.23-ndb-6.2.10, and MySQL 5.1.23-ndb-6.2.11, as well as all bugfixes and feature changes which were added in the mainline 5.1.20,
5.1.21, 5.1.22, and 5.1.23 releases; information about these can be found in Section C.1.9, “Changes in MySQL 5.1.20 (25 June 2007)”,
Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)”, Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release
Candidate)”, and Section C.1.4, “Changes in MySQL 5.1.23 (29 January 2008)”. Also included are most (but not all) bugfixes made in
the MCCGE 6.1.x series through MySQL 5.1.15-ndb-6.1.16.

Important

This release does not provide support for the InnoDB storage engine.

Functionality added or changed:

• Beginning with this version, MySQL Cluster 5.1 Carrier Grade Edition 6.3.x releases once again include the InnoDB storage en-
gine. In order to enable InnoDB, you must configure the build using --with-innodb.

Bugs fixed:

• MySQL Cluster: Upgrades of a cluster using while a DataMemory setting in excess of 16 GB caused data nodes to fail.
(Bug#34378)

• MySQL Cluster: Performing many SQL statements on NDB tables while in AUTOCOMMIT mode caused a memory leak in
mysqld. (Bug#34275)

• MySQL Cluster: In certain rare circumstances, a race condition could occur between an aborted insert and a delete leading a data
node crash. (Bug#34260)

• MySQL Cluster: Multi-table updates using ordered indexes during handling of node failures could cause other data nodes to fail.
(Bug#34216)

• MySQL Cluster: When configured with NDB support, MySQL failed to compile using gcc 4.3 on 64bit FreeBSD systems.
(Bug#34169)

• MySQL Cluster: The failure of a DDL statement could sometimes lead to node failures when attempting to execute subsequent
DDL statements. (Bug#34160)

• MySQL Cluster: Extremely long SELECT statements (where the text of the statement was in excess of 50000 characters) against
NDB tables returned empty results. (Bug#34107)

• MySQL Cluster: Statements executing multiple inserts performed poorly on NDB tables having AUTO_INCREMENT columns.
(Bug#33534)

• MySQL Cluster: The ndb_waiter utility polled ndb_mgmd excessively when obtaining the status of cluster data nodes.
(Bug#32025)

See also Bug#32023

• MySQL Cluster: Transaction atomicity was sometimes not preserved between reads and inserts under high loads. (Bug#31477)

• MySQL Cluster: Having tables with a great many columns could cause Cluster backups to fail. (Bug#30172)

• Cluster Replication: Disk Data: Statements violating unique keys on Disk Data tables (such as attempting to insert NULL into a
NOT NULL column) could cause data nodes to fail. When the statement was executed from the binlog, this could also result in fail-
ure of the slave cluster. (Bug#34118)

MySQL Change History

2054

http://bugs.mysql.com/
http://bugs.mysql.com/34378
http://bugs.mysql.com/34275
http://bugs.mysql.com/34260
http://bugs.mysql.com/34216
http://bugs.mysql.com/34169
http://bugs.mysql.com/34160
http://bugs.mysql.com/34107
http://bugs.mysql.com/33534
http://bugs.mysql.com/32025
http://bugs.mysql.com/32023
http://bugs.mysql.com/31477
http://bugs.mysql.com/30172
http://bugs.mysql.com/34118


• Disk Data: Updating in-memory columns of one or more rows of Disk Data table, followed by deletion of these rows and re-
insertion of them, caused data node failures. (Bug#33619)

• Cluster Replication: Setting --replicate-ignore-db=mysql caused the mysql.ndb_apply_status table not to be
replicated, breaking Cluster Replication. (Bug#28170)

C.1.5.11. Changes in MySQL 5.1.23-ndb-6.2.11 (28 January 2008)

This is a new Beta development release, fixing recently discovered bugs.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.2.11. MySQL Cluster 5.1 Carrier Grade Edition
5.1.23-ndb-6.2.11 — like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile
and install using the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1,
“Building MySQL Cluster from Source Code”. You can download source code archives for this release in two versions. The version
that you should use depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use
MySQL Cluster 5.1 Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.2.11/mysqlcom-5.1.23-ndb-6.2.11-telco.tar.gz in this directory contains the complete com-
mercial source archive.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.2.11/mysql-5.1.23-ndb-6.2.11-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, MySQL 5.1.19-ndb-6.2.4, MySQL
5.1.22-ndb-6.2.5, MySQL 5.1.22-ndb-6.2.6, MySQL 5.1.22-ndb-6.2.7, MySQL 5.1.22-ndb-6.2.8, MySQL 5.1.23-ndb-6.2.9, and
MySQL 5.1.23-ndb-6.2.10, as well as all bugfixes and feature changes which were added in the mainline 5.1.20, 5.1.21, 5.1.22, and
5.1.23 releases; information about these can be found in Section C.1.9, “Changes in MySQL 5.1.20 (25 June 2007)”, Section C.1.8,
“Changes in MySQL 5.1.21 (16 August 2007)”, Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”,
and Section C.1.4, “Changes in MySQL 5.1.23 (29 January 2008)”. Also included are most (but not all) bugfixes made in the MCCGE
6.1.x series through MySQL 5.1.15-ndb-6.1.16.

Functionality added or changed:

• Cluster API: Important Change: Because NDB_LE_MemoryUsage.page_size_kb shows memory page sizes in bytes rather

MySQL Change History

2055

http://bugs.mysql.com/33619
http://bugs.mysql.com/28170
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/


than kilobytes, it has been renamed to page_size_bytes. The name page_size_kb is now deprecated and thus subject to re-
moval in a future release, although it currently remains supported for reasons of backwards compatibility. See The
Ndb_logevent_type Type, for more information about NDB_LE_MemoryUsage. (Bug#30271)

Bugs fixed:

• MySQL Cluster: High numbers of insert operations, delete operations, or both could cause NDB error 899 (ROWID ALREADY AL-

LOCATED) to occur unnecessarily. (Bug#34033)

• MySQL Cluster: A periodic failure to flush the send buffer by the NDB TCP transporter could cause a unnecessary delay of 10 ms
between operations. (Bug#34005)

• MySQL Cluster: A race condition could occur (very rarely) when the release of a GCI was followed by a data node failure.
(Bug#33793)

• MySQL Cluster: Some tuple scans caused the wrong memory page to be accessed, leading to invalid results. This issue could affect
both in-memory and Disk Data tables. (Bug#33739)

• MySQL Cluster: The server failed to reject properly the creation of an NDB table having an unindexed AUTO_INCREMENT
column. (Bug#30417)

• MySQL Cluster: Issuing an INSERT ... ON DUPLICATE KEY UPDATE concurrently with or following a TRUNCATE state-
ment on an NDB table failed with NDB error 4350 TRANSACTION ALREADY ABORTED. (Bug#29851)

• MySQL Cluster: The Cluster backup process could not detect when there was no more disk space and instead continued to run un-
til killed manually. Now the backup fails with an appropriate error when disk space is exhausted. (Bug#28647)

• MySQL Cluster: It was possible in config.ini to define cluster nodes having node IDs greater than the maximum allowed
value. (Bug#28298)

• Cluster Replication: ndb_restore -e restored excessively large values to the ndb_apply_status table's epoch column
when restoring to a MySQL Cluster version supporting Micro-GCPs from an older version that did not support these.

A workaround when restoring to MySQL Cluster 5.1 Carrier Grade Edition releases supporting micro-GCPs previous to MySQL
5.1.23-ndb-6.3.8 is to perform a 32-bit shift on the epoch column values to reduce them to their proper size. (Bug#33406)

• Cluster API: Transactions containing inserts or reads would hang during NdbTransaction::execute() calls made from
NDB API applications built against a MySQL Cluster version that did not support micro-GCPs accessing a later version that suppor-
ted micro-GCPs. This issue was observed while upgrading from MySQL 5.1.15-ndb-6.1.23 to MySQL 5.1.23-ndb-6.2.10 when the
API application built against the earlier version attempted to access a data node already running the later version, even after dis-
abling micro-GCPs by setting TimeBetweenEpochs equal to 0. (Bug#33895)

• Cluster API: When reading a BIT(64) value using NdbOperation:getValue(), 12 bytes were written to the buffer rather
than the expected 8 bytes. (Bug#33750)

C.1.5.12. Changes in MySQL 5.1.23-ndb-6.2.10 (19 December 2007)

This is a new Beta development release, fixing recently discovered bugs.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.23-ndb-6.2.10. MySQL Cluster 5.1 Carrier Grade Edition
5.1.23-ndb-6.2.10 — like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile
and install using the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1,
“Building MySQL Cluster from Source Code”. You can download source code archives for this release in two versions. The version
that you should use depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use
MySQL Cluster 5.1 Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.2.10/mysqlcom-5.1.23-ndb-6.2.10-telco.tar.gz in this directory contains the complete com-
mercial source archive.

MySQL Change History

2056

http://dev.mysql.com/doc/ndbapi/en/ndb-logevent-type.html
http://dev.mysql.com/doc/ndbapi/en/ndb-logevent-type.html
http://bugs.mysql.com/30271
http://bugs.mysql.com/34033
http://bugs.mysql.com/34005
http://bugs.mysql.com/33793
http://bugs.mysql.com/33739
http://bugs.mysql.com/30417
http://bugs.mysql.com/29851
http://bugs.mysql.com/28647
http://bugs.mysql.com/28298
http://bugs.mysql.com/33406
http://bugs.mysql.com/33895
http://bugs.mysql.com/33750
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/


Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.23-ndb-6.2.10/mysql-5.1.23-ndb-6.2.10-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, MySQL 5.1.19-ndb-6.2.4, MySQL
5.1.22-ndb-6.2.5, MySQL 5.1.22-ndb-6.2.6, MySQL 5.1.22-ndb-6.2.7, MySQL 5.1.22-ndb-6.2.8, and MySQL 5.1.23-ndb-6.2.9, as well
as all bugfixes and feature changes which were added in the mainline 5.1.20, 5.1.21, 5.1.22, and 5.1.23 releases; information about these
can be found in Section C.1.9, “Changes in MySQL 5.1.20 (25 June 2007)”, Section C.1.8, “Changes in MySQL 5.1.21 (16 August
2007)”Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”, and Section C.1.4, “Changes in MySQL
5.1.23 (29 January 2008)”. Also included are most (but not all) bugfixes made in the MCCGE 6.1.x series through MySQL
5.1.15-ndb-6.1.16.

Bugs fixed:

• Important Change: MySQL Cluster: AUTO_INCREMENT columns had the following problems when used in NDB tables:

• The AUTO_INCREMENT counter was not updated correctly when such a column was updated.

• AUTO_INCREMENT values were not prefetched beyond statement boundaries.

• AUTO_INCREMENT values were not handled correctly with INSERT IGNORE statements.

• After being set, ndb_autoincrement_prefetch_sz showed a value of 1, regardless of the value it had actually been set
to.

As part of this fix, the behavior of ndb_autoincrement_prefetch_sz has changed. Setting this to less than 32 no longer has
any effect on prefetching within statements (where IDs are now always obtained in batches of 32 or more), but only between state-
ments. The default value for this variable has also changed, and is now 1. (Bug#25176, Bug#31956, Bug#32055)

• Partitioning: MySQL Cluster: When partition pruning on an NDB table resulted in an ordered index scan spanning only one parti-
tion, any descending flag for the scan was wrongly discarded, causing ORDER BY DESC to be treated as ORDER BY ASC,
MAX() to be handled incorrectly, and similar problems. (Bug#33061)

• MySQL Cluster: When all data and SQL nodes in the cluster were shut down abnormally (that is, other than by using STOP in the
cluster management client), ndb_mgm used excessive amounts of CPU. (Bug#33237)

• MySQL Cluster: When using micro-GCPs, if a node failed while preparing for a global checkpoint, the master node would use the
wrong GCI. (Bug#32922)

MySQL Change History

2057

http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/
http://bugs.mysql.com/25176
http://bugs.mysql.com/31956
http://bugs.mysql.com/32055
http://bugs.mysql.com/33061
http://bugs.mysql.com/33237
http://bugs.mysql.com/32922


• MySQL Cluster: Under some conditions, performing an ALTER TABLE on an NDBCLUSTER table failed with a TABLE IS FULL

error, even when only 25% of DataMemory was in use and the result should have been a table using less memory (for example,
changing a VARCHAR(100) column to VARCHAR(80)). (Bug#32670)

• MySQL Cluster: When a mysqld acting as a cluster SQL node starts the NDBCLUSTER storage engine, there is a delay during
which some necessary data structures cannot be initialized until after it has connected to the cluster, and all MySQL Cluster tables
should be opened as read-only. This worked correctly when the NDB binlog thread was running, but when it was not running,
Cluster tables were not opened as read-only even when the data structures had not yet been set up. (Bug#32275)

C.1.6. Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)
Functionality added or changed:

• There is a new innodb_autoinc_lock_mode system variable to configure the locking behavior that InnoDB uses for generat-
ing auto-increment values. The default behavior now is slightly different from before, which involves a minor incompatibility for
multiple-row inserts that specify an explicit value for the auto-increment column in some but not all rows. See Section 13.5.6.3,
“How AUTO_INCREMENT Handling Works in InnoDB”.

Bugs fixed:

• MySQL Cluster: Backups of TIMESTAMP columns made with ndb_restore on a MySQL Cluster using data nodes hosts of one
endian could not be used to restore the cluster's data to data node hosts of the other endian. (Bug#30134)

• MySQL Cluster: (Replication): Multi-master replication setups did not handle --log-slave-updates correctly. (Bug#30017)

• Row-based replication from a pre-5.1.22 MySQL Server to a MySQL 5.1.22 was unstable due to an uninitialized variable.
(Bug#31076)

• For an InnoDB table if a SELECT was ordered by the primary key and also had a WHERE field = value clause on a different
field that was indexed, a DESC order instruction would be ignored. (Bug#31001)

• mysql_install_db could fail to find its message file. (Bug#30678)

• Memory corruption occurred for some queries with a top-level OR operation in the WHERE condition if they contained equality pre-
dicates and other sargable predicates in disjunctive parts of the condition. (Bug#30396)

• CONNECTION_ID() always returned 0 for the embedded server (libmysqld). (Bug#30389)

• The server created temporary tables for filesort operations in the working directory, not in the directory specified by the tmpdir
system variable. (Bug#30287)

• Using KILL QUERY or KILL CONNECTION to kill a SELECT statement caused a server crash if the query cache was enabled.
(Bug#30201)

• mysqldump from the MySQL 5.1.21 distribution could not be used to create a dump from a MySQL 5.1.20 or older server.
(Bug#30123)

• Under some circumstances, a UDF initialization function could be passed incorrect argument lengths. (Bug#29804)

• Operations that used the time zone replicated the time zone only for successful operations, but did not replicate the time zone for er-
rors that need to know it. (Bug#29536)

• When using a combination of HANDLER... READ and DELETE on a table, MySQL continued to open new copies of the table
every time, leading to an exhaustion of file descriptors. (Bug#29474)

This regression was introduced by Bug#21587

• The mysql_list_fields() C API function incorrectly set MYSQL_FIELD::decimals for some view columns.
(Bug#29306)

• Tables using the InnoDB storage engine incremented AUTO_INCREMENT values incorrectly with ON DUPLICATE KEY UP-
DATE. (Bug#28781)

MySQL Change History

2058

http://bugs.mysql.com/32670
http://bugs.mysql.com/32275
http://bugs.mysql.com/30134
http://bugs.mysql.com/30017
http://bugs.mysql.com/31076
http://bugs.mysql.com/31001
http://bugs.mysql.com/30678
http://bugs.mysql.com/30396
http://bugs.mysql.com/30389
http://bugs.mysql.com/30287
http://bugs.mysql.com/30201
http://bugs.mysql.com/30123
http://bugs.mysql.com/29804
http://bugs.mysql.com/29536
http://bugs.mysql.com/29474
http://bugs.mysql.com/21587
http://bugs.mysql.com/29306
http://bugs.mysql.com/28781


• Non-range queries of the form SELECT ... FROM ... WHERE keypart1=constant, ..., keypartN=constant
ORDER BY ... FOR UPDATE sometimes were unnecessarily blocked waiting for a lock if another transaction was using SE-
LECT ... FOR UPDATE on the same table. (Bug#28570)

• On Windows, symbols for yaSSL and taocrypt were missing from mysqlclient.lib, resulting in unresolved symbol errors for
clients linked against that library. (Bug#27861)

• Read lock requests that were blocked by a pending write lock request were not allowed to proceed if the statement requesting the
write lock was killed. (Bug#21281)

C.1.7. Changes in MySQL 5.1.22 Carrier Grade Edition
This section contains change history information for MySQL Cluster 5.1 Carrier Grade Edition releases based on MySQL 5.1.22.

C.1.7.1. Changes in MySQL 5.1.22-ndb-6.3.6 (08 November 2007)

This is a new Beta development release, fixing recently discovered bugs.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.22-ndb-6.3.6. MySQL Cluster 5.1 Carrier Grade Edition 5.1.22-ndb-6.3.6
— like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile and install using
the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1, “Building MySQL
Cluster from Source Code”. You can download source code archives for this release in two versions. The version that you should use
depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use MySQL Cluster 5.1
Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.22-ndb-6.3.6/mysqlcom-5.1.22-ndb-6.3.6-telco.tar.gz in this directory contains the complete commer-
cial source archive.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.22-ndb-6.3.6/mysql-5.1.22-ndb-6.3.6-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.19-ndb-6.3.0, MySQL 5.1.19-ndb-6.3.1, MySQL
5.1.22-ndb-6.3.2, MySQL 5.1.22-ndb-6.3.3, MySQL 5.1.22-ndb-6.3.4, and MySQL 5.1.22-ndb-6.3.5, as well as all bugfixes and feature
changes which were added in the mainline 5.1.21 and 5.1.22 releases; information about these can be found in Section C.1.8, “Changes
in MySQL 5.1.21 (16 August 2007)” and Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”.

MySQL Change History

2059

http://bugs.mysql.com/28570
http://bugs.mysql.com/27861
http://bugs.mysql.com/21281
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/


Functionality added or changed:

• Important Note: MySQL Cluster 5.1 Carrier Grade Edition 6.2.x and 6.3.x source archives are now available in separate commer-
cial and GPL versions. Due to licensing concerns, previous MySQL Cluster 5.1 Carrier Grade Edition source archives were re-
moved from the FTP site.

• MySQL Cluster: Unnecessary reads when performing a primary key or unique key update have been reduced, and in some cases,
eliminated. (It is almost never necessary to read a record prior to an update, the lone exception to this being when a primary key is
updated, since this requires a delete followed by an insert, which must be prepared by reading the record.) Depending on the number
of primary key and unique key lookups that are performed per transaction, this can yield a considerable improvement in perform-
ance.

• MySQL Cluster: Batched operations are now better supported for DELETE and UPDATE. (UPDATE WHERE... and muliple DE-
LETE.)

• MySQL Cluster: Introduced the Ndb_execute_count status variable, which measures the number of round trips made by quer-
ies to the NDB kernel.

Bugs fixed:

• MySQL Cluster: An insert or update with combined range and equality constraints failed when run against an NDB table with the
error GOT UNKNOWN ERROR FROM NDB. An example of such a statement would be UPDATE t1 SET b = 5 WHERE a IN
(7,8) OR a >= 10;. (Bug#31874)

• MySQL Cluster: An error with an if statement in sql/ha_ndbcluster.cc could potentially lead to an infinite loop in case
of failure when working with AUTO_INCREMENT columns in NDB tables. (Bug#31810)

• MySQL Cluster: The NDB storage engine code was not safe for strict-alias optimization in gcc 4.2.1. (Bug#31761)

• MySQL Cluster: ndb_restore displayed incorrect backup file version information. This meant (for example) that, when at-
tempting to restore a backup made from a MySQL 5.1.22 cluster to a MySQL 5.1.22-ndb-6.3.3 cluster, the restore process failed
with the error RESTORE PROGRAM OLDER THAN BACKUP VERSION. NOT SUPPORTED. USE NEW RESTORE PROGRAM. (Bug#31723)

• MySQL Cluster: Following an upgrade, ndb_mgmd would fail with an ArbitrationError. (Bug#31690)

• MySQL Cluster: The NDB management client command node_id REPORT MEMORY provided no output when node_id was
the node ID of a management or API node. Now, when this occurs, the management client responds with Node node_id: is
not a data node. (Bug#29485)

• MySQL Cluster: Performing DELETE operations after a data node had been shut down could lead to inconsistent data following a
restart of the node. (Bug#26450)

• MySQL Cluster: UPDATE IGNORE could sometimes fail on NDB tables due to the use of unitialized data when checking for du-
plicate keys to be ignored. (Bug#25817)

• Cluster Replication: Updates performed unnecessary writes to the primary keys of the rows being updated. (Bug#31841)

• Cluster Replication: Slave batching did not work correctly with UPDATE statements. (Bug#31787)

• Cluster Replication: A node failure during replication could lead to buckets out of order; now active subscribers are checked for,
rather than empty buckets. (Bug#31701)

• Cluster Replication: When the master mysqld crashed or was restarted, no LOST_EVENTS entry was made in the binlog.
(Bug#31484)

See also Bug#21494

C.1.7.2. Changes in MySQL 5.1.22-ndb-6.3.5 (17 October 2007)

This is a new Beta development release, fixing recently discovered bugs.

Note

MySQL Change History

2060

http://bugs.mysql.com/31874
http://bugs.mysql.com/31810
http://bugs.mysql.com/31761
http://bugs.mysql.com/31723
http://bugs.mysql.com/31690
http://bugs.mysql.com/29485
http://bugs.mysql.com/26450
http://bugs.mysql.com/25817
http://bugs.mysql.com/31841
http://bugs.mysql.com/31787
http://bugs.mysql.com/31701
http://bugs.mysql.com/31484
http://bugs.mysql.com/21494


Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.19-ndb-6.3.0, MySQL 5.1.19-ndb-6.3.1, MySQL
5.1.22-ndb-6.3.2, MySQL 5.1.22-ndb-6.3.3, and MySQL 5.1.22-ndb-6.3.4, as well as all bugfixes and feature changes which were ad-
ded in the mainline 5.1.21 and 5.1.22 releases; information about these can be found in Section C.1.8, “Changes in MySQL 5.1.21 (16
August 2007)” and Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”.

Bugs fixed:

• MySQL Cluster: A query against a table with TEXT or BLOB columns that would return more than a certain amount of data failed
with GOT ERROR 4350 'TRANSACTION ALREADY ABORTED' FROM NDBCLUSTER. (Bug#31482)

This regression was introduced by Bug#29102

• Cluster Replication: In some cases, not all tables were properly initialized before the binlog thread was started. (Bug#31618)

C.1.7.3. Changes in MySQL 5.1.22-ndb-6.3.4 (15 October 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.19-ndb-6.3.0, MySQL 5.1.19-ndb-6.3.1, MySQL
5.1.22-ndb-6.3.2, and MySQL 5.1.22-ndb-6.3.3, as well as all bugfixes and feature changes which were added in the mainline 5.1.21
and 5.1.22 releases; information about these can be found in Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)” and Sec-
tion C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”.

Functionality added or changed:

• MySQL Cluster: The --ndb_optimized_node_selection startup option for mysqld now allows a wider range of values
and corresponding behaviors for SQL nodes when selecting a transaction coordinator. See Section 5.1.3, “System Variables”, for
more information.

• Cluster Replication: A new configuration parameter TimeBetweenEpochsTimeout allows a timeout to be set for time
between epochs. For more information, see Section 17.4.4.5, “Defining Data Nodes”. (Bug#31276)

• Cluster Replication: A replication heartbeat mechanism has been added to facilitate monitoring. This provides an alternative to
checking log files, making it possible to detect in real time when a slave has failed.

Configuration of heartbeats is done via a new MASTER_HEARTBEAT_PERIOD = interval clause for the CHANGE MASTER
TO statement (see Section 12.6.2.1, “CHANGE MASTER TO Syntax”); monitoring can be done by checking the values of the status
variables Slave_heartbeat_period and Slave_received_heartbeats (see Section 5.1.5, “Status Variables”).

The addition of replication heartbeats addresses a number of issues:

• Relay logs were rotated every slave_net_timeout seconds even if no statements were being replicated.

• SHOW SLAVE STATUS displayed an incorrect value for seconds_behind_master following a FLUSH LOGS statement.

• Replication master-slave connections used slave_net_timeout for connection timeouts.
(Bug#20435, Bug#29309, Bug#30932)

• Cluster Replication: Support for a new conflict resolution function NDB$OLD() has been added for handling simultaneous up-
dates in multi-master and circular replication setups. A new status variable Ndb_conflict_fn_old tracks the number of times
that updates are prevented from being applied due to this type of conflict resolution. See Section 17.12.10, “MySQL Cluster Replic-
ation Conflict Resolution”, for more information.

MySQL Change History

2061

http://bugs.mysql.com/
http://bugs.mysql.com/31482
http://bugs.mysql.com/29102
http://bugs.mysql.com/31618
http://bugs.mysql.com/
http://bugs.mysql.com/31276
http://bugs.mysql.com/20435
http://bugs.mysql.com/29309
http://bugs.mysql.com/30932


• On MySQL replication slaves having multiple network interfaces, it is now possible to set which interface to use for connecting to
the master. This can be done by using either the mysqld startup option --master-bind or the
MASTER_BIND='interface' clause in a CHANGE MASTER statement. (Bug#25939)

• Additional checks were implemented to catch unsupported online ALTER TABLE operations. Currently it is not possible to reorder
columns or to change the storage engine used for a table via online ALTER.

Some redundant checks made during online creation of indexes were removed.

• A --bind-address option has been added to a number of MySQL client programs: mysql, mysqldump, mysqladmin,
mysqlbinlog, mysqlcheck, mysqlimport, and mysqlshow. This is for use on a computer having multiple network inter-
faces, and allows you to choose which interface is used to connect to the MySQL server.

Bugs fixed:

• MySQL Cluster: It was possible in some cases for a node group to be “lost” due to missed local checkpoints following a system re-
start. (Bug#31525)

• MySQL Cluster: NDB tables having names containing non-alphanumeric characters (such as “ $ ”) were not discovered correctly.
(Bug#31470)

• MySQL Cluster: A node failure during a local checkpoint could lead to a subsequent failure of the cluster during a system restart.
(Bug#31257)

• MySQL Cluster: Transaction timeouts were not handled well in some circumstances, leading to excessive number of transactions
being aborted unnecessarily. (Bug#30379)

• MySQL Cluster: In some cases, the cluster managment server logged entries multiple times following a restart of mgmd.
(Bug#29565)

• MySQL Cluster: ndb_mgm --help did not display any information about the -a option. (Bug#29509)

• MySQL Cluster: An interpreted program of sufficient size and complexity could cause all cluster data nodes to shut down due to
buffer overruns. (Bug#29390)

• MySQL Cluster: The cluster log was formatted inconsistently and contained extraneous newline characters. (Bug#25064)

• A transaction was not aborted following the failure of statement. (Bug#31320)

• Online ALTER operations involving a column whose data type has an implicit default value left behind temporary .FRM files, caus-
ing subsequent DROP DATABASE statements to fail. (Bug#31097)

• Errors could sometimes occur during an online ADD COLUMN under load. (Bug#31082)

• Transactions were committed prematurely when LOCK TABLE and SET AUTOCOMMIT=OFF were used together. (Bug#30996)

• A cluster restart could sometimes fail due to an issue with table IDs. (Bug#30975)

• The mysqld_safe script contained a syntax error. (Bug#30624)

C.1.7.4. Changes in MySQL 5.1.22-ndb-6.3.3 (20 September 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.19-ndb-6.3.0, MySQL 5.1.19-ndb-6.3.1, and
MySQL 5.1.22-ndb-6.3.2, as well as all bugfixes and feature changes which were added in the mainline 5.1.21 and 5.1.22 releases; in-

MySQL Change History

2062

http://bugs.mysql.com/25939
http://bugs.mysql.com/31525
http://bugs.mysql.com/31470
http://bugs.mysql.com/31257
http://bugs.mysql.com/30379
http://bugs.mysql.com/29565
http://bugs.mysql.com/29509
http://bugs.mysql.com/29390
http://bugs.mysql.com/25064
http://bugs.mysql.com/31320
http://bugs.mysql.com/31097
http://bugs.mysql.com/31082
http://bugs.mysql.com/30996
http://bugs.mysql.com/30975
http://bugs.mysql.com/30624
http://bugs.mysql.com/


formation about these can be found in Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)” and Section C.1.6, “Changes in
MySQL 5.1.22 (24 September 2007: Release Candidate)”.

Functionality added or changed:

• MySQL Cluster: Mapping of NDB error codes to MySQL storage engine error codes has been improved. (Bug#28423)

• Cluster Replication: A server status variable ndb_conflict_fn_max now provides a count of the number of times that conflict
resolution for MySQL Cluster Replication has been applied.

See Section 17.12.10, “MySQL Cluster Replication Conflict Resolution”, for more information.

Bugs fixed:

• Partitioning: MySQL Cluster: EXPLAIN PARTITIONS reported partition usage by queries on NDB tables according to the
standard MySQL hash function than the hash function used in the NDB storage engine. (Bug#29550)

• MySQL Cluster: Attempting to restore a backup made on a cluster host using one endian to a machine using the other endian could
cause the cluster to fail. (Bug#29674)

• MySQL Cluster: The description of the --print option provided in the output from ndb_restore --help was incorrect.
(Bug#27683)

• MySQL Cluster: Restoring a backup made on a cluster host using one endian to a machine using the other endian failed for BLOB
and DATETIME columns. (Bug#27543, Bug#30024)

• Errors could sometimes occur during an online ADD COLUMN under load. (Bug#31082)

C.1.7.5. Changes in MySQL 5.1.22-ndb-6.3.2 (07 September 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.19-ndb-6.3.0 and MySQL 5.1.19-ndb-6.3.1, as well
as all bugfixes and feature changes which were added in the mainline 5.1.21 and 5.1.22 releases; information about these can be found
in Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)” and Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007:
Release Candidate)”.

Functionality added or changed:

• MySQL Cluster: Mapping of NDB error codes to MySQL storage engine error codes has been improved. (Bug#28423)

• Cluster Replication: A server status variable ndb_conflict_fn_max now provides a count of the number of times that conflict
resolution for MySQL Cluster Replication has been applied.

See Section 17.12.10, “MySQL Cluster Replication Conflict Resolution”, for more information.

Bugs fixed:

• Partitioning: MySQL Cluster: EXPLAIN PARTITIONS reported partition usage by queries on NDB tables according to the
standard MySQL hash function than the hash function used in the NDB storage engine. (Bug#29550)

• MySQL Cluster: Attempting to restore a backup made on a cluster host using one endian to a machine using the other endian could

MySQL Change History

2063

http://bugs.mysql.com/28423
http://bugs.mysql.com/29550
http://bugs.mysql.com/29674
http://bugs.mysql.com/27683
http://bugs.mysql.com/27543
http://bugs.mysql.com/30024
http://bugs.mysql.com/31082
http://bugs.mysql.com/
http://bugs.mysql.com/28423
http://bugs.mysql.com/29550


cause the cluster to fail. (Bug#29674)

• MySQL Cluster: The description of the --print option provided in the output from ndb_restore --help was incorrect.
(Bug#27683)

• MySQL Cluster: Restoring a backup made on a cluster host using one endian to a machine using the other endian failed for BLOB
and DATETIME columns. (Bug#27543, Bug#30024)

• Errors could sometimes occur during an online ADD COLUMN under load. (Bug#31082)

C.1.7.6. Changes in MySQL 5.1.22-ndb-6.2.9 (22 November 2007)

This is a new Beta development release, fixing recently discovered bugs.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.22-ndb-6.2.9. MySQL Cluster 5.1 Carrier Grade Edition 5.1.22-ndb-6.2.9
— like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile and install using
the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1, “Building MySQL
Cluster from Source Code”. You can download source code archives for this release in two versions. The version that you should use
depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use MySQL Cluster 5.1
Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.22-ndb-6.2.9/mysqlcom-5.1.22-ndb-6.2.9-telco.tar.gz in this directory contains the complete commer-
cial source archive.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.22-ndb-6.2.9/mysql-5.1.22-ndb-6.2.9-telco.tar.gz in this directory contains the complete GPL source
archive.

You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, MySQL 5.1.19-ndb-6.2.4, MySQL
5.1.22-ndb-6.2.5, MySQL 5.1.22-ndb-6.2.6, MySQL 5.1.22-ndb-6.2.7, and MySQL 5.1.22-ndb-6.2.8, as well as all bugfixes and feature
changes which were added in the mainline 5.1.20, 5.1.21 and 5.1.22 releases; information about these can be found in Section C.1.9,
“Changes in MySQL 5.1.20 (25 June 2007)”, Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)”, and Section C.1.6,
“Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”. Also included are most (but not all) bugfixes made in the MC-
CGE 6.1.x series through MySQL 5.1.15-ndb-6.1.16.

Functionality added or changed:

MySQL Change History

2064

http://bugs.mysql.com/29674
http://bugs.mysql.com/27683
http://bugs.mysql.com/27543
http://bugs.mysql.com/30024
http://bugs.mysql.com/31082
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/


• MySQL Cluster: Added the ndb_mgm client command DUMP 8011, which dumps all subscribers to the cluster log. See DUMP
8011, for more information.

Bugs fixed:

• MySQL Cluster: A local checkpoint could sometimes be started before the previous LCP was restorable from a global checkpoint.
(Bug#32519)

• MySQL Cluster: High numbers of API nodes on a slow or congested network could cause connection negotiation to time out pre-
maturely, leading to the following issues:

• Excessive retries

• Excessive CPU usage

• Partially connected API nodes
(Bug#32359)

• MySQL Cluster: The failure of a master node could lead to subsequent failures in local checkpointing. (Bug#32160)

• MySQL Cluster: Adding a new TINYTEXT column to an NDB table which used COLUMN_FORMAT = DYNAMIC, and when bin-
ary logging was enabled, caused all cluster mysqld processes to crash. (Bug#30213)

• MySQL Cluster: After adding a new column of one of the TEXT or BLOB types to an NDB table which used COLUMN_FORMAT =
DYNAMIC, it was no longer possible to access or drop the table using SQL. (Bug#30205)

• MySQL Cluster: A restart of the cluster failed when more than 1 REDO phase was in use. (Bug#22696)

• Cluster Replication: Under certain conditions, the slave stopped processing relay logs. This resulted in the logs never being cleared
and the slave eventually running out of disk space. (Bug#31958)

• Cluster Replication: Where a table being replicated had a TEXT or BLOB column, an UPDATE on the master that did not refer ex-
plicitly to this column in the WHERE clause stopped the SQL thread on the slave with ERROR IN WRITE_ROWS EVENT: ROW AP-

PLICATION FAILED. GOT ERROR 4288 'BLOB HANDLE FOR COLUMN NOT AVAILABLE' FROM NDBCLUSTER. (Bug#30674)

C.1.7.7. Changes in MySQL 5.1.22-ndb-6.2.8 (08 November 2007)

This is a new Beta development release, fixing recently discovered bugs.

Obtaining MySQL Cluster 5.1 Carrier Grade Edition 5.1.22-ndb-6.2.8. MySQL Cluster 5.1 Carrier Grade Edition 5.1.22-ndb-6.2.8
— like all releases for MySQL Cluster 5.1 Carrier Grade Edition — is a source-only release which you must compile and install using
the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1, “Building MySQL
Cluster from Source Code”. You can download source code archives for this release in two versions. The version that you should use
depends on whether you have a commercial MySQL Cluster 5.1 Carrier Grade Edition license or you wish to use MySQL Cluster 5.1
Carrier Grade Edition under the GPL.

• Commercial users. Download the commercial source archive from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.22-ndb-6.2.8/mysqlcom-5.1.22-ndb-6.2.8-telco.tar.gz in this directory contains the complete commer-
cial source archive.

Important

The commercial MySQL Cluster 5.1 Carrier Grade Edition sources contain non-GPL libraries and header files. You must
not use the commercial version without a commercial license from MySQL AB. See ht-
tp://www.mysql.com/why-mysql/telecom/ for information about licensing MySQL Cluster 5.1 Carrier Grade Edition for
commercial use.

• GPL users. If you wish to use MySQL Cluster 5.1 Carrier Grade Edition under the GPL, you can obtain the GPL source tarball
from the MySQL FTP site at ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/. The file mysql-
5.1.22-ndb-6.2.8/mysql-5.1.22-ndb-6.2.8-telco.tar.gz in this directory contains the complete GPL source
archive.

MySQL Change History

2065

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-dump-command-8011.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-dump-command-8011.html
http://bugs.mysql.com/32519
http://bugs.mysql.com/32359
http://bugs.mysql.com/32160
http://bugs.mysql.com/30213
http://bugs.mysql.com/30205
http://bugs.mysql.com/22696
http://bugs.mysql.com/31958
http://bugs.mysql.com/30674
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/
http://www.mysql.com/why-mysql/telecom/
http://www.mysql.com/why-mysql/telecom/
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/


You can also obtain the latest GPL MySQL Cluster 5.1 Carrier Grade Edition sources from http://mysql.bkbits.net/ using the free
BitKeeper client. See Section 2.9.3, “Installing from the Development Source Tree”, for more information.

Important

The GPL MySQL Cluster 5.1 Carrier Grade Edition sources contain GPL libraries and header files. You must not use the
GPL version in applications that are not released under the GPL or a GPL-compatible license. See ht-
tp://www.mysql.com/company/legal/licensing/foss-exception.html, for a list of GPL-compatible licenses.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, MySQL 5.1.19-ndb-6.2.4, MySQL
5.1.22-ndb-6.2.5, MySQL 5.1.22-ndb-6.2.6, and MySQL 5.1.22-ndb-6.2.7, as well as all bugfixes and feature changes which were ad-
ded in the mainline 5.1.20, 5.1.21 and 5.1.22 releases; information about these can be found in Section C.1.9, “Changes in MySQL
5.1.20 (25 June 2007)”, Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)”, and Section C.1.6, “Changes in MySQL 5.1.22
(24 September 2007: Release Candidate)”. Also included are most (but not all) bugfixes made in the MCCGE 6.1.x series through
MySQL 5.1.15-ndb-6.1.16.

Functionality added or changed:

• Important Note: MySQL Cluster 5.1 Carrier Grade Edition 6.2.x and 6.3.x source archives are now available in separate commer-
cial and GPL versions. Due to licensing concerns, previous MySQL Cluster 5.1 Carrier Grade Edition source archives were re-
moved from the FTP site.

Bugs fixed:

• MySQL Cluster: In a cluster running in diskless mode and with arbitration disabled, the failure of a data node during an insert op-
eration caused other data node to fail. (Bug#31980)

• MySQL Cluster: An insert or update with combined range and equality constraints failed when run against an NDB table with the
error GOT UNKNOWN ERROR FROM NDB. An example of such a statement would be UPDATE t1 SET b = 5 WHERE a IN
(7,8) OR a >= 10;. (Bug#31874)

• MySQL Cluster: An error with an if statement in sql/ha_ndbcluster.cc could potentially lead to an infinite loop in case
of failure when working with AUTO_INCREMENT columns in NDB tables. (Bug#31810)

• MySQL Cluster: The NDB storage engine code was not safe for strict-alias optimization in gcc 4.2.1. (Bug#31761)

• MySQL Cluster: Following an upgrade, ndb_mgmd would fail with an ArbitrationError. (Bug#31690)

• MySQL Cluster: The NDB management client command node_id REPORT MEMORY provided no output when node_id was
the node ID of a management or API node. Now, when this occurs, the management client responds with Node node_id: is
not a data node. (Bug#29485)

• MySQL Cluster: Performing DELETE operations after a data node had been shut down could lead to inconsistent data following a
restart of the node. (Bug#26450)

• MySQL Cluster: UPDATE IGNORE could sometimes fail on NDB tables due to the use of unitialized data when checking for du-
plicate keys to be ignored. (Bug#25817)

• Cluster Replication: A node failure during replication could lead to buckets out of order; now active subscribers are checked for,
rather than empty buckets. (Bug#31701)

• Cluster Replication: When the master mysqld crashed or was restarted, no LOST_EVENTS entry was made in the binlog.
(Bug#31484)

MySQL Change History

2066

http://mysql.bkbits.net/
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://www.mysql.com/company/legal/licensing/foss-exception.html
http://bugs.mysql.com/
http://bugs.mysql.com/31980
http://bugs.mysql.com/31874
http://bugs.mysql.com/31810
http://bugs.mysql.com/31761
http://bugs.mysql.com/31690
http://bugs.mysql.com/29485
http://bugs.mysql.com/26450
http://bugs.mysql.com/25817
http://bugs.mysql.com/31701
http://bugs.mysql.com/31484


See also Bug#21494

C.1.7.8. Changes in MySQL 5.1.22-ndb-6.2.7 (10 October 2008)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, MySQL 5.1.19-ndb-6.2.4, MySQL
5.1.22-ndb-6.2.5, and MySQL 5.1.22-ndb-6.2.6, as well as all bugfixes and feature changes which were added in the mainline 5.1.20,
5.1.21 and 5.1.22 releases; information about these can be found in Section C.1.9, “Changes in MySQL 5.1.20 (25 June 2007)”, Sec-
tion C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)”, and Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Re-
lease Candidate)”. Also included are most (but not all) bugfixes made in the MCCGE 6.1.x series through MySQL 5.1.15-ndb-6.1.16.

Functionality added or changed:

• Cluster Replication: A new configuration parameter TimeBetweenEpochsTimeout allows a timeout to be set for time
between epochs. For more information, see Section 17.4.4.5, “Defining Data Nodes”. (Bug#31276)

• Additional checks were implemented to catch unsupported online ALTER TABLE operations. Currently it is not possible to reorder
columns or to change the storage engine used for a table via online ALTER.

Some redundant checks made during online creation of indexes were removed.

Bugs fixed:

• MySQL Cluster: It was possible in some cases for a node group to be “lost” due to missed local checkpoints following a system re-
start. (Bug#31525)

• MySQL Cluster: NDB tables having names containing non-alphanumeric characters (such as “ $ ”) were not discovered correctly.
(Bug#31470)

• MySQL Cluster: A node failure during a local checkpoint could lead to a subsequent failure of the cluster during a system restart.
(Bug#31257)

• MySQL Cluster: Transaction timeouts were not handled well in some circumstances, leading to excessive number of transactions
being aborted unnecessarily. (Bug#30379)

• MySQL Cluster: In some cases, the cluster managment server logged entries multiple times following a restart of mgmd.
(Bug#29565)

• MySQL Cluster: ndb_mgm --help did not display any information about the -a option. (Bug#29509)

• MySQL Cluster: The cluster log was formatted inconsistently and contained extraneous newline characters. (Bug#25064)

• Online ALTER operations involving a column whose data type has an implicit default value left behind temporary .FRM files, caus-
ing subsequent DROP DATABASE statements to fail. (Bug#31097)

• Transactions were committed prematurely when LOCK TABLE and SET AUTOCOMMIT=OFF were used together. (Bug#30996)

• A cluster restart could sometimes fail due to an issue with table IDs. (Bug#30975)

• The mysqld_safe script contained a syntax error. (Bug#30624)

MySQL Change History

2067

http://bugs.mysql.com/21494
http://bugs.mysql.com/
http://bugs.mysql.com/31276
http://bugs.mysql.com/31525
http://bugs.mysql.com/31470
http://bugs.mysql.com/31257
http://bugs.mysql.com/30379
http://bugs.mysql.com/29565
http://bugs.mysql.com/29509
http://bugs.mysql.com/25064
http://bugs.mysql.com/31097
http://bugs.mysql.com/30996
http://bugs.mysql.com/30975
http://bugs.mysql.com/30624


C.1.7.9. Changes in MySQL 5.1.22-ndb-6.2.6 (20 September 2007)

This is a new Beta development release, fixing recently discovered bugs.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, MySQL 5.1.19-ndb-6.2.4, and MySQL
5.1.22-ndb-6.2.5, as well as all bugfixes and feature changes which were added in the mainline 5.1.20, 5.1.21 and 5.1.22 releases; in-
formation about these can be found in Section C.1.9, “Changes in MySQL 5.1.20 (25 June 2007)”, Section C.1.8, “Changes in MySQL
5.1.21 (16 August 2007)”, and Section C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”. Also included are
most (but not all) bugfixes made in the MCCGE 6.1.x series through MySQL 5.1.15-ndb-6.1.16.

Functionality added or changed:

• MySQL Cluster: Mapping of NDB error codes to MySQL storage engine error codes has been improved. (Bug#28423)

Bugs fixed:

• Partitioning: MySQL Cluster: EXPLAIN PARTITIONS reported partition usage by queries on NDB tables according to the
standard MySQL hash function than the hash function used in the NDB storage engine. (Bug#29550)

• MySQL Cluster: Attempting to restore a backup made on a cluster host using one endian to a machine using the other endian could
cause the cluster to fail. (Bug#29674)

• MySQL Cluster: The description of the --print option provided in the output from ndb_restore --help was incorrect.
(Bug#27683)

• MySQL Cluster: Restoring a backup made on a cluster host using one endian to a machine using the other endian failed for BLOB
and DATETIME columns. (Bug#27543, Bug#30024)

• MySQL Cluster: An insufficiently descriptive and potentially misleading Error 4006 (CONNECT FAILURE - OUT OF CONNECTION

OBJECTS...) was produced when either of the following two conditions occurred:

1. There were no more transaction records in the transaction coordinator

2. an Ndb object in the NDB API was initialized with insufficient parallellism
Separate error messages are now generated for each of these two cases. (Bug#11313)

• Cluster API: An Ndb object in the NDB API was initialized with insufficient parallellism.

• For micro-GCPs, fixed the assignment of “fake” CGI events so that they do not cause buckets to be sent out of order. Now, when as-
signing a GCI to a non-GCI event (that is, creating a pseudo-GCI or “fake” CGI), the GCI that is to arrive is always initiated, even if
no known GCI exists, which could occur in the event of a node failure. (Bug#30884)

• When an NDB event was left behind but the corresponding table was later recreated and received a new table ID, the event could not
be dropped. (Bug#30877)

• There were no more transaction records in the transaction coordinator

C.1.7.10. Changes in MySQL 5.1.22-ndb-6.2.5 (06 September 2007)

This is a new Beta development release, fixing recently discovered bugs.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you

MySQL Change History

2068

http://bugs.mysql.com/
http://bugs.mysql.com/28423
http://bugs.mysql.com/29550
http://bugs.mysql.com/29674
http://bugs.mysql.com/27683
http://bugs.mysql.com/27543
http://bugs.mysql.com/30024
http://bugs.mysql.com/11313
http://bugs.mysql.com/30884
http://bugs.mysql.com/30877


would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), MySQL 5.1.19-ndb-6.2.3, and MySQL 5.1.19-ndb-6.2.4, as well as all
bugfixes and feature changes which were added in the mainline 5.1.20, 5.1.21 and 5.1.22 releases; information about these can be found
in Section C.1.9, “Changes in MySQL 5.1.20 (25 June 2007)”, Section C.1.8, “Changes in MySQL 5.1.21 (16 August 2007)”, and Sec-
tion C.1.6, “Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)”. Also included are most (but not all) bugfixes made in
the MCCGE 6.1.x series through MySQL 5.1.15-ndb-6.1.16.

Functionality added or changed:

• MySQL Cluster: The following improvements have been made in the ndb_size.pl utility:

• The script can now be used with multiple databases; lists of databases and tables can also be excluded from analysis.

• Schema name information has been added to index table calculations.

• The database name is now an optional parameter, the exclusion of which causes all databases to be examined.

• If selecting from INFORMATION_SCHEMA fails, the script now attempts to fall back to SHOW TABLES.

• A --real_table_name option has been added; this designates a table to handle unique index size calculations.

• The report title has been amended to cover cases where more than one database is being analyzed.

Support for a --socket option was also added.

For more information, see Section 17.11.15, “ndb_size.pl — NDBCluster Size Requirement Estimator”. (Bug#28683,
Bug#28253)

• MySQL Cluster: ADD COLUMN, ADD INDEX, and DROP INDEX operations can now be performed online for NDB and MyISAM
tables — that is, without re-creation of indexes — using ALTER ONLINE TABLE.

Indexes can also be created and dropped online using CREATE INDEX and DROP INDEX, respectively, using the ONLINE
keyword.

You can force operations that would otherwise be performed online to be done offline using the OFFLINE keyword.

See Section 12.1.4, “ALTER TABLE Syntax”, Section 12.1.7, “CREATE INDEX Syntax”, and Section 12.1.13, “DROP INDEX
Syntax”, for more information.

• MySQL Cluster: It is now possible to control whether fixed-width or variable-width storage is used for a given column of an NDB
table by means of the COLUMN_FORMAT specifier as part of the column's definition in a CREATE TABLE or ALTER TABLE
statement.

It is also possible to control whether a given column of an NDB table is stored in memory or on disk, using the STORAGE specifier
as part of the column's definition in a CREATE TABLE or ALTER TABLE statement.

For permitted values and other information about COLUMN_FORMAT and STORAGE, see Section 12.1.10, “CREATE TABLE Syn-
tax”.

• MySQL Cluster: A new cluster management server startup option --bind-address makes it possible to restrict management
client connections to ndb_mgmd to a single host and port. For more information, see Section 17.7.5.2, “Command Options for
ndb_mgmd”.

• Cluster Replication: Replication: The protocol for handling global checkpoints has been changed. It is now possible to control
how often the GCI number is updated, and how often global checkpoints are written to disk, using the TimeBetweenEpochs
configuration parameter. This improves the reliability and performance of MySQL Cluster Replication.

GCPs handled using the new protocol are sometimes referred to as “micro-GCPs”.

For more information, see TimeBetweenEpochs .

MySQL Change History

2069

http://bugs.mysql.com/
http://bugs.mysql.com/28683
http://bugs.mysql.com/28253


Bugs fixed:

• MySQL Cluster: When handling BLOB columns, the addition of read locks to the lock queue was not handled correctly.
(Bug#30764)

• MySQL Cluster: Discovery of NDB tables did not work correctly with INFORMATION_SCHEMA. (Bug#30667)

• MySQL Cluster: A filesystem close operation could fail during a node or system restart. (Bug#30646)

• MySQL Cluster: Using the --ndb-cluster-connection-pool option for mysqld caused DDL statements to be executed
twice. (Bug#30598)

• MySQL Cluster: ndb_size.pl failed on tables with FLOAT columns whose definitions included commas (for example,
FLOAT(6,2)). (Bug#29228)

• MySQL Cluster: Reads on BLOB columns were not locked when they needed to be to guarantee consistency. (Bug#29102)

See also Bug#31482

• MySQL Cluster: A query using joins between several large tables and requiring unique index lookups failed to complete, eventu-
ally returning UKNOWN ERROR after a very long period of time. This occurred due to inadequate handling of instances where the
Transaction Coordinator ran out of TransactionBufferMemory, when the cluster should have returned NDB error code 4012
(REQUEST NDBD TIME-OUT). (Bug#28804)

• MySQL Cluster: An attempt to perform a SELECT ... FROM INFORMATION_SCHEMA.TABLES whose result included in-
formation about NDB tables for which the user had no privileges crashed the MySQL Server on which the query was performed.
(Bug#26793)

• Cluster Replication: Cluster replication did not handle large VARCHAR columns correctly. (Bug#29904)

• Cluster Replication: An issue with the mysql.ndb_apply_status table could cause NDB schema autodiscovery to fail in cer-
tain rare circumstances. (Bug#20872)

• Cluster API: A call to CHECK_TIMEDOUT_RET() in mgmapi.cpp should have been a call to
DBUG_CHECK_TIMEDOUT_RET(). (Bug#30681)

C.1.8. Changes in MySQL 5.1.21 (16 August 2007)
This is a new Beta development release, fixing recently discovered bugs.

Note

This Beta release, as any other pre-production release, should not be installed on production level systems or systems with
critical data. It is good practice to back up your data before installing any new version of software. Although MySQL has
worked very hard to ensure a high level of quality, protect your data by making a backup as you would for any software
beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the individual bugs fixed in
this version.

Note

Subsequent to release, it was discovered that on some platforms, mysql_install_db could fail to find its message file,
resulting in error messages of the following form:

shell> mysql_install_db
Installing MySQL system tables...
070830 9:33:24 [ERROR] Can't find messagefile 'path/share/english/errmsg.sys'
070830 9:33:24 [ERROR] Aborting

To deal with this problem, specify a --language option to specify the proper pathname to the language file directory.
For example:

shell> mysql_install_db --language=/path/to/share/english/

MySQL Change History

2070

http://bugs.mysql.com/30764
http://bugs.mysql.com/30667
http://bugs.mysql.com/30646
http://bugs.mysql.com/30598
http://bugs.mysql.com/29228
http://bugs.mysql.com/29102
http://bugs.mysql.com/31482
http://bugs.mysql.com/28804
http://bugs.mysql.com/26793
http://bugs.mysql.com/29904
http://bugs.mysql.com/20872
http://bugs.mysql.com/30681
http://bugs.mysql.com/


This problem is corrected in MySQL 5.1.22.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• Incompatible Change: In MySQL 5.1.6, when log tables were implemented, the default log destination for the general query and
slow query log was TABLE. This default has been changed to FILE, which is compatible with MySQL 5.0, but incompatible with
earlier releases of MySQL 5.1 from 5.1.6 to 5.1.20. If you are upgrading from MySQL 5.0 to this release, no logging option changes
should be necessary. However, if you are upgrading from 5.1.6 through 5.1.20 to this release and were using TABLE logging, use
the --log-output=TABLE option explicitly to preserve your server's table-logging behavior.

In MySQL 5.1.x, this bug was addressed twice because it turned out that the default was set in two places, only one of which was
fixed the first time. (Bug#29993)

• Incompatible Change: On Windows only, the mysqld-nt has been removed from this release and all future releases. The
mysqld server now includes named-pipe support as standard, and you do not have to use the mysqld-nt version to enable
named-pipe support.

• Several programs now accept --debug-check and --debug-info options: mysql, mysqladmin, mysqlbinlog,
mysqlcheck, mysqldump, mysqlimport, mysqlshow, mysqlslap, mysqltest, mysql_upgrade. (Note: mysql,
mysqladmin, mysqlcheck, mysqldump, mysqlimport, mysqlshow, and mysqltest already accepted -
-debug-info.) --debug-check prints debugging information at program exit. --debug-info is similar but also prints
memory and CPU usage statistics. This patch also corrects a problem for mysql that --debug-info did not display statistics at
exit time. (Bug#30127)

• The --syslog option that was introduced in 5.1.20 for mysqld_safe (to send error output to syslog) did not work correctly:
Error output was buffered and not logged immediately. This has been corrected. In addition, some feature changes were made:

•
Important

The default mysqld_safe logging behavior now is --skip-syslog rather than --syslog, which is compatible
with the default behavior of writing an error log file for releases prior to 5.1.20.

• A new option, --syslog-tag=tag , modifies the default tags written by mysqld_safe and mysqld to syslog to be
mysqld_safe-tag and mysqld-tag rather than the default tags of mysqld_safe and mysqld.

(Bug#29992)

• Transaction support in the FEDERATED storage engine has been disabled due to issues with multiple active transactions and ses-
sions on the same FEDERATED table. (Bug#29875)

• Previously, prepared statements processed using PREPARE and EXECUTE were not subject to caching in the query cache if they
contained any ? parameter markers. This limitation has been lifted. (Bug#29318)

• It is now possible to set long_query_time in microseconds or to 0. Setting this value to 0 causes all queries to be recorded in
the slow query log.

Currently, fractional values can be used only when logging to files. We plan to provide this functionality for logging to tables when
time-related data types are enhanced to support microsecond resolution. (Bug#25412)

• The SQL thread on a slave now is always allowed to enter InnoDB even if this would exceed the limit imposed by the in-
nodb_thread_concurrency system variable. In cases of high load on the slave server (when in-
nodb_thread_concurrency is reached), this change helps the slave stay more up to date with the master; in the previous be-
havior, the SQL thread was competing for resources with all client threads active on the slave server. (Bug#25078)

• INFORMATION_SCHEMA implementation changes were made that optimize certain types of queries for INFORMATION_SCHEMA
tables so that they execute more quickly. Section 7.2.17, “INFORMATION_SCHEMA Optimization”, provides guidelines on how to
take advantage of these optimizations by writing queries that minimize the need for the server to access the filesystem to obtain the
information contained in INFORMATION_SCHEMA tables. By writing queries that enable the server to avoid directory scans or
opening table files, you will obtain better performance. (Bug#19588)

MySQL Change History

2071

http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise
http://bugs.mysql.com/29993
http://bugs.mysql.com/30127
http://bugs.mysql.com/29992
http://bugs.mysql.com/29875
http://bugs.mysql.com/29318
http://bugs.mysql.com/25412
http://bugs.mysql.com/25078
http://bugs.mysql.com/19588


• Log table locking was redesigned, eliminating several lock-related problems:

• Truncating mysql.slow_log in a stored procedure after use of a cursor caused the thread to lock.

• Flushing a log table resulted in unnecessary warnings.

• The server would hang when performing concurrent ALTER TABLE or TRUNCATE TABLE statements against the log tables.

• Changing the value of the general_log system variable while a global read lock was in place resulted in deadlock.

The changes provide better-defined interface characteristics. See Section 5.2.1, “Selecting General Query and Slow Query Log Out-
put Destinations”. (Bug#17876, Bug#23044, Bug#25422, Bug#29129)

• Added the --commit, --detach, --post-system, and --pre-system options for mysqlslap.

• Replication between master and slaves now supports different column numbers within a table on both master and slave. The rules
for replication where the table definitions are different has also changed. This supercedes the functionality for replication from the
master table to a slave table with more columns that was added in MySQL 5.1.12. For more information, see Section 16.3.1.22,
“Replication with Differing Tables on Master and Slave”.

• A new option, --syslog-tag=tag , modifies the default tags written by mysqld_safe and mysqld to syslog to be
mysqld_safe-tag and mysqld-tag rather than the default tags of mysqld_safe and mysqld.

•
Important

The default mysqld_safe logging behavior now is --skip-syslog rather than --syslog, which is compatible
with the default behavior of writing an error log file for releases prior to 5.1.20.

• Two options relating to slow query logging have been added for mysqld. --log-slow-slave-statements causes slow
statements executed by a replication slave to be written to the slow query log; min_examined_row_limit can be used to cause
queries which examine fewer than the stated number of rows not to be logged.

Bugs fixed:

• Incompatible Change: Several issues were identified for stored programs (stored functions and procedures, triggers, and events)
and views containing non-ASCII symbols. These issues involved conversion errors due to incomplete character set information
when translating these objects to and from stored format, such as:

• Parsing the original object definition so that it can be stored.

• Compiling the stored definition into executable form when the object is invoked.

• Retrieval of object definitions from INFORMATION_SCHEMA tables.

• Displaying the object definition in SHOW statements. This issue also affected mysqldump, which uses SHOW.

The fix for the problems is to store character set information from the object creation context so that this information is available
when the object needs to be used later. The context includes the client character set, the connection character set and collation, and
the collation of the database with which the object is associated.

As a result of the patch, several tables have new columns:

• In the mysql database, the proc and event tables now have these columns: character_set_client, colla-
tion_connection, db_collation, body_utf8.

• In INFORMATION_SCHEMA, the VIEWS table now has these columns: CHARACTER_SET_CLIENT, COLLA-
TION_CONNECTION. The ROUTINES, TRIGGERS, and EVENT tables now have these columns: CHARAC-
TER_SET_CLIENT, COLLATION_CONNECTION, DATABASE_COLLATION.

These columns store the session values of the character_set_client and collation_connection system variables,
and the collation of the database with which the object is associated. The values are those in effect at object creation time. (The
saved database collation is not the value of the collation_database system variable, which applies to the default database; the
database that contains the object is not necessarily the default database.)

MySQL Change History

2072

http://bugs.mysql.com/17876
http://bugs.mysql.com/23044
http://bugs.mysql.com/25422
http://bugs.mysql.com/29129


Several SHOW statements now display additional columns corresponding to the new table columns. These statements are: SHOW
CREATE EVENT, SHOW CREATE FUNCTION, SHOW CREATE PROCEDURE, SHOW CREATE VIEW, SHOW EVENTS, SHOW
FUNCTION STATUS, SHOW PROCEDURE STATUS, SHOW TRIGGERS.

A new statement, SHOW CREATE TRIGGER is introduced and is used by mysqldump for producing CREATE TRIGGER state-
ments.

Subsequent to the patch just described, it was discovered that the patch broke mysql_upgrade; this has been corrected.

Important

The fixes for the problems just describe affect all existing stored programs and views. (For example, you will see warnings
about “no creation context.”) To avoid warnings from the server about the use of old definitions from any release prior to
5.1.21, you should dump stored programs and views with mysqldump after upgrading to 5.1.21, and then reload them to
recreate them with new definitions. Invoke mysqldump with a --default-character-set option that names the
non-ASCII character set that was used for the definitions when the objects were originally defined.

(Bug#25221, Bug#21249, Bug#30027, Bug#16291, Bug#11986, Bug#25212, Bug#19443, Bug#30029)

• MySQL Cluster: DELETE FROM table WHERE primary_key IN (value_list), where the value_list contained
more than one value, called from an AFTER DELETE trigger on an NDB table, caused mysqld to crash. (Bug#30337)

• MySQL Cluster: When restarting a data node, queries could hang during that node's start phase 5, and continue only after the node
had entered phase 6. (Bug#29364)

• MySQL Cluster: Replica redo logs were inconsistently handled during a system restart. (Bug#29354)

• MySQL Cluster: When a node failed to respond to a COPY_GCI signal as part of a global checkpoint, the master node was killed
instead of the node that actually failed. (Bug#29331)

• MySQL Cluster: An invalid comparison made during REDO validation that could lead to an ERROR WHILE READING REDO LOG

condition. (Bug#29118)

• MySQL Cluster: The wrong data pages were sometimes invalidated following a global checkpoint. (Bug#29067)

• MySQL Cluster: If at least 2 files were involved in REDO invalidation, then file 0 of page 0 was not updated and so pointed to an
invalid part of the redo log. (Bug#29057)

• MySQL Cluster: If a storage engine has its own logging capability, then any statement using both this engine and some other en-
gine not having its own logging could not be correctly logged, due to the fact that entries from one engine could be logged before
entries from the other engine were. This did not generate any error messages when it occurred.

Now, if multiple storage engines are used in a statement and at least one of them has its own logging capability, then an error mes-
sage is generated and the statement is not executed.

Note

Currently, the only storage engine to have its own logging capability is NDBCLUSTER.

(Bug#28722)

• MySQL Cluster: Warnings and errors generated by ndb_config --config-file=file were sent to stdout, rather than
to stderr. (Bug#25941)

• MySQL Cluster: When a cluster backup was terminated using the ABORT BACKUP command in the management client, a mis-
leading error message BACKUP ABORTED BY APPLICATION: PERMANENT ERROR: INTERNAL ERROR was returned. The error mes-
sage returned in such cases now reads BACKUP ABORTED BY USER REQUEST. (Bug#21052)

• MySQL Cluster: (Replication): Inconsistencies could occur between the master and the slave when replicating Disk Data tables.
(Bug#19259, Bug#19227)

• MySQL Cluster: Large file support did not work in AIX server binaries. (Bug#10776)

• Disk Data: Performing Disk Data schema operations during a node restart could cause forced shutdowns of other data nodes.
(Bug#29501)

MySQL Change History

2073

http://bugs.mysql.com/25221
http://bugs.mysql.com/21249
http://bugs.mysql.com/30027
http://bugs.mysql.com/16291
http://bugs.mysql.com/11986
http://bugs.mysql.com/25212
http://bugs.mysql.com/19443
http://bugs.mysql.com/30029
http://bugs.mysql.com/30337
http://bugs.mysql.com/29364
http://bugs.mysql.com/29354
http://bugs.mysql.com/29331
http://bugs.mysql.com/29118
http://bugs.mysql.com/29067
http://bugs.mysql.com/29057
http://bugs.mysql.com/28722
http://bugs.mysql.com/25941
http://bugs.mysql.com/21052
http://bugs.mysql.com/19259
http://bugs.mysql.com/19227
http://bugs.mysql.com/10776
http://bugs.mysql.com/29501


• Disk Data: When dropping a page, the stack's bottom entry could sometime be left “cold” rather than “hot”, violating the rules for
stack pruning. (Bug#29176)

• Disk Data: Disk data meta-information that existed in ndbd might not be visible to mysqld. (Bug#28720)

• Disk Data: The number of free extents was incorrectly reported for some tablespaces. (Bug#28642)

• Cluster Replication: When executing a statement where binlog_format=statement, the result of the statement was logged
both as a statement and as rows. (Bug#29222)

• Cluster Replication: mysqld would segfault on startup when the NDB storage engine was enabled and the default character set
was a strictly multi-byte character set such as UCS2.

This issue does not apply to character sets that can contain single-byte characters in addition to multi-byte characters such as UTF-8.

Additional issues remain with regard to the use of multi-byte character sets in MySQL Cluster Replication; see Section 17.12.3,
“Known Issues in MySQL Cluster Replication”, for more information. (Bug#27404)

• Prepared statements containing CONNECTION_ID() could be written improperly to the binary log. (Bug#30200)

• Use of local variables with non-ASCII names in stored procedures crashed the server. (Bug#30120)

• On Windows, client libraries lacked symbols required for linking. (Bug#30118)

• --myisam-recover='' (empty option value) did not disable MyISAM recovery. (Bug#30088)

• For the SHOW TABLE TYPES statement, the server sent incorrect output to clients, possibly causing them to crash. (Bug#30036)

• The IS_UPDATABLE column in the INFORMATION_SCHEMA.VIEWS table was not always set correctly. (Bug#30020)

• SHOW statements were being written to the slow query log that should not have been. (Bug#30000)

• REPAIR TABLE ... USE_FRM could corrupt tables. (Bug#29980)

• For MyISAM tables on Windows, INSERT, DELETE, or UPDATE followed by ALTER TABLE within LOCK TABLES could cause
table corruption. (Bug#29957)

• LOCK TABLES did not pre-lock tables used in triggers of the locked tables. Unexpected locking behavior and statement failures
similar to FAILED: 1100: TABLE 'XX' WAS NOT LOCKED WITH LOCK TABLES could result. (Bug#29929)

• INSERT ... VALUES(CONNECTION_ID(), ...) statements were written to the binary log in such a way that they could
not be properly restored. (Bug#29928)

• Adding DISTINCT could cause incorrect rows to appear in a query result. (Bug#29911)

• On Windows, the CMake build process did not produce the embedded server library or related binaries. (Bug#29903)

• Using the DATE() function in a WHERE clause did not return any records after encountering NULL. However, using TRIM or CAST
produced the correct results. (Bug#29898)

• SESSION_USER() returned garbage data (rather than the correct value of the empty string) when executed by a slave SQL thread.
(Bug#29878)

• Very long prepared statements in stored procedures could cause a server crash. (Bug#29856)

• If query execution involved a temporary table, GROUP_CONCAT() could return a result with an incorrect character set.
(Bug#29850)

• If one thread was performing concurrent inserts, other threads reading from the same table using equality key searches could see the
index values for new rows before the data values had been written, leading to reports of table corruption. (Bug#29838)

• Repeatedly accessing a view in a stored procedure (for example, in a loop) caused a small amount of memory to be allocated per ac-
cess. Although this memory is deallocated on disconnect, it could be a problem for a long running stored procedures that make re-
peated access of views. (Bug#29834)

• mysqldump produced output that incorrectly discarded the NO_AUTO_VALUE_ON_ZERO value of the SQL_MODE variable after

MySQL Change History

2074

http://bugs.mysql.com/29176
http://bugs.mysql.com/28720
http://bugs.mysql.com/28642
http://bugs.mysql.com/29222
http://bugs.mysql.com/27404
http://bugs.mysql.com/30200
http://bugs.mysql.com/30120
http://bugs.mysql.com/30118
http://bugs.mysql.com/30088
http://bugs.mysql.com/30036
http://bugs.mysql.com/30020
http://bugs.mysql.com/30000
http://bugs.mysql.com/29980
http://bugs.mysql.com/29957
http://bugs.mysql.com/29929
http://bugs.mysql.com/29928
http://bugs.mysql.com/29911
http://bugs.mysql.com/29903
http://bugs.mysql.com/29898
http://bugs.mysql.com/29878
http://bugs.mysql.com/29856
http://bugs.mysql.com/29850
http://bugs.mysql.com/29838
http://bugs.mysql.com/29834


dumping triggers. (Bug#29788)

• An assertion failure occurred within yaSSL for very long keys. (Bug#29784)

• For MEMORY tables, the index_merge union access method could return incorrect results. (Bug#29740)

• Comparison of TIME values using the BETWEEN operator led to string comparison, producing incorrect results in some cases. Now
the values are compared as integers. (Bug#29739)

• The thread ID was not reset properly after execution of mysql_change_user(), which could cause replication failure when
replicating temporary tables. (Bug#29734)

• For a table with a DATE column date_col such that selecting rows with WHERE date_col = 'date_val 00:00:00'
yielded a non-empty result, adding GROUP BY date_col caused the result to be empty. (Bug#29729)

• In some cases, INSERT INTO ... SELECT ... GROUP BY could insert rows even if the SELECT by itself produced an
empty result. (Bug#29717)

• Single-row inserts could report a row count greater than one. (Bug#29692)

• For the embedded server, the mysql_stmt_store_result() C API function caused a memory leak for empty result sets.
(Bug#29687)

• EXPLAIN produced Impossible where for statements of the form SELECT ... FROM t WHERE c=0, where c was an
ENUM column defined as a primary key. (Bug#29661)

• On Windows, ALTER TABLE hung if records were locked in share mode by a long-running transaction. (Bug#29644)

• mysqld_safe produced error messages and did not create the error log file under some circumstances. (Bug#29634)

• On 64-bit platforms, the filesort code (for queries with GROUP BY or ORDER BY) could crash due to an incorrect pointer size.
(Bug#29610)

• A left join between two views could produce incorrect results. (Bug#29604)

• Certain statements with unions, subqueries, and joins could result in huge memory consumption. (Bug#29582)

• Clients using SSL could hang the server. (Bug#29579)

• A slave running with --log-slave-updates would fail to write INSERT DELAY IGNORE statements to its binary log, res-
ulting in different binary log contents on the master and slave. (Bug#29571)

• Storage engine error conditions in row-based replication were not correctly reported to the user. (Bug#29570)

• An incorrect result was returned when comparing string values that were converted to TIME values with CAST(). (Bug#29555)

• gcov coverage-testing information was not written if the server crashed. (Bug#29543)

• Conversion of ASCII DEL (0x7F) to Unicode incorrectly resulted in QUESTION MARK (0x3F) rather than DEL. (Bug#29499)

• A field packet with NULL fields caused a libmysqlclient crash. (Bug#29494)

• On Windows, the mysql client died if the user entered a statement and Return after entering Control-C. (Bug#29469)

• The full-text parser could enter an infinite loop if it encountered an illegal multi-byte sequence or a sequence that has no mapping to
Unicode. (Bug#29464)

• Failure to consider collation when comparing space characters could lead to incorrect index entry order, making it impossible to find
some index values. (Bug#29461)

• Searching a FULLTEXT index for a word with the boolean mode truncation operator could cause an infinite loop. (Bug#29445)

• Corrupt data resulted from use of SELECT ... INTO OUTFILE 'file_name' FIELDS ENCLOSED BY 'c', where c is
a digit or minus sign, followed by LOAD DATA INFILE 'file_name' FIELDS ENCLOSED BY 'c'. (Bug#29442)

• Killing an INSERT DELAYED thread caused a server crash. (Bug#29431)

MySQL Change History

2075

http://bugs.mysql.com/29788
http://bugs.mysql.com/29784
http://bugs.mysql.com/29740
http://bugs.mysql.com/29739
http://bugs.mysql.com/29734
http://bugs.mysql.com/29729
http://bugs.mysql.com/29717
http://bugs.mysql.com/29692
http://bugs.mysql.com/29687
http://bugs.mysql.com/29661
http://bugs.mysql.com/29644
http://bugs.mysql.com/29634
http://bugs.mysql.com/29610
http://bugs.mysql.com/29604
http://bugs.mysql.com/29582
http://bugs.mysql.com/29579
http://bugs.mysql.com/29571
http://bugs.mysql.com/29570
http://bugs.mysql.com/29555
http://bugs.mysql.com/29543
http://bugs.mysql.com/29499
http://bugs.mysql.com/29494
http://bugs.mysql.com/29469
http://bugs.mysql.com/29464
http://bugs.mysql.com/29461
http://bugs.mysql.com/29445
http://bugs.mysql.com/29442
http://bugs.mysql.com/29431


• Use of SHOW BINLOG EVENTS for a non-existent log file followed by PURGE MASTER LOGS caused a server crash.
(Bug#29420)

• Assertion failure could occur for grouping queries that employed DECIMAL user variables with assignments to them. (Bug#29417)

• For CAST(expr AS DECIMAL(M,D)), the limits of 65 and 30 on the precision (M) and scale (D) were not enforced.
(Bug#29415)

• Deleting from a CSV table could corrupt it. (Bug#29411)

• Results for a select query that aliases the column names against a view could duplicate one column while omitting another. This bug
could occur for a query over a multiple-table view that includes an ORDER BY clause in its definition. (Bug#29392)

• mysqldump created a stray file when a given a too-long filename argument. (Bug#29361)

• The special “zero” ENUM value was coerced to the normal empty string ENUM value during a column-to-column copy. This affected
CREATE ... SELECT statements and SELECT statements with aggregate functions on ENUM columns in the GROUP BY clause.
(Bug#29360)

• Inserting a negative number into a CSV table could corrupt it. (Bug#29353)

• Optimization of queries with DETERMINISTIC stored functions in the WHERE clause was ineffective: A sequential scan was al-
ways used. (Bug#29338)

• MyISAM corruption could occur with the cp932_japanese_ci collation for the cp932 character set due to incorrect comparis-
on for trailing space. (Bug#29333)

• For updates to InnoDB tables, a TIMESTAMP column with the ON UPDATE CURRENT_TIMESTAMP attribute could be updated
even when no values actually changed. (Bug#29310)

• FULLTEXT indexes could be corrupted by certain gbk characters. (Bug#29299)

• SELECT ... INTO OUTFILE followed by LOAD DATA could result in garbled characters when the FIELDS ENCLOSED BY
clause named a delimiter of '0', 'b', 'n', 'r', 't', 'N', or 'Z' due to an interaction of character encoding and doubling for
data values containing the enclosed-by character. (Bug#29294)

• Sort order of the collation wasn't used when comparing trailing spaces. This could lead to incorrect comparison results, incorrectly
created indexes, or incorrect result set order for queries that include an ORDER BY clause. (Bug#29261)

• CHECK TABLE could erroneously report table corruption for a CSV table if multiple threads were modifying the table at the same
time. (Bug#29253)

• Many threads accessing a CSV table simultaneously could cause an assertion failure. (Bug#29252)

• If an ENUM column contained '' as one of its members (represented with numeric value greater than 0), and the column contained
error values (represented as 0 and displayed as ''), using ALTER TABLE to modify the column definition caused the 0 values to
be given the numeric value of the non-zero '' member. (Bug#29251)

• Calling mysql_options() after mysql_real_connect() could cause clients to crash. (Bug#29247)

• CHECK TABLE for ARCHIVE tables could falsely report table corruption or cause a server crash. (Bug#29207)

• Mixing binary and utf8 columns in a union caused field lengths to be calculated incorrectly, resulting in truncation. (Bug#29205)

• AsText() could fail with a buffer overrun. (Bug#29166)

• Under some circumstances, a SELECT ... FROM mysql.event could cause the server to crash. (Bug#29156)

• InnoDB refused to start on some versions of FreeBSD with LinuxThreads. This is fixed by enabling file locking on FreeBSD.
(Bug#29155)

• LOCK TABLES was not atomic when more than one InnoDB tables were locked. (Bug#29154)

• INSERT DELAYED statements on a master server are replicated as non-DELAYED inserts on slaves (which is normal, to preserve
serialization), but the inserts on the slave did not use concurrent inserts. Now INSERT DELAYED on a slave is converted to a con-
current insert when possible, and to a normal insert otherwise. (Bug#29152)

MySQL Change History

2076

http://bugs.mysql.com/29420
http://bugs.mysql.com/29417
http://bugs.mysql.com/29415
http://bugs.mysql.com/29411
http://bugs.mysql.com/29392
http://bugs.mysql.com/29361
http://bugs.mysql.com/29360
http://bugs.mysql.com/29353
http://bugs.mysql.com/29338
http://bugs.mysql.com/29333
http://bugs.mysql.com/29310
http://bugs.mysql.com/29299
http://bugs.mysql.com/29294
http://bugs.mysql.com/29261
http://bugs.mysql.com/29253
http://bugs.mysql.com/29252
http://bugs.mysql.com/29251
http://bugs.mysql.com/29247
http://bugs.mysql.com/29207
http://bugs.mysql.com/29205
http://bugs.mysql.com/29166
http://bugs.mysql.com/29156
http://bugs.mysql.com/29155
http://bugs.mysql.com/29154
http://bugs.mysql.com/29152


• mysqld failed to exit during shutdown. (Bug#29133)

• A network structure was initialized incorrectly, leading to embedded server crashes. (Bug#29117)

• An assertion failure occurred if a query contained a conjunctive predicate of the form view_column = constant in the
WHERE clause and the GROUP BY clause contained a reference to a different view column. The fix also enables application of an
optimization that was being skipped if a query contained a conjunctive predicate of the form view_column = constant in the
WHERE clause and the GROUP BY clause contained a reference to the same view column. (Bug#29104)

• A maximum of 4TB InnoDB free space was reported by SHOW TABLE STATUS, which is incorrect on systems with more than
4TB space. (Bug#29097)

• If an INSERT INTO ... SELECT statement inserted into the same table that the SELECT retrieved from, and the SELECT in-
cluded ORDER BY and LIMIT clauses, different data was inserted than the data produced by the SELECT executed by itself.
(Bug#29095)

• Queries that performed a lookup into a BINARY index containing key values ending with spaces caused an assertion failure for de-
bug builds and incorrect results for non-debug builds. (Bug#29087)

• The semantics of BIGINT depended on platform-specific characteristics. (Bug#29079)

• A byte-order issue in writing a spatial index to disk caused bad index files on some systems. (Bug#29070)

• Creation of a legal stored procedure could fail if no default database had been selected. (Bug#29050)

• REPLACE, INSERT IGNORE, and UPDATE IGNORE did not work for FEDERATED tables. (Bug#29019)

• Inserting into InnoDB tables and executing RESET MASTER in multiple threads cause assertion failure in debug server binaries.
(Bug#28983)

• Updates to a CSV table could cause a server crash or update the table with incorrect values. (Bug#28971)

• For a ucs2 column, GROUP_CONCAT() did not convert separators to the result character set before inserting them, producing a
result containing a mixture of two different character sets. (Bug#28925)

• Dropping the definer of an active event caused the server to crash. (Bug#28924)

• For a join with GROUP BY and/or ORDER BY and a view reference in the FROM list, the query metadata erroneously showed empty
table aliases and database names for the view columns. (Bug#28898)

• Creating an event using ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL ... could in some cases cause mysqld
to crash. (Bug#28881)

• Coercion of ASCII values to character sets that are a superset of ASCII sometimes was not done, resulting in ILLEGAL MIX OF

COLLATIONS errors. These cases now are resolved using repertoire, a new string expression attribute (see Section 9.1.6, “String Rep-
ertoire”). (Bug#28875)

• Executing ALTER EVENT on an event whose definer's event creation privileges had been revoked cause the server to crash.
(Bug#28873)

• ALTER VIEW is not supported as a prepared statement but was not being rejected. ALTER VIEW is now prohibited as a prepared
statement or when called within stored routines. (Bug#28846)

• In strict SQL mode, errors silently stopped the SQL thread even for errors named using the --slave-skip-errors option.
(Bug#28839)

• Fast ALTER TABLE (that works without rebuilding the table) acquired duplicate locks in the storage engine. In MyISAM, if ALTER
TABLE was issued under LOCK TABLE, it caused all data inserted after LOCK TABLE to disappear. (Bug#28838)

• Runtime changes to the log_queries_not_using_indexes system variable were ignored. (Bug#28808)

• Selecting a column not present in the selected-from table caused an extra error to be produced by SHOW ERRORS. (Bug#28677)

• Creating an event to be executed at a time close to the end of the allowed range (2038-01-19 03:14:07 UTC) would cause the server
to crash. (Bug#28641)

MySQL Change History

2077

http://bugs.mysql.com/29133
http://bugs.mysql.com/29117
http://bugs.mysql.com/29104
http://bugs.mysql.com/29097
http://bugs.mysql.com/29095
http://bugs.mysql.com/29087
http://bugs.mysql.com/29079
http://bugs.mysql.com/29070
http://bugs.mysql.com/29050
http://bugs.mysql.com/29019
http://bugs.mysql.com/28983
http://bugs.mysql.com/28971
http://bugs.mysql.com/28925
http://bugs.mysql.com/28924
http://bugs.mysql.com/28898
http://bugs.mysql.com/28881
http://bugs.mysql.com/28875
http://bugs.mysql.com/28873
http://bugs.mysql.com/28846
http://bugs.mysql.com/28839
http://bugs.mysql.com/28838
http://bugs.mysql.com/28808
http://bugs.mysql.com/28677
http://bugs.mysql.com/28641


• For a statement of the form CREATE t1 SELECT integer_constant, the server created the column using the DECIMAL
data type for large negative values that are within the range of BIGINT. (Bug#28625)

• Starting the server with an innodb_force_recovery value of 4 did not work. (Bug#28604)

• For InnoDB tables, MySQL unnecessarily sorted records in certain cases when the records were retrieved by InnoDB in the proper
order already. (Bug#28591)

• mysql_install_db could fail to find script files that it needs. (Bug#28585)

• If a stored procedure was created and invoked prior to selecting a default database with USE, a NO DATABASE SELECTED error oc-
curred. (Bug#28551)

• On Mac OS X, shared-library installation pathnames were incorrect. (Bug#28544)

• Using the --skip-add-drop-table option with mysqldump generated incorrect SQL if the database included any views.
The recreation of views requires the creation and removal of temporary tables. This option suppressed the removal of those tempor-
ary tables. The same applied to --compact since this option also invokes --skip-add-drop-table. (Bug#28524)

• mysqlbinlog --hexdump generated incorrect output due to omission of the “ # ” comment character for some comment lines.
(Bug#28293)

• InnoDB could crash if the server was shut down while innodb_table_monitor was running. (Bug#28254)

• A race condition in the interaction between MyISAM and the query cache code caused the query cache not to invalidate itself for
concurrently inserted data. (Bug#28249)

• A duplicate-key error message could display an incorrect key value when not all columns of the key were used to select rows for up-
date. (Bug#28158)

• Indexing column prefixes in InnoDB tables could cause table corruption. (Bug#28138)

• Index creation could fail due to truncation of key values to the maximum key length rather than to a mulitiple of the maximum char-
acter length. (Bug#28125)

• Instance Manager had a race condition when it received a shutdown request while a guarded mysqld instance was starting such
that it could fail to stop the mysqld instance. (Bug#28030)

• SELECT ... FOR UPDATE with partitioned tables could cause a server crash. (Bug#28026)

• On Windows, Instance Manager would crash if an instance object failed to initialize during startup. This could happen if an incor-
rect mysqld path was supplied in the configuration file. (Bug#28012)

• The LOCATE() function returned NULL if any of its arguments evaluated to NULL. Likewise, the predicate,
LOCATE(str,NULL) IS NULL, erroneously evaluated to FALSE. (Bug#27932)

• Dropping a user-defined function could cause a server crash if the function was still in use by another thread. (Bug#27564)

• An error that happened inside INSERT, UPDATE, or DELETE statements performed from within a stored function or trigger could
cause inconsistency between master and slave servers. (Bug#27417)

• For some event-creation problems, the server displayed messages that implied the problems were errors when they were only warn-
ings. (Bug#27406)

• Fixed a case of unsafe aliasing in the source that caused a client library crash when compiled with gcc 4 at high optimization levels.
(Bug#27383)

• Index-based range reads could fail for comparisons that involved contraction characters (such as ch in Czech or ll in Spanish).
(Bug#27345)

• Aggregations in subqueries that refer to outer query columns were not always correctly referenced to the proper outer query.
(Bug#27333)

• Error returns from the time() system call were ignored. (Bug#27198)

• Phantom reads could occur under InnoDB serializable isolation level. (Bug#27197)

MySQL Change History

2078

http://bugs.mysql.com/28625
http://bugs.mysql.com/28604
http://bugs.mysql.com/28591
http://bugs.mysql.com/28585
http://bugs.mysql.com/28551
http://bugs.mysql.com/28544
http://bugs.mysql.com/28524
http://bugs.mysql.com/28293
http://bugs.mysql.com/28254
http://bugs.mysql.com/28249
http://bugs.mysql.com/28158
http://bugs.mysql.com/28138
http://bugs.mysql.com/28125
http://bugs.mysql.com/28030
http://bugs.mysql.com/28026
http://bugs.mysql.com/28012
http://bugs.mysql.com/27932
http://bugs.mysql.com/27564
http://bugs.mysql.com/27417
http://bugs.mysql.com/27406
http://bugs.mysql.com/27383
http://bugs.mysql.com/27345
http://bugs.mysql.com/27333
http://bugs.mysql.com/27198
http://bugs.mysql.com/27197


• The SUBSTRING() function returned the entire string instead of an empty string when it was called from a stored procedure and
when the length parameter was specified by a variable with the value “ 0 ”. (Bug#27130)

• Some functions when used in partitioning expressions could cause mysqld to crash. (Bug#27084)

• The server acquired a global mutex for temporary tables, although such tables are thread-specific. This affected performance by
blocking other threads. (Bug#27062)

• FEDERATED tables had an artificially low maximum of key length. (Bug#26909)

• Updates to rows in a partitioned table could update the wrong column. (Bug#26827)

• Index creation could corrupt the table definition in the .frm file: 1) A table with the maximum number of key segments and max-
imum length key name would have a corrupted .frm file, due to incorrect calculation of the total key length. 2) MyISAM would re-
ject a table with the maximum number of keys and the maximum number of key segments in all keys. (It would allow one less than
this total maximum.) Now MyISAM accepts a table defined with the maximum. (Bug#26642)

• The Windows implementation of pthread_join() was incorrect and could cause crashes. (Bug#26564)

• After the first read of a TEMPORARY table, CHECK TABLE could report the table as being corrupt. (Bug#26325)

• If an operation had an InnoDB table, and two triggers, AFTER UPDATE and AFTER INSERT, competing for different resources
(such as two distinct MyISAM tables), the triggers were unable to execute concurrently. In addition, INSERT and UPDATE state-
ments for the InnoDB table were unable to run concurrently. (Bug#26141)

• A number of unsupported constructs — including prohibited constructs, the UCASE() function, and nested function calls — were
permitted in partitioning expressions. (Bug#26082, Bug#18198, Bug#29308)

• ALTER DATABASE did not require at least one option. (Bug#25859)

• The index merge union access algorithm could produce incorrect results with InnoDB tables. The problem could also occur for
queries that used DISTINCT. (Bug#25798)

• When using a FEDERATED table, the value of last_insert_id() would not correctly update the C API interface, which would
affect the autogenerated ID returned both through the C API and the MySQL protocol, affecting Connectors that used the protocol
and/or C API. (Bug#25714)

• The server was blocked from opening other tables while the FEDERATED engine was attempting to open a remote table. Now the
server does not check the correctness of a FEDERATED table at CREATE TABLE time, but waits until the table actually is accessed.
(Bug#25679)

• Under ActiveState Perl, mysql-test-run.pl could kill itself when attempting to kill other processes. (Bug#25657)

• Several InnoDB assertion failures were corrected. (Bug#25645)

• A query with DISTINCT in the select list to which the loose-scan optimization for grouping queries was applied returned an incor-
rect result set when the query was used with the SQL_BIG_RESULT option. (Bug#25602)

• For a multiple-row insert into a FEDERATED table that refers to a remote transactional table, if the insert failed for a row due to
constraint failure, the remote table would contain a partial commit (the rows preceding the failed one) instead of rolling back the
statement completely. This occurred because the rows were treated as individual inserts.

Now FEDERATED performs bulk-insert handling such that multiple rows are sent to the remote table in a batch. This provides a per-
formance improvement and enables the remote table to perform statement rollback properly should an error occur. This capability
has the following limitations:

• The size of the insert cannot exceed the maximum packet size between servers. If the insert exceeds this size, it is broken into
multiple packets and the rollback problem can occur.

• Bulk-insert handling does not occur for INSERT ... ON DUPLICATE KEY UPDATE.

(Bug#25513)

• The FEDERATED storage engine failed silently for INSERT ... ON DUPLICATE KEY UPDATE if a duplicate key violation
occurred. FEDERATED does not support ON DUPLICATE KEY UPDATE, so now it correctly returns an ER_DUP_KEY error if a
duplicate key violation occurs. (Bug#25511)

MySQL Change History

2079

http://bugs.mysql.com/27130
http://bugs.mysql.com/27084
http://bugs.mysql.com/27062
http://bugs.mysql.com/26909
http://bugs.mysql.com/26827
http://bugs.mysql.com/26642
http://bugs.mysql.com/26564
http://bugs.mysql.com/26325
http://bugs.mysql.com/26141
http://bugs.mysql.com/26082
http://bugs.mysql.com/18198
http://bugs.mysql.com/29308
http://bugs.mysql.com/25859
http://bugs.mysql.com/25798
http://bugs.mysql.com/25714
http://bugs.mysql.com/25679
http://bugs.mysql.com/25657
http://bugs.mysql.com/25645
http://bugs.mysql.com/25602
http://bugs.mysql.com/25513
http://bugs.mysql.com/25511


• In a stored function or trigger, when InnoDB detected deadlock, it attempted rollback and displayed an incorrect error message
(EXPLICIT OR IMPLICIT COMMIT IS NOT ALLOWED IN STORED FUNCTION OR TRIGGER). Now InnoDB returns an error under
these conditions and does not attempt rollback. Rollback is handled outside of InnoDB above the function/trigger level.
(Bug#24989)

• Dropping a temporary InnoDB table that had been locked with LOCK TABLES caused a server crash. (Bug#24918)

• On Windows, executables did not include Vista manifests. (Bug#24732)

See also Bug#22563

• Slave servers could incorrectly interpret an out-of-memory error from the master and reconnect using the wrong binary log position.
(Bug#24192)

• If MySQL/InnoDB crashed very quickly after starting up, it would not force a checkpoint. In this case, InnoDB would skip crash
recovery at next startup, and the database would become corrupt. Fix: If the redo log scan at InnoDB startup goes past the last
checkpoint, force crash recovery. (Bug#23710)

• Using the READ COMMITTED transaction isolation level caused mixed and statement-based replication to fail. (Bug#23051)

• SHOW INNODB STATUS caused an assertion failure under high load. (Bug#22819)

• SHOW BINLOG EVENTS displayed incorrect values of End_log_pos for events associated with transactional storage engines.
(Bug#22540)

• When determining which transaction to kill after deadlock has been detected, InnoDB now adds the number of locks to a transac-
tion's weight, and avoids killing transactions that mave modified non-transactional tables. This should reduce the likelihood of
killing long-running transactions containing SELECT ... FOR UPDATE or INSERT/REPLACE INTO ... SELECT state-
ments, and of causing partial updates if the target is a MyISAM table. (Bug#21293)

• InnoDB displayed an incorrect error message when a CREATE TABLE statement exceeded the InnoDB maximum allowable row
size. (Bug#21101)

• Under heavy load with a large query cache, invalidating part of the cache could cause the server to freeze (that is, to be unable to
service other operations until the invalidation was complete). (Bug#21074)

• On Windows, the server used 10MB of memory for each connection thread, resulting in memory exhaustion. Now each thread uses
1MB. (Bug#20815)

• InnoDB produced an unnecessary (and harmless) warning: InnoDB: Error: trying to declare trx to enter
InnoDB, but InnoDB: it already is declared. (Bug#20090)

• If a slave timed out while registering with the master to which it was connecting, auto-reconnect failed thereafter. (Bug#19328)

• If InnoDB reached its limit on the number of concurrent transactions (1023), it wrote a descriptive message to the error log but re-
turned a misleading error message to the client, or an assertion failure occurred. (Bug#18828)

• Under ActiveState Perl, mysql-test-run.pl would not run. (Bug#18415)

• The server crashed when the size of an ARCHIVE table grew larger than 2GB. (Bug#15787)

• SQL_BIG_RESULT had no effect for CREATE TABLE ... SELECT SQL_BIG_RESULT ... statements. (Bug#15130)

• On 64-bit Windows systems, the Config Wizard failed to complete the setup because 64-bit Windows does not resolve dynamic
linking of the 64-bit libmysql.dll to a 32-bit application like the Config Wizard. (Bug#14649)

• mysql_setpermission tried to grant global-only privileges at the database level. (Bug#14618)

• For the general query log, logging of prepared statements executed via the C API differed from logging of prepared statements per-
formed with PREPARE and EXECUTE. Logging for the latter was missing the Prepare and Execute lines. (Bug#13326)

• The TABLE_COMMENT column for INFORMATION_SCHEMA.TABLES displayed extraneous information for InnoDB tables.
(Bug#11379)

See also Bug#32440

MySQL Change History

2080

http://bugs.mysql.com/24989
http://bugs.mysql.com/24918
http://bugs.mysql.com/24732
http://bugs.mysql.com/22563
http://bugs.mysql.com/24192
http://bugs.mysql.com/23710
http://bugs.mysql.com/23051
http://bugs.mysql.com/22819
http://bugs.mysql.com/22540
http://bugs.mysql.com/21293
http://bugs.mysql.com/21101
http://bugs.mysql.com/21074
http://bugs.mysql.com/20815
http://bugs.mysql.com/20090
http://bugs.mysql.com/19328
http://bugs.mysql.com/18828
http://bugs.mysql.com/18415
http://bugs.mysql.com/15787
http://bugs.mysql.com/15130
http://bugs.mysql.com/14649
http://bugs.mysql.com/14618
http://bugs.mysql.com/13326
http://bugs.mysql.com/11379
http://bugs.mysql.com/32440


• The server returned data from SHOW CREATE TABLE statement or a SELECT statement on an INFORMATION_SCHEMA table
using the binary character set. (Bug#10491)

• Backup software can cause ERROR_SHARING_VIOLATION or ERROR_LOCK_VIOLATION conditions during file operations.
InnoDB now retries forever until the condition goes away. (Bug#9709)

• Retrieval of object definitions from INFORMATION_SCHEMA tables.

• In INFORMATION_SCHEMA, the VIEWS table now has these columns: CHARACTER_SET_CLIENT, COLLA-
TION_CONNECTION. The ROUTINES, TRIGGERS, and EVENT tables now have these columns: CHARACTER_SET_CLIENT,
COLLATION_CONNECTION, DATABASE_COLLATION.

• In the mysql database, the proc and event tables now have these columns: character_set_client, colla-
tion_connection, db_collation, body_utf8.

• Displaying the object definition in SHOW statements. This issue also affected mysqldump, which uses SHOW.

• Compiling the stored definition into executable form when the object is invoked.

• Bulk-insert handling does not occur for INSERT ... ON DUPLICATE KEY UPDATE.

• The size of the insert cannot exceed the maximum packet size between servers. If the insert exceeds this size, it is broken into mul-
tiple packets and the rollback problem can occur.

• Parsing the original object definition so that it can be stored.

C.1.9. Changes in MySQL 5.1.20 (25 June 2007)
This is a new Beta development release, fixing recently discovered bugs.

Note

This Beta release, as any other pre-production release, should not be installed on production level systems or systems with
critical data. It is good practice to back up your data before installing any new version of software. Although MySQL has
worked very hard to ensure a high level of quality, protect your data by making a backup as you would for any software
beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the individual bugs fixed in
this version.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• Incompatible Change: It is no longer possible to partition the log tables. (Bug#27816)

• Incompatible Change: mysqld_safe now supports error logging to syslog on systems that support the logger command.
The new --syslog and --skip-syslog options can be used instead of the --log-error option to control logging behavior,
as described in Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”. The default is to use syslog, which differs
from the previous default behavior of writing an error log file.

Currently, logging to syslog may fail to operate correctly in some cases, so we recommend that you use --skip-syslog
or --log-error. To maintain the older behavior if you were using no error-logging option, use --skip-syslog. If you were
using --log-error, continue to use it.

Note: In 5.1.21, the default is changed to --skip-syslog, which is compatible with releases prior to 5.1.20. (Bug#4858)

• Important Change: MySQL Cluster: The TimeBetweenWatchdogCheckInitial configuration parameter was added to al-
low setting of a separate watchdog timeout for memory allocation during startup of the data nodes. See Section 17.4.4.5, “Defining
Data Nodes”, for more information. (Bug#28899)

• MySQL Cluster: The cluster management client now stores command history between sessions. (Bug#29073)

MySQL Change History

2081

http://bugs.mysql.com/10491
http://bugs.mysql.com/9709
http://bugs.mysql.com/
http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise
http://bugs.mysql.com/27816
http://bugs.mysql.com/4858
http://bugs.mysql.com/28899
http://bugs.mysql.com/29073


• MySQL Cluster: auto_increment_increment and auto_increment_offset are now supported for NDB tables.
(Bug#26342)

• MySQL Cluster: The server source tree now includes scripts to simplify building MySQL with SCI support. For more information
about SCI interconnects and these build scripts, see Section 17.14.1, “Configuring MySQL Cluster to use SCI Sockets”.
(Bug#25470)

• MySQL Cluster: A new configuration parameter ODirect causes NDB to attempt using O_DIRECT writes for LCP, backups, and
redo logs, often lowering CPU usage.

• If a MERGE table cannot be opened or used because of a problem with an underlying table, CHECK TABLE now displays informa-
tion about which table caused the problem. (Bug#26976)

• User variables and stored procedure variables are now supported for use in XPath expressions employed as arguments to the Ex-
tractValue() and UpdateXML() functions.

This means that:

• XPath can now be used to load data from XML files using virtually any format, and so able to import data from most third party
software which either has XML export functionality, or uses XML natively as a storage format.

• Various complex conditions can be put on rows and columns, so one can filter for desired rows (or skip unwanted rows) when
loading XML.

• Various types of preprocessing using SQL functions are now possible when loading XML. For example, you can concatenate
two XML tag or attribute values into a single column value using CONCAT(), or remove some parts of the data using RE-
PLACE().

See Section 11.10, “XML Functions”, for more information. (Bug#26518)

• Binary distributions for some platforms did not include shared libraries; now shared libraries are shipped for all platforms except
AIX 5.2 64-bit. Exception: The library for the libmysqld embedded server is not shared except on Windows. (Bug#16520,
Bug#26767, Bug#13450)

• Added a new PAD_CHAR_TO_FULL_LENGTH SQL mode. By default, trailing spaces are trimmed from CHAR column values on
retrieval. If PAD_CHAR_TO_FULL_LENGTH is enabled, trimming does not occur and retrieved CHAR values are padded to their
full length. This mode does not apply to VARCHAR columns, for which trailing spaces are retained on retrieval.

• XPath can now be used to load data from XML files using virtually any format, and so able to import data from most third party
software which either has XML export functionality, or uses XML natively as a storage format.

• Various complex conditions can be put on rows and columns, so one can filter for desired rows (or skip unwanted rows) when load-
ing XML.

• The SQL_MODE, FOREIGN_KEY_CHECKS, UNIQUE_CHECKS, character set/collations, and SQL_AUTO_IS_NULL sesstion
variables are written to the binary log and honoured during replication. See Section 5.2.4, “The Binary Log”.

• Various types of preprocessing using SQL functions are now possible when loading XML. For example, you can concatenate two
XML tag or attribute values into a single column value using CONCAT(), or remove some parts of the data using REPLACE().

Bugs fixed:

• Security Fix: A malformed password packet in the connection protocol could cause the server to crash. Thanks for Dormando for
reporting this bug, and for providing details and a proof of concept. (Bug#28984, CVE-2007-3780)

• Security Fix: CREATE TABLE LIKE did not require any privileges on the source table. Now it requires the SELECT privilege.

In addition, CREATE TABLE LIKE was not isolated from alteration by other connections, which resulted in various errors and in-
correct binary log order when trying to execute concurrently a CREATE TABLE LIKE statement and either DDL statements on the
source table or DML or DDL statements on the target table. (Bug#23667, Bug#25578, CVE-2007-3781)

• Incompatible Change: Some error codes had error numbers in MySQL 5.1 different from the numbers in MySQL 5.0. In MySQL
5.1, error numbers have been changed to match the MySQL 5.0 values: Error codes with value of 1458 or higher have changed in
MySQL 5.1 now. Client applications designed to work with MySQL 5.1 with hard-coded error code values (for example, in state-

MySQL Change History

2082

http://bugs.mysql.com/26342
http://bugs.mysql.com/25470
http://bugs.mysql.com/26976
http://bugs.mysql.com/26518
http://bugs.mysql.com/16520
http://bugs.mysql.com/26767
http://bugs.mysql.com/13450
http://bugs.mysql.com/28984
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3780
http://bugs.mysql.com/23667
http://bugs.mysql.com/25578
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3781


ments such as if (mysql_errno(mysql) == 1463) { ... }) need to be updated in the source code. All clients de-
signed to work with MySQL 5.1 that test error codes (for example, in statements such as if (mysql_errno(mysql) ==
ER_VIEW_RECURSIVE) { ... }) should be recompiled. Existing 5.0 clients should now work, without changes or recompila-
tion, against servers for MySQL 5.1.20 or higher. (Bug#29245)

• Incompatible Change: When mysqldump was run with the --delete-master-logs option, binary log files were deleted be-
fore it was known that the dump had succeeded, not after. (The method for removing log files used RESET MASTER prior to the
dump. This also reset the binary log sequence numbering to .000001.) Now mysqldump flushes the logs (which creates a new
binary log number with the next sequence number), performs the dump, and then uses PURGE MASTER LOGS to remove the log
files older than the new one. This also preserves log numbering because the new log with the next number is generated and only the
preceding logs are removed. However, this may affect applications if they rely on the log numbering sequence being reset.
(Bug#24733)

• Incompatible Change: The use of an ORDER BY or DISTINCT clause with a query containing a call to the GROUP_CONCAT()
function caused results from previous queries to be redisplayed in the current result. The fix for this includes replacing a BLOB
value used internally for sorting with a VARCHAR. This means that for long results (more than 65,535 bytes), it is possible for trun-
cation to occur; if so, an appropriate warning is issued. (Bug#23856, Bug#28273)

• MySQL Cluster: Memory corruption could occur due to a problem in the DBTUP kernel block. (Bug#29229)

• MySQL Cluster: A query having a large IN(...) or NOT IN(...) list in the WHERE condition on an NDB table could cause
mysqld to crash. (Bug#29185)

• MySQL Cluster: In the event that two data nodes in the same node group and participating in a GCP crashed before they had writ-
ten their respective P0.sysfile files, QMGR could refuse to start, issuing an invalid INSUFFICIENT NODES FOR RESTART error in-
stead. (Bug#29167)

• MySQL Cluster: Attempting to restore a NULL row to a VARBINARY column caused ndb_restore to fail. (Bug#29103)

• MySQL Cluster: ndb_error_reporter now preserves timestamps on files. (Bug#29074)

• MySQL Cluster: It is now possible to set the maximum size of the allocation unit for table memory using the MaxAllocate con-
figuration parameter. (Bug#29044)

• MySQL Cluster: When shutting down mysqld, the NDB binlog process was not shut down before log cleanup began.
(Bug#28949)

• MySQL Cluster: ndb_mgm could hang when connecting to a nonexistent host. (Bug#28847)

• MySQL Cluster: A regression in the heartbeat monitoring code could lead to node failure under high load. This issue affected
MySQL 5.1.19 and MySQL 5.1.15-ndb-6.1.10 only. (Bug#28783)

• MySQL Cluster: A corrupt schema file could cause a FILE ALREADY OPEN error. (Bug#28770)

• MySQL Cluster: Having large amounts of memory locked caused swapping to disk. (Bug#28751)

• MySQL Cluster: Setting InitialNoOpenFiles equal to MaxNoOfOpenFiles caused an error. This was due to the fact that
the actual value of MaxNoOfOpenFiles as used by the cluster was offset by 1 from the value set in config.ini. (Bug#28749)

• MySQL Cluster: LCP files were not removed following an initial system restart. (Bug#28726)

• MySQL Cluster: UPDATE IGNORE statements involving the primary keys of multiple tables could result in data corruption.
(Bug#28719)

• MySQL Cluster: A race condition could result when non-master nodes (in addition to the master node) tried to update active status
due to a local checkpoint (that is, between NODE_FAILREP and COPY_GCIREQ events). Now only the master updates the active
status. (Bug#28717)

• MySQL Cluster: A fast global checkpoint under high load with high usage of the redo buffer caused data nodes to fail.
(Bug#28653)

• MySQL Cluster: The management client's response to START BACKUP WAIT COMPLETED did not include the backup ID.
(Bug#27640)

• MySQL Cluster: (Replication): A replicated unique key allowed duplicate key inserts on the slave. (Bug#27044)

MySQL Change History

2083

http://bugs.mysql.com/29245
http://bugs.mysql.com/24733
http://bugs.mysql.com/23856
http://bugs.mysql.com/28273
http://bugs.mysql.com/29229
http://bugs.mysql.com/29185
http://bugs.mysql.com/29167
http://bugs.mysql.com/29103
http://bugs.mysql.com/29074
http://bugs.mysql.com/29044
http://bugs.mysql.com/28949
http://bugs.mysql.com/28847
http://bugs.mysql.com/28783
http://bugs.mysql.com/28770
http://bugs.mysql.com/28751
http://bugs.mysql.com/28749
http://bugs.mysql.com/28726
http://bugs.mysql.com/28719
http://bugs.mysql.com/28717
http://bugs.mysql.com/28653
http://bugs.mysql.com/27640
http://bugs.mysql.com/27044


• Replication: It was possible to set SQL_SLAVE_SKIP_COUNTER such that the slave would jump into the middle of an event
group. (Bug#28618)

See also Bug#12691

• Disk Data: When loading data into a cluster following a version upgrade, the data nodes could forcibly shut down due to page and
buffer management failures (that is, ndbrequire failures in PGMAN). (Bug#28525)

• Disk Data: Repeated INSERT and DELETE operations on a Disk Data table having one or more large VARCHAR columns could
cause data nodes to fail. (Bug#20612)

• Cluster Replication: When replicating MyISAM or InnoDB tables to a MySQL Cluster, it was not possible to determine exactly
what had been applied following a shutdown of the slave cluster or mysqld process. (Bug#26783)

• Cluster API: The timeout set using the MGM API ndb_mgm_set_timeout() function was incorrectly interpreted as seconds
rather than as milliseconds. (Bug#29063)

• Cluster API: An invalid error code could be set on transaction objects by BLOB handling code. (Bug#28724)

• The TRUNCATE statement was handled differently by the server when row-based logging was in effect, even though the binlogging
format in effect does not effect the fact that TRUNCATE is always logged as a statement. (Bug#29130)

• If one of the queries in a UNION used the SQL_CACHE option and another query in the UNION contained a nondeterministic func-
tion, the result was still cached. For example, this query was incorrectly cached:

SELECT NOW() FROM t1 UNION SELECT SQL_CACHE 1 FROM t1;

(Bug#29053)

• DROP USER statements that named multiple users, only some of which could be dropped, were replicated incorrectly. (Bug#29030)

• Long pathnames for internal temporary tables could cause stack overflows. (Bug#29015)

• Using an INTEGER column from a table to ROUND() a number produced different results than using a constant with the same
value as the INTEGER column. (Bug#28980)

• Using events in replication could cause the slave to crash. (Bug#28953)

• If a program binds a given number of parameters to a prepared statement handle and then somehow changes stmt-
>param_count to a different number, mysql_stmt_execute() could crash the client or server. (Bug#28934)

• Queries using UDFs or stored functions were cached. (Bug#28921)

• INSERT .. ON DUPLICATE KEY UPDATE could under some circumstances silently update rows when it should not have.
(Bug#28904)

• Queries that used UUID() were incorrectly allowed into the query cache. (This should not happen because UUID() is non-
deterministic.) (Bug#28897)

• Using a VIEW created with a non-existing DEFINER could lead to incorrect results under some circumstances. (Bug#28895)

• For InnoDB tables that use the utf8 character set, incorrect results could occur for DML statements such as DELETE or UPDATE
that use an index on character-based columns. (Bug#28878)

See also Bug#29449, Bug#30485, Bug#31395

This regression was introduced by Bug#13195

• Non-utf8 characters could get mangled when stored in CSV tables. (Bug#28862)

• On Windows, USE_TLS was not defined for mysqlclient.lib. (Bug#28860)

• In MySQL 5.1.15, a new error code ER_DUP_ENTRY_WITH_KEY_NAME (1582) was introduced to replace ER_DUP_ENTRY
(1062) so that the key name could be provided instead of the key number. This was unnecessary, so ER_DUP_ENTRY is used again
and the key name is printed. The incompatibility introduced in 5.1.15 no longer applies. (Bug#28842)

MySQL Change History

2084

http://bugs.mysql.com/28618
http://bugs.mysql.com/12691
http://bugs.mysql.com/28525
http://bugs.mysql.com/20612
http://bugs.mysql.com/26783
http://bugs.mysql.com/29063
http://bugs.mysql.com/28724
http://bugs.mysql.com/29130
http://bugs.mysql.com/29053
http://bugs.mysql.com/29030
http://bugs.mysql.com/29015
http://bugs.mysql.com/28980
http://bugs.mysql.com/28953
http://bugs.mysql.com/28934
http://bugs.mysql.com/28921
http://bugs.mysql.com/28904
http://bugs.mysql.com/28897
http://bugs.mysql.com/28895
http://bugs.mysql.com/28878
http://bugs.mysql.com/29449
http://bugs.mysql.com/30485
http://bugs.mysql.com/31395
http://bugs.mysql.com/13195
http://bugs.mysql.com/28862
http://bugs.mysql.com/28860
http://bugs.mysql.com/28842


• A subquery with ORDER BY and LIMIT 1 could cause a server crash. (Bug#28811)

• Running SHOW TABLE STATUS while performing a high number of inserts on partitioned tables with a great many partitions
could cause the server to crash. (Bug#28806)

• Using BETWEEN with non-indexed date columns and short formats of the date string could return incorrect results. (Bug#28778)

• Selecting GEOMETRY columns in a UNION caused a server crash. (Bug#28763)

• When constructing the path to the original .frm file, ALTER .. RENAME was unnecessarily (and incorrectly) lowercasing the en-
tire path when not on a case-insensitive filesystem, causing the statement to fail. (Bug#28754)

• The binlog_format system variable value was empty if the server was started with binary logging disabled. Now it is set to
MIXED. (Bug#28752)

• Searches on indexed and non-indexed ENUM columns could return different results for empty strings. (Bug#28729)

• Executing EXPLAIN EXTENDED on a query using a derived table over a grouping subselect could lead to a server crash. This oc-
curred only when materialization of the derived tables required creation of an auxiliary temporary table, an example being when a
grouping operation was carried out with usage of a temporary table. (Bug#28728)

• The result of evaluation for a view's CHECK OPTION option over an updated record and records of merged tables was arbitrary and
dependant on the order of records in the merged tables during the execution of the SELECT statement. (Bug#28716)

• The “manager thread” of the LinuxThreads implementation was unintentionally started before mysqld had dropped privileges (to
run as an unprivileged user). This caused signaling between threads in mysqld to fail when the privileges were finally dropped.
(Bug#28690)

• Setting an interval of EVERY 0 SECOND for a scheduled event caused the server to crash. (Bug#28666)

• For debug builds, ALTER TABLE could trigger an assertion failure due to occurrence of a deadlock when committing changes.
(Bug#28652)

• Attempting to create an index on a BIT column failed after modifying the column. (Bug#28631)

• After an upgrade, the names of stored routines referenced by views were no longer displayed by SHOW CREATE VIEW.
(Bug#28605)

This regression was introduced by Bug#23491

• Conversion of U+00A5 YEN SIGN and U+203E OVERLINE from ucs2 to ujis produced incorrect results. (Bug#28600)

• Killing from one connection a long-running EXPLAIN QUERY started from another connection caused mysqld to crash.
(Bug#28598)

• SHOW GLOBAL VARIABLES repeated some variable names. (Bug#28580)

• When one thread attempts to lock two (or more) tables and another thread executes a statement that aborts these locks (such as RE-
PAIR TABLE, OPTIMIZE TABLE, or CHECK TABLE), the thread might get a table object with an incorrect lock type in the ta-
ble cache. The result is table corruption or a server crash. (Bug#28574)

• Outer join queries with ON conditions over constant outer tables did not return NULL-complemented rows when conditions were
evaluated to FALSE. (Bug#28571)

• An update on a multiple-table view with the CHECK OPTION clause and a subquery in the WHERE condition could cause an as-
sertion failure. (Bug#28561)

• Calling the UpdateXML() function using invalid XPath syntax caused memory corruption possibly leading to a crash of the serv-
er. (Bug#28558)

• PURGE MASTER LOGS BEFORE (subquery) caused a server crash. Subqueries are forbidden in the BEFORE clause now.
(Bug#28553)

• mysqldump calculated the required memory for a hex-blob string incorrectly causing a buffer overrun. This in turn caused
mysqldump to crash silently and produce incomplete output. (Bug#28522)

MySQL Change History

2085

http://bugs.mysql.com/28811
http://bugs.mysql.com/28806
http://bugs.mysql.com/28778
http://bugs.mysql.com/28763
http://bugs.mysql.com/28754
http://bugs.mysql.com/28752
http://bugs.mysql.com/28729
http://bugs.mysql.com/28728
http://bugs.mysql.com/28716
http://bugs.mysql.com/28690
http://bugs.mysql.com/28666
http://bugs.mysql.com/28652
http://bugs.mysql.com/28631
http://bugs.mysql.com/28605
http://bugs.mysql.com/23491
http://bugs.mysql.com/28600
http://bugs.mysql.com/28598
http://bugs.mysql.com/28580
http://bugs.mysql.com/28574
http://bugs.mysql.com/28571
http://bugs.mysql.com/28561
http://bugs.mysql.com/28558
http://bugs.mysql.com/28553
http://bugs.mysql.com/28522


• When upgrading from MySQL 5.1.17 to 5.1.18, mysql_upgrade and mysql_fix_privilege_tables did not upgrade the
system tables relating to the Event Scheduler correctly. (Bug#28521)

• Passing a DECIMAL value as a parameter of a statement prepared with PREPARE resulted in an error. (Bug#28509)

• mysql_affected_rows() could return an incorrect result for INSERT ... ON DUPLICATE KEY UPDATE if the CLI-
ENT_FOUND_ROWS flag was set. (Bug#28505)

• A query that grouped by the result of an expression returned a different result when the expression was assigned to a user variable.
(Bug#28494)

• Subselects returning LONG values in MySQL versions later than 5.0.24a returned LONGLONG prior to this. The previous behavior
was restored. (Bug#28492)

This regression was introduced by Bug#19714

• Performing ALTER TABLE ... ADD PARTITION or ALTER TABLE DROP PARTITION could result in inconsistent data,
or cause the server to crash, if done concurrently with other accesses to the table. (Bug#28477, Bug#28488)

• Forcing the use of an index on a SELECT query when the index had been disabled would raise an error without running the query.
The query now executes, with a warning generated noting that the use of a disabled index has been ignored. (Bug#28476)

• The result of executing of a prepared statement created with PREPARE s FROM "SELECT 1 LIMIT ?" was not replicated
correctly. (Bug#28464)

• The query SELECT '2007-01-01' + INTERVAL column_name DAY FROM table_name caused mysqld to fail.
(Bug#28450)

• A server crash could happen under rare conditions such that a temporary table outgrew heap memory reserved for it and the remain-
ing disk space was not big enough to store the table as a MyISAM table. (Bug#28449)

• Using ALTER TABLE to move columns resulted only in the columns being renamed. The table contents were not changed.
(Bug#28427)

• The test case for mysqldump failed with bin-log disabled. (Bug#28372)

• Attempting to LOAD_FILE from an empty floppy drive under Windows, caused the server to hang. For example, if you opened a
connection to the server and then issued the command SELECT LOAD_FILE('a:test');, with no floppy in the drive, the
server was inaccessible until the modal pop-up dialog box was dismissed. (Bug#28366)

• mysqltest used a too-large stack size on PPC/Debian Linux, causing thread-creation failure for tests that use many threads.
(Bug#28333)

• When using a MEMORY table on Mac OS X, dropping a table and than creating a table with the same name could cause the informa-
tion of the deleted table to remain accessible, leading to index errors. (Bug#28309)

• The IS_UPDATABLE column in the INFORMATION_SCHEMA.VIEWS table was not always set correctly. (Bug#28266)

• For CAST() of a NULL value with type DECIMAL, the return value was incorrectly initialized, producing a runtime error for binar-
ies built using Visual C++ 2005. (Bug#28250)

• Recreating a view that already exists on the master would cause a replicating slave to terminate replication with a 'different error
message on slave and master' error. (Bug#28244)

• When the query cache was fully used, issuing RENAME DATABASE or RENAME SCHEMA could cause the server to hang, with
100% CPU usage. (Bug#28211)

• The Bytes_received and Bytes_sent status variables could hold only 32-bit values (not 64-bit values) on some platforms.
(Bug#28149)

• Some valid identifiers were not parsed correctly. (Bug#28127)

• Storing a large number into a FLOAT or DOUBLE column with a fixed length could result in incorrect truncation of the number if
the column's length was greater than 31. (Bug#28121)

• Sending debugging information from a dump of the Event Scheduler to COM_DEBUG could cause the server to crash. (Bug#28075)

MySQL Change History

2086

http://bugs.mysql.com/28521
http://bugs.mysql.com/28509
http://bugs.mysql.com/28505
http://bugs.mysql.com/28494
http://bugs.mysql.com/28492
http://bugs.mysql.com/19714
http://bugs.mysql.com/28477
http://bugs.mysql.com/28488
http://bugs.mysql.com/28476
http://bugs.mysql.com/28464
http://bugs.mysql.com/28450
http://bugs.mysql.com/28449
http://bugs.mysql.com/28427
http://bugs.mysql.com/28372
http://bugs.mysql.com/28366
http://bugs.mysql.com/28333
http://bugs.mysql.com/28309
http://bugs.mysql.com/28266
http://bugs.mysql.com/28250
http://bugs.mysql.com/28244
http://bugs.mysql.com/28211
http://bugs.mysql.com/28149
http://bugs.mysql.com/28127
http://bugs.mysql.com/28121
http://bugs.mysql.com/28075


• The PARTITION_COMMENT column of the INFORMATION_SCHEMA.PARTITIONS table had the wrong default value.
(Bug#28007)

• DECIMAL values beginning with nine 9 digits could be incorrectly rounded. (Bug#27984)

• For attempts to open a non-existent table, the server should report ER_NO_SUCH_TABLE but sometimes reported
ER_TABLE_NOT_LOCKED. (Bug#27907)

• Following an invalid call to UpdateXML(), calling the function again (even if valid) crashed the server. (Bug#27898)

• A stored program that uses a variable name containing multibyte characters could fail to execute. (Bug#27876)

• The server made strong assumptions about the structure of the general_log and slow_log log tables: It supported only the ta-
ble structure defined in the mysql database creation scripts. The server also allowed limited ALTER TABLE operations on the log
tables, but adding an AUTO_INCREMENT column did not properly initialize the column, and subsequent inserts into the table could
fail to generate correct sequence numbers. Now an ALTER TABLE statement that adds an AUTO_INCREMENT column populates
the column correctly. In addition, when the server writes a log table row, it will set columns not present in the original table struc-
ture to their default values. (Bug#27857)

• ON conditions from JOIN expressions were ignored when checking the CHECK OPTION clause while updating a multiple-table
view that included such a clause. (Bug#27827)

• On some systems, udf_example.c returned an incorrect result length. Also on some systems, mysql-test-run.pl could
not find the shared object built from udf_example.c. (Bug#27741)

• The modification of a table by a partially completed multi-column update was not recorded in the binlog, rather than being marked
by an event and a corresponding error code. (Bug#27716)

• SHOW ENGINES and queries on INFORMATION_SCHEMA.ENGINES did not use the same values for representing the same stor-
age engine states. (Bug#27684)

• HASH indexes on VARCHAR columns with binary collations did not ignore trailing spaces from strings before comparisons. This
could result in duplicate records being successfully inserted into a MEMORY table with unique key constraints. A consequence was
that internal MEMORY tables used for GROUP BY calculation contained duplicate rows that resulted in duplicate-key errors when
converting those temporary tables to MyISAM, and that error was incorrectly reported as a table is full error. (Bug#27643)

• An error occurred trying to connect to mysqld-debug.exe. (Bug#27597)

• A stack overrun could occur when storing DATETIME values using repeated prepared statements. (Bug#27592)

• If a stored function or trigger was killed, it aborted but no error was thrown, allowing the calling statement to continue without noti-
cing the problem. This could lead to incorrect results. (Bug#27563)

• When ALTER TABLE was used to add a new DATE column with no explicit default value, '0000-00-00' was used as the de-
fault even if the SQL mode included the NO_ZERO_DATE mode to prohibit that value. A similar problem occurred for DATETIME
columns. (Bug#27507)

• ALTER TABLE ... ENABLE KEYS could cause mysqld to crash when executed on a table containing on a MyISAM table
containing billions of rows. (Bug#27029)

• Binary logging of prepared statements could produce syntactically incorrect queries in the binary log, replacing some parameters
with variable names rather than variable values. This could lead to incorrect results on replication slaves. (Bug#26842, Bug#12826)

• Binary content 0x00 in a BLOB column sometimes became 0x5C 0x00 following a dump and reload, which could cause prob-
lems with data using multi-byte character sets such as GBK (Chinese). This was due to a problem with SELECT INTO OUTFILE
whereby LOAD DATA later incorrectly interpreted 0x5C as the second byte of a multi-byte sequence rather than as the SOLIDUS
(“\”) character, used by MySQL as the escape character. (Bug#26711)

• Connections from one mysqld server to another failed on Mac OS X, affecting replication and FEDERATED tables. (Bug#26664)

See also Bug#29083

• The server crashed when attempting to open a table having a #mysql50# prefix in the database or table name. The server now will
not open such tables. (This prefix is reserved by mysql_upgrade for accessing 5.0 tables that have names not yet encoded for
5.1.) (Bug#26402)

MySQL Change History

2087

http://bugs.mysql.com/28007
http://bugs.mysql.com/27984
http://bugs.mysql.com/27907
http://bugs.mysql.com/27898
http://bugs.mysql.com/27876
http://bugs.mysql.com/27857
http://bugs.mysql.com/27827
http://bugs.mysql.com/27741
http://bugs.mysql.com/27716
http://bugs.mysql.com/27684
http://bugs.mysql.com/27643
http://bugs.mysql.com/27597
http://bugs.mysql.com/27592
http://bugs.mysql.com/27563
http://bugs.mysql.com/27507
http://bugs.mysql.com/27029
http://bugs.mysql.com/26842
http://bugs.mysql.com/12826
http://bugs.mysql.com/26711
http://bugs.mysql.com/26664
http://bugs.mysql.com/29083
http://bugs.mysql.com/26402


• A FLUSH TABLES WITH READ LOCK statement followed by a FLUSH LOGS statement caused a deadlock if the general log or
the slow query log was enabled. (Bug#26380)

• The query SELECT /*2*/ user, host, db, info FROM INFORMATION_SCHEMA.PROCESSLIST WHERE
(command!='Daemon' || user='event_scheduler') AND (info IS NULL OR info NOT LIKE
'%processlist%') ORDER BY INFO yielded inconsistent results. (Bug#26338)

• For a given user variable @v, the statements SELECT @v and CREATE TABLE ... AS SELECT @v did not return the same
data type. (Bug#26277)

• Statements within triggers ignored the value of the low_priority_updates system variable. (Bug#26162)

See also Bug#29963

• The embedded server library displayed error messages at startup if the mysql.plugin table was not present. This no longer oc-
curs. (Bug#25800)

• On Windows, an application that called mysql_thread_init() but forgot to call mysql_thread_end() would get this er-
ror: ERROR IN MY_THREAD_GLOBAL_END(). (Bug#25621)

• Embedded /* ... */ comments were handled incorrectly within the definitions of stored programs and views, resulting in mal-
formed definitions (the trailing */ was stripped). This also affected binary log contents. (Bug#25411, Bug#26302)

• Due to a race condition, executing FLUSH PRIVILEGES in one thread could cause brief table unavailability in other threads.
(Bug#24988)

• In SHOW SLAVE STATUS output, Last_Errno and Last_Error were not set after master_retry_count errors had oc-
curred. To provide additional information, the statement now displays four additional columns:

• Last_IO_Errno: The number of the last error that caused the I/O thread to stop

• Last_IO_Error: A description of the last error that caused the I/O thread to stop

• Last_SQL_Errno: The number of the last error that caused the SQL thread to stop

• Last_SQL_Error: A description of the last error that caused the SQL thread to stop

Also, Last_Errno and Last_Error now are aliases for Last_SQL_Errno and Last_SQL_Error. (Bug#24954)

• A too-long shared-memory-base-name value could cause a buffer overflow and crash the server or clients. (Bug#24924)

• When mysqld was run as a Windows service, shared memory objects were not created in the global namespace and could not be
used by clients to connect. (Bug#24731)

• On some Linux distributions where LinuxThreads and NPTL glibc versions both are available, statically built binaries can crash
because the linker defaults to LinuxThreads when linking statically, but calls to external libraries (such as libnss) are resolved to
NPTL versions. This cannot be worked around in the code, so instead if a crash occurs on such a binary/OS combination, print an
error message that provides advice about how to fix the problem. (Bug#24611)

• A number of SHOW statements caused mysqld to crash on recent versions of Solaris. This issue is believed to be present only in
MySQL 5.1.12 and later. (Bug#23810)

• The server deducted some bytes from the key_cache_block_size option value and reduced it to the next lower 512 byte
boundary. The resulting block size was not a power of two. Setting the key_cache_block_size system variable to a value that
is not a power of two resulted in MyISAM table corruption. (Bug#23068, Bug#28478, Bug#25853)

• Conversion errors could occur when constructing the condition for an IN predicate. The predicate was treated as if the affected
column contains NULL, but if the IN predicate is inside NOT, incorrect results could be returned. (Bug#22855)

• When using transactions and replication, shutting down the master in the middle of a transaction would cause all slaves to stop rep-
licating. (Bug#22725)

• Linux binaries were unable to dump core after executing a setuid() call. (Bug#21723)

• Stack overflow caused server crashes. (Bug#21476)

MySQL Change History

2088

http://bugs.mysql.com/26380
http://bugs.mysql.com/26338
http://bugs.mysql.com/26277
http://bugs.mysql.com/26162
http://bugs.mysql.com/29963
http://bugs.mysql.com/25800
http://bugs.mysql.com/25621
http://bugs.mysql.com/25411
http://bugs.mysql.com/26302
http://bugs.mysql.com/24988
http://bugs.mysql.com/24954
http://bugs.mysql.com/24924
http://bugs.mysql.com/24731
http://bugs.mysql.com/24611
http://bugs.mysql.com/23810
http://bugs.mysql.com/23068
http://bugs.mysql.com/28478
http://bugs.mysql.com/25853
http://bugs.mysql.com/22855
http://bugs.mysql.com/22725
http://bugs.mysql.com/21723
http://bugs.mysql.com/21476


• Using CREATE TABLE LIKE ... would raise an assertion when replicated to a slave. (Bug#18950)

• The server was ignoring the return value of the parse() function for full-text parser plugins. (Bug#18839)

• Granting access privileges to an individual table where the database or table name contained an underscore would fail. (Bug#18660)

• The -lmtmalloc library was removed from the output of mysql_config on Solaris, as it caused problems when building
DBD::mysql (and possibly other applications) on that platform that tried to use dlopen() to access the client library.
(Bug#18322)

• The check-cpu script failed to detect AMD64 Turion processors correctly. (Bug#17707)

• When using mysqlbinlog with --read-from-remote-server to load the data direct from a remote MySQL server would
cause a core dump when dumping certain binary log events. (Bug#17654)

• Trying to shut down the server following a failed LOAD DATA INFILE caused mysqld to crash. (Bug#17233)

• The omission of leading zeros in dates could lead to erroneous results when these were compared with the output of certain date and
time functions. (Bug#16377)

• Using up-arrow for command-line recall in mysql could cause a segmentation fault. (Bug#10218)

• The result for CAST() when casting a value to UNSIGNED was limited to the maximum signed BIGINT value
(9223372036854775808), rather than the maximum unsigned value (18446744073709551615). (Bug#8663)

• The internal functions for table preparation, creation, and alteration were not re-execution friendly, causing problems in code that:
repeatedly altered a table; repeatedly created and dropped a table; opened and closed a cursor on a table, altered the table, and then
reopened the cursor; used ALTER TABLE to change a table's current AUTO_INCREMENT value; created indexes on utf8
columns.

Re-execution of CREATE DATABASE, CREATE TABLE, and ALTER TABLE statements in stored routines or as prepared state-
ments also caused incorrect results or crashes. (Bug#4968, Bug#6895, Bug#19182, Bug#19733, Bug#22060, Bug#24879)

• Last_IO_Error: A description of the last error that caused the I/O thread to stop

• Last_IO_Errno: The number of the last error that caused the I/O thread to stop

• Last_SQL_Error: A description of the last error that caused the SQL thread to stop

• Last_SQL_Errno: The number of the last error that caused the SQL thread to stop

C.1.10. Changes in MySQL 5.1.19 (25 May 2007)
This is a new Beta development release, fixing recently discovered bugs.

Note

This Beta release, as any other pre-production release, should not be installed on production level systems or systems with
critical data. It is good practice to back up your data before installing any new version of software. Although MySQL has
worked very hard to ensure a high level of quality, protect your data by making a backup as you would for any software
beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the individual bugs fixed in
this version.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• Incompatible Change: INSERT DELAYED is now downgraded to a normal INSERT if the statement uses functions that access
tables or triggers, or that is called from a function or a trigger.

This was done to resolve the following interrelated issues:

MySQL Change History

2089

http://bugs.mysql.com/18950
http://bugs.mysql.com/18839
http://bugs.mysql.com/18660
http://bugs.mysql.com/18322
http://bugs.mysql.com/17707
http://bugs.mysql.com/17654
http://bugs.mysql.com/17233
http://bugs.mysql.com/16377
http://bugs.mysql.com/10218
http://bugs.mysql.com/8663
http://bugs.mysql.com/4968
http://bugs.mysql.com/6895
http://bugs.mysql.com/19182
http://bugs.mysql.com/19733
http://bugs.mysql.com/22060
http://bugs.mysql.com/24879
http://bugs.mysql.com/
http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise


• The server could abort or deadlock for INSERT DELAYED statements for which another insert was performed implicitly (for
example, via a stored function that inserted a row).

• A trigger using an INSERT DELAYED caused the error INSERT DELAYED CAN'T BE USED WITH TABLE ... BECAUSE

IT IS LOCKED WITH LOCK TABLES although the target table was not actually locked.

• INSERT DELAYED into a table with a BEFORE INSERT or AFTER INSERT trigger gave an incorrect NEW pseudocolumn
value and caused the server to deadlock or abort.

(Bug#21483)

See also Bug#20497, Bug#21714

• MySQL Cluster: Formerly, restoring a cluster backup made on a MySQL 5.0 Cluster to a 5.1 cluster using a 5.1 version of
ndb_restore did not resize VARCHAR columns as might be expected; now, the default behavior of ndb_restore in such cases
is to resize the VARCHAR columns. This changed default behavior can be overridden using the --no-upgrade (or -u) option
when invoking ndb_restore. (Bug#22240)

• The BLACKHOLE storage engine now supports INSERT DELAYED. Previously, INSERT DELAYED statements for BLACKHOLE
tables were not supported, and caused the server to crash. (Bug#27998)

• A new status variable, Com_call_procedure, indicates the number of calls to stored procedures. (Bug#27994)

• The BLACKHOLE storage engine now supports LOCK TABLES and UNLOCK TABLES. (Bug#26241)

• GLOBAL_STATUS

• GLOBAL_VARIABLES

• SESSION_VARIABLES

• The data type used for the VARIABLE_VALUE column of the following INFORMATION_SCHEMA tables has been changed to
VARCHAR:

• GLOBAL_STATUS

• SESSION_STATUS

• GLOBAL_VARIABLES

• SESSION_VARIABLES
For more information, see Section 24.24, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”,
Section 24.25, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”.

See also Bug#26994

• SESSION_STATUS

Bugs fixed:

• Security Fix: UDFs are supposed to be loadable only from the plugin directory, but this restriction was not being enforced.
(Bug#28341)

• Security Fix: Use of a view could allow a user to gain update privileges for tables in other databases. (Bug#27878,
CVE-2007-3782)

• MySQL Cluster: When an API node sent more than 1024 signals in a single batch, NDB would process only the first 1024 of these,
and then hang. (Bug#28443)

• MySQL Cluster: A delay in obtaining AUTO_INCREMENT IDs could lead to excess temporary errors. (Bug#28410)

• MySQL Cluster: Local checkpoint files relating to dropped NDB tables were not removed. (Bug#28348)

• MySQL Cluster: Multiple operations involving deletes followed by reads were not handled correctly.

MySQL Change History

2090

http://bugs.mysql.com/21483
http://bugs.mysql.com/20497
http://bugs.mysql.com/21714
http://bugs.mysql.com/22240
http://bugs.mysql.com/27998
http://bugs.mysql.com/27994
http://bugs.mysql.com/26241
http://bugs.mysql.com/26994
http://bugs.mysql.com/28341
http://bugs.mysql.com/27878
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3782
http://bugs.mysql.com/28443
http://bugs.mysql.com/28410
http://bugs.mysql.com/28348


Note

This issue could also affect MySQL Cluster Replication.

(Bug#28276)

• MySQL Cluster: Repeated insertion of data generated by mysqldump into NDB tables could eventually lead to failure of the
cluster. (Bug#27437)

• MySQL Cluster: Restarting a data node caused SQL nodes to log repeatedly and unnecessarily the status of the event buffer.

(This issue was known to occur in MySQL 5.1.16 and later only.) (Bug#27292)

• MySQL Cluster: ndb_mgmd failed silently when the cluster configuration file contained invalid [tcp] entries. (Bug#27207)

• MySQL Cluster: ndb_connectstring did not appear in the output of SHOW VARIABLES. (Bug#26675)

• MySQL Cluster: A failure to release internal resources following an error could lead to problems with single user mode.
(Bug#25818)

• MySQL Cluster: DDL operations were not supported on a partially started cluster. (Bug#24631)

• Disk Data: Extremely large inserts into Disk Data tables could lead to data node failure in some circumstances. (Bug#27942)

• Cluster API: In a multi-operation transaction, a delete operation followed by the insertion of an implicit NULL failed to overwrite
an existing value. (Bug#20535)

• Some ALTER TABLE statements that worked in MySQL 5.0 did not work in 5.1. (Bug#28415)

• mysql_upgrade failed if certain SQL modes were set. Now it sets the mode itself to avoid this problem. (Bug#28401)

• A query with a NOT IN subquery predicate could cause a crash when the left operand of the predicate evaluated to NULL.
(Bug#28375)

• A buffer overflow could occur when using DECIMAL columns on Windows operating systems. (Bug#28361)

• libmysql.dll could not be dynamically loaded on Windows. (Bug#28358)

• Grouping queries with correlated subqueries in WHERE conditions could produce incorrect results. (Bug#28337)

• EXPLAIN for a query on an empty table immediately after its creation could result in a server crash. (Bug#28272)

• Comparing a DATETIME column value with a user variable yielded incorrect results. (Bug#28261)

• Portability problems caused by use of isinf() were corrected. (Bug#28240)

• When dumping procedures, mysqldump --compact generated output that restored the session variable SQL_MODE without
first capturing it. When dumping routines, mysqldump --compact neither set nor retrieved the value of SQL_MODE.
(Bug#28223)

• Comparison of the string value of a date showed as unequal to CURTIME(). Similar behavior was exhibited for DATETIME values.
(Bug#28208)

• For InnoDB, in some rare cases the optimizer preferred a more expensive ref access to a less expensive range access.
(Bug#28189)

• Comparisons of DATE or DATETIME values for the IN() function could yield incorrect results. (Bug#28133)

• It was not possible to use the value –9223372036854775808 (that is, –MAXVALUE + 1) when specifying a LIST partition.
(Bug#28005)

• The server could hang for INSERT IGNORE ... ON DUPLICATE KEY UPDATE if an update failed. (Bug#28000)

• CAST() to DECIMAL did not check for overflow. (Bug#27957)

MySQL Change History

2091

http://bugs.mysql.com/28276
http://bugs.mysql.com/27437
http://bugs.mysql.com/27292
http://bugs.mysql.com/27207
http://bugs.mysql.com/26675
http://bugs.mysql.com/25818
http://bugs.mysql.com/24631
http://bugs.mysql.com/27942
http://bugs.mysql.com/20535
http://bugs.mysql.com/28415
http://bugs.mysql.com/28401
http://bugs.mysql.com/28375
http://bugs.mysql.com/28361
http://bugs.mysql.com/28358
http://bugs.mysql.com/28337
http://bugs.mysql.com/28272
http://bugs.mysql.com/28261
http://bugs.mysql.com/28240
http://bugs.mysql.com/28223
http://bugs.mysql.com/28208
http://bugs.mysql.com/28189
http://bugs.mysql.com/28133
http://bugs.mysql.com/28005
http://bugs.mysql.com/28000
http://bugs.mysql.com/27957


• The second execution of a prepared statement from a UNION query with ORDER BY RAND() caused the server to crash. This
problem could also occur when invoking a stored procedure containing such a query. (Bug#27937)

• Views ignored precision for CAST() operations. (Bug#27921)

• Changes to some system variables should invalidate statements in the query cache, but invalidation did not happen. (Bug#27792)

• LOAD DATA did not use CURRENT_TIMESTAMP as the default value for a TIMESTAMP column for which no value was provided.
(Bug#27670)

• Selecting MIN() on an indexed column that contained only NULL values caused NULL to be returned for other result columns.
(Bug#27573)

• Using a TEXT local variable in a stored routine in an expression such as SET var = SUBSTRING(var, 3) produced an incor-
rect result. (Bug#27415)

• The error message for error number 137 did not report which database/table combination reported the problem. (Bug#27173)

• A large filesort could result in a division by zero error and a server crash. (Bug#27119)

• Some InnoDB variables were missing from the output of mysqld --verbose --help. (Bug#26987)

• Flow control optimization in stored routines could cause exception handlers to never return or execute incorrect logic. (Bug#26977)

• Some test suite files were missing from some MySQL-test packages. (Bug#26609)

• Running CHECK TABLE concurrently with a SELECT, INSERT or other statement on Windows could corrupt a MyISAM table.
(Bug#25712)

• Concurrent execution of CREATE TABLE ... SELECT and other statements involving the target table suffered from various
race conditions, some of which might have led to deadlocks. (Bug#24738)

• An attempt to execute CREATE TABLE ... SELECT when a temporary table with the same name already existed led to the in-
sertion of data into the temporary table and creation of an empty non-temporary table. (Bug#24508)

• A statement of the form CREATE TABLE IF NOT EXISTS t1 SELECT f1() AS i failed with a deadlock error if the
stored function f1() referred to a table with the same name as the to-be-created table. Now it correctly produces a message that the
table already exists. (Bug#22427)

• Quoted labels in stored routines were mishandled, rendering the routines unusable. (Bug#21513)

• CURDATE() is less than NOW(), either when comparing CURDATE() directly (CURDATE() < NOW() is true) or when casting
CURDATE() to DATE (CAST(CURDATE() AS DATE) < NOW() is true). However, storing CURDATE() in a DATE column
and comparing col_name < NOW() incorrectly yielded false. This is fixed by comparing a DATE column as DATETIME for
comparisons to a DATETIME constant. (Bug#21103)

• CREATE TABLE IF NOT EXISTS ... SELECT caused a server crash if the target table already existed and had a BEFORE
INSERT trigger. (Bug#20903)

• Deadlock occurred for attempts to execute CREATE TABLE IF NOT EXISTS ... SELECT when LOCK TABLES had been
used to acquire a read lock on the target table. (Bug#20662, Bug#15522)

• For dates with 4-digit year parts less than 200, an incorrect implicit conversion to add a century was applied for date arithmetic per-
formed with DATE_ADD(), DATE_SUB(), + INTERVAL, and - INTERVAL. (For example, DATE_ADD('0050-01-01
00:00:00', INTERVAL 0 SECOND) became '2050-01-01 00:00:00'.) (Bug#18997)

• Changing the size of a key buffer that is under heavy use could cause a server crash. The fix partially removes the limitation that
LOAD INDEX INTO CACHE fails unless all indexes in a table have the same block size. Now the statement fails only if IGNORE
LEAVES is specified. (Bug#17332)

C.1.11. Changes in MySQL 5.1.19 Carrier Grade Edition
This section contains change history information for MySQL Cluster 5.1 Carrier Grade Edition releases based on MySQL 5.1.19.

MySQL Change History

2092

http://bugs.mysql.com/27937
http://bugs.mysql.com/27921
http://bugs.mysql.com/27792
http://bugs.mysql.com/27670
http://bugs.mysql.com/27573
http://bugs.mysql.com/27415
http://bugs.mysql.com/27173
http://bugs.mysql.com/27119
http://bugs.mysql.com/26987
http://bugs.mysql.com/26977
http://bugs.mysql.com/26609
http://bugs.mysql.com/25712
http://bugs.mysql.com/24738
http://bugs.mysql.com/24508
http://bugs.mysql.com/22427
http://bugs.mysql.com/21513
http://bugs.mysql.com/21103
http://bugs.mysql.com/20903
http://bugs.mysql.com/20662
http://bugs.mysql.com/15522
http://bugs.mysql.com/18997
http://bugs.mysql.com/17332


C.1.11.1. Changes in MySQL 5.1.19-ndb-6.3.1 (04 July 2007)

This is a new Beta development release, fixing a recently discovered bug.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.19-ndb-6.3.0, as well as all bugfixes and feature
changes which were added in the mainline 5.1.19 release; information about these can be found in Section C.1.10, “Changes in MySQL
5.1.19 (25 May 2007)”.

Bugs fixed:

• Batching of transactions was not handled correctly in some cases. (Bug#29525)

C.1.11.2. Changes in MySQL 5.1.19-ndb-6.3.0 (02 July 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.2 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), and MySQL 5.1.19-ndb-6.2.3 (see Section C.1.11.4, “Changes in
MySQL 5.1.19-ndb-6.2.3 (02 July 2007)”), as well as all bugfixes and feature changes which were added in the mainline 5.1.19 release;
information about these can be found in Section C.1.10, “Changes in MySQL 5.1.19 (25 May 2007)”.

Functionality added or changed:

• MySQL Cluster: Reporting functionality has been significantly enhanced in this release:

• A new configuration parameter BackupReportFrequency now makes it possible to cause the management client to provide
status reports at regular intervals as well as for such reports to be written to the cluster log (depending on cluster event logging
levels). See Section 17.4.4.5, “Defining Data Nodes”, for more information about this parameter.

• A new REPORT command has been added in the cluster management client. REPORT BackupStatus allows you to obtain a
backup status report at any time during a backup. REPORT MemoryUsage reports the current data memory and index memory
used by each data node. For more about the REPORT command, see Section 17.8.2, “Commands in the MySQL Cluster Man-
agement Client”.

• ndb_restore now provides running reports of its progress when restoring a backup. In addition, a complete report status re-
port on the backup is written to the cluster log.

• MySQL Cluster: A new configuration parameter ODirect causes NDB to attempt using O_DIRECT writes for LCP, backups, and
redo logs, often lowering CPU usage.

• Cluster Replication: This release implements conflict resolution, which makes it possible to determine on a per-table basis whether
or not an update to a given row on the master should be applied on the slave. For more information, see Section 17.12.10, “MySQL
Cluster Replication Conflict Resolution”.

C.1.11.3. Changes in MySQL 5.1.19-ndb-6.2.4 (04 July 2007)

This is a new Beta development release, fixing recently discovered bugs.

MySQL Change History

2093

http://bugs.mysql.com/
http://bugs.mysql.com/29525
http://bugs.mysql.com/


Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1, MySQL 5.1.18-ndb-6.2.3 (see Sec-
tion C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), and MySQL 5.1.19-ndb-6.2.4, as well as all bugfixes and feature
changes which were added in the mainline 5.1.19 release; information about these can be found in Section C.1.10, “Changes in MySQL
5.1.19 (25 May 2007)”. Also included are most (but not all) bugfixes made in the MCCGE 6.1.x series through MySQL
5.1.15-ndb-6.1.16.

Bugs fixed:

• MySQL Cluster: When restarting a data node, queries could hang during that node's start phase 5, and continue only after the node
had entered phase 6. (Bug#29364)

• MySQL Cluster: Replica redo logs were inconsistently handled during a system restart. (Bug#29354)

• Disk Data: Performing Disk Data schema operations during a node restart could cause forced shutdowns of other data nodes.
(Bug#29501)

• Disk Data: Disk data meta-information that existed in ndbd might not be visible to mysqld. (Bug#28720)

• Disk Data: The number of free extents was incorrectly reported for some tablespaces. (Bug#28642)

• Batching of transactions was not handled correctly in some cases. (Bug#29525)

C.1.11.4. Changes in MySQL 5.1.19-ndb-6.2.3 (02 July 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.1 and MySQL 5.1.18-ndb-6.2.2 (see
Section C.1.13, “Changes in MySQL 5.1.18 Carrier Grade Edition”), as well as all bugfixes and feature changes which were added in
the mainline 5.1.19 release; information about these can be found in Section C.1.10, “Changes in MySQL 5.1.19 (25 May 2007)”. Also
included are most (but not all) bugfixes made in the MCCGE 6.1.x series through MySQL 5.1.15-ndb-6.1.16.

Bugs fixed:

• MySQL Cluster: When restarting a data node, queries could hang during that node's start phase 5, and continue only after the node
had entered phase 6. (Bug#29364)

• MySQL Cluster: Replica redo logs were inconsistently handled during a system restart. (Bug#29354)

• Disk Data: Performing Disk Data schema operations during a node restart could cause forced shutdowns of other data nodes.
(Bug#29501)

• Disk Data: Disk data meta-information that existed in ndbd might not be visible to mysqld. (Bug#28720)

• Disk Data: The number of free extents was incorrectly reported for some tablespaces. (Bug#28642)

• Batching of transactions was not handled correctly in some cases. (Bug#29525)

C.1.12. Changes in MySQL 5.1.18 (08 May 2007)

MySQL Change History

2094

http://bugs.mysql.com/
http://bugs.mysql.com/29364
http://bugs.mysql.com/29354
http://bugs.mysql.com/29501
http://bugs.mysql.com/28720
http://bugs.mysql.com/28642
http://bugs.mysql.com/29525
http://bugs.mysql.com/
http://bugs.mysql.com/29364
http://bugs.mysql.com/29354
http://bugs.mysql.com/29501
http://bugs.mysql.com/28720
http://bugs.mysql.com/28642
http://bugs.mysql.com/29525


This is a new Beta development release, fixing recently discovered bugs.

Note

This Beta release, as any other pre-production release, should not be installed on production level systems or systems with
critical data. It is good practice to back up your data before installing any new version of software. Although MySQL has
worked very hard to ensure a high level of quality, protect your data by making a backup as you would for any software
beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the individual bugs fixed in
this version.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• Incompatible Change: MySQL Cluster: The internal specifications for columns in NDB tables has changed to allow compatibility
with future MySQL Cluster releases that are expected to implement online adding and dropping of columns. This change is not
backward compatible with earlier MySQL versions.

See the related note in Section 17.6.2, “Cluster Upgrade and Downgrade Compatibility”, for important information prior to upgrad-
ing a MySQL Cluster to MySQL 5.1.18 or later from MySQL 5.1.17 or earlier.

See also Bug#28205

• Cluster Replication: Incompatible Change: The definition of the mysql.ndb_apply_status table has changed such that an
online upgrade is not possible from MySQL 5.1.17 or earlier for a replication slave cluster; you must shut down all SQL nodes as
part of the upgrade procedure. See Section 17.6.2, “Cluster Upgrade and Downgrade Compatibility” before upgrading for details.

For more information about the changes to mysql.ndb_apply_status see Section 17.12.4, “Cluster Replication Schema and
Tables”.

• Incompatible Change: The INFORMATION_SCHEMA.EVENTS and mysql.event tables have been changed to facilitate replic-
ation of events. When upgrading to MySQL 5.1.18, you must run mysql_upgrade prior to working with events. Until you have
done so, any statement relating to the Event Scheduler or these tables (including SHOW EVENTS) will fail with the errors EXPECTED
FIELD STATUS AT POSITION 12 TO HAVE TYPE ENUM ('ENABLED','SLAVESIDE_DISABLED','DISABLED'), FOUND

ENUM('ENABLED','DISABLED') and TABLE MYSQL.EVENT IS DAMAGED. CAN NOT OPEN.

These changes were made as part of fixes for the following bugs:

• The effects of scheduled events were not replicated (that is, binary logging of scheduled events did not work).

• Effects of scheduled events on a replication master were both replicated and executed on the slave, causing double execution of
events.

• CREATE FUNCTION statements and their effects were not replicated correctly.

For more information, see Section 16.3.1.5, “Replication of Invoked Features”. (Bug#17857, Bug#16421, Bug#20384, Bug#17671)

• MySQL Cluster: The behavior of the ndb_restore utility has been changed as follows:

• It is now possible to restore selected databases or tables using ndb_restore.

• Several options have been added for use with ndb_restore --print_data to facilitate the creation of structured data
dump files. These options can be used to make dumps made using ndb_restore more like those produced by mysqldump.

For details of these changes, see Section 17.10.3, “ndb_restore — Restore a Cluster Backup”. (Bug#26899, Bug#26900)

• MySQL Cluster: The following changes were made in the ndb_size.pl utility:

• When ndb_size.pl calculates a value for a given configuration parameter that is less than the default value, it now suggests
the default value instead.

• The dependency on HTML::Template was removed.
(Bug#24227, Bug#24228)

MySQL Change History

2095

http://bugs.mysql.com/
http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise
http://bugs.mysql.com/28205
http://bugs.mysql.com/17857
http://bugs.mysql.com/16421
http://bugs.mysql.com/20384
http://bugs.mysql.com/17671
http://bugs.mysql.com/26899
http://bugs.mysql.com/26900
http://bugs.mysql.com/24227
http://bugs.mysql.com/24228


• Cluster Replication: Some circular replication setups are now supported for MySQL Cluster. See Section 17.12.3, “Known Issues
in MySQL Cluster Replication”, for detailed information. (Bug#17095, Bug#25688)

• Cluster API: The MGM API now supports explicit setting of network timeouts using the ndb_mgm_set_timeout() function.
A utility function ndb_mgm_number_of_mgmd_in_connect_string() is also implemented to facilitate calculation of
timeouts based on the number of management servers in the cluster.

For more information, see ndb_mgm_set_timeout(), and ndb_mgm_number_of_mgmd_in_connect_string().

• Prior to this release, when DATE values were compared with DATETIME values the time portion of the DATETIME value was ig-
nored. Now a DATE value is coerced to the DATETIME type by adding the time portion as “00:00:00”. To mimic the old behavior
use the CAST() function in the following way: SELECT date_field = CAST(NOW() as DATE);. (Bug#28929)

• mysqld_multi now understands the --no-defaults, --defaults-file, and --defaults-extra-file options.
The --config-file option is deprecated; if given, it is treated like --defaults-extra-file. (Bug#27390)

• If a set function S with an outer reference S(outer_ref) cannot be aggregated in the outer query against which the outer refer-
ence has been resolved, MySQL interprets S(outer_ref) the same way that it would interpret S(const). However, standard
SQL requires throwing an error in this situation. An error now is thrown for such queries if the ANSI SQL mode is enabled.
(Bug#27348)

• Several additional data types are supported for columns in INFORMATION_SCHEMA tables: DATE, TIME, BLOB, FLOAT, and all
integer types. (Bug#27047)

• The output of mysql --xml and mysqldump --xml now includes a valid XML namespace. (Bug#25946)

• If you use SSL for a client connection, you can tell the client not to authenticate the server certificate by specifying neither -
-ssl-ca nor --ssl-capath. The server still verifies the client according to any applicable requirements established via GRANT
statements for the client, and it still uses any --ssl-ca/--ssl-capath values that were passed to server at startup time.
(Bug#25309)

• Added a MASTER_SSL_VERIFY_SERVER_CERT option for the CHANGE MASTER statement, and a Mas-
ter_SSL_Verify_Server_Cert output column to the SHOW SLAVE STATUS statement. The option value also is written to
the master.info file. (Bug#19991)

• Added the --auto-generate-sql-add-auto-increment, --auto-generate-sql-execute-number, -
-auto-generate-sql-guid-primary, --auto-generate-sql-secondary-indexes, -
-auto-generate-sql-unique-query-number, --auto-generate-sql-unique-write-number, -
-post-query,, and --pre-query, options for mysqlslap. Removed the --lock-directory, --slave, and -
-use-threads options.

•
Important

When upgrading to MySQL 5.1.18 or later from a previous MySQL version and scheduled events have been used, the up-
grade utilities do not accomodate changes in event-related system tables. As a workaround, you can dump events before
the upgrade, then restore them from the dump afterwards. This issue was fixed in MySQL 5.1.20.

See also Bug#28521

• Added --write-binlog option for mysqlcheck. This option is enabled by default, but can be given as -
-skip-write-binlog to cause ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements generated by
mysqlcheck not to be written to the binary log. (Bug#26262)

• New command-line options: To alleviate ambiguities in variable names, all variables related to plugins can be specified using a
plugin part in the name. For example, every time where we used to have innodb in the command-line options, you can now
write plugin-innodb:

--skip-plugin-innodb
--plugin-innodb-buffer-pool-size=#

Furthermore, this is the preferred syntax. It helps to avoid ambiguities when a plugin, say, wait, has an option called timeout. -
-wait-timeout will still set a system variable, but --plugin-wait-timeout will set the plugin variable. Also, there is a
new command-line option --plugin-load to install or load plugins at initialization time without using the mysql.plugin ta-
ble.

MySQL Change History

2096

http://bugs.mysql.com/17095
http://bugs.mysql.com/25688
http://dev.mysql.com/doc/ndbapi/en/ndb-mgm-set-timeout.html
http://dev.mysql.com/doc/ndbapi/en/ndb-mgm-number-of-mgmd-in-connect-string.html
http://bugs.mysql.com/28929
http://bugs.mysql.com/27390
http://bugs.mysql.com/27348
http://bugs.mysql.com/27047
http://bugs.mysql.com/25946
http://bugs.mysql.com/25309
http://bugs.mysql.com/19991
http://bugs.mysql.com/28521
http://bugs.mysql.com/26262


• The plugin interface and its handling of system variables was changed. Command-line options such as --skip-innodb now
cause an error if InnoDB is not built-in or plugin-loaded. You should use --loose-skip-innodb if you do not want any error
even if InnoDB is not available. The --loose prefix modifier should be used for all command-line options where you are uncer-
tain whether the plugin exists and when you want the operation to proceed even if the option is necessarily ignored due to the ab-
sence of the plugin. (For a desecription of how --loose works, see Section 4.2.2.1, “Using Options on the Command Line”.)

• Storage engine plugins may now be uninstalled at run time. However, a plugin is not actually uninstalled until after its reference
count drops to zero. The default_storage_engine system variable consumes a reference count, so uninstalling will not com-
plete until said reference is removed.

• The mysql_create_system_tables script was removed because mysql_install_db no longer uses it in MySQL 5.1.

• Renamed the old_mode system variable to old.

Bugs fixed:

• Security Fix: The requirement of the DROP privilege for RENAME TABLE was not enforced. (Bug#27515, CVE-2007-2691)

• Security Fix: If a stored routine was declared using SQL SECURITY INVOKER, a user who invoked the routine could gain priv-
ileges. (Bug#27337, CVE-2007-2692)

• Security Fix: A user with only the ALTER privilege on a partitioned table could obtain information about the table that should re-
quire the SELECT privilege. (Bug#23675, CVE-2007-2693)

• MySQL Cluster: The cluster waited 30 seconds instead of 30 milliseconds before reading table statistics. (Bug#28093)

• MySQL Cluster: Under certain rare circumstances, ndbd could get caught in an infinite loop when one transaction took a read lock
and then a second transaction attempted to obtain a write lock on the same tuple in the lock queue. (Bug#28073)

• MySQL Cluster: Under some circumstances, a node restart could fail to update the Global Checkpoint Index (GCI). (Bug#28023)

• MySQL Cluster: INSERT IGNORE wrongly ignored NULL values in unique indexes. (Bug#27980)

• MySQL Cluster: The name of the month “March” was given incorrectly in the cluster error log. (Bug#27926)

• MySQL Cluster: NDB tables having MEDIUMINT AUTO_INCREMENT columns were not restored correctly by ndb_restore,
causing spurious duplicate key errors. This issue did not affect TINYINT, INT, or BIGINT columns with AUTO_INCREMENT.
(Bug#27775)

• MySQL Cluster: NDB tables with indexes whose names contained space characters were not restored correctly by ndb_restore
(the index names were truncated). (Bug#27758)

• MySQL Cluster: It was not possible to add a unique index to an NDB table while in single user mode. (Bug#27710)

• MySQL Cluster: Under certain rare circumstances performing a DROP TABLE or TRUNCATE on an NDB table could cause a node
failure or forced cluster shutdown. (Bug#27581)

• MySQL Cluster: Memory usage of a mysqld process grew even while idle. (Bug#27560)

• MySQL Cluster: Using more than 16GB for DataMemory caused problems with variable-size columns. (Bug#27512)

• MySQL Cluster: A data node failing while another data node was restarting could leave the cluster in an inconsistent state. In cer-
tain rare cases, this could lead to a race condition and the eventual forced shutdown of the cluster. (Bug#27466)

• MySQL Cluster: When using the MemReportFrequency configuration parameter to generate periodic reports of memory usage
in the cluster log, DataMemory usage was not always reported for all data nodes. (Bug#27444)

• MySQL Cluster: (Replication): An UPDATE on the master became a DELETE on slaves. (Bug#27378)

• MySQL Cluster: When trying to create an NDB table after the server was started with --ndbcluster but without -
-ndb-connectstring, mysqld produced a memory allocation error. (Bug#27359)

• MySQL Cluster: Performing a delete followed by an insert during a local checkpoint could cause a ROWID ALREADY ALLOCATED er-
ror. (Bug#27205)

MySQL Change History

2097

http://bugs.mysql.com/27515
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2691
http://bugs.mysql.com/27337
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2692
http://bugs.mysql.com/23675
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2693
http://bugs.mysql.com/28093
http://bugs.mysql.com/28073
http://bugs.mysql.com/28023
http://bugs.mysql.com/27980
http://bugs.mysql.com/27926
http://bugs.mysql.com/27775
http://bugs.mysql.com/27758
http://bugs.mysql.com/27710
http://bugs.mysql.com/27581
http://bugs.mysql.com/27560
http://bugs.mysql.com/27512
http://bugs.mysql.com/27466
http://bugs.mysql.com/27444
http://bugs.mysql.com/27378
http://bugs.mysql.com/27359
http://bugs.mysql.com/27205


• MySQL Cluster: In an NDB table having a TIMESTAMP column using DEFAULT CURRENT_TIMESTAMP, that column would
assume a random value when another column in the same row was updated. (Bug#27127)

• MySQL Cluster: Error messages displayed when running in single user mode were inconsistent. (Bug#27021)

• MySQL Cluster: On Solaris, the value of an NDB table column declared as BIT(33) was always displayed as 0. (Bug#26986)

• MySQL Cluster: Performing ALTER TABLE ... ENGINE=MERGE on an NDB table caused mysqld to crash. (Bug#26898)

• MySQL Cluster: The Cluster table handler did not set bits in null bytes correctly. (Bug#26591)

• MySQL Cluster: In some cases, AFTER UPDATE and AFTER DELETE triggers on NDB tables that referenced subject table did
not see the results of operation which caused invocation of the trigger, but rather saw the row as it was prior to the update or delete
operation.

This was most noticeable when an update operation used a subquery to obtain the rows to be updated. An example would be UP-
DATE tbl1 SET col2 = val1 WHERE tbl1.col1 IN (SELECT col3 FROM tbl2 WHERE c4 = val2) where
there was an AFTER UPDATE trigger on table tbl1. In such cases, the trigger would fail to execute.

The problem occurred because the actual update or delete operations were deferred to be able to perform them later as one batch.
The fix for this bug solves the problem by disabling this optimization for a given update or delete if the table has an AFTER trigger
defined for this operation. (Bug#26242)

• MySQL Cluster: Joins on multiple tables containing BLOB columns could cause data nodes run out of memory, and to crash with
the error NDBOBJECTIDMAP::EXPAND UNABLE TO EXPAND. (Bug#26176)

• MySQL Cluster: START BACKUP NOWAIT caused a spurious OUT OF BACKUP RECORD error in the management client (START
BACKUP and START BACKUP WAIT STARTED performed normally). (Bug#25446)

• MySQL Cluster: Adding of indexes online failed for NDB tables having BLOB or TEXT columns. (Bug#25431)

• MySQL Cluster: (Disk Data): Creating an excessive number of Disk Data tables (1000 or more) could cause data nodes to fail.
(Bug#24951)

• MySQL Cluster: When a cluster data node suffered a “hard” failure (such as a power failure or loss of a network connection) TCP
sockets to the missing node were maintained indefinitely. Now socket-based transporters check for a response and terminate the
socket if there is no activity on the socket after 2 hours. (Bug#24793)

• MySQL Cluster: (Disk Data): Creating an excessive number of data files for a single tablespace caused data nodes to crash.
(Bug#24521)

• MySQL Cluster: The ndb_resize.pl utility did not calculate memory usage for indexes correctly. (Bug#24229)

• MySQL Cluster: While a data node was stopped, dropping a table then creating an index on a different table caused that node to
fail during restart. This was due to the re-use of the dropped table's internal ID for the index without verifying that the index now re-
ferred to a different database object. (Bug#21755)

• MySQL Cluster: (Disk Data): It was possible to drop the last remaining datafile in a tablespace (using an ALTER TABLESPACE
statement), even though there was still an empty table using the tablespace.

It should be noted that the datafile could be not dropped if the table still contained any rows, so this bug involved no loss of data.
(Bug#21699)

• MySQL Cluster: When trying to create tables on an SQL node not connected to the cluster, a misleading error message TABLE
'TBL_NAME' ALREADY EXISTS was generated. The error now generated is COULD NOT CONNECT TO STORAGE ENGINE.
(Bug#18676)

• Replication: Some queries that updated multiple tables were not backed up correctly. (Bug#27748)

• Replication: Out-of-memory errors were not reported. Now they are written to the error log. (Bug#26844)

• Cluster Replication: Disk Data: An issue with replication of Disk Data tables could in some cases lead to node failure.
(Bug#28161)

• Disk Data: Changes to a Disk Data table made as part of a transaction could not be seen by the client performing the changes until
the transaction had been committed. (Bug#27757)

MySQL Change History

2098

http://bugs.mysql.com/27127
http://bugs.mysql.com/27021
http://bugs.mysql.com/26986
http://bugs.mysql.com/26898
http://bugs.mysql.com/26591
http://bugs.mysql.com/26242
http://bugs.mysql.com/26176
http://bugs.mysql.com/25446
http://bugs.mysql.com/25431
http://bugs.mysql.com/24951
http://bugs.mysql.com/24793
http://bugs.mysql.com/24521
http://bugs.mysql.com/24229
http://bugs.mysql.com/21755
http://bugs.mysql.com/21699
http://bugs.mysql.com/18676
http://bugs.mysql.com/27748
http://bugs.mysql.com/26844
http://bugs.mysql.com/28161
http://bugs.mysql.com/27757


• Disk Data: When in single user mode, it was possible to create log file groups and tablespaces from any SQL node connected to the
cluster. (Bug#27712)

• Disk Data: CREATE TABLE ... LIKE disk_data_table created an in-memory NDB table. (Bug#25875)

• Disk Data: When restarting a data node following the creation of a large number of Disk Data objects (approximately 200 such ob-
jects), the cluster could not assign a node ID to the restarting node. (Bug#25741)

• Disk Data: Changing a column specification or issuing a TRUNCATE statement on a Disk Data table caused the table to become an
in-memory table.

This fix supersedes an incomplete fix that was made for this issue in MySQL 5.1.15. (Bug#24667, Bug#25296)

• Disk Data: Setting the value of the UNDO BUFFER SIZE to 64K or less in a CREATE LOGFILE GROUP statement led to failure
of cluster data nodes. (Bug#24560)

• Cluster Replication: It was possible for API nodes to begin interacting with the cluster subscription manager before they were fully
connected to the cluster. (Bug#27728)

• Cluster Replication: Under very high loads, checkpoints could be read or written with checkpoint indexes out of order.
(Bug#27651)

• Cluster Replication: Trying to replicate a large number of frequent updates with a relatively small relay log (max-re-
lay-log-size set to 1M or less) could cause the slave to crash. (Bug#27529)

• Cluster Replication: Setting SQL_LOG_BIN to zero did not disable binary logging.

This issue affected only the NDB storage engine. (Bug#27076)

• Cluster Replication: An SQL node acting as a replication master server could be a single point of failure; that is, if it failed, the
replication slave had no way of knowing this, which could result in a mismatch of data between the master and the slave.
(Bug#21494)

• Cluster API: For BLOB reads on operations with lock mode LM_CommittedRead, the lock mode was not upgraded to LM_Read
before the state of the BLOB had already been calculated. The NDB API methods affected by this problem included the following:

• NdbOperation::readTuple()

• NdbScanOperation::readTuples()

• NdbIndexScanOperation::readTuples()
(Bug#27320)

• Cluster API: Using NdbBlob::writeData() to write data in the middle of an existing blob value (that is, updating the value)
could overwrite some data past the end of the data to be changed. (Bug#27018)

• A performance degradation was observed for outer join queries to which a not-exists optimization was applied. (Bug#28188)

• SELECT * INTO OUTFILE ... FROM INFORMATION_SCHEMA.SCHEMATA failed with an ACCESS DENIED error, even
for a user who had the FILE privilege. (Bug#28181)

• Early NULL-filtering optimization did not work for eq_ref table access. (Bug#27939)

• Non-grouped columns were allowed by * in ONLY_FULL_GROUP_BY SQL mode. (Bug#27874)

• Some equi-joins containing a WHERE clause that included a NOT IN subquery caused a server crash. (Bug#27870)

• An error message suggested the use of mysql_fix_privilege_tables after an upgrade, but the recommended program is
now mysql_upgrade. (Bug#27818)

• Debug builds on Windows generated false alarms about uninitialized variables with some Visual Studio runtime libraries.
(Bug#27811)

• Certain queries that used uncorrelated scalar subqueries caused EXPLAIN to crash. (Bug#27807)

• Performing a UNION on two views that had ORDER BY clauses resulted in an Unknown column error. (Bug#27786)

MySQL Change History

2099

http://bugs.mysql.com/27712
http://bugs.mysql.com/25875
http://bugs.mysql.com/25741
http://bugs.mysql.com/24667
http://bugs.mysql.com/25296
http://bugs.mysql.com/24560
http://bugs.mysql.com/27728
http://bugs.mysql.com/27651
http://bugs.mysql.com/27529
http://bugs.mysql.com/27076
http://bugs.mysql.com/21494
http://bugs.mysql.com/27320
http://bugs.mysql.com/27018
http://bugs.mysql.com/28188
http://bugs.mysql.com/28181
http://bugs.mysql.com/27939
http://bugs.mysql.com/27874
http://bugs.mysql.com/27870
http://bugs.mysql.com/27818
http://bugs.mysql.com/27811
http://bugs.mysql.com/27807
http://bugs.mysql.com/27786


• mysql_install_db is supposed to detect existing system tables and create only those that do not exist. Instead, it was exiting
with an error if tables already existed. (Bug#27783)

• The LEAST() and GREATEST() functions compared DATE and DATETIME values as strings, which in some cases could lead to
an incorrect result. (Bug#27759)

• An INSERT followed by a delete DELETE on the same NDB table caused a memory leak. (Bug#27756)

This regression was introduced by Bug#20612

• A memory leak in the event scheduler that was uncovered by Valgrind was fixed. (Bug#27733)

• mysqld did not check the length of option values and could crash with a buffer overflow for long values. (Bug#27715)

• Comparisons using row constructors could fail for rows containing NULL values. (Bug#27704)

• mysqldump could not connect using SSL. (Bug#27669)

• SELECT DISTINCT could return incorrect results if the select list contained duplicated columns. (Bug#27659)

• On Linux, the server could not create temporary tables if lower_case_table_names was set to 1 and the value of tmpdir
was a directory name containing any uppercase letters. (Bug#27653)

• For InnoDB tables, a multiple-row INSERT of the form INSERT INTO t (id...) VALUES (NULL...) ON DUPLIC-
ATE KEY UPDATE id=VALUES(id), where id is an AUTO_INCREMENT column, could cause ERROR 1062 (23000):
Duplicate entry... errors or lost rows. (Bug#27650)

• When MySQL logged slow query information to a CSV table, it used an incorrect formula to calculate the query_time and
lock_time values. (Bug#27638)

• The XML output representing an empty result was an empty string rather than an empty <resultset/> element. (Bug#27608)

• Comparison of a DATE with a DATETIME did not treat the DATE as having a time part of 00:00:00. (Bug#27590)

See also Bug#32198

• With NO_AUTO_VALUE_ON_ZERO SQL mode enabled, LOAD DATA operations could assign incorrect AUTO_INCREMENT val-
ues. (Bug#27586)

• Group relay log rotation updated only the log position and not the name, causing the slave to stop. (Bug#27583)

• Incorrect results could be returned for some queries that contained a select list expression with IN or BETWEEN together with an
ORDER BY or GROUP BY on the same expression using NOT IN or NOT BETWEEN. (Bug#27532)

• The fix for Bug#17212 provided correct sort order for misordered output of certain queries, but caused significant overall query per-
formance degradation. (Results were correct (good), but returned much more slowly (bad).) The fix also affected performance of
queries for which results were correct. The performance degradation has been addressed. (Bug#27531)

• The CRC32() function returns an unsigned integer, but the metadata was signed, which could cause certain queries to return incor-
rect results. (For example, queries that selected a CRC32() value and used that value in the GROUP BY clause.) (Bug#27530)

• An interaction between SHOW TABLE STATUS and other concurrent statements that modify the table could result in a divide-
by-zero error and a server crash. (Bug#27516)

• Evaluation of an IN() predicate containing a decimal-valued argument caused a server crash. (Bug#27513, Bug#27362, CVE-
2007-2583)

• A race condition between DROP TABLE and SHOW TABLE STATUS could cause the latter to display incorrect information.
(Bug#27499)

• In out-of-memory conditions, the server might crash or otherwise not report an error to the Windows event log. (Bug#27490)

• Passing nested row expressions with different structures to an IN predicate caused a server crash. (Bug#27484)

• The decimal.h header file was incorrectly omitted from binary distributions. (Bug#27456)

MySQL Change History

2100

http://bugs.mysql.com/27783
http://bugs.mysql.com/27759
http://bugs.mysql.com/27756
http://bugs.mysql.com/20612
http://bugs.mysql.com/27733
http://bugs.mysql.com/27715
http://bugs.mysql.com/27704
http://bugs.mysql.com/27669
http://bugs.mysql.com/27659
http://bugs.mysql.com/27653
http://bugs.mysql.com/27650
http://bugs.mysql.com/27638
http://bugs.mysql.com/27608
http://bugs.mysql.com/27590
http://bugs.mysql.com/32198
http://bugs.mysql.com/27586
http://bugs.mysql.com/27583
http://bugs.mysql.com/27532
http://bugs.mysql.com/17212
http://bugs.mysql.com/27531
http://bugs.mysql.com/27530
http://bugs.mysql.com/27516
http://bugs.mysql.com/27513
http://bugs.mysql.com/27362
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2583
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2583
http://bugs.mysql.com/27499
http://bugs.mysql.com/27490
http://bugs.mysql.com/27484
http://bugs.mysql.com/27456


• With innodb_file_per_table enabled, attempting to rename an InnoDB table to a non-existent database caused the server
to exit. (Bug#27381)

• Nested aggregate functions could be improperly evaluated. (Bug#27363)

• A stored function invocation in the WHERE clause was treated as a constant. (Bug#27354)

• For the INFORMATION_SCHEMA SESSION_STATUS and GLOBAL_STATUS tables, some status values were incorrectly conver-
ted to the data type of the VARIABLE_VALUE column. (Bug#27327)

• Failure to allocate memory associated with transaction_prealloc_size could cause a server crash. (Bug#27322)

• A subquery could get incorrect values for references to outer query columns when it contained aggregate functions that were ag-
gregated in outer context. (Bug#27321)

• The server did not shut down cleanly. (Bug#27310)

• In a view, a column that was defined using a GEOMETRY function was treated as having the LONGBLOB data type rather than the
GEOMETRY type. (Bug#27300)

• mysqldump crashed if it got no data from SHOW CREATE PROCEDURE (for example, when trying to dump a routine defined by
a different user and for which the current user had no privileges). Now it prints a comment to indicate the problem. It also returns an
error, or continues if the --force option is given. (Bug#27293)

• Queries containing subqueries with COUNT(*) aggregated in an outer context returned incorrect results. This happened only if the
subquery did not contain any references to outer columns. (Bug#27257)

• Use of an aggregate function from an outer context as an argument to GROUP_CONCAT() caused a server crash. (Bug#27229)

• String truncation upon insertion into an integer or year column did not generate a warning (or an error in strict mode). (Bug#27176,
Bug#26359)

• mysqlbinlog produced different output with the -R option than without it. (Bug#27171)

• Storing NULL values in spatial fields caused excessive memory allocation and crashes on some systems. (Bug#27164)

• Row equalities in WHERE clauses could cause memory corruption. (Bug#27154)

• ON DUPLICATE KEY UPDATE failed for a table partitioned by KEY on a primary key VARCHAR column. (Bug#27123)

• GROUP BY on a ucs2 column caused a server crash when there was at least one empty string in the column. (Bug#27079)

• Duplicate members in SET definitions were not detected. Now they result in a warning; if strict SQL mode is enabled, an error oc-
curs instead. (Bug#27069)

• For FEDERATED tables, SHOW CREATE TABLE could fail when the table name was longer than the connection name.
(Bug#27036)

• mysql_install_db could terminate with an error after failing to determine that a system table already existed. (Bug#27022)

• In a MEMORY table, using a BTREE index to scan for updatable rows could lead to an infinite loop. (Bug#26996)

• make_win_bin_dist neglected to copy some required MyISAM table files. (Bug#26922)

• Improved out-of-memory detection when sending logs from a master server to slaves, and log a message when allocation fails.
(Bug#26837)

• For InnoDB tables having a clustered index that began with a CHAR or VARCHAR column, deleting a record and then inserting an-
other before the deleted record was purged could result in table corruption. (Bug#26835)

• mysqldump would not dump a view for which the DEFINER no longer exists. (Bug#26817)

• Duplicates were not properly identified among (potentially) long strings used as arguments for GROUP_CONCAT(DISTINCT).
(Bug#26815)

• ALTER VIEW requires the CREATE VIEW and DROP privileges for the view. However, if the view was created by another user,

MySQL Change History

2101

http://bugs.mysql.com/27381
http://bugs.mysql.com/27363
http://bugs.mysql.com/27354
http://bugs.mysql.com/27327
http://bugs.mysql.com/27322
http://bugs.mysql.com/27321
http://bugs.mysql.com/27310
http://bugs.mysql.com/27300
http://bugs.mysql.com/27293
http://bugs.mysql.com/27257
http://bugs.mysql.com/27229
http://bugs.mysql.com/27176
http://bugs.mysql.com/26359
http://bugs.mysql.com/27171
http://bugs.mysql.com/27164
http://bugs.mysql.com/27154
http://bugs.mysql.com/27123
http://bugs.mysql.com/27079
http://bugs.mysql.com/27069
http://bugs.mysql.com/27036
http://bugs.mysql.com/27022
http://bugs.mysql.com/26996
http://bugs.mysql.com/26922
http://bugs.mysql.com/26837
http://bugs.mysql.com/26835
http://bugs.mysql.com/26817
http://bugs.mysql.com/26815


the server erroneously required the SUPER privilege. (Bug#26813)

• If the name of a table given to myisamchk -rq was a packed table and the name included the .MYI extension, myisamchk in-
correctly created a file with a .MYI.MYI extension. (Bug#26782)

• Creating a temporary table with InnoDB when using the one-file-per-table setting, and when the host filesystem for temporary tables
was tmpfs, would cause an assertion within mysqld. This was due to the use of O_DIRECT when opening the temporary table
file. (Bug#26662)

• mysql_upgrade did not detect failure of external commands that it runs. (Bug#26639)

• The range optimizer could cause the server to run out of memory. (Bug#26625)

• The range optimizer could consume a combinatorial amount of memory for certain classes of WHERE clauses. (Bug#26624)

• Aborting a statement on the master that applied to a non-transactional statement broke replication. The statement was written to the
binary log but not completely executed on the master. Slaves receiving the statement executed it completely, resulting in loss of data
synchrony. Now an error code is written to the error log so that the slaves stop without executing the aborted statement. (That is,
replication stops, but synchrony to the point of the stop is preserved and you can investigate the problem.) (Bug#26551)

• mysqldump could crash or exhibit incorrect behavior when some options were given very long values, such as -
-fields-terminated-by="some very long string". The code has been cleaned up to remove a number of fixed-
sized buffers and to be more careful about error conditions in memory allocation. (Bug#26346)

• Fixed a possible buffer overflow in SHOW PROCEDURE CODE. (Bug#26303)

• The FEDERATED engine did not allow the local and remote tables to have different names. (Bug#26257)

• The temporary file-creation code was cleaned up on Windows to improve server stability. (Bug#26233)

• For MyISAM tables, COUNT(*) could return an incorrect value if the WHERE clause compared an indexed TEXT column to the
empty string (''). This happened if the column contained empty strings and also strings starting with control characters such as tab
or newline. (Bug#26231)

• For INSERT INTO ... SELECT where index searches used column prefixes, insert errors could occur when key value type
conversion was done. (Bug#26207)

• mysqlbinlog --base64-output produced invalid SQL. (Bug#26194)

• For DELETE FROM tbl_name ORDER BY col_name (with no WHERE or LIMIT clause), the server did not check whether
col_name was a valid column in the table. (Bug#26186)

• Executing an INSERT ... SELECT ... FROM INFORMATION_SCHEMA.GLOBAL_STATUS statement from within an
event caused a server crash. (Bug#26174)

• mysqldump could not dump log tables. (Bug#26121)

• On Windows, trying to use backslash (\) characters in paths for DATA DIRECTORY and INDEX DIRECTORY when creating par-
titioned tables caused MySQL to crash.

(You must use / characters when specifying paths for these options, regardless of platform. See Section 18.1, “Overview of Parti-
tioning in MySQL”, for an example using absolute paths for DATA DIRECTORY and INDEX DIRECTORY when creating a parti-
tioned table on Windows.) (Bug#26074, Bug#25141)

• mysqldump crashed for MERGE tables if the --complete-insert (-c) option was given. (Bug#25993)

• Index hints (USE INDEX, IGNORE INDEX, FORCE INDEX) cannot be used with FULLTEXT indexes, but were not being ig-
nored. (Bug#25951)

• Setting a column to NOT NULL with an ON DELETE SET NULL clause foreign key crashes the server. (Bug#25927)

• Corrupted MyISAM tables that have different definitions in the .frm and .MYI tables might cause a server crash. (Bug#25908)

• If CREATE TABLE t1 LIKE t2 failed due to a full disk, an empty t2.frm file could be created but not removed. This file
then caused subsequent attempts to create a table named t2 to fail. This is easily corrected at the filesystem level by removing the
t2.frm file manually, but now the server removes the file if the create operation does not complete successfully. (Bug#25761)

MySQL Change History

2102

http://bugs.mysql.com/26813
http://bugs.mysql.com/26782
http://bugs.mysql.com/26662
http://bugs.mysql.com/26639
http://bugs.mysql.com/26625
http://bugs.mysql.com/26624
http://bugs.mysql.com/26551
http://bugs.mysql.com/26346
http://bugs.mysql.com/26303
http://bugs.mysql.com/26257
http://bugs.mysql.com/26233
http://bugs.mysql.com/26231
http://bugs.mysql.com/26207
http://bugs.mysql.com/26194
http://bugs.mysql.com/26186
http://bugs.mysql.com/26174
http://bugs.mysql.com/26121
http://bugs.mysql.com/26074
http://bugs.mysql.com/25141
http://bugs.mysql.com/25993
http://bugs.mysql.com/25951
http://bugs.mysql.com/25927
http://bugs.mysql.com/25908
http://bugs.mysql.com/25761


• In certain situations, MATCH ... AGAINST returned false hits for NULL values produced by LEFT JOIN when no full-text in-
dex was available. (Bug#25729)

• Concurrent CREATE SERVER and ALTER SERVER statements could cause a deadlock. (Bug#25721)

• CREATE SERVER, DROP SERVER, and ALTER SERVER did not require any privileges. Now these statements require the SU-
PER privilege. (Bug#25671)

• On Windows, connection handlers did not properly decrement the server's thread count when exiting. (Bug#25621)

• When RAND() was called multiple times inside a stored procedure, the server did not write the correct random seed values to the
binary log, resulting in incorrect replication. (Bug#25543)

• OPTIMIZE TABLE might fail on Windows when it attempts to rename a temporary file to the original name if the original file had
been opened, resulting in loss of the .MYD file. (Bug#25521)

• For SHOW ENGINE INNODB STATUS, the LATEST DEADLOCK INFORMATION was not always cleared properly.
(Bug#25494)

• mysql_stmt_fetch() did an invalid memory deallocation when used with the embedded server. (Bug#25492)

• GRANT statements were not replicated if the server was started with the --replicate-ignore-table or -
-replicate-wild-ignore-table option. (Bug#25482)

• mysql_upgrade did not pass a password to mysqlcheck if one was given. (Bug#25452)

• On Windows, mysql_upgrade was sensitive to lettercase of the names of some required components. (Bug#25405)

• During a call to mysql_change_user(), when authentication fails or the database to change to is unknown, a subsequent call to
any function that does network communication leads to packets out of order. This problem was introduced in MySQL 5.1.14.
(Bug#25371)

• Difficult repair or optimization operations could cause an assertion failure, resulting in a server crash. (Bug#25289)

• For storage engines that allow the current auto-increment value to be set, using ALTER TABLE ... ENGINE to convert a table
from one such storage engine to another caused loss of the current value. (For storage engines that do not support setting the value,
it cannot be retained anyway when changing the storage engine.) (Bug#25262)

• Restoration of the default database after stored routine or trigger execution on a slave could cause replication to stop if the database
no longer existed. (Bug#25082)

• Duplicate entries were not assessed correctly in a MEMORY table with a BTREE primary key on a utf8 ENUM column. (Bug#24985)

• Several math functions produced incorrect results for large unsigned values. ROUND() produced incorrect results or a crash for a
large number-of-decimals argument. (Bug#24912)

• The result set of a query that used WITH ROLLUP and DISTINCT could lack some rollup rows (rows with NULL values for group-
ing attributes) if the GROUP BY list contained constant expressions. (Bug#24856)

• Selecting the result of AVG() within a UNION could produce incorrect values. (Bug#24791)

• For queries that used ORDER BY with InnoDB tables, if the optimizer chose an index for accessing the table but found a covering
index that enabled the ORDER BY to be skipped, no results were returned. (Bug#24778)

• The NO_DIR_IN_CREATE server SQL mode was not enforced for partitioned tables. (Bug#24633)

• MBRDisjoint(), MBRequal(), MBRIntersects(), MBROverlaps(), MBRTouches(), and MBRWithin() were inad-
vertently omitted from recent versions of MySQL (5.1.14 to 5.1.17). (Bug#24588)

• Access via my_pread() or my_pwrite() to table files larger than 2GB could fail on some systems. (Bug#24566)

• MBROverlaps() returned incorrect values in some cases. (Bug#24563)

• A problem in handling of aggregate functions in subqueries caused predicates containing aggregate functions to be ignored during
query execution. (Bug#24484)

MySQL Change History

2103

http://bugs.mysql.com/25729
http://bugs.mysql.com/25721
http://bugs.mysql.com/25671
http://bugs.mysql.com/25621
http://bugs.mysql.com/25543
http://bugs.mysql.com/25521
http://bugs.mysql.com/25494
http://bugs.mysql.com/25492
http://bugs.mysql.com/25482
http://bugs.mysql.com/25452
http://bugs.mysql.com/25405
http://bugs.mysql.com/25371
http://bugs.mysql.com/25289
http://bugs.mysql.com/25262
http://bugs.mysql.com/25082
http://bugs.mysql.com/24985
http://bugs.mysql.com/24912
http://bugs.mysql.com/24856
http://bugs.mysql.com/24791
http://bugs.mysql.com/24778
http://bugs.mysql.com/24633
http://bugs.mysql.com/24588
http://bugs.mysql.com/24566
http://bugs.mysql.com/24563
http://bugs.mysql.com/24484


• The MERGE storage engine could return incorrect results when several index values that compare equality were present in an index
(for example, 'gross' and 'gross ', which are considered equal but have different lengths). (Bug#24342)

• Some upgrade problems are detected and better error messages suggesting that mysql_upgrade be run are produced.
(Bug#24248)

• The test for the MYSQL_OPT_SSL_VERIFY_SERVER_CERT option for mysql_options() was performed incorrectly. Also
changed as a result of this bugfix: The arg option for the mysql_options() C API function was changed from char * to
void *. (Bug#24121)

• Some views could not be created even when the user had the requisite privileges. (Bug#24040)

• The values displayed for the Innodb_row_lock_time, Innodb_row_lock_time_avg, and In-
nodb_row_lock_time_max status variables were incorrect. (Bug#23666)

• Using CAST() to convert DATETIME values to numeric values did not work. (Bug#23656)

• A damaged or missing mysql.event table caused SHOW VARIABLES to fail. (Bug#23631)

• SHOW CREATE VIEW qualified references to stored functions in the view definition with the function's database name, even when
the database was the default database. This affected mysqldump (which uses SHOW CREATE VIEW to dump views) because the
resulting dump file could not be used to reload the database into a different database. SHOW CREATE VIEW now suppresses the
database name for references to functions in the default database. (Bug#23491)

• An INTO OUTFILE clause is allowed only for the final SELECT of a UNION, but this restriction was not being enforced correctly.
(Bug#23345)

• The AUTO_INCREMENT value would not be correctly reported for InnoDB tables when using SHOW CREATE TABLE statement
or mysqldump command. (Bug#23313)

• With the NO_AUTO_VALUE_ON_ZERO SQL mode enabled, LAST_INSERT_ID() could return 0 after INSERT ... ON DU-
PLICATE KEY UPDATE. Additionally, the next rows inserted (by the same INSERT, or the following INSERT with or without
ON DUPLICATE KEY UPDATE), would insert 0 for the auto-generated value if the value for the AUTO_INCREMENT column
was NULL or missing. (Bug#23233)

• If a rotate event occured in the middle of a non-transaction group, the group position would be updated by the rotate event indicating
an illegal group start position that was effectively inside a group. This can happen if, for example, a rotate occurs between an In-
tvar event and the associated Query event, or between the table map events and the rows events when using row-based replica-
tion. (Bug#23171)

• Implicit conversion of 9912101 to DATE did not match CAST(9912101 AS DATE). (Bug#23093)

• SELECT COUNT(*) from a table containing a DATETIME NOT NULL column could produce spurious warnings with the
NO_ZERO_DATE SQL mode enabled. (Bug#22824)

• Using SET GLOBAL to change the lc_time_names system variable had no effect on new connections. (Bug#22648)

• SOUNDEX() returned an invalid string for international characters in multi-byte character sets. (Bug#22638)

• Row-based replication of MyISAM to non-MyISAM tables did not work correctly for BIT columns. This has been corrected, but the
fix introduces an incompatibility into the binary log format. (The incompatibility is corrected by the fix for Bug#27779.)
(Bug#22583)

• A multiple-table UPDATE could return an incorrect rows-matched value if, during insertion of rows into a temporary table, the table
had to be converted from a MEMORY table to a MyISAM table. (Bug#22364)

• COUNT(decimal_expr) sometimes generated a spurious truncation warning. (Bug#21976)

• yaSSL crashed on pre-Pentium Intel CPUs. (Bug#21765)

• A slave that used --master-ssl-cipher could not connect to the master. (Bug#21611)

• Database and table names have a maximum length of 64 characters (even if they contain multi-byte characters), but were truncated
to 64 bytes.

Note

MySQL Change History

2104

http://bugs.mysql.com/24342
http://bugs.mysql.com/24248
http://bugs.mysql.com/24121
http://bugs.mysql.com/24040
http://bugs.mysql.com/23666
http://bugs.mysql.com/23656
http://bugs.mysql.com/23631
http://bugs.mysql.com/23491
http://bugs.mysql.com/23345
http://bugs.mysql.com/23313
http://bugs.mysql.com/23233
http://bugs.mysql.com/23171
http://bugs.mysql.com/23093
http://bugs.mysql.com/22824
http://bugs.mysql.com/22648
http://bugs.mysql.com/22638
http://bugs.mysql.com/27779
http://bugs.mysql.com/22583
http://bugs.mysql.com/22364
http://bugs.mysql.com/21976
http://bugs.mysql.com/21765
http://bugs.mysql.com/21611


This improves on a previous fix made for this bug in MySQL 5.1.12.

(Bug#21432)

• For InnoDB, fixed consistent-read behavior of the first read statement, if the read was served from the query cache, for the READ
COMMITTED isolation level. (Bug#21409)

• On Windows, if the server was installed as a service, it did not auto-detect the location of the data directory. (Bug#20376)

• Changing a utf8 column in an InnoDB table to a shorter length did not shorten the data values. (Bug#20095)

• In some cases, the optimizer preferred a range or full index scan access method over lookup access methods when the latter were
much cheaper. (Bug#19372)

• Conversion of DATETIME values in numeric contexts sometimes did not produce a double (YYYYMMDDHHMMSS.uuuuuu) value.
(Bug#16546)

• INSERT...ON DUPLICATE KEY UPDATE could cause Error 1032: Can't find record in ... for inserts into
an InnoDB table unique index using key column prefixes with an underlying utf8 string column. (Bug#13191)

• Having the EXECUTE privilege for a routine in a database should make it possible to USE that database, but the server returned an
error instead. This has been corrected. As a result of the change, SHOW TABLES for a database in which you have only the EX-
ECUTE privilege returns an empty set rather than an error. (Bug#9504)

C.1.13. Changes in MySQL 5.1.18 Carrier Grade Edition
This section contains change history information for MySQL Cluster 5.1 Carrier Grade Edition releases based on MySQL 5.1.18.

C.1.13.1. Changes in MySQL 5.1.18-ndb-6.2.2 (07 May 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.16-ndb-6.2.0 and MySQL 5.1.18-ndb-6.2.1, which
includes all bugfixes and feature changes which were added in the mainline 5.1.18 release; information about these can be found in Sec-
tion C.1.12, “Changes in MySQL 5.1.18 (08 May 2007)”.

Functionality added or changed:

• MySQL Cluster: New cluster management client DUMP commands were added to aid in tracking transactions, scan operations, and
locks. See DUMP 2350, DUMP 2352, and DUMP 2550, for more information.

• MySQL Cluster: Added the mysqld option --ndb-cluster-connection-pool that allows a single MySQL server to use
multiple connections to the cluster. This allows for scaling out using multiple MySQL clients per SQL node instead of or in addition
to using multiple SQL nodes with the cluster.

For more information about this option, see Section 17.5, “MySQL Cluster Options and Variables”.

C.1.13.2. Changes in MySQL 5.1.18-ndb-6.2.1 (30 April 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Warning

MySQL Change History

2105

http://bugs.mysql.com/21432
http://bugs.mysql.com/21409
http://bugs.mysql.com/20376
http://bugs.mysql.com/20095
http://bugs.mysql.com/19372
http://bugs.mysql.com/16546
http://bugs.mysql.com/13191
http://bugs.mysql.com/9504
http://bugs.mysql.com/
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-dump-command-2350.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-dump-command-2352.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-dump-command-2550.html


This release was withdrawn after production and should no longer be used.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.18-ndb-6.2.0, which includes all bugfixes and fea-
ture changes which were added in the mainline 5.1.18 release; information about these can be found in Section C.1.12, “Changes in
MySQL 5.1.18 (08 May 2007)”.

Important

Upgrading to MySQL 5.1.18-ndb-6.2.1 from a previous release. The internal specifications for columns in NDB tables
changed to allow compatibility with future MySQL Cluster and MySQL Cluster 5.1 Carrier Grade Edition releases that are
expected to implement online adding and dropping of columns. This change is not backwards compatible with MySQL
5.1.16-ndb-6.2.0, ndb-6.1.x versions prior to MySQL 5.1.15-ndb-6.1.7, or MySQL Cluster mainline releases prior to
5.1.18.

See the related note in Section 17.6.2, “Cluster Upgrade and Downgrade Compatibility”, for important information prior to
upgrading a MySQL Cluster to MySQL 5.1.15-ndb-6.1.7 or later from MySQL 5.1.15-ndb-6.1.6 or an earlier ndb-6.1.x re-
lease.

See also Bug#28205.

Bugs fixed:

• MySQL Cluster: Multiple operations involving deletes followed by reads were not handled correctly.

Note

This issue could also affect MySQL Cluster Replication.

(Bug#28276)

• Cluster API: Using NdbBlob::writeData() to write data in the middle of an existing blob value (that is, updating the value)
could overwrite some data past the end of the data to be changed. (Bug#27018)

• Incorrect handling of fragmentation in a node takeover during a restart could cause stale data to be copied to the starting node, lead-
ing eventually to failure of the node. (Bug#27434)

• An incorrect assertion was made when sending a TCKEYFAILREF or TCKEYCONF message to a failed data node. (Bug#26814)

C.1.14. Changes in MySQL 5.1.17 (04 April 2007)
This is a new Beta development release, fixing recently discovered bugs.

Note

This Beta release, as any other pre-production release, should not be installed on production level systems or systems with
critical data. It is good practice to back up your data before installing any new version of software. Although MySQL has
worked very hard to ensure a high level of quality, protect your data by making a backup as you would for any software
beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the individual bugs fixed in
this version.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

MySQL Change History

2106

http://bugs.mysql.com/
http://bugs.mysql.com/28205
http://bugs.mysql.com/28276
http://bugs.mysql.com/27018
http://bugs.mysql.com/27434
http://bugs.mysql.com/26814
http://bugs.mysql.com/
http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise


• Incompatible Change: Scheduled events now use the MySQL server time zone to determine their schedules, rather than UTC as in
previous releases. Because of this change, scheduled event metadata now includes time zone information, which can be seen in the
TIME_ZONE column of the INFORMATION_SCHEMA.EVENTS table and the Time zone column in the output of the SHOW
EVENTS statement. These columns have been added in this release, along with a time_zone column in the mysql.event table.
Due to these changes, events created in previous versions of MySQL cannot be created, viewed, or used until mysql.event has
been upgraded. (Bug#16420)

• Important Change: The CREATE EVENT and ALTER EVENT statements now support a DEFINER clause, similar to that used in
the CREATE TRIGGER statement.

See Section 22.2.2, “CREATE EVENT Syntax”, for detailed information. (Bug#16425)

• Important Change: The following options for controlling replication master configuration on a slave are now deprecated.

• --master-host

• --master-user

• --master-password

• --master-port

• --master-connect-retry

• --master-ssl

• --master-ssl-ca

• --master-ssl-capath

• --master-ssl-cert

• --master-ssl-cipher

• --master-ssl-key

To change the master configuration on a slave you should use the CHANGE MASTER statement.

See also Bug#21490

• MySQL Cluster: Added the --skip-table-check option (short form -s) for ndb_restore, which causes the restoration
process to ignore any changes that may have occurred in table schemas after the backup was made. Previously, this was the default
behavior.

See Section 17.10.3, “ndb_restore — Restore a Cluster Backup”, for more information. (Bug#24363)

• Added a --no-beep option to mysqladmin. It suppresses the warning beep that is emitted by default for errors such as a failure
to connect to the server. (Bug#26964)

• Added the --service-startup-timeout option for mysql.server to specify how long to wait for the server to start. If
the server does not start within the timeout period, mysql.server exits with an error. (Bug#26952)

• Prefix lengths for columns in SPATIAL indexes can no longer be specified. For tables created in older versions of MySQL that
have SPATIAL indexes containing prefixed columns, dumping and reloading the table causes the indexes to be created with no pre-
fixes. (The full column width of each column is indexed.) (Bug#26794)

• Added the innodb_stats_on_metadata system variable to enable control over whether InnoDB performs statistics gather-
ing when metadata statements are executed. See Section 13.5.4, “InnoDB Startup Options and System Variables”. (Bug#26598)

• Statements that affect mysql database tables now are written to the binary log using the following rules:

• Data manipulation statements such as INSERT that change data in mysql database tables directly are logged according to the
settings of the binlog_format system variable.

• Statements such as GRANT that change the mysql database indirectly are logged as statements regardless of the value of bin-
log_format.

MySQL Change History

2107

http://bugs.mysql.com/16420
http://bugs.mysql.com/16425
http://bugs.mysql.com/21490
http://bugs.mysql.com/24363
http://bugs.mysql.com/26964
http://bugs.mysql.com/26952
http://bugs.mysql.com/26794
http://bugs.mysql.com/26598


For more details, see Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”. (Bug#25091)

• The server now includes a timestamp in error messages that are logged as a result of unhandled signals (such as mysqld got
signal 11 messages). (Bug#24878)

• The syntax for index hints has been extended to enable more fine-grained control over the optimizer's selection of an execution plan
for various phases of query processing. See Section 12.2.7.2, “Index Hint Syntax”. (Bug#21174)

• Added the --secure-file-priv option for mysqld, which limits the effect of the LOAD_FILE() function and the LOAD
DATA and SELECT ... INTO OUTFILE statements to work only with files in a given directory. (Bug#18628)

• Added the thread_handling system variable to control whether the server use a single thread or one thread per connection. The
--one-thread option now is deprecated; use --thread_handling=one-thread instead.

• Prepared statements now use the query cache under the conditions described in Section 7.5.4.1, “How the Query Cache Operates”.
(Bug#735)

• Statements such as GRANT that change the mysql database indirectly are logged as statements regardless of the value of bin-
log_format.

• Added the hostname system variable, which the server sets at startup to the server hostname.

• Data manipulation statements such as INSERT that change data in mysql database tables directly are logged according to the set-
tings of the binlog_format system variable.

• Added the old_mode system variable to cause the server to revert to certain behaviors present in older versions. Currently, this
variable affects handling of index hints. See Section 12.2.7.2, “Index Hint Syntax”.

Bugs fixed:

• Incompatible Change: INSERT DELAYED statements are not supported for MERGE tables, but the MERGE storage engine was not
rejecting such statements, resulting in table corruption. Applications previously using INSERT DELAYED into MERGE table will
break when upgrading to versions with this fix. To avoid the problem, remove DELAYED from such statements. (Bug#26464)

• Important Note: The parser accepted invalid code in SQL condition handlers, leading to server crashes or unexpected execution be-
havior in stored programs. Specifically, the parser allowed a condition handler to refer to labels for blocks that enclose the handler
declaration. This was incorrect because block label scope does not include the code for handlers declared within the labeled block.

The parser now rejects this invalid construct, but if you upgrade in place (without dumping and reloading your databases), existing
handlers that contain the construct are still invalid — even if they appear to function as you expect — and should be rewritten.

To find affected handlers, use mysqldump to dump all stored functions and procedures, triggers, and events. Then attempt to re-
load them into an upgraded server. Handlers that contain illegal label references will be rejected.

For more information about condition handlers and writing them to avoid invalid jumps, see Section 20.2.8.2, “DECLARE
Handlers”. (Bug#26503)

• MySQL Cluster: It was not possible to set LockPagesInMainMemory equal to 0. (Bug#27291)

• MySQL Cluster: A race condition could sometimes occur if the node acting as master failed while node IDs were still being alloc-
ated during startup. (Bug#27286)

• MySQL Cluster: When a data node was taking over as the master node, a race condition could sometimes occur as the node was as-
suming responsibility for handling of global checkpoints. (Bug#27283)

• MySQL Cluster: After putting the cluster in single user mode from one MySQL server, trying to drop an NDB table from a second
MySQL server also connected to the cluster would cause the second MySQL server to hang. (Bug#27254)

• MySQL Cluster: mysqld could crash shortly after a data node failure following certain DML operations. (Bug#27169)

• MySQL Cluster: (Disk Data): Under some circumstances, a data node could fail during restart while flushing Disk Data UNDO
logs. (Bug#27102)

MySQL Change History

2108

http://bugs.mysql.com/25091
http://bugs.mysql.com/24878
http://bugs.mysql.com/21174
http://bugs.mysql.com/18628
http://bugs.mysql.com/735
http://bugs.mysql.com/26464
http://bugs.mysql.com/26503
http://bugs.mysql.com/27291
http://bugs.mysql.com/27286
http://bugs.mysql.com/27283
http://bugs.mysql.com/27254
http://bugs.mysql.com/27169
http://bugs.mysql.com/27102


• MySQL Cluster: The same failed request from an API node could be handled by the cluster multiple times, resulting in reduced
performance. (Bug#27087)

• MySQL Cluster: The failure of a data node while restarting could cause other data nodes to hang or crash. (Bug#27003)

• MySQL Cluster: Creating a table on one SQL node while in single user mode caused other SQL nodes to crash. (Bug#26997)

• MySQL Cluster: mysqld processes would sometimes crash under high load. (Bug#26825)

• MySQL Cluster: Using only the --print_data option (and no other options) with ndb_restore caused ndb_restore to
fail. (Bug#26741)

This regression was introduced by Bug#14612

• MySQL Cluster: The output from ndb_restore --print_data was incorrect for a backup made of a database containing
tables with TINYINT or SMALLINT columns. (Bug#26740)

• MySQL Cluster: An infinite loop in an internal logging function could cause trace logs to fill up with UNKNOWN SIGNAL TYPE error
messages and thus grow to unreasonable sizes. (Bug#26720)

• MySQL Cluster: An invalid pointer was returned following a FSCLOSECONF signal when accessing the REDO logs during a node
restart or system restart. (Bug#26515)

• MySQL Cluster: (Disk Data): ALTER TABLE ... ADD COLUMN ... on a Disk Data table moved data for existing non-
indexed columns from the tablespace into memory. (Bug#25880)

• MySQL Cluster: The management client command node_id STATUS displayed the message Node node_id: not con-
nected when node_id was not the node ID of a data node.

Note

The ALL STATUS command in the cluster management client still displays status information for data nodes only. This is
by design. See Section 17.8.2, “Commands in the MySQL Cluster Management Client”, for more information.

(Bug#21715)

• MySQL Cluster: When performing an upgrade or downgrade, no specific error information was made available when trying to up-
grade data nodes or SQL nodes before upgrading management nodes. (Bug#21296)

• MySQL Cluster: Some values of MaxNoOfTables caused the error JOB BUFFER CONGESTION to occur. (Bug#19378)

• Disk Data: A memory overflow could occur with tables having a large amount of data stored on disk, or with queries using a very
high degree of parallelism on Disk Data tables. (Bug#26514)

• Disk Data: Use of a tablespace whose INITIAL_SIZE was greater than 1 GB could cause the cluster to crash. (Bug#26487)

• Disk Data: Creating multiple Disk Data tables using different tablespaces could sometimes cause the cluster to fail. (Bug#25992)

• Disk Data: DROP INDEX on a Disk Data table did not always move data from memory into the tablespace. (Bug#25877)

• Disk Data: When creating a log file group, setting INITIAL_SIZE to less than UNDO_BUFFER_SIZE caused data nodes to
crash. (Bug#25743)

• Cluster Replication: The simultaneous failure of a data node and an SQL node could cause replication to fail. (Bug#27005)

• Cluster API: A delete operation using a scan followed by an insert using a scan could cause a data node to fail. (Bug#27203)

• Cluster API: (Cluster APIs): NAND and NOR operations with NdbScanFilter did not perform correctly. (Bug#24568)

• Cluster API: You can now use the ndb_mgm_check_connection() function to determine whether a management server is
running. See ndb_mgm_check_connection().

• SELECT ... INTO OUTFILE with a long FIELDS ENCLOSED BY value could crash the server. (Bug#27231)

• An INSERT ... ON DUPLICATE KEY UPDATE statement might modify values in a table but not flush affected data from the
query cache, causing subsequent selects to return stale results. This made the combination of query cache plus ON DUPLICATE

MySQL Change History

2109

http://bugs.mysql.com/27087
http://bugs.mysql.com/27003
http://bugs.mysql.com/26997
http://bugs.mysql.com/26825
http://bugs.mysql.com/26741
http://bugs.mysql.com/14612
http://bugs.mysql.com/26740
http://bugs.mysql.com/26720
http://bugs.mysql.com/26515
http://bugs.mysql.com/25880
http://bugs.mysql.com/21715
http://bugs.mysql.com/21296
http://bugs.mysql.com/19378
http://bugs.mysql.com/26514
http://bugs.mysql.com/26487
http://bugs.mysql.com/25992
http://bugs.mysql.com/25877
http://bugs.mysql.com/25743
http://bugs.mysql.com/27005
http://bugs.mysql.com/27203
http://bugs.mysql.com/24568
http://dev.mysql.com/doc/ndbapi/en/ndb-mgm-check-connection.html
http://bugs.mysql.com/27231


KEY UPDATE very unreliable. (Bug#27210)

See also Bug#27006, Bug#27033

This regression was introduced by Bug#19978

• For INSERT ... ON DUPLICATE KEY UPDATE statements on tables containing AUTO_INCREMENT columns,
LAST_INSERT_ID() was reset to 0 if no rows were successfully inserted or changed. “Not changed” includes the case where a
row was updated to its current values, but in that case, LAST_INSERT_ID() should not be reset to 0. Now
LAST_INSERT_ID() is reset to 0 only if no rows were successfully inserted or touched, whether or not touched rows were
changed. (Bug#27033)

See also Bug#27210, Bug#27006

This regression was introduced by Bug#19978

• Invalid optimization of pushdown conditions for queries where an outer join was guaranteed to read only one row from the outer ta-
ble led to results with too few rows. (Bug#26963)

• For MERGE tables defined on underlying tables that contained a short VARCHAR column (shorter than four characters), using AL-
TER TABLE on at least one but not all of the underlying tables caused the table definitions to be considered different from that of
the MERGE table, even if the ALTER TABLE did not change the definition. (Bug#26881)

• Use of a subquery containing GROUP BY and WITH ROLLUP caused a server crash. (Bug#26830)

• Setting event_scheduler=1 or event_scheduler=ON caused the server to crash if the server had been started with -
-skip-grant-tables. Starting the server with --skip-grant-tables now causes event_scheduler to be set to
DISABLED automatically, overriding any other value that may have been set. (Bug#26807)

• Added support for --debugger=dbx for mysql-test-run.pl and fixed support for --debugger=devenv, -
-debugger=DevEnv, and --debugger=/path/to/devenv. (Bug#26792)

• A result set column formed by concatention of string literals was incomplete when the column was produced by a subquery in the
FROM clause. (Bug#26738)

• SSL connections failed on Windows. (Bug#26678)

• When using the result of SEC_TO_TIME() for time value greater than 24 hours in an ORDER BY clause, either directly or through
a column alias, the rows were sorted incorrectly as strings. (Bug#26672)

• Use of a subquery containing a UNION with an invalid ORDER BY clause caused a server crash. (Bug#26661)

• In some error messages, inconsistent format specifiers were used for the translations in different languages. comp_err (the error
message compiler) now checks for mismatches. (Bug#26571)

• Views that used a scalar correlated subquery returned incorrect results. (Bug#26560)

• UNHEX() IS NULL comparisons failed when UNHEX() returned NULL. (Bug#26537)

• On 64-bit Windows, large timestamp values could be handled incorrectly. (Bug#26536)

• SHOW CREATE EVENT failed to display the STARTS and ENDS clauses for an event defined with STARTS NOW(), ENDS
NOW(), or both. (Bug#26429)

• If the server was started with --skip-grant-tables, Selecting from INFORMATION_SCHEMA tables causes a server crash.
(Bug#26285)

• For some values of the position argument, the INSERT() function could insert a NUL byte into the result. (Bug#26281)

• For an INSERT statement that should fail due to a column with no default value not being assigned a value, the statement succeeded
with no error if the column was assigned a value in an ON DUPLICATE KEY UPDATE clause, even if that clause was not used.
(Bug#26261)

• INSERT DELAYED statements inserted incorrect values into BIT columns. (Bug#26238)

• A query of type index_merge, and with a WHERE clause having the form WHERE indexed_column_1=value_1 OR in-

MySQL Change History

2110

http://bugs.mysql.com/27210
http://bugs.mysql.com/27006
http://bugs.mysql.com/27033
http://bugs.mysql.com/19978
http://bugs.mysql.com/27033
http://bugs.mysql.com/27210
http://bugs.mysql.com/27006
http://bugs.mysql.com/19978
http://bugs.mysql.com/26963
http://bugs.mysql.com/26881
http://bugs.mysql.com/26830
http://bugs.mysql.com/26807
http://bugs.mysql.com/26792
http://bugs.mysql.com/26738
http://bugs.mysql.com/26678
http://bugs.mysql.com/26672
http://bugs.mysql.com/26661
http://bugs.mysql.com/26571
http://bugs.mysql.com/26560
http://bugs.mysql.com/26537
http://bugs.mysql.com/26536
http://bugs.mysql.com/26429
http://bugs.mysql.com/26285
http://bugs.mysql.com/26281
http://bugs.mysql.com/26261
http://bugs.mysql.com/26238


dexed_column_2=value_2 on a partitioned table caused the server to crash. (Bug#26117)

• A multiple-row delayed insert with an auto-increment column could cause duplicate entries to be created on the slave in a replica-
tion environment. (Bug#26116, Bug#25507)

• BENCHMARK() did not work correctly for expressions that produced a DECIMAL result. (Bug#26093)

• For MEMORY tables, extending the length of a VARCHAR column with ALTER TABLE might result in an unusable table.
(Bug#26080)

• The server could hang during binary log rotation. (Bug#26079)

• LOAD DATA INFILE sent an okay to the client before writing the binary log and committing the changes to the table had fin-
ished, thus violating ACID requirements. (Bug#26050)

• X() IS NULL and Y() IS NULL comparisons failed when X() and Y() returned NULL. (Bug#26038)

• Indexes on TEXT columns were ignored when ref accesses were evaluated. (Bug#25971)

• If a thread previously serviced a connection that was killed, excessive memory and CPU use by the thread occurred if it later ser-
viced a connection that had to wait for a table lock. (Bug#25966)

• VIEW restrictions were applied to SELECT statements after a CREATE VIEW statement failed, as though the CREATE had suc-
ceeded. (Bug#25897)

• Several deficiencies in resolution of column names for INSERT ... SELECT statements were corrected. (Bug#25831)

• Inserting utf8 data into a TEXT column that used a single-byte character set could result in spurious warnings about truncated data.
(Bug#25815)

• On Windows, debug builds of mysqld could fail with heap assertions. (Bug#25765)

• In certain cases it could happen that deleting a row corrupted an RTREE index. This affected indexes on spatial columns.
(Bug#25673)

• Using mysqlbinlog on a binary log would crash if there were a large number of row-based events related to a single statement.
(Bug#25628)

• Expressions involving SUM(), when used in an ORDER BY clause, could lead to out-of-order results. (Bug#25376)

• Use of a GROUP BY clause that referred to a stored function result together with WITH ROLLUP caused incorrect results.
(Bug#25373)

• A stored procedure that made use of cursors failed when the procedure was invoked from a stored function. (Bug#25345)

• On Windows, the server exhibited a file-handle leak after reaching the limit on the number of open file descriptors. (Bug#25222)

• The REPEAT() function did not allow a column name as the count parameter. (Bug#25197)

• Duplicating the usage of a user variable in a stored procedure or trigger would not be replicated correctly to the slave. (Bug#25167)

• A reference to a non-existent column in the ORDER BY clause of an UPDATE ... ORDER BY statement could cause a server
crash. (Bug#25126)

• A view on a join is insertable for INSERT statements that store values into only one table of the join. However, inserts were being
rejected if the inserted-into table was used in a self-join because MySQL incorrectly was considering the insert to modify multiple
tables of the view. (Bug#25122)

• Creating a table with latin characters in the name caused the output of SHOW FULL TABLES to have ERROR for the table type.
(Bug#25081)

• MySQL would not compile when configured using --without-query-cache. (Bug#25075)

• It was not possible to use XPath keywords as tag names for expressions used in the ExtractValue() function. (Bug#24747)

• Increasing the width of a DECIMAL column could cause column values to be changed. (Bug#24558)

MySQL Change History

2111

http://bugs.mysql.com/26117
http://bugs.mysql.com/26116
http://bugs.mysql.com/25507
http://bugs.mysql.com/26093
http://bugs.mysql.com/26080
http://bugs.mysql.com/26079
http://bugs.mysql.com/26050
http://bugs.mysql.com/26038
http://bugs.mysql.com/25971
http://bugs.mysql.com/25966
http://bugs.mysql.com/25897
http://bugs.mysql.com/25831
http://bugs.mysql.com/25815
http://bugs.mysql.com/25765
http://bugs.mysql.com/25673
http://bugs.mysql.com/25628
http://bugs.mysql.com/25376
http://bugs.mysql.com/25373
http://bugs.mysql.com/25345
http://bugs.mysql.com/25222
http://bugs.mysql.com/25197
http://bugs.mysql.com/25167
http://bugs.mysql.com/25126
http://bugs.mysql.com/25122
http://bugs.mysql.com/25081
http://bugs.mysql.com/25075
http://bugs.mysql.com/24747
http://bugs.mysql.com/24558


• IF(expr, unsigned_expr, unsigned_expr) was evaluated to a signed result, not unsigned. This has been corrected. The fix
also affects constructs of the form IS [NOT] {TRUE|FALSE}, which were transformed internally into IF() expressions that
evaluated to a signed result.

For existing views that were defined using IS [NOT] {TRUE|FALSE} constructs, there is a related implication. The definitions
of such views were stored using the IF() expression, not the original construct. This is manifest in that SHOW CREATE VIEW
shows the transformed IF() expression, not the original one. Existing views will evaluate correctly after the fix, but if you want
SHOW CREATE VIEW to display the original construct, you must drop the view and re-create it using its original definition. New
views will retain the construct in their definition. (Bug#24532)

• DROP TRIGGER statements would not be filtered on the slave when using the replication-wild-do-table option.
(Bug#24478)

• For INSERT ... ON DUPLICATE KEY UPDATE statements where some AUTO_INCREMENT values were generated automat-
ically for inserts and some rows were updated, one auto-generated value was lost per updated row, leading to faster exhaustion of
the range of the AUTO_INCREMENT column.

Because the original problem can affect replication (different values on master and slave), it is recommended that the master and its
slaves be upgraded to the current version. (Bug#24432)

• SHOW ENGINE MUTEX STATUS failed to produce an UNKNOWN TABLE ENGINE error.

See Section 12.5.4.13, “SHOW ENGINE Syntax”. (Bug#24392)

• A user-defined variable could be assigned an incorrect value if a temporary table was employed in obtaining the result of the query
used to determine its value. (Bug#24010)

• mysqlimport used a variable of the wrong type for the --use-threads option, which could cause a crash on some architec-
tures. (Bug#23814)

• Queries that used a temporary table for the outer query when evaluating a correlated subquery could return incorrect results.
(Bug#23800)

• Replication between master and slave would infinitely retry binary log transmission where the max_allowed_packet on the
master was larger than that on the slave if the size of the transfer was between these two values. (Bug#23775)

• On Windows, debug builds of mysqlbinlog could fail with a memory error. (Bug#23736)

• When using certain server SQL modes, the mysql.proc table was not created by mysql_install_db. (Bug#23669)

• DOUBLE values such as 20070202191048.000000 were being treated as illegal arguments by WEEK(). (Bug#23616)

• The server could crash if two or more threads initiated query cache resize operation at moments very close in time. (Bug#23527)

• NOW() returned the wrong value in statements executed at server startup with the --init-file option. (Bug#23240)

• Setting the slow_query_log_file system variable caused log output to go tothe general log, not the slow query log.
(Bug#23225)

• When nesting stored procedures within a trigger on a table, a false dependency error was thrown when one of the nested procedures
contained a DROP TABLE statement. (Bug#22580)

• Instance Manager did not remove the angel PID file on a clean shutdown. (Bug#22511)

• EXPLAIN EXTENDED did not show WHERE conditions that were optimized away. (Bug#22331)

• IN ((subquery)), IN (((subquery))), and so forth, are equivalent to IN (subquery), which is always interpreted as
a table subquery (so that it is allowed to return more than one row). MySQL was treating the “over-parenthesized” subquery as a
single-row subquery and rejecting it if it returned more than one row. This bug primarily affected automatically generated code
(such as queries generated by Hibernate), because humans rarely write the over-parenthesized forms. (Bug#21904)

• An INSERT trigger invoking a stored routine that inserted into a table other than the one on which the trigger was defined would
fail with a TABLE '...' DOESN'T EXIST referring to the second table when attempting to delete records from the first table.
(Bug#21825)

• CURDATE() is less than NOW(), either when comparing CURDATE() directly (CURDATE() < NOW() is true) or when casting

MySQL Change History

2112

http://bugs.mysql.com/24532
http://bugs.mysql.com/24478
http://bugs.mysql.com/24432
http://bugs.mysql.com/24392
http://bugs.mysql.com/24010
http://bugs.mysql.com/23814
http://bugs.mysql.com/23800
http://bugs.mysql.com/23775
http://bugs.mysql.com/23736
http://bugs.mysql.com/23669
http://bugs.mysql.com/23616
http://bugs.mysql.com/23527
http://bugs.mysql.com/23240
http://bugs.mysql.com/23225
http://bugs.mysql.com/22580
http://bugs.mysql.com/22511
http://bugs.mysql.com/22331
http://bugs.mysql.com/21904
http://bugs.mysql.com/21825


CURDATE() to DATE (CAST(CURDATE() AS DATE) < NOW() is true). However, storing CURDATE() in a DATE column
and comparing col_name < NOW() incorrectly yielded false. This is fixed by comparing a DATE column as DATETIME for
comparisons to a DATETIME constant. (Bug#21103)

• When a stored routine attempted to execute a statement accessing a nonexistent table, the error was not caught by the routine's ex-
ception handler. (Bug#20713, Bug#8407)

• For a stored procedure containing a SELECT statement that used a complicated join with an ON expression, the expression could be
ignored during re-execution of the procedure, yielding an incorrect result. (Bug#20492)

• The conditions checked by the optimizer to allow use of indexes in IN predicate calculations were unnecessarily tight and were re-
laxed. (Bug#20420)

• When a TIME_FORMAT() expression was used as a column in a GROUP BY clause, the expression result was truncated.
(Bug#20293)

• The creation of MySQL system tables was not checked for by mysql-test-run.pl. (Bug#20166)

• For index reads, the BLACKHOLE engine did not return end-of-file (which it must because BLACKHOLE tables contain no rows),
causing some queries to crash. (Bug#19717)

• For expr IN(value_list), the result could be incorrect if BIGINT UNSIGNED values were used for expr or in the value
list. (Bug#19342)

• When attempting to call a stored procedure creating a table from a trigger on a table tbl in a database db, the trigger failed with
ERROR 1146 (42S02): TABLE 'DB.TBL' DOESN'T EXIST. However, the actual reason that such a trigger fails is due to the
fact that CREATE TABLE causes an implicit COMMIT, and so a trigger cannot invoke a stored routine containing this statement. A
trigger which does so now fails with ERROR 1422 (HY000): EXPLICIT OR IMPLICIT COMMIT IS NOT ALLOWED IN STORED

FUNCTION OR TRIGGER, which makes clear the reason for the trigger's failure. (Bug#18914)

• While preparing prepared statements, the server acquired unnecessary table write locks. (Bug#18326)

• The update columns for INSERT ... SELECT ... ON DUPLICATE KEY UPDATE could be assigned incorrect values if a
temporary table was used to evaluate the SELECT. (Bug#16630)

• For SUBSTRING() evaluation using a temporary table, when SUBSTRING() was used on a LONGTEXT column, the
max_length metadata value of the result was incorrectly calculated and set to 0. Consequently, an empty string was returned in-
stead of the correct result. (Bug#15757)

• Loading data using LOAD DATA INFILE may not replicate correctly (due to character set incompatibilities) if the charac-
ter_set_database variable is set before the data is loaded. (Bug#15126)

• User defined variables used within stored procedures and triggers are not replicated correctly when operating in statement-based
replication mode. (Bug#14914, Bug#20141)

• Local variables in stored routines or triggers, when declared as the BIT type, were interpreted as strings. (Bug#12976)

• For some operations, system tables in the mysql database must be accessed. For example, the HELP statement requires the contents
of the server-side help tables, and CONVERT_TZ() might need to read the time zone tables. However, to perform such operations
while a LOCK TABLES statement is in effect, the server required you to also lock the requisite system tables explicitly or a lock er-
ror occurred:

mysql> LOCK TABLE t1 READ;
Query OK, 0 rows affected (0.02 sec)
mysql> HELP HELP;
ERROR 1100 (HY000) at line 4: Table 'help_topic' was not
locked with LOCK TABLES

Now, the server implicitly locks the system tables for reading as necessary so that you need not lock them explicitly. These tables
are treated as just described:

mysql.help_category
mysql.help_keyword
mysql.help_relation
mysql.help_topic
mysql.proc
mysql.time_zone
mysql.time_zone_leap_second
mysql.time_zone_name

MySQL Change History

2113

http://bugs.mysql.com/21103
http://bugs.mysql.com/20713
http://bugs.mysql.com/8407
http://bugs.mysql.com/20492
http://bugs.mysql.com/20420
http://bugs.mysql.com/20293
http://bugs.mysql.com/20166
http://bugs.mysql.com/19717
http://bugs.mysql.com/19342
http://bugs.mysql.com/18914
http://bugs.mysql.com/18326
http://bugs.mysql.com/16630
http://bugs.mysql.com/15757
http://bugs.mysql.com/15126
http://bugs.mysql.com/14914
http://bugs.mysql.com/20141
http://bugs.mysql.com/12976


mysql.time_zone_transition
mysql.time_zone_transition_type

If you want to explicitly place a WRITE lock on any of those tables with a LOCK TABLES statement, the table must be the only one
locked; no other table can be locked with the same statement. (Bug#9953)

C.1.15. Changes in MySQL 5.1.16 (26 February 2007)
This is a new Beta development release, fixing recently discovered bugs.

Note

This Beta release, as any other pre-production release, should not be installed on production level systems or systems with
critical data. It is good practice to back up your data before installing any new version of software. Although MySQL has
worked very hard to ensure a high level of quality, protect your data by making a backup as you would for any software
beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the individual bugs fixed in
this version.

Note

After release, a trigger failure problem was found to have been introduced. (Bug#27006) Users affected by this issue
should upgrade to MySQL 5.1.17, which corrects the problem.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• Cluster API: Incompatible Change: The AbortOption type is now a member of the NdbOperation class; its values and be-
havior have also changed. NdbTransaction::AbortOption can no longer be used, and applications written against the NDB
API may need to be rewritten and recompiled to accomodate these changes. For more information about this change, see The Ndb-
Operation::AbortOption Type.

This also affects the behavior of the NdbTransaction::execute() method, which now reports failure only if the transaction
was actually aborted. See NdbTransaction::execute(), for more information.

• MySQL Cluster: Previously, when a data node failed more than 8 times in succession to start, this caused a forced shutdown of the
cluster. Now, when a data node fails to start 7 consecutive times, the node will not start again until it is started with the -
-initial option, and a warning to this effect is written to the error log. (Bug#25984)

• MySQL Cluster: In the event that all cluster management and API nodes are configured with ArbitrationRank=0,
ndb_mgmd now issues the following warning when starting: CLUSTER CONFIGURATION WARNING: NEITHER MGM NOR API
NODES ARE CONFIGURED WITH ARBITRATOR, MAY CAUSE COMPLETE CLUSTER SHUTDOWN IN CASE OF HOST FAILURE.
(Bug#23546)

• MySQL Cluster: A number of new and more descriptive error messages covering transporter errors were added. (Bug#22025)

• MySQL Cluster: A new configuration parameter MemReportFrequency allows for additional control of data node memory us-
age. Previously, only warnings at predetermined percentages of memory allocation were given; setting this parameter allows for that
behavior to be overridden. For more information, see Section 17.4.4.5, “Defining Data Nodes”.

• Cluster API: A new ndb_mgm_get_clusterlog_loglevel() function was added to the MGM API.

For more information, see ndb_mgm_get_clusterlog_loglevel().

• The localhost anonymous user account created during MySQL installation on Windows now has no global privileges. Formerly
this account had all global privileges. For operations that require global privileges, the root account can be used instead.
(Bug#24496)

• In the INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS table, the UNIQUE_CONSTRAINT_NAME column incorrectly

MySQL Change History

2114

http://bugs.mysql.com/9953
http://bugs.mysql.com/
http://bugs.mysql.com/27006
http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise
http://dev.mysql.com/doc/ndbapi/en/class-ndboperation-abortoption.html
http://dev.mysql.com/doc/ndbapi/en/class-ndboperation-abortoption.html
http://dev.mysql.com/doc/ndbapi/en/class-ndbtransaction-execute.html
http://bugs.mysql.com/25984
http://bugs.mysql.com/23546
http://bugs.mysql.com/22025
http://dev.mysql.com/doc/ndbapi/en/ndb-mgm-get-clusterlog-loglevel.html
http://bugs.mysql.com/24496


named the referenced table. Now it names the referenced constraint, and a new column, REFERENCED_TABLE_NAME, names the
referenced table. (Bug#21713)

• RAND() now allows non-constant initializers (such as a column name) as its argument. In this case, the seed is initialized with the
value for each invocation of RAND(). (One implication of this is that for equal argument values, RAND() will return the same
value each time.) (Bug#6172)

• Added the --auto-generate-sql-load-type and --auto-generate-sql-write-number options for
mysqlslap.

• The bundled yaSSL library was upgraded to version 1.5.8.

Bugs fixed:

• Security Fix: Using an INFORMATION_SCHEMA table with ORDER BY in a subquery could cause a server crash.

We would like to thank Oren Isacson of Flowgate Security Consulting and Stefan Streichsbier of SEC Consult for informing us of
this problem. (Bug#24630, Bug#26556, CVE-2007-1420)

• MySQL Cluster: An inadvertent use of unaligned data caused ndb_restore to fail on some 64-bit platforms, including Sparc
and Itanium-2. (Bug#26739)

• MySQL Cluster: The InvalidUndoBufferSize error used the same error code (763) as the IncompatibleVersions er-
ror. InvalidUndoBufferSize now uses its own error code (779). (Bug#26490)

• MySQL Cluster: The failure of a data node when restarting it with --initial could lead to failures of subsequent data node re-
starts. (Bug#26481)

• MySQL Cluster: Takeover for local checkpointing due to multiple failures of master nodes was sometimes incorrectly handled.
(Bug#26457)

• MySQL Cluster: The LockPagesInMainMemory parameter was not read until after distributed communication had already
started between cluster nodes. When the value of this parameter was 1, this could sometimes result in data node failure due to
missed heartbeats. (Bug#26454)

• MySQL Cluster: Under some circumstances, following the restart of a management node, all data nodes would connect to it nor-
mally, but some of them subsequently failed to log any events to the management node. (Bug#26293)

• MySQL Cluster: Condition pushdown did not work with prepared statements. (Bug#26225)

• MySQL Cluster: (Replication): Under some circumstances, the binlog thread could shut down while the slave SQL thread was still
using it. (Bug#26015, Bug#26019)

• MySQL Cluster: A query with an IN clause against an NDB table employing explicit user-defined partitioning did not always re-
turn all matching rows. (Bug#25821)

• MySQL Cluster: No appropriate error message was provided when there was insufficient REDO log file space for the cluster to
start. (Bug#25801)

• MySQL Cluster: An UPDATE using an IN clause on an NDB table on which there was a trigger caused mysqld to crash.
(Bug#25522)

• MySQL Cluster: A memory allocation failure in SUMA (the cluster Subscription Manager) could cause the cluster to crash.
(Bug#25239)

• MySQL Cluster: The ndb_size.tmpl file (necessary for using the ndb_size.pl script) was missing from binary distribu-
tions. (Bug#24191)

• MySQL Cluster: The message ERROR 0 IN READAUTOINCREMENTVALUE(): NO ERROR was written to the error log whenever
SHOW TABLE STATUS was performed on a Cluster table that did not have an AUTO_INCREMENT column.

Note

This improves on and supersedes an earlier fix that was made for this issue in MySQL 5.1.12.

MySQL Change History

2115

http://bugs.mysql.com/21713
http://bugs.mysql.com/6172
http://bugs.mysql.com/24630
http://bugs.mysql.com/26556
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1420
http://bugs.mysql.com/26739
http://bugs.mysql.com/26490
http://bugs.mysql.com/26481
http://bugs.mysql.com/26457
http://bugs.mysql.com/26454
http://bugs.mysql.com/26293
http://bugs.mysql.com/26225
http://bugs.mysql.com/26015
http://bugs.mysql.com/26019
http://bugs.mysql.com/25821
http://bugs.mysql.com/25801
http://bugs.mysql.com/25522
http://bugs.mysql.com/25239
http://bugs.mysql.com/24191


(Bug#21033)

• MySQL Cluster: When a node failed due to there being insufficient disk space to perform a local checkpoint, there was no indica-
tion that this was the source of the problem. Such a condition now produces an appropriate error message. (Bug#20121)

• MySQL Cluster: (Replication): The error message LAST_ERRNO: 4294967295, ERROR IN WRITE_ROWS EVENT now supplies
a valid error code. (Bug#19896)

• MySQL Cluster: In the event that cluster backup parameters such as BackupWriteSize were incorrectly set, no appropriate er-
ror was issued to indicate that this was the case. (Bug#19146)

• Cluster API: Disk Data: A delete and a read performed in the same operation could cause one or more data nodes to crash. This
could occur when the operation affected more than 5 columns concurrently, or when one or more of the columns was of the
VARCHAR type and was stored on disk. (Bug#25794)

• Cluster API: After defining a delete operation (using NdbOperation::deleteTuple()) on a nonexistent primary key of a
table having a BLOB or TEXT column, invoking NdbTransaction::execute() caused the calling application to enter an end-
less loop rather than raising an error.

This issue also affected ndb_restore; when restoring tables containing BLOB or TEXT columns, this could cause it to consume
all available memory and then crash. (Bug#24028)

See also Bug#27308, Bug#30177

• Cluster API: libndbclient.so was not versioned. (Bug#13522)

• Using ORDER BY or GROUP BY could yield different results when selecting from a view and selecting from the underlying table.
(Bug#26209)

• DISTINCT queries that were executed using a loose scan for an InnoDB table that had been emptied caused a server crash.
(Bug#26159)

• A WHERE clause that used BETWEEN for DATETIME values could be treated differently for a SELECT and a view defined as that
SELECT. (Bug#26124)

• Collation for LEFT JOIN comparisons could be evaluated incorrectly, leading to improper query results. (Bug#26017)

• A memory leak could cause problems during a node or cluster shutdown or failure. (Bug#25997)

• The WITH CHECK OPTION clause for views was ignored for updates of multiple-table views when the updates could not be per-
formed on fly and the rows to update had to be put into temporary tables first. (Bug#25931)

• LOAD DATA INFILE did not work with pipes. (Bug#25807)

• The SEC_TO_TIME() and QUARTER() functions sometimes did not handle NULL values correctly. (Bug#25643)

• View definitions that used the ! operator were treated as containing the NOT operator, which has a different precedence and can pro-
duce different results. . (Bug#25580)

• An error in the name resolution of nested JOIN ... USING constructs was corrected. (Bug#25575)

• GROUP BY and DISTINCT did not group NULL values for columns that have a UNIQUE index. . (Bug#25551)

• The --with-readline option for configure did not work for commercial source packages, but no error message was printed
to that effect. Now a message is printed. (Bug#25530)

• A yaSSL program named test was installed, causing conflicts with the test system utility. It is no longer installed. (Bug#25417)

• For a UNIQUE index containing many NULL values, the optimizer would prefer the index for col IS NULL conditions over other
more selective indexes. . (Bug#25407)

• An AFTER UPDATE trigger on an InnoDB table with a composite primary key caused the server to crash. (Bug#25398)

• Passing a NULL value to a user-defined function from within a stored procedure crashes the server. (Bug#25382)

MySQL Change History

2116

http://bugs.mysql.com/21033
http://bugs.mysql.com/20121
http://bugs.mysql.com/19896
http://bugs.mysql.com/19146
http://bugs.mysql.com/25794
http://bugs.mysql.com/24028
http://bugs.mysql.com/27308
http://bugs.mysql.com/30177
http://bugs.mysql.com/13522
http://bugs.mysql.com/26209
http://bugs.mysql.com/26159
http://bugs.mysql.com/26124
http://bugs.mysql.com/26017
http://bugs.mysql.com/25997
http://bugs.mysql.com/25931
http://bugs.mysql.com/25807
http://bugs.mysql.com/25643
http://bugs.mysql.com/25580
http://bugs.mysql.com/25575
http://bugs.mysql.com/25551
http://bugs.mysql.com/25530
http://bugs.mysql.com/25417
http://bugs.mysql.com/25407
http://bugs.mysql.com/25398
http://bugs.mysql.com/25382


• perror crashed on some platforms due to failure to handle a NULL pointer. (Bug#25344)

• mysql.server stop timed out too quickly (35 seconds) waiting for the server to exit. Now it waits up to 15 minutes, to ensure
that the server exits. (Bug#25341)

• A query that contained an EXIST subquery with a UNION over correlated and uncorrelated SELECT queries could cause the server
to crash. (Bug#25219)

• mysql_kill() caused a server crash when used on an SSL connection. (Bug#25203)

• yaSSL was sensitive to the presence of whitespace at the ends of lines in PEM-encoded certificates, causing a server crash.
(Bug#25189)

• A query with ORDER BY and GROUP BY clauses where the ORDER BY clause had more elements than the GROUP BY clause
caused a memory overrun leading to a crash of the server. (Bug#25172)

• Use of ON DUPLICATE KEY UPDATE defeated the usual restriction against inserting into a join-based view unless only one of
the underlying tables is used. (Bug#25123)

• ALTER TABLE ... ENABLE KEYS acquired a global lock, preventing concurrent execution of other statements that use tables.
. (Bug#25044)

• OPTIMIZE TABLE caused a race condition in the I/O cache. (Bug#25042)

• A return value of -1 from user-defined handlers was not handled well and could result in conflicts with server code. (Bug#24987)

• Certain joins using Range checked for each record in the query execution plan could cause the server to crash.
(Bug#24776)

• ALTER TABLE caused loss of CASCADE clauses for InnoDB tables. (Bug#24741)

• If an ORDER BY or GROUP BY list included a constant expression being optimized away and, at the same time, containing single-
row subselects that returned more that one row, no error was reported. If a query required sorting by expressions containing single-
row subselects that returned more than one row, execution of the query could cause a server crash. (Bug#24653)

• For ALTER TABLE, using ORDER BY expression could cause a server crash. Now the ORDER BY clause allows only column
names to be specified as sort criteria (which was the only documented syntax, anyway). (Bug#24562)

• Within stored routines or prepared statements, inconsistent results occurred with multiple use of INSERT ... SELECT ... ON
DUPLICATE KEY UPDATE when the ON DUPLICATE KEY UPDATE clause erroneously tried to assign a value to a column
mentioned only in its SELECT part. (Bug#24491)

• Expressions of the form (a, b) IN (SELECT a, MIN(b) FROM t GROUP BY a) could produce incorrect results when
column a of table t contained NULL values while column b did not. (Bug#24420)

• If a prepared statement accessed a view, access to the tables listed in the query after that view was checked in the security context of
the view. (Bug#24404)

• A nested query on a partitioned table returned fewer records than on the corresponding non-partitioned table, when the subquery af-
fected more than one partition. (Bug#24186)

• Expressions of the form (a, b) IN (SELECT c, d ...) could produce incorrect results if a, b, or both were NULL.
(Bug#24127)

• Queries that evaluate NULL IN (SELECT ... UNION SELECT ...) could produce an incorrect result (FALSE instead of
NULL). (Bug#24085)

• Some UPDATE statements were slower than in previous versions when the search key could not be converted to a valid value for the
type of the search column. (Bug#24035)

• ISNULL(DATE(NULL)) and ISNULL(CAST(NULL AS DATE)) erroneously returned false. (Bug#23938)

• Within a stored routine, accessing a declared routine variable with PROCEDURE ANALYSE() caused a server crash. (Bug#23782)

• For an InnoDB table with any ON DELETE trigger, TRUNCATE TABLE mapped to DELETE and activated triggers. Now a fast
truncation occurs and triggers are not activated. .

MySQL Change History

2117

http://bugs.mysql.com/25344
http://bugs.mysql.com/25341
http://bugs.mysql.com/25219
http://bugs.mysql.com/25203
http://bugs.mysql.com/25189
http://bugs.mysql.com/25172
http://bugs.mysql.com/25123
http://bugs.mysql.com/25044
http://bugs.mysql.com/25042
http://bugs.mysql.com/24987
http://bugs.mysql.com/24776
http://bugs.mysql.com/24741
http://bugs.mysql.com/24653
http://bugs.mysql.com/24562
http://bugs.mysql.com/24491
http://bugs.mysql.com/24420
http://bugs.mysql.com/24404
http://bugs.mysql.com/24186
http://bugs.mysql.com/24127
http://bugs.mysql.com/24085
http://bugs.mysql.com/24035
http://bugs.mysql.com/23938
http://bugs.mysql.com/23782


Important

As a result of this fix, TRUNCATE TABLE now requires the DROP privilege rather than the DELETE privilege.

(Bug#23556)

• With ONLY_FULL_GROUP_BY enables, the server was too strict: Some expressions involving only aggregate values were rejected
as non-aggregate (for example, MAX(a) – MIN(a)). (Bug#23417)

• The arguments to the ENCODE() and the DECODE() functions were not printed correctly, causing problems in the output of EX-
PLAIN EXTENDED and in view definitions. (Bug#23409)

• Some queries against INFORMATION_SCHEMA that used subqueries failed. . (Bug#23299)

• readline detection did not work correctly on NetBSD. (Bug#23293)

• The number of setsockopt() calls performed for reads and writes to the network socket was reduced to decrease system call
overhead. (Bug#22943)

• Storing values specified as hexadecimal values 64 or more bits long in BIT(64), BIGINT, or BIGINT UNSIGNED columns did
not raise any warning or error if the value was out of range. (Bug#22533)

• Type conversion errors during formation of index search conditions were not correctly checked, leading to incorrect query results.
(Bug#22344)

• For the IF() and COALESCE() function and CASE expressions, large unsigned integer values could be mishandled and result in
warnings. (Bug#22026)

• Inserting DEFAULT into a column with no default value could result in garbage in the column. Now the same result occurs as when
inserting NULL into a NOT NULL column. (Bug#20691)

• Indexes disabled with ALTER TABLE ... DISABLE KEYS could in some cases be used by specifying FORCE INDEX.
(Bug#20604)

• If a duplicate key value was present in the table, INSERT ... ON DUPLICATE KEY UPDATE reported a row count indicating
that a record was updated, even when no record actually changed due to the old and new values being the same. Now it reports a
row count of zero. (Bug#19978)

See also Bug#27006, Bug#27033, Bug#27210

• ORDER BY values of the DOUBLE or DECIMAL types could change the result returned by a query. (Bug#19690)

• The readline library wrote to uninitialized memory, causing mysql to crash. (Bug#19474)

• Use of already freed memory caused SSL connections to hang forever. (Bug#19209)

• The server might fail to use an appropriate index for DELETE when ORDER BY, LIMIT, and a non-restricting WHERE are present.
(Bug#17711)

• The optimizer used a filesort rather than a const table read in some cases when the latter was possible. (Bug#16590)

• To enable installation of MySQL RPMs on Linux systems running RHEL 4 (which includes SE-Linux) additional information was
provided to specify some actions that are allowed to the MySQL binaries. (Bug#12676)

• CONNECTION is no longer treated as a reserved word. (Bug#12204)

• The presence of ORDER BY in a view definition prevented the MERGE algorithm from being used to resolve the view even if noth-
ing else in the definition required the TEMPTABLE algorithm. (Bug#12122)

• If a slave server closed its relay log (for example, due to an error during log rotation), the I/O thread did not recognize this and still
tried to write to the log, causing a server crash. (Bug#10798)

C.1.16. Changes in MySQL 5.1.16 Carrier Grade Edition

MySQL Change History

2118

http://bugs.mysql.com/23556
http://bugs.mysql.com/23417
http://bugs.mysql.com/23409
http://bugs.mysql.com/23299
http://bugs.mysql.com/23293
http://bugs.mysql.com/22943
http://bugs.mysql.com/22533
http://bugs.mysql.com/22344
http://bugs.mysql.com/22026
http://bugs.mysql.com/20691
http://bugs.mysql.com/20604
http://bugs.mysql.com/19978
http://bugs.mysql.com/27006
http://bugs.mysql.com/27033
http://bugs.mysql.com/27210
http://bugs.mysql.com/19690
http://bugs.mysql.com/19474
http://bugs.mysql.com/19209
http://bugs.mysql.com/17711
http://bugs.mysql.com/16590
http://bugs.mysql.com/12676
http://bugs.mysql.com/12204
http://bugs.mysql.com/12122
http://bugs.mysql.com/10798


This section contains change history information for MySQL Cluster 5.1 Carrier Grade Edition releases based on MySQL 5.1.16.

C.1.16.1. Changes in MySQL 5.1.16-ndb-6.2.0 (03 March 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Like all releases for MySQL MySQL Cluster 5.1 Carrier Grade Edition, this is a source-only release which you must compile and install
using the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1, “Building
MySQL Cluster from Source Code”. You can download the source code archive for this release from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/mysql-5.1.16-ndb-6.2.0. The file mysqlcom-
5.1.16-ndb-6.2.0-telco.tar.gz in this directory contains the complete source archive.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes which were added in MySQL 5.1.15-ndb-6.1.1 as well as in the mainline
5.1.16 release; information about these can be found in Section C.1.18.23, “Changes in MySQL 5.1.15-ndb-6.1.1 (01 February 2007)”,
and in Section C.1.15, “Changes in MySQL 5.1.16 (26 February 2007)”.

Important

Upgrading to MySQL 5.1.16-ndb-6.2.0 from a previous release. This release is not binary compatible with previous
MySQL MySQL Cluster 5.1 Carrier Grade Edition or mainline MySQL 5.1 releases. This means that:

• You cannot perform an online upgrade to this release from any of the MySQL MySQL Cluster 5.1 Carrier Grade Edi-
tion releases based on MySQL 5.1.14 or MySQL 5.1.15, or from any of the mainline MySQL 5.1 releases. When up-
grading from one of these versions, you must shut down the cluster, replace all binaries, then restart the cluster.

• You must recompile all NDB API and MGM API applications used with a previous version of MySQL Cluster, includ-
ing those compiled against any of the MySQL MySQL Cluster 5.1 Carrier Grade Edition releases based on MySQL
5.1.14 or MySQL 5.1.15.

Functionality added or changed:

• MySQL Cluster: An --ndb-wait-connected option has been added for mysqld, which causes mysqld to wait for the spe-
cified amount of time to connect to the cluster before starting to accept MySQL client connections.

• Cluster API: The Ndb::startTransaction() method now provides an alternative interface for starting a transaction. See
Ndb::startTransaction(), for more information.

• Cluster API: Methods were added to the Ndb_cluster_connection class to faciliate iterating over existing Ndb objects. See
ndb_cluster_connection::get_next_ndb_object(), for more information.

• It is now possible to disable arbitration by setting ArbitrationRank equal to 0 on all nodes.

• A new TcpBind_INADDR_ANY configuration parameter allows data nodes node to bind INADDR_ANY instead of a hostname or
IP address in the config.ini file.

• Memory allocation has been improved on 32-bit architectures that enables using close to 3GB for DataMemory and In-
dexMemory combined.

C.1.17. Changes in MySQL 5.1.15 (25 January 2007)
This is a new Beta development release, fixing recently discovered bugs.

Note

MySQL Change History

2119

ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/mysql-5.1.16-ndb-6.2.0
http://bugs.mysql.com/
http://dev.mysql.com/doc/ndbapi/en/class-ndb-starttransaction.html
http://dev.mysql.com/doc/ndbapi/en/class-ndb-cluster-connection-get-next-ndb-object.html


This Beta release, as any other pre-production release, should not be installed on production level systems or systems with
critical data. It is good practice to back up your data before installing any new version of software. Although MySQL has
worked very hard to ensure a high level of quality, protect your data by making a backup as you would for any software
beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the individual bugs fixed in
this version.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• Incompatible Change: MySQL Cluster: The LockPagesInMainMemory configuration parameter has changed its type and
possible values. For more information, see LockPagesInMainMemory.

Important

The values true and false are no longer accepted for this parameter. If you were using this parameter and had it set to
false in a previous release, you must change it to 0. If you had this parameter set to true, you should instead use 1 to
obtain the same behavior as previously, or 2 to take advantage of new functionality introduced with this release, as de-
scribed in the section cited above.

(Bug#25686)

• Incompatible Change: InnoDB rolls back only the last statement on a transaction timeout. A new option, -
-innodb_rollback_on_timeout, causes InnoDB to abort and roll back the entire transaction if a transaction timeout occurs
(the same behavior as in MySQL 5.0.13 and earlier). (Bug#24200)

• Incompatible Change: Previously, the DATE_FORMAT() function returned a binary string. Now it returns a string with a character
set and collation given by character_set_connection and collation_connection so that it can return month and
weekday names containing non-ASCII characters. (Bug#22646)

• Incompatible Change: The following conditions apply to enabling the read_only system variable:

• If you attempt to enable read_only while you have any explicit locks (acquired with LOCK TABLES or have a pending
transaction, an error will occur.

• If other clients hold explicit table locks or have pending transactions, the attempt to enable read_only blocks until the locks
are released and the transactions end. While the attempt to enable read_only is pending, requests by other clients for table
locks or to begin transactions also block until read_only has been set.

• read_only can be enabled while you hold a global read lock (acquired with FLUSH TABLES WITH READ LOCK) because
that does not involve table locks.

Previously, the attempt to enable read_only would return immediately even if explicit locks or transactions were pending, so
some data changes could occur for statements executing in the server at the same time. (Bug#22009, Bug#11733)

• MySQL Cluster: The NDB storage engine could leak memory during file operations. (Bug#21858)

• On Unix, when searching the standard locations for option files, MySQL programs now also look for /etc/mysql/my.cnf after check-
ing for /etc/my.cnf and before checking the remaining locations. (Bug#25104)

• The default value of the max_connections variable has been increased to 151 in order that Websites running on Apache and us-
ing MySQL will not have more processes trying to access MySQL than the default number of connections available.

(The maximum number of Apache processes is determined by the Apache MaxClient, which defaults to 256, but is usually set to
150 in the httpd.conf commonly distributed with Apache. For more information about MaxClient, see ht-
tp://httpd.apache.org/docs/2.2/mod/mpm_common.html#maxclients.) (Bug#23883)

• The Com_create_user status variable was added (for counting CREATE USER statements). (Bug#22958)

• The --memlock option relies on system calls that are unreliable on some operating systems. If a crash occurs, the server now
checks whether --memlock was specified and if so issues some information about possible workarounds. (Bug#22860)

MySQL Change History

2120

http://bugs.mysql.com/
http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise
http://bugs.mysql.com/25686
http://bugs.mysql.com/24200
http://bugs.mysql.com/22646
http://bugs.mysql.com/22009
http://bugs.mysql.com/11733
http://bugs.mysql.com/21858
http://bugs.mysql.com/25104
http://httpd.apache.org/docs/2.2/mod/mpm_common.html#maxclients
http://httpd.apache.org/docs/2.2/mod/mpm_common.html#maxclients
http://bugs.mysql.com/23883
http://bugs.mysql.com/22958
http://bugs.mysql.com/22860


• The (undocumented) UNIQUE_USERS() and GROUP_UNIQUE_USERS() functions were removed. (Bug#22687)

• Partitioning of tables using the FEDERATED storage engine is no longer permitted. Attempting to create such a table or to modify
an existing table so that is uses both partitioning and FEDERATED now fails with an error. (Bug#22451)

• The --skip-thread-priority option now is enabled by default for binary Mac OS X distributions. Use of thread priorities
degrades performance on Mac OS X. (Bug#18526)

• Calling a non-deterministic stored routine when using statement-based replication now throws an error. Formerly, defining such a
stored routine would cause an error to be thrown. (Bug#16456)

• read_only can be enabled while you hold a global read lock (acquired with FLUSH TABLES WITH READ LOCK) because
that does not involve table locks.

•
Important

When using MERGE tables the definition of the MERGE table and the MyISAM tables are checked each time the tables are
opened for access (including any SELECT or INSERT statement. Each table is compared for column order, types, sizes
and associated. If there is a difference in any one of the tables then the statement will fail.

• The bundled yaSSL library was upgraded to version 1.5.0.

•
Important

Previously, duplicate-key errors were indicated by the ER_DUP_ENTRY error code (1062). This code is no longer used.
Instead, the server returns ER_DUP_ENTRY_WITH_KEY_NAME (1582), and the error message indicates the name of the
index for which the duplicate occurred. Applications that test for duplicate keys should look for both error codes if they
need to be compatible with current and older servers.

See also Bug#28842

• Remote servers for use with the FEDERATED storage engine now can be managed with the new CREATE/ALTER/DROP SERVER
syntax.

• Added the --disable-grant-options option to configure. If configure is run with this option, the --bootstrap,
--skip-grant-tables, and --init-file options for mysqld are disabled and cannot be used. For Windows, the con-
figure.js script recognizes the DISABLE_GRANT_OPTIONS flag, which has the same effect.

• If other clients hold explicit table locks or have pending transactions, the attempt to enable read_only blocks until the locks are
released and the transactions end. While the attempt to enable read_only is pending, requests by other clients for table locks or to
begin transactions also block until read_only has been set.

• If you attempt to enable read_only while you have any explicit locks (acquired with LOCK TABLES or have a pending transac-
tion, an error will occur.

Bugs fixed:

• Incompatible Change: For ENUM columns that had enumeration values containing commas, the commas were mapped to 0xff in-
ternally. However, this rendered the commas indistinguishable from true 0xff characters in the values. This no longer occurs.
However, the fix requires that you dump and reload any tables that have ENUM columns containing any true 0xff values. Dump the
tables using mysqldump with the current server before upgrading from a version of MySQL 5.1 older than 5.1.15 to version 5.1.15
or newer. (Bug#24660)

• MySQL Cluster: It was not possible to create an NDB table with a key on two VARCHAR columns where both columns had a stor-
age length in excess of 256. (Bug#25746)

• MySQL Cluster: Hosts in clusters with large numbers of nodes could experience excessive CPU usage while obtaining configura-
tion data. (Bug#25711)

• MySQL Cluster: In some circumstances, shutting down the cluster could cause connected mysqld processes to crash.
(Bug#25668)

MySQL Change History

2121

http://bugs.mysql.com/22687
http://bugs.mysql.com/22451
http://bugs.mysql.com/18526
http://bugs.mysql.com/16456
http://bugs.mysql.com/28842
http://bugs.mysql.com/24660
http://bugs.mysql.com/25746
http://bugs.mysql.com/25711
http://bugs.mysql.com/25668


• MySQL Cluster: Non-32-bit, non-aligned columns were not handled correctly in explicitly partitioned NDB tables. (Bug#25587)

• MySQL Cluster: Some aggregate queries such as SELECT COUNT(*) performed a table scan on NDB tables rather than checking
table statistics, causing such queries to perform much more slowly in MySQL Cluster 5.1 than in 5.0. (Bug#25567)

• MySQL Cluster: Memory allocations for TEXT columns were calculated incorrectly, resulting in space being wasted and other is-
sues. (Bug#25562)

• MySQL Cluster: The failure of a master node during a node restart could lead to a resource leak, causing later node failures.
(Bug#25554)

• MySQL Cluster: The failure of a node during a local checkpoint could lead to other node failures. (Bug#25468)

• MySQL Cluster: (Replication): Connecting a mysqld to a cluster where not all nodes were running, starting the remaining cluster
nodes, and then disconnecting from the cluster caused the mysqld process to crash. (Bug#25387)

• MySQL Cluster: A node shutdown occurred if the master failed during a commit. (Bug#25364)

• MySQL Cluster: Creating a non-unique index with the USING HASH clause silently created an ordered index instead of issuing a
warning. (Bug#24820)

• MySQL Cluster: ndb_config failed when trying to use 2 management servers and node IDs. (Bug#23887)

• MySQL Cluster: When a data node was shut down using the management client STOP command, a connection event
(NDB_LE_Connected) was logged instead of a disconnection event (NDB_LE_Disconnected). (Bug#22773)

• MySQL Cluster: The management server did not handle logging of node shutdown events correctly in certain cases. (Bug#22013)

• MySQL Cluster: SELECT statements with a BLOB or TEXT column in the selected column list and a WHERE condition including a
primary key lookup on a VARCHAR primary key produced empty result sets. (Bug#19956)

• MySQL Cluster: When stopping and restarting multiple data nodes, the last node to be restarted would sometimes hang in Phase
100. (Bug#19645)

• Disk Data: Following 3 or more missed local checkpoints by a cluster node, a restart of the node caused incorrect undo information
to be used for Disk Data tables. (Bug#25636)

• Disk Data: MEDIUMTEXT columns of Disk Data tables were stored in memory rather than on disk, even if the columns were not in-
dexed. (Bug#25001)

• Disk Data: Performing a node restart with a newly dropped Disk Data table could lead to failure of the node during the restart.
(Bug#24917)

• Disk Data: Changing a column specification or issuing a TRUNCATE statement on a Disk Data table caused the table to become an
in-memory table. (Bug#24667, Bug#25296)

• Disk Data: When restoring from backup a cluster containing any Disk Data tables with hidden primary keys, a node failure resulted
which could lead to a crash of the cluster. (Bug#24166)

• Disk Data: Repeated CREATE, DROP, or TRUNCATE in various combinations with system restarts between these operations could
lead to the eventual failure of a system restart. (Bug#21948)

• Disk Data: Extents that should have been available for re-use following a DROP TABLE operation were not actually made avail-
able again until after the cluster had performed a local checkpoint. (Bug#17605)

• Cluster Replication: Certain errors in replication setups could lead to unexpected node failures. (Bug#25755)

• Cluster Replication: Connecting an API node to the cluster during a node restart while performing database operations could cause
the restarting node to fail. (Bug#25329)

• Cluster Replication: Following a restart of the master cluster, the latest GCI was set to 0 upon reconnection to the slave.
(Bug#21806)

• Cluster API: Deletion of an Ndb_cluster_connection object took a very long time. (Bug#25487)

• Cluster API: Invoking the NdbTransaction::execute() method using execution type Commit and abort option

MySQL Change History

2122

http://bugs.mysql.com/25587
http://bugs.mysql.com/25567
http://bugs.mysql.com/25562
http://bugs.mysql.com/25554
http://bugs.mysql.com/25468
http://bugs.mysql.com/25387
http://bugs.mysql.com/25364
http://bugs.mysql.com/24820
http://bugs.mysql.com/23887
http://bugs.mysql.com/22773
http://bugs.mysql.com/22013
http://bugs.mysql.com/19956
http://bugs.mysql.com/19645
http://bugs.mysql.com/25636
http://bugs.mysql.com/25001
http://bugs.mysql.com/24917
http://bugs.mysql.com/24667
http://bugs.mysql.com/25296
http://bugs.mysql.com/24166
http://bugs.mysql.com/21948
http://bugs.mysql.com/17605
http://bugs.mysql.com/25755
http://bugs.mysql.com/25329
http://bugs.mysql.com/21806
http://bugs.mysql.com/25487


AO_IgnoreError could lead to a crash of the transaction coordinator (DBTC). (Bug#25090)

• Cluster API: A unique index lookup on a non-existent tuple could lead to a data node timeout (error 4012). (Bug#25059)

• Cluster API: When using the NdbTransaction::execute() method, a very long timeout (greater than 5 minutes) could res-
ult if the last data node being polled was disconnected from the cluster. (Bug#24949)

• Cluster API: Due to an error in the computation of table fragment arrays, some transactions were not executed from the correct
starting point. (Bug#24914)

• mysqltest_embedded crashed at startup. (Bug#25890)

• Referencing an ambiguous column alias in an expression in the ORDER BY clause of a query caused the server to crash.
(Bug#25427)

• Some problems uncovered by Valgrind were fixed. (Bug#25396)

• Using a view in combination with a USING clause caused column aliases to be ignored. (Bug#25106)

• A multiple-table DELETE QUICK could sometimes cause one of the affected tables to become corrupted. (Bug#25048)

• An assertion failed incorrectly for prepared statements that contained a single-row uncorrelated subquery that was used as an argu-
ment of the IS NULL predicate. (Bug#25027)

• In the INFORMATION_SCHEMA.KEY_COLUMN_USAGE table, the value displayed for the REFERENCED_TABLE_NAME column
was the table name as encoded for disk storage, not the actual table name. (Bug#25026)

• The REPEAT() function could return NULL when passed a column for the count argument. (Bug#24947)

• mysql_upgrade failed if the --password (or -p) option was given. (Bug#24896)

• Accessing a fixed record format table with a crashed key definition results in server/myisamchk segmentation fault. (Bug#24855)

• mysqld_multi and mysqlaccess looked for option files in /etc even if the --sysconfdir option for configure had
been given to specify a different directory. (Bug#24780)

• If there was insufficient memory available to mysqld, this could sometimes cause the server to hang during startup. (Bug#24751)

• Optimizations that are legal only for subqueries without tables and WHERE conditions were applied for any subquery without tables.
(Bug#24670)

• Under certain rare circumstances, local checkpoints were not performed properly, leading to an inability to restart one or more data
nodes. (Bug#24664)

• A workaround was implemented to avoid a race condition in the NPTL pthread_exit() implementation. (Bug#24507)

• Under some circumstances, a REORGANIZE PARTITION statement could crash mysqld. (Bug#24502)

• mysqltest crashed with a stack overflow. (Bug#24498)

• Using row-based replication to replicate to a table having at least one extra BIT column with a default value on the slave as com-
pared to the master could cause the slave to fail. (Bug#24490)

• Attempts to access a MyISAM table with a corrupt column definition caused a server crash. (Bug#24401)

• ALTER ENABLE KEYS or ALTER TABLE DISABLE KEYS combined with another ALTER TABLE option other than RE-
NAME TO did nothing. In addition, if ALTER TABLE was used on a table having disabled keys, the keys of the resulting table were
enabled. (Bug#24395)

• When opening a corrupted .frm file during a query, the server crashes. (Bug#24358)

• The --extern option for mysql-test-run.pl did not function correctly. (Bug#24354)

• Some joins in which one of the joined tables was a view could return erroneous results or crash the server. (Bug#24345)

• The mysql.server script used the source command, which is less portable than the . command; it now uses . instead.

MySQL Change History

2123

http://bugs.mysql.com/25090
http://bugs.mysql.com/25059
http://bugs.mysql.com/24949
http://bugs.mysql.com/24914
http://bugs.mysql.com/25890
http://bugs.mysql.com/25427
http://bugs.mysql.com/25396
http://bugs.mysql.com/25106
http://bugs.mysql.com/25048
http://bugs.mysql.com/25027
http://bugs.mysql.com/25026
http://bugs.mysql.com/24947
http://bugs.mysql.com/24896
http://bugs.mysql.com/24855
http://bugs.mysql.com/24780
http://bugs.mysql.com/24751
http://bugs.mysql.com/24670
http://bugs.mysql.com/24664
http://bugs.mysql.com/24507
http://bugs.mysql.com/24502
http://bugs.mysql.com/24498
http://bugs.mysql.com/24490
http://bugs.mysql.com/24401
http://bugs.mysql.com/24395
http://bugs.mysql.com/24358
http://bugs.mysql.com/24354
http://bugs.mysql.com/24345


Bug#24294)

• A view was not handled correctly if the SELECT part contained “ \Z ”. (Bug#24293)

• mysql_install_db did not create the mysql.plugin table if strict SQL mode was enabled. (Bug#24270)

• A query using WHERE unsigned_column NOT IN ('negative_value') could cause the server to crash. (Bug#24261)

• ALTER TABLE statements that performed both RENAME TO and {ENABLE|DISABLE} KEYS operations caused a server crash.
(Bug#24219)

• When SET PASSWORD was written to the binary log double quotes were included in the statement. If the slave was running in with
the server SQL mode set to ANSI_QUOTES, then the event failed, which halted the replication process. (Bug#24158)

• A FETCH statement using a cursor on a table which was not in the table cache could sometimes cause the server to crash.
(Bug#24117)

• Hebrew-to-Unicode conversion failed for some characters. Definitions for the following Hebrew characters (as specified by the
ISO/IEC 8859-8:1999) were added: LEFT-TO-RIGHT MARK (LRM), RIGHT-TO-LEFT MARK (RLM) (Bug#24037)

• On HP-UX, mysqltest (non-thread-safe) crashed due to being linked against a thread-safe libmysys library. (Bug#23984)

• The server was built even when configure was run with the --without-server option. (Bug#23973)

• The MySQL 5.1.12 binaries for Windows were missing the FEDERATED, EXAMPLE, and BLACKHOLE storage engines.
(Bug#23900)

• ROW_COUNT() did not work properly as an argument to a stored procedure. (Bug#23760)

• When reading from the standard input on Windows, mysqlbinlog opened the input in text mode rather than binary mode and
consequently misinterpreted some characters such as Control-Z. (Bug#23735)

• A stored procedure, executed from a connection using a binary character set, and which wrote multibyte data, would write incor-
rectly escaped entries to the binary log. This caused syntax errors, and caused replication to fail. (Bug#23619, Bug#24492)

• OPTIMIZE TABLE tried to sort R-tree indexes such as spatial indexes, although this is not possible (see Section 12.5.2.5, “OP-
TIMIZE TABLE Syntax”). (Bug#23578)

• The row count for MyISAM tables was not updated properly, causing SHOW TABLE STATUS to report incorrect values.
(Bug#23526)

• The Instance Manager DROP INSTANCE command did not work. (Bug#23476)

• User-defined variables could consume excess memory, leading to a crash caused by the exhaustion of resources available to the
MEMORY storage engine, due to the fact that this engine is used by MySQL for variable storage and intermediate results of GROUP
BY queries. Where SET had been used, such a condition could instead give rise to the misleading error message YOU MAY ONLY USE

CONSTANT EXPRESSIONS WITH SET, rather than OUT OF MEMORY (NEEDED NNNNNN BYTES). (Bug#23443)

• A table created with the ROW_FORMAT = FIXED table option lost the option if an index was added or dropped with CREATE
INDEX or DROP INDEX. (Bug#23404)

• A deadlock could occur, with the server hanging on Closing tables, with a sufficient number of concurrent INSERT
DELAYED, FLUSH TABLES, and ALTER TABLE operations. (Bug#23312)

• Accuracy was improved for comparisons between DECIMAL columns and numbers represented as strings. (Bug#23260)

• The Instance Manager STOP INSTANCE command took too much time and caused Instance Manager to be unresponsive.
(Bug#23215)

• If there was insufficient memory to store or update a blob record in a MyISAM table then the table will marked as crashed.
(Bug#23196)

• A compressed MyISAM table that became corrupted could crash myisamchk and possibly the MySQL Server. (Bug#23139)

• Using CREATE TABLE ... SELECT and rolling back the transaction would leave an empty table on the master, but the instruc-
tions would not be recorded in the binary log and therefore replicated to the slave. This would result in a difference between the

MySQL Change History

2124

http://bugs.mysql.com/24294
http://bugs.mysql.com/24293
http://bugs.mysql.com/24270
http://bugs.mysql.com/24261
http://bugs.mysql.com/24219
http://bugs.mysql.com/24158
http://bugs.mysql.com/24117
http://bugs.mysql.com/24037
http://bugs.mysql.com/23984
http://bugs.mysql.com/23973
http://bugs.mysql.com/23900
http://bugs.mysql.com/23760
http://bugs.mysql.com/23735
http://bugs.mysql.com/23619
http://bugs.mysql.com/24492
http://bugs.mysql.com/23578
http://bugs.mysql.com/23526
http://bugs.mysql.com/23476
http://bugs.mysql.com/23443
http://bugs.mysql.com/23404
http://bugs.mysql.com/23312
http://bugs.mysql.com/23260
http://bugs.mysql.com/23215
http://bugs.mysql.com/23196
http://bugs.mysql.com/23139


master and slave databases. An implicit commit has been added to ensure consistency. (Bug#22865)

• CREATE TABLE ... SELECT statements were not rolled back correctly. As part of the fix, such a statement now causes an im-
plicit commit before and after it is executed. However, it does not cause a commit when used to create a temporary table.
(Bug#22864)

• mysql_upgrade failed when called with a basedir pathname containing spaces. (Bug#22801)

• Using INSTALL PLUGIN followed by a restart of the server caused an error due to memory not being properly initialized.
(Bug#22694)

• SET lc_time_names = value allowed only exact literal values, not expression values. (Bug#22647)

• Changes to the lc_time_names system variable were not replicated. (Bug#22645)

• A partitioned table that used the DATA DIRECTORY option, where the data directory was the same as the directory in which the ta-
ble definition file resided, became corrupted following ALTER TABLE ENGINE=ARCHIVE. This was actually due to an issue
with the ARCHIVE storage engine, and not with partitioned tables in general. (Bug#22634)

• The STDDEV() function returned a positive value for data sets consisting of a single value. (Bug#22555)

• SHOW COLUMNS reported some NOT NULL columns as NULL. (Bug#22377)

• A server crash occurred when using LOAD DATA to load a table containing a NOT NULL spatial column, when the statement did
not load the spatial column. Now a NULL supplied to NOT NULL column error occurs. (Bug#22372)

• An ALTER TABLE statement that used a RENAME clause in combination with a MODIFY or CHANGE that did not actually change
the table (for example, when it changed a column's type from INT to INT). The behavior caused by this bug differed according to
whether or not the storage engine used by the table was transactional or non-transactional. For transactional tables (such as those us-
ing the InnoDB storage engine), the statement simply failed; for non-transactional tables (such as those using the MyISAM storage
engine), the ALTER TABLE statement succeeding renaming the table, but subsequent SELECT statements against the renamed ta-
ble would fail. (Bug#22369)

• The Instance Manager STOP INSTANCE command could not be applied to instances in the Crashed, Failed, or Abandoned
state. (Bug#22306)

• DATE_ADD() requires complete dates with no “zero” parts, but sometimes did not return NULL when given such a date.
(Bug#22229)

• Some small double precision numbers (such as 1.00000001e-300) that should have been accepted were truncated to zero.
(Bug#22129)

• Changing the value of MI_KEY_BLOCK_LENGTH in myisam.h and recompiling MySQL resulted in a myisamchk that saw ex-
isting MyISAM tables as corrupt. (Bug#22119)

• For a nonexistent table, DROP TEMPORARY TABLE failed with an incorrect error message if read_only was enabled.
(Bug#22077)

• A crash of the MySQL Server could occur when unpacking a BLOB column from a row in a corrupted MyISAM table. This could
happen when trying to repair a table using either REPAIR TABLE or myisamchk; it could also happen when trying to access such
a “broken” row using statements like SELECT if the table was not marked as crashed. (Bug#22053)

• The code for generating USE statements for binary logging of CREATE PROCEDURE statements resulted in confusing output from
mysqlbinlog for DROP PROCEDURE statements. (Bug#22043)

• STR_TO_DATE() returned NULL if the format string contained a space following a non-format character. (Bug#22029)

• It was possible to use DATETIME values whose year, month, and day parts were all zeroes but whose hour, minute, and second
parts contained nonzero values, an example of such an illegal DATETIME being '0000-00-00 11:23:45'.

Note

This fix was reverted in MySQL 5.1.18.

(Bug#21789)

MySQL Change History

2125

http://bugs.mysql.com/22865
http://bugs.mysql.com/22864
http://bugs.mysql.com/22801
http://bugs.mysql.com/22694
http://bugs.mysql.com/22647
http://bugs.mysql.com/22645
http://bugs.mysql.com/22634
http://bugs.mysql.com/22555
http://bugs.mysql.com/22377
http://bugs.mysql.com/22372
http://bugs.mysql.com/22369
http://bugs.mysql.com/22306
http://bugs.mysql.com/22229
http://bugs.mysql.com/22129
http://bugs.mysql.com/22119
http://bugs.mysql.com/22077
http://bugs.mysql.com/22053
http://bugs.mysql.com/22043
http://bugs.mysql.com/22029
http://bugs.mysql.com/21789


See also Bug#25301

• SSL connections could hang at connection shutdown. (Bug#21781, Bug#24148)

• yaSSL crashed on pre-Pentium Intel CPUs. (Bug#21765)

• Using FLUSH TABLES in one connection while another connection is using HANDLER statements caused a server crash.

Note

This fix was reverted in MySQL 5.1.22

(Bug#21587)

See also Bug#29474

• The FEDERATED storage engine did not support the euckr character set. (Bug#21556)

• InnoDB crashed while performing XA recovery of prepared transactions. (Bug#21468)

• It was possible to set the backslash character (“ \ ”) as the delimiter character using DELIMITER, but not actually possible to use it
as the delimiter. (Bug#21412)

• Using ALTER TABLE to convert a CSV table containing NULL values to MyISAM resulted in warnings. (Bug#21328)

• When updating a table that used a JOIN of the table itself (for example, when building trees) and the table was modified on one side
of the expression, the table would either be reported as crashed or the wrong rows in the table would be updated. (Bug#21310)

• mysqld_error.h was not installed when only the client libraries were built. (Bug#21265)

• InnoDB: During a restart of the MySQL Server that followed the creation of a temporary table using the InnoDB storage engine,
MySQL failed to clean up in such a way that InnoDB still attempted to find the files associated with such tables. (Bug#20867)

• Selecting into variables sometimes returned incorrect wrong results. (Bug#20836)

• Queries of the form SELECT ... WHERE string = ANY(...) failed when the server used a single-byte character set and
the client used a multi-byte character set. (Bug#20835)

• mysql_fix_privilege_tables.sql altered the table_privs.table_priv column to contain too few privileges,
causing loss of the CREATE VIEW and SHOW VIEW privileges. (Bug#20589)

• A stored routine containing semicolon in its body could not be reloaded from a dump of a binary log. (Bug#20396)

• SELECT ... FOR UPDATE, SELECT ... LOCK IN SHARE MODE, DELETE, and UPDATE statements executed using a
full table scan were not releasing locks on rows that did not satisfy the WHERE condition. (Bug#20390)

• The BUILD/check-cpu script did not recognize Celeron processors. (Bug#20061)

• Unsigned BIGINT values treated as signed values by the MOD() function. (Bug#19955)

• Compiling PHP 5.1 with the MySQL static libraries failed on some versions of Linux. (Bug#19817)

• The DELIMITER statement did not work correctly when used in an SQL file run using the SOURCE statement. (Bug#19799)

• For SET, SELECT, and DO statements that invoked a stored function from a database other than the default database, the function
invocation could fail to be replicated. (Bug#19725)

• mysqltest incorrectly tried to retrieve result sets for some queries where no result set was available. (Bug#19410)

• VARBINARY column values inserted on a MySQL 4.1 server had trailing zeroes following upgrade to MySQL 5.0 or later.
(Bug#19371)

• Some CASE statements inside stored routines could lead to excessive resource usage or a crash of the server. (Bug#19194,
Bug#24854)

MySQL Change History

2126

http://bugs.mysql.com/25301
http://bugs.mysql.com/21781
http://bugs.mysql.com/24148
http://bugs.mysql.com/21765
http://bugs.mysql.com/21587
http://bugs.mysql.com/29474
http://bugs.mysql.com/21556
http://bugs.mysql.com/21468
http://bugs.mysql.com/21412
http://bugs.mysql.com/21328
http://bugs.mysql.com/21310
http://bugs.mysql.com/21265
http://bugs.mysql.com/20867
http://bugs.mysql.com/20836
http://bugs.mysql.com/20835
http://bugs.mysql.com/20589
http://bugs.mysql.com/20396
http://bugs.mysql.com/20390
http://bugs.mysql.com/20061
http://bugs.mysql.com/19955
http://bugs.mysql.com/19817
http://bugs.mysql.com/19799
http://bugs.mysql.com/19725
http://bugs.mysql.com/19410
http://bugs.mysql.com/19371
http://bugs.mysql.com/19194
http://bugs.mysql.com/24854


• Instance Manager could crash during shutdown. (Bug#19044)

• myisampack wrote to unallocated memory, causing a crash. (Bug#17951)

• FLUSH LOGS or mysqladmin flush-logs caused a server crash if the binary log was not open. (Bug#17733)

• mysql_fix_privilege_tables did not handle a password containing embedded space or apostrophe characters.
(Bug#17700)

• No warning was issued for use of the DATA DIRECTORY or INDEX DIRECTORY table options on a platform that does not sup-
port them. (Bug#17498)

• The FEDERATED storage engine did not support the utf8 character set. (Bug#17044)

• The optimizer removes expressions from GROUP BY and DISTINCT clauses if they happen to participate in expression =
constant predicates of the WHERE clause, the idea being that, if the expression is equal to a constant, then it cannot take on mul-
tiple values. However, for predicates where the expression and the constant item are of different result types (for example, when a
string column is compared to 0), this is not valid, and can lead to invalid results in such cases. The optimizer now performs an addi-
tional check of the result types of the expression and the constant; if their types differ, then the expression is not removed from the
GROUP BY list. (Bug#15881)

• When a prepared statement failed during the prepare operation, the error code was not cleared when it was reused, even if the sub-
sequent use was successful. (Bug#15518)

• Dropping a user-defined function sometimes did not remove the UDF entry from the mysql.proc table. (Bug#15439)

• Inserting a row into a table without specifying a value for a BINARY(N) NOT NULL column caused the column to be set to
spaces, not zeroes. (Bug#14171)

• On Windows, the SLEEP() function could sleep too long, especially after a change to the system clock. (Bug#14094, Bug#24686,
Bug#17635)

• mysqldump --order-by-primary failed if the primary key name was an identifier that required quoting. (Bug#13926)

• Subqueries of the form NULL IN (SELECT ...) returned invalid results. (Bug#8804, Bug#23485)

C.1.18. Changes in MySQL 5.1.15 Carrier Grade Edition
This section contains change history information for MySQL Cluster 5.1 Carrier Grade Edition releases based on MySQL 5.1.15.

C.1.18.1. Changes in MySQL 5.1.15-ndb-6.1.23 (20 November 2007)

This is a new Beta development release, incorporating a bugfix made since the previous MySQL Cluster 5.1 Carrier Grade Edition re-
lease.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, MySQL 5.1.15-ndb-6.1.11, MySQL
5.1.15-ndb-6.1.12, MySQL 5.1.15-ndb-6.1.13, MySQL 5.1.15-ndb-6.1.14, MySQL 5.1.15-ndb-6.1.15, MySQL 5.1.15-ndb-6.1.16,
MySQL 5.1.15-ndb-6.1.17, MySQL 5.1.15-ndb-6.1.18, MySQL 5.1.15-ndb-6.1.19, MySQL 5.1.15-ndb-6.1.20, MySQL
5.1.15-ndb-6.1.21, and MySQL 5.1.15-ndb-6.1.22. This version also incorporates all bugfixes and feature changes which were added in
the mainline MySQL 5.1 releases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Bugs fixed:

• MySQL Cluster: A node failure during a local checkpoint could lead to a subsequent failure of the cluster during a system restart.
(Bug#31257)

MySQL Change History

2127

http://bugs.mysql.com/19044
http://bugs.mysql.com/17951
http://bugs.mysql.com/17733
http://bugs.mysql.com/17700
http://bugs.mysql.com/17498
http://bugs.mysql.com/17044
http://bugs.mysql.com/15881
http://bugs.mysql.com/15518
http://bugs.mysql.com/15439
http://bugs.mysql.com/14171
http://bugs.mysql.com/14094
http://bugs.mysql.com/24686
http://bugs.mysql.com/17635
http://bugs.mysql.com/13926
http://bugs.mysql.com/8804
http://bugs.mysql.com/23485
http://bugs.mysql.com/
http://bugs.mysql.com/31257


• A cluster restart could sometimes fail due to an issue with table IDs. (Bug#30975)

C.1.18.2. Changes in MySQL 5.1.15-ndb-6.1.22 (19 October 2007)

This is a new Beta development release, incorporating a bugfix made since the previous MySQL Cluster 5.1 Carrier Grade Edition re-
lease.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, MySQL 5.1.15-ndb-6.1.11, MySQL
5.1.15-ndb-6.1.12, MySQL 5.1.15-ndb-6.1.13, MySQL 5.1.15-ndb-6.1.14, MySQL 5.1.15-ndb-6.1.15, MySQL 5.1.15-ndb-6.1.16,
MySQL 5.1.15-ndb-6.1.17, MySQL 5.1.15-ndb-6.1.18, MySQL 5.1.15-ndb-6.1.19, MySQL 5.1.15-ndb-6.1.20, and MySQL
5.1.15-ndb-6.1.21. This version also incorporates all bugfixes and feature changes which were added in the mainline MySQL 5.1 re-
leases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Bugs fixed:

• MySQL Cluster: A node failure during a local checkpoint could lead to a subsequent failure of the cluster during a system restart.
(Bug#31257)

• A cluster restart could sometimes fail due to an issue with table IDs. (Bug#30975)

C.1.18.3. Changes in MySQL 5.1.15-ndb-6.1.21 (01 October 2007)

This is a new Beta development release, incorporating recent bugfixes made since the previous MySQL Cluster 5.1 Carrier Grade Edi-
tion release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, MySQL 5.1.15-ndb-6.1.11, MySQL
5.1.15-ndb-6.1.12, MySQL 5.1.15-ndb-6.1.13, MySQL 5.1.15-ndb-6.1.14, MySQL 5.1.15-ndb-6.1.15, MySQL 5.1.15-ndb-6.1.16,
MySQL 5.1.15-ndb-6.1.17, MySQL 5.1.15-ndb-6.1.18, MySQL 5.1.15-ndb-6.1.19, and MySQL 5.1.15-ndb-6.1.20. This version also in-
corporates all bugfixes and feature changes which were added in the mainline MySQL 5.1 releases up to and including 5.1.15 (see Sec-
tion C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Bugs fixed:

• MySQL Cluster: A node failure during a local checkpoint could lead to a subsequent failure of the cluster during a system restart.
(Bug#31257)

• A cluster restart could sometimes fail due to an issue with table IDs. (Bug#30975)

C.1.18.4. Changes in MySQL 5.1.15-ndb-6.1.20 (14 September 2007)

This is a new Beta development release, incorporating a bugfix made since the previous MySQL Cluster 5.1 Carrier Grade Edition re-
lease.

Note

MySQL Change History

2128

http://bugs.mysql.com/30975
http://bugs.mysql.com/
http://bugs.mysql.com/31257
http://bugs.mysql.com/30975
http://bugs.mysql.com/
http://bugs.mysql.com/31257
http://bugs.mysql.com/30975


Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, MySQL 5.1.15-ndb-6.1.11, MySQL
5.1.15-ndb-6.1.12, MySQL 5.1.15-ndb-6.1.13, MySQL 5.1.15-ndb-6.1.14, MySQL 5.1.15-ndb-6.1.15, MySQL 5.1.15-ndb-6.1.16,
MySQL 5.1.15-ndb-6.1.17, MySQL 5.1.15-ndb-6.1.18, and MySQL 5.1.15-ndb-6.1.19. This version also incorporates all bugfixes and
feature changes which were added in the mainline MySQL 5.1 releases up to and including 5.1.15 (see Section C.1.17, “Changes in
MySQL 5.1.15 (25 January 2007)”).

Bugs fixed:

• MySQL Cluster: A node failure during a local checkpoint could lead to a subsequent failure of the cluster during a system restart.
(Bug#31257)

• A cluster restart could sometimes fail due to an issue with table IDs. (Bug#30975)

C.1.18.5. Changes in MySQL 5.1.15-ndb-6.1.19 (01 August 2007)

This is a new Beta development release, incorporating recent feature enhancements since the previous MySQL Cluster 5.1 Carrier
Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, MySQL 5.1.15-ndb-6.1.11, MySQL
5.1.15-ndb-6.1.12, MySQL 5.1.15-ndb-6.1.13, MySQL 5.1.15-ndb-6.1.14, MySQL 5.1.15-ndb-6.1.15, MySQL 5.1.15-ndb-6.1.16,
MySQL 5.1.15-ndb-6.1.17, and MySQL 5.1.15-ndb-6.1.18. This version also incorporates all bugfixes and feature changes which were
added in the mainline MySQL 5.1 releases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January
2007)”).

Functionality added or changed:

• MySQL Cluster: Whenever a TCP send buffer is over 80% full, temporary error 1218 (SEND BUFFERS OVERLOADED IN NDB
KERNEL) is now returned. See SendBufferMemory for more information.

• An INFO event is now sent if the time between global checkpoints is excessive, or if DUMP 7901 is issued in the management cli-
ent.

C.1.18.6. Changes in MySQL 5.1.15-ndb-6.1.18 (Not released)

This is a new Beta development release, fixing recently discovered bugs in the previous MySQL Cluster 5.1 Carrier Grade Edition re-
lease.

Note

Please refer to our bug database at http://bugs.mysql.com/ for more details about the individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, MySQL 5.1.15-ndb-6.1.11, MySQL
5.1.15-ndb-6.1.12, MySQL 5.1.15-ndb-6.1.13, MySQL 5.1.15-ndb-6.1.14, MySQL 5.1.15-ndb-6.1.15, MySQL 5.1.15-ndb-6.1.16, and
MySQL 5.1.15-ndb-6.1.17. This version also incorporates all bugfixes and feature changes which were added in the mainline MySQL
5.1 releases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

MySQL Change History

2129

http://bugs.mysql.com/
http://bugs.mysql.com/31257
http://bugs.mysql.com/30975
http://bugs.mysql.com/
http://bugs.mysql.com/


Bugs fixed:

• MySQL Cluster: When restarting a data node, queries could hang during that node's start phase 5, and continue only after the node
had entered phase 6. (Bug#29364)

• Disk Data: Disk data meta-information that existed in ndbd might not be visible to mysqld. (Bug#28720)

• Disk Data: The number of free extents was incorrectly reported for some tablespaces. (Bug#28642)

• Storage engine error conditions in row-based replication were not correctly reported to the user. (Bug#29570)

C.1.18.7. Changes in MySQL 5.1.15-ndb-6.1.17 (03 July 2007)

This is a new Beta development release, fixing recently discovered bugs in the previous MySQL Cluster 5.1 Carrier Grade Edition re-
lease.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, MySQL 5.1.15-ndb-6.1.11, MySQL
5.1.15-ndb-6.1.12, MySQL 5.1.15-ndb-6.1.13, MySQL 5.1.15-ndb-6.1.14, MySQL 5.1.15-ndb-6.1.15, and MySQL 5.1.15-ndb-6.1.16.
This version also incorporates all bugfixes and feature changes which were added in the mainline MySQL 5.1 releases up to and includ-
ing 5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Functionality added or changed:

• Cluster Replication: Batching of updates on cluster replication slaves, enabled using the --slave-allow-batching option
for mysqld.

Bugs fixed:

• MySQL Cluster: Replica redo logs were inconsistently handled during a system restart. (Bug#29354)

C.1.18.8. Changes in MySQL 5.1.15-ndb-6.1.16 (29 June 2007)

This is a new Beta development release, fixing recently discovered bugs in the previous MySQL Cluster 5.1 Carrier Grade Edition re-
lease.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, MySQL 5.1.15-ndb-6.1.11, MySQL
5.1.15-ndb-6.1.12, MySQL 5.1.15-ndb-6.1.13, MySQL 5.1.15-ndb-6.1.14, and MySQL 5.1.15-ndb-6.1.15. This version also incorpor-
ates all bugfixes and feature changes which were added in the mainline MySQL 5.1 releases up to and including 5.1.15 (see Sec-
tion C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Bugs fixed:

MySQL Change History

2130

http://bugs.mysql.com/29364
http://bugs.mysql.com/28720
http://bugs.mysql.com/28642
http://bugs.mysql.com/29570
http://bugs.mysql.com/
http://bugs.mysql.com/29354
http://bugs.mysql.com/


• MySQL Cluster: When a node failed to respond to a COPY_GCI signal as part of a global checkpoint, the master node was killed
instead of the node that actually failed. (Bug#29331)

• MySQL Cluster: An invalid comparison made during REDO validation that could lead to an ERROR WHILE READING REDO LOG

condition. (Bug#29118)

• MySQL Cluster: The wrong data pages were sometimes invalidated following a global checkpoint. (Bug#29067)

• MySQL Cluster: If at least 2 files were involved in REDO invalidation, then file 0 of page 0 was not updated and so pointed to an
invalid part of the redo log. (Bug#29057)

• Disk Data: When dropping a page, the stack's bottom entry could sometime be left “cold” rather than “hot”, violating the rules for
stack pruning. (Bug#29176)

C.1.18.9. Changes in MySQL 5.1.15-ndb-6.1.15 (20 June 2007)

This is a new Beta development release, fixing a recently discovered bug in the previous MySQL Cluster 5.1 Carrier Grade Edition re-
lease.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, MySQL 5.1.15-ndb-6.1.11, MySQL
5.1.15-ndb-6.1.12, MySQL 5.1.15-ndb-6.1.13, and MySQL 5.1.15-ndb-6.1.14. This version also incorporates all bugfixes and feature
changes which were added in the mainline MySQL 5.1 releases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL
5.1.15 (25 January 2007)”).

Bugs fixed:

• MySQL Cluster: Memory corruption could occur due to a problem in the DBTUP kernel block. (Bug#29229)

C.1.18.10. Changes in MySQL 5.1.15-ndb-6.1.14 (19 June 2007)

This is a new Beta development release, incorporating bugfixes made since the previous MySQL Cluster 5.1 Carrier Grade Edition re-
lease.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, MySQL 5.1.15-ndb-6.1.11, MySQL
5.1.15-ndb-6.1.12, and MySQL 5.1.15-ndb-6.1.13. This version also incorporates all bugfixes and feature changes which were added in
the mainline MySQL 5.1 releases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Bugs fixed:

• MySQL Cluster: In the event that two data nodes in the same node group and participating in a GCP crashed before they had writ-
ten their respective P0.sysfile files, QMGR could refuse to start, issuing an invalid INSUFFICIENT NODES FOR RESTART error in-
stead. (Bug#29167)

C.1.18.11. Changes in MySQL 5.1.15-ndb-6.1.13 (15 June 2007)

MySQL Change History

2131

http://bugs.mysql.com/29331
http://bugs.mysql.com/29118
http://bugs.mysql.com/29067
http://bugs.mysql.com/29057
http://bugs.mysql.com/29176
http://bugs.mysql.com/
http://bugs.mysql.com/29229
http://bugs.mysql.com/
http://bugs.mysql.com/29167


This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, MySQL 5.1.15-ndb-6.1.11, and
MySQL 5.1.15-ndb-6.1.12. This version also incorporates all bugfixes and feature changes which were added in the mainline MySQL
5.1 releases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Functionality added or changed:

• Read ahead was implemented for backups of Disk Data tables, resulting in a 10 to 15% increase in backup speed of Disk Data
tables. (Bug#29099)

C.1.18.12. Changes in MySQL 5.1.15-ndb-6.1.12 (13 June 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, MySQL 5.1.15-ndb-6.1.10, and MySQL 5.1.15-ndb-6.1.11. This
version also incorporates all bugfixes and feature changes which were added in the mainline MySQL 5.1 releases up to and including
5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Functionality added or changed:

• MySQL Cluster: New cluster management client DUMP commands were added to aid in tracking transactions, scan operations, and
locks. See DUMP 2350, DUMP 2352, and DUMP 2550.

• Backup dump output was extended to provide more information.

Bugs fixed:

• MySQL Cluster: It is now possible to set the maximum size of the allocation unit for table memory using the MaxAllocate con-
figuration parameter. (Bug#29044)

C.1.18.13. Changes in MySQL 5.1.15-ndb-6.1.11 (06 June 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

MySQL Change History

2132

http://bugs.mysql.com/
http://bugs.mysql.com/29099
http://bugs.mysql.com/
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-dump-command-2350.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-dump-command-2352.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-dump-command-2550.html
http://bugs.mysql.com/29044
http://bugs.mysql.com/


This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, MySQL 5.1.15-ndb-6.1.9, and MySQL 5.1.15-ndb-6.1.10. This version also incorporates
all bugfixes and feature changes which were added in the mainline MySQL 5.1 releases up to and including 5.1.15 (see Section C.1.17,
“Changes in MySQL 5.1.15 (25 January 2007)”).

Functionality added or changed:

• Important Change: MySQL Cluster: The TimeBetweenWatchdogCheckInitial configuration parameter was added to al-
low setting of a separate watchdog timeout for memory allocation during startup of the data nodes. See Section 17.4.4.5, “Defining
Data Nodes”, for more information. (Bug#28899)

• MySQL Cluster: A new configuration parameter ODirect causes NDB to attempt using O_DIRECT writes for LCP, backups, and
redo logs, often lowering CPU usage.

• It is now possible to set the size of redo log files (fragment log files) using the FragmentLogFileSize configuration parameter.

Bugs fixed:

• MySQL Cluster: Having large amounts of memory locked caused swapping to disk. (Bug#28751)

• MySQL Cluster: LCP files were not removed following an initial system restart. (Bug#28726)

• Disk Data: Repeated INSERT and DELETE operations on a Disk Data table having one or more large VARCHAR columns could
cause data nodes to fail. (Bug#20612)

C.1.18.14. Changes in MySQL 5.1.15-ndb-6.1.10 (30 May 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, MySQL 5.1.15-ndb-6.1.8, and MySQL 5.1.15-ndb-6.1.9. This version also incorporates all bugfixes and feature
changes which were added in the mainline MySQL 5.1 releases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL
5.1.15 (25 January 2007)”).

Functionality added or changed:

• MySQL Cluster: A new times printout was added in the ndbd watchdog thread.

• MySQL Cluster: Some unneeded printouts in the ndbd out file were removed.

• The names of some log and other files were changed to avoid issues with the tar command's 99-character filename limit.

Bugs fixed:

• MySQL Cluster: A regression in the heartbeat monitoring code could lead to node failure under high load. This issue affected
MySQL 5.1.19 and MySQL 5.1.15-ndb-6.1.10 only. (Bug#28783)

• MySQL Cluster: A corrupt schema file could cause a FILE ALREADY OPEN error. (Bug#28770)

• MySQL Cluster: Setting InitialNoOpenFiles equal to MaxNoOfOpenFiles caused an error. This was due to the fact that

MySQL Change History

2133

http://bugs.mysql.com/28899
http://bugs.mysql.com/28751
http://bugs.mysql.com/28726
http://bugs.mysql.com/20612
http://bugs.mysql.com/
http://bugs.mysql.com/28783
http://bugs.mysql.com/28770


the actual value of MaxNoOfOpenFiles as used by the cluster was offset by 1 from the value set in config.ini. (Bug#28749)

• MySQL Cluster: A race condition could result when non-master nodes (in addition to the master node) tried to update active status
due to a local checkpoint (that is, between NODE_FAILREP and COPY_GCIREQ events). Now only the master updates the active
status. (Bug#28717)

• MySQL Cluster: A fast global checkpoint under high load with high usage of the redo buffer caused data nodes to fail.
(Bug#28653)

• Disk Data: When loading data into a cluster following a version upgrade, the data nodes could forcibly shut down due to page and
buffer management failures (that is, ndbrequire failures in PGMAN). (Bug#28525)

C.1.18.15. Changes in MySQL 5.1.15-ndb-6.1.9 (24 May 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, MySQL
5.1.15-ndb-6.1.7, and MySQL 5.1.15-ndb-6.1.8. This version also incorporates all bugfixes and feature changes which were added in
the mainline MySQL 5.1 releases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Bugs fixed:

• MySQL Cluster: When an API node sent more than 1024 signals in a single batch, NDB would process only the first 1024 of these,
and then hang. (Bug#28443)

• Disk Data: The cluster backup process scanned in ACC index order, which had bad effects for disk data. (Bug#28593)

C.1.18.16. Changes in MySQL 5.1.15-ndb-6.1.8 (05 May 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, MySQL 5.1.15-ndb-6.1.6, and
MySQL 5.1.15-ndb-6.1.7. This version also incorporates all bugfixes and feature changes which were added in the mainline MySQL 5.1
releases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Bugs fixed:

• MySQL Cluster: Local checkpoint files relating to dropped NDB tables were not removed. (Bug#28348)

• MySQL Cluster: Repeated insertion of data generated by mysqldump into NDB tables could eventually lead to failure of the
cluster. (Bug#27437)

• Disk Data: Extremely large inserts into Disk Data tables could lead to data node failure in some circumstances. (Bug#27942)

• Cluster API: In a multi-operation transaction, a delete operation followed by the insertion of an implicit NULL failed to overwrite
an existing value. (Bug#20535)

• Setting MaxNoOfTables very low and relative to DataMemory caused OUT OF MEMORY IN NDB KERNEL errors when inserting
relatively small amounts of data into NDB tables. (Bug#24173)

MySQL Change History

2134

http://bugs.mysql.com/28749
http://bugs.mysql.com/28717
http://bugs.mysql.com/28653
http://bugs.mysql.com/28525
http://bugs.mysql.com/28443
http://bugs.mysql.com/28593
http://bugs.mysql.com/
http://bugs.mysql.com/28348
http://bugs.mysql.com/27437
http://bugs.mysql.com/27942
http://bugs.mysql.com/20535
http://bugs.mysql.com/24173


C.1.18.17. Changes in MySQL 5.1.15-ndb-6.1.7 (05 May 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, MySQL 5.1.15-ndb-6.1.5, and MySQL 5.1.15-ndb-6.1.6. This
version also incorporates all bugfixes and feature changes which were added in the mainline MySQL 5.1 releases up to and including
5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Important

Upgrading to MySQL 5.1.15-ndb-6.1.7 from a previous release. The internal specifications for columns in NDB tables
has changed to allow compatibility with future MySQL Cluster and MySQL Cluster 5.1 Carrier Grade Edition releases
that are expected to implement online adding and dropping of columns. This change is not backwards compatible with
MySQL 5.1.16-ndb-6.2.0, ndb-6.1.x versions prior to MySQL 5.1.15-ndb-6.1.7, or MySQL Cluster mainline releases prior
to 5.1.18.

See the related note in Section 17.6.2, “Cluster Upgrade and Downgrade Compatibility”, for important information prior to
upgrading a MySQL Cluster to MySQL 5.1.15-ndb-6.1.7 or later from MySQL 5.1.15-ndb-6.1.6 or an earlier ndb-6.1.x re-
lease.

See also Bug#28205.

Functionality added or changed:

• Cluster Replication: Incompatible Change: The schema for the ndb_apply_status table in the mysql system database has
changed. When upgrading to this release from a previous MySQL Cluster 5.1 Carrier Grade Edition or mainline MySQL 5.1 release,
you must drop the mysql.ndb_apply_status table, then restart the server in order for the table to be re-created with the new
schema.

See Section 17.12.4, “Cluster Replication Schema and Tables”, for additional information.

Bugs fixed:

• MySQL Cluster: The cluster waited 30 seconds instead of 30 milliseconds before reading table statistics. (Bug#28093)

• MySQL Cluster: Under certain rare circumstances, ndbd could get caught in an infinite loop when one transaction took a read lock
and then a second transaction attempted to obtain a write lock on the same tuple in the lock queue. (Bug#28073)

• MySQL Cluster: Under some circumstances, a node restart could fail to update the Global Checkpoint Index (GCI). (Bug#28023)

• MySQL Cluster: Under certain rare circumstances performing a DROP TABLE or TRUNCATE on an NDB table could cause a node
failure or forced cluster shutdown. (Bug#27581)

• MySQL Cluster: Memory usage of a mysqld process grew even while idle. (Bug#27560)

• MySQL Cluster: Performing a delete followed by an insert during a local checkpoint could cause a ROWID ALREADY ALLOCATED er-
ror. (Bug#27205)

• Replication: Some queries that updated multiple tables were not backed up correctly. (Bug#27748)

• Cluster Replication: Disk Data: An issue with replication of Disk Data tables could in some cases lead to node failure.
(Bug#28161)

• Disk Data: Changes to a Disk Data table made as part of a transaction could not be seen by the client performing the changes until
the transaction had been committed. (Bug#27757)

MySQL Change History

2135

http://bugs.mysql.com/
http://bugs.mysql.com/28205
http://bugs.mysql.com/28093
http://bugs.mysql.com/28073
http://bugs.mysql.com/28023
http://bugs.mysql.com/27581
http://bugs.mysql.com/27560
http://bugs.mysql.com/27205
http://bugs.mysql.com/27748
http://bugs.mysql.com/28161
http://bugs.mysql.com/27757


• Disk Data: When restarting a data node following the creation of a large number of Disk Data objects (approximately 200 such ob-
jects), the cluster could not assign a node ID to the restarting node. (Bug#25741)

• Disk Data: Changing a column specification or issuing a TRUNCATE statement on a Disk Data table caused the table to become an
in-memory table.

This fix supersedes an incomplete fix that was made for this issue in MySQL 5.1.15. (Bug#24667, Bug#25296)

• Cluster Replication: It was possible for API nodes to begin interacting with the cluster subscription manager before they were fully
connected to the cluster. (Bug#27728)

• Cluster Replication: Under very high loads, checkpoints could be read or written with checkpoint indexes out of order.
(Bug#27651)

• Cluster API: An issue with the way in which the NdbDictionary::Dictionary::listEvents() method freed resources
could sometimes lead to memory corruption. (Bug#27663)

• An INSERT followed by a delete DELETE on the same NDB table caused a memory leak. (Bug#27756)

This regression was introduced by Bug#20612

• mysqldump could not dump log tables. (Bug#26121)

• The --with-readline option for configure did not work for commercial source packages, but no error message was printed
to that effect. Now a message is printed. (Bug#25530)

C.1.18.18. Changes in MySQL 5.1.15-ndb-6.1.6 (Not released)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, MySQL 5.1.15-ndb-6.1.4, and MySQL 5.1.15-ndb-6.1.5. This version also incorporates all
bugfixes and feature changes which were added in the mainline MySQL 5.1 releases up to and including 5.1.15 (see Section C.1.17,
“Changes in MySQL 5.1.15 (25 January 2007)”).

Functionality added or changed:

• Cluster Replication: Incompatible Change: The schema for the ndb_apply_status table in the mysql system database has
changed. When upgrading to this release from a previous MySQL Cluster 5.1 Carrier Grade Edition or mainline MySQL 5.1 release,
you must drop the mysql.ndb_apply_status table, then restart the server in order for the table to be re-created with the new
schema.

See Section 17.12.4, “Cluster Replication Schema and Tables”, for additional information.

Bugs fixed:

• MySQL Cluster: A data node failing while another data node was restarting could leave the cluster in an inconsistent state. In cer-
tain rare cases, this could lead to a race condition and the eventual forced shutdown of the cluster. (Bug#27466)

• MySQL Cluster: It was not possible to set LockPagesInMainMemory equal to 0. (Bug#27291)

• MySQL Cluster: A race condition could sometimes occur if the node acting as master failed while node IDs were still being alloc-
ated during startup. (Bug#27286)

• MySQL Cluster: When a data node was taking over as the master node, a race condition could sometimes occur as the node was as-

MySQL Change History

2136

http://bugs.mysql.com/25741
http://bugs.mysql.com/24667
http://bugs.mysql.com/25296
http://bugs.mysql.com/27728
http://bugs.mysql.com/27651
http://bugs.mysql.com/27663
http://bugs.mysql.com/27756
http://bugs.mysql.com/20612
http://bugs.mysql.com/26121
http://bugs.mysql.com/25530
http://bugs.mysql.com/
http://bugs.mysql.com/27466
http://bugs.mysql.com/27291
http://bugs.mysql.com/27286


suming responsibility for handling of global checkpoints. (Bug#27283)

• MySQL Cluster: mysqld could crash shortly after a data node failure following certain DML operations. (Bug#27169)

• MySQL Cluster: The same failed request from an API node could be handled by the cluster multiple times, resulting in reduced
performance. (Bug#27087)

• MySQL Cluster: The failure of a data node while restarting could cause other data nodes to hang or crash. (Bug#27003)

• MySQL Cluster: mysqld processes would sometimes crash under high load.

Note

This fix improves on and replaces a fix for this bug that was made in MySQL 5.1.15-ndb-6.1.5.

(Bug#26825)

• Disk Data: DROP INDEX on a Disk Data table did not always move data from memory into the tablespace. (Bug#25877)

• Cluster Replication: Trying to replicate a large number of frequent updates with a relatively small relay log (max-re-
lay-log-size set to 1M or less) could cause the slave to crash. (Bug#27529)

• Cluster API: An issue with the way in which the NdbDictionary::Dictionary::listEvents() method freed resources
could sometimes lead to memory corruption. (Bug#27663)

• Cluster API: A delete operation using a scan followed by an insert using a scan could cause a data node to fail. (Bug#27203)

C.1.18.19. Changes in MySQL 5.1.15-ndb-6.1.5 (15 March 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, MySQL 5.1.15-ndb-6.1.3, and MySQL 5.1.15-ndb-6.1.4. This version also incorporates all bugfixes and feature
changes which were added in the mainline MySQL 5.1 releases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL
5.1.15 (25 January 2007)”).

Important

Upgrading to MySQL 5.1.15-ndb-6.1.5 from a previous release. This release is not binary compatible with releases
previous to MySQL 5.1.15-ndb-6.1.3. This means that:

• You cannot perform an online upgrade to this release from MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1,
MySQL 5.1.15-ndb-6.1.2, or any of the mainline MySQL 5.1 releases. When upgrading from one of these versions,
you must shut down the cluster, replace all binaries, then restart the cluster.

• You must recompile all NDB API and MGM API applications used with a previous version of MySQL Cluster, includ-
ing those compiled against MySQL 5.1.15-ndb-6.1.3.

This release is also not backwards compatible with MySQL 5.1.15-ndb-6.1.14 or any release previous to MySQL
5.1.15-ndb-6.1.14 due to changes in the mysql system database. See Functionality added or changed for more informa-
tion.

Functionality added or changed:

• Cluster Replication: Incompatible Change: The schema for the ndb_apply_status table in the mysql system database has
changed. When upgrading to this release from a previous MySQL Cluster 5.1 Carrier Grade Edition or mainline MySQL 5.1 release,

MySQL Change History

2137

http://bugs.mysql.com/27283
http://bugs.mysql.com/27169
http://bugs.mysql.com/27087
http://bugs.mysql.com/27003
http://bugs.mysql.com/26825
http://bugs.mysql.com/25877
http://bugs.mysql.com/27529
http://bugs.mysql.com/27663
http://bugs.mysql.com/27203
http://bugs.mysql.com/


you must drop the mysql.ndb_apply_status table, then restart the server in order for the table to be re-created with the new
schema.

See Section 17.12.4, “Cluster Replication Schema and Tables”, for additional information.

Bugs fixed:

• MySQL Cluster: Creating a table on one SQL node while in single user mode caused other SQL nodes to crash. (Bug#26997)

• MySQL Cluster: mysqld processes would sometimes crash under high load.

Note

This fix was reverted in MySQL 5.1.15-ndb-6.1.6.

(Bug#26825)

• MySQL Cluster: An infinite loop in an internal logging function could cause trace logs to fill up with UNKNOWN SIGNAL TYPE error
messages and thus grow to unreasonable sizes. (Bug#26720)

• Disk Data: When creating a log file group, setting INITIAL_SIZE to less than UNDO_BUFFER_SIZE caused data nodes to
crash. (Bug#25743)

C.1.18.20. Changes in MySQL 5.1.15-ndb-6.1.4 (09 March 2007))

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

This was a testing release only, and not distributed to customers.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, MySQL
5.1.15-ndb-6.1.2, and MySQL 5.1.15-ndb-6.1.3. This version also incorporates all bugfixes and feature changes which were added in
the mainline MySQL 5.1 releases up to and including 5.1.15 (see Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”).

Important

Upgrading to MySQL 5.1.15-ndb-6.1.4 from a previous release. This release is not binary compatible with previous re-
leases. This means that:

• You cannot perform an online upgrade to this release from MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1,
MySQL 5.1.15-ndb-6.1.2, or any of the mainline MySQL 5.1 releases. When upgrading from one of these versions,
you must shut down the cluster, replace all binaries, then restart the cluster.

• You must recompile all NDB API and MGM API applications used with a previous version of MySQL Cluster, includ-
ing those compiled against MySQL 5.1.15-ndb-6.1.3.

Functionality added or changed:

• MySQL Cluster: An --ndb-wait-connected option has been added for mysqld. It causes mysqld wait a specified amount
of time to be connected to the cluster before accepting client connections. See here, for more information.

• Cluster API: It is now possible to specify the transaction coordinator when starting a transaction. See
Ndb::startTransaction(), for more information.

MySQL Change History

2138

http://bugs.mysql.com/26997
http://bugs.mysql.com/26825
http://bugs.mysql.com/26720
http://bugs.mysql.com/25743
http://bugs.mysql.com/
http://dev.mysql.com/doc/ndbapi/en/class-ndb-starttransaction.html


• Cluster API: It is now possible to iterate over all existing Ndb objects using three new methods of the
Ndb_cluster_connection class:

• lock_ndb_objects()

• get_next_ndb_object()

• unlock_ndb_objects()
For more information about these methods and their use, see ndb_cluster_connection::get_next_ndb_object(), in
the MySQL Cluster API Guide.

• Data node memory allocation has been improved. On 32-bit platforms, it should now be possible to use close to 3GB RAM for In-
dexMemory and DataMemory combined.

Bugs fixed:

• MySQL Cluster: Using only the --print_data option (and no other options) with ndb_restore caused ndb_restore to
fail. (Bug#26741)

This regression was introduced by Bug#14612

• MySQL Cluster: An inadvertent use of unaligned data caused ndb_restore to fail on some 64-bit platforms, including Sparc
and Itanium-2. (Bug#26739)

• Assigning a node ID greater than 63 to an SQL node caused an out of bounds error in mysqld. It should now be possible to assign
to SQL nodes node IDs up to 255. (Bug#26663)

C.1.18.21. Changes in MySQL 5.1.15-ndb-6.1.3 (25 February 2007)

This is a new Beta development release, fixing recently discovered bugs and incorporating improvements made since the previous
MySQL Cluster 5.1 Carrier Grade Edition release.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release incorporates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, and
MySQL 5.1.15-ndb-6.1.2. This version also incorporates all bugfixes and feature changes which were added in the mainline 5.1.15 re-
lease; information about these can be found in Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”.

Important

Upgrading to MySQL 5.1.15-ndb-6.1.3 from a previous release. This release is not binary compatible with releases
previous to MySQL 5.1.15-ndb-6.1.2. This means that:

• You cannot perform an online upgrade to this release from MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, or any
of the mainline MySQL 5.1 releases. When upgrading from one of these versions, you must shut down the cluster, re-
place all binaries, then restart the cluster.

However, you can perform an online upgrade of a Cluster running MySQL 5.1.15-ndb-6.1.2 to MySQL
5.1.15-ndb-6.1.3, using the rolling upgrade procedure described in Section 17.6.1, “Performing a Rolling Restart of the
Cluster”. You should replace all binaries for all data nodes, management nodes, and SQL nodes as part of this process.
When upgrading the data nodes, you will need to restart each data with the --initial option.

• You must recompile all NDB API and MGM API applications used with a previous version of MySQL Cluster, includ-
ing those compiled against MySQL 5.1.15-ndb-6.1.2.

Functionality added or changed:

MySQL Change History

2139

http://dev.mysql.com/doc/ndbapi/en/class-ndb-cluster-connection-get-next-ndb-object.html
http://bugs.mysql.com/26741
http://bugs.mysql.com/14612
http://bugs.mysql.com/26739
http://bugs.mysql.com/26663
http://bugs.mysql.com/


• MySQL Cluster: The ndbd_redo_log_reader utility is now part of the default build. For more information, see Sec-
tion 17.11.11, “ndbd_redo_log_reader — Check and Print Content of Cluster Redo Log”.

• Cluster API: A new listEvents() method has been added to the Dictionary class. See Dictionary::listEvents(),
for more information.

• The ndb_show_tables utility now displays information about table events. See Section 17.11.14, “ndb_show_tables —
Display List of NDB Tables”, for more information.

• It is now possible to disable arbitration by setting ArbitrationRank=0 on all management and SQL nodes.

Bugs fixed:

• MySQL Cluster: An invalid pointer was returned following a FSCLOSECONF signal when accessing the REDO logs during a node
restart or system restart. (Bug#26515)

• MySQL Cluster: The InvalidUndoBufferSize error used the same error code (763) as the IncompatibleVersions er-
ror. InvalidUndoBufferSize now uses its own error code (779). (Bug#26490)

• MySQL Cluster: The failure of a data node when restarting it with --initial could lead to failures of subsequent data node re-
starts. (Bug#26481)

• MySQL Cluster: Takeover for local checkpointing due to multiple failures of master nodes was sometimes incorrectly handled.
(Bug#26457)

• MySQL Cluster: The LockPagesInMainMemory parameter was not read until after distributed communication had already
started between cluster nodes. When the value of this parameter was 1, this could sometimes result in data node failure due to
missed heartbeats. (Bug#26454)

• MySQL Cluster: Under some circumstances, following the restart of a management node, all data nodes would connect to it nor-
mally, but some of them subsequently failed to log any events to the management node. (Bug#26293)

• MySQL Cluster: No appropriate error message was provided when there was insufficient REDO log file space for the cluster to
start. (Bug#25801)

• MySQL Cluster: A memory allocation failure in SUMA (the cluster Subscription Manager) could cause the cluster to crash.
(Bug#25239)

• MySQL Cluster: The message ERROR 0 IN READAUTOINCREMENTVALUE(): NO ERROR was written to the error log whenever
SHOW TABLE STATUS was performed on a Cluster table that did not have an AUTO_INCREMENT column.

Note

This improves on and supersedes an earlier fix that was made for this issue in MySQL 5.1.12.

(Bug#21033)

• Disk Data: A memory overflow could occur with tables having a large amount of data stored on disk, or with queries using a very
high degree of parallelism on Disk Data tables. (Bug#26514)

• Disk Data: Use of a tablespace whose INITIAL_SIZE was greater than 1 GB could cause the cluster to crash. (Bug#26487)

C.1.18.22. Changes in MySQL 5.1.15-ndb-6.1.2 (07 February 2007)

This is a new Beta development release, fixing a recently discovered bug.

Like all releases for MySQL MySQL Cluster 5.1 Carrier Grade Edition, this is a source-only release which you must compile and install
using the instructions found in Section 2.9, “MySQL Installation Using a Source Distribution”, and in Section 17.4.1, “Building
MySQL Cluster from Source Code”. You can download the source code archive for this release from the MySQL FTP site at
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/mysql-5.1.15-ndb-6.1.2. The file mysqlcom-
5.1.15-ndb-6.1.2-telco.tar.gz in this directory contains the complete source archive.

Note

MySQL Change History

2140

http://dev.mysql.com/doc/ndbapi/en/class-dictionary-listevents.html
http://bugs.mysql.com/26515
http://bugs.mysql.com/26490
http://bugs.mysql.com/26481
http://bugs.mysql.com/26457
http://bugs.mysql.com/26454
http://bugs.mysql.com/26293
http://bugs.mysql.com/25801
http://bugs.mysql.com/25239
http://bugs.mysql.com/21033
http://bugs.mysql.com/26514
http://bugs.mysql.com/26487
ftp://ftp.mysql.com/pub/mysql/download/cluster_telco/mysql-5.1.15-ndb-6.1.2


Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This Beta release is a hotfix release, made to resolve a single critical issue which occurred in MySQL 5.1.15-ndb-6.1.1-beta. It incorpor-
ates all bugfixes and feature changes made in MySQL 5.1.14-ndb-6.1.0 and MySQL 5.1.15-ndb-6.1.1. This version also incorporates all
bugfixes and feature changes which were added in the mainline 5.1.15 release; information about these can be found in Section C.1.17,
“Changes in MySQL 5.1.15 (25 January 2007)”.

Important

Upgrading to MySQL 5.1.15-ndb-6.1.2 from a previous release. This release is not binary compatible with any previ-
ous releases. This means that:

• You cannot perform an online upgrade to this release from MySQL 5.1.14-ndb-6.1.0, MySQL 5.1.15-ndb-6.1.1, or any
of the mainline MySQL 5.1 releases. You must shut down the cluster, replace all binaries, then restart the cluster.

• You must recompile any MySQL Cluster API applications used with a previous version of MySQL Cluster. This in-
cludes all NDB API and MGM API applications.

Bugs fixed:

• MySQL Cluster: Using node IDs greater than 48 could sometimes lead to incorrect memory access and a subsequent forced shut-
down of the cluster. (Bug#26267)

C.1.18.23. Changes in MySQL 5.1.15-ndb-6.1.1 (01 February 2007)

This is a new Beta development release, fixing recently discovered bugs.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This section documents all changes and bug fixes that have been applied in this Beta release since the release of MySQL Cluster
5.1.14-ndb-6.1.0. This version also incorporates all bugfixes and feature changes which were added in the mainline 5.1.15 release; in-
formation about these can be found in Section C.1.17, “Changes in MySQL 5.1.15 (25 January 2007)”.

Important

Upgrading to MySQL 5.1.15-ndb-6.1.1 from a previous release. This release is not binary compatible with any previ-
ous releases. This means that:

• You cannot perform an online upgrade to this release from either MySQL 5.1.14-ndb-6.1.0 or from any of the mainline
MySQL 5.1 releases. You must shut down the cluster, replace all binaries, then restart the cluster.

• You must recompile any MySQL Cluster API applications used with a previous version of MySQL Cluster. This in-
cludes all NDB API and MGM API applications.

Functionality added or changed:

• MySQL Cluster: A single cluster can now support up to 255 API nodes, including MySQL servers acting as SQL nodes. See Sec-
tion 17.15.8, “Issues Exclusive to MySQL Cluster”, for more information.

Bugs fixed:

MySQL Change History

2141

http://bugs.mysql.com/
http://bugs.mysql.com/26267
http://bugs.mysql.com/


• Cluster API: Disk Data: A delete and a read performed in the same operation could cause one or more data nodes to crash. This
could occur when the operation affected more than 5 columns concurrently, or when one or more of the columns was of the
VARCHAR type and was stored on disk. (Bug#25794)

• A memory leak could cause problems during a node or cluster shutdown or failure. (Bug#25997)

• An element could sometimes be inserted twice into the hash table, causing a data node to crash. (Bug#25286)

C.1.19. Changes in MySQL 5.1.14 (05 December 2006)
This is a new Beta development release, fixing recently discovered bugs.

Note

This Beta release, as any other pre-production release, should not be installed on production level systems or systems with
critical data. It is good practice to back up your data before installing any new version of software. Although MySQL has
worked very hard to ensure a high level of quality, protect your data by making a backup as you would for any software
beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the individual bugs fixed in
this version.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• Cluster Replication: Incompatible Change: Two major changes have taken place with regard to the MySQL Cluster system
tables. These are:

1. The cluster database is no longer used. The tables formerly found in the cluster database are now in the mysql data-
base, and have been renamed as ndb_binlog_index, ndb_apply_status, and ndb_schema.

2. The mysql.ndb_apply_status and mysql.ndb_schema tables (formerly cluster.apply_status and
cluster.schema are now created by ndb_restore, in the event that they do not already exist on the slave cluster.

Note

When upgrading from versions of MySQL previous to 5.1.14 to 5.1.14 or later, mysql_fix_privilege_tables
merely creates a new mysql.ndb_binlog_index table, but does not remove the existing cluster database (or, if
upgrading from MySQL 5.1.7 or earlier, the existing cluster_replication database), nor any of the tables in it.

For more information, see Section 17.12.4, “Cluster Replication Schema and Tables”. (Bug#14612)

• Cluster Replication: Incompatible Change: The cluster database is no longer used. The tables formerly found in the
cluster database are now in the mysql database, and have been renamed as ndb_binlog_index, ndb_apply_status,
and ndb_schema.

• Incompatible Change: The prepared_stmt_count system variable has been converted to the Prepared_stmt_count
global status variable (viewable with the SHOW GLOBAL STATUS statement). (Bug#23159)

• Incompatible Change: Previously, you could create a user-defined function (UDF) or stored function with the same name as a
built-in function, but could not invoke the UDF. Now an error occurs if you try to create such a UDF. The server also now generates
a warning if you create a stored function with the same name as a built-in function. It is not considered an error to create a stored
function with the same name as a built-in function because you can invoke the function using db_name.func_name() syntax.
However, the server now generates a warning in this case.

See Section 8.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server interprets references to different
kinds of functions. (Bug#22619, Bug#18239)

• MySQL Cluster: Backup messages are now printed to the Cluster log. (Bug#24544)

MySQL Change History

2142

http://bugs.mysql.com/25794
http://bugs.mysql.com/25997
http://bugs.mysql.com/25286
http://bugs.mysql.com/
http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise
http://bugs.mysql.com/14612
http://bugs.mysql.com/23159
http://bugs.mysql.com/22619
http://bugs.mysql.com/18239
http://bugs.mysql.com/24544


• MySQL Cluster: Setting the configuration parameter LockPagesInMainMemory had no effect. (Bug#24461)

• MySQL Cluster: The error message MANAGEMENT SERVER CLOSED CONNECTION, when recorded in the MySQL error log, now in-
cludes a timestamp indicating when the error took place. (Bug#21519)

• MySQL Cluster: It is now possible to create a unique hashed index on a column that is not defined as NOT NULL.

Note

This change applies only to tables using the NDB storage engine.

Unique indexes on columns in NDB tables do not store null values because they are mapped to primary keys in an internal index ta-
ble (and primary keys cannot contain nulls).

Normally, an additional ordered index is created when one creates unique indexes on NDB table columns; this can be used to search
for NULL values. However, if USING HASH is specified when such an index is created, no ordered index is created.

The reason for permitting unique hash indexes with null values is that, in some cases, the user wants to save space if a large number
of records are pre-allocated but not fully initialized. This also assumes that the user will not try to search for null values. Since
MySQL does not support indexes that are not allowed to be searched in some cases, the NDB storage engine uses a full table scan
with pushed conditions for the referenced index columns to return the correct result.

A warning is returned if one creates a unique nullable hash index, since the query optimizer should be provided a hint not to use it
with NULL values if this can be avoided. (Bug#21507)

• MySQL Cluster: (Disk Data): The output of mysqldump now includes by default all tablespace and logfile group definitions used
by any tables or databases that are dumped.

Note

The working of the --all-tablespaces or -Y option for mysqldump remains unaffected by this change.

(Bug#20839)

• DROP TRIGGER now supports an IF EXISTS clause. (Bug#23703)

• Direct and indirect usage of stored routines, user-defined functions, and table references is now prohibited in CREATE EVENT and
ALTER EVENT statements.

See Section 22.2.2, “CREATE EVENT Syntax”, and Section 22.2.1, “ALTER EVENT Syntax”, for more specific information.
(Bug#22830)

• The XPath operators < and >, as implemented in the ExtractValue() function, operated in reverse.

With this fix, all standard XPath comparison operators should now be supported correctly for use with the ExtractValue() and
UpdateXML() functions. (Bug#22823)

• For the mysql client, display of result set metadata now is enabled with the --column-type-info option rather than with -
-debug-info/-T.

• mysqladmin, mysqlcheck, mysqldump, mysqlimport, and mysqlshow now accept the --debug-info option, which
displays debugging information and memory and CPU usage statistics at program exit.

Bugs fixed:

• MySQL Cluster: The failure of a data node failure during a schema operation could lead to additional node failures. (Bug#24752)

• MySQL Cluster: A committed read could be attempted before a data node had time to connect, causing a timeout error.
(Bug#24717)

• MySQL Cluster: The simultaneous shutdown of mysqld and ndbd processes caused unnecessary locking. (Bug#24655)

• MySQL Cluster: The failure of the master node in a node group during the allocation of node IDs could cause ndb_mgmd to hang.
(Bug#24543)

MySQL Change History

2143

http://bugs.mysql.com/24461
http://bugs.mysql.com/21519
http://bugs.mysql.com/21507
http://bugs.mysql.com/20839
http://bugs.mysql.com/23703
http://bugs.mysql.com/22830
http://bugs.mysql.com/22823
http://bugs.mysql.com/24752
http://bugs.mysql.com/24717
http://bugs.mysql.com/24655
http://bugs.mysql.com/24543


• MySQL Cluster: In certain rare cases, a data node could crash due to a typographical error in the MySQL Cluster source code.
(Bug#24476)

• MySQL Cluster: Creating a new tables containing a BLOB column when the server was short of memory could cause the server to
crash. (Bug#24470)

• MySQL Cluster: Sudden disconnection of an SQL or data node could lead to shutdown of data nodes with the error FAILED ND-

BREQUIRE. (Bug#24447)

• MySQL Cluster: Any statement following the execution of CREATE TABLE ... LIKE ndb_table (where ndb_table
was a table using the NDB storage engine), would cause the mysql client to hang. (Bug#24301)

• MySQL Cluster: (Disk Data): Excessive fragmentation of Disk Data files (including log files and data files) could occur during the
course of normal use. (Bug#24143)

• MySQL Cluster: When the management client command ALL RESTART -i was executed while one data node was not running,
all data nodes in the cluster were shut down. (Bug#24105)

• MySQL Cluster: A query using an index scan followed by a delete operation, and then a rollback could cause one or more data
nodes to crash. (Bug#24039)

• MySQL Cluster: (Disk Data): Under some circumstances, a DELETE from a Disk Data table could cause mysqld to crash.
(Bug#23542)

• MySQL Cluster: It was possible for the sum of the MaxNoOfTables, MaxNoOfOrderedIndexes, and MaxNoOfUnique-
HashIndexes configuration parameters, plus the number of system tables to exceed the maximum value for a Uint32 number.
In such a case, the cluster's data nodes failed to start, and no reason for this could easily be determined from the error messages
provided. (Bug#22548)

• MySQL Cluster: A value equal to or greater than the allowed maximum for LongMessageBuffer caused all data nodes to
crash. (Bug#22547)

• MySQL Cluster: Multiple occurrences of error conditions were logged with duplicat error messages rather than being reported with
a single error message stating that the error was encountered N times. (Bug#22313)

• MySQL Cluster: Given a table mytbl in a database mydb on a MySQL Server acting as an SQL node in a MySQL Cluster, then,
following multiple ALTER TABLE mytbl ENGINE=engine statements — first, to change the storage engine used for a table
to NDB, and then again to change the table to use a non-NDB storage engine — a DROP DATABASE mydb statement executed on
any SQL node in the cluster would cause mydb to be dropped on all SQL nodes in the cluster, even if mydb contained non-NDB
tables. (Bug#21495)

• MySQL Cluster: An incorrect error message was displayed in the event that the value of the MaxNoOfOrderedIndexes para-
meter was set too low. (Bug#20065)

• MySQL Cluster: An incorrect error message was displayed in the event that the value of the DataMemory parameter was insuffi-
cient for the amount of data to be stored by the cluster. (Bug#19808)

• MySQL Cluster: Some values of MaxNoOfTriggers could cause the server to become inaccessible following startup of the data
nodes. (Bug#19454)

• MySQL Cluster: If the value set for MaxNoOfAttributes is excessive, a suitable error message is now returned. (Bug#19352)

• MySQL Cluster: Different error messages were returned for similar cases involving failure to allocate memory for Cluster opera-
tions. (Bug#19203)

• MySQL Cluster: A unique constraint violation was not ignored by an UPDATE IGNORE statement when the constraint violation
occurred on a non-primary key. (Bug#18487, Bug#24303)

• MySQL Cluster: (Replication): If errors occurred during purging of the binary logs, extraneous rows could remain left in the bin-
log_index table. (Bug#15021)

• Disk Data: ndb_restore sometimes failed when attempting to restore Disk Data tables due to data node failure caused by ac-
cessing uninitialized memory. (Bug#24331)

• Disk Data: It was possible to execute a statement for creating a Disk Data table that referred to a nonexistent tablespace, in which
case the table was an in-memory NDB table. Such a statement instead now fails with an appropriate error message. (Bug#23576)

MySQL Change History

2144

http://bugs.mysql.com/24476
http://bugs.mysql.com/24470
http://bugs.mysql.com/24447
http://bugs.mysql.com/24301
http://bugs.mysql.com/24143
http://bugs.mysql.com/24105
http://bugs.mysql.com/24039
http://bugs.mysql.com/23542
http://bugs.mysql.com/22548
http://bugs.mysql.com/22547
http://bugs.mysql.com/22313
http://bugs.mysql.com/21495
http://bugs.mysql.com/20065
http://bugs.mysql.com/19808
http://bugs.mysql.com/19454
http://bugs.mysql.com/19352
http://bugs.mysql.com/19203
http://bugs.mysql.com/18487
http://bugs.mysql.com/24303
http://bugs.mysql.com/15021
http://bugs.mysql.com/24331
http://bugs.mysql.com/23576


• Cluster API: Using BIT values with any of the comparison methods of the NdbScanFilter class caused data nodes to fail.
(Bug#24503)

• Cluster API: Some MGM API function calls could yield incorrect return values in certain cases where the cluster was operating un-
der a very high load, or experienced timeouts in inter-node communications. (Bug#24011)

• In some cases, a function that should be parsed as a user-defined function was parsed as a stored function. (Bug#24736)

• Some unnecessary Valgrind warnings were removed from the server. . (Bug#24488, Bug#24533)

• The server source code had multiple exportable definitions of the field_in_record_is_null() function. These are now all
declared static. (Bug#24190)

• The loose index scan optimization for GROUP BY with MIN or MAX was not applied within other queries, such as CREATE TABLE
... SELECT ..., INSERT ... SELECT ..., or in the FROM clauses of subqueries. (Bug#24156)

• Subqueries for which a pushed-down condition did not produce exactly one key field could cause a server crash. (Bug#24056)

• The size of MEMORY tables and internal temporary tables was limited to 4GB on 64-bit Windows systems. (Bug#24052)

• With row-based binary logging, replicated multiple-statement transaction deadlocks did not return the correct error code, causing the
slave SQL thread to stop rather than roll back and re-execute. (Bug#23831)

• LAST_DAY('0000-00-00') could cause a server crash. (Bug#23653)

• A trigger that invoked a stored function could cause a server crash when activated by different client connections. (Bug#23651)

• The stack size for NetWare binaries was increased to 128KB to prevent problems caused by insufficient stack size. (Bug#23504)

• If elements in a non-top-level IN subquery were accessed by an index and the subquery result set included a NULL value, the quan-
tified predicate that contained the subquery was evaluated to NULL when it should return a non-NULL value. (Bug#23478)

• When applying the group_concat_max_len limit, GROUP_CONCAT() could truncate multi-byte characters in the middle.
(Bug#23451)

• mysql_affected_rows() could return values different from mysql_stmt_affected_rows() for the same sequence of
statements. (Bug#23383)

• Calculation of COUNT(DISTINCT), AVG(DISTINCT), or SUM(DISTINCT) when they are referenced more than once in a
single query with GROUP BY could cause a server crash. (Bug#23184)

• Changes to character set variables prior to an action on a replication-ignored table were forgotten by slave servers. (Bug#22877)

• With row-based binary logging, for CREATE TABLE IF NOT EXISTS LIKE temporary_table statements, the IF NOT
EXISTS clause was not logged. (Bug#22762)

• BENCHMARK(), ENCODE(), DECODE(), and FORMAT() could only accept a constant for some parameters, and could not be
used in prepared statements. (Bug#22684)

• Queries using a column alias in an expression as part of an ORDER BY clause failed, an example of such a query being SELECT
mycol + 1 AS mynum FROM mytable ORDER BY 30 - mynum. (Bug#22457)

• Using EXPLAIN caused a server crash for queries that selected from INFORMATION_SCHEMA in a subquery in the FROM clause.
(Bug#22413)

• Instance Manager option-parsing code caused memory-allocation errors. (Bug#22242)

• Trailing spaces were not removed from Unicode CHAR column values when used in indexes. This resulted in excessive usage of
storage space, and could affect the results of some ORDER BY queries that made use of such indexes.

Note

When upgrading, it is necessary to re-create any existing indexes on Unicode CHAR columns in order to take advantage of
the fix. This can be done by using a REPAIR TABLE statement on each affected table.

(Bug#22052)

MySQL Change History

2145

http://bugs.mysql.com/24503
http://bugs.mysql.com/24011
http://bugs.mysql.com/24736
http://bugs.mysql.com/24488
http://bugs.mysql.com/24533
http://bugs.mysql.com/24190
http://bugs.mysql.com/24156
http://bugs.mysql.com/24056
http://bugs.mysql.com/24052
http://bugs.mysql.com/23831
http://bugs.mysql.com/23653
http://bugs.mysql.com/23651
http://bugs.mysql.com/23504
http://bugs.mysql.com/23478
http://bugs.mysql.com/23451
http://bugs.mysql.com/23383
http://bugs.mysql.com/23184
http://bugs.mysql.com/22877
http://bugs.mysql.com/22762
http://bugs.mysql.com/22684
http://bugs.mysql.com/22457
http://bugs.mysql.com/22413
http://bugs.mysql.com/22242
http://bugs.mysql.com/22052


• With row-based binary logging, CREATE TABLE IF NOT EXISTS SELECT statements were not logged properly.
(Bug#22027)

• In some cases, the parser failed to distinguish a user-defined function from a stored function. (Bug#21809)

• Inserting a default or invalid value into a spatial column could fail with Unknown error rather than a more appropriate error.
(Bug#21790)

• Evaluation of subqueries that require the filesort algorithm were allocating and freeing the sort_buffer_size buffer many
times, resulting in slow performance. Now the buffer is allocated once and reused. (Bug#21727)

• Through the C API, the member strings in MYSQL_FIELD for a query that contains expressions may return incorrect results.
(Bug#21635)

• View columns were always handled as having implicit derivation, leading to illegal mix of collation errors for
some views in UNION operations. Now view column derivation comes from the original expression given in the view definition.
(Bug#21505)

• INET_ATON() returned a signed BIGINT value, not an unsigned value. (Bug#21466)

• For debug builds, mysqladmin shutdown displayed an extraneous skipped 9 bytes from file: socket (3)
message. (Bug#21428)

• For view renaming, the table name to filename encoding was not performed. (Bug#21370)

• CREATE FUNCTION X() and CREATE FUNCTION Y() failed with a syntax error instead of warning the user that these func-
tion names are already used (for GIS functions). (Bug#21025)

• On slave servers, transactions that exceeded the lock wait timeout failed to roll back properly. (Bug#20697)

• CONCURRENT did not work correctly for LOAD DATA INFILE. (Bug#20637)

• With lower_case_table_names set to 1, SHOW CREATE TABLE printed incorrect output for table names containing Turk-
ish I (LATIN CAPITAL LETTER I WITH DOT ABOVE). (Bug#20404)

• A query with a subquery that references columns of a view from the outer SELECT could return an incorrect result if used from a
prepared statement. (Bug#20327)

• For queries that select from a view, the server was returning MYSQL_FIELD metadata inconsistently for view names and table
names. For view columns, the server now returns the view name in the table field and, if the column selects from an underlying
table, the table name in the org_table field. (Bug#20191)

• Invalidating the query cache caused a server crash for INSERT INTO ... SELECT statements that selected from a view.
(Bug#20045)

• For a cast of a DATETIME value containing microseconds to DECIMAL, the microseconds part was truncated without generating a
warning. Now the microseconds part is preserved. (Bug#19491)

• SQL statements close to the size of max_allowed_packet could produce binary log events larger than
max_allowed_packet that could not be read by slave servers. (Bug#19402)

• The server could send incorrect column count information to the client for queries that produce a larger number of columns than can
fit in a two-byte number. (Bug#19216)

• For some problems relating to character set conversion or incorrect string values for INSERT or UPDATE, the server was reporting
truncation or length errors instead. (Bug#18908)

• Constant expressions and some numeric constants used as input parameters to user-defined functions were not treated as constants.
(Bug#18761)

• Attempting to use a view containing DEFINER information for a non-existent user resulted in an error message that revealed the
definer account. Now the definer is revealed only to superusers. Other users receive only an access denied message.
(Bug#17254)

• IN() and CHAR() can return NULL, but did not signal that to the query processor, causing incorrect results for IS NULL opera-
tions. (Bug#17047)

MySQL Change History

2146

http://bugs.mysql.com/22027
http://bugs.mysql.com/21809
http://bugs.mysql.com/21790
http://bugs.mysql.com/21727
http://bugs.mysql.com/21635
http://bugs.mysql.com/21505
http://bugs.mysql.com/21466
http://bugs.mysql.com/21428
http://bugs.mysql.com/21370
http://bugs.mysql.com/21025
http://bugs.mysql.com/20697
http://bugs.mysql.com/20637
http://bugs.mysql.com/20404
http://bugs.mysql.com/20327
http://bugs.mysql.com/20191
http://bugs.mysql.com/20045
http://bugs.mysql.com/19491
http://bugs.mysql.com/19402
http://bugs.mysql.com/19216
http://bugs.mysql.com/18908
http://bugs.mysql.com/18761
http://bugs.mysql.com/17254
http://bugs.mysql.com/17047


• Warnings were generated when explicitly casting a character to a number (for example, CAST('x' AS SIGNED)), but not for
implicit conversions in simple arithmetic operations (such as 'x' + 0). Now warnings are generated in all cases. (Bug#11927)

• Metadata for columns calculated from scalar subqueries was limited to integer, double, or string, even if the actual type of the
column was different. (Bug#11032)

C.1.20. Changes in MySQL 5.1.14 Carrier Grade Edition
This section contains change history information for MySQL Cluster 5.1 Carrier Grade Edition releases based on MySQL 5.1.14.

C.1.20.1. Changes in MySQL 5.1.14-ndb-6.1.0 (20 December 2006)

This is a new Beta development release, fixing recently discovered bugs.

Note

Although MySQL has worked very hard to ensure a high level of quality, protect your data by making a backup as you
would for any software beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the
individual bugs fixed in this version.

This section documents all changes and bug fixes that have been applied in this Beta release since MySQL MySQL Cluster 5.1 Carrier
Grade Edition diverged from MySQL 5.1.14 standard.

Functionality added or changed:

• MySQL Cluster: A new configuration parameter MemReportFrequency allows for additional control of data node memory us-
age. Previously, only warnings at predetermined percentages of memory allocation were given; setting this parameter allows for that
behavior to be overridden. For more information, see Section 17.4.4.5, “Defining Data Nodes”.

Bugs fixed:

• MySQL Cluster: When a data node was shut down using the management client STOP command, a connection event
(NDB_LE_Connected) was logged instead of a disconnection event (NDB_LE_Disconnected). (Bug#22773)

• MySQL Cluster: SELECT statements with a BLOB or TEXT column in the selected column list and a WHERE condition including a
primary key lookup on a VARCHAR primary key produced empty result sets. (Bug#19956)

• Disk Data: MEDIUMTEXT columns of Disk Data tables were stored in memory rather than on disk, even if the columns were not in-
dexed. (Bug#25001)

• Disk Data: Performing a node restart with a newly dropped Disk Data table could lead to failure of the node during the restart.
(Bug#24917)

• Disk Data: When restoring from backup a cluster containing any Disk Data tables with hidden primary keys, a node failure resulted
which could lead to a crash of the cluster. (Bug#24166)

• Disk Data: Repeated CREATE, DROP, or TRUNCATE in various combinations with system restarts between these operations could
lead to the eventual failure of a system restart. (Bug#21948)

• Disk Data: Extents that should have been available for re-use following a DROP TABLE operation were not actually made avail-
able again until after the cluster had performed a local checkpoint. (Bug#17605)

• Cluster API: Invoking the NdbTransaction::execute() method using execution type Commit and abort option
AO_IgnoreError could lead to a crash of the transaction coordinator (DBTC). (Bug#25090)

• Cluster API: A unique index lookup on a non-existent tuple could lead to a data node timeout (error 4012). (Bug#25059)

• Cluster API: When using the NdbTransaction::execute() method, a very long timeout (greater than 5 minutes) could res-
ult if the last data node being polled was disconnected from the cluster. (Bug#24949)

• Cluster API: Due to an error in the computation of table fragment arrays, some transactions were not executed from the correct

MySQL Change History

2147

http://bugs.mysql.com/11927
http://bugs.mysql.com/11032
http://bugs.mysql.com/
http://bugs.mysql.com/22773
http://bugs.mysql.com/19956
http://bugs.mysql.com/25001
http://bugs.mysql.com/24917
http://bugs.mysql.com/24166
http://bugs.mysql.com/21948
http://bugs.mysql.com/17605
http://bugs.mysql.com/25090
http://bugs.mysql.com/25059
http://bugs.mysql.com/24949


starting point. (Bug#24914)

• Under certain rare circumstances, local checkpoints were not performed properly, leading to an inability to restart one or more data
nodes. (Bug#24664)

C.1.21. Changes in MySQL 5.1.13 (Not released)
This is a new Beta development release, fixing recently discovered bugs.

Note

This Beta release, as any other pre-production release, should not be installed on production level systems or systems with
critical data. It is good practice to back up your data before installing any new version of software. Although MySQL has
worked very hard to ensure a high level of quality, protect your data by making a backup as you would for any software
beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the individual bugs fixed in
this version.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• Incompatible Change: The number of function names affected by IGNORE_SPACE was reduced significantly in MySQL 5.1.13,
from about 200 to about 30. (For details about IGNORE_SPACE, see Section 8.2.4, “Function Name Parsing and Resolution”.) This
change improves the consistency of parser operation. However, it also introduces the possibility of incompatibility for old SQL code
that relies on the following conditions:

• IGNORE_SPACE is disabled.

• The presence or absence of whitespace following a function name is used to distinguish between a built-in function and stored
function that have the same name (for example, PI() versus PI ()).

For functions that are no longer affected by IGNORE_SPACE as of MySQL 5.1.13, that strategy no longer works. Either of the fol-
lowing approaches can be used if you have code that is subject to the preceding incompatibility:

• If a stored function has a name that conflicts with a built-in function, refer to the stored function with a schema name qualifier,
regardless of whether whitespace is present. For example, write schema_name.PI() or schema_name.PI ().

• Alternatively, rename the stored function to use a non-conflicting name and change invocations of the function to use the new
name.

(Bug#21114)

• Binary distributions of MySQL 5.1.12 were built without support for partitioning. This has been corrected except for NetWare.
(Bug#23949)

• A change in the interfaces for the INFORMATION_SCHEMA.FILES table has made the table accessible to storage engines other
than NDB. (Bug#23013)

• If the user specified the server options --max-connections=N or --table-open-cache=M , a warning would be given in
some cases that some values were recalculated, with the result that --table-open-cache could be assigned greater value.

It should be noted that, in such cases, both the warning and the increase in the --table-open-cache value were completely
harmless. Note also that it is not possible for the MySQL Server to predict or to control limitations on the maximum number of open
files, since this is determined by the operating system.

The recalculation code has now been fixed to ensure that the value of --table-open-cache is no longer increased automatic-
ally, and that a warning is now given only if some values had to be decreased due to operating system limits. (Bug#21915)

• For the CALL statement, stored procedures that take no arguments now can be invoked without parentheses. That is, CALL p()
and CALL p are equivalent. (Bug#21462)

MySQL Change History

2148

http://bugs.mysql.com/24914
http://bugs.mysql.com/24664
http://bugs.mysql.com/
http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise
http://bugs.mysql.com/21114
http://bugs.mysql.com/23949
http://bugs.mysql.com/23013
http://bugs.mysql.com/21915
http://bugs.mysql.com/21462


• mysql_upgrade now passes all the parameters specified on the command line to both mysqlcheck and mysql using the up-
grade_defaults file. (Bug#20100)

• mysqldump --single-transaction now uses START TRANSACTION /*!40100 WITH CONSISTENT SNAPSHOT
*/ rather than BEGIN to start a transaction, so that a consistent snapshot will be used on those servers that support it. (Bug#19660)

Bugs fixed:

• MySQL Cluster: Backup of a cluster failed if there were any tables with 128 or more columns. (Bug#23502)

• MySQL Cluster: Cluster backups failed when there were more than 2048 schema objects in the cluster. (Bug#23499)

• MySQL Cluster: Restoring a cluster failed if there were any tables with 128 or more columns. (Bug#23494)

• MySQL Cluster: (Disk Data): In the event of an aborted multiple update, the space in the Disk Data log buffer to be freed as a res-
ult was actually freed twice, which could eventually lead to a crash. (Bug#23430)

• MySQL Cluster: The management client command ALL DUMP 1000 would cause the cluster to crash if data nodes were connec-
ted to the cluster but not yret fully started. (Bug#23203)

• MySQL Cluster: INSERT ... ON DUPLICATE KEY UPDATE on an NDB table could lead to deadlocks and memory leaks.
(Bug#23200)

• MySQL Cluster: An NDB source file included a memset() call with reversed arguments. (Bug#23169)

• MySQL Cluster: If a node restart could not be performed from the REDO log, no node takeover took place. This could cause parti-
tions to be left empty during a system restart. (Bug#22893)

• MySQL Cluster: Multiple node restarts in rapid succession could cause a system restart to fail , or induce a race condition.
(Bug#22892, Bug#23210)

• MySQL Cluster: Attempting to create a unique constraint with USING HASH on an NDB table caused mysqld to crash.
(Bug#21873)

• MySQL Cluster: When inserting a row into an NDB table with a duplicate value for a non-primary unique key, the error issued
would reference the wrong key. (Bug#21072)

• MySQL Cluster: Aborting a cluster backup too soon after starting it caused a forced shutdown of the data nodes. (Bug#19148)

• Cluster API: When multiple processes or threads in parallel performed the same ordered scan with exclusive lock and updated the
retrieved records, the scan could skip some records, which as a result were not updated. (Bug#20446)

• There was a race condition in the InnoDB fil_flush_file_spaces() function. (Bug#24098)

• Some yaSSL-related memory leaks detected by Valgrind were fixed. (Bug#23981)

• MySQL 5.0.26 introduced an ABI incompatibility, which this release reverts. Programs compiled against 5.0.26 are not compatible
with any other version and must be recompiled. (Bug#23427)

• M % 0 returns NULL, but ( M % 0) IS NULL evaluated to false. (Bug#23411)

• For not-yet-authenticated connections, the Time column in SHOW PROCESSLIST was a random value rather than NULL.
(Bug#23379)

• InnoDB crashed when trying to display an error message about a foreign key constraint violation when the two tables are in differ-
ent schemas. (Bug#23368)

• MySQL failed to build on Linux/Alpha. (Bug#23256)

This regression was introduced by Bug#21250

• If COMPRESS() returned NULL, subsequent invocations of COMPRESS() within a result set or within a trigger also returned
NULL. (Bug#23254)

MySQL Change History

2149

http://bugs.mysql.com/20100
http://bugs.mysql.com/19660
http://bugs.mysql.com/23502
http://bugs.mysql.com/23499
http://bugs.mysql.com/23494
http://bugs.mysql.com/23430
http://bugs.mysql.com/23203
http://bugs.mysql.com/23200
http://bugs.mysql.com/23169
http://bugs.mysql.com/22893
http://bugs.mysql.com/22892
http://bugs.mysql.com/23210
http://bugs.mysql.com/21873
http://bugs.mysql.com/21072
http://bugs.mysql.com/19148
http://bugs.mysql.com/20446
http://bugs.mysql.com/24098
http://bugs.mysql.com/23981
http://bugs.mysql.com/23427
http://bugs.mysql.com/23411
http://bugs.mysql.com/23379
http://bugs.mysql.com/23368
http://bugs.mysql.com/23256
http://bugs.mysql.com/21250
http://bugs.mysql.com/23254


• Insufficient memory (myisam_sort_buffer_size) could cause a server crash for several operations on MyISAM tables: repair
table, create index by sort, repair by sort, parallel repair, bulk insert. (Bug#23175)

• The column default value in the output from SHOW COLUMNS or SELECT FROM INFORMATION_SCHEMA.COLUMNS was
truncated to 64 characters. (Bug#23037)

• mysql did not check for errors when fetching data during result set printing. (Bug#22913)

• The return value from my_seek() was ignored. (Bug#22828)

• Use of SQL_BIG_RESULT did not influence the sort plan for query execution. (Bug#22781)

• The optimizer failed to use equality propagation for BETWEEN and IN predicates with string arguments. (Bug#22753)

• The Handler_rollback status variable sometimes was incremented when no rollback had taken place. (Bug#22728)

• The Host column in SHOW PROCESSLIST output was blank when the server was started with the --skip-grant-tables
option. (Bug#22723)

• If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that does not include the
AUTO_INCREMENT column should not change the value of LAST_INSERT_ID(), because the side effects of inserting default
values into columns not part of the view should not be visible. MySQL was incorrectly setting LAST_INSERT_ID() to zero.
(Bug#22584)

• The optimizer used the ref join type rather than eq_ref for a simple join on strings. (Bug#22367)

• Some queries that used MAX() and GROUP BY could incorrectly return an empty result. (Bug#22342)

• If an init_connect SQL statement produced an error, the connection was silently terminated with no error message. Now the
server writes a warning to the error log. (Bug#22158)

• An unhandled NULL pointer caused a server crash. (Bug#22138)

• Incorrect warnings occurred for use of CREATE TABLE ... LIKE or REPAIR TABLE with the log tables. (Bug#21966)

• The optimizer sometimes mishandled R-tree indexes for GEOMETRY data types, resulting in a server crash. (Bug#21888)

• Use of a DES-encrypted SSL certificate file caused a server crash. (Bug#21868)

• Use of PREPARE with a CREATE PROCEDURE statement that contained a syntax error caused a server crash. (Bug#21856)

• Adding a day, month, or year interval to a DATE value produced a DATE, but adding a week interval produced a DATETIME value.
Now all produce a DATE value. (Bug#21811)

• Use of a subquery that invoked a function in the column list of the outer query resulted in a memory leak. (Bug#21798)

• It was not possible to do an atomic rename of the log tables without the possibility of losing rows. Now you can do this:

USE mysql;
CREATE TABLE IF NOT EXISTS general_log2 LIKE general_log;
RENAME TABLE general_log TO general_log_backup, general_log2 TO general_log;

(Bug#21785, Bug#17544)

• Within a prepared statement, SELECT (COUNT(*) = 1) (or similar use of other aggregate functions) did not return the correct
result for statement re-execution. (Bug#21354)

• Within a stored routine, a view definition cannot refer to routine parameters or local variables. However, an error did not occur until
the routine was called. Now it occurs during parsing of the routine creation statement.

Note

A side effect of this fix is that if you have already created such routines, and error will occur if you execute SHOW CRE-
ATE PROCEDURE or SHOW CREATE FUNCTION. You should drop these routines because they are erroneous.

(Bug#20953)

MySQL Change History

2150

http://bugs.mysql.com/23175
http://bugs.mysql.com/23037
http://bugs.mysql.com/22913
http://bugs.mysql.com/22828
http://bugs.mysql.com/22781
http://bugs.mysql.com/22753
http://bugs.mysql.com/22728
http://bugs.mysql.com/22723
http://bugs.mysql.com/22584
http://bugs.mysql.com/22367
http://bugs.mysql.com/22342
http://bugs.mysql.com/22158
http://bugs.mysql.com/22138
http://bugs.mysql.com/21966
http://bugs.mysql.com/21888
http://bugs.mysql.com/21868
http://bugs.mysql.com/21856
http://bugs.mysql.com/21811
http://bugs.mysql.com/21798
http://bugs.mysql.com/21785
http://bugs.mysql.com/17544
http://bugs.mysql.com/21354
http://bugs.mysql.com/20953


• In mysql, invoking connect or \r with very long db_name or host_name parameters caused buffer overflow. (Bug#20894)

• WITH ROLLUP could group unequal values. (Bug#20825)

• Range searches on columns with an index prefix could miss records. (Bug#20732)

• The server did not allocate sufficient memory for some queries for which a DISTINCT to GROUP BY conversion is possible and an
ORDER BY clause is present, resulting in a server crash. (Bug#20503)

• LIKE searches failed for indexed utf8 character columns. (Bug#20471)

• With SQL_MODE=TRADITIONAL, MySQL incorrectly aborted on warnings within stored routines and triggers. (Bug#20028)

• mysqldump --xml produced invalid XML for BLOB data. (Bug#19745)

• Column names were not quoted properly for replicated views. (Bug#19736)

• The range analysis optimizer did not take into account predicates for which an index could be used after reading const tables. In
some cases this resulted in non-optimal execution plans. (Bug#19579)

• FLUSH INSTANCES in Instance Manager triggered an assertion failure. (Bug#19368)

• For a debug server, a reference to an undefined user variable in a prepared statment executed with EXECUTE caused an assertion
failure. (Bug#19356)

• Within a trigger for a base table, selecting from a view on that base table failed. (Bug#19111)

• The value of the warning_count system variable was not being calculated correctly (also affecting SHOW COUNT(*) WARN-
INGS). (Bug#19024)

• DELETE IGNORE could hang for foreign key parent deletes. (Bug#18819)

• InnoDB used table locks (not row locks) within stored functions. (Bug#18077)

• mysql would lose its connection to the server if its standard output was not writable. (Bug#17583)

• At shutdown, Instance Manager told guarded server instances to stop, but did not wait until they actually stopped. (Bug#17486)

• mysql-test-run did not work correctly for RPM-based installations. (Bug#17194)

• A client library crash was caused by executing a statement such as SELECT * FROM t1 PROCEDURE ANALYSE() using a
server side cursor on a table t1 that does not have the same number of columns as the output from PROCEDURE ANALYSE().
(Bug#17039)

• The WITH CHECK OPTION for a view failed to prevent storing invalid column values for UPDATE statements. (Bug#16813)

• InnoDB showed substandard performance with multiple queries running concurrently. (Bug#15815)

• ALTER TABLE was not able to rename a view. (Bug#14959)

• Statements such as DROP PROCEDURE and DROP VIEW were written to the binary log too late due to a race condition.
(Bug#14262)

• A literal string in a GROUP BY clause could be interpreted as a column name. (Bug#14019)

• Entries in the slow query log could have an incorrect Rows_examined value. (Bug#12240)

• Lack of validation for input and output TIME values resulted in several problems: SEC_TO_TIME() in some cases did not clip
large values to the TIME range appropriately; SEC_TO_TIME() treated BIGINT UNSIGNED values as signed; only truncation
warnings were produced when both truncation and out-of-range TIME values occurred. (Bug#11655, Bug#20927)

• Several string functions could return incorrect results when given very large length arguments. (Bug#10963)

• FROM_UNIXTIME() did not accept arguments up to POWER(2,31)-1, which it had previously. (Bug#9191)

• OPTIMIZE TABLE with myisam_repair_threads > 1 could result in MyISAM table corruption. (Bug#8283)

MySQL Change History

2151

http://bugs.mysql.com/20894
http://bugs.mysql.com/20825
http://bugs.mysql.com/20732
http://bugs.mysql.com/20503
http://bugs.mysql.com/20471
http://bugs.mysql.com/20028
http://bugs.mysql.com/19745
http://bugs.mysql.com/19736
http://bugs.mysql.com/19579
http://bugs.mysql.com/19368
http://bugs.mysql.com/19356
http://bugs.mysql.com/19111
http://bugs.mysql.com/19024
http://bugs.mysql.com/18819
http://bugs.mysql.com/18077
http://bugs.mysql.com/17583
http://bugs.mysql.com/17486
http://bugs.mysql.com/17194
http://bugs.mysql.com/17039
http://bugs.mysql.com/16813
http://bugs.mysql.com/15815
http://bugs.mysql.com/14959
http://bugs.mysql.com/14262
http://bugs.mysql.com/14019
http://bugs.mysql.com/12240
http://bugs.mysql.com/11655
http://bugs.mysql.com/20927
http://bugs.mysql.com/10963
http://bugs.mysql.com/9191
http://bugs.mysql.com/8283


• Transient errors in replication from master to slave may trigger multiple Got fatal error 1236: 'binlog truncated
in the middle of event' errors on the slave. (Bug#4053)

C.1.22. Changes in MySQL 5.1.12 (24 October 2006)
This is a new Beta development release, fixing recently discovered bugs.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• Incompatible Change: MySQL Cluster: MySQL Cluster node and system restarts formerly required that all fragments use the
same local checkpoint (LCP); beginning with this version, it is now possible for different fragments to use different LCPs during re-
starts. This means that data node filesystems must be rebuilt as part of any upgrade to this version by restarting all data nodes with
the --initial option.

See Section 17.6.2, “Cluster Upgrade and Downgrade Compatibility”, and related sections of the Manual before upgrading a
MySQL Cluster to version 5.1.12 or later. (Bug#21478, Bug#21271)

• Incompatible Change: In the INFORMATION_SCHEMA.EVENTS table, the EVENT_DEFINITION column now contains the
SQL executed by a scheduled event.

The EVENT_BODY column now contains the language used for the statement or statements shown in EVENT_DEFINITION. In
MySQL 5.1, the value shown in EVENT_BODY is always SQL.

These changes were made to bring this table into line with the INFORMATION_SCHEMA.ROUTINES table, and that table's
ROUTINE_BODY and ROUTINE_DEFINITION columns. (Bug#16992)

• Incompatible Change: Support for the BerkeleyDB (BDB) engine has been dropped from this release. Any existing tables that are
in BDB format will not be readable from within MySQL from 5.1.12 or newer. You should convert your tables to another storage
engine before upgrading to 5.1.12.

Because of this change, the SHOW [BDB] LOGS statement has been dropped.

• Incompatible Change: A number of MySQL constructs are now prohibited in partitioning expressions, beginning with this release.
These include:

• A number of MySQL functions.

You can find a complete list of these functions under Partitioning Limitations.

• The bit operators |, &, ^, <<, >>, and ~.

• Nested function calls.

• Calls to stored routines, UDFs, or plugins.

• Character-to-integer conversions involving non-8-bit character sets or any of the latin1_german2_ci, lat-
in2_czech_cs, or cp1250_czech_cs collations.

These restrictions were added in part as a result of Bug#18198 and related bug reports.

For more information about these and other restrictions on partitioned tables in MySQL, see Section 18.5, “Restrictions and Limita-
tions on Partitioning”.

• Incompatible Change: The permitted values for and behaviour of the event_scheduler system variable have changed. Permit-
ted values are now ON, OFF, and DISABLED, with OFF being the default. It is not possible to change its value to or from DIS-
ABLED while the server is running.

For details, see Section 22.1, “Event Scheduler Overview”.

MySQL Change History

2152

http://bugs.mysql.com/4053
http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise
http://bugs.mysql.com/21478
http://bugs.mysql.com/21271
http://bugs.mysql.com/16992
http://bugs.mysql.com/18198


• Incompatible Change: The plugin interface has changed: The st_mysql_plugin structure has a new license member to in-
dicate the license type. (The allowable values are defined in mysql/plugin.h.) This change is not backward compatible, so the
API version (MYSQL_PLUGIN_INTERFACE_VERSION) has changed. For additional information, see Section 29.2.5, “Writing
Plugins”.

• Incompatible Change: The full-text parser plugin interface has changed in two ways:

• The MYSQL_FTPARSER_PARAM structure has a new flags member. This is zero if there are no special flags, or
MYSQL_FTFLAGS_NEED_COPY, which means that mysql_add_word() must save a copy of the word (that is, it cannot
use a pointer to the word because the word is in a buffer that will be overwritten.)

This flag might be set or reset by MySQL before calling the parser plugin, by the parser plugin itself, or by the
mysql_parse() function.

• The mysql_parse() and mysql_add_word() functions now take a MYSQL_FTPARSER_PARAM as their first argument,
not a MYSQL_FTPARSER_PARAM::mysql_ftparam as before.

These changes are not backward compatible, so the API version (MYSQL_FTPARSER_INTERFACE_VERSION) has changed. For
additional information, see Section 29.2.5, “Writing Plugins”.

• Incompatible Change: Storage engines can be pluggable at runtime, so the distinction between disabled and invalid storage engines
no longer applies. This affects the NO_ENGINE_SUBSTITUTION SQL mode, as described in Section 5.1.6, “SQL Modes”.

• Incompatible Change: The namespace for scheduled events has changed, such that events are no longer unique to individual users.
This also means that a user with the EVENT privilege on a given database can now view, alter, or drop any events defined on that
database.

If you used scheduled events in an earlier MySQL 5.1 release, you should rename any of them having the same name and defined on
the same database but belonging to different users — so that all events in a given database have unique names — before upgrading
to 5.1.12 (or newer).

For additional information, see Section 22.5, “The Event Scheduler and MySQL Privileges”.

• Important Change: MySQL Cluster: LOAD DATA INFILE no longer causes an implicit commit for all storage engines. It now
causes an implicit commit only for tables using the NDB storage engine. (Bug#11151)

• Important Change: MySQL Cluster: It is no longer possible to create Cluster tables using any partitioning type other than [LIN-
EAR] KEY. Attempting to do so now raises an error.

• Important Change: MySQL Cluster: The status variables Ndb_connected_host and Ndb_connected_port were re-
named to Ndb_config_from_host and Ndb_config_from_port, respectively.

• MySQL Cluster: The ndb_config utility now accepts -c as a short form of the --ndb-connectstring option.
(Bug#22295)

• MySQL Cluster: Added the --bind-address option for ndbd. This allows a data node process to be bound to a specific network in-
terface. (Bug#22195)

• MySQL Cluster: The Ndb_number_of_storage_nodes system variable was renamed to
Ndb_number_of_data_nodes. (Bug#20848)

• MySQL Cluster: The HELP command in the Cluster management client now provides command-specific help. For example, HELP
RESTART in ndb_mgm provides detailed information about the RESTART command. (Bug#19620)

• MySQL Cluster: A number of erroneous, misleading, or missing error messages have been corrected. (Bug#17297, Bug#19543)

• MySQL Cluster: Backup messages are no longer printed to the cluster log.

• MySQL Cluster: Added the --ndb-use-copying-alter-table option to mysqld to provide a fallback in case of prob-
lems with online ALTER TABLE operations on NDB tables.

• Cluster API: Two new NDB API methods — aggregate() and validate() — were added to the NdbDiction-
ary::Object::Table class. See Table::aggregate(), and Table::validate(), for more information. This was
done to rectify the following issues:

• Under some conditions, the data distribution could become unbalanced in a MySQL Cluster with 2 or more node groups follow-

MySQL Change History

2153

http://bugs.mysql.com/11151
http://bugs.mysql.com/22295
http://bugs.mysql.com/22195
http://bugs.mysql.com/20848
http://bugs.mysql.com/19620
http://bugs.mysql.com/17297
http://bugs.mysql.com/19543
http://dev.mysql.com/doc/ndbapi/en/class-table-aggregate.html
http://dev.mysql.com/doc/ndbapi/en/class-table-validate.html


ing the creation of a new table.

• Data was stored unevenly between partitions due to all BLOB data being placed in partition 0.
(Bug#21690)

• The number of InnoDB threads is no longer limited to 1,000 on Windows. (Bug#22268)

• The STATE column of the INFORMATION_SCHEMA.PROCESSLIST table was increased from 30 to 64 characters to accommod-
ate longer state values. (Bug#21652)

• mysqldump now has a --flush-privileges option. It causes mysqldump to emit a FLUSH PRIVILEGES statement after
dumping the mysql database. This option should be used any time the dump contains the mysql database and any other database
that depends on the data in the mysql database for proper restoration. (Bug#21424)

• mysqlslap threads now try to connect up to 10 times if the initial connect attempt fails. (Bug#21297)

• The output generated by the server when using the --xml option has changed with regard to null values. It now matches the output
from mysqldump --xml . That is, a column containing a NULL value is now reported as

<field name="column_name" xsi:nil="true" />

whereas a column containing the string value 'NULL' is reported as

<field name="column_name">NULL</field>

and a column containing an empty string is reported as

<field name="column_name">>/field>

(Bug#21263)

• The mysqld and mysqlmanager manpages have been reclassified from volume 1 to volume 8. (Bug#21220)

• InnoDB now honors IGNORE INDEX. Perviously using IGNORE INDEX in cases where an index sort would be slower than a
filesort had no effect when used with InnoDB tables. (Bug#21174)

• TIMESTAMP columns that are NOT NULL now are reported that way by SHOW COLUMNS and INFORMATION_SCHEMA.
(Bug#20910)

• Memory consumption of the InnoDB data dictionary cache was roughly halved by cleaning up the data structures. (Bug#20877)

• The BINARY keyword now is forbidden as a data type attribute in stored routines (for example, DECLARE v1 VARCHAR(25)
BINARY), because DECLARE does not support collations, and in this context BINARY specifies the binary collation of the variable's
character set. (Bug#20701)

• The following statements now can be executed as prepared statements (using PREPARE plus EXECUTE):

CACHE INDEX
CHANGE MASTER
CHECKSUM {TABLE | TABLES}
{CREATE | RENAME | DROP} DATABASE
{CREATE | RENAME | DROP} USER
FLUSH {TABLE | TABLES | TABLES WITH READ LOCK | HOSTS | PRIVILEGES
| LOGS | STATUS | MASTER | SLAVE | DES_KEY_FILE | USER_RESOURCES}

GRANT
REVOKE
KILL
LOAD INDEX INTO CACHE
RESET {MASTER | SLAVE | QUERY CACHE}
SHOW BINLOG EVENTS
SHOW CREATE {PROCEDURE | FUNCTION | EVENT | TABLE | VIEW}
SHOW {AUTHORS | CONTRIBUTORS | WARNINGS | ERRORS}
SHOW {MASTER | BINARY} LOGS
SHOW {MASTER | SLAVE} STATUS
SLAVE {START | STOP}
INSTALL PLUGIN
UNINSTALL PLUGIN

MySQL Change History

2154

http://bugs.mysql.com/21690
http://bugs.mysql.com/22268
http://bugs.mysql.com/21652
http://bugs.mysql.com/21424
http://bugs.mysql.com/21297
http://bugs.mysql.com/21263
http://bugs.mysql.com/21220
http://bugs.mysql.com/21174
http://bugs.mysql.com/20910
http://bugs.mysql.com/20877
http://bugs.mysql.com/20701


(Bug#20665)

• In the INFORMATION_SCHEMA.ROUTINES table the ROUTINE_DEFINITION column now is defined as NULL rather than
NOT NULL. Also, NULL rather than the empty string is returned as the column value if the user does not have sufficient privileges
to see the routine definition. (Bug#20230)

• The mysqldumpslow script has been moved from client RPM packages to server RPM packages. This corrects a problem where
mysqldumpslow could not be used with a client-only RPM install, because it depends on my_print_defaults which is in
the server RPM. (Bug#20216)

• The MySQL distribution now compiles on UnixWare 7.13. (Bug#20190)

• configure now defines the symbol DBUG_ON in config.h to indicate whether the source tree is configured to be compiled
with debugging support. (Bug#19517)

• TEXT and BLOB columns do not support DEFAULT values. However, when a default of '' was specified, the specification was si-
lently ignored. This now results in a warning, or an error in strict mode. (Bug#19498)

• For mysqlshow, if a database name argument contains wildcard characters (such as “ _ ”) but matches a single database name ex-
actly, treat the name as a literal name. This allows a command such as mysqlshow information_schema work without hav-
ing to escape the wildcard character. (Bug#19147)

• The source distribution has been updated so that the UDF example can be compiled under Windows with CMake. See Sec-
tion 29.3.4.5, “Compiling and Installing User-Defined Functions”. (Bug#19121)

• The default value of the tmp_table_size system variable was lowered from 32MB to 16MB because it is bounded by the value
of max_heap_table_size, which has a default of 16MB. (Bug#18875)

• Log table changes: By default, the log tables use the CSV storage engine, as before. But now the log tables can be altered to use the
MyISAM storage engine. You cannot use ALTER TABLE to alter a log table that is in use. The log must be disabled first. No en-
gines other than CSV or MyISAM are legal for the log tables. The use of DROP TABLE for log tables is similarly restricted: It can-
not be used to drop a log table that is in use. The log must be disabled first. (These changes also correct a deadlock that occurred for
an attempt to drop an in-use log table.) (Bug#18559)

• Added the --set-charset option to mysqlbinlog to allow the character set to be specified for processing binary log files.
(Bug#18351)

• The ExtractValue() function now produces an error when passed an XML fragment that is not well-formed.

(Previously, the function allowed invalid XML fragments to be used.) (Bug#18201)

• On Windows, typing Control-C while a query was running caused the mysql client to crash. Now it causes mysql to attempt to
kill the current statement. If this cannot be done, or Control-C is typed again before the statement is killed, mysql exits. (In other
words, mysql's behavior with regard to Control-C is now the same as it is on Unix platforms.) (Bug#17926)

See also Bug#1989

• The bundled yaSSL library licensing has added a FLOSS exception similar to MySQL to resolve licensing incompatibilities with
MySQL. (See the extra/yassl/FLOSS-EXCEPTIONS file in a MySQL source distribution for details.) (Bug#16755)

• SHOW CREATE TABLE now shows constraints for InnoDB tables. (Bug#16614)

• EXPLAIN EXTENDED now shows a filtered column that is an estimated percentage of the examined rows that will be joined
with the previous tables. This was added while dealing with a problem of MySQL choosing the wrong index for some queries.
(Bug#14940)

• The mysql client now allows \l in the prompt command argument to insert the current delimiter into the prompt. (Bug#14448)

• The mysql client used the default character set if it automatically reconnected to the server, which is incorrect if the character set
had been changed. To enable the character set to remain synchronized on the client and server, the mysql command charset (or
\C) that changes the default character set and now also issues a SET NAMES statement. The changed character set is used for re-
connects. (Bug#11972)

• The LEFT() and RIGHT() functions return NULL if any argument is NULL. (Bug#11728)

MySQL Change History

2155

http://bugs.mysql.com/20665
http://bugs.mysql.com/20230
http://bugs.mysql.com/20216
http://bugs.mysql.com/20190
http://bugs.mysql.com/19517
http://bugs.mysql.com/19498
http://bugs.mysql.com/19147
http://bugs.mysql.com/19121
http://bugs.mysql.com/18875
http://bugs.mysql.com/18559
http://bugs.mysql.com/18351
http://bugs.mysql.com/18201
http://bugs.mysql.com/17926
http://bugs.mysql.com/1989
http://bugs.mysql.com/16755
http://bugs.mysql.com/16614
http://bugs.mysql.com/14940
http://bugs.mysql.com/14448
http://bugs.mysql.com/11972
http://bugs.mysql.com/11728


• If a DROP VIEW statement named multiple views, it stopped with an error if a non-existent view was named and did not drop the
remaining views. Now it continues on and reports an error at the end, similar to DROP TABLE. (Bug#11551)

• For a successful dump, mysqldump now writes a SQL comment to the end of the dump file in the following format:

-- Dump completed on YYYY-MM-DD hh:mm:ss

(Bug#10877)

• There were several issues regarding how SHOW STATUS affected some status variables and logging which could impact monitor-
ing the MySQL Server. The behavior of this statement has been modified in two ways:

• SHOW STATUS is no longer logged to the slow query log.

• SHOW STATUS no longer updates any session status variables, except for com_show_status.

However, SHOW STATUS continues to update global status variables to allow monitoring of what the server is actually doing. This
is because SHOW STATUS creates temporary tables that may affect performance if it is called excessively often. (Bug#10210)

See also Bug#19764

• For spatial data types, the server formerly returned these as VARSTRING values with a binary collation. Now the server returns spa-
tial values as BLOB values. (Bug#10166)

• The LOAD DATA FROM MASTER and LOAD TABLE FROM MASTER statements are deprecated. See Section 12.6.2.2, “LOAD
DATA FROM MASTER Syntax”, for recommended alternatives. (Bug#9125, Bug#20596, Bug#14399, Bug#12187, Bug#15025,
Bug#18822)

• For the mysql client, typing Control-C causes mysql to attempt to kill the current statement. If this cannot be done, or Control-C
is typed again before the statement is killed, mysql exits. Previously, Control-C caused mysql to exit in all cases. (Bug#1989)

• It is no longer possible to create partitioned tables using the CSV storage engine.

• Character-to-integer conversions involving non-8-bit character sets or any of the latin1_german2_ci, latin2_czech_cs,
or cp1250_czech_cs collations.

• Binary MySQL distributions no longer include a mysqld-max server. Instead, distributions contain a binary that includes the fea-
tures previously included in the mysqld-max binary.

• SHOW STATUS is no longer logged to the slow query log.

• Program Database files (extension pdf) are now included by default in Windows distributions. These can be used to help diagnose
problems with mysqld and other tools. See Section 29.5.1, “Debugging a MySQL Server”.

• INFORMATION_SCHEMA contains new tables, GLOBAL_STATUS, SESSION_STATUS, GLOBAL_VARIABLES, and SES-
SION_VARIABLES, that correspond to the output from the SHOW {GLOBAL|SESSION} STATUS and SHOW
{GLOBAL|SESSION} VARIABLES statements.

• SHOW STATUS no longer updates any session status variables, except for com_show_status.

• A new system variable, lc_time_names, specifies the locale that controls the language used to display day and month names and
abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and MONTHNAME() functions. See Sec-
tion 9.7, “MySQL Server Locale Support”.

• Using --with-debug to configure MySQL with debugging support enables you to use the --debug="d,parser_debug"
option when you start the server. This causes the Bison parser that is used to process SQL statements to dump a parser trace to the
server's standard error output. Typically, this output is written to the error log.

• The bit operators |, &, ^, <<, >>, and ~.

• Nested function calls.

• The bundled yaSSL library was upgraded to version 1.3.7.

• Calls to stored routines, UDFs, or plugins.

MySQL Change History

2156

http://bugs.mysql.com/11551
http://bugs.mysql.com/10877
http://bugs.mysql.com/10210
http://bugs.mysql.com/19764
http://bugs.mysql.com/10166
http://bugs.mysql.com/9125
http://bugs.mysql.com/20596
http://bugs.mysql.com/14399
http://bugs.mysql.com/12187
http://bugs.mysql.com/15025
http://bugs.mysql.com/18822
http://bugs.mysql.com/1989


• The Instance Manager --passwd option has been renamed to --print-password-line. Other options were added to enable
management of the IM password file from the command line: --add-user, --drop-user, --edit-user, --list-users,
--check-password-file, --clean-password-file, --username, and --password. The -
-mysql-safe-compatible option was added to cause the Instance Manner to act similarly to mysqld_safe.

• Added the SHOW CONTRIBUTORS statement.

• The general query log and slow query logs now can be enabled or disabled at runtime with the general_log and
slow_query_log system variables, and the name of the log files can be changed by setting the general_log_file and
slow_query_log_file system variables. See Section 5.2.3, “The General Query Log”, and Section 5.2.5, “The Slow Query
Log”.

• The default binary log format (as used during replication) is now Mixed based, automatically using a combination of row-based and
statement based log events as appropriate.

Bugs fixed:

• Security Fix: A stored routine created by one user and then made accessible to a different user using GRANT EXECUTE could be
executed by that user with the privileges of the routine's definer. (Bug#18630, CVE-2006-4227)

• Security Fix: On Linux, and possibly other platforms using case-sensitive filesystems, it was possible for a user granted rights on a
database to create or access a database whose name differed only from that of the first by the case of one or more letters.
(Bug#17647, CVE-2006-4226)

• Security Fix: If a user has access to MyISAM table t, that user can create a MERGE table m that accesses t. However, if the user's
privileges on t are subsequently revoked, the user can continue to access t by doing so through m. If this behavior is undesirable,
you can start the server with the new --skip-merge option to disable the MERGE storage engine. (Bug#15195, CVE-2006-4031)

• Incompatible Change: For utf8 columns, the full-text parser incorrectly considered several non-word punctuation and whitespace
characters as word characters, causing some searches to return incorrect results.

The fix involves a change to the full-text parser, so any tables that have FULLTEXT indexes on utf8 columns must be repaired
with REPAIR TABLE:

REPAIR TABLE tbl_name QUICK;

(Bug#19580)

• MySQL Cluster: Packaging: The ndb_mgm program was included in both the MySQL-ndb-tools and MySQL-
ndb-management RPM packages, resulting in a conflict if both were installed. Now ndb_mgm is included only in MySQL-
ndb-tools. (Bug#21058)

• MySQL Cluster: (NDB API): Inacivity timeouts for scans were not correctly handled. (Bug#23107)

• MySQL Cluster: Inserting into an NDB table failed when the table had no primary key but had a unique key added after table was
created on one or more NOT NULL columns. This occurred when the unique key had been adding using either ALTER TABLE or
CREATE UNIQUE KEY. (Bug#22838)

• MySQL Cluster: (NDB API): Attempting to read a nonexistent tuple using Commit mode for NdbTransac-
tion::execute() caused node failures. (Bug#22672)

• MySQL Cluster: The --help output from NDB binaries did not include file-related options. (Bug#21994)

• MySQL Cluster: Setting TransactionDeadlockDetectionTimeout to a value greater than 12000 would cause scans to
deadlock, time out, fail to release scan records, until the cluster ran out of scan records and stopped processing. (Bug#21800)

• MySQL Cluster: A scan timeout returned Error 4028 (NODE FAILURE CAUSED ABORT OF TRANSACTION) instead of Error 4008
(NODE FAILURE CAUSED ABORT OF TRANSACTION...). (Bug#21799)

• MySQL Cluster: The node recovery algorithm was missing a version check for tables in the ALTER_TABLE_COMMITTED state
(as opposed to the TABLE_ADD_COMMITTED state, which has the version check). This could cause inconsistent schemas across
nodes following node recovery. (Bug#21756)

MySQL Change History

2157

http://bugs.mysql.com/18630
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4227
http://bugs.mysql.com/17647
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4226
http://bugs.mysql.com/15195
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4031
http://bugs.mysql.com/19580
http://bugs.mysql.com/21058
http://bugs.mysql.com/23107
http://bugs.mysql.com/22838
http://bugs.mysql.com/22672
http://bugs.mysql.com/21994
http://bugs.mysql.com/21800
http://bugs.mysql.com/21799
http://bugs.mysql.com/21756


• MySQL Cluster: (Disk Data): Trying to create a Disk Data table using a nonexistent tablespace or trying to drop a nonexistent data
file from a tablespace produced an uninformative error message. (Bug#21751)

• MySQL Cluster: (Disk Data): Errors could occur when dropping a data file during a node local checkpoint. (Bug#21710)

• MySQL Cluster: A memory leak occurred when running ndb_mgm -e "SHOW". (Bug#21670)

• MySQL Cluster: The server provided a non-descriptive error message when encountering a fatally corrupted REDO log.
(Bug#21615)

• MySQL Cluster: The output for the --help option used with NDB executable programs (such as ndbd, ndb_mgm,
ndb_restore, ndb_config, and others mentioned in Section 17.11, “Cluster Utility Programs”) referred to the Ndb.cfg file,
instead of to my.cnf. (Bug#21585)

• MySQL Cluster: A partial rollback could lead to node restart failures. (Bug#21536)

• MySQL Cluster: Partition distribution keys were updated only for the primary and starting replicas during node recovery. This
could lead to node failure recovery for clusters having an odd number of replicas.

Note

We recommend values for NumberOfReplicas that are even powers of 2, for best results.

(Bug#21535)

• MySQL Cluster: The ndb_mgm management client did not set the exit status on errors, always returning 0 instead. (Bug#21530)

• MySQL Cluster: The failure of a unique index read due to an invalid schema version could be handled incorrectly in some cases,
leading to unpredictable results. (Bug#21384)

• MySQL Cluster: Attempting to create an NDB table on a MySQL server with an existing non-Cluster table with the same name in
the same database could result in data loss or corruption. Now, if such a table is encountered during autodiscovery, a warning is
written to the error log of the affected mysqld, and the local table is overwritten. (Bug#21378)

• MySQL Cluster: Cluster logs were not rotated following the first rotation cycle. (Bug#21345)

• MySQL Cluster: In a cluster with more than 2 replicas, a manual restart of one of the data nodes could fail and cause the other
nodes in the same node group to shut down. (Bug#21213)

• MySQL Cluster: The ndb_size.pl script did not account for TEXT and BLOB column values correctly. (Bug#21204)

• MySQL Cluster: (Disk Data): Creating a tablespace and log file group, then attempting to restart the cluster without using the -
-initial option and without having created any Disk Data tables could cause a forced shutdown of the cluster and raise a config-
uration error. (Bug#21172)

• MySQL Cluster: Some queries involving joins on very large NDB tables could crash the MySQL server. (Bug#21059)

• MySQL Cluster: Condition pushdown did not work correctly with DATETIME columns. (Bug#21056)

• MySQL Cluster: Responses to the ALL DUMP 1000 management client command were printed multiple times in the cluster log
for each cluster node. (Bug#21044)

• MySQL Cluster: The message ERROR 0 IN READAUTOINCREMENTVALUE(): NO ERROR was written to the error log whenever
SHOW TABLE STATUS was performed on a Cluster table that did not have an AUTO_INCREMENT column. (Bug#21033)

• MySQL Cluster: Restarting a data node while DDL operations were in progress on the cluster could cause other data nodes to fail.
This could also lead to mysqld hanging or crashing under some circumstances. (Bug#21017, Bug#21050)

• MySQL Cluster: In some situations with a high disk-load, writing of the redo log could hang, causing a crash with the error mes-
sage GCP STOP DETECTED. (Bug#20904)

• MySQL Cluster: A race condition could in some cirumstances following a DROP TABLE. (Bug#20897)

• MySQL Cluster: Under some circumstances, local checkpointing would hang, keeping any unstarted nodes from being started.
(Bug#20895)

MySQL Change History

2158

http://bugs.mysql.com/21751
http://bugs.mysql.com/21710
http://bugs.mysql.com/21670
http://bugs.mysql.com/21615
http://bugs.mysql.com/21585
http://bugs.mysql.com/21536
http://bugs.mysql.com/21535
http://bugs.mysql.com/21530
http://bugs.mysql.com/21384
http://bugs.mysql.com/21378
http://bugs.mysql.com/21345
http://bugs.mysql.com/21213
http://bugs.mysql.com/21204
http://bugs.mysql.com/21172
http://bugs.mysql.com/21059
http://bugs.mysql.com/21056
http://bugs.mysql.com/21044
http://bugs.mysql.com/21033
http://bugs.mysql.com/21017
http://bugs.mysql.com/21050
http://bugs.mysql.com/20904
http://bugs.mysql.com/20897
http://bugs.mysql.com/20895


• MySQL Cluster: When the redo buffer ran out of space, a POINTER TOO LARGE error was raised and the cluster could become un-
usable until restarted with --initial. (Bug#20892)

• MySQL Cluster: A vague error message was returned when reading both schema files during a restart of the cluster. (Bug#20860)

• MySQL Cluster: The repeated creating and dropping of a table would eventually lead to NDB Error 826, TOO MANY TABLES AND

ATTRIBUTES ... INSUFFICIENT SPACE. (Bug#20847)

• MySQL Cluster: (Disk Data): mysqldump did not back up tablespace or log file group information for Disk Data tables correctly.
(Specifically, UNDO_BUFFER_SIZE and INITIAL_SIZE values were misreported.) Trying to restore from such a backup would
produce error 1296 (GOT ERROR 1504 'OUT OF LOGBUFFER MEMORY' FROM NDB). (Bug#20809)

• MySQL Cluster: When attempting to restart the cluster following a data import, the cluster failed during Phase 4 of the restart with
ERROR 2334: JOB BUFFER CONGESTION. (Bug#20774)

• MySQL Cluster: REPLACE statements did not work correctly on an NDB table having both a primary key and a unique key. In
such cases, proper values were not set for columns which were not explicitly referenced in the statement. (Bug#20728)

• MySQL Cluster: The server did not honor the value set for ndb_cache_check_time in the my.cnf file. (Bug#20708)

• MySQL Cluster: Truncating a table on one mysqld caused other mysqld processes connected to the cluster to return ERROR
1412 (HY000): TABLE DEFINITION HAS CHANGED, PLEASE RETRY TRANSACTION on subsequent queries. (Bug#20705)

• MySQL Cluster: Using an invalid node ID with the management client STOP command could cause ndb_mgm to hang.
(Bug#20575)

• MySQL Cluster: Renaming of table columns was not supported as fast a ALTER TABLE for NDB tables. (Bug#20456)

• MySQL Cluster: ndb_size.pl and ndb_error_reporter were missing from RPM packages. (Bug#20426)

• MySQL Cluster: Running ndbd --nowait-nodes=id where id was the node ID of a node that was already running would
fail with an invalid error message. (Bug#20419)

• MySQL Cluster: Data nodes added while the cluster was running in single user mode were all assigned node ID 0, which could
later cause multiple node failures. Adding nodes while in single user mode is no longer possible. (Bug#20395)

• MySQL Cluster: The ndb_mgm client command ALL CLUSTERLOG STATISTICS=15 had no effect. (Bug#20336)

• MySQL Cluster: (Disk Data): Running a large nbumber of scans on Disk Data could cause subsequent scans to perform poorly.
(Bug#20334)

• MySQL Cluster: (Direct APIs): NdbScanOperation::readTuples() and NdbIndexScanOpera-
tion::readTuples() ignored the batch parameter. (Bug#20252)

• MySQL Cluster: A node failure during a scan could sometime cause the node to crash when restarting too quickly following the
failure. (Bug#20197)

• MySQL Cluster: The failure of a data node when preparing to commit a transaction (that is, while the node's status was
CS_PREPARE_TO_COMMIT) could cause the failure of other cluster data nodes. (Bug#20185)

• MySQL Cluster: SHOW ENGINE NDB STATUS could sometimes return an incorrect value of 0 for the latest epoch, which could
cause problems with synchronizing the binlog. (Bug#20142)

• MySQL Cluster: (Disk Data): A data file created on one tablespace could be dropped using ALTER TABLESPACE ... DROP
DATAFILE on a different tablespace. (Bug#20053)

• MySQL Cluster: An internal formatting error caused some management client error messages to be unreadable. (Bug#20016)

• MySQL Cluster: Creating tables with variable-size columns caused DataMemory to be used but not freed when the tables were
dropped. (Bug#20007)

• MySQL Cluster: Renaming a table in such a way as to move it to a different database failed to move the table's indexes.
(Bug#19967)

• MySQL Cluster: Running management client commands while mgmd was in the process of disconnecting could cause the manage-
ment server to fail. (Bug#19932)

MySQL Change History

2159

http://bugs.mysql.com/20892
http://bugs.mysql.com/20860
http://bugs.mysql.com/20847
http://bugs.mysql.com/20809
http://bugs.mysql.com/20774
http://bugs.mysql.com/20728
http://bugs.mysql.com/20708
http://bugs.mysql.com/20705
http://bugs.mysql.com/20575
http://bugs.mysql.com/20456
http://bugs.mysql.com/20426
http://bugs.mysql.com/20419
http://bugs.mysql.com/20395
http://bugs.mysql.com/20336
http://bugs.mysql.com/20334
http://bugs.mysql.com/20252
http://bugs.mysql.com/20197
http://bugs.mysql.com/20185
http://bugs.mysql.com/20142
http://bugs.mysql.com/20053
http://bugs.mysql.com/20016
http://bugs.mysql.com/20007
http://bugs.mysql.com/19967
http://bugs.mysql.com/19932


• MySQL Cluster: Under certain conditions, a starting node could miss transactions, leading to inconsistencies between the primary
and backup replicas. (Bug#19929)

• MySQL Cluster: An uncommitted row could sometimes be checkpointed and thus incorrectly included in a backup. (Bug#19928)

• MySQL Cluster: In some cases where SELECT COUNT(*) from an NDB table should have yielded an error, MAX_INT was re-
turned instead. (Bug#19914)

• MySQL Cluster: TEXT columns in Cluster tables having both an explicit primary key and a unique key were not correctly updated
by REPLACE statements. (Bug#19906)

• MySQL Cluster: The cluster's data nodes failed while trying to load data when NoOfFrangmentLogFiles was set equal to 1.
(Bug#19894)

• MySQL Cluster: Following the restart of a management node, the Cluster management client did not automatically reconnect.
(Bug#19873)

• MySQL Cluster: Restoring a backup with ndb_restore failed when the backup had been taken from a cluster whose
DataMemory had been completely used up. (Bug#19852)

• MySQL Cluster: Error messages given when trying to make online changes parameters such as NoOfReplicas thast can only be
changed via a complete shutdown and restart of the cluster did not indicate the true nature of the problem. (Bug#19787)

• MySQL Cluster: Under some circumstances, repeated DDL operations on one mysqld could cause failure of a second mysqld
attached to the same cluster. (Bug#19770)

• MySQL Cluster: ndb_restore did not always make clear that it had recovered successfully from temporary errors while restor-
ing a cluster backup. (Bug#19651)

• MySQL Cluster: Resources for unique indexes on Cluster table columns were incorrectly allocated, so that only one-fourth as
many unique indexes as indicated by the value of UniqueHashIndexes could be created. (Bug#19623)

• MySQL Cluster: LOAD DATA LOCAL failed to ignore duplicate keys in Cluster tables. (Bug#19496)

• MySQL Cluster: For ndb_mgmd, Valgrind revealed problems with a memory leak and a dependency on an uninitialized variable.
(Bug#19318, Bug#20333)

• MySQL Cluster: A DELETE of many rows immediately followed by an INSERT on the same table could cause the ndbd process
on the backup replica to crash. (Bug#19293)

• MySQL Cluster: An excessive number of ALTER TABLE operations could cause the cluster to fail with NDB error code 773 (OUT
OF STRING MEMORY, PLEASE MODIFY STRINGMEMORY). (Bug#19275)

• MySQL Cluster: A problem with error handling when ndb_use_exact_count was enabled could lead to incorrect values re-
turned from queries using COUNT(). A warning is now returned in such cases. (Bug#19202)

• MySQL Cluster: In rare situations with resource shortages, a crash could result from insufficient IndexScanOperations.
(Bug#19198)

• MySQL Cluster: Running out of DataMemory could sometimes crash ndbd and mysqld processes. (Bug#19185)

• MySQL Cluster: It was possible to use port numbers greater than 65535 for ServerPort in the config.ini file. (Bug#19164)

• MySQL Cluster: A DELETE FROM table with no WHERE clause (deleting all rows) running concurrently with INSERT state-
ments on a storage engine with row-level locking (such as NDB) could produce inconsistent results when using statement-based rep-
lication. (Bug#19066)

• MySQL Cluster: ndb_mgm -e show | head would hang after displaying the first 10 lines of output. (Bug#19047)

• MySQL Cluster: The error returned by the cluster when too many nodes were defined did not make clear the nature of the problem.
(Bug#19045)

• MySQL Cluster: The management client ALL STOP command shut down mgmd processes (as well as ndbd processes).
(Bug#18966)

• MySQL Cluster: TRUNCATE TABLE failed to reset the AUTO_INCREMENT counter. (Bug#18864)

MySQL Change History

2160

http://bugs.mysql.com/19929
http://bugs.mysql.com/19928
http://bugs.mysql.com/19914
http://bugs.mysql.com/19906
http://bugs.mysql.com/19894
http://bugs.mysql.com/19873
http://bugs.mysql.com/19852
http://bugs.mysql.com/19787
http://bugs.mysql.com/19770
http://bugs.mysql.com/19651
http://bugs.mysql.com/19623
http://bugs.mysql.com/19496
http://bugs.mysql.com/19318
http://bugs.mysql.com/20333
http://bugs.mysql.com/19293
http://bugs.mysql.com/19275
http://bugs.mysql.com/19202
http://bugs.mysql.com/19198
http://bugs.mysql.com/19185
http://bugs.mysql.com/19164
http://bugs.mysql.com/19066
http://bugs.mysql.com/19047
http://bugs.mysql.com/19045
http://bugs.mysql.com/18966
http://bugs.mysql.com/18864


• MySQL Cluster: Restarting a failed node could sometimes crash the cluster. (Bug#18782)

• MySQL Cluster: Trying to create or drop a table while a node was restarting caused the node to crash. This is now handled by rais-
ing an error. (Bug#18781)

• MySQL Cluster: Repeated CREATE - INSERT - DROP operations tables could in some circumstances cause the MySQL table
definition cache to become corrupt, so that some mysqld processes could access table information but others could not.
(Bug#18595)

• MySQL Cluster: A CREATE TABLE statement involving foreign key constraints raised an error rather than being silently ignored
(see Section 12.1.10, “CREATE TABLE Syntax”).

This bug affected Cluster in MySQL 5.1 only. (Bug#18483)

• MySQL Cluster: The server failed with a non-descriptive error message when out of data memory. (Bug#18475)

• MySQL Cluster: For NDB and possibly InnoDB tables, a BEFORE UPDATE trigger could insert incorrect values. (Bug#18437)

• MySQL Cluster: The DATA_LENGTH and AVG_ROW_LENGTH columns of the INFORMATION_SCHEMA.TABLES table did not
report the size of variable-width column values correctly.

See Section 24.2, “The INFORMATION_SCHEMA TABLES Table”, for more information. (Bug#18413)

• MySQL Cluster: SELECT ... FOR UPDATE failed to lock the selected rows. (Bug#18184)

• MySQL Cluster: (Disk Data): Deletes from Disk Data tables used a non-optimal scan to find the rows to be deleted, resulting in
poor performance. The fix causes disk order rather than memory order to be used, and can improve performance of Disk Data de-
letes by up to ~300% in some cases. (Bug#17929)

• MySQL Cluster: perror did not properly report NDB error codes. (Bug#16561)

• MySQL Cluster: (Disk Data): The failure of a CREATE TABLESPACE or CREATE LOGFILE GROUP statement did not revert
all changes made prior to the point of failure. (Bug#16341)

• MySQL Cluster: A problem with takeover during a system restart caused ordered indexes to be rebuilt incorrectly. This also ad-
versely affected MySQL Cluster Replication. (Bug#15303)

• MySQL Cluster: A cluster data node could crash when an ordered index became full before the table containing the index was full.
(Bug#14935)

• MySQL Cluster: The management client ALL STATUS command could sometimes report the status of some data nodes incor-
rectly. (Bug#13985)

• MySQL Cluster: New mysqld processes were allowed to connect without a restart of the cluster, causing the cluster to crash.
(Bug#13266)

• MySQL Cluster: Cluster system status variables were not updated properly. (Bug#11459)

• MySQL Cluster: (NDBAPI): Update operations on blobs were not checked for illegal operations.

Note

Read locks with blob update operations are now upgraded from read committed to read shared.

• MySQL Cluster: (Replication): A node failure could send duplicate events, causing a mysqld replicating tables containing BLOBs
to crash.

• MySQL Cluster: The loss of one or more data nodes could sometimes cause ndb_mgmd to use a high amount of CPU (15 percent
or more, as opposed to 1 to 2 percent normally).

• Partitioning: Old partition and subpartition files were not always removed following ALTER TABLE ... REORGANIZE PAR-
TITION statements. (Bug#20770)

• Disk Data: On some platforms, ndbd compiled with gcc 4 would crash when attempting to run CREATE LOGFILE GROUP.
(Bug#21981)

MySQL Change History

2161

http://bugs.mysql.com/18782
http://bugs.mysql.com/18781
http://bugs.mysql.com/18595
http://bugs.mysql.com/18483
http://bugs.mysql.com/18475
http://bugs.mysql.com/18437
http://bugs.mysql.com/18413
http://bugs.mysql.com/18184
http://bugs.mysql.com/17929
http://bugs.mysql.com/16561
http://bugs.mysql.com/16341
http://bugs.mysql.com/15303
http://bugs.mysql.com/14935
http://bugs.mysql.com/13985
http://bugs.mysql.com/13266
http://bugs.mysql.com/11459
http://bugs.mysql.com/20770
http://bugs.mysql.com/21981


• Disk Data: INFORMATION_SCHEMA.FILES records for UNDO files showed incorrect values in the EXTENT_SIZE,
FREE_EXTENTS, and TOTAL_EXTENTS columns. (Bug#20073)

• Disk Data: Trying to create Disk Data tables when running the cluster in diskless mode caused cluster data nodes to crash.

Note

Disk Data tables are now disabled when running in diskless mode.

(Bug#20008)

• Disk Data: An issue with disk allocation could sometimes cause a forced shutdown of the cluster when running a mix of memory
and Disk Data tables. (Bug#18780)

• Cluster Replication: In some cases, a large number of MySQL servers sending requests to the cluster simultaneously could cause
the cluster to crash. This could also be triggered by many NDB API clients making simultaneous event subscriptions or unsubscrip-
tions. (Bug#20683)

• Cluster Replication: One or more of the mysqld processes could fail when subjecting a Cluster replication setup with multiple
mysqld processes on both the master and slave clusters to high loads. (Bug#19768)

• Cluster Replication: Data definition and data manipulation statements on different tables were not serialised correctly in the binlog.
For example, there was no guarantee that a CREATE TABLE statement and an update on a different table would occur in the same
order in the binlog as they did on the cluster being replicated. (Bug#18947)

• Cluster API: The storage/ndb directory was missing from the server binary distribution, making it impossible to compile NDB
API and MGM API applications. This directory can be found as /usr/include/storage/ndb after installing that distribu-
tion. (Bug#21955)

• Cluster API: Invoking the MGM API function ndb_mgm_listen_event() caused a memory leak. (Bug#21671)

• Cluster API: The inclusion of my_config.h in NdbApi.h required anyone wishing to write NDB API applications against
MySQL 5.1 to have a complete copy of the 5.1 sources. (Bug#21253)

• Cluster API: The MGM API function ndb_logevent_get_fd() was not implemented. (Bug#21129)

• Cluster API: The NdbOperation::getBlobHandle() method, when called with the name of a nonexistent column, caused a
segmentation fault. (Bug#21036)

• ALTER EVENT statements including only a COMMENT clause failed with a syntax error on two platforms: Linux for S/390, and OS
X 10.4 for 64-bit PPC. (Bug#23423)

• When event_scheduler was set to DISABLED, its value was not displayed correctly by SHOW VARIABLES or SELECT
@@global.event_scheduler. (Bug#22662)

• BIT columns were not replicated properly under row-based replication. (Bug#22550)

• ALTER EVENT in the body of a stored procedure led to a crash when the procedure was called. This affected only those ALTER
EVENT statements which changed the interval of the event. (Bug#22397)

• The optimizer could make an incorrect index choice for indexes with a skewed key distribution. (Bug#22393)

• Deleting entries from a large MyISAM index could cause index corruption when it needed to shrink. Deletes from an index can hap-
pen when a record is deleted, when a key changes and must be moved, and when a key must be un-inserted because of a duplicate
key. This can also happen in REPAIR TABLE when a duplicate key is found and in myisamchk when sorting the records by an
index. (Bug#22384)

• Instance Manager had a race condition involving mysqld PID file removal. (Bug#22379)

• yaSSL had a conflicting definition for socklen_t on hurd-i386 systems. (Bug#22326)

• Conversion of values inserted into a BIT column could affect adjacent columns. (Bug#22271)

• Some Linux-x86_64-icc packages (of previous releases) mistakenly contained 32-bit binaries. Only ICC builds are affected, not
gcc builds. Solaris and FreeBSD x86_64 builds are not affected. (Bug#22238)

MySQL Change History

2162

http://bugs.mysql.com/20073
http://bugs.mysql.com/20008
http://bugs.mysql.com/18780
http://bugs.mysql.com/20683
http://bugs.mysql.com/19768
http://bugs.mysql.com/18947
http://bugs.mysql.com/21955
http://bugs.mysql.com/21671
http://bugs.mysql.com/21253
http://bugs.mysql.com/21129
http://bugs.mysql.com/21036
http://bugs.mysql.com/23423
http://bugs.mysql.com/22662
http://bugs.mysql.com/22550
http://bugs.mysql.com/22397
http://bugs.mysql.com/22393
http://bugs.mysql.com/22384
http://bugs.mysql.com/22379
http://bugs.mysql.com/22326
http://bugs.mysql.com/22271
http://bugs.mysql.com/22238


• mysql_com.h unnecessarily referred to the ulong type. (Bug#22227)

• The source distribution would not build on Windows due to a spurious dependency on ib_config.h. (Bug#22224)

• Execution of a prepared statement that uses an IN subquery with aggregate functions in the HAVING clause could cause a server
crash. (Bug#22085)

• The CSV storage engine failed to detect some table corruption. (Bug#22080)

• Using GROUP_CONCAT() on the result of a subquery in the FROM clause that itself used GROUP_CONCAT() could cause a server
crash. (Bug#22015)

• Running SHOW MASTER LOGS at the same time as binary log files were being switched would cause mysqld to hang.
(Bug#21965)

• libmysqlclient defined a symbol BN_bin2bn which belongs to OpenSSL. This could break applications that also linked
against OpenSSL's libcrypto library. The fix required correcting an error in a build script that was failing to add rename macros
for some functions. (Bug#21930)

• character_set_results can be NULL to signify “no conversion,” but some code did not check for NULL, resulting in a serv-
er crash. (Bug#21913)

• A misleading error message was displayed when attempting to define a unique key that was not valid for a partitioned table.
(Bug#21862)

• A query that used GROUP BY and an ALL or ANY quantified subquery in a HAVING clause could trigger an assertion failure.
(Bug#21853)

• An InnoDB mutex was not aquired and released under the same condition, leading to deadlock in some rare situations involving
XA transactions. (Bug#21833)

• A NUL byte within a prepared statement string caused the rest of the string not to be written to the query log, allowing logging to be
bypassed. (Bug#21813)

• COUNT(*) queries with ORDER BY and LIMIT could return the wrong result.

Note

This problem was introduced by the fix for Bug#9676, which limited the rows stored in a temporary table to the LIMIT
clause. This optimization is not applicable to non-group queries with aggregate functions. The current fix disables the op-
timization in such cases.

(Bug#21787)

• Using DROP TABLE with concurrent queries causes mysqld to crash. (Bug#21784)

• INSERT ... SELECT sometimes generated a spurious Column count doesn't match value count error.
(Bug#21774)

• UPGRADE was treated as a reserved word, although it is not. (Bug#21772)

• A function result in a comparison was replaced with a constant by the optimizer under some circumstances when this optimization
was invalid. (Bug#21698)

• Selecting from INFORMATION_SCHEMA.FILES could crash the server. (Bug#21676)

• Errors could be generated during the execution of certain prepared statements that ran queries on partitioned tables. (Bug#21658)

• The presence of a subquery in the ON clause of a join in a view definition prevented the MERGE algorithm from being used for the
view in cases where it should be allowed. (Bug#21646)

• When records are merged from the insert buffer and the page needs to be reorganized, InnoDB used incorrect column length in-
formation when interpreting the records of the page. This caused a server crash due to apparent corruption of secondary indexes in
ROW_FORMAT=COMPACT that contain prefix indexes of fixed-length columns. Data files should not be corrupted, but the crash was
likely to repeat every time the server was restarted. (Bug#21638)

MySQL Change History

2163

http://bugs.mysql.com/22227
http://bugs.mysql.com/22224
http://bugs.mysql.com/22085
http://bugs.mysql.com/22080
http://bugs.mysql.com/22015
http://bugs.mysql.com/21965
http://bugs.mysql.com/21930
http://bugs.mysql.com/21913
http://bugs.mysql.com/21862
http://bugs.mysql.com/21853
http://bugs.mysql.com/21833
http://bugs.mysql.com/21813
http://bugs.mysql.com/9676
http://bugs.mysql.com/21787
http://bugs.mysql.com/21784
http://bugs.mysql.com/21774
http://bugs.mysql.com/21772
http://bugs.mysql.com/21698
http://bugs.mysql.com/21676
http://bugs.mysql.com/21658
http://bugs.mysql.com/21646
http://bugs.mysql.com/21638


• For character sets having a mbmaxlen value of 2, any ALTER TABLE statement changed TEXT columns to MEDIUMTEXT.
(Bug#21620)

• mysql displayed an empty string for NULL values. (Bug#21618)

• Selecting from a MERGE table could result in a server crash if the underlying tables had fewer indexes than the MERGE table itself.
(Bug#21617, Bug#22937)

• A loaded storage engine plugin did not load after a server restart. (Bug#21610)

• For INSERT ... ON DUPLICATE KEY UPDATE, use of VALUES(col_name) within the UPDATE clause sometimes was
handled incorrectly. (Bug#21555)

• Subqueries with aggregate functions but no FROM clause could return incorrect results. (Bug#21540)

• mysqldump incorrectly tried to use LOCK TABLES for tables in the INFORMATION_SCHEMA database. (Bug#21527)

• The server could crash for the second execution of a function containing a SELECT statement that uses an aggregating IN subquery.
(Bug#21493)

• Memory overruns could occur for certain kinds of subqueries. (Bug#21477)

• A DATE can be represented as an integer (such as 20060101) or as a string (such as '2006.01.01'). When a DATE (or TIME)
column is compared in one SELECT against both representations, constant propagation by the optimizer led to comparison of DATE
as a string against DATE as an integer. This could result in integer comparisons such as 2006 against 20060101, erroneously pro-
ducing a false result. (Bug#21475)

• For row-based replication, log rotation could occur at an improper time. (Bug#21474)

• myisam_ftdump produced bad counts for common words. (Bug#21459)

• Adding ORDER BY to a SELECT DISTINCT(expr) query could produce incorrect results. (Bug#21456)

• The URL into the online manual that is printed in the stack trace message by the server was out of date. (Bug#21449)

• Database and table names have a maximum length of 64 characters (even if they contain multi-byte characters), but were truncated
to 64 bytes.

Note

An additional fix was made in MySQL 5.1.18.

(Bug#21432)

• With max_sp_recursion set to 0, a stored procedure that executed a SHOW CREATE PROCEDURE statement for itself
triggered a recursion limit exceeded error, though the statement involves no recursion. (Bug#21416)

• After FLUSH TABLES WITH READ LOCK followed by UNLOCK TABLES, attempts to drop or alter a stored routine failed with
an error that the routine did not exist, and attempts to execute the routine failed with a lock conflict error. (Bug#21414)

• On 64-bit Windows, a missing table generated error 1017, not the correct value of 1146. (Bug#21396)

• Table aliases in multiple-table DELETE statements sometimes were not resolved. (Bug#21392)

• The optimizer sometimes produced an incorrect row-count estimate after elimination of const tables. This resulted in choosing ex-
tremely inefficient execution plans in same cases when distribution of data in joins were skewed. (Bug#21390)

• For multiple-table UPDATE statements, storage engines were not notified of duplicate-key errors. (Bug#21381)

• Using relative paths for DATA DIRECTORY or INDEX DIRECTORY with a partitioned table generated a warning rather than an
error, and caused “junk” files to be created in the server's data directory. (Bug#21350)

• Using EXPLAIN PARTITIONS with a query on a table whose partitioning expression was based on the value of a DATE column
could sometimes cause the server to crash. (Bug#21339)

• The feature of being able to recover a temporary table named #sql_id in InnoDB by creating a table named

MySQL Change History

2164

http://bugs.mysql.com/21620
http://bugs.mysql.com/21618
http://bugs.mysql.com/21617
http://bugs.mysql.com/22937
http://bugs.mysql.com/21610
http://bugs.mysql.com/21555
http://bugs.mysql.com/21540
http://bugs.mysql.com/21527
http://bugs.mysql.com/21493
http://bugs.mysql.com/21477
http://bugs.mysql.com/21475
http://bugs.mysql.com/21474
http://bugs.mysql.com/21459
http://bugs.mysql.com/21456
http://bugs.mysql.com/21449
http://bugs.mysql.com/21432
http://bugs.mysql.com/21416
http://bugs.mysql.com/21414
http://bugs.mysql.com/21396
http://bugs.mysql.com/21392
http://bugs.mysql.com/21390
http://bugs.mysql.com/21381
http://bugs.mysql.com/21350
http://bugs.mysql.com/21339


_recover_innodb_tmp_table was broken by the introduction of the new identifier encoding in MySQL 5.1.6 (Bug#21313)

• It was possible for a stored routine with a non-latin1 name to cause a stack overrun. (Bug#21311)

• A query result could be sorted improperly when using ORDER BY for the second table in a join. (Bug#21302)

• Query results could be incorrect if the WHERE clause contained t.key_part NOT IN (val_list), where val_list is a
list of more than 1000 constants. (Bug#21282)

• Queries that used the index_merge and sort_union methods to access an InnoDB table could produce inaccurate results.
This issue was introduced in MySQL 5.1.10 when a new handler and bitmap interface was implemented. (Bug#21277)

• For user-defined functions created with CREATE FUNCTION, the DEFINER clause is not legal, but no error was generated.
(Bug#21269)

• The SELECT privilege was required for an insert on a view, instead of the INSERT privilege. (Bug#21261)

This regression was introduced by Bug#20989

• mysql_config --libmysqld-libs did not produce any SSL options necessary for linking libmysqld with SSL support
enabled. (Bug#21239)

• Subqueries on INFORMATION_SCHEMA tables could erroneously return an empty result. (Bug#21231)

• mysql_upgrade created temporary files in a possibly insecure way. (Bug#21224)

• When DROP DATABASE or SHOW OPEN TABLES was issued while concurrently in another connection issuing DROP TABLE,
RENAME TABLE, CREATE TABLE LIKE or any other statement that required a name lock, the server crashed. (Bug#21216,
Bug#19403)

• The --master-data option for mysqldump requires certain privileges, but mysqldump generated a truncated dump file
without producing an appropriate error message or exit status if the invoking user did not have those privileges. (Bug#21215)

• Using ALTER TABLE ... REORGANIZE PARTITIONS to reduce the number of subpartitions to 1 caused the server to crash.
(Bug#21210)

• In the package of pre-built time zone tables that is available for download at timezones.html, the tables now explicitly use the utf8
character set so that they work the same way regardless of the system character set value. (Bug#21208)

• Under heavy load (executing more than 1024 simultaneous complex queries), a problem in the code that handles internal temporary
tables could lead to writing beyond allocated space and memory corruption.

Use of more than 1024 simultaneous cursors server wide also could lead to memory corruption. This applies to both stored proced-
ure cursors and C API cursors. (Bug#21206)

• When run with the --use-threads option, mysqlimport returned a random exit code. (Bug#21188)

• A subquery that uses an index for both the WHERE and ORDER BY clauses produced an empty result. (Bug#21180)

• Running SHOW TABLE STATUS on any InnoDB table having at least one record could crash the server. Note that this was not
due to any issue in the InnoDB storage engine, but rather with AUTO_INCREMENT handling in the partitioning code — however,
the table did not have to have an AUTO_INCREMENT column for the bug to manifest. (Bug#21173)

• Some prepared statements caused a server crash when executed a second time. (Bug#21166)

• The optimizer assumed that if (a=x AND b=x) is true, (a=x AND b=x) AND a=b is also true. But that is not always so if a
and b have different data types. (Bug#21159)

• Some ALTER TABLE statements affecting a table's subpartitioning could hang. (Bug#21143)

• Certain malformed INSERT statements could crash the mysql client. (Bug#21142)

• SHOW INNODB STATUS contained some duplicate output. (Bug#21113)

• InnoDB was slow with more than 100,000 .idb files. (Bug#21112)

MySQL Change History

2165

http://bugs.mysql.com/21313
http://bugs.mysql.com/21311
http://bugs.mysql.com/21302
http://bugs.mysql.com/21282
http://bugs.mysql.com/21277
http://bugs.mysql.com/21269
http://bugs.mysql.com/21261
http://bugs.mysql.com/20989
http://bugs.mysql.com/21239
http://bugs.mysql.com/21231
http://bugs.mysql.com/21224
http://bugs.mysql.com/21216
http://bugs.mysql.com/19403
http://bugs.mysql.com/21215
http://bugs.mysql.com/21210
timezones.html
http://bugs.mysql.com/21208
http://bugs.mysql.com/21206
http://bugs.mysql.com/21188
http://bugs.mysql.com/21180
http://bugs.mysql.com/21173
http://bugs.mysql.com/21166
http://bugs.mysql.com/21159
http://bugs.mysql.com/21143
http://bugs.mysql.com/21142
http://bugs.mysql.com/21113
http://bugs.mysql.com/21112


• Creating a TEMPORARY table with the same name as an existing table that was locked by another client could result in a lock con-
flict for DROP TEMPORARY TABLE because the server unnecessarily tried to acquire a name lock. (Bug#21096)

• Performing an INSERT on a view that was defined using a SELECT that specified a collation and a column alias caused the server
to crash . (Bug#21086)

• Incorrect results could be obtained from re-execution of a parametrized prepared statement or a stored routine with a SELECT that
uses LEFT JOIN with a second table having only one row. (Bug#21081)

• ALTER VIEW did not retain existing values of attributes that had been originally specified but were not changed in the ALTER
VIEW statement. (Bug#21080)

• The myisam_stats_method variable was mishandled when set from an option file or on the command line. (Bug#21054)

• With query_cache_type set to 0, RESET QUERY CACHE was very slow and other threads were blocked during the operation.
Now a cache reset is faster and non-blocking. (Bug#21051)

• mysql crashed for very long arguments to the connect command. (Bug#21042)

• When creating a table using CREATE...SELECT and a stored procedure, there would be a mismatch between the binary log and
transaction cache which would cause a server crash. (Bug#21039)

• A query using WHERE column = constant OR column IS NULL did not return consistent results on successive invoca-
tions. The column in each part of the WHERE clause could be either the same column, or two different columns, for the effect to be
observed. (Bug#21019)

• mysqldump sometimes did not select the correct database before trying to dump views from it, resulting in an empty result set that
caused mysqldump to die with a segmentation fault. (Bug#21014)

• Performance during an import on a table with a trigger that called a stored procedure was severely degraded. (Bug#21013)

• mysql_upgrade produced a malformed upgrade_defaults file by overwriting the [client] group header with a pass-
word option. This prevented mysqlcheck from running successfully when invoked by mysql_upgrade. (Bug#21011)

• A query of the form shown here caused the server to crash:

SELECT * FROM t1 NATURAL JOIN (
t2 JOIN (

t3 NATURAL JOIN t4,
t5 NATURAL JOIN t6

)
ON (t3.id3 = t2.id3 AND t5.id5 = t2.id5)

);

(Bug#21007)

• A SELECT that used a subquery in the FROM clause that did not select from a table failed when the subquery was used in a join.
(Bug#21002)

• REPLACE ... SELECT for a view required the INSERT privilege for tables other than the table being modified. (Bug#20989)

• STR_TO_DATE() sometimes would return NULL if the %D format specifier was not the last specifier in the format string.
(Bug#20987)

• A query using WHERE NOT (column < ANY (subquery)) yielded a different result from the same query using the same
column and subquery with WHERE (column > ANY (subquery)). (Bug#20975)

• Under certain circumstances, AVG(key_val) returned a value but MAX(key_val) returned an empty set due to incorrect ap-
plication of MIN()/MAX() optimization. (Bug#20954)

• In mixed-format binary logging mode, stored functions, triggers, and views that use functions in their body that require row-based
logging did not replicate reliably because the logging did not switch from statement-based to row-based format. For example, IN-
SERT INTO t SELECT FROM v, where v is a view that selects UUID() could cause problems. This limitation has been re-
moved. (Bug#20930)

• Closing of temporary tables failed if binary logging was not enabled. (Bug#20919)

MySQL Change History

2166

http://bugs.mysql.com/21096
http://bugs.mysql.com/21086
http://bugs.mysql.com/21081
http://bugs.mysql.com/21080
http://bugs.mysql.com/21054
http://bugs.mysql.com/21051
http://bugs.mysql.com/21042
http://bugs.mysql.com/21039
http://bugs.mysql.com/21019
http://bugs.mysql.com/21014
http://bugs.mysql.com/21013
http://bugs.mysql.com/21011
http://bugs.mysql.com/21007
http://bugs.mysql.com/21002
http://bugs.mysql.com/20989
http://bugs.mysql.com/20987
http://bugs.mysql.com/20975
http://bugs.mysql.com/20954
http://bugs.mysql.com/20930
http://bugs.mysql.com/20919


• Use of zero-length variable names caused a server crash. (Bug#20908)

• Building mysql on Windows with CMake 2.4 would fail to create libmysqld correctly. (Bug#20907)

• Creating a partitioned table that used the InnoDB storage engine and then restarting mysqld with --skip-innodb caused
MySQL to crash. (Bug#20871)

• For certain queries, the server incorrectly resolved a reference to an aggregate function and crashed. (Bug#20868)

• If the binary logging format was changed between the times when a locked table was modified and when it was unlocked, the binary
log contents were incorrect. (Bug#20863)

• It was possible to provide the ExtractValue() function with input containing “tags” that were not valid XML; for example, it
was possible to use tag names beginning with a digit, which are disallowed by the W3C's XML 1.0 specification. Such cases caused
the function to return “junk” output rather than an error message signalling the user as to the true nature of the problem.
(Bug#20854)

• InnoDB (Partitioning): Updating an InnoDB table using HASH partitioning with a composite primary key would cause the server
to hang. (Bug#20852)

• A race condition during slave server shutdown caused an assert failure. (Bug#20850)

• mysqldump did not add version-specific comments around WITH PARSER and TABLESPACE ... STORAGE DISK clauses
for CREATE TABLE statements, causing the dump file to fail when loaded into older servers. (Bug#20841)

• For multiple INSERT DELAYED statements executed in a batch by the delayed-insert handler thread, not all rows were written to
the binary log. (Bug#20821)

• The ExtractValue() function did not accept XML tag names containing a period (.) character. (Bug#20795)

• Using aggregate functions in subqueries yielded incorrect results under certain circumstances due to incorrect application of
MIN()/MAX() optimization. (Bug#20792)

• On Windows, inserting into a MERGE table after renaming an underlying MyISAM table caused a server crash. (Bug#20789)

• Within stored routines, some error messages were printed incorrectly. A non-null-terminated string was passed to a message-print-
ing routine that expected a null-terminated string. (Bug#20778)

• Merging multiple partitions having subpartitions into a single partition with subpartitions, or splitting a single partition having sub-
partitions into multiple partitions with subpartitions, could sometimes crash the server. These issues were associated with a failure
reported in the partition_range test. (Bug#20767, Bug#20893, Bug#20766, Bug#21357)

• Searches against a ZEROFILL column of a partitioned table could fail when the ZEROFILL column was part of the table's parti-
tioning key. (Bug#20733)

• If a column definition contained a character set declaration, but a DEFAULT value began with an introducer, the introducer character
set was used as the column character set. (Bug#20695)

• An UPDATE that referred to a key column in the WHERE clause and activated a trigger that modified the column resulted in a loop.
(Bug#20670)

• Issuing a SHOW CREATE FUNCTION or SHOW CREATE PROCEDURE statement without sufficient privileges could crash the
mysql client. (Bug#20664)

• With mixed-format binary logging, INSERT DELAYED statements were logged using statement-based logging, and they did not
replicate properly for statements that used values such as UUID(), RAND(), or user-defined variables that require row-based log-
ging. To correct this, the DELAYED handler thread how switches to row-based logging if the logging format is mixed. (Bug#20633,
Bug#20649)

• INSERT DELAYED did not honor SET INSERT_ID or the auto_increment_* system variables. (Bug#20627, Bug#20830)

• A buffer overwrite error in Instance Manager caused a crash. (Bug#20622)

• Loading a plugin caused any an existing plugin with the same name to be lost. (Bug#20615)

• A query selecting records from a single partition of a partitioned table and using ORDER BY ic DESC (where ic represents an

MySQL Change History

2167

http://bugs.mysql.com/20908
http://bugs.mysql.com/20907
http://bugs.mysql.com/20871
http://bugs.mysql.com/20868
http://bugs.mysql.com/20863
http://bugs.mysql.com/20854
http://bugs.mysql.com/20852
http://bugs.mysql.com/20850
http://bugs.mysql.com/20841
http://bugs.mysql.com/20821
http://bugs.mysql.com/20795
http://bugs.mysql.com/20792
http://bugs.mysql.com/20789
http://bugs.mysql.com/20778
http://bugs.mysql.com/20767
http://bugs.mysql.com/20893
http://bugs.mysql.com/20766
http://bugs.mysql.com/21357
http://bugs.mysql.com/20733
http://bugs.mysql.com/20695
http://bugs.mysql.com/20670
http://bugs.mysql.com/20664
http://bugs.mysql.com/20633
http://bugs.mysql.com/20649
http://bugs.mysql.com/20627
http://bugs.mysql.com/20830
http://bugs.mysql.com/20622
http://bugs.mysql.com/20615


indexed column) could cause errors or crash the server. (Bug#20583)

• If the auto_increment_offset setting causes MySQL to generate a value larger than the column's maximum possible value,
the INSERT statement is accepted in strict SQL mode, whereas but should fail with an error. (Bug#20573)

• In a view defined with SQL SECURITY DEFINER, the CURRENT_USER() function returned the invoker, not the definer.
(Bug#20570)

• The fill_help_tables.sql file did not contain a SET NAMES 'utf8' statement to indicate its encoding. This caused
problems for some settings of the MySQL character set such as big5. (Bug#20551)

• Scheduled events that invoked stored procedures executing DDL operations on partitioned tables could crash the server.
(Bug#20548)

• Users who had the SHOW VIEW privilege for a view and privileges on one of the view's base tables could not see records in IN-
FORMATION_SCHEMA tables relating to the base table. (Bug#20543)

• The fill_help_tables.sql file did not load properly if the ANSI_QUOTES SQL mode was enabled. (Bug#20542)

• The MD5(), SHA1(), and ENCRYPT() functions should return a binary string, but the result sometimes was converted to the char-
acter set of the argument. MAKE_SET() and EXPORT_SET() now use the correct character set for their default separators, result-
ing in consistent result strings which can be coerced according to normal character set rules. (Bug#20536)

• With the auto_increment_increment system variable set larger than 1, if the next generated AUTO_INCREMENT value
would be larger than the column's maximum value, the value would be clipped down to that maximum value and inserted, even if
the resulting value would not be in the generated sequence. This could cause problems for master-master replication. Now the server
clips the value down to the previous value in the sequence, which correctly produces a duplicate-key error if that value already ex-
ists in the column. (Bug#20524)

• In mixed binary logging mode, a temporary switch from statement-based logging to row-based logging occurs when storing a row
that uses a function such as UUID() into a temporary table. However, temporary table changes are not written to the binary log un-
der row-based logging, so the row does not exist on the slave. A subsequent select from the temporary table to a non-temporary ta-
ble using statement-based logging works correctly on the master, but not on the slave where the row does not exist. The fix for this
is that replication does not switch back from row-based logging to statement-based logging until there are no temporary tables for
the session. (Bug#20499)

• If a partitioned InnoDB table contained an AUTO_INCREMENT column, a SHOW statement could cause an assertion failure with
more than one connection. (Bug#20493)

• Using EXPLAIN PARTITIONS with a UNION query could crash the server. This could occur whether or not the query actually
used any partitioned tables. (Bug#20484)

• Creation of a view as a join of views or tables could fail if the views or tables are in different databases. (Bug#20482)

• SELECT statements using GROUP BY against a view could have missing columns in the output when there was a trigger defined on
one of the base tables for the view. (Bug#20466)

• CREATE PROCEDURE, CREATE FUNTION, CREATE TRIGGER, and CREATE VIEW statements containing multi-line com-
ments (/* ... */) could not be replicated. (Bug#20438)

• For connections that required a SUBJECT value, a check was performed to verify that the value was correct, but the connection was
not refused if not. (Bug#20411)

• mysql_upgrade was missing from binary MySQL distributions. (Bug#20403, Bug#18516, Bug#20556)

• Some user-level errors were being written to the server's error log, which is for server errors. (Bug#20402)

• Using ALTER TABLE ... ENGINE = x, where x was not a storage engine supported by the server, would cause mysqld to
crash. (Bug#20397)

• User names have a maximum length of 16 characters (even if they contain multi-byte characters), but were being truncated to 16
bytes. (Bug#20393)

• Some queries using ORDER BY ... DESC on subpartitioned tables could crash the server. (Bug#20389)

• mysqlslap did not enable the CLIENT_MULTI_RESULTS flag when connecting, which is necessary for executing stored pro-

MySQL Change History

2168

http://bugs.mysql.com/20583
http://bugs.mysql.com/20573
http://bugs.mysql.com/20570
http://bugs.mysql.com/20551
http://bugs.mysql.com/20548
http://bugs.mysql.com/20543
http://bugs.mysql.com/20542
http://bugs.mysql.com/20536
http://bugs.mysql.com/20524
http://bugs.mysql.com/20499
http://bugs.mysql.com/20493
http://bugs.mysql.com/20484
http://bugs.mysql.com/20482
http://bugs.mysql.com/20466
http://bugs.mysql.com/20438
http://bugs.mysql.com/20411
http://bugs.mysql.com/20403
http://bugs.mysql.com/18516
http://bugs.mysql.com/20556
http://bugs.mysql.com/20402
http://bugs.mysql.com/20397
http://bugs.mysql.com/20393
http://bugs.mysql.com/20389


cedures. (Bug#20365)

• Queries using an indexed column as the argument for the MIN() and MAX() functions following an ALTER TABLE .. DIS-
ABLE KEYS statement returned GOT ERROR 124 FROM STORAGE ENGINE until ALTER TABLE ... ENABLE KEYS was run
on the table. (Bug#20357)

• When a statement used a stored function that inserted into an AUTO_INCREMENT column, the generated AUTO_INCREMENT
value was not written into the binary log, so a different value could in some cases be inserted on the slave. (Bug#20341)

• Partitions were represented internally as the wrong data type, which led in some cases to failures of queries such as SELECT
COUNT(*) FROM INFORMATION_SCHEMA.PARTITIONS WHERE PARTITION_NAME = 'partition_name'.
(Bug#20340)

• A stored procedure that used LAST_INSERT_ID() did not replicate properly using statement-based binary logging. (Bug#20339)

• PROCEDURE ANALYSE() returned incorrect values of M FLOAT(M, D) and DOUBLE(M, D). (Bug#20305)

• Defining a table partitioned by LIST with a single PARTITION ... VALUES IN (NULL) clause could lead to server crashes,
particularly with queries having WHERE conditions comparing the partitioning key with a constant. (Bug#20268, Bug#19801)

• When using row based replication, a CREATE TABLE...SELECT statement would be replicated, even if the table creation failed
on the master (for example, due to a duplicate key failure). (Bug#20265)

• Partition pruning could cause incorrect results from queries, such missing rows, when the partitioning expression relied on a BI-
GINT UNSIGNED column. (Bug#20257)

• For a MyISAM table locked with LOCK TABLES ...WRITE, queries optimized using the index_merge method did not show
rows inserted with the lock in place. (Bug#20256)

• mysqldump produced a malformed dump file when dumping multiple databases that contained views. (Bug#20221)

• Running InnoDB with many concurrent threads could cause memory corruption and a seg fault due to a bug introduced in MySQL
5.1.11. (Bug#20213)

• SUBSTRING() results sometimes were stored improperly into a temporary table when multi-byte character sets were used.
(Bug#20204)

• The thread for INSERT DELAYED rows was maintaining a separate AUTO_INCREMENT counter, resulting in incorrect values be-
ing assigned if DELAYED and non-DELAYED inserts were mixed. (Bug#20195)

• If a table on a slave server had a higher AUTO_INCREMENT counter than the corresponding master table (even though all rows of
the two tables were identical), in some cases REPLACE or INSERT ... ON DUPLICATE KEY UPDATE would not replicate
properly using statement-based logging. (Different values would be inserted on the master and slave.) (Bug#20188)

• The --default-storage-engine server option did not work. (Bug#20168)

• For a table having LINEAR HASH subpartitions, the LINEAR keyword did not appear in the SUBPARTITION_METHOD column
of the INFORMATION_SCHEMA.PARTITIONS table. (Bug#20161)

• For a DATE parameter sent via a MYSQL_TIME data structure, mysql_stmt_execute() zeroed the hour, minute, and second
members of the structure rather than treating them as read-only. (Bug#20152)

• perror crashed on Solaris due to NULL return value of strerror() system call. (Bug#20145)

• FLUSH TABLES followed by a LOCK TABLES statement to lock a log table and a non-log table caused an infinite loop and high
CPU use. Now FLUSH TABLES ignores log tables. To flush the log tables, use FLUSH LOGS instead. (Bug#20139)

• On Linux, libmysqlclient when compiled with yaSSL using the icc compiler had a spurious dependency on C++ libraries.
(Bug#20119)

• For an ENUM column that used the ucs2 character set, using ALTER TABLE to modify the column definition caused the default
value to be lost. (Bug#20108)

• For mysql, escaping with backslash sometimes did not work. (Bug#20103)

• Queries on tables that were partitioned by KEY and had a VARCHAR column as the partitioning key produced an empty result set.

MySQL Change History

2169

http://bugs.mysql.com/20365
http://bugs.mysql.com/20357
http://bugs.mysql.com/20341
http://bugs.mysql.com/20340
http://bugs.mysql.com/20339
http://bugs.mysql.com/20305
http://bugs.mysql.com/20268
http://bugs.mysql.com/19801
http://bugs.mysql.com/20265
http://bugs.mysql.com/20257
http://bugs.mysql.com/20256
http://bugs.mysql.com/20221
http://bugs.mysql.com/20213
http://bugs.mysql.com/20204
http://bugs.mysql.com/20195
http://bugs.mysql.com/20188
http://bugs.mysql.com/20168
http://bugs.mysql.com/20161
http://bugs.mysql.com/20152
http://bugs.mysql.com/20145
http://bugs.mysql.com/20139
http://bugs.mysql.com/20119
http://bugs.mysql.com/20108
http://bugs.mysql.com/20103


Bug#20086)

• A number of dependency issues in the RPM bench and test packages caused installation of these packages to fail. (Bug#20078)

• Use of MIN() or MAX() with GROUP BY on a ucs2 column could cause a server crash. (Bug#20076)

• mysqld --flush failed to flush MyISAM table changes to disk following an UPDATE statement for which no updated column
had an index. (Bug#20060)

• In MySQL 5.1.11, the --with-openssl and --with-yassl options were replaced by --with-ssl. But no message was is-
sued if the old options were given. Now configure produces a message indicating that the new option should be used and exits.
(Bug#20002)

• When a statement is executed that does not generate any rows, an extra table map event and associated binrows event would be gen-
erated and written to the binary log. (Bug#19995)

• Join conditions using index prefixes on utf8 columns of InnoDB tables incorrectly ignored rows where the length of the actual
value was greater than the length of the index prefix. (Bug#19960)

• AUTHORS and CONTRIBUTORS were not treated as reserved words. (Bug#19939)

• The query command for mysqltest did not work. (Bug#19890)

• Shutting down a slave in a replication scenario where temporary tables are in use would cause the slave to produce a core dump.
(Bug#19881)

• Identifiers with embedded escape characters were not handled correctly by some SHOW statements due to some old code that was
doing some extra unescaping. (Bug#19874)

• When executing a SELECT with ORDER BY on a view that is constructed from a SELECT statement containing a stored function,
the stored function was evaluated too many times. (Bug#19862)

• Using SELECT on a corrupt MyISAM table using the dynamic record format could cause a server crash. (Bug#19835)

• Using cursors with READ COMMITTED isolation level could cause InnoDB to crash. (Bug#19834)

• CREATE DATABASE, RENAME DATABASE, and DROP DATABASE could deadlock in cases where there was a global read lock.
(Bug#19815)

• The yaSSL library bundled with libmysqlclient had some conflicts with OpenSSL. Now macros are used to rename the con-
flicting symbols to have a prefix of ya. (Bug#19810)

• The WITH CHECK OPTION was not enforced when a REPLACE statement was executed against a view. (Bug#19789)

• Multiple-table updates with FEDERATED tables could cause a server crash. (Bug#19773)

• On 64-bit systems, use of the cp1250 character set with a primary key column in a LIKE clause caused a server crash for patterns
having letters in the range 128..255. (Bug#19741)

• make install tried to build files that should already have been built by make all, causing a failure if installation was per-
formed using a different account than the one used for the initial build. (Bug#19738)

• InnoDB unlocked its data directory before committing a transaction, potentially resulting in non-recoverable tables if a server crash
occurred before the commit. (Bug#19727)

• An issue with yaSSL prevented Connector/J clients from connecting to the server using a certificate. (Bug#19705)

• For a MyISAM table with a FULLTEXT index, compression with myisampack or a check with myisamchk after compression
resulted in table corruption. (Bug#19702)

• The EGNINE clause was displayed in the output of SHOW CREATE TABLE for partitioned tables when the SQL mode included
no_table_options. (Bug#19695)

• A cast problem caused incorrect results for prepared statements that returned float values when MySQL was compiled with gcc 4.0.
(Bug#19694)

MySQL Change History

2170

http://bugs.mysql.com/20086
http://bugs.mysql.com/20078
http://bugs.mysql.com/20076
http://bugs.mysql.com/20060
http://bugs.mysql.com/20002
http://bugs.mysql.com/19995
http://bugs.mysql.com/19960
http://bugs.mysql.com/19939
http://bugs.mysql.com/19890
http://bugs.mysql.com/19881
http://bugs.mysql.com/19874
http://bugs.mysql.com/19862
http://bugs.mysql.com/19835
http://bugs.mysql.com/19834
http://bugs.mysql.com/19815
http://bugs.mysql.com/19810
http://bugs.mysql.com/19789
http://bugs.mysql.com/19773
http://bugs.mysql.com/19741
http://bugs.mysql.com/19738
http://bugs.mysql.com/19727
http://bugs.mysql.com/19705
http://bugs.mysql.com/19702
http://bugs.mysql.com/19695
http://bugs.mysql.com/19694


• EXPLAIN PARTITIONS would produce illegible output in the partitions column if the length of text to be displayed in that
column was too long. This could occur when very many partitions were defined for the table, partitions were given very long names,
or due to a combination of the two. (Bug#19684)

• The mysql_list_fields() C API function returned the incorrect table name for views. (Bug#19671)

• If a query had a condition of the form tableX.key = tableY.key , which participated in equality propagation and also was
used for ref access, then early ref-access NULL filtering was not peformed for the condition. This could make query execution
slower. (Bug#19649)

• Re-execution of a prepared multiple-table DELETE statement that involves a trigger or stored function can result in a server crash.
(Bug#19634)

• The effect of a stored function or trigger that caused AUTO_INCREMENT values to be generated for multiple tables was not logged
properly if statement-based logging was used. Only the first table's value was logged, causing replication to fail. Under mixed log-
ging format, this is dealt with by switching to row-based logging for the function or trigger. For statement-based logging, this re-
mains a problem. (Bug#19630)

• File size specifications for InnoDB data files were case sensitive. (Bug#19609)

• CHECK TABLE on a MyISAM table briefly cleared its AUTO_INCREMENT value, while holding only a read lock. Concurrent in-
serts to that table could use the wrong AUTO_INCREMENT value. CHECK TABLE no longer modifies the AUTO_INCREMENT
value. (Bug#19604)

• Some yaSSL public function names conflicted with those from OpenSSL, causing conflicts for applications that linked against both
OpenSSL and a version of libmysqlclient that was built with yaSSL support. The yaSSL public functions now are renamed to
avoid this conflict. (Bug#19575)

• In the INFORMATION_SCHEMA.FILES table, the INITIAL_SIZE, MAXIMUM_SIZE, and AUTOEXTEND_SIZE columns in-
correctly were being stored as VARCHAR rather than BIGINT. . (Bug#19544)

• InnoDB failed to increment the handler_read_prev counter. (Bug#19542)

• Portions of statements related to partitioning were not surrounded by version-specific comments by mysqldump, breaking back-
ward compatibility for dump files. (Bug#19488)

• For row-based replication, the BINLOG command did not lock tables properly, causing a crash for some table types. (Bug#19459)

• Column names supplied for a view created on a master server could be lost on a slave server. (Bug#19419)

• Repeated DROP TABLE statements in a stored procedure could sometimes cause the server to crash. (Bug#19399)

• Renaming a database to itself caused a server crash. (Bug#19392)

• Race conditions on certain platforms could cause the Instance Manager to fail to initialize. (Bug#19391)

• When not running in strict mode, the server failed to convert the invalid years portion of a DATE or DATETIME value to '0000'
when inserting it into a table.

Note

This fix was reverted in MySQL 5.1.18.

(Bug#19370)

See also Bug#25301

• Use of the --no-pager option caused mysql to crash. (Bug#19363)

• Multiple calls to a stored procedure that altered a partitioned MyISAM table would cause the server to crash. (Bug#19309)

• ALTER TABLE ... COALESCE PARTITION did not delete the files associated with the partitions that were removed.
(Bug#19305)

• Adding an index to a partitioned table that had been created using AUTO_INCREMENT = value caused the
AUTO_INCREMENT value to be reset. (Bug#19281)

MySQL Change History

2171

http://bugs.mysql.com/19684
http://bugs.mysql.com/19671
http://bugs.mysql.com/19649
http://bugs.mysql.com/19634
http://bugs.mysql.com/19630
http://bugs.mysql.com/19609
http://bugs.mysql.com/19604
http://bugs.mysql.com/19575
http://bugs.mysql.com/19544
http://bugs.mysql.com/19542
http://bugs.mysql.com/19488
http://bugs.mysql.com/19459
http://bugs.mysql.com/19419
http://bugs.mysql.com/19399
http://bugs.mysql.com/19392
http://bugs.mysql.com/19391
http://bugs.mysql.com/19370
http://bugs.mysql.com/25301
http://bugs.mysql.com/19363
http://bugs.mysql.com/19309
http://bugs.mysql.com/19305
http://bugs.mysql.com/19281


• Multiple-table DELETE statements containing a subquery that selected from one of the tables being modified caused a server crash.
(Bug#19225)

• The final parenthesis of a CREATE INDEX statement occurring in a stored procedure was omitted from the binary log when the
stored procedure was called. (Bug#19207)

• An ALTER TABLE operation that does not need to copy data, when executed on a table created prior to MySQL 4.0.25, could res-
ult in a server crash for subsequent accesses to the table. (Bug#19192)

• SSL connections using yaSSL on OpenBSD could fail. (Bug#19191)

• The dropping of a temporary table whose name contained a backtick ('`') character was not correctly written to the binary log,
which also caused it not to be replicated correctly. (Bug#19188)

• ALTER TABLE ... REBUILD PARTITION could cause the server to hang or crash. (Bug#19122)

• With row-based replication, replicating a statement to a slave where the table had additional columns relative to the master table did
not work. (Bug#19069)

• Using ALTER TABLE on a subpartitioned table caused the server to crash. (Bug#19067)

• Trying to execute a query having a WHERE clause using int_col = "string_value" OR int_col IS NULL on a parti-
tioned table whose partitioning or subpartitioning function used the integer column int_col would crash the server. (Bug#19055)

• Valgrind revealed several issues with mysqld that were corrected: A dangling stack pointer being overwritten; possible uninitial-
ized data in a string comparison; memory corruption in replication slaves when switching databases; syscall() write parameter
pointing to an uninitialized byte. (Bug#19022, Bug#20579, Bug#20769, Bug#20783, Bug#20791)

• A redundant table map event could be generated in the binary log when there were no actual changes to a table being replicated. In
addition, a slave failed to stop when attempting to replicate a table that did not exist on the slave. (Bug#18948)

• A SELECT with a subquery that was bound to the outer query over multiple columns returned different results when a constant was
used instead of one of the dependant columns. (Bug#18925)

• It was possible using ALTER EVENT ... RENAME ... to move an event to a database on which the user did not have the
EVENT privilege. (Bug#18897)

• When used in the DO clause of a CREATE EVENT statement, the statements CREATE EVENT, CREATE FUNCTION, and CRE-
ATE PROCEDURE caused the server to crash. (These statements are not permitted inside CREATE EVENT.) (Bug#18896,
Bug#16409)

• BIT columns in a table could cause joins that use the table to fail. (Bug#18895)

• The build process incorrectly tried to overwrite sql/lex_hash.h. This caused the build to fail when using a shadow link tree
pointing to original sources that were owned by another account. (Bug#18888)

• Setting myisam_repair_threads caused any repair operation on a MyISAM table to fail to update the cardinality of indexes,
instead making them always equal to 1. (Bug#18874)

• The MySQL server startup script /etc/init.d/mysql (created from mysql.server) is now marked to ensure that the sys-
tem services ypbind, nscd, ldap, and NTP are started first (if these are configured on the machine). (Bug#18810)

• InnoDB: Quoted Unicode identifiers were not handled correctly. This included names of tables, columns, and foreign keys.
(Bug#18800)

• Intermediate tables created during the execution of an ALTER TABLE statement were visible in the output of SHOW TABLES.
(Bug#18775)

• FEDERATED tables raised invalid duplicate key errors when attempting on one server to insert rows having the same primary key
values as rows that had been deleted from the linked table on the other server. (Bug#18764)

• Memory used by scheduled events was not freed when the events were dropped. (Bug#18683)

• The implementation for UNCOMPRESS() did not indicate that it could return NULL, causing the optimizer to do the wrong thing.
(Bug#18539)

MySQL Change History

2172

http://bugs.mysql.com/19225
http://bugs.mysql.com/19207
http://bugs.mysql.com/19192
http://bugs.mysql.com/19191
http://bugs.mysql.com/19188
http://bugs.mysql.com/19122
http://bugs.mysql.com/19069
http://bugs.mysql.com/19067
http://bugs.mysql.com/19055
http://bugs.mysql.com/19022
http://bugs.mysql.com/20579
http://bugs.mysql.com/20769
http://bugs.mysql.com/20783
http://bugs.mysql.com/20791
http://bugs.mysql.com/18948
http://bugs.mysql.com/18925
http://bugs.mysql.com/18897
http://bugs.mysql.com/18896
http://bugs.mysql.com/16409
http://bugs.mysql.com/18895
http://bugs.mysql.com/18888
http://bugs.mysql.com/18874
http://bugs.mysql.com/18810
http://bugs.mysql.com/18800
http://bugs.mysql.com/18775
http://bugs.mysql.com/18764
http://bugs.mysql.com/18683
http://bugs.mysql.com/18539


• Referring to a stored function qualified with the name of one database and tables in another database caused a “table doesn't exist”
error. (Bug#18444)

• Identifiers could not contain bytes with a value of 255, though that should be allowed as of the identifier-encoding changes made in
MySQL 5.1.6. (Bug#18396)

• Triggers on tables in the mysql database caused a server crash. Triggers for tables in this database now are disallowed.
(Bug#18361, Bug#18005)

• Incorrect type aggregation for IN() and CASE expressions could lead to an incorrect result. (Bug#18360)

• The length of the pattern string prefix for LIKE operations was calculated incorrectly for multi-byte character sets. As a result, the
scanned range was wider than necessary if the prefix contained any multi-byte characters, and rows could be missing from the result
set. (Bug#18359, Bug#16674)

• On Windows, corrected a crash stemming from differences in Visual C runtime library routines from POSIX behavior regarding in-
valid file descriptors. (Bug#18275)

• Linking the pthreads library to single-threaded MySQL libraries caused dlopen() to fail at runtime on HP-UX. (Bug#18267)

• The source distribution failed to compile when configured with the --with-libwrap option. (Bug#18246)

• On Windows, terminating mysqld with Control-C could result in a crash during shutdown. (Bug#18235)

• Selecting data from a MEMORY table with a VARCHAR column and a HASH index over it returned only the first row matched.
(Bug#18233)

• The use of MIN() and MAX() on columns with an index prefix produced incorrect results in some queries. (Bug#18206)

• A UNION over more than 128 SELECT statements that use an aggregate function failed. (Bug#18175)

• The optimizer did not take advantage of indexes on columns used for the second or third arguments of BETWEEN. (Bug#18165)

• Performing INSERT ... SELECT ... JOIN ... USING without qualifying the column names caused ERROR 1052
"column 'x' in field list is ambiguous" even in cases where the column references were unambiguous.
(Bug#18080)

• An update that used a join of a table to itself and modified the table on both sides of the join reported the table as crashed.
(Bug#18036)

• Race conditions on certain platforms could cause the Instance Manager to try to restart the same instance multiple times.
(Bug#18023)

• Changing the definition of a DECIMAL column with ALTER TABLE caused loss of column values. (Bug#18014)

• For table-format output, mysql did not always calculate columns widths correctly for columns containing multi-byte characters in
the column name or contents. (Bug#17939)

• The character set was not being properly initialized for CAST() with a type like CHAR(2) BINARY, which resulted in incorrect
results or even a server crash. (Bug#17903)

• Checking a MyISAM table (using CHECK TABLE) having a spatial index and only one row would wrongly indicate that the table
was corrupted. (Bug#17877)

• For a reference to a non-existent index in FORCE INDEX, the error message referred to a column, not an index. (Bug#17873)

• A stored procedure that created and invoked a prepared statement was not executed when called in a mysqld init-file. (Bug#17843)

• It is possible to create MERGE tables into which data cannot be inserted (by not specifying a UNION clause. However, when an in-
sert was attempted, the error message was confusing. Now an error occurs indicating that the table is read-only. (Bug#17766)

• Row-based replication failed when the query cache was enabled on the slave. (Bug#17620)

• Attempting to insert a string of greater than 4096 bytes into a FEDERATED table resulted in the error ERROR 1296 (HY000) AT

LINE 2: GOT ERROR 10000 'ERROR ON REMOTE SYSTEM: 1054: UNKNOWN COLUMN 'STRING-VALUE' FROM FEDERATED.
This error was raised regardless of the type of column involved (VARCHAR, TEXT, and so on.) (Bug#17608)

MySQL Change History

2173

http://bugs.mysql.com/18444
http://bugs.mysql.com/18396
http://bugs.mysql.com/18361
http://bugs.mysql.com/18005
http://bugs.mysql.com/18360
http://bugs.mysql.com/18359
http://bugs.mysql.com/16674
http://bugs.mysql.com/18275
http://bugs.mysql.com/18267
http://bugs.mysql.com/18246
http://bugs.mysql.com/18235
http://bugs.mysql.com/18233
http://bugs.mysql.com/18206
http://bugs.mysql.com/18175
http://bugs.mysql.com/18165
http://bugs.mysql.com/18080
http://bugs.mysql.com/18036
http://bugs.mysql.com/18023
http://bugs.mysql.com/18014
http://bugs.mysql.com/17939
http://bugs.mysql.com/17903
http://bugs.mysql.com/17877
http://bugs.mysql.com/17873
http://bugs.mysql.com/17843
http://bugs.mysql.com/17766
http://bugs.mysql.com/17620
http://bugs.mysql.com/17608


• If a filename was specified for the --log or --log-slow_queries options but the server was logging to tables and not files,
the server produced no error message. (Bug#17599)

• If the general log table reached a large enough file size (27GB), SELECT COUNT(*) on the table caused a server crash.
(Bug#17589)

• Using the extended syntax for TRIM() — that is, TRIM(... FROM ...) — in a SELECT statement defining a view caused an
invalid syntax error when selecting from the view. (Bug#17526)

• Use of the --prompt option or prompt command caused mysql to be unable to connect to the Instance Manager. (Bug#17485)

• OPTIMIZE TABLE and REPAIR TABLE yielded incorrect messages or warnings when used on partitioned tables. (Bug#17455)

• mysqldump would not dump views that had become invalid because a table named in the view definition had been dropped. In-
stead, it quit with an error message. Now you can specify the --force option to cause mysqldump to keep going and write a
SQL comment containing the view definition to the dump output. (Bug#17371)

• N'xxx' and _utf8'xxx' were not treated as equivalent because N'xxx' failed to unescape backslashes (\) and doubled apo-
strophe/single quote characters (''). (Bug#17313)

• Following a failed attempt to add an index to an ARCHIVE table, it was no longer possible to drop the database in which the table
had been created. (Bug#17310)

• Assignments of values to variables of type TEXT were handled incorrectly in stored routines. (Bug#17225)

• Views created from prepared statements inside of stored procedures were created with a definition that included both SQL_CACHE
and SQL_NO_CACHE. (Bug#17203)

• mysqldump wrote an extra pair of DROP DATABASE and CREATE DATABASE statements if run with the -
-add-drop-database option and the database contained views. (Bug#17201)

• A TABLE ... DOESN'T EXIST error could occur for statements that called a function defined in another database. (Bug#17199)

• A prepared statement that altered partitioned table within a stored procedure failed with the error UNKNOWN PREPARED STATEMENT

HANDLER. (Bug#17138)

• myisam_ftdump would fail when trying to open a MyISAM index file that you did not have write permissions to access, even
though the command would only be reading from the file. (Bug#17122)

• ALTER TABLE on a table created prior to 5.0.3 would cause table corruption if the ALTER TABLE did one of the following:

• Change the default value of a column.

• Change the table comment.

• Change the table password.

(Bug#17001)

• For statements that have a DEFINER clause such as CREATE TRIGGER or CREATE VIEW, long usernames or hostnames could
cause a buffer overflow. (Bug#16899)

• The PASSWORD() function returned invalid results when used in some UNION queries. (Bug#16881)

• ORDER BY RAND() LIMIT 1 always set a user variable to the last possible value from the table. (Bug#16861)

• Compilation on Windows would fail if row based replication was disabled using --without-row-based-replication.
(Bug#16837)

• Queries containing a subquery that used aggregate functions could return incorrect results. (Bug#16792)

• Concatenating the results of multiple constant subselects produced incorrect results. (Bug#16716)

• When performing a GROUP_CONCAT(), the server transformed BLOB columns VARCHAR columns, which could cause erroneous
results when using Connector/J and possibly other MySQL APIs. (Bug#16712)

MySQL Change History

2174

http://bugs.mysql.com/17599
http://bugs.mysql.com/17589
http://bugs.mysql.com/17526
http://bugs.mysql.com/17485
http://bugs.mysql.com/17455
http://bugs.mysql.com/17371
http://bugs.mysql.com/17313
http://bugs.mysql.com/17310
http://bugs.mysql.com/17225
http://bugs.mysql.com/17203
http://bugs.mysql.com/17201
http://bugs.mysql.com/17199
http://bugs.mysql.com/17138
http://bugs.mysql.com/17122
http://bugs.mysql.com/17001
http://bugs.mysql.com/16899
http://bugs.mysql.com/16881
http://bugs.mysql.com/16861
http://bugs.mysql.com/16837
http://bugs.mysql.com/16792
http://bugs.mysql.com/16716
http://bugs.mysql.com/16712


• Stored procedures did not use the character set defined for the database in which they were created. (Bug#16676)

• Some server errors were not reported to the client, causing both to try to read from the connection until a hang or crash resulted.
(Bug#16581)

• If the files for an open table were removed at the OS level (external to the server), the server exited with an assertion failure.
(Bug#16532)

• On Windows, a definition for mysql_set_server_option() was missing from the C client library. (Bug#16513)

• mysqlcheck tried to check views instead of ignoring them. (Bug#16502)

• Updating a column of a FEDERATED table to NULL sometimes failed. (Bug#16494)

• For SELECT ... FOR UPDATE statements that used DISTINCT or GROUP BY over all key parts of a unique index (or primary
key), the optimizer unnecessarily created a temporary table, thus losing the linkage to the underlying unique index values. This
caused a Result set not updatable error. (The temporary table is unnecessary because under these circumstances the dis-
tinct or grouped columns must also be unique.) (Bug#16458)

• A scheduled event that took longer to execute than the length of time scheduled between successive executions could “skip” execu-
tions. For example, an event defined with EVERY 1 SECOND — but which required longer than 1 second to complete — might be
executed only once every 2 seconds. (Bug#16417)

• A subselect used in the ON SCHEDULE clause of a CREATE EVENT or ALTER EVENT statement caused the server to crash,
rather than producing an error as expected. (Bug#16394)

• Grant table modifications sometimes did not refresh the in-memory tables if the hostname was '' or not specified. (Bug#16297)

• A subquery in the WHERE clause of the outer query and using IN and GROUP BY returned an incorrect result. (Bug#16255)

• A query could produce different results with and without and index, if the WHERE clause contained a range condition that used an
invalid DATETIME constant. (Bug#16249)

• TIMESTAMPDIFF() examined only the date and ignored the time when the requested difference unit was months or quarters.
(Bug#16226)

• Using tables from MySQL 4.x in MySQL 5.x, in particular those with VARCHAR fields and using INSERT DELAYED to update
data in the table would result in either data corruption or a server crash. (Bug#16218, Bug#17294, Bug#16611)

• The value returned by a stored function returning a string value was not of the declared character set. (Bug#16211)

• The index_merge/Intersection optimizer could experience a memory overrun when the number of table columns covered
by an index was sufficiently large, possibly resulting in a server crash. (Bug#16201)

• Row equalities (such as WHERE (a,b) = (c,d) were not taken into account by the optimizer, resulting in slow query execu-
tion. Now they are treated as conjunctions of equalities between row elements. (Bug#16081)

• Some memory leaks in the libmysqld embedded server were corrected. (Bug#16017)

• Values greater than 2 gigabytes used in the VALUES LESS THAN clause of a table partitioned by RANGE were treated as negative
numbers. (Bug#16002)

• A CREATE TABLE that produced a THE PARTITION FUNCTION RETURNS THE WRONG TYPE error also caused an INCORRECT
INFORMATION IN FILE to be printed to STDERR, and a junk file to be left in the database directory. (Bug#16000)

• The max_length metadata value for columns created from CONCAT() could be incorrect when the collation of an argument
differed from the collation of the CONCAT() itself. In some contexts such as UNION, this could lead to truncation of the column
contents. (Bug#15962)

• When NOW() was used in a BETWEEN clause of the definition for a view, it was replaced with a constant in the view. (Bug#15950)

• The server's handling of the number of partitions or subpartitions specified in a PARTITIONS or SUBPARTITIONS clause was
changed. Beginning with this release, the number of partitions must:

• be a positive, non-zero integer

MySQL Change History

2175

http://bugs.mysql.com/16676
http://bugs.mysql.com/16581
http://bugs.mysql.com/16532
http://bugs.mysql.com/16513
http://bugs.mysql.com/16502
http://bugs.mysql.com/16494
http://bugs.mysql.com/16458
http://bugs.mysql.com/16417
http://bugs.mysql.com/16394
http://bugs.mysql.com/16297
http://bugs.mysql.com/16255
http://bugs.mysql.com/16249
http://bugs.mysql.com/16226
http://bugs.mysql.com/16218
http://bugs.mysql.com/17294
http://bugs.mysql.com/16611
http://bugs.mysql.com/16211
http://bugs.mysql.com/16201
http://bugs.mysql.com/16081
http://bugs.mysql.com/16017
http://bugs.mysql.com/16002
http://bugs.mysql.com/16000
http://bugs.mysql.com/15962
http://bugs.mysql.com/15950


• not have any leading zeroes

• not be an expression

Also beginning with this version, no attempt is made to convert, truncate, or evaluate a PARTITIONS or SUBPARTITIONS value;
instead, the CREATE TABLE or ALTER TABLE statement containing the PARTITIONS or SUBPARTITIONS clause now fails
with an appropriate error message. (Bug#15890)

• Long multiple-row INSERT statements could take a very long time for some multi-byte character sets. (Bug#15811)

• The C API failed to return a status message when invoking a stored procedure. (Bug#15752)

• mysqlimport sends a set @@character_set_database=binary statement to the server, but this is not understood by
pre-4.1 servers. Now mysqlimport encloses the statement within a /*!40101 ... */ comment so that old servers will ig-
nore it. (Bug#15690)

• DELETE with LEFT JOIN for InnoDB tables could crash the server if innodb_locks_unsafe_for_binlog was enabled.
(Bug#15650)

• BIN(), OCT(), and CONV() did not work with BIT values. (Bug#15583)

• Nested natural joins worked executed correctly when executed as a non-prepared statement could fail with an Unknown column
'col_name' in 'field list' error when executed as a prepared statement, due to a name resolution problem.
(Bug#15355)

• The MD5() and SHA() functions treat their arguments as case-sensitive strings. But when they are compared, their arguments were
compared as case-insensitive strings, which leads to two function calls with different arguments (and thus different results) com-
pared as being identical. This can lead to a wrong decision made in the range optimizer and thus to an incorrect result set.
(Bug#15351)

• Invalid escape sequences in option files caused MySQL programs that read them to abort. (Bug#15328)

• SHOW GRANTS FOR CURRENT_USER did not return definer grants when executed in DEFINER context (such as within a stored
prodedure defined with SQL SECURITY DEFINER), it returned the invoker grants. (Bug#15298)

• The --collation-server server option was being ignored. With the fix for this problem, if you choose a non-default character
set with --character-set-server, you should also use --collation-server to specify the collation. (Bug#15276)

• Re-executing a stored procedure with a complex stored procedure cursor query could lead to a server crash. (Bug#15217)

• The server crashed if it tried to access a CSV table for which the data file had been removed. (Bug#15205)

• When using tables containing VARCHAR columns created under MySQL 4.1 with a 5.0 or later server, for some queries the metadata
sent to the client could have an empty column name. (Bug#14897)

• An invalid comparison between keys with index prefixes over multi-byte character fields could lead to incorrect result sets if the se-
lected query execution plan used a range scan by an index prefix over a UTF8 character field. This also caused incorrect results un-
der similar circumstances with many other character sets. (Bug#14896)

• When setting a column to its implicit default value as the result of inserting a NULL into a NOT NULL column as part of a multi-
row insert or LOAD DATA operation, the server returned a misleading warning message. (Bug#14770)

• For BOOLEAN mode full-text searches on non-indexed columns, NULL rows generated by a LEFT JOIN caused incorrect query
results. (Bug#14708, Bug#25637)

• The parser rejected queries that selected from a table twice using a UNION within a subquery. The parser now supports arbitrary
subquery, join, and parenthesis operations within EXISTS subqueries. A limitation still exists for scalar subqueries: If the subquery
contains UNION, the first SELECT of the UNION cannot be within parentheses. For example, SELECT (SELECT a FROM t1
UNION SELECT b FROM t2) will work, but SELECT ((SELECT a FROM t1) UNION (SELECT b FROM t2)) will
not. (Bug#14654)

• Using SELECT and a table join while running a concurrent INSERT operation would join incorrect rows. (Bug#14400)

• Prepared statements caused general log and server memory corruption. (Bug#14346)

MySQL Change History

2176

http://bugs.mysql.com/15890
http://bugs.mysql.com/15811
http://bugs.mysql.com/15752
http://bugs.mysql.com/15690
http://bugs.mysql.com/15650
http://bugs.mysql.com/15583
http://bugs.mysql.com/15355
http://bugs.mysql.com/15351
http://bugs.mysql.com/15328
http://bugs.mysql.com/15298
http://bugs.mysql.com/15276
http://bugs.mysql.com/15217
http://bugs.mysql.com/15205
http://bugs.mysql.com/14897
http://bugs.mysql.com/14896
http://bugs.mysql.com/14770
http://bugs.mysql.com/14708
http://bugs.mysql.com/25637
http://bugs.mysql.com/14654
http://bugs.mysql.com/14400
http://bugs.mysql.com/14346


• The binary log lacked character set information for table names when dropping temporary tables. (Bug#14157)

• libmysqld produced some warnings to stderr which could not be silenced. These warnings now are suppressed. (Bug#13717)

• RPM packages had spurious dependencies on Perl modules and other programs. (Bug#13634)

• InnoDB locking was improved by removing a gap lock for the case that you try to delete the same row twice within a transaction.
(Bug#13544)

• REPLACE statements caused activation of UPDATE triggers, not DELETE and INSERT triggers. (Bug#13479)

• The source distribution failed to compile when configured with the --without-geometry option. (Bug#12991)

• With settings of read_buffer_size >= 2G and read_rnd_buffer_size >=2G, LOAD DATA INFILE failed with no er-
ror message or caused a server crash for files larger than 2GB. (Bug#12982)

• A B-TREE index on a MEMORY table erroneously reported duplicate entry error for multiple NULL values. (Bug#12873)

• Instance Manager didn't close the client socket file when starting a new mysqld instance. mysqld inherited the socket, causing
clients connected to Instance Manager to hang. (Bug#12751)

• On Mac OS X, zero-byte read() or write() calls to an SMB-mounted filesystem could return a non-standard return value, lead-
ing to data corruption. Now such calls are avoided. (Bug#12620)

• DATE_ADD() and DATE_SUB() returned NULL when the result date was on the day '9999-12-31'. (Bug#12356)

• For very complex SELECT statements could create temporary tables that were too large, and for which the temporary files were not
removed, causing subsequent queries to fail. (Bug#11824)

• After an INSERT ... ON DUPLICATE KEY UPDATE statement that updated an existing row, LAST_INSERT_ID() could
return a value not in the table. (Bug#11460)

• USE did not refresh database privileges when employed to re-select the current database. (Bug#10979)

• The server returns a more informative error message when it attempts to open a MERGE table that has been defined to use non-My-
ISAM tables. (Bug#10974)

• The type of the value returned by the VARIANCE() function varied according to the type of the input value. The function should
always return a DOUBLE value. (Bug#10966)

• The same trigger error message was produced under two conditions: The trigger duplicated an existing trigger name, or the trigger
duplicated an existing combination of action and event. Now different messages are produced for the two conditions so as to be
more informative. (Bug#10946)

• A locking safety check in InnoDB reported a spurious error STORED_SELECT_LOCK_TYPE IS 0 INSIDE ::START_STMT() for
INSERT ... SELECT statements in innodb_locks_unsafe_for_binlog mode. The safety check was removed.
(Bug#10746)

• CREATE USER did not respect the 16-character username limit. (Bug#10668)

• A server or network failure with an open client connection would cause the client to hang even though the server was no longer
available.

As a result of this change, the MYSQL_OPT_READ_TIMEOUT and MYSQL_OPT_WRITE_TIMEOUT options for
mysql_options() now apply to TCP/IP connections on all platforms. Previously, they applied only to Windows. (Bug#9678)

• INSERT INTO ... SELECT ... LIMIT 1 could be slow because the LIMIT was ignored when selecting candidate rows.
(Bug#9676)

• The optimizer could produce an incorrect result after AND with collations such as latin1_german2_ci, utf8_czech_ci,
and utf8_lithianian_ci. (Bug#9509)

• The DATA DIRECTORY table option did not work for TEMPORARY tables. (Bug#8706)

• A stored procedure with a CONTINUE handler that encountered an error continued to execute a statement that caused an error,
rather with the next statement following the one that caused the error. (Bug#8153)

MySQL Change History

2177

http://bugs.mysql.com/14157
http://bugs.mysql.com/13717
http://bugs.mysql.com/13634
http://bugs.mysql.com/13544
http://bugs.mysql.com/13479
http://bugs.mysql.com/12991
http://bugs.mysql.com/12982
http://bugs.mysql.com/12873
http://bugs.mysql.com/12751
http://bugs.mysql.com/12620
http://bugs.mysql.com/12356
http://bugs.mysql.com/11824
http://bugs.mysql.com/11460
http://bugs.mysql.com/10979
http://bugs.mysql.com/10974
http://bugs.mysql.com/10966
http://bugs.mysql.com/10946
http://bugs.mysql.com/10746
http://bugs.mysql.com/10668
http://bugs.mysql.com/9678
http://bugs.mysql.com/9676
http://bugs.mysql.com/9509
http://bugs.mysql.com/8706
http://bugs.mysql.com/8153


• For ODBC compatibility, MySQL supports use of WHERE col_name IS NULL for DATE or DATETIME columns that are NOT
NULL, to allow column values of '0000-00-00' or '0000-00-00 00:00:00' to be selected. However, this was not work-
ing for WHERE clauses in DELETE statements. (Bug#8143)

• A user variable set to a value selected from an unsigned column was stored as a signed value. (Bug#7498)

• The --with-collation option was not honored for client connections. (Bug#7192)

• An invalid GRANT statement for which Ok was returned on a replication master caused an error on the slave and replication to fail.
(Bug#6774)

• With TRADITIONAL SQL mode, assignment of out-of-bound values and rounding of assigned values was done correctly, but as-
signment of the same numbers represented as strings sometimes was handled differently. (Bug#6147)

• On an INSERT into an updatable but non-insertable view, an error message was issued stating that the view was not updatable.
Now the message says the view is not insertable-into. (Bug#5505)

• EXPLAIN sometimes returned an incorrect select_type for a SELECT from a view, compared to the select_type for the
equivalent SELECT from the base table. (Bug#5500)

• Some queries that used ORDER BY and LIMIT performed quickly in MySQL 3.23, but slowly in MySQL 4.x/5.x due to an optim-
izer problem. (Bug#4981)

• Incorporated some portability fixes into the definition of __attribute__ in my_global.h. (Bug#2717)

• User-created tables having a name beginning with #sql were not visible to SHOW TABLES and could collide with internal tempor-
ary table names. Now they are not hidden and do not collide. (Bug#1405)

• not have any leading zeroes

• not be an expression

• be a positive, non-zero integer

C.1.23. Changes in MySQL 5.1.11 (26 May 2006)
This is a new Beta development release, fixing recently discovered bugs.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• Incompatible Change: The Event Scheduler can now be in one of three states (on, off, or the new suspended state). In addition, due
to the fact that SET GLOBAL event_scheduler; now acts in a synchronous rather than asynchronous manner, the Event
Scheduler thread can be no longer be activated or deactivated at run time.

For more information regarding these changes, see Section 22.1, “Event Scheduler Overview”. (Bug#17619)

• MySQL Cluster: The limit of 2048 ordered indexes per cluster has been lifted. There is now no upper limit on the number of
ordered indexes (including AUTO_INCREMENT columns) that may be used. (Bug#14509)

• Added the log_queries_not_using_indexes system variable. (Bug#19616)

• Added the ssl_ca, ssl_capath, ssl_cert, ssl_cipher, and ssl_key system variables, which display the values given
via the corresponding command options. See Section 5.5.7.3, “SSL Command Options”. (Bug#19606)

• The ENABLE KEYS and DISABLE KEYS clauses for the ALTER TABLE statement are now supported for partitioned tables.
(Bug#19502)

• Added the --ssl-verify-server-cert option to MySQL client programs. This option causes the server's Common Name
value in its certificate to be verified against the hostname used when connecting to the server, and the connection is rejected if there

MySQL Change History

2178

http://bugs.mysql.com/8143
http://bugs.mysql.com/7498
http://bugs.mysql.com/7192
http://bugs.mysql.com/6774
http://bugs.mysql.com/6147
http://bugs.mysql.com/5505
http://bugs.mysql.com/5500
http://bugs.mysql.com/4981
http://bugs.mysql.com/2717
http://bugs.mysql.com/1405
http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise
http://bugs.mysql.com/17619
http://bugs.mysql.com/14509
http://bugs.mysql.com/19616
http://bugs.mysql.com/19606
http://bugs.mysql.com/19502


is a mismatch. Added MYSQL_OPT_SSL_VERIFY_SERVER_CERT option for the mysql_options() C API function to en-
able this verification. This feature can be used to prevent man-in-the-middle attacks. Verification is disabled by default.
(Bug#17208)

• The default for the innodb_thread_concurrency system variable was changed to 8. (Bug#15868)

• It is now possible to use NEW.var_name values within triggers as INOUT parameters to stored procedures. (Bug#14635)

• Added the --angel-pid-file option to mysqlmanager for specifying the file in which the angel process records its process
ID when mysqlmanager runs in daemon mode. (Bug#14106)

• Previously, to build MySQL from source with SSL support enabled, you would invoke configure with either the -
-with-openssl or --with-yassl option. Those options both have been replaced by the --with-ssl option. By default, -
-with-ssl causes the bundled yaSSL library to be used. To select OpenSSL instead, give the option as --with-ssl=path ,
where path is the directory where the OpenSSL header files and libraries are located.

• The mysql_get_ssl_cipher() C API function was added.

• mysql_explain_log (a third-party program) is no longer included in MySQL distributions.

Bugs fixed:

• Security Fix: An SQL-injection security hole has been found in multi-byte encoding processing. The bug was in the server, incor-
rectly parsing the string escaped with the mysql_real_escape_string() C API function.

This vulnerability was discovered and reported by Josh Berkus <josh@postgresql.org> and Tom Lane
<tgl@sss.pgh.pa.us> as part of the inter-project security collaboration of the OSDB consortium. For more information about
SQL injection, please see the following text.

Discussion. An SQL injection security hole has been found in multi-byte encoding processing. An SQL injection security hole can
include a situation whereby when a user supplied data to be inserted into a database, the user might inject SQL statements into the
data that the server will execute. With regards to this vulnerability, when character set-unaware escaping is used (for example, add-
slashes() in PHP), it is possible to bypass the escaping in some multi-byte character sets (for example, SJIS, BIG5 and GBK).
As a result, a function such as addslashes() is not able to prevent SQL-injection attacks. It is impossible to fix this on the serv-
er side. The best solution is for applications to use character set-aware escaping offered by a function such
mysql_real_escape_string().

However, a bug was detected in how the MySQL server parses the output of mysql_real_escape_string(). As a result,
even when the character set-aware function mysql_real_escape_string() was used, SQL injection was possible. This bug
has been fixed.

Workarounds. If you are unable to upgrade MySQL to a version that includes the fix for the bug in
mysql_real_escape_string() parsing, but run MySQL 5.0.1 or higher, you can use the NO_BACKSLASH_ESCAPES SQL
mode as a workaround. (This mode was introduced in MySQL 5.0.1.) NO_BACKSLASH_ESCAPES enables an SQL standard com-
patibility mode, where backslash is not considered a special character. The result will be that queries will fail.

To set this mode for the current connection, enter the following SQL statement:

SET sql_mode='NO_BACKSLASH_ESCAPES';

You can also set the mode globally for all clients:

SET GLOBAL sql_mode='NO_BACKSLASH_ESCAPES';

This SQL mode also can be enabled automatically when the server starts by using the command-line option -
-sql-mode=NO_BACKSLASH_ESCAPES or by setting sql-mode=NO_BACKSLASH_ESCAPES in the server option file (for
example, my.cnf or my.ini, depending on your system). (Bug#8378, CVE-2006-2753)

See also Bug#8303

• MySQL Cluster: Running ALL START in the NDB management client or restarting multiple nodes simultaneously could under
some circumstances cause the cluster to crash. (Bug#19930)

MySQL Change History

2179

http://bugs.mysql.com/17208
http://bugs.mysql.com/15868
http://bugs.mysql.com/14635
http://bugs.mysql.com/14106
http://bugs.mysql.com/8378
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2753
http://bugs.mysql.com/8303
http://bugs.mysql.com/19930


• MySQL Cluster: (Replication): Memory was not freed after some ALTER TABLE operations, which could cause mysqld pro-
cesses to crash. (Bug#19885)

• MySQL Cluster: (NDBAPI): On big-endian platforms, NdbOperation::write_attr() did not update 32-bit fields cor-
rectly. (Bug#19537)

• MySQL Cluster: TRUNCATE failed on tables having BLOB or TEXT columns with the error LOCK WAIT TIMEOUT EXCEEDED.

Note

This issue affected both in-memory and Disk Data tables.

(Bug#19201)

• MySQL Cluster: ALTER TABLE ENGINE=... failed when used to change a MySQL Cluster table having no explicit primary
key to use a different storage engine.

Note

As a consequence of this fix, SHOW CREATE TABLE no longer displays auto-partitioning information for NDBCluster
tables.

(Bug#19010)

• MySQL Cluster: SELECT MIN(unique_column) from a Cluster table with user-defined partitioning crashed the server.
(Bug#18730)

• MySQL Cluster: (NDBAPI): The Ndb::dropEventOperation() method failed to clean up all objects used, which could
cause memory leaks to occur. (Bug#17610)

• MySQL Cluster: Using “stale” mysqld .FRM files could cause a newly-restored cluster to fail. This situation could arise when re-
starting a MySQL Cluster using the --intial option while leaving connected mysqld processes running. (Bug#16875)

• MySQL Cluster: A Cluster whose storage nodes were installed from the MySQL-ndb-storage-* RPMs could not perform
CREATE or ALTER operations that made use of non-default character sets or collations. (Bug#14918)

• MySQL Cluster: Data node failures could cause excessive CPU usage by ndb_mgmd. (Bug#13987)

• Cluster Replication: mysqld processes did not always detect cluster shutdown, leading to issues with Cluster replication and
schema distribution. (Bug#19395)

• The Data_free column in the output of SHOW TABLE STATUS always displayed 0 for partitioned tables. (Bug#19501)

• Altering a VARCHAR column in a MyISAM table to make it longer could cause corruption of the following column. (Bug#19386)

• In was not possible to invoke a stored routine containing dynamic SQL from a scheduled event. (Bug#19264)

• Adding an index to a table created using partitioning by KEY and the MEMORY storage engine caused the server to crash.
(Bug#19140)

• Use of uninitialized user variables in a subquery in the FROM clause resulted in invalid entries in the binary log. (Bug#19136)

• A CREATE TABLE statement that created a table from a materialized view did not inherit default values from the underlying table.
(Bug#19089)

• Premature optimization of nested subqueries in the FROM clause that refer to aggregate functions could lead to incorrect results.
(Bug#19077)

• When creating a table using CREATE TABLE ... PARTITION BY ... SELECT ..., the partitioning clause was ignored.
(Bug#19062)

• For dates with 4-digit year parts less than 200, an implicit conversion to add a century was applied for date arithmetic performed
with DATE_ADD(), DATE_SUB(), + INTERVAL, and - INTERVAL. (For example, DATE_ADD('0050-01-01
00:00:00', INTERVAL 0 SECOND) became '2050-01-01 00:00:00'.) Now these operations return NULL rather than
an incorrect non-NULL value. (Bug#18997)

MySQL Change History

2180

http://bugs.mysql.com/19885
http://bugs.mysql.com/19537
http://bugs.mysql.com/19201
http://bugs.mysql.com/19010
http://bugs.mysql.com/18730
http://bugs.mysql.com/17610
http://bugs.mysql.com/16875
http://bugs.mysql.com/14918
http://bugs.mysql.com/13987
http://bugs.mysql.com/19395
http://bugs.mysql.com/19501
http://bugs.mysql.com/19386
http://bugs.mysql.com/19264
http://bugs.mysql.com/19140
http://bugs.mysql.com/19136
http://bugs.mysql.com/19089
http://bugs.mysql.com/19077
http://bugs.mysql.com/19062
http://bugs.mysql.com/18997


• BLOB or TEXT arguments to or values returned from stored functions were not copied properly if too long and could become
garbled. (Bug#18587)

• The embedded server crashed with row-based replication enabled. (Bug#18518)

• The client libraries were not compiled for position-independent code on Solaris-SPARC and AMD x86_64 platforms. (Bug#18091,
Bug#13159, Bug#14202)

• Returning the value of a system variable from a stored function caused a server crash. (Bug#18037)

• Revised memory allocation for local objects within stored functions and triggers to avoid memory leak for repeated function or trig-
ger invocation. (Bug#17260)

• Symlinking .mysql_history to /dev/null to suppress statement history saving by mysql did not work. (mysql deleted the
symlink and recreated .mysql_history as a regular file, and then wrote history to it.) (Bug#16803)

• IS_USED_LOCK() could return an incorrect connection identifier. (Bug#16501)

• Simultaneous scheduled events whose actions conflicted with one another could crash the server. (Bug#16428)

• Concurrent reading and writing of privilege structures could crash the server. (Bug#16372)

• The server no longer uses a signal handler for signal 0 because it could cause a crash on some platforms. (Bug#15869)

• EXPLAIN ... SELECT INTO caused the client to hang. (Bug#15463)

• CREATE TABLE ... SELECT ... statements that used a stored function explicitly or implicitly (through a view) resulted in a
Table not locked error. (Bug#15137, Bug#12472)

• Display better error message for ALTER TABLE operations that will result in duplicate keys due to AUTO_INCREMENT resequen-
cing. (Bug#14573)

• The result from CONV() is a string, but was not always treated the same way as a string when converted to a real value for an arith-
metic operation. (Bug#13975)

• Within a trigger, SET used the SQL mode of the invoking statement, not the mode in effect at trigger creation time. (Bug#6951)

• Corrected several problems with the treatment of the --log-error option by mysqld_safe. These problems were manifest as
differences from mysqld in error log handling.

• If a filename was given for --log-error, mysqld_safe ignored it and did not pass it to mysqld, which then wrote error
information to stderr and resulted in incorrect log rotation when FLUSH LOGS was used.

• mysql_safe now adds .err to the end of the filename if no extension is present (the same as mysqld).

• mysqld_safe treated a relative pathname as relative to its own current working directory. Now it treats a relative pathname as
relative to the data directory (the same as mysqld).

In addition, some argument quoting problems were corrected. (Bug#6061)

• The basedir and tmpdir system variables could not be accessed via @@var_name syntax. (Bug#1039)

• mysqld_safe treated a relative pathname as relative to its own current working directory. Now it treats a relative pathname as re-
lative to the data directory (the same as mysqld).

• mysql_safe now adds .err to the end of the filename if no extension is present (the same as mysqld).

• If a filename was given for --log-error, mysqld_safe ignored it and did not pass it to mysqld, which then wrote error in-
formation to stderr and resulted in incorrect log rotation when FLUSH LOGS was used.

• The patch for Bug#8303 broke the fix for Bug#8378 and was undone. (In string literals with an escape character (\) followed by a
multi-byte character that has a second byte of (\), the literal was not interpreted correctly. The next byte now is escaped, not the en-
tire multi-byte character. This means it a strict reverse of the mysql_real_escape_string() function.)

C.1.24. Changes in MySQL 5.1.10 (Not released)

MySQL Change History

2181

http://bugs.mysql.com/18587
http://bugs.mysql.com/18518
http://bugs.mysql.com/18091
http://bugs.mysql.com/13159
http://bugs.mysql.com/14202
http://bugs.mysql.com/18037
http://bugs.mysql.com/17260
http://bugs.mysql.com/16803
http://bugs.mysql.com/16501
http://bugs.mysql.com/16428
http://bugs.mysql.com/16372
http://bugs.mysql.com/15869
http://bugs.mysql.com/15463
http://bugs.mysql.com/15137
http://bugs.mysql.com/12472
http://bugs.mysql.com/14573
http://bugs.mysql.com/13975
http://bugs.mysql.com/6951
http://bugs.mysql.com/6061
http://bugs.mysql.com/1039
http://bugs.mysql.com/8303
http://bugs.mysql.com/8378


Note

This was an internal release only, and no binaries were published.

MySQL 5.1.10 includes the patches for recently reported security vulnerabilites in the MySQL client-server protocol. We would like to
thank Stefano Di Paola <stefano.dipaola@wisec.it> for finding and reporting these to us.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• Security Enhancement: Added the global max_prepared_stmt_count system variable to limit the total number of prepared
statements in the server. This limits the potential for denial-of-service attacks based on running the server out of memory by prepar-
ing huge numbers of statements. The current number of prepared statements is available through the prepared_stmt_count
system variable. (Bug#16365)

• MySQL Cluster: It is now possible to restore a MySQL Cluster backup between big-endian and little-endian machines.
(Bug#19255)

• MySQL Cluster: It is now possible to perform a partial start of a cluster. That is, it is now possible to bring up the cluster without
first running ndbd --initial on all configured data nodes. (Bug#18606)

• MySQL Cluster: It is now possible to install MySQL with Cluster support to a non-default location and change the search path for
font description files using either the --basedir or --character-sets-dir options. (Previously in MySQL 5.1, ndbd
searched only the default path for character sets.)

• Packaging: The MySQL-shared-compat-5.1.X-.i386.rpm shared compatibility RPMs no longer contain libraries for
MySQL 5.0. This avoids a conflict because the 5.0 and 5.1 libraries share the same soname number. They now contain libraries for
MySQL 3.23, 4.0, 4.1, and 5.1. (Bug#19288)

• SQL syntax for prepared statements now supports ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE. (Bug#19308)

• The ONLY_FULL_GROUP_BY SQL mode now also applies to the HAVING clause. That is, columns not named in the GROUP BY
clause cannot be used in the HAVING clause if not used in an aggregate function. (Bug#18739)

• XPath expressions passed to the ExtractValue() and UpdateXML() functions can now include the colon character (“ : ”).
This enables use of these functions with XML which employs namespaces. (Bug#18170)

• On Windows, some names such as nul, prn, and aux could not be used as filenames because they are reserved as device names.
These are now allowable names in MySQL. They are encoded by appending @@@ to the name when the server creates the corres-
ponding file or directory. This occurs on all platforms for portability of the corresponding database object between platforms.
(Bug#17870)

• The bundled yaSSL library was upgraded to version 1.3.5. This improves handling of certain problems with SSL-related command
options. (Bug#17737)

• You must now have the DROP privilege to drop table partitions. (Bug#17139)

• Server and clients ignored the --sysconfdir option that was passed to configure. The directory specified by this option, if
set, now is used as one of the standard locations in which to look for option files. (Bug#15069)

• In result set metadata, the MYSQL_FIELD.length value for BIT columns now is reported in number of bits. For example, the
value for a BIT(9) column is 9. (Formerly, the value was related to number of bytes.) (Bug#13601)

• Added the KEY_BLOCK_SIZE table option and index option. This can be used in CREATE TABLE, ALTER TABLE, and CRE-
ATE INDEX statements to provide a hint to the storage engine about the size to use for index key blocks. The engine is allowed to
change the value if necessary.

• Added the sql_big_selects system variable to the output of SHOW VARIABLES.

• The mysql_upgrade command has been converted from a shell script to a C program, so it is available on non-Unix systems
such as Windows. This program should be run for each MySQL upgrade. See Section 4.4.8, “mysql_upgrade — Check Tables

MySQL Change History

2182

http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise
http://bugs.mysql.com/16365
http://bugs.mysql.com/19255
http://bugs.mysql.com/18606
http://bugs.mysql.com/19288
http://bugs.mysql.com/19308
http://bugs.mysql.com/18739
http://bugs.mysql.com/18170
http://bugs.mysql.com/17870
http://bugs.mysql.com/17737
http://bugs.mysql.com/17139
http://bugs.mysql.com/15069
http://bugs.mysql.com/13601


for MySQL Upgrade”.

• Added the REFERENTIAL_CONSTRAINTS table to INFORMATION_SCHEMA. It provides information about foreign keys.

• Added the have_dynamic_loading system variable that indicates whether the server supports dynamic loading of plugins.

• Added --debug option to Instance Manager.

• Binary distributions that include SSL support now are built using yaSSL when possible.

Bugs fixed:

• Security Fix: A NUL byte within a comment in a statement string caused the rest of the string not to be written to the query log, al-
lowing logging to be bypassed. (Bug#17667, CVE-2006-0903)

• Security Fix: A malicious client, using specially crafted invalid COM_TABLE_DUMP packets was able to trigger an exploitable buf-
fer overflow on the server. Thanks to Stefano Di Paola <stefano.dipaola@wisec.it> for finding and reporting this bug.
(CVE-2006-1518)

• Security Fix: A malicious client, using specially crafted invalid login or COM_TABLE_DUMP packets was able to read uninitialized
memory, which potentially, though unlikely in MySQL, could have led to an information disclosure. (, ) Thanks to Stefano Di Paola
<stefano.dipaola@wisec.it> for finding and reporting this bug. (CVE-2006-1516, CVE-2006-1517)

• MySQL Cluster: A 5.1.6 or newer server did not read local checkpoints recorded by any other 5.1 version, thus preventing a sys-
tem restart following an upgrade. (Bug#19333)

• MySQL Cluster: Concurrent INSERT and ROLLBACK statements from different connections could cause node failures.
(Bug#19245)

• MySQL Cluster: (Disk Data): Running an INSERT and a DELETE on a Disk Data table in the same transaction could cause a
deadlock. (Bug#19244)

• MySQL Cluster: Starting mysqld without --log-bin caused DDL statements on NDB tables to time out. (Bug#19214)

• MySQL Cluster: (NDBAPI): Passing a nonexistent index name to NdbIndexScanOperation::setBound() caused a seg-
mentation fault. (Bug#19088)

• MySQL Cluster: mysql-test-run.pl started NDB even for test cases that did not need it. (Bug#19083)

• MySQL Cluster: Stopping multiple nodes could cause node failure handling not to be completed. (Bug#19039)

• MySQL Cluster: The Cluster binlog mysqld accepted updates even though the binary log was not set up, which could lead to up-
dates missing from the binary log. (Bug#18932)

• MySQL Cluster: mysqld could crash when attempting an update if the cluster had failed previously. (Bug#18798)

• MySQL Cluster: An INSERT or UPDATE of more than 128 bytes of data in a 4-replica cluster could cause data nodes to crash.
(Bug#18622)

• MySQL Cluster: (Disk Data): CREATE LOGFILE GROUP accepted values other than NDB or NDBCLUSTER in the ENGINE
clause. (Bug#18604)

• MySQL Cluster: (Disk Data): Omitting the required ENGINE clause from a CREATE LOGFILE GROUP or CREATE TA-
BLESPACE statement caused the server to crash. An appropriate error message is now returned instead. (Bug#18603)

• MySQL Cluster: Queries using ORDER BY pkN failed against a LIST-partitioned Cluster table having a multi-column primary
key, where pkN represents one of the columns making up the primary key. (Bug#18598)

• MySQL Cluster: A simultaneous DROP TABLE and table update operation utilising a table scan could trigger a node failure.
(Bug#18597)

• MySQL Cluster: Fragment IDs were not logged correctly, causing ndb_restore_log to fail. (Bug#18594)

• MySQL Cluster: Repeated use of the SHOW and ALL STATUS commands in the ndb_mgm client could cause the mgmd process

MySQL Change History

2183

http://bugs.mysql.com/17667
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0903
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1518
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1516
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1517
http://bugs.mysql.com/19333
http://bugs.mysql.com/19245
http://bugs.mysql.com/19244
http://bugs.mysql.com/19214
http://bugs.mysql.com/19088
http://bugs.mysql.com/19083
http://bugs.mysql.com/19039
http://bugs.mysql.com/18932
http://bugs.mysql.com/18798
http://bugs.mysql.com/18622
http://bugs.mysql.com/18604
http://bugs.mysql.com/18603
http://bugs.mysql.com/18598
http://bugs.mysql.com/18597
http://bugs.mysql.com/18594


to crash. (Bug#18591)

• MySQL Cluster: ndbd sometimes failed to start with the error NODE FAILURE HANDLING NOT COMPLETED following a graceful re-
start. (Bug#18550)

• MySQL Cluster: ndb_restore failed to restore a backup made from a 5.0 cluster to a 5.1 cluster. (Bug#18210)

• MySQL Cluster: Adding an index to an unsigned integer column did not work correctly. (Bug#18133)

• MySQL Cluster: A SELECT from an NDB table with ORDER BY indexed_column and a LIMIT clause would fail following
ALTER TABLE. (Bug#18094)

• MySQL Cluster: mysqldump included in its output data from the internal cluster database. (Bug#17840)

• MySQL Cluster: Backups could fail for large clusters with many tables, where the number of tables approached MaxNoOfT-
ables. (Bug#17607)

• MySQL Cluster: Some queries having a WHERE clause of the form c1=val1 OR c2 LIKE 'val2' were not evaluated cor-
rectly. (Bug#17421)

• MySQL Cluster: (Replication): Delete and update of rows in a table without a primary key failed on the slave. (Bug#17400)

• MySQL Cluster: An issue with ndb_mgmd prevented more than 27 mysqld processes from connecting to a single cluster at one
time. (Bug#17150)

• MySQL Cluster: In a 2-node cluster with a node failure, restarting the node with a low value for StartPartialTimeout could
cause the cluster to come up partitioned (“split-brain” issue).

A similar issue could occur when the cluster was first started with a sufficiently low value for this parameter. (Bug#16447,
Bug#18612)

• MySQL Cluster: Performing multiple ALTER TABLE operations on the same NDB table from different mysqld processes in the
same cluster led to schema versioning errors when trying to access the table again following the restart of one of the mysqld pro-
cesses. (Bug#16445)

• MySQL Cluster: On systems with multiple network interfaces, data nodes would get “stuck” in startup phase 2 if the interface con-
necting them to the management server was working on node startup while the interface interconnecting the data nodes experienced
a temporary outage. (Bug#15695)

• MySQL Cluster: On slow networks or CPUs, the management client SHOW command could sometimes erroneously show all data
nodes as being master nodes belonging to nodegroup 0. (Bug#15530)

• MySQL Cluster: Unused open handlers for tables in which the metadata had changed were not properly closed. This could result in
stale results from NDB tables following an ALTER TABLE statement. (Bug#13228)

• MySQL Cluster: Uninitialized internal variables could lead to unexpected results. (Bug#11033, Bug#11034)

• MySQL Cluster: When attempting to create an index on a BIT or BLOB column, ERROR 743: UNSUPPORTED CHARACTER SET IN

TABLE OR INDEX was returned instead of ERROR 906: UNSUPPORTED ATTRIBUTE TYPE IN INDEX.

• Disk Data: Issuing a CREATE LOGFILE GROUP statement during the drop of an NDB table would cause database corruption.
(Bug#19141)

• Disk Data: Concurrent table schema operations and operations on log file groups, tablespaces, data files, or undo files could lead to
data node failures. (Bug#18575)

• Cluster Replication: Using the --binlog-do-db option caused problems with CREATE TABLE on the cluster acting as the
replication master. (Bug#19492)

• Cluster Replication: When taking part in Cluster replication of tables containing BLOB columns, mysqld falsely reported a large
memory leak in the replication buffers when there was none. (Bug#19247)

• Cluster Replication: Trying to restore the apply_status table from a 5.0 cluster backup failed on a 5.1 server. (Bug#18935)

• Cluster Replication: An issue with replication caused a mysqld connected to a replicated cluster to crash when entering single
user mode. (Bug#18535)

MySQL Change History

2184

http://bugs.mysql.com/18591
http://bugs.mysql.com/18550
http://bugs.mysql.com/18210
http://bugs.mysql.com/18133
http://bugs.mysql.com/18094
http://bugs.mysql.com/17840
http://bugs.mysql.com/17607
http://bugs.mysql.com/17421
http://bugs.mysql.com/17400
http://bugs.mysql.com/17150
http://bugs.mysql.com/16447
http://bugs.mysql.com/18612
http://bugs.mysql.com/16445
http://bugs.mysql.com/15695
http://bugs.mysql.com/15530
http://bugs.mysql.com/13228
http://bugs.mysql.com/11033
http://bugs.mysql.com/11034
http://bugs.mysql.com/19141
http://bugs.mysql.com/18575
http://bugs.mysql.com/19492
http://bugs.mysql.com/19247
http://bugs.mysql.com/18935
http://bugs.mysql.com/18535


• Cluster Replication: Attempting to create an index using multiple columns on an explicitly partitioned table in a replicated Cluster
database could cause the master mysqld process to crash. (Bug#18284)

• A compatibility issue with NPTL (Native POSIX Thread Library) on Linux could result in a deadlock with FLUSH TABLES
WITH READ LOCK under some conditions. (Bug#20048)

• Some outer joins were incorrectly converted to inner joins. (Bug#19816)

This regression was introduced by Bug#17146

• A view definition that referred to an alias in the HAVING clause could be saved in the .frm file with the alias replaced by the ex-
pression that it referred to, causing failure of subsequent SELECT * FROM view_name statements. (Bug#19573)

• mysql displayed NULL for strings that are empty or contain only spaces. (Bug#19564)

• Selecting from a view that used GROUP BY on a non-constant temporal interval (such as DATE(col) + INTERVAL
TIME_TO_SEC(col) SECOND could cause a server crash. (Bug#19490)

• An outer join of two views that was written using { OJ ... } syntax could cause a server crash. (Bug#19396)

• An issue with file handling in the partitioning code could cause mysqld to crash when started and then stopped within a very short
period of time. (Bug#19313)

• myisamchk and myisam_ftdump should allow either table names or .MYI filenames as arguments, but allowed only table
names. (Bug#19220)

• InnoDB could read a delete mark from its system tables incorrectly. (Bug#19217)

• Executing a CREATE EVENT statement could cause 100% CPU usage. (Bug#19170)

• Eliminated some memory corruption problems that resultsd in double free or corruption errors and a server crash.
(Bug#19154)

• Attempting to set the default value of an ENUM or SET column to NULL caused a server crash. (Bug#19145)

• Index corruption could occur in cases when key_cache_block_size was not a multiple of myisam_block_size (for ex-
ample, with key_cache_block_size=1536 and myisam_block_size=1024). (Bug#19079)

• Fix the way that Instance Manager finds the version number of instances, so that it works properly when the executable name isn't
the same as what the Instance Manager launched (such as when wrapping a libtool-wrapped executable from the source tree).
(Bug#19059)

• Some fast ALTER TABLE operations (requiring no temporary table) did not work for all tables. (Bug#19011)

• Successive ALTER TABLE ... DROP PARTITION statements on the same subpartitioned table could eventually cause the
server to crash. (Bug#18962)

• Creating a table in an InnoDB database with a column name that matched the name of an internal InnoDB column (including
DB_ROW_ID, DB_TRX_ID, DB_ROLL_PTR and DB_MIX_ID) would cause a crash. MySQL now returns Error 1005 CANNOT
CREATE TABLE with errno set to -1. (Bug#18934)

• The parser leaked memory when its stack needed to be extended. (Bug#18930)

• MySQL would not compile on Linux distributions that use the tinfo library. (Bug#18912)

• The server attempted to flush uninitialized log tables during SIGHUP processing, causing a crash. (Bug#18848)

• For a reference to a non-existent stored function in a stored routine that had a CONTINUE handler, the server continued as though a
useful result had been returned, possibly resulting in a server crash. (Bug#18787)

• For single-SELECT union constructs of the form (SELECT ... ORDER BY order_list1 [LIMIT n]) ORDER BY or-
der_list2, the ORDER BY lists were concatenated and the LIMIT clause was ignored. (Bug#18767)

• Inserts failed with duplicate key errors on a table partitioned using an AUTO_INCREMENT column for the partitioning key.
(Bug#18753, Bug#18552)

MySQL Change History

2185

http://bugs.mysql.com/18284
http://bugs.mysql.com/20048
http://bugs.mysql.com/19816
http://bugs.mysql.com/17146
http://bugs.mysql.com/19573
http://bugs.mysql.com/19564
http://bugs.mysql.com/19490
http://bugs.mysql.com/19396
http://bugs.mysql.com/19313
http://bugs.mysql.com/19220
http://bugs.mysql.com/19217
http://bugs.mysql.com/19170
http://bugs.mysql.com/19154
http://bugs.mysql.com/19145
http://bugs.mysql.com/19079
http://bugs.mysql.com/19059
http://bugs.mysql.com/19011
http://bugs.mysql.com/18962
http://bugs.mysql.com/18934
http://bugs.mysql.com/18930
http://bugs.mysql.com/18912
http://bugs.mysql.com/18848
http://bugs.mysql.com/18787
http://bugs.mysql.com/18767
http://bugs.mysql.com/18753
http://bugs.mysql.com/18552


• It was possible to create a RANGE-partitioned table with a partition defined using the clause VALUES LESS THAN (NULL), even
though such a partition could never contain any values whatsoever. (Bug#18752)

• Delimited identifiers for partitions were not being treated the same as delimited identifiers for other database objects (such as tables
and columns) with regard to allowed characters. (Bug#18750)

• CREATE VIEW statements would not be replicated to the slave if the --replicate-wild-ignore-table rule was enabled.
(Bug#18715)

• Conversion of a number to a CHAR UNICODE string returned an invalid result. (Bug#18691)

• If the second or third argument to BETWEEN was a constant expression such as '2005-09-01 - INTERVAL 6 MONTH and the
other two arguments were columns, BETWEEN was evaluated incorrectly. (Bug#18618)

• LOAD DATA FROM MASTER would fail when trying to load the INFORMATION_SCHEMA database from the master, because the
INFORMATION_SCHEMA system database would already exist on the slave. (Bug#18607)

• Running an ALTER TABLE on a partitioned table simultaneously experiencing a high number of concurrent DML statements could
crash the server. (Bug#18572)

• A LOCK TABLES statement that failed could cause MyISAM not to update table statistics properly, causing a subsequent CHECK
TABLE to report table corruption. (Bug#18544)

• mysqltest incorrectly interpreted some ER_xxx error names given in the error command. (Bug#18495)

• InnoDB: ALTER TABLE to add or drop a foreign key for an InnoDB table had no effect. (Bug#18477)

• InnoDB did not use a consistent read for CREATE ... SELECT when innodb_locks_unsafe_for_binlog was set.
(Bug#18350)

• DROP DATABASE did not drop stored routines associated with the database if the database name was longer than 21 characters.
(Bug#18344)

• A query on a table partitioned or subpartitioned by HASH did not display all results when using a WHERE condition involving a
column used in the hashing expression. (Bug#18329, Bug#18423)

• In mysqltest, --sleep=0 had no effect. Now it correctly causes sleep commands in test case files to sleep for 0 seconds.
(Bug#18312)

• ExtractValue function did not return character data within <![CDATA[]]> as expected. (Bug#18285)

• A recent change caused the mysql client not to display NULL values correctly and to display numeric columns left-justified rather
than right-justified. The problems have been corrected. (Bug#18265)

• Updates to a MEMORY table caused the size of BTREE indexes for the table to increase. (Bug#18160)

• A failed ALTER TABLE operation could fail to clean up a temporary .frm file. (Bug#18129)

• Event-creation statements enclosed in multi-line comments using /*!version_number ... */ syntax were not parsed cor-
rectly. (Bug#18078)

• SELECT DISTINCT queries sometimes returned only the last row. (Bug#18068)

• InnoDB: A DELETE followed by an INSERT and then by an UPDATE on a partitioned InnoDB table caused subsequent queries to
return incorrect results. (Bug#17992)

• It was possible to use trailing spaces in the names of partitions and subpartitions. Attempting to do so now raises the error INCOR-
RECT PARTITION NAME. (Bug#17973)

• LIKE searches failed on a CHAR column used as the partitioning column of a table partitioned by KEY. (Bug#17946)

• Executing SELECT on a large table that had been compressed within myisampack could cause a crash. (Bug#17917)

• The sql_big_selects system variable was not displayed by SHOW VARIABLES. (Bug#17849)

• REPAIR TABLE did not restore the length for packed keys in tables created under MySQL 4.x, which caused them to appear cor-

MySQL Change History

2186

http://bugs.mysql.com/18752
http://bugs.mysql.com/18750
http://bugs.mysql.com/18715
http://bugs.mysql.com/18691
http://bugs.mysql.com/18618
http://bugs.mysql.com/18607
http://bugs.mysql.com/18572
http://bugs.mysql.com/18544
http://bugs.mysql.com/18495
http://bugs.mysql.com/18477
http://bugs.mysql.com/18350
http://bugs.mysql.com/18344
http://bugs.mysql.com/18329
http://bugs.mysql.com/18423
http://bugs.mysql.com/18312
http://bugs.mysql.com/18285
http://bugs.mysql.com/18265
http://bugs.mysql.com/18160
http://bugs.mysql.com/18129
http://bugs.mysql.com/18078
http://bugs.mysql.com/18068
http://bugs.mysql.com/17992
http://bugs.mysql.com/17973
http://bugs.mysql.com/17946
http://bugs.mysql.com/17917
http://bugs.mysql.com/17849


rupt to CHECK TABLE but not to REPAIR TABLE. (Bug#17810)

• A range access optimizer heuristic was invalid, causing some queries to be much slower in MySQL 5.0 than in 4.0. (Bug#17379,
Bug#18940)

• Logging to the mysql.general_log and mysql.slow_log tables did not work for Windows builds because the CSV storage
engine was unavailable. The CSV engine now is enabled in Windows builds. (Bug#17368)

• Updating a field value when also requesting a lock with GET_LOCK() would cause slave servers in a replication environment to
terminate. (Bug#17284)

• The binary log would create an incorrect DROP query when creating temporary tables during replication. (Bug#17263)

• If the WHERE condition of a query contained an OR-ed FALSE term, the set of tables whose rows cannot serve for null-complements
in outer joins was determined incorrectly. This resulted in blocking possible conversions of outer joins into joins by the optimizer
for such queries. (Bug#17164)

• Casting a string to DECIMAL worked, but casting a trimmed string (using LTRIM() or RTRIM()) resulted in loss of decimal di-
gits. (Bug#17043)

• MyISAM table deadlock was possible if one thread issued a LOCK TABLES request for write locks and then an administrative state-
ment such as OPTIMIZE TABLE, if between the two statements another client meanwhile issued a multiple-table SELECT for
some of the locked tables. (Bug#16986)

• ALTER TABLE ... REBUILD PARTITION returned an inaccurate error message. (Bug#16819)

• Use of --default-storage-engine=innodb resulted in an error with the server reporting that InnoDB was an unknown
table type. (Bug#16691)

• MySQL-shared-compat-5.1.9-0.i386.rpm incorrectly depended on glibc 2.3 and could not be installed on a glibc
2.2 system. (Bug#16539)

• The presence of multiple equalities in a condition after reading a constant table could cause the optimizer not to use an index. This
resulted in certain queries being much slower than in MySQL 4.1. (Bug#16504)

• Within a trigger, CONNECTION_ID() did not return the connection ID of the thread that caused the trigger to be activated.
(Bug#16461)

• The XPath string-length() function was not implemented for use with ExtractValue(). (Bug#16319)

• The ExtractValue() function failed with a syntax error when the XPath expression used special characters such as Ñ
(“N-tilde”). (Bug#16233)

• The sql_notes and sql_warnings system variables were not always displayed correctly by SHOW VARIABLES (for ex-
ample, they were displayed as ON after being set to OFF). (Bug#16195)

• If the first argument to BETWEEN was a DATE or TIME column of a view and the other arguments were constants, BETWEEN did
not perform conversion of the constants to the appropriate temporary type, resulting in incorrect evaluation. (Bug#16069)

• After calling FLUSH STATUS, the max_used_connections variable did not increment for existing connections and connec-
tions which use the thread cache. (Bug#15933)

• DELETE and UPDATE statements that used large NOT IN (value_list) clauses could use large amounts of memory.
(Bug#15872)

• InnoDB failure to release an adaptive hash index latch could cause a server crash if the query cache was enabled. (Bug#15758)

• LAST_INSERT_ID() in a stored function or trigger returned zero. . (Bug#15728)

• The system_time_zone and version_* system variables could not be accessed via SELECT @@var_name syntax.
(Bug#15684, Bug#12792)

• If the server were built without partition support, it was possible to run partitioning-related statements with no errors or warnings,
even though these statements would have no effect. Now such statements are disallowed unless the server has been compiled using
the --with-partition option. (Bug#15561)

MySQL Change History

2187

http://bugs.mysql.com/17810
http://bugs.mysql.com/17379
http://bugs.mysql.com/18940
http://bugs.mysql.com/17368
http://bugs.mysql.com/17284
http://bugs.mysql.com/17263
http://bugs.mysql.com/17164
http://bugs.mysql.com/17043
http://bugs.mysql.com/16986
http://bugs.mysql.com/16819
http://bugs.mysql.com/16691
http://bugs.mysql.com/16539
http://bugs.mysql.com/16504
http://bugs.mysql.com/16461
http://bugs.mysql.com/16319
http://bugs.mysql.com/16233
http://bugs.mysql.com/16195
http://bugs.mysql.com/16069
http://bugs.mysql.com/15933
http://bugs.mysql.com/15872
http://bugs.mysql.com/15758
http://bugs.mysql.com/15728
http://bugs.mysql.com/15684
http://bugs.mysql.com/12792
http://bugs.mysql.com/15561


• Use of CONVERT_TZ() in a view definition could result in spurious syntax or access errors. (Bug#15153)

• Prevent recursive views caused by using RENAME TABLE on a view after creating it. (Bug#14308)

• Some queries were slower in 5.0 than in 4.1 because some 4.1 cost-evaluation code had not been merged into 5.0. (Bug#14292)

• Avoid trying to include <asm/atomic.h> when it doesn't work in C++ code. (Bug#13621)

• Running myisampack followed by myisamchk with the --unpack option would corrupt the auto_increment key.
(Bug#12633)

• Use of CONVERT_TZ() in a stored function or trigger (or in a stored procedure called from a stored function or trigger) caused an
error. (Bug#11081)

• When myisamchk needed to rebuild a table, AUTO_INCREMENT information was lost. (Bug#10405)

C.1.25. Changes in MySQL 5.1.9 (12 April 2006)
This is a new Beta development release, fixing recently discovered bugs.

Note

This Beta release, as any other pre-production release, should not be installed on production level systems or systems with
critical data. It is good practice to back up your data before installing any new version of software. Although MySQL has
worked very hard to ensure a high level of quality, protect your data by making a backup as you would for any software
beta release. Please refer to our bug database at http://bugs.mysql.com/ for more details about the individual bugs fixed in
this version.

This section documents all changes and bug fixes that have been applied since the last official MySQL release. If you would like to re-
ceive more fine-grained and personalized update alerts about fixes that are relevant to the version and features you use, please consider
subscribing to MySQL Enterprise (a commercial MySQL offering). For more details please see ht-
tp://www.mysql.com/products/enterprise.

Functionality added or changed:

• MySQL Cluster: The NDB storage engine now supports CREATE TABLE statements of arbitrary length. (Previously, CREATE
TABLE statements for MySQL Cluster tables could contain a maximum of 4096 characters only.) (Bug#17813)

• MySQL Cluster: Added the --nowait-nodes startup option for ndbd, making it possible to skip specified nodes without wait-
ing for them to start when starting the cluster. See Section 17.7.5.1, “Command Options for ndbd”.

• mysqld_safe no longer checks for a mysqld-max binary. Instead, mysqld_safe nows checks only for the standard mysqld
server unless another server binary is specified explicitly via --mysqld or --mysqld-version. If you previously relied on the
implicit invocation of mysqld-max, you should use an appropriate option now. (Bug#17861)

• For partitioned tables, the output of SHOW TABLE STATUS now shows in the Engine column the name of the storage engine
used by all partitions for the table; in the Create_options column, the output now shows partitioned for a partitioned ta-
ble. This change also affects the values shown in the corresponding columns of the INFORMATION_SCHEMA.TABLES table.
(Bug#17631)

• SHOW PLUGIN was renamed to SHOW PLUGINS. SHOW PLUGIN now is deprecated and generates a warning. (Bug#17112)

• Large file support was re-enabled for the MySQL server binary for the AIX 5.2 platform. (Bug#13571)

• Binary MySQL distributions now include a mysqld-max server, in addition to the usual mysqld optimized server and the
mysqld-debug debugging server.

Bugs fixed:

• Security Fix: Invalid arguments to DATE_FORMAT() caused a server crash. Thanks to Jean-David Maillefer for discovering and
reporting this problem to the Debian project and to Christian Hammers from the Debian Team for notifying us of it. (Bug#20729,
CVE-2006-3469)

MySQL Change History

2188

http://bugs.mysql.com/15153
http://bugs.mysql.com/14308
http://bugs.mysql.com/14292
http://bugs.mysql.com/13621
http://bugs.mysql.com/12633
http://bugs.mysql.com/11081
http://bugs.mysql.com/10405
http://bugs.mysql.com/
http://www.mysql.com/products/enterprise
http://www.mysql.com/products/enterprise
http://bugs.mysql.com/17813
http://bugs.mysql.com/17861
http://bugs.mysql.com/17631
http://bugs.mysql.com/17112
http://bugs.mysql.com/13571
http://bugs.mysql.com/20729
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3469


• MySQL Cluster: An uninitialized internal variable could lead to unexpected results. (Bug#18831)

• MySQL Cluster: BLOB columns did not work correctly with user-partitioned NDB tables. (Bug#16796)

• For full-text searches in boolean mode, and when a full-text parser plugin was used, a
MYSQL_FTPARSER_PARAM::ftparser_state could have been corrupted by recursive calls to the plugin. (Bug#18836)

• mysql_reconnect() sent a SET NAMES statement to the server, even for pre-4.1 servers that do not understand the statement.
(Bug#18830)

• A query against a partitioned table using WHERE col IS NULL could produce incorrect results given the following conditions:

• The table had partitions and subpartitions

• The partitioning function depended on a single column col of one of the MySQL integer types

• The partitioning function was not monotonically increasing

The same issue could cause the server to crash when run in debug mode. (Bug#18659)

• Partition pruning did not work properly for some kinds of partitioning and subpartitioning, with certain WHERE clauses. (Partitions
and subpartitions that should have been marked as used were not so marked.) The error could manifest as incorrect content in EX-
PLAIN PARTITIONS output as well as missing rows in the results of affected queries. (Bug#18558)

• Building the server using --with-example-storage-engine failed to enable the EXAMPLE storage engine in the server.
(Bug#18464)

• If InnoDB encountered a HA_ERR_LOCK_TABLE_FULL error and rolled back a transaction, the transaction was still written to
the binary log. (Bug#18283)

• Complex queries with nested joins could cause a server crash. (Bug#18279)

• COUNT(*) on a MyISAM table could return different results for the base table and a view on the base table. (Bug#18237)

• EXTRACT(QUARTER FROM date) returned unexpected results. (Bug#18100)

• Queries using WHERE ... IS NULL returned incorrect results from partitioned tables. (Bug#18070)

• Partition pruning did not perform correctly with partitions on NULL, and could potentially crash the server. (Bug#18053)

• MEDIUMINT columns were not handled in the same way as other column types by partition pruning.

Partition pruning would sometimes use inappropriate columns in preforming queries.

Both of these issues were rectified as part of the same bugfix. (Bug#18025)

• For tables created in a MySQL 4.1 installation upgraded to MySQL 5.0 and up, multiple-table updates could update only the first
matching row. (Bug#16281)

• For mysql.server, if the basedir option was specified after datadir in an option file, the setting for datadir was ignored
and assumed to be located under basedir. (Bug#16240)

• Triggers created in one version of the server could not be dropped after upgrading to a newer version. (Bug#15921)

• CAST(double AS SIGNED INT) for large double values outside the signed integer range truncated the result to be within
range, but the result sometimes had the wrong sign, and no warning was generated. (Bug#15098)

• TRUNCATE did not reset the AUTO_INCREMENT counter for MyISAM tables when issued inside a stored procedure.

Note

This bug did not affect InnoDB tables.

In addition, TRUNCATE does not reset the AUTO_INCREMENT counter for NDB tables regardless of when it is called.

(Bug#14945)

MySQL Change History

2189

http://bugs.mysql.com/18831
http://bugs.mysql.com/16796
http://bugs.mysql.com/18836
http://bugs.mysql.com/18830
http://bugs.mysql.com/18659
http://bugs.mysql.com/18558
http://bugs.mysql.com/18464
http://bugs.mysql.com/18283
http://bugs.mysql.com/18279
http://bugs.mysql.com/18237
http://bugs.mysql.com/18100
http://bugs.mysql.com/18070
http://bugs.mysql.com/18053
http://bugs.mysql.com/18025
http://bugs.mysql.com/16281
http://bugs.mysql.com/16240
http://bugs.mysql.com/15921
http://bugs.mysql.com/15098
http://bugs.mysql.com/14945


See also Bug#18864

• Quoted values could not be used for partition option values. (Bug#13520)

• Delimited identifiers could not be used in defining partitions. (Bug#13433)

• mysql_config returned incorrect libraries on x86_64 systems. (Bug#13158)

• The server was always built as though --with-extra-charsets=complex had been specified. (Bug#12076)

• The table had partitions and subpartitions

• The partitioning function was not monotonically increasing

• The partitioning function depended on a single column col of one of the MySQL integer types

C.1.26. Changes in MySQL 5.1.8 (Not released)

Note

This was an internal release only, and no binaries were published.

Functionality added or changed:

• Cluster Replication: Incompatible Change: The cluster_replication database has been renamed to cluster. This will
effect replication between MySQL Clusters where one cluster is running MySQL 5.1.8 or later, and the other is running MySQL
5.1.7 or earlier. See Section 17.12, “MySQL Cluster Replication”, and especially Section 17.12.4, “Cluster Replication Schema and
Tables”.

• Incompatible Change: The semantics of ALTER TABLE t ENGINE=X; for partitioned tables is changed, and now means that
the storage engine used for table t is changed to X.

The previous statement formerly (prior to MySQL 5.1.8) meant that all partitioning was removed from the table. In order to remove
the partitioning of a table, the syntax ALTER TABLE t REMOVE PARTITIONING; is introduced. The REMOVE PARTI-
TIONING option can be used in combination with existing ALTER TABLE options such as those employed for adding or dropping
columns or indexes. (Bug#17754)

• Incompatible Change: For purposes of determining placement, RANGE partitioning now treats NULL as less than any other value.
(Formerly, NULL was treated as equal to zero.) See Section 18.2.6, “How MySQL Partitioning Handles NULL Values”.
(Bug#15447)

• MySQL Cluster: The stability of CREATE and DROP operations on NDB tables containing BLOB columns has been improved.
(Bug#17761)

• MySQL Cluster: The NDBCluster storage engine now supports INSERT IGNORE and REPLACE statements. Previously, these
statements failed with an error. (Bug#17431)

• MySQL Cluster: (Disk Data): You can now have only one log file group at any one time. See Section 12.1.8, “CREATE LOG-
FILE GROUP Syntax”. (Bug#16386)

• Builds for Windows, Linux, and Unix (except AIX) platforms now have SSL support enabled, in the server as well as in the client
libraries. Because part of the SSL code is written in C++, this does introduce dependencies on the system's C++ runtime libraries in
several cases, depending on compiler specifics. (Bug#18195)

• Partition pruning was made more stable, particularly in cases involving queries using tests for NULL values in the WHERE clause
against subpartitioned tables which were partitioned by LIST( some_function(col1, ... ,colN) ). (Bug#17891)

• The output of SHOW CREATE EVENT no longer qualifies the event name with the name of the schem to which the event belongs.
(Bug#17714)

• The deprecated constructs in the following table now generate warnings. You should not employ them in new applications, as they
are likely to be removed in a future version of MySQL. Use the equivalents shown in the table's second column instead. For the
same reason, existing applications that depend on the deprecated constructs should be converted to make use of the current equival-

MySQL Change History

2190

http://bugs.mysql.com/18864
http://bugs.mysql.com/13520
http://bugs.mysql.com/13433
http://bugs.mysql.com/13158
http://bugs.mysql.com/12076
http://bugs.mysql.com/17754
http://bugs.mysql.com/15447
http://bugs.mysql.com/17761
http://bugs.mysql.com/17431
http://bugs.mysql.com/16386
http://bugs.mysql.com/18195
http://bugs.mysql.com/17891
http://bugs.mysql.com/17714


ents as soon as possible.

Deprecated
/ Obsolete:

Current /
Preferred:

@@table_
type

@@storag
e_engine

@@log_bi
n_trust_
routine_
creators

@@log_bi
n_trust_
func-
tion_cre
ators

TIMESTAM
P(N)

See Sec-
tion 11.6,
“Date and
Time Func-
tions”.

TYPE= ENGINE=

BACKUP
TABLE

mysql-
dump,
mysql-
hotcopy,
or MySQL
Administrat-
or

RESTORE
TABLE,
LOAD TA-
BLE FROM
MASTER

mysql-
dump,
mysql, or
MySQL Ad-
ministrator

SHOW TA-
BLE
TYPES

SHOW
[STORAGE
] EN-
GINES

SHOW IN-
NODB
STATUS

SHOW EN-
GINE IN-
NODB
STATUS

SHOW MU-
TEX
STATUS

SHOW EN-
GINE IN-
NODB MU-
TEX

SHOW BDB
LOGS,
SHOW
LOGS

SHOW EN-
GINE BDB
LOGS

SHOW BDB LOGS and SHOW LOGS are removed as of MySQL 5.1.12, and the other deprecated items shown in the table are re-
moved as of MySQL 5.2.5.

Important

TYPE vs ENGINE . In order not to break legacy applications, support for TYPE = engine_name — deprecated since
MySQL 4.0 — has been restored, but now generates a warning.

Beginning with MySQL 5.2.5, TYPE = engine_name will no longer be available and will produce a syntax error.

You should not use TYPE in any new applications, and you should immediately begin conversion of existing applications
to use the ENGINE = engine_name syntax instead.

MySQL Change History

2191



(Bug#17501)

• Temporary tables may no longer be partitioned. (Bug#17497)

• More specific error messages are now given when attempting to create an excessive number of partitions or subpartitions.
(Previously, no distinction was made between an excessive number of partitions and an excessive number of subpartitions.)
(Bug#17393)

• Added the --events option to mysqldump to enable events to be included in the dump output. (Bug#16853)

• For an event having no STARTS time specified when it was created, the mysql.event table's start column now displays the
creation time rather than NULL.

In addition, both the SHOW EVENTS statement's Starts column and the STARTS column of the INFORMA-
TION_SCHEMA.EVENTS table are now empty rather than NULL when STARTS was not used in the CREATE EVENT statement.
(Bug#16537)

• Event names are now case-insenstive. That is (for example), you cannot have events with the names Myevent and MyEvent be-
longing to the same database and definer. (Bug#16415)

• Description of the EVENT privilege has been changed to To create, alter, drop, and execute events.
(Bug#16412)

• MICROSECOND intervals are no longer allowed for events. (Bug#16411)

• Events no longer support times past the end of the Unix epoch. (Formerly, such dates were interpreted as being at the beginning of
the Unix epoch.) (Bug#16396)

• The XPath last() function is now implemented for use with ExtractValue(). (Bug#16318)

• The ExtractValue() function with contains() now uses the SQL collation in making comparisons. Perviously, comparis-
ons were always binary (that is, case-sensitive). (Bug#16316)

• Triggers from older servers that included no DEFINER clause in the trigger definition now execute with the privileges of the in-
voker (which on the slave is the slave SQL thread). Previously, replication slaves could not replicate such triggers. (Bug#16266)

• Names of subpartitions must now be unique for an entire table, and not merely within the same partition. (Bug#15408)

• Added the --sysdate-is-now option to mysqld to enable SYSDATE() to be treated as an alias for NOW(). See Section 11.6,
“Date and Time Functions”. (Bug#15101)

• mysqldump now surrounds the DEFINER, SQL SECURITY DEFINER and WITH CHECK OPTION clauses of a CREATE
VIEW statement with "not in version" comments to prevent errors in earlier versions of MySQL. (Bug#14871)

• The mysql_ping function will now retry if the reconnect flag is set and error CR_SERVER_LOST is encountered during the
first attempt to ping the server. (Bug#14057)

• The mysqltest utility now converts all CR/LF combinations to LF to allow test cases intended for Windows to work properly on
UNIX-like systems. (Bug#13809)

• The output from SHOW CREATE TABLE is more consistent about using uppercase for keywords. Data types still are in lowercase.
(Bug#10460)

• The client API now attempts to reconnect using TCP/IP if the reconnect flag is set, as is the case with sockets. (Bug#2845)

• The binlog_format system variable now can be set to a third format, MIXED, as described in Section 16.1.2, “Replication
Formats”.

• The syntax for CREATE PROCEDURE and CREATE FUNCTION statements now includes a DEFINER clause. The DEFINER
value specifies the security context to be used when checking access privileges at routine invocation time if the routine has the SQL
SECURITY DEFINER characteristic. See Section 20.2.1, “CREATE PROCEDURE and CREATE FUNCTION Syntax”, for more
information.

When mysqldump is invoked with the --routines option, it now dumps the DEFINER value for stored routines.

MySQL Change History

2192

http://bugs.mysql.com/17501
http://bugs.mysql.com/17497
http://bugs.mysql.com/17393
http://bugs.mysql.com/16853
http://bugs.mysql.com/16537
http://bugs.mysql.com/16415
http://bugs.mysql.com/16412
http://bugs.mysql.com/16411
http://bugs.mysql.com/16396
http://bugs.mysql.com/16318
http://bugs.mysql.com/16316
http://bugs.mysql.com/16266
http://bugs.mysql.com/15408
http://bugs.mysql.com/15101
http://bugs.mysql.com/14871
http://bugs.mysql.com/14057
http://bugs.mysql.com/13809
http://bugs.mysql.com/10460
http://bugs.mysql.com/2845


• The binlog_format system variable now is dynamic and can be changed at runtime, as described in Section 16.1.2, “Replication
Formats”.

• A slave server may switch the format automatically now. This happens when the server is running in either STATEMENT or MIXED
format and encounters a row in the binary log that is written in ROW logging format. In that case, the slave switches to row-based
replication temporarily for that event, and switches back to the previous format afterwards.

Bugs fixed:

• MySQL Cluster: Attempting to restart a node with dropped events still pending would fail. (Bug#18491)

• MySQL Cluster: Two mysqld processes starting at the same time could cause a race condition. (Bug#18472)

• MySQL Cluster: A timeout in the handling of an ABORT condition with more that 32 operations could yield a node failure.
(Bug#18414)

• MySQL Cluster: Two mysqld processes did not synchronise DROP TABLE binary log events correctly. (Bug#18395)

• MySQL Cluster: A node restart immediately following a CREATE TABLE would fail.

Important

This fix supports 2-node Clusters only.

(Bug#18385)

• MySQL Cluster: In event of a node failure during a rollback, a “false” lock could be established on the backup for that node, which
lock could not be removed without restarting the node. (Bug#18352)

• MySQL Cluster: When multiple node restarts were attempted without allowing each restart to complete, the error message returned
was ARRAY INDEX OUT OF BOUNDS rather than TOO MANY CRASHED REPLICAS. (Bug#18349)

• MySQL Cluster: The cluster created a crashed replica of a table having an ordered index — or when logging was not enabled, of a
table having a table or unique index — leading to a crash of the cluster following 8 successive restarts. (Bug#18298)

• MySQL Cluster: Issuing a DROP LOGFILE GROUP statement would cause ndbd processes to crash if MySQL had been com-
piled with gcc4. (Bug#18295)

• MySQL Cluster: auto_increment values were not propagated correctly in statement-based replication. (Bug#18208)

• MySQL Cluster: When replacing a failed master node, the replacement node could cause the cluster to crash from a buffer over-
flow if it had an excessively large amount of data to write to the cluster log. (Bug#18118)

• MySQL Cluster: Memory was mistakenly freed for NdbRecAttr objects during addition of an index while replicating the cluster,
which could cause mysqld to crash. (Bug#18106)

• MySQL Cluster: Insufficient StringBuffer memory when attempting to create a trigger caused the server to crash.
(Bug#18101)

• MySQL Cluster: Variable-length columns used as primary keys were not handled correctly. (Bug#18075)

• MySQL Cluster: Row-based replication could fail with tables using VARCHAR columns for primary keys and having BLOB
columns. (Bug#18067)

• MySQL Cluster: CREATE UNIQUE INDEX on a column containing non-unique data could cause one or more ndbd nodes to
hang or crash. (Bug#18040)

• MySQL Cluster: Node recovery of tables with VARCHAR columns using character sets was inconsistent, which could cause a num-
ber of issues, including the data nodes failing to restart and ALTER TABLE statements to hang. (Bug#18026)

• MySQL Cluster: A SELECT ... ORDER BY query on an explicitly partitioned Cluster table with no explicit indexes would
crash the server. (Bug#17899)

• MySQL Cluster: ALTER TABLE ... ADD INDEX failed with ERROR 756: INDEX ON DISK COLUMN IS NOT SUPPORTED

MySQL Change History

2193

http://bugs.mysql.com/18491
http://bugs.mysql.com/18472
http://bugs.mysql.com/18414
http://bugs.mysql.com/18395
http://bugs.mysql.com/18385
http://bugs.mysql.com/18352
http://bugs.mysql.com/18349
http://bugs.mysql.com/18298
http://bugs.mysql.com/18295
http://bugs.mysql.com/18208
http://bugs.mysql.com/18118
http://bugs.mysql.com/18106
http://bugs.mysql.com/18101
http://bugs.mysql.com/18075
http://bugs.mysql.com/18067
http://bugs.mysql.com/18040
http://bugs.mysql.com/18026
http://bugs.mysql.com/17899


when run against a Disk Data table having a primary key. (Bug#17888)

• MySQL Cluster: In some cases, a single ndbd node failed following a system restart. (Bug#17854)

• MySQL Cluster: (Replication): The binary log on the secondary master was not being set up correctly following a table rename.
(Bug#17838)

• MySQL Cluster: A simultaneous RENAME of several tables was logged multiple times. (Bug#17827)

• MySQL Cluster: Trying to perform a DELETE from an NDB table following a LOCK TABLES caused the ndbd processes to hang.
(Bug#17812)

• MySQL Cluster: Trying to update very large partitioned tables using the NDB storage engine sometimes caused the server to crash.
(Bug#17806, Bug#16385)

• MySQL Cluster: Trying to insert a value into a nonexistent LIST partition of an NDB table would cause the server to crash.

Note

Beginning with MySQL 5.1.12, user-defined partitioning types other than KEY or LINEAR KEY were disabled for NDB
tables.

(Bug#17763)

• MySQL Cluster: Using ALTER TABLE ... ADD PARTITION on a table partitioned by LIST would cause the client to hang.
(Bug#17701)

• MySQL Cluster: With a single replica, transactions waiting in the log synchronisation queue were not being restarted, causing them
to be aborted. (Bug#17536)

• MySQL Cluster: ALTER TABLE on a partitioned NDB table could cause the server to crash. (Bug#17499)

• MySQL Cluster: A repeated SELECT on a partitioned table that used the NDB storage engine could cause the server to crash.
(Bug#17390)

• MySQL Cluster: (Disk Data): It was not possible to create more than 9 tablespaces. (Bug#16913)

• MySQL Cluster: DELETE operations on NDB tables could cause memory leaks. (Bug#16874)

• MySQL Cluster: Some query cache statistics were not always correctly reported for Cluster tables. (Bug#16795)

• MySQL Cluster: Restarting nodes were allowed to start and join the cluster too early. (Bug#16772)

• MySQL Cluster: UNDO_BUFFER_SIZE was limited to 17 MB. (Bug#16657, Bug#17890)

• MySQL Cluster: Inserting and deleting BLOB column values while a backup was in process could cause data nodes to shut down.
(Bug#14028)

• Disk Data: CREATE UNIQUE INDEX failed with ERROR 4243: INDEX NOT FOUND. (Bug#18039)

• Replication of data stored in a partitioned table would cause slave servers to issue a assertion and terminate. (Bug#18436)

• A SELECT ... ORDER BY ... from a view defined using a function could crash the server. An example of such a view is
CREATE VIEW v1 AS SELECT SQRT(c1) FROM t1. (Bug#18386)

• The server would crash when SHOW STATUS was called on a server linked with yaSSL. (Bug#18310)

• The ExtractValue() function did not return an error when passed an invalid XPath string. (Bug#18172)

• Using the position() function in the XPath argument to ExtractValue() crashed the server. (Bug#18171)

• REPAIR TABLE, OPTIMIZE TABLE, and ALTER TABLE operations on transactional tables (or on tables of any type on Win-
dows) could corrupt triggers associated with those tables. (Bug#18153)

• Connecting to a server with a UCS2 default character set with a client using a non-UCS2 character set crashed the server.
(Bug#18004)

MySQL Change History

2194

http://bugs.mysql.com/17888
http://bugs.mysql.com/17854
http://bugs.mysql.com/17838
http://bugs.mysql.com/17827
http://bugs.mysql.com/17812
http://bugs.mysql.com/17806
http://bugs.mysql.com/16385
http://bugs.mysql.com/17763
http://bugs.mysql.com/17701
http://bugs.mysql.com/17536
http://bugs.mysql.com/17499
http://bugs.mysql.com/17390
http://bugs.mysql.com/16913
http://bugs.mysql.com/16874
http://bugs.mysql.com/16795
http://bugs.mysql.com/16772
http://bugs.mysql.com/16657
http://bugs.mysql.com/17890
http://bugs.mysql.com/14028
http://bugs.mysql.com/18039
http://bugs.mysql.com/18436
http://bugs.mysql.com/18386
http://bugs.mysql.com/18310
http://bugs.mysql.com/18172
http://bugs.mysql.com/18171
http://bugs.mysql.com/18153
http://bugs.mysql.com/18004


• Using ALTER TABLE ... REBUILD PARTITION without specifying the name of the partition caused the server to crash,
rather than reporting a syntax error. (Bug#17947)

• ALTER TABLE ... REBUILD PARTITION with no partition name specified would crash the server. (Bug#17940)

• A query with a WHERE date_column > date_value condition failed on a table partitioned by RANGE. (Bug#17894)

• Renaming and adding a new column to a partitioned table in the same ALTER TABLE statement caused the server to crash.
(Bug#17772)

• MyISAM: Performing a bulk insert on a table referenced by a trigger would crash the table. (Bug#17764)

• Using triggers with partitioned InnoDB tables led to incorrect results. (Bug#17744)

• Updating a view that filters certain rows to set a filtered out row to be included in the table caused infinite loop. For example, if the
view has a WHERE clause of salary > 100 then issuing an UPDATE statement of SET salary = 200 WHERE id =
10, caused an infinite loop. (Bug#17726)

• A security enhancement in Visual Studio 8 could cause a MySQL debug server compiled with it to hang when running SELECT
queries against partitioned tables. (Bug#17722)

• The EXAMPLE storage engine did not work on Windows. (Bug#17721)

• ALTER TABLE ... REORGANIZE PARTITION failed with ERROR ON RENAME OF FILENAME ... on Windows.
(Bug#17720)

• The MySQL server could crash with out of memory errors when performing aggregate functions on a DECIMAL column.
(Bug#17602)

• NULL values were written to the mysql.slow_log table incorrectly. (Bug#17600)

• mysql_fix_privilege_tables didn't create the mysql.plugin table. (Bug#17568)

• Improper checking of binary log statements could result in a server crash. (Bug#17457)

• Rpeated invocations of a stored procedure containing a SHOW CREATE EVENT statement would result in the error PACKETS OUT

OF ORDER. (Bug#17403)

• For FEDERATED tables, a SELECT statement with an ORDER BY clause did not return rows in the proper order. (Bug#17377)

• SELECT ... WHERE column LIKE 'A%', when column had a key and used the latin2_czech_cs collation, caused
the wrong number of rows to be returned. (Bug#17374)

• Calling CREATE TABLE or ALTER TABLE twice on a partitioned table in a stored procedure or a prepared statement resulted in
errors and sometimes server crashes. (Bug#17290)

• Checks for permissions on database operations could be performed in a case-insensitive manner (a user with permissions on data-
base MYDATABASE could by accident get permissions on database myDataBase), if the privilege data were still cached from a
previous check. (Bug#17279)

• Stored procedures that call UDFs and pass local string variables caused server crashes. (Bug#17261)

• A problem with NULLs and interval mapping sometimes caused incorrect results or crashes when trying to use less-than searches on
partitioned tables. (Bug#17173)

• Attempting to add a new partition to a table partitioned by a unique key would cause an OUT OF MEMORY error. (Bug#17169)

• Creating a table with the same name as the mapped name of another table caused a server crash. For example, if MySQL maps the
table name txu#P#p1 to txu@0023P@0023p1 on disk, creating another table named txu@0023P@0023p1 crashed the server.
(Bug#17142)

• Trying to add a partition to a table having subpartitions could crash the server. (Bug#17140)

• Use of TRUNCATE TABLE for a TEMPORARY table on a master server was propagated to slaves properly, but slaves did not decre-
ment the Slave_open_temp_tables counter properly. (Bug#17137)

MySQL Change History

2195

http://bugs.mysql.com/17947
http://bugs.mysql.com/17940
http://bugs.mysql.com/17894
http://bugs.mysql.com/17772
http://bugs.mysql.com/17764
http://bugs.mysql.com/17744
http://bugs.mysql.com/17726
http://bugs.mysql.com/17722
http://bugs.mysql.com/17721
http://bugs.mysql.com/17720
http://bugs.mysql.com/17602
http://bugs.mysql.com/17600
http://bugs.mysql.com/17568
http://bugs.mysql.com/17457
http://bugs.mysql.com/17403
http://bugs.mysql.com/17377
http://bugs.mysql.com/17374
http://bugs.mysql.com/17290
http://bugs.mysql.com/17279
http://bugs.mysql.com/17261
http://bugs.mysql.com/17173
http://bugs.mysql.com/17169
http://bugs.mysql.com/17142
http://bugs.mysql.com/17140
http://bugs.mysql.com/17137


• Attempting to use a conflicting VALUES clause in ALTER TABLE ... ADD PARTITION caused the server to crash. An ex-
ample of such a conflicting clause would be that uses VALUES LESS THAN (constant) (which indicates a range) with a table
that is partitioned by LIST. (Bug#17127)

• A failed ALTER TABLE ... ADD PRIMARY KEY on a partitioned table would result in bad table metadata and could possibly
crash the server. (Bug#17097)

• Stored routine names longer than 64 characters were silently truncated. Now the limit is properly enforced and an error occurs.
(Bug#17015)

• Cursors in stored routines could cause a server crash. (Bug#16887)

• Triggers created without BEGIN and END clauses resulted in “You have an error in your SQL syntax” errors when dumping and re-
playing a binary log. (Bug#16878)

• Using ALTER TABLE to increase the length of a BINARY(M) column caused column values to be padded with spaces rather than
0x00 bytes. (Bug#16857)

• ALTER TABLE ... COALESCE PARTITION failed with an OUT OF MEMORY error. (Bug#16810)

• ALTER TABLE ... ADD COLUMN ... AFTER ... failed when used on partitioned tables. (Bug#16806)

• If the server was started with the --skip-grant-tables option, it was impossible to create a trigger or a view without expli-
citly specifying a DEFINER clause. (Bug#16777)

• In a highly concurrent environment, a server crash or deadlock could result from execution of a statement that used stored functions
or activated triggers coincident with alteration of the tables used by these functions or triggers. (Bug#16593)

• Clients compiled from source with the --without-readline did not save command history from session to session.
(Bug#16557)

• Using ORDER BY intvar within a stored procedure (where intvar is an integer variable or expression) would crash the serv-
er.

Note

The use of an integer i in an ORDER BY i clause for sorting the result by the i th column is deprecated (and non-
standard). It should not be used in new applications. See Section 12.2.7, “SELECT Syntax”.

(Bug#16474)

• Slow queries executed by scheduled events were not being written to the slow query log. (Bug#16426)

• INSERT statements executed by scheduled events were not written to the general log. (Bug#16413)

• Repeated invocations of a stored procedure containing a CREATE EVENT or ALTER EVENT statement would crash the server.
(Bug#16408)

• Names of subpartitions were not displayed in the output of SHOW CREATE TABLE. (Bug#16370)

• The ExtractValue() function would not accept expressions which matched element names containing an underscore character.
(Bug#16320)

• The self() XPath function was not handled correcty by ExtractValue(). (Bug#16315)

• The ExtractValue() function allowed the use of the ! character in identifiers by ignoring the illegal character. This is now cor-
rectly reported as a syntax error. (Bug#16313)

• Slave servers would retry the execution of a SQL statement an infinite number of times, ignoring the value
SLAVE_TRANSACTION_RETRIES when using the NDB engine. (Bug#16228)

• A memory leak caused warnings on slaves for certain statements that executed without warning on the master. (Bug#16175)

• The DEFINER value for stored routines was not replicated. (Bug#15963)

• No error was reported when subpartitions were defined for a non-subpartitioned table. (Bug#15961)

MySQL Change History

2196

http://bugs.mysql.com/17127
http://bugs.mysql.com/17097
http://bugs.mysql.com/17015
http://bugs.mysql.com/16887
http://bugs.mysql.com/16878
http://bugs.mysql.com/16857
http://bugs.mysql.com/16810
http://bugs.mysql.com/16806
http://bugs.mysql.com/16777
http://bugs.mysql.com/16593
http://bugs.mysql.com/16557
http://bugs.mysql.com/16474
http://bugs.mysql.com/16426
http://bugs.mysql.com/16413
http://bugs.mysql.com/16408
http://bugs.mysql.com/16370
http://bugs.mysql.com/16320
http://bugs.mysql.com/16315
http://bugs.mysql.com/16313
http://bugs.mysql.com/16228
http://bugs.mysql.com/16175
http://bugs.mysql.com/15963
http://bugs.mysql.com/15961


• Character set conversion of string constants for UNION of constant and table column was not done when it was safe to do so.
(Bug#15949)

• The mysql_close() C API function leaked handles for shared-memory connections on Windows. (Bug#15846)

• A SELECT using a function against a nested view would crash the server. (Bug#15683)

• Setting up subpartitions on at least one but not all the partitions of a partitioned table caused the server to crash. (Bug#15407)

• During conversion from one character set to ucs2, multi-byte characters with no ucs2 equivalent were converted to multiple char-
acters, rather than to 0x003F QUESTION MARK. (Bug#15375)

• CREATE TABLE ... PARTITION ... AS SELECT ... would cause the server to crash. (Bug#15336)

• When attempting to insert a 0 into a LIST-partitioned table that had no value-list containing 0, no error was reported. (Bug#15253)

• SELECT COUNT(*) for a MyISAM table could return different results depending on whether an index was used. (Bug#14980)

• Stored routines that contained only a single statement were not written properly to the dumpfile when using mysqldump.
(Bug#14857)

• Execution of a stored function or trigger which inserted data into a table while running concurrent selects on the same table could
result in storing incorrect data in the query cache. (Bug#14767)

• Naming a partition using the characters Ç or ç (“c-cedilla”; Unicode 00C7 or 00E7) made unreadable the table containing the parti-
tion. (Bug#14527)

• Searches on indexed columns of partitioned tables failed to find all matching rows following updates of the indexed columns.
(Bug#14526)

• Creating a partition which depends on an expression containing a column using the UTF8 character set would cause the server to
crash. (Bug#14367)

• On Linux, creation of table partitions failed within a stored procedure. (Bug#14363)

• Invoking more than once a prepared statement that creates a partitioned table would crash the server. (Bug#14350)

• The RENAME TABLE statement did not move triggers to the new table. (Bug#13525)

• The server would execute stored routines that had a non-existent definer. (Bug#13198)

• The length of a VARCHAR() column that used the utf8 character set would increase each time the table was re-created in a stored
procedure or prepared statement, eventually causing the CREATE TABLE statement to fail. (Bug#13134)

• Loading of UDFs in a statically linked MySQL caused a server crash. UDF loading is now blocked if the MySQL server is statically
linked. (Bug#11835)

• Setting the myisam_repair_threads system variable to a value larger than 1 could cause corruption of large MyISAM tables.
(Bug#11527)

• Issuing GRANT EXECUTE on a procedure would display any warnings related to the creation of the procedure. (Bug#7787)

C.1.27. Changes in MySQL 5.1.7 (27 February 2006)
Functionality added or changed:

• Incompatible Change: The mysql_stmt_attr_get() C API function now returns a boolean rather than an unsigned int for
STMT_ATTR_UPDATE_MAX_LENGTH. (Bug#16144)

• Incompatible Change: Due to a change in the naming scheme for partitioning and subpartitioning files, it is not possible for the
server to read partitioned tables created in previous MySQL versions. Attempting to read pre-5.1.6 partitioned tables with a MySQL
5.1.7 or later server now generates a suitable warning message.

Two possible workarounds are:

MySQL Change History

2197

http://bugs.mysql.com/15949
http://bugs.mysql.com/15846
http://bugs.mysql.com/15683
http://bugs.mysql.com/15407
http://bugs.mysql.com/15375
http://bugs.mysql.com/15336
http://bugs.mysql.com/15253
http://bugs.mysql.com/14980
http://bugs.mysql.com/14857
http://bugs.mysql.com/14767
http://bugs.mysql.com/14527
http://bugs.mysql.com/14526
http://bugs.mysql.com/14367
http://bugs.mysql.com/14363
http://bugs.mysql.com/14350
http://bugs.mysql.com/13525
http://bugs.mysql.com/13198
http://bugs.mysql.com/13134
http://bugs.mysql.com/11835
http://bugs.mysql.com/11527
http://bugs.mysql.com/7787
http://bugs.mysql.com/16144


•
1. Create a non-partitioned table with the same table schema using a standard CREATE TABLE statement (that is, with no

partitioning clauses)

2. Issue a SELECT INTO to copy the data into the non-partitioned table before the upgrade
Following the upgrade, you can partition the new table using ALTER TABLE ... PARTITION BY ....

• Alternatively, you can dump the table using mysqldump prior to upgrading and reload it afterwards with LOAD DATA.
In either case, you should drop the pre-5.1.6 partitioned tables before upgrading to 5.1.6 or later.

Important

If any partitioned tables that were created prior to MySQL 5.1.6 are present following an upgrade to MySQL 5.1.6 or later,
it is also not possible to read from the INFORMATION_SCHEMA.PARTITIONS table, nor will you be able to drop those
tables or the database or databases in which they are located. In this event, you must:

1. Shut down mysqld

2. Manually delete the table, partition, and (if any) subpartition files

3. Restart the MySQL Server

(Bug#13437, Bug#16695)

• Incompatible Change: TYPE = engine_name is no longer accepted as a synonym for the ENGINE = engine_name table
option. (TYPE has been deprecated since MySQL 4.0.)

• MySQL Cluster: Attempting to SELECT ... FROM INFORMATION_SCHEMA.FILES now raises a warning in the event that
the cluster has crashed. (Bug#17087)

• Disk Data: Status messages have been added to ndb_restore to enable users to know that data files for Disk Data are being cre-
ated. (Bug#16873)

• Cluster Replication: It is now possible to replicate NDB tables having no explicit primary key. See Section 17.12, “MySQL Cluster
Replication”.

• Creator privileges are now checked for all events before execution. (Bug#17289)

• CREATE EVENT, DROP EVENT, and ALTER EVENT statements are not allowed in triggers. (Bug#16410)

• The SQL mode in effect at the time an event is created or altered is recorded and used during event execution. (Bug#16407)

• New charset command added to mysql command-line client. By typing charset name or \C name (such as \C UTF8),
the client character set can be changed without reconnecting. (Bug#16217)

• Added the --wait-timeout option to mysqlmanager to allow configuration of the timeout for dropping an inactive connec-
tion, and increased the default timeout from 30 seconds to 28,800 seconds (8 hours). (Bug#15980, Bug#12674)

• All subpartitions within a given partitioned table are now guaranteed to have unique names. (Bug#15408)

• mysqlimport now has a --use-threads=N option for loading data files in parallel using N threads.

• Added the --check-upgrade to mysqlcheck that invokes CHECK TABLE with the FOR UPGRADE option. Added the -
-fix-db-names and --fix-table-names options to mysqlcheck.

• Added the RENAME DATABASE statement.

• Added the PROCESSLIST table to INFORMATION_SCHEMA.

• Added the FOR UPGRADE option for the CHECK TABLE statement. This option checks whether tables are incompatible with the
current version of MySQL Server.

• In row-based replication, when executing a Rows_log_event, the associated table was locked, the rows applied and the lock re-
leased. This did not work since there are storage engines that count locks and perform an autocommit when the number of locks
reach zero. Now we ensure that all table maps come before all ROWS events in a statement.

MySQL Change History

2198

http://bugs.mysql.com/13437
http://bugs.mysql.com/16695
http://bugs.mysql.com/17087
http://bugs.mysql.com/16873
http://bugs.mysql.com/17289
http://bugs.mysql.com/16410
http://bugs.mysql.com/16407
http://bugs.mysql.com/16217
http://bugs.mysql.com/15980
http://bugs.mysql.com/12674
http://bugs.mysql.com/15408


• Removed the have_isam and have_raid system variables.

• Several changes were made to make upgrades easier:

• Added the mysql_upgrade program that checks all tables for incompatibilities with the current version of MySQL Server
and repairs them if necessary. This program should be run for each MySQL upgrade (rather than
mysql_fix_privilege_tables). See Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

• Added the FOR UPGRADE option for the CHECK TABLE statement. This option checks whether tables are incompatible with
the current version of MySQL Server.

• Added the --check-upgrade to mysqlcheck that invokes CHECK TABLE with the FOR UPGRADE option. Added the -
-fix-db-names and --fix-table-names options to mysqlcheck.

• Added the mysql_upgrade program that checks all tables for incompatibilities with the current version of MySQL Server and re-
pairs them if necessary. This program should be run for each MySQL upgrade (rather than mysql_fix_privilege_tables).
See Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.

• Added the IN NATURAL LANGUAGE MODE and IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION modifiers
for full-text searches. See Section 11.8, “Full-Text Search Functions”.

Bugs fixed:

• MySQL Cluster: Creating NDB tables containing BLOB columns but no primary key caused unpredictable behavior. (Bug#17559)

• MySQL Cluster: Inserting the output of REPEAT('some_string', some_int) into a BLOB column resulted in the error
INVALID BLOB ATTRIBUTES OR INVALID BLOB PARTS TABLE. (Bug#17505)

• MySQL Cluster: Row-based replication was not set up correctly if a backup was already in progress. For example, connecting a
mysqld instance to a cluster which was being backed up would result in the message NDB: SKIPPING SETUP TABLE TBL_NAME
being written to the error log. (Bug#17459)

• MySQL Cluster: ndbd restarts could sometimes fail due to incorrect memory access. (Bug#17417)

• MySQL Cluster: Sharing of table names containing special characters between multiple SQL nodes was not handled correctly
when binary logging was enabled (a timeout error resulted). (Bug#17415)

• MySQL Cluster: Table definitions were not shared between multiple SQL nodes in a cluster without binary logging being enabled.
(Bug#17414)

• MySQL Cluster: Cluster log file paths were truncated to 128 characters. They may now be as long as MAX_PATH (the maximum
path length permitted by the operating system). (Bug#17411)

• MySQL Cluster: SHOW CREATE TABLE would fail when run against a table created in a different session. (Bug#17340)

• MySQL Cluster: Following multiple forced shutdowns and restarts of data nodes, DROP DATABASE could fail. (Bug#17325)

• MySQL Cluster: The REDO log would become corrupted (and thus unreadable) in some circumstances, due to a failure in the query
handler. (Bug#17295)

• MySQL Cluster: An UPDATE with an inner join failed to match any records if both tables in the join did not have a primary key.
(Bug#17257)

• MySQL Cluster: A DELETE with a join in the WHERE clause failed to retrieve any records if both tables in the join did not have a
primary key. (Bug#17249)

• MySQL Cluster: CREATE TEMPORARY TABLE of a Cluster table would fail with an UNSUPPORTED error or crash the server.
(Bug#17210, Bug#16552)

• MySQL Cluster: The storage engine did not allow views to be updated. (Bug#17206)

• MySQL Cluster: When attempting to import data into an NDB table using LOAD DATA INFILE, the server would hang in the
event of a duplicate key error. (Bug#17154)

MySQL Change History

2199

http://bugs.mysql.com/17559
http://bugs.mysql.com/17505
http://bugs.mysql.com/17459
http://bugs.mysql.com/17417
http://bugs.mysql.com/17415
http://bugs.mysql.com/17414
http://bugs.mysql.com/17411
http://bugs.mysql.com/17340
http://bugs.mysql.com/17325
http://bugs.mysql.com/17295
http://bugs.mysql.com/17257
http://bugs.mysql.com/17249
http://bugs.mysql.com/17210
http://bugs.mysql.com/16552
http://bugs.mysql.com/17206
http://bugs.mysql.com/17154


• MySQL Cluster: In some cases, LOAD DATA INFILE did not load all data into NDB tables. (Bug#17081)

• MySQL Cluster: CREATE TABLE new_tbl LIKE old_tbl; failed when old_tbl used the NDB storage engine.
(Bug#17005)

• MySQL Cluster: An unhandled resources issue could cause node failure with a DELETE FROM TABLE affecting thousands of
rows. (Bug#16492)

• MySQL Cluster: UNIQUE keys in Cluster tables were limited to 225 bytes in length. (Bug#15918)

• MySQL Cluster: REPLACE failed when attempting to update a primary key value in a Cluster table. (Bug#14007)

• MySQL Cluster: No error message was generated for setting NoOfFragmentLogFiles too low. (Bug#13966)

• MySQL Cluster: No error message was generated for setting MaxNoOfAttributes too low. (Bug#13965)

• MySQL Cluster: Performing large numbers of data manipulation statements on cluster tables using Disk Data could lead to a server
crash.

• Disk Data: In some cases, a cluster using Disk Data tables could not be restarted following a normal shutdown. (Bug#16872)

• Cluster Replication: Row-based replication of a cluster failed to take --binlog_ignore_db settings into account.
(Bug#17188)

• Cluster Replication: Cluster tables not having an explicit primary key could not be replicated. (Bug#14541)

• Column counts were encoded incorrectly in the binary log for row-based logging format. (Bug#17678)

• Data truncations on non-UNIQUE indexes could crash InnoDB when using multi-byte character sets. (Bug#17530)

• An ALTER DATABASE statement on a replication master crashed the slaves. (Bug#17521)

• Execution times for scheduled events were not calculated correctly: the last execution time was used as a base rather than the actual
start time. (Bug#17494)

• Creating an event and using a whitespace character other than space following the DO keyword caused a server crash. (Bug#17453)

• Partitioning with certain SUBPARTITION BY HASH clauses caused an error when querying for a partitioned column using an IS
NULL comparison. (Bug#17430, Bug#17432)

• Race conditions between event creation, dropping, and execution could result in a server crash or hang. (Bug#17373)

• Trying to create a partitioned table with more than 32 attributes failed. (Bug#17179)

• Attempting to add a new partition to a table partitioned by a unique key would cause an OUT OF MEMORY error. (Bug#17169)

• myisam_ftdump did not work for FULLTEXT indexes associated with a parser plugin. (Bug#17116)

• On Windows platforms, some attempts to create partitioned tables from the command line would cause the mysql client to hang.
(Bug#17082)

• A SELECT from the last partition of a subpartitioned table having a UNIQUE KEY could crash the MySQL Server. (Bug#16907)

• Statements that contained Unicode characters were not logged to the log tables correctly. (Bug#16905)

• A SELECT on a subpartitioned table having a multiple-column PRIMARY or UNIQUE KEY, and whose partitioning function used
only the first column of the key, could cause mysqld to crash. (Bug#16901)

• A RETURN statement within a trigger caused a server crash. RETURN now is disallowed within triggers. To exit immediately, use
LEAVE. (Bug#16829)

• Using REPLACE INTO on a partitioned table having a primary key would crash the server in the event of a duplicate key error.
(Bug#16782)

• DROP TABLE would sometimes fail on a table having subpartitions that used the default storage engine. (Bug#16775)

• If the query optimizer transformed a GROUP BY clause in a subquery, it did not also transform the HAVING clause if there was one,

MySQL Change History

2200

http://bugs.mysql.com/17081
http://bugs.mysql.com/17005
http://bugs.mysql.com/16492
http://bugs.mysql.com/15918
http://bugs.mysql.com/14007
http://bugs.mysql.com/13966
http://bugs.mysql.com/13965
http://bugs.mysql.com/16872
http://bugs.mysql.com/17188
http://bugs.mysql.com/14541
http://bugs.mysql.com/17678
http://bugs.mysql.com/17530
http://bugs.mysql.com/17521
http://bugs.mysql.com/17494
http://bugs.mysql.com/17453
http://bugs.mysql.com/17430
http://bugs.mysql.com/17432
http://bugs.mysql.com/17373
http://bugs.mysql.com/17179
http://bugs.mysql.com/17169
http://bugs.mysql.com/17116
http://bugs.mysql.com/17082
http://bugs.mysql.com/16907
http://bugs.mysql.com/16905
http://bugs.mysql.com/16901
http://bugs.mysql.com/16829
http://bugs.mysql.com/16782
http://bugs.mysql.com/16775


producing incorrect results. (Bug#16603)

• Querying the INFORMATION_SCHEMA.PARTITIONS table on a non-max server caused a server crash. This also happened fol-
lowing the creation of a table with a very large number (hundreds) of partitions. (Bug#16591, Bug#17141)

• For a transaction that used MyISAM and InnoDB tables, interruption of the transaction due to a dropped connection on a master
server caused slaves to lose synchrony. (Bug#16559)

• SHOW CREATE EVENT displayed no output. (Bug#16423)

• DROP DATABASE did not drop events for the database. (Bug#16406)

• The mysql_fix_privilege_tables.sql script did not properly initialize the Event_priv column to 'Y' for those ac-
counts that should have the EVENT privilege. (Bug#16400)

• SELECT with GROUP BY on a view could cause a server crash. (Bug#16382)

• MySQL server dropped client connection for certain SELECT statements against views defined that used MERGE algorithm.
(Bug#16260)

• Using an XPath expression containing = with ExtractValue() caused the server to crash. (Bug#16242)

• When used with the ExtractValue() function, an XPath expression having no leading “ / ” character would crash the server.
(Bug#16234)

• Using GROUP BY on column used in WHERE clause could cause empty set to be returned. (Bug#16203)

• CAST(... AS TIME) operations returned different results when using versus not using prepared-statement protocol.
(Bug#15805)

• The SELECT privilege was required for triggers that performed no selects. (Bug#15196)

• The UPDATE privilege was required for triggers that performed no updates. (Bug#15166)

• A statement containing GROUP BY and HAVING clauses could return incorrect results when the HAVING clause contained logic
that returned FALSE for every row. (Bug#14927)

• Killing a long-running query containing a subquery could cause a server crash. (Bug#14851)

• Previously, a stored function invocation was written to the binary log as DO func_name() if the invocation changes data and oc-
curs within a non-logged statement, or if the function invokes a stored procedure that produces an error. These invocations now are
logged as SELECT func_name() instead for better control over error code checking (slave servers could stop due to detecting a
different error than occurred on the master). (Bug#14769)

• SUBSTRING_INDEX() could yield inconsistent results when applied with the same arguments to consecutive rows in a query.
(Bug#14676)

• SET sql_mode = N, where N > 31, did not work properly. (Bug#13897)

• SHOW CREATE TABLE produced extraneous spaces after the PRIMARY KEY keywords. (Bug#13883)

• BIT fields were not properly handled when using row-based replication. (Bug#13418)

• InnoDB could display an incorrect error message for a cascading update. (Bug#9680)

• CHECKSUM TABLE returned different values for MyISAM tables depending on whether the QUICK or EXTENDED option was
used. (Bug#8841)

• SET TRANSACTION ISOLATION LEVEL acted like SET SESSION TRANSACTION ISOLATION LEVEL. That is, it set
the isolation level for longer than the next transaction. (Bug#7955)

• Repeated invocation of my_init() and my_end() caused corruption of character set data and connection failure. (Bug#6536)

C.1.28. Changes in MySQL 5.1.6 (01 February 2006)

MySQL Change History

2201

http://bugs.mysql.com/16603
http://bugs.mysql.com/16591
http://bugs.mysql.com/17141
http://bugs.mysql.com/16559
http://bugs.mysql.com/16423
http://bugs.mysql.com/16406
http://bugs.mysql.com/16400
http://bugs.mysql.com/16382
http://bugs.mysql.com/16260
http://bugs.mysql.com/16242
http://bugs.mysql.com/16234
http://bugs.mysql.com/16203
http://bugs.mysql.com/15805
http://bugs.mysql.com/15196
http://bugs.mysql.com/15166
http://bugs.mysql.com/14927
http://bugs.mysql.com/14851
http://bugs.mysql.com/14769
http://bugs.mysql.com/14676
http://bugs.mysql.com/13897
http://bugs.mysql.com/13883
http://bugs.mysql.com/13418
http://bugs.mysql.com/9680
http://bugs.mysql.com/8841
http://bugs.mysql.com/7955
http://bugs.mysql.com/6536


Functionality added or changed:

• Incompatible Change: Words with apostrophes are now matched in a FULLTEXT search against non-apostrophe words (for ex-
ample, a search for Jerry will match against the term Jerry's). Users upgrading to this version must issue REPAIR TABLE
statements for tables containing FULLTEXT indexes. (Bug#14194)

• Incompatible Change: This release introduces the TRIGGER privilege. Previously, the SUPER privilege was needed to create or
drop triggers. Now those operations require the TRIGGER privilege. This is a security improvement because you no longer need to
grant users the SUPER privilege to enable them to create triggers. However, the requirement that the account named in a trigger's
DEFINER clause must have the SUPER privilege has changed to a requirement for the TRIGGER privilege. After upgrading, be
sure to update your grant tables as described in Section 4.4.4, “mysql_fix_privilege_tables — Upgrade MySQL System
Tables”. This process assigns the TRIGGER privilege to all accounts that had the SUPER privilege. (After updating, you might also
consider whether any of those accounts no longer need SUPER.) If you fail to update the grant tables, triggers may fail when activ-
ated. (Bug#9142)

• Incompatible Change: Before MySQL 5.1.6, the server writes general query log and slow query log entries to log files. As of
MySQL 5.1.6, the server's logging capabilities for these logs are more flexible. Log entries can be written to log files (as before) or
to the general_log and slow_log tables in the mysql database. If logging is enabled, either or both destinations can be selec-
ted. The --log-output option controls the destination or destinations of log output. See Section 5.2.1, “Selecting General Query
and Slow Query Log Output Destinations”.

If logging is enabled, the default destination now is to log to tables, which differs from earlier versions. If you had the server con-
figured for logging to log files formerly, use --log-output=FILE to preserve this behavior after an upgrade to MySQL 5.1.6 or
higher.

• Cluster Replication: Important Change: Replication between MySQL Clusters is now supported. It is now also possible to replic-
ate between a MySQL Cluster and a non-cluster database. See Section 17.12, “MySQL Cluster Replication”, for more information.

• MySQL Cluster: Added the ndb_extra_logging system variable.

• MySQL Cluster: The NDB storage engine now supports the CREATE INDEX and DROP INDEX statements.

• Packaging: MySQL 5.1.6 introduces some changes to distribution packaging:

• Distributions include both a mysqld optimized server and mysqld-debug debugging server. There is no separate debug dis-
tribution.

• There is no longer a mysqld-max server. (Note: This changed in MySQL 5.1.9: The mysqld-max server also is included in
binary distributions.)

• Server binaries no longer are stripped, except for RPM distributions.

• Binary distributions for Unix and Unix-like systems no longer include safe_mysqld as a link to mysqld_safe.
safe_mysqld has been deprecated since MySQL 4.0 and now is removed.

• The mysqldump utility now supports an option for dumping tablespaces. Use -Y or --all-tablespaces to enable this func-
tionality. (Bug#16753)

• Partition support is not an “engine”, but it was included in the output of SHOW ENGINES. Now it is not. The
have_partition_engine variable was renamed to have_partitioning. (Bug#14355, Bug#16718)

• ANALYZE TABLE is now supported for partitioned tables. (Bug#13441)

• Added the --use-threads option for mysqlslap.

• Queries against partitioned tables can now take advantage of partition pruning. In some cases, this can result in query execution that
is an order of magnitude faster than the same query against a non-partitioned version of the same table.

• There is no longer a mysqld-max server. (Note: This changed in MySQL 5.1.9: The mysqld-max server also is included in bin-
ary distributions.)

• Added the FILES table to INFORMATION_SCHEMA.

• Binary distributions for Unix and Unix-like systems no longer include safe_mysqld as a link to mysqld_safe.
safe_mysqld has been deprecated since MySQL 4.0 and now is removed.

MySQL Change History

2202

http://bugs.mysql.com/14194
http://bugs.mysql.com/9142
http://bugs.mysql.com/16753
http://bugs.mysql.com/14355
http://bugs.mysql.com/16718
http://bugs.mysql.com/13441


• Special characters in database and table identifiers now are encoded when creating the corresponding directory names and file-
names. This relaxes the restrictions on the characters that can appear in identifiers. See Section 8.2.3, “Mapping of Identifiers to Fi-
lenames”.

• Added the event_scheduler system variable.

• MySQL 5.1.6 introduces the Event Scheduler which allows one to schedule statements for execution at predetermined times. Events
can be transient (one-time-only) or recurrent at regular intervals, and may execute queries and statements permitted in stored
routines, including compound statements.

Events can be altered after creation, and dropped when no longer needed.

Information about scheduled events can be obtained using the statements SHOW EVENTS and SHOW CREATE EVENT, or by
querying the INFORMATION_SCHEMA.EVENTS table. All of these are available beginning in MySQL 5.1.6.

Users must have the EVENT privilege (also added in 5.1.6) to create events.

For more information, see Chapter 22, Event Scheduler.

• Distributions include both a mysqld optimized server and mysqld-debug debugging server. There is no separate debug distribu-
tion.

• Server binaries no longer are stripped, except for RPM distributions.

• The ARCHIVE storage engine now supports the AUTO_INCREMENT column attribute and the AUTO_INCREMENT table option.
Section 13.10, “The ARCHIVE Storage Engine”.

• Server plugins can register their own status variables to be displayed by the SHOW STATUS statement.

• Added the PARTITIONS table to INFORMATION_SCHEMA.

• Added the EVENTS table to INFORMATION_SCHEMA.

Bugs fixed:

• MySQL Cluster: NDB leaked disk space when performing repeated INSERT or DELETE statements. (Bug#16771)

• MySQL Cluster: (Disk Data): Tablespaces created using parameters with relatively low values (< 10 MB) produced filesizes much
smaller than expected. (Bug#16742)

• MySQL Cluster: ndb_delete_all ran out of memory when processing tables containing BLOB columns. (Bug#16693)

• MySQL Cluster: Trying to import too many dumped tables requiring resources beyond those allocated in the cluster configuration
file caused the server to crash instead of reporting an insufficient resources error. (Bug#16455)

• MySQL Cluster: A BIT column whose offset and length totaled 32 caused the cluster to crash. (Bug#16125)

• MySQL Cluster: The ndb_autodiscover test failed sporadically due to a node not being permitted to connect to the cluster.
(Bug#15619)

• MySQL Cluster: NDB returned an incorrect CAN'T FIND FILE ERROR for OS error 24; this has been changed to TOO MANY OPEN

FILES. (Bug#15020)

• MySQL Cluster: CREATE TABLESPACE statements were incorrectly parsed on 64-bit platforms. (INITIAL SIZE size
worked, but INITIAL SIZE = size failed.) (Bug#13556)

• MySQL Cluster: Using mysqldump to obtain a dump of a partitioned table employing the NDB storage engine produced a non-
functional table creation statement. (Bug#13155)

• Disk Data: NDB returned the wrong error when the tablespace on disk was full. (Bug#16738)

• Disk Data: The error message generated by a failed ADD UNDOFILE did not provide any reasons for the failure. (Bug#16267)

• Disk Data: DROP LOGFILE GROUP corrupted the cluster file system and caused ndbd to fail when running more than one node

MySQL Change History

2203

http://bugs.mysql.com/16771
http://bugs.mysql.com/16742
http://bugs.mysql.com/16693
http://bugs.mysql.com/16455
http://bugs.mysql.com/16125
http://bugs.mysql.com/15619
http://bugs.mysql.com/15020
http://bugs.mysql.com/13556
http://bugs.mysql.com/13155
http://bugs.mysql.com/16738
http://bugs.mysql.com/16267


on the same system. (Bug#16193)

• Cluster API: Upon the completion of a scan where a key request remained outstanding on the primary replica and a starting node
died, the scan did not terminate. This caused incomplete error handling for the failed node. (Bug#15908)

• When the fulltext search parser plugin returned more words than half of the length (in bytes) of the query string, the server would
crash. (Bug#16722)

• An indexing error sometimes caused values to be assigned to the wrong RANGE partition. (Bug#16684)

• An INSERT statement in a stored procedure corrupted the binary log. (Bug#16621)

• Trying to add more than one partition in a single ALTER TABLE ... ADD PARTITION statement caused the server to crash.
(Bug#16534)

• Parallel builds occasionally failed on Solaris. (Bug#16282)

• Inserting a negative value into an integer column used as the partitioning key for a table partitioned by HASH could cause the server
to crash. (Bug#15968)

• Creating a partitioned table using a storage engine other than the session default storage engine caused the server to crash.
(Bug#15966)

• The error message for specifying values for which no partition exists returned wrong values on certain platforms. (Bug#15910)

• Specifying a value for --tmpdir without a trailing slash had unpredictable results. (Bug#15904)

• STR_TO_DATE(1,NULL) caused a server crash. (Bug#15828, CVE-2006-3081)

• ALTER TABLE ... ADD PARTITIONS on a table with one partition crashed the server. (Bug#15820)

• The mysql_real_connect() C API function incorrectly reset the MYSQL_OPT_RECONNECT option to its default value.
(Bug#15719)

• In some cases the query optimizer did not properly perform multiple joins where inner joins followed left joins, resulting in corrup-
ted result sets. (Bug#15633)

• Certain permission management statements could create a NULL hostname for a user, resulting in a server crash. (Bug#15598)

• Improper memory handling for stored routine variables could cause memory overruns and binary log corruption. (Bug#15588)

• The absence of a table in the left part of a left or right join was not checked prior to name resolution, which resulted in a server
crash. (Bug#15538)

• An ALTER TABLE ... PARTITION BY ... statement did not have any effect. (Bug#15523)

• Using RANGE partitioning with a CASE expression as the partitioning function would cause records to be placed in the wrong parti-
tion. (Bug#15393)

• Certain subqueries where the inner query was the result of a aggregate function would return different results with MySQL 5.1 than
with MySQL 4.1.

Subselects could also return wrong results when the query cache and grouping were involved. (Bug#15347)

• Attempting to insert data into a partitioned table that used the BLACKHOLE storage engine caused mysqld to crash. (Bug#14524)

• A FULLTEXT query in a prepared statement could result in unexpected behavior. (Bug#14496)

• With a table partitioned by LIST, inserting a value which was smaller than any value shown in the partitioning value-lists could
cause the server to crash. (Bug#14365)

• The DATA DIRECTORY and INDEX DIRECTORY clauses of a CREATE TABLE statement involving partitions did not work.
(Bug#14354)

• SHOW CREATE TABLE did not display the PARTITIONS clause for tables partitioned by HASH or KEY. (Bug#14327)

MySQL Change History

2204

http://bugs.mysql.com/16193
http://bugs.mysql.com/15908
http://bugs.mysql.com/16722
http://bugs.mysql.com/16684
http://bugs.mysql.com/16621
http://bugs.mysql.com/16534
http://bugs.mysql.com/16282
http://bugs.mysql.com/15968
http://bugs.mysql.com/15966
http://bugs.mysql.com/15910
http://bugs.mysql.com/15904
http://bugs.mysql.com/15828
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3081
http://bugs.mysql.com/15820
http://bugs.mysql.com/15719
http://bugs.mysql.com/15633
http://bugs.mysql.com/15598
http://bugs.mysql.com/15588
http://bugs.mysql.com/15538
http://bugs.mysql.com/15523
http://bugs.mysql.com/15393
http://bugs.mysql.com/15347
http://bugs.mysql.com/14524
http://bugs.mysql.com/14496
http://bugs.mysql.com/14365
http://bugs.mysql.com/14354
http://bugs.mysql.com/14327


• ALTER TABLE ... DROP PARTITION would truncate all DATE column values in the table's remaining partitions to NULL.
(Bug#13644)

• ALTER TABLE ... ADD PARTITION could crash the server or cause an OUT OF MEMORY error in some circumstances.
(Bug#13447)

• The server would allow foreign keys to be declared in the definition of a partitioned table despite the fact that partitioned tables do
not support foreign keys (see Section 18.5, “Restrictions and Limitations on Partitioning”). (Bug#13446)

• A SELECT from a key-partitioned table with a multi-column key could cause the server to crash. (Bug#13445)

• Issuing a TRUNCATE statement twice in succession on the same partitioned table would cause the server to crash. (Bug#13442)

• Using a REPLACE statement on a partitioned table caused the server to crash. (Bug#13440)

• Using an identifier rather than a literal integer value in the LESS THAN clause of a range-partitioned table could cause the server to
crash and corruption of tables. (Bug#13439)

• Using ENGINE=... within a PARTITION clause could cause the server to crash. (Bug#13438)

• CREATE TABLE ... LIKE did not work if the table whose schema was to be copied was a partitoned table. (Bug#13435)

• Multi-byte path names for LOAD DATA and SELECT ... INTO OUTFILE caused errors. Added the charac-
ter_set_filesystem system variable, which controls the interpretation of string literals that refer to filenames. (Bug#12448)

• Temporary table aliasing did not work inside stored functions. (Bug#12198)

• Using the TRUNCATE() function with a negative number for the second argument on a BIGINT column returned incorrect results.
(Bug#8461)

• Certain Japanese table names were not properly saved during a CREATE TABLE statement. (Bug#3906)

C.1.29. Changes in MySQL 5.1.5 (10 January 2006)
Functionality added or changed:

• Added the --port-open-timeout option to mysqld to control how many seconds the server should wait for the TCP/IP port
to become free if it cannot be opened. (Bug#15591)

• Added the --create-schema, --lock-directory, --number-of-queries, --only-print, -
-preserve-schema, and --slave options for mysqlslap.

• Added the --base64-output option to mysqlbinlog to print all binary log entries using base64 encoding. This is for debug-
ging only. Logs produced using this option should not be applied on production systems.

• Added the INFORMATION_SCHEMA PLUGINS table and the SHOW PLUGIN statement.

• Added the binlog_format system variable that controls whether to use row-based or statement-based binary logging. Added the
--binlog-format and --binlog-row-event-max-size server options for binary logging control. See Section 16.1.2,
“Replication Formats”.

• Two new Hungarian collations are included: utf8_hungarian_ci and ucs2_hungarian_ci. These support the correct sort
order for Hungarian vowels. However, they do not support the correct order for sorting Hungarian consonant contractions; this issue
will be fixed in a future release.

• Plugins now can have status variables that are displayed in the output from SHOW STATUS. See Section 29.2.5, “Writing Plugins”.

• Added the INFORMATION_SCHEMA ENGINES table.

• Added the XML functions ExtractValue() and UpdateXML(). ExtractValue() returns the content of a fragment of
XML matching a given XPath expression. UpdateXML() replaces the element selected from a fragment of XML by an XPath ex-
pression supplied by the user with a second XML fragment (also user-supplied), and returns the modified XML. See Section 11.10,
“XML Functions”.

MySQL Change History

2205

http://bugs.mysql.com/13644
http://bugs.mysql.com/13447
http://bugs.mysql.com/13446
http://bugs.mysql.com/13445
http://bugs.mysql.com/13442
http://bugs.mysql.com/13440
http://bugs.mysql.com/13439
http://bugs.mysql.com/13438
http://bugs.mysql.com/13435
http://bugs.mysql.com/12448
http://bugs.mysql.com/12198
http://bugs.mysql.com/8461
http://bugs.mysql.com/3906
http://bugs.mysql.com/15591


Bugs fixed:

• INSERT DELAYED caused mysqld to crash. (Bug#16095)

• The --plugin_dir option was not working. Also fix error with specifying parser name for fulltext. (Bug#16068)

• Attempting to insert into a table partitioned by LIST a value less than any specified in one of the table's partition definitions resul-
ted in a server crash. In such cases, mysqld now returns ERROR 1500 (HY000): TABLE HAS NO PARTITION FOR VALUE V ,
where v is the out-of-range value. (Bug#15819)

• Issuing a DROP USER command could cause some users to encounter a hostname is not allowed to connect to
this MySQL server error. (Bug#15775)

• The output of mysqldump --triggers did not contain the DEFINER clause in dumped trigger definitions. (Bug#15110)

• The output of SHOW TRIGGERS contained extraneous whitespace. (Bug#15103)

• Creating a trigger caused a server crash if the table or trigger database was not known because no default database had been selec-
ted. (Bug#14863)

• InnoDB: Comparison of indexed VARCHAR CHARACTER SET ucs2 COLLATE ucs2_bin columns using LIKE could fail.
(Bug#14583)

• A COMMIT statement followed by a ALTER TABLE statement on a BDB table caused server crash. (Bug#14212)

• An INSERT ... SELECT statement between tables in a MERGE set can return errors when statement involves insert into child ta-
ble from merge table or vice-versa. (Bug#5390)

• InnoDB: An UPDATE statement with no index column in the WHERE condition locked all the rows in the table. (Bug#3300)

C.1.30. Changes in MySQL 5.1.4 (21 December 2005)
Functionality added or changed:

• Added the --server-id option to mysqlbinlog to enable only those events created by the server having the given server ID
to be extracted. (Bug#15485)

• It is now possible to build the server such that MyISAM tables can support up to 128 keys rather than the standard 64. This can be
done by configuring the build using the option --with-max-indexes=N , where N#128 is the maximum number of indexes to
permit per table. (Bug#10932)

• Added the myisam_use_mmap system variable.

• Added the --bdb-data-direct and --bdb-log-direct server options.

• Added the mysqlslap program, which is designed to emulate client load for a MySQL server and report the timing of each stage.
It works as if multiple clients are accessing the server.

• The bundled BDB library was upgraded to version 4.4.16.

• Added the cp1250_polish_ci collation for the cp1250 character set.

Bugs fixed:

• MySQL Cluster: The --ndb option for perror did not function. (Bug#15486)

• MySQL Cluster: Using ORDER BY primary_key_column when selecting from a table having the primary key on a
VARCHAR column caused a forced shutdown of the cluster. (Bug#15240, Bug#15682, Bug#14828, Bug#15517)

• Server could not be built on default Debian systems with BDB enabled. (Bug#15734)

MySQL Change History

2206

http://bugs.mysql.com/16095
http://bugs.mysql.com/16068
http://bugs.mysql.com/15819
http://bugs.mysql.com/15775
http://bugs.mysql.com/15110
http://bugs.mysql.com/15103
http://bugs.mysql.com/14863
http://bugs.mysql.com/14583
http://bugs.mysql.com/14212
http://bugs.mysql.com/5390
http://bugs.mysql.com/3300
http://bugs.mysql.com/15485
http://bugs.mysql.com/10932
http://bugs.mysql.com/15486
http://bugs.mysql.com/15240
http://bugs.mysql.com/15682
http://bugs.mysql.com/14828
http://bugs.mysql.com/15517
http://bugs.mysql.com/15734


• SHOW ENGINES output showed the FEDERATED engine as DISABLED even for builds with FEDERATED support. (Bug#15559)

• BDB: A DELETE, INSERT, or UPDATE of a BDB table could cause the server to crash where the query contained a subquery using
an index read. (Bug#15536)

• It was not possible to reorganize a partition reusing a discarded partition name.

Now, for example, you can create a table such as this one:

CREATE TABLE t1 (a INT)
PARTITION BY RANGE (a) (
PARTITION p0 VALUES LESS THAN (10),
PARTITION p1 VALUES LESS THAN (20),
PARTITION p2 VALUES LESS THAN MAXVALUE

);

and then repartition it as shown here:

ALTER TABLE t1 REORGANIZE PARTITION p2 INTO (
PARTITION p2 VALUES LESS THAN (30)

);

Previously, attempting to do so would produce the error ALL PARTITIONS MUST HAVE UNIQUE NAMES IN THE TABLE .
(Bug#15521)

• The BLACKHOLE storage engine did not handle transactions properly: Rolled-back transactions were written to the binary log. Now
they ae not. (Bug#15406)

• A left join on a column that having a NULL value could cause the server to crash. (Bug#15268)

• Selecting from a view processed with the temptable algorithm caused a server crash if the query cache was enabled. (Bug#15119)

• Creating a view that referenced a stored function that selected from a view caused a crash upon selection from the view.
(Bug#15096)

• Multiple-table update operations were counting updates and not updated rows. As a result, if a row had several updates it was coun-
ted several times for the “rows matched” value but updated only once. (Bug#15028)

• ROW_COUNT() returned an incorrect result after EXECUTE of a prepared statement. (Bug#14956)

• ANALYZE TABLE did not properly update table statistics for a MyISAM table with a FULLTEXT index containing stopwords, so a
subsequent ANALYZE TABLE would not recognize the table as having already been analyzed. (Bug#14902)

• Creating a view within a stored procedure could result in an out of memory error or a server crash. (Bug#14885)

• SELECT queries that began with an opening parenthesis were not being placed in the query cache. (Bug#14652)

• Space truncation was being ignored when inserting into BINARY or VARBINARY columns. Now space truncation results in a warn-
ing, or an error in strict mode. (Bug#14299)

• The maximum value of MAX_ROWS was handled incorrectly on 64-bit systems. (Bug#14155)

• For binary string data types, mysqldump --hex-blob produced an illegal output value of 0x rather than ''. (Bug#13318)

• Some comparisons for the IN() operator were inconsistent with equivalent comparisons for the = operator. (Bug#12612)

• Attempts to assign NULL to a NOT NULL column in strict mode now result in a message of Column 'col_name' cannot
be null, rather than Column set to default value; NULL supplied to NOT NULL column 'col_name'
at row n. (Bug#11491)

• SHOW CREATE DATABASE was sometimes refused when the client had privileges for the database. (Bug#9785)

• Invalid casts to DATE values now result in a message of Incorrect datetime value, rather than Truncated incor-
rect datetime value. (Bug#8294)

• mysql ignored the MYSQL_TCP_PORT environment variable. (Bug#5792)

MySQL Change History

2207

http://bugs.mysql.com/15559
http://bugs.mysql.com/15536
http://bugs.mysql.com/15521
http://bugs.mysql.com/15406
http://bugs.mysql.com/15268
http://bugs.mysql.com/15119
http://bugs.mysql.com/15096
http://bugs.mysql.com/15028
http://bugs.mysql.com/14956
http://bugs.mysql.com/14902
http://bugs.mysql.com/14885
http://bugs.mysql.com/14652
http://bugs.mysql.com/14299
http://bugs.mysql.com/14155
http://bugs.mysql.com/13318
http://bugs.mysql.com/12612
http://bugs.mysql.com/11491
http://bugs.mysql.com/9785
http://bugs.mysql.com/8294
http://bugs.mysql.com/5792


C.1.31. Changes in MySQL 5.1.3 (29 November 2005)
Functionality added or changed:

• Plugin API: Incompatible Change: MySQL 5.1 adds support for a very flexible plugin API that enables loading and unloading of
various components at runtime, without restarting the server. Although the work on this is not finished yet, plugin full-text parsers
are a first step in this direction. This allows users to implement their own input filter on the indexed text, enabling full-text search
capability on arbitrary data such as PDF files or other document formats. A pre-parser full-text plugin performs the actual parsing
and extraction of the text and hands it over to the built-in MySQL full-text search. (Author: Sergey Vojtovich)

The plugin API requires the mysql.plugin table. When upgrading from an older version of MySQL, you should run the
mysql_fix_privilege_tables command to create this table. See Section 4.4.4, “mysql_fix_privilege_tables —
Upgrade MySQL System Tables”.

Plugins are installed in the directory named by the plugin_dir system variable. This variable also controls the location from
which the server loads user-defined functions (UDFs), which is a change from earlier versions of MySQL. That is, all UDF library
files now must be installed in the plugin directory. When upgrading from an older version of MySQL, you must migrate your UDF
files to the plugin directory.

• Incompatible Change: Renamed the table_cache system variable to table_open_cache. Any scripts that refer to ta-
ble_cache should be updated to use the new name.

• MySQL Cluster: VARCHAR columns used in MySQL Cluster tables are now variable-sized; that is, they now only allocate as much
space as required to store the data. Previously, a VARCHAR(n) column allocated n+2 bytes (aligned to 4 bytes), regardless of
whether the actual inserted value required that much space. (In other words, a VARCHAR column always required the same, fixed,
amount of storage as a CHAR column of the same size.)

• Partitioning: allows distributing portions of individual tables across a filesystem, according to rules which can be set when the table
is created. In effect, different portions of a table are stored as separate tables in different locations, but from the user point of view,
the partitioned table is still a single table. See Chapter 18, Partitioning, for further information on this functionality. (Author: Mikael
Ronström)

• RAND() no longer allows non-constant initializers. (Prior to MySQL 5.1.3, the effect of non-constant initializers is undefined.)
(Bug#6172)

• Added the table_definition_cache system variable. If you use a large number of tables, you can create a large table defini-
tion cache to speed up opening of tables. The table definition cache takes less space and does not use file descriptors, unlike the nor-
mal table cache.

• SET instance_name. option_name=option_value sets an option to the specified value and writes it to the config file
See Section 4.6.9, “mysqlmanager — The MySQL Instance Manager”, for more details on these new commands. (Author: Petr
Chardin)

• SHOW instance_name LOG FILES provides a listing of all log files used by the instance. (Author: Petr Chardin)

• Added the SHOW AUTHORS statement.

• Fast ALTER TABLE: Operations that change only table metadata and not table data do not require a temporary table to be used,
which improves performance. For example, renaming a column changes only the .frm file and no longer uses a temporary table.

• The Instance Manager (IM) now has some additional functionality:

• SHOW instance_name LOG FILES provides a listing of all log files used by the instance. (Author: Petr Chardin)

• SHOW instance_name LOG {ERROR | SLOW | GENERAL} size retrieves a part of the specified log file. (Author:
Petr Chardin)

• SET instance_name. option_name=option_value sets an option to the specified value and writes it to the config
file See Section 4.6.9, “mysqlmanager — The MySQL Instance Manager”, for more details on these new commands.
(Author: Petr Chardin)

• SHOW instance_name LOG {ERROR | SLOW | GENERAL} size retrieves a part of the specified log file. (Author: Petr
Chardin)

• Added the SHOW FUNCTION CODE and SHOW PROCEDURE CODE statements (available only for servers that have been built

MySQL Change History

2208

http://bugs.mysql.com/6172


with debugging support). See Section 12.5.4.23, “SHOW PROCEDURE CODE and SHOW FUNCTION CODE Syntax”.

• The performance of boolean full-text searches (using the “+” Operator) has been improved. See Section 11.8, “Full-Text Search
Functions”, for more details about full-text searching. (Author: Sergey Vojtovich)

Bugs fixed:

• RESET MASTER failed to delete log files on Windows. One consequence of this change is that server opens the general query and
slow log files in shared mode, so now they can be renamed while the server has them open (something not true in previous ver-
sions). (Bug#13377)

• Set functions could not be aggregated in outer subqueries. (Bug#12762)

C.1.32. Changes in MySQL 5.1.2 (Not released)
Functionality added or changed:

• Added the bdb_cache_parts and bdb_region_size system variables, and allowed bdb_cache_size to be larger than
4GB on systems that support it. (Bug#14895)

• Added MAXLOCKS, MINLOCKS, MAXWRITE, and MINWRITE as allowable values of the --bdb-lock-detect option.
(Bug#14876)

• Added --replace to mysqldump. This option uses REPLACE INTO, rather than INSERT INTO, when writing the dumpfile.

• Added Transactions, XA, and Savepoints columns to SHOW ENGINES output.

Bugs fixed:

• Foreign keys were not properly enforced in TEMPORARY tables. Foreign keys now are disallowed in TEMPORARY tables.
(Bug#12084)

C.1.33. Changes in MySQL 5.1.1 (Not released)
Bugs fixed:

• MySQL Cluster: Specifying the wrong nodegroup in a CREATE TABLE statement using partitioning would lead to the table name
being locked after the statement failed (that is, the table name could not be re-used). (Bug#12114)

• Using ORDER BY in a query with a partitioned table on a 64-bit operating system could crash the server. (Bug#12116)

• Performing a CREATE TABLE statement with a PARTITION BY clause in a prepared statement could crash a server running in
debug mode. (Bug#12097)

• When two threads competed for the same table, a deadlock could occur if one thread also had a lock on another table through LOCK
TABLES and the thread was attempting to remove the table in some manner while the other thread tried to place locks on both
tables. (Bug#10600)

C.2. MySQL Connector/ODBC (MyODBC) Change History

C.2.1. Changes in MySQL Connector/ODBC 5.1.3 (Not yet released)
Platform specific notes:

MySQL Change History

2209

http://bugs.mysql.com/13377
http://bugs.mysql.com/12762
http://bugs.mysql.com/14895
http://bugs.mysql.com/14876
http://bugs.mysql.com/12084
http://bugs.mysql.com/12114
http://bugs.mysql.com/12116
http://bugs.mysql.com/12097
http://bugs.mysql.com/10600


• Important Change: You must uninstall previous 5.1.x editions of Connector/ODBC before installing the new version.

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC version
of iODBC.

• The installer for 64-bit Windows installs both the 32-bit and 64-bit driver. Please note that Microsoft does not yet supply a 64-bit
bridge from ADO to ODBC.

Bugs fixed:

• Important Change: In previous versions, the SSL certificate would automatically be verified when used as part of the Connector/
ODBC connection. The default mode is now to ignore the verificate of certificates. To enforce verification of the SSL certificate
during connection, use the SSLVERIFY DSN parameter, setting the value to 1. (Bug#29955, Bug#34648)

• Inserting characters to a UTF8 table using surrogate pairs would fail and insert invalid data. (Bug#34672)

• Installation of Connector/ODBC would fail because it was unable to uninstall a previous installed version. The file being requested
would match an older release version than any installed version of the connector. (Bug#34522)

• Using SqlGetData in combination with SQL_C_WCHAR would return overlapping data. (Bug#34429)

• Descriptor records were not cleared correctly when calling SQLFreeStmt(SQL_UNBIND). (Bug#34271)

• The dropdown selection for databases on a server when creating a DSN was too small. The list size now automatically adjusts up to
a maximum size of 20 potential databases. (Bug#33918)

• Microsoft Access would be unable to use DBEngine.RegisterDatabase to create a DSN using the Connector/ODBC driver.
(Bug#33825)

• Connector/ODBC erroneously reported that it supported the CAST() and CONVERT() ODBC functions for parsing values in SQL
statements, which could lead to bad SQL generation during a query. (Bug#33808)

• Using a linked table in Access 2003 where the table has a BIGINT column as the first column in the table, and is configured as the
primary key, shows #DELETED for all rows of the table. (Bug#24535)

• Updating a RecordSet when the query involves a BLOB field would fail. (Bug#19065)

C.2.2. Changes in MySQL Connector/ODBC 5.1.2 (13 February 2008)
MySQL Connector/ODBC 5.1.2-beta, a new version of the ODBC driver for the MySQL database management system, has been re-
leased. This release is the second beta (feature-complete) release of the new 5.1 series and is suitable for use with any MySQL server
version since MySQL 4.1, including MySQL 5.0, 5.1, and 6.0. (It will not work with 4.0 or earlier releases.)

Keep in mind that this is a beta release, and as with any other pre-production release, caution should be taken when installing on pro-
duction level systems or systems with critical data.

Platform specific notes:

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC version
of iODBC.

• The installer for 64-bit Windows installs both the 32-bit and 64-bit driver. Please note that Microsoft does not yet supply a 64-bit
bridge from ADO to ODBC.

• Due to differences with the installation process used on Windows and potential registry corruption, it is recommended that uninstall
any existing versions of Connector/ODBC 5.1.x before upgrading.

See also Bug#34571

MySQL Change History

2210

http://bugs.mysql.com/29955
http://bugs.mysql.com/34648
http://bugs.mysql.com/34672
http://bugs.mysql.com/34522
http://bugs.mysql.com/34429
http://bugs.mysql.com/34271
http://bugs.mysql.com/33918
http://bugs.mysql.com/33825
http://bugs.mysql.com/33808
http://bugs.mysql.com/24535
http://bugs.mysql.com/19065
http://bugs.mysql.com/34571


Functionality added or changed:

• Explicit descriptors are implemented. (Bug#32064)

• A full implementation of SQLForeignKeys based on the information available from INFORMATION_SCHEMA in 5.0 and later
versions of the server has been implemented.

• Changed SQL_ATTR_PARAMSET_SIZE to return an error until support for it is implemented.

• Disabled MYSQL_OPT_SSL_VERIFY_SERVER_CERT when using an SSL connection.

• SQLForeignKeys uses INFORMATION_SCHEMA when it is available on the server, which allows more complete information to
be returned.

Bugs fixed:

• The SSLCIPHER option would be incorrectly recorded within the SSL configuration on Windows. (Bug#33897)

• Within the GUI interface, when connecting to a MySQL server on a non-standard port, the connection test within the GUI would
fail. The issue was related to incorrect parsing of numeric values within the DSN when the option was not configured as the last
parameter within the DSN. (Bug#33822)

• Specifying a non-existent database name within the GUI dialog would result in an empty list, not an error. (Bug#33615)

• When deleting rows from a static cursor, the cursor position would be incorrectly reported. (Bug#33388)

• SQLGetInfo() reported characters for SQL_SPECIAL_CHARACTERS that were not encoded correctly. (Bug#33130)

• Retrieving data from a BLOB column would fail within SQLGetDatawhen the target data type was SQL_C_WCHAR due to incor-
rect handling of the character buffer. (Bug#32684)

• Renaming an existing DSN entry would create a new entry with the new name without deleting the old entry. (Bug#31165)

• Reading a TEXT column that had been used to store UTF8 data would result in the wrong information being returned during a
query. (Bug#28617)

• SQLForeignKeys would return an empty string for the schema columns instead of NULL. (Bug#19923)

• When accessing column data, FLAG_COLUMN_SIZE_S32 did not limi the octet length or display size reported for fields, causing
problems with Microsoft Visual FoxPro. (Bug#12805, Bug#30890)

• Dynamic cursors on statements with parameters were not supported. (Bug#11846)

• Evaluating a simple numeric expression when using the OLEDB for ODBC provider and ADO would return an error, instead of the
result. (Bug#10128)

• Adding or updating a row using SQLSetPos() on a result set with aliased columns would fail. (Bug#6157)

C.2.3. Changes in MySQL Connector/ODBC 5.1.1 (13 December 2007)
MySQL Connector/ODBC 5.1.1-beta, a new version of the ODBC driver for the MySQL database management system, has been re-
leased. This release is the first beta (feature-complete) release of the new 5.1 series and is suitable for use with any MySQL server ver-
sion since MySQL 4.1, including MySQL 5.0, 5.1, and 6.0. (It will not work with 4.0 or earlier releases.)

Keep in mind that this is a beta release, and as with any other pre-production release, caution should be taken when installing on pro-
duction level systems or systems with critical data.

Includes changes from Connector/ODBC 3.51.21 and 3.51.22.

Built using MySQL 5.0.52.

Platform specific notes:

MySQL Change History

2211

http://bugs.mysql.com/32064
http://bugs.mysql.com/33897
http://bugs.mysql.com/33822
http://bugs.mysql.com/33615
http://bugs.mysql.com/33388
http://bugs.mysql.com/33130
http://bugs.mysql.com/32684
http://bugs.mysql.com/31165
http://bugs.mysql.com/28617
http://bugs.mysql.com/19923
http://bugs.mysql.com/12805
http://bugs.mysql.com/30890
http://bugs.mysql.com/11846
http://bugs.mysql.com/10128
http://bugs.mysql.com/6157


• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC version
of iODBC.

• The installer for 64-bit Windows installs both the 32-bit and 64-bit driver. Please note that Microsoft does not yet supply a 64-bit
bridge from ADO to ODBC.

• Due to differences with the installation process used on Windows and potential registry corruption, it is recommended that uninstall
any existing versions of Connector/ODBC 5.1.x before upgrading.

See also Bug#34571

Functionality added or changed:

• Incompatible Change: Replaced myodbc3i (now myodbc-installer) with Connector/ODBC 5.0 version.

• Incompatible Change: Removed monitor (myodbc3m) and dsn-editor (myodbc3c).

• Incompatible Change: Disallow SET NAMES in initial statement and in executed statements.

• A wrapper for the SQLGetPrivateProfileStringW() function, which is required for Unicode support, has been created.
This function is missing from the unixODBC driver manager. (Bug#32685)

• Added MSI installer for Windows 64-bit. (Bug#31510)

• Implemented support for SQLCancel(). (Bug#15601)

• Added support for SQL_NUMERIC_STRUCT. (Bug#3028, Bug#24920)

• Removed non-threadsafe configuration of the driver. The driver is now always built against the threadsafe version of libmysql.

• Implemented native Windows setup library

• Replaced the internal library which handles creation and loading of DSN information. The new library, which was originally a part
of Connector/ODBC 5.0, supports Unicode option values.

• The Windows installer now places files in a subdirectory of the Program Files directory instead of the Windows system direct-
ory.

Bugs fixed:

• The SET NAMES statement has been disabled because it causes problems in the ODBC driver when determining the current client
character set. (Bug#32596)

• SQLDescribeColW returned UTF-8 column as SQL_VARCHAR instead of SQL_WVARCHAR. (Bug#32161)

• ADO was unable to open record set using dynamic cursor. (Bug#32014)

• ADO applications would not open a RecordSet that contained a DECIMAL field. (Bug#31720)

• Memory usage would increase considerably. (Bug#31115)

• SQL statements are limited to 64KB. (Bug#30983, Bug#30984)

• SQLSetPos with SQL_DELETE advances dynamic cursor incorrectly. (Bug#29765)

• Using an ODBC prepared statement with bound columns would produce an empty result set when called immediately after inserting
a row into a table. (Bug#29239)

• ADO Not possible to update a client side cursor. (Bug#27961)

• Recordset Update() fails when using adUseClient cursor. (Bug#26985)

MySQL Change History

2212

http://bugs.mysql.com/34571
http://bugs.mysql.com/32685
http://bugs.mysql.com/31510
http://bugs.mysql.com/15601
http://bugs.mysql.com/3028
http://bugs.mysql.com/24920
http://bugs.mysql.com/32596
http://bugs.mysql.com/32161
http://bugs.mysql.com/32014
http://bugs.mysql.com/31720
http://bugs.mysql.com/31115
http://bugs.mysql.com/30983
http://bugs.mysql.com/30984
http://bugs.mysql.com/29765
http://bugs.mysql.com/29239
http://bugs.mysql.com/27961
http://bugs.mysql.com/26985


• Connector/ODBC would fail to connect to the server if the password contained certain characters, including the semicolon and other
punctuation marks. (Bug#16178)

• Fixed SQL_ATTR_PARAM_BIND_OFFSET, and fixed row offsets to work with updatable cursors.

• SQLSetConnectAttr() did not clear previous errors, possibly confusing SQLError().

• SQLError() incorrectly cleared the error information, making it unavailable from subsequent calls to SQLGetDiagRec().

• NULL pointers passed to SQLGetInfo() could result in a crash.

• SQL_ODBC_SQL_CONFORMANCE was not handled by SQLGetInfo().

• SQLCopyDesc() did not correctly copy all records.

• Diagnostics were not correctly cleared on connection and environment handles.

C.2.4. Changes in MySQL Connector/ODBC 5.1.0 (10 September 2007)
This release is the first of the new 5.1 series and is suitable for use with any MySQL server version since MySQL 4.1, including
MySQL 5.0, 5.1, and 6.0. (It will not work with 4.0 or earlier releases.)

Keep in mind that this is a alpha release, and as with any other pre-production release, caution should be taken when installing on pro-
duction level systems or systems with critical data. Not all of the features planned for the final Connector/ODBC 5.1 release are imple-
mented.

Functionality is based on Connector/ODBC 3.51.20.

Platform specific notes:

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC version
of iODBC.

• There are no installer packages for Microsoft Windows x64 Edition.

• Due to differences with the installation process used on Windows and potential registry corruption, it is recommended that uninstall
any existing versions of Connector/ODBC 5.1.x before upgrading.

See also Bug#34571

Functionality added or changed:

• Added support for Unicode functions (SQLConnectW, etc).

• Added descriptor support (SQLGetDescField, SQLGetDescRec, etc).

• Added support for SQL_C_WCHAR.

C.2.5. Changes in MySQL Connector/ODBC 5.0.12 (Never released)

Note

Development on Connector/ODBC 5.0.x has ceased. New features and functionality will be incorporated into Connector/
ODBC 5.1. See Section 27.1.2.1, “Connector/ODBC Roadmap”.

Bugs fixed:

• Inserting NULL values into a DATETIME column from Access reports an error. (Bug#27896)

MySQL Change History

2213

http://bugs.mysql.com/16178
http://bugs.mysql.com/34571
http://bugs.mysql.com/27896


• Tables with TEXT columns would be incorrectly identified, returning an Unknown SQL type - 65535 error. (Bug#20127)

C.2.6. Changes in MySQL Connector/ODBC 5.0.11 (31 January 2007)
Functionality added or changed:

• Added support for ODBC v2 statement options using attributes.

• Driver now builds and is partially tested under Linux with the iODBC driver manager.

Bugs fixed:

• Connection string parsing for DSN-less connections could fail to identify some parameters. (Bug#25316)

• Updates of MEMO or TEXT columns from within Microsoft Access would fail. (Bug#25263)

• Transaction support has been added and tested. (Bug#25045)

• Internal function, my_setpos_delete_ignore() could cause a crash. (Bug#22796)

• Fixed occasional mis-handling of the SQL_NUMERIC_C type.

• Fixed the binding of certain integer types.

C.2.7. Changes in MySQL Connector/ODBC 5.0.10 (14 December 2006)
Connector/ODBC 5.0.10 is the sixth BETA release.

Functionality added or changed:

• Significant performance improvement when retrieving large text fields in pieces using SQLGetData() with a buffer smaller than
the whole data. Mainly used in Access when fetching very large text fields. (Bug#24876)

• Added initial unicode support in data and metadata. (Bug#24837)

• Added initial support for removing braces when calling stored procedures and retrieving result sets from procedure calls.
(Bug#24485)

• Added loose handling of retrieving some diagnostic data. (Bug#15782)

• Added wide-string type info for SQLGetTypeInfo().

Bugs fixed:

• Editing DSN no longer crashes ODBC data source administrator. (Bug#24675)

• String query parameters are new escaped correctly. (Bug#19078)

C.2.8. Changes in MySQL Connector/ODBC 5.0.9 (22 November 2006)
Connector/ODBC 5.0.9 is the fifth BETA release.

This is an implementation and testing release, and is not designed for use within a production environment.

Functionality added or changed:

MySQL Change History

2214

http://bugs.mysql.com/20127
http://bugs.mysql.com/25316
http://bugs.mysql.com/25263
http://bugs.mysql.com/25045
http://bugs.mysql.com/22796
http://bugs.mysql.com/24876
http://bugs.mysql.com/24837
http://bugs.mysql.com/24485
http://bugs.mysql.com/15782
http://bugs.mysql.com/24675
http://bugs.mysql.com/19078


• Added support for column binding as SQL_NUMBERIC_STRUCT.

• Added recognition of SQL_C_SHORT and SQL_C_TINYINT as C types.

Bugs fixed:

• Fixed wildcard handling of and listing of catalogs and tables in SQLTables.

• Added limit of display size when requested via SQLColAttribute/SQL_DESC_DISPLAY_SIZE.

• Fixed buffer length return for SQLDriverConnect.

• ODBC v2 behaviour in driver now supports ODBC v3 date/time types (since DriverManager maps them).

• Catch use of SQL_ATTR_PARAMSET_SIZE and report error until we fully support.

• Fixed statistics to fail if it couldn't be completed.

• Corrected retrieval multiple field types bit and blob/text.

• Fixed SQLGetData to clear the NULL indicator correctly during multiple calls.

C.2.9. Changes in MySQL Connector/ODBC 5.0.8 (17 November 2006)
Connector/ODBC 5.0.8 is the fourth BETA release.

This is an implementation and testing release, and is not designed for use within a production environment.

Functionality added or changed:

• Also made SQL_DESC_NAME only fill in the name if there was a data pointer given, otherwise just the length.

• Fixed display size to be length if max length isn’t available.

• Made distinction between CHAR/BINARY (and VAR versions).

• Wildcards now support escaped chars and underscore matching (needed to link tables with underscores in access).

Bugs fixed:

• Fixed binding using SQL_C_LONG.

• Fixed using wrong pointer for SQL_MAX_DRIVER_CONNECTIONS in SQLGetInfo.

• Set default return to SQL_SUCCESS if nothing is done for SQLSpecialColumns.

• Fixed MDiagnostic to use correct v2/v3 error codes.

• Allow SQLDescribeCol to be called to retrieve the length of the column name, but not the name itself.

• Length now used when handling bind parameter (needed in particular for SQL_WCHAR) - this enables updating char data in MS Ac-
cess.

• Updated retrieval of descriptor fields to use the right pointer types.

• Fixed hanlding of numeric pointers in SQLColAttribute.

• Fixed type returned for MYSQL_TYPE_LONG to SQL_INTEGER instead of SQL_TINYINT.

• Fix size return from SQLDescribeCol.

MySQL Change History

2215



• Fixed string length to chars, not bytes, returned by SQLGetDiagRec.

C.2.10. Changes in MySQL Connector/ODBC 5.0.7 (08 November 2006)
Connector/ODBC 5.0.7 is the third BETA release.

This is an implementation and testing release, and is not designed for use within a production environment.

Functionality added or changed:

• Added support for SQLStatistics to MYODBCShell.

• Improved trace/log.

Bugs fixed:

• SQLBindParameter now handles SQL_C_DEFAULT.

• Corrected incorrect column index within SQLStatistics. Many more tables can now be linked into MS Access.

• Fixed SQLDescribeCol returning column name length in bytes rather than chars.

C.2.11. Changes in MySQL Connector/ODBC 5.0.6 (03 November 2006)
Connector/ODBC 5.0.6 is the second BETA release.

This is an implementation and testing release, and is not designed for use within a production environment.

Features, limitations and notes on this release

• Connector/ODBC supports both User and System DSNs.

• Installation is provided in the form of a standard Microsoft System Installer (MSI).

• You no longer have to have Connector/ODBC 3.51 installed before installing this version.

Bugs fixed:

• You no longer have to have Connector/ODBC 3.51 installed before installing this version.

• Connector/ODBC supports both User and System DSNs.

• Installation is provided in the form of a standard Microsoft System Installer (MSI).

C.2.12. Changes in MySQL Connector/ODBC 5.0.5 (17 October 2006)
Connector/ODBC 5.0.5 is the first BETA release.

This is an implementation and testing release, and is not designed for use within a production environment.

You no longer have to have Connector/ODBC 3.51 installed before installing this version.

Bugs fixed:

• You no longer have to have Connector/ODBC 3.51 installed before installing this version.

MySQL Change History

2216



C.2.13. Changes in Connector/ODBC 5.0.3 (Connector/ODBC 5.0 Alpha 3) (20
June 2006)

This is an implementation and testing release, and is not designed for use within a production environment.

Features, limitations and notes on this release:

• The following ODBC API functions have been added in this release:

• SQLBindParameter

• SQLBindCol

C.2.14. Changes in Connector/ODBC 5.0.2 (Never released)
Connector/ODBC 5.0.2 was an internal implementation and testing release.

C.2.15. Changes in Connector/ODBC 5.0.1 (Connector/ODBC 5.0 Alpha 2) (05
June 2006)

Features, limitations and notes on this release:

• Connector/ODBC 5.0 is Unicode aware.

• Connector/ODBC is currently limited to basic applications. ADO applications and Microsoft Office are not supported.

• Connector/ODBC must be used with a Driver Manager.

• The following ODBC API functions are implemented:

• SQLAllocHandle

• SQLCloseCursor

• SQLColAttribute

• SQLColumns

• SQLConnect

• SQLCopyDesc

• SQLDisconnect

• SQLExecDirect

• SQLExecute

• SQLFetch

• SQLFreeHandle

• SQLFreeStmt

• SQLGetConnectAttr

• SQLGetData

• SQLGetDescField

• SQLGetDescRec

MySQL Change History

2217



• SQLGetDiagField

• SQLGetDiagRec

• SQLGetEnvAttr

• SQLGetFunctions

• SQLGetStmtAttr

• SQLGetTypeInfo

• SQLNumResultCols

• SQLPrepare

• SQLRowcount

• SQLTables

The following ODBC API function are implemented, but not yet support all the available attributes/options:

• SQLSetConnectAttr

• SQLSetDescField

• SQLSetDescRec

• SQLSetEnvAttr

• SQLSetStmtAttr

C.2.16. Changes in MySQL Connector/ODBC 3.51.24 (Not yet released)
Bugs fixed:

• Security Enhancement: Accessing a parameer with the type of SQL_C_CHAR, but with a numeric type and a length of zero, the
parameter marker would get stropped from the query. In addition, a SQL injection was possible if the parameter value had a non-
zero length and was not numeric, the text would be inserted verbatim. (Bug#34575)

• Important Change: In previous versions, the SSL certificate would automatically be verified when used as part of the Connector/
ODBC connection. The default mode is now to ignore the verificate of certificates. To enforce verification of the SSL certificate
during connection, use the SSLVERIFY DSN parameter, setting the value to 1. (Bug#29955, Bug#34648)

• When using ADO, the count of parameters in a query would always return zero. (Bug#33298)

• Using tables with a single quote or other non-standard characters in the table or column names through ODBC would fail.
(Bug#32989)

• When using Crystal Reports, table and column names would be truncated to 21 characters, and truncated columns in tables where
the truncated name was the duplicated would lead to only a single column being displayed. (Bug#32864)

• SQLExtendedFetch() and SQLFetchScroll() ignored the rowset size if the Don't cache result DSN option was
set. (Bug#32420)

• When using the ODBC SQL_TXN_READ_COMMITTED option, 'dirty' records would be read from tables as if the option had not
been applied. (Bug#31959)

• When creating a System DSN using the ODBC Administrator on Mac OS X, a User DSN would be created instead. The root cause
is a problem with the iODBC driver manager used on Mac OS X. The fix works around this issue.

Note

MySQL Change History

2218

http://bugs.mysql.com/34575
http://bugs.mysql.com/29955
http://bugs.mysql.com/34648
http://bugs.mysql.com/33298
http://bugs.mysql.com/32989
http://bugs.mysql.com/32864
http://bugs.mysql.com/32420
http://bugs.mysql.com/31959


ODBC Administrator may still be unable to register a System DSN unless the /Library/ODBC/odbc.ini file has the
correct permissions. You should ensure that the file is writable by the admin group.

(Bug#31495)

• Calling SQLFetch or SQLFetchScroll would return negative data lengths when using SQL_C_WCHAR. (Bug#31220)

• SQLSetParam() caused memory allocation errors due to driver manager's mapping of deprecated functions (buffer length -1).
(Bug#29871)

• Static cursor was unable to be used through ADO when dynamic cursors were enabled. (Bug#27351)

• Using connection.Execute to create a record set based on a table without declaring the cmd option as adCmdTable will fail
when communicating with versions of MySQL 5.0.37 and higher. The issue is related to the way that SQLSTATE is returned when
ADO tries to confirm the existence of the target object. (Bug#27158)

• Updating a RecordSet when the query involves a BLOB field would fail. (Bug#19065)

• With some connections to MySQL databases using Connector/ODBC, the connection would mistakenly report 'user cancelled' for
accesses to the database information. (Bug#16653)

C.2.17. Changes in MySQL Connector/ODBC 3.51.23 (09 January 2008)
Platform specific notes:

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC version
of iODBC.

• There are no installer packages for Microsoft Windows x64 Edition.

Bugs fixed:

• Connector/ODBC would incorrectly return SQL_SUCCESS when checking for distributed transaction support. (Bug#32727)

• When using unixODBC or directly linked applications where the thread level is set to less than 3 (within odbcinst.ini), a
thread synchronization issue would lead to an application crash. This was because SQLAllocStmt() and SQLFreeStmt() did
not synchronize access to the list of statements associated with a connection. (Bug#32587)

• Cleaning up environment handles in multithread environments could result in a five (or more) second delay. (Bug#32366)

• Renaming an existing DSN entry would create a new entry with the new name without deleting the old entry. (Bug#31165)

• Setting the default database using the DefaultDatabase property of an ADO Connection object would fail with the error
Provider does not support this property. The SQLGetInfo() returned the wrong value for
SQL_DATABASE_NAME when no database was selected. (Bug#3780)

C.2.18. Changes in MySQL Connector/ODBC 3.51.22 (13 November 2007)
Functionality added or changed:

• The workaround for this bug was removed due to the fixes in MySQL Server 5.0.48 and 5.1.21.

This regression was introduced by Bug#10491

Bugs fixed:

MySQL Change History

2219

http://bugs.mysql.com/31495
http://bugs.mysql.com/31220
http://bugs.mysql.com/29871
http://bugs.mysql.com/27351
http://bugs.mysql.com/27158
http://bugs.mysql.com/19065
http://bugs.mysql.com/16653
http://bugs.mysql.com/32727
http://bugs.mysql.com/32587
http://bugs.mysql.com/32366
http://bugs.mysql.com/31165
http://bugs.mysql.com/3780
http://bugs.mysql.com/10491


• The English locale would be used when formatting floating point values. The C locale is now used for these values. (Bug#32294)

• When accessing information about supported operations, the driver would return incorrect information about the support for UNION.
(Bug#32253)

• Unsigned integer values greater than the maximum value of a signed integer would be handled incorrectly. (Bug#32171)

• The wrong result was returned by SQLGetData() when the data was an empty string and a zero-sized buffer was specified.
(Bug#30958)

• Added the FLAG_COLUMN_SIZE_S32 option to limit the reported column size to a signed 32-bit integer. This option is automat-
ically enabled for ADO applications to provide a work around for a bug in ADO. (Bug#13776)

C.2.19. Changes in MySQL Connector/ODBC 3.51.21 (08 October 2007)
Bugs fixed:

• When using a rowset/cursor and add a new row with a number of fields, subsequent rows with fewer fields will include the original
fields from the previous row in the final INSERT statement. (Bug#31246)

• Uninitiated memory could be used when C/ODBC internally calls SQLGetFunctions(). (Bug#31055)

• The wrong SQL_DESC_LITERAL_PREFIX would be returned for date/time types. (Bug#31009)

• The wrong COLUMN_SIZE would be returned by SQLGetTypeInfo for the TIME columns (SQL_TYPE_TIME). (Bug#30939)

• Clicking outside the character set selection box when configuring a new DSN could cause the wrong character set to be selected.
(Bug#30568)

• Not specifying a user in the DSN dialog would raise a warning even though the parameter is optional. (Bug#30499)

• SQLSetParam() caused memory allocation errors due to driver manager's mapping of deprecated functions (buffer length -1).
(Bug#29871)

• When using ADO, a column marked as AUTO_INCREMENT could incorrectly report that the column allowed NULL values. This
was dur to an issue with NULLABLE and IS_NULLABLE return values from the call to SQLColumns(). (Bug#26108)

• Connector/ODBC would return the wrong the error code when the server disconnects the active connection because the configured
wait_timeout has expired. Previously it would return HY000. Connector/ODBC now correctly returns an SQLSTATE of
08S01. (Bug#3456)

C.2.20. Changes in MySQL Connector/ODBC 3.51.20 (10 September 2007)
Bugs fixed:

• Using FLAG_NO_PROMPT doesn't suppress the dialogs normally handled by SQLDriverConnect. (Bug#30840)

• The specified length of the username and authentication parameters to SQLConnect() were not being honored. (Bug#30774)

• The wrong column size was returned for binary data. (Bug#30547)

• SQLGetData() will now always return SQL_NO_DATA_FOUND on second call when no data left, even if requested size is 0.
(Bug#30520)

• SQLGetConnectAttr() did not reflect the connection state correctly. (Bug#14639)

• Removed checkbox in setup dialog for FLAG_FIELD_LENGTH (identified as Don't Optimize Column Width within the
GUI dialog), which was removed from the driver in 3.51.18.

C.2.21. Changes in MySQL Connector/ODBC 3.51.19 (10 August 2007)

MySQL Change History

2220

http://bugs.mysql.com/32294
http://bugs.mysql.com/32253
http://bugs.mysql.com/32171
http://bugs.mysql.com/30958
http://bugs.mysql.com/13776
http://bugs.mysql.com/31246
http://bugs.mysql.com/31055
http://bugs.mysql.com/31009
http://bugs.mysql.com/30939
http://bugs.mysql.com/30568
http://bugs.mysql.com/30499
http://bugs.mysql.com/29871
http://bugs.mysql.com/26108
http://bugs.mysql.com/3456
http://bugs.mysql.com/30840
http://bugs.mysql.com/30774
http://bugs.mysql.com/30547
http://bugs.mysql.com/30520
http://bugs.mysql.com/14639


Connector/ODBC 3.51.19 fixes a specific issue with the 3.51.18 release. For a list of changes in the 3.51.18 release, see Section C.2.22,
“Changes in MySQL Connector/ODBC 3.51.18 (08 August 2007)”.

Functionality added or changed:

• Because of Bug#10491 in the server, character string results were sometimes incorrectly identified as SQL_VARBINARY. Until this
server bug is corrected, the driver will identify all variable-length strings as SQL_VARCHAR.

C.2.22. Changes in MySQL Connector/ODBC 3.51.18 (08 August 2007)
Platform specific notes:

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC version
of iODBC.

• Binary packages for Sun Solaris are now available as PKG packages.

• Binary packages as disk images with installers are now available for Mac OS X.

• A binary package without an installer is available for Microsoft Windows x64 Edition. There are no installer packages for Microsoft
Windows x64 Edition.

Functionality added or changed:

• Incompatible Change: The FLAG_DEBUG option was removed.

• When connecting to a specific database when using a DSN, the system tables from the mysql database are no longer also available.
Previously, tables from the mysql database (catalog) were listed as SYSTEM TABLES by SQLTables() even when a different
catalog was being queried. (Bug#28662)

• Installed for Mac OS X has been re-instated. The installer registers the driver at a system (not user) level and makes it possible to
create both user and system DSNs using the Connector/ODBC driver. The installer also fixes the situation where the necessary
drivers would bge installed local to the user, not globally. (Bug#15326, Bug#10444)

• Connector/ODBC now supports batched statements. In order to enable cached statement support you must switch enable the batched
statement option (FLAG_MULTI_STATEMENTS, 67108864, or ALLOW MULTIPLE STATEMENTS within a GUI configuration). Be
aware that batched statements create an increased chance of SQL injection attacks and you must ensure that your application pro-
tects against this scenario. (Bug#7445)

• The SQL_ATTR_ROW_BIND_OFFSET_PTR is now supported for row bind offsets. (Bug#6741)

• The TRACE and TRACEFILE DSN options have been removed. Use the ODBC driver manager trace options instead.

Bugs fixed:

• When using a table with multiple TIMESTAMP columns, the final TIMESTAMP column within the table definition would not be up-
dateable. Note that there is still a limitation in MySQL server regarding multiple TIMESTAMP columns . (Bug#9927) (Bug#30081)

• Fixed an issue where the myodbc3i would update the the user ODBC configuration file (~/Library/ODBC/odbcinst.ini)
instead of the system /Library/ODBC/odbcinst.ini. This was caused because myodbc3i was not honouring the s and u
modifiers for the -d command line option. (Bug#29964)

• Getting table metadata (through the SQLColumns() would fail, returning a bad table definition to calling applications.
(Bug#29888)

• DATETIME column types would return FALSE in place of SQL_SUCCESS when requesting the column type information.
(Bug#28657)

MySQL Change History

2221

http://bugs.mysql.com/10491
http://bugs.mysql.com/28662
http://bugs.mysql.com/15326
http://bugs.mysql.com/10444
http://bugs.mysql.com/7445
http://bugs.mysql.com/6741
http://bugs.mysql.com/9927
http://bugs.mysql.com/30081
http://bugs.mysql.com/29964
http://bugs.mysql.com/29888
http://bugs.mysql.com/28657


• The SQL_COLUMN_TYPE, SQL_COLUMN_DISPLAY and SQL_COLUMN_PRECISION values would be returned incorrectly by
SQLColumns(), SQLDescribeCol() and SQLColAttribute() when accessing character columns, especially those gener-
ated through concat(). The lengths returned should now conform to the ODBC specification. The FLAG_FIELD_LENGTH op-
tion no longer has any affect on the results returned. (Bug#27862)

• Obtaining the length of a column when using a character set for the connection of utf8 would result in the length being returned
incorrectly. (Bug#19345)

• The SQLColumns() function could return incorrect information about TIMESTAMP columns, indicating that the field was not
nullable. (Bug#14414)

• The SQLColumns() function could return incorrect information about AUTO_INCREMENT columns, indicating that the field was
not nullable. (Bug#14407)

• A binary package without an installer is available for Microsoft Windows x64 Edition. There are no installer packages for Microsoft
Windows x64 Edition.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC version
of iODBC.

• BIT(n) columns are now treated as SQL_BIT data where n = 1 and binary data where n > 1.

• The wrong value from SQL_DESC_LITERAL_SUFFIX was returned for binary fields.

• The SQL_DATETIME_SUB column in SQLColumns() was not correctly set for date and time types.

• The value for SQL_DESC_FIXED_PREC_SCALE was not returned correctly for values in MySQL 5.0 and later.

• The wrong value for SQL_DESC_TYPE was returned for date and time types.

• SQLConnect() and SQLDriverConnect() were rewritten to eliminate duplicate code and ensure all options were supported
using both connection methods. SQLDriverConnect() now only requires the setup library to be present when the call requires
it.

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• Binary packages as disk images with installers are now available for Mac OS X.

• Binary packages for Sun Solaris are now available as PKG packages.

• The wrong value for DECIMAL_DIGITS in SQLColumns() was reported for FLOAT and DOUBLE fields, as well as the wrong
value for the scale parameter to SQLDescribeCol(), and the SQL_DESC_SCALE attribute from SQLColAttribute().

• The SQL_DATA_TYPE column in SQLColumns() results did not report the correct value for date and time types.

C.2.23. Changes in MySQL Connector/ODBC 3.51.17 (14 July 2007)
Platform specific notes:

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC version
of iODBC.

• Binary packages for Sun Solaris are now available as PKG packages.

• Binary packages as disk images with installers are now available for Mac OS X.

• A binary package without an installer is available for Microsoft Windows x64 Edition. There are no installer packages for Microsoft
Windows x64 Edition.

Functionality added or changed:

MySQL Change History

2222

http://bugs.mysql.com/27862
http://bugs.mysql.com/19345
http://bugs.mysql.com/14414
http://bugs.mysql.com/14407


• It is now possible to specify a different character set as part of the DSN or connection string. This must be used instead of the SET
NAMES statement. You can also configure the character set value from the GUI configuration. (Bug#9498, Bug#6667)

• Fixed calling convention ptr and wrong free in myodbc3i, and fixed the null terminating (was only one, not two) when writing
DSN to string.

• Dis-allow NULL ptr for null indicator when calling SQLGetData() if value is null. Now returns SQL_ERROR w/state 22002.

• The setup library has been split into its own RPM package, to allow installing the driver itself with no GUI dependencies.

Bugs fixed:

• myodbc3i did not correctly format driver info, which could cause the installation to fail. (Bug#29709)

• Connector/ODBC crashed with Crystal Reports due to a rproblem with SQLProcedures(). (Bug#28316)

• Fixed a problem where the GUI would crash when configuring or removing a System or User DSN. (Bug#27315)

• Fixed error handling of out-of-memory and bad connections in catalog functions. This might raise errors in code paths that had ig-
nored them in the past. (Bug#26934)

• For a stored procedure that returns multiple result sets, Connector/ODBC returned only the first result set. (Bug#16817)

• Calling SQLGetDiagField with RecNumber 0, DiagIdentifier NOT 0 returned SQL_ERROR, preventing access to
diagnostic header fields. (Bug#16224)

• Added a new DSN option (FLAG_ZERO_DATE_TO_MIN) to retrieve XXXX-00-00 dates as the minimum allowed ODBC date
(XXXX-01-01). Added another option (FLAG_MIN_DATE_TO_ZERO) to mirror this but for bound parameters.
FLAG_MIN_DATE_TO_ZERO only changes 0000-01-01 to 0000-00-00. (Bug#13766)

• If there was more than one unique key on a table, the correct fields were not used in handling SQLSetPos(). (Bug#10563)

• When inserting a large BLOB field, Connector/ODBC would crash due to a memory allocation error. (Bug#10562)

• The driver was using mysql_odbc_escape_string(), which does not handle the NO_BACKSLASH_ESCAPES SQL mode.
Now it uses mysql_real_escape_string(), which does. (Bug#9498)

• SQLColumns() did not handle many of its parameters correctly, which could lead to incorrect results. The table name argument
was not handled as a pattern value, and most arguments were not escaped correctly when they contained non-alphanumeric charac-
ters. (Bug#8860)

• There are no binary packages for Microsoft Windows x64 Edition.

• There is no binary package for Mac OS X on 64-bit PowerPC because Apple does not currently provide a 64-bit PowerPC version
of iODBC.

• Correctly return error if SQLBindCol is called with an invalid column.

• Fixed possible crash if SQLBindCol() was not called before SQLSetPos().

• The Mac OS X binary packages are only provided as tarballs, there is no installer.

• The binary packages for Sun Solaris are only provided as tarballs, not the PKG format.

• The HP-UX 11.23 IA64 binary package does not include the GUI bits because of problems building Qt on that platform.

C.2.24. Changes in MySQL Connector/ODBC 3.51.16 (14 June 2007)
Functionality added or changed:

• Connector/ODBC now supports using SSL for communication. This is not yet exposed in the setup GUI, but must be enabled
through configuration files or the DSN. (Bug#12918)

MySQL Change History

2223

http://bugs.mysql.com/9498
http://bugs.mysql.com/6667
http://bugs.mysql.com/29709
http://bugs.mysql.com/28316
http://bugs.mysql.com/27315
http://bugs.mysql.com/26934
http://bugs.mysql.com/16817
http://bugs.mysql.com/16224
http://bugs.mysql.com/13766
http://bugs.mysql.com/10563
http://bugs.mysql.com/10562
http://bugs.mysql.com/9498
http://bugs.mysql.com/8860
http://bugs.mysql.com/12918


Bugs fixed:

• Calls to SQLNativeSql() could cause stack corruption due to an incorrect pointer cast. (Bug#28758)

• Using curors on results sets with multi-column keys could select the wrong value. (Bug#28255)

• SQLForeignKeys does not escape _ and % in the table name arguments. (Bug#27723)

• When using stored procedures, making a SELECT or second stored procedure call after an initial stored procedure call, the second
statement will fail. (Bug#27544)

• SQLTables() did not distinguish tables from views. (Bug#23031)

• Data in TEXT columns would fail to be read correctly. (Bug#16917)

• Specifying strings as parameters using the adBSTR or adVarWChar types, (SQL_WVARCHAR and SQL_WLONGVARCHAR) would
be incorrectly quoted. (Bug#16235)

• SQL_WVARCHAR and SQL_WLONGVARCHAR parameters were not properly quoted and escaped. (Bug#16235)

• Using BETWEEN with date values, the wrong results could be returned. (Bug#15773)

• When using the Don't Cache Results (option value 1048576) with Microsoft Access, the connection will fail using DAO/
VisualBasic. (Bug#4657)

• Return values from SQLTables() may be truncated. (Bugs #22797)

C.2.25. Changes in MySQL Connector/ODBC 3.51.15 (7 May 2007)
Bugs fixed:

• Connector/ODBC would incorrectly claim to support SQLProcedureColumns (by returning true when queried about SQLPRO-
CEDURECOLUMNS with SQLGetFunctions), but this functionality is not supported. (Bug#27591)

• An incorrect transaction isolation level may not be returned when accessing the connection attributes. (Bug#27589)

• Adding a new DSN with the myodbc3i utility under AIX would fail. (Bug#27220)

• When inserting data using bulk statements (through SQLBulkOperations), the indicators for all rows within the insert would
not updated correctly. (Bug#24306)

• Using SQLProcedures does not return the database name within the returned resultset. (Bug#23033)

• The SQLTransact() function did not support an empty connection handle. (Bug#21588)

• Using SQLDriverConnect instead of SQLConnect could cause later operations to fail. (Bug#7912)

• When using blobs and parameter replacement in a statement with WHERE CURSOR OF, the SQL is truncated. (Bug#5853)

• Connector/ODBC would return too many foreign key results when accessing tables with similar names. (Bug#4518)

•

C.2.26. Changes in MySQL Connector/ODBC 3.51.14 (08 March 2007)
Functionality added or changed:

• Use of SQL_ATTR_CONNECTION_TIMEOUT on the server has now been disabled. If you attempt to set this attribute on your con-
nection the SQL_SUCCESS_WITH_INFO will be returned, with an error number/string of HYC00: Optional feature not
supported. (Bug#19823)

• Added auto is null option to Connector/ODBC option parameters. (Bug#10910)

MySQL Change History

2224

http://bugs.mysql.com/28758
http://bugs.mysql.com/28255
http://bugs.mysql.com/27723
http://bugs.mysql.com/27544
http://bugs.mysql.com/23031
http://bugs.mysql.com/16917
http://bugs.mysql.com/16235
http://bugs.mysql.com/16235
http://bugs.mysql.com/15773
http://bugs.mysql.com/4657
http://bugs.mysql.com/27591
http://bugs.mysql.com/27589
http://bugs.mysql.com/27220
http://bugs.mysql.com/24306
http://bugs.mysql.com/23033
http://bugs.mysql.com/21588
http://bugs.mysql.com/7912
http://bugs.mysql.com/5853
http://bugs.mysql.com/4518
http://bugs.mysql.com/19823
http://bugs.mysql.com/10910


• Added auto-reconnect option to Connector/ODBC option parameters.

• Added support for the HENV handlers in SQLEndTran().

Bugs fixed:

• On 64-bit systems, some types would be incorrectly returned. (Bug#26024)

• When retrieving TIME columns, C/ODBC would incorrectly interpret the type of the string and could interpret it as a DATE type in-
stead. (Bug#25846)

• Connector/ODBC may insert the wrong parameter values when using prepared statements under 64-bit Linux. (Bug#22446)

• Using Connector/ODBC, with SQLBindCol and binding the length to the return value from SQL_LEN_DATA_AT_EXEC fails
with a memory allocation error. (Bug#20547)

• Using DataAdapter, Connector/ODBC may continually consume memory when reading the same records within a loop
(Windows Server 2003 SP1/SP2 only). (Bug#20459)

• When retrieving data from columns that have been compressed using COMPRESS(), the retrieved data would be truncated to 8KB.
(Bug#20208)

• The ODBC driver name and version number were incorrectly reported by the driver. (Bug#19740)

• A string format exception would be raised when using iODBC, Connector/ODBC and the embedded MySQL server. (Bug#16535)

• The SQLDriverConnect() ODBC method did not work with recent Connector/ODBC releases. (Bug#12393)

C.2.27. Changes in MySQL Connector/ODBC 3.51.13 (Never released)
Connector/ODBC 3.51.13 was an internal implementation and testing release.

C.2.28. Changes in MySQL Connector/ODBC 3.51.12 (11 Febrauary 2005)
Functionality added or changed:

• N/A

Bugs fixed:

• Using stored procedures with ADO, where the CommantType has been set correctly to adCmdStoredProc, calls to stored pro-
cedures would fail. (Bug#15635)

• File DSNs could not be saved. (Bug#12019)

• SQLColumns() returned no information for tables that had a column named using a reserved word. (Bug#9539)

C.2.29. Changes in MySQL Connector/ODBC 3.51.11 (28 January 2005)
Bugs fixed:

• mysql_list_dbcolumns() and insert_fields() were retrieving all rows from a table. Fixed the queries generated by
these functions to return no rows. (Bug#8198)

• SQLGetTypoInfo() returned tinyblob for SQL_VARBINARY and nothing for SQL_BINARY. Fixed to return varbinary
for SQL_VARBINARY, binary for SQL_BINARY, and longblob for SQL_LONGVARBINARY. (Bug#8138)

MySQL Change History

2225

http://bugs.mysql.com/26024
http://bugs.mysql.com/25846
http://bugs.mysql.com/22446
http://bugs.mysql.com/20547
http://bugs.mysql.com/20459
http://bugs.mysql.com/20208
http://bugs.mysql.com/19740
http://bugs.mysql.com/16535
http://bugs.mysql.com/12393
http://bugs.mysql.com/15635
http://bugs.mysql.com/12019
http://bugs.mysql.com/9539
http://bugs.mysql.com/8198
http://bugs.mysql.com/8138


C.3. MySQL Connector/NET Change History

C.3.1. Changes in MySQL Connector/NET 5.2.2 (Not yet released)
Bugs fixed:

• Using the TableAdapter Wizard would fail when generating commands that used stored procedures due to the change in sup-
ported parameter characters. (Bug#34941)

• When creating a new stored procedured, the new parameter code which allows the use of the @ symbol would interfere with the spe-
cification of a DEFINER. (Bug#34940)

• When using SqlDataSource to open a connection, the connection would not automatically be closed when access had com-
pleted. (Bug#34460)

• Using the TableAdaptor wizard in combination with a suitable SELECT statement, only the associated INSERT statement
would also be created, rather than the required DELETE and UPDATE statements. (Bug#31338)

• Fixed problem in datagrid code related to creating a new table. This problem may have been introduced with .NET 2.0 SP1.

• Fixed profile provider that would throw an exception if you were updating a profile that already existed.

C.3.2. Changes in MySQL Connector/NET 5.2.1 (27 February 2008)
Bugs fixed:

• When using the provider to generate or update users and passwords, the password checking algorithm would not validate the pass-
word strength or requirements correctly. (Bug#34792)

• When executing statements that used stored procedures and functions, the new parameter code could fail to identify the correct para-
meter format. (Bug#34699)

• The installer would fail to the DDEX provider binary if the Visual Studio 2005 component was not selected. The result would lead
to Connector/NET not loading properly when using the interface to a MySQL server within Visual Studio. (Bug#34674)

• A number issues were identified in the case, connection and scema areas of the code for MembershipProvider, RolePro-
vider, ProfileProvider. (Bug#34495)

• When using web providers, the Connector/NET would check the schema and cache the application id, even when the connection
string had been set. The effect would be to break the memvership provider list. (Bug#34451)

• Attempting to use an isolation level other than the default with a transaction scope would use the default isolation level.
(Bug#34448)

• When altering a stored procedure within Visual Studio, the parameters to the procedure could be lost. (Bug#34359)

• A race condition could occur within the procedure cache resulting the cache contents overflowing beyond the configured cache size.
(Bug#34338)

• Fixed problem with Visual Studio 2008 integration that caused popup menus on server explorer nodes to not function

• The provider code has been updated to fix a number of outstanding issues.

C.3.3. Changes in MySQL Connector/NET 5.2.0 (11 February 2008)
Functionality added or changed:

• Added support for DbDataAdapter UpdateBatchSize. Batching is fully supported including collapsing inserts down into the
multi-value form if possible.

MySQL Change History

2226

http://bugs.mysql.com/34941
http://bugs.mysql.com/34940
http://bugs.mysql.com/34460
http://bugs.mysql.com/31338
http://bugs.mysql.com/34792
http://bugs.mysql.com/34699
http://bugs.mysql.com/34674
http://bugs.mysql.com/34495
http://bugs.mysql.com/34451
http://bugs.mysql.com/34448
http://bugs.mysql.com/34359
http://bugs.mysql.com/34338


• DDEX provider now works under Visual Studio 2008 beta 2.

• Added ClearPool and ClearAllPools features.

Bugs fixed:

• Some speed improvements have been implemented in the TokenizeSql process used to identify elements of SQL statements.
(Bug#34220)

• When accessing tables from different databases within the same TransactionScope, the same user/password combination
would be used for each database connection. Connector/NET does not handle multiple connections within the same transaction
scope. An error is now returned if you attempt this process, instead of using the incorrect authorization information. (Bug#34204)

• The status of connections reported through the state change handler was not being updated correctly. (Bug#34082)

• Incorporated some connection string cache optimizations sent to us by Maxim Mass. (Bug#34000)

• In an open connection where the server had disconnected unexpectedly, the status information of the connection would not be up-
dated properly. (Bug#33909)

• Data cached from the connection string could return invalid information because the internal routines were not using case-sensitive
semantics. This lead to updated connection string options not being recognized if they were of a different case than the existing
cached values. (Bug#31433)

• Column name metadata was not using the character set as deifned within the connection string being used. (Bug#31185)

• Memory usage could increase and decrease significantly when updating or inserting a large number of rows. (Bug#31090)

• Commands executed from within the state change handeler would fail with a NULL exception. (Bug#30964)

• When running a stored procedure multiple times on the same connection, the memory usage could increase indefinitely.
(Bug#30116)

• Using compression in the MySQL connection with Connector/NET would be slower than using native (uncompressed) communica-
tion. (Bug#27865)

• The MySqlDbType.Datetime has been replaced with MySqlDbType.DateTime. The old format has been obsoleted.
(Bug#26344)

C.3.4. Changes in MySQL Connector/NET 5.1.6 (Not yet released)
Bugs fixed:

• When using SqlDataSource to open a connection, the connection would not automatically be closed when access had com-
pleted. (Bug#34460)

• Attempting to use an isolation level other than the default with a transaction scope would use the default isolation level.
(Bug#34448)

• When altering a stored procedure within Visual Studio, the parameters to the procedure could be lost. (Bug#34359)

• A race condition could occur within the procedure cache resulting the cache contents overflowing beyond the configured cache size.
(Bug#34338)

• Using the TableAdaptor wizard in combination with a suitable SELECT statement, only the associated INSERT statement
would also be created, rather than the required DELETE and UPDATE statements. (Bug#31338)

C.3.5. Changes in MySQL Connector/NET 5.1.5 (Not yet released)
Bugs fixed:

MySQL Change History

2227

http://bugs.mysql.com/34220
http://bugs.mysql.com/34204
http://bugs.mysql.com/34082
http://bugs.mysql.com/34000
http://bugs.mysql.com/33909
http://bugs.mysql.com/31433
http://bugs.mysql.com/31185
http://bugs.mysql.com/31090
http://bugs.mysql.com/30964
http://bugs.mysql.com/30116
http://bugs.mysql.com/27865
http://bugs.mysql.com/26344
http://bugs.mysql.com/34460
http://bugs.mysql.com/34448
http://bugs.mysql.com/34359
http://bugs.mysql.com/34338
http://bugs.mysql.com/31338


• Some speed improvements have been implemented in the TokenizeSql process used to identify elements of SQL statements.
(Bug#34220)

• When accessing tables from different databases within the same TransactionScope, the same user/password combination
would be used for each database connection. Connector/NET does not handle multiple connections within the same transaction
scope. An error is now returned if you attempt this process, instead of using the incorrect authorization information. (Bug#34204)

• The status of connections reported through the state change handler was not being updated correctly. (Bug#34082)

• Incorporated some connection string cache optimizations sent to us by Maxim Mass. (Bug#34000)

• In an open connection where the server had disconnected unexpectedly, the status information of the connection would not be up-
dated properly. (Bug#33909)

• Connector/NET would fail to compile properly with nant. (Bug#33508)

• Problem with membership provider would mean that FindUserByEmail would fail with a MySqlException because it was
trying to add a second parameter with the same name as the first. (Bug#33347)

• Using compression in the MySQL connection with Connector/NET would be slower than using native (uncompressed) communica-
tion. (Bug#27865)

C.3.6. Changes in MySQL Connector/NET 5.1.4 (20 November 2007)
Bugs fixed:

• Setting the size of a string parameter after the value could cause an exception. (Bug#32094)

• Creation of parameter objects with non-input direction using a constructor would fail. This was cause by some old legacy code pre-
venting their use. (Bug#32093)

• A date string could be returned incorrectly by MySqlDataTime.ToString() when the date returned by MySQL was
0000-00-00 00:00:00. (Bug#32010)

• A syntax error in a set of batch statements could leave the data adapter in a state that appears hung. (Bug#31930)

• Installing over a failed uninstall of a previous version could result in multiple clients being registered in the machine.config.
This would prevent certain aspects of the MySQL connection within Visual Studio to work properly. (Bug#31731)

• Connector/NET would incorrectly report success when enlisting in a distributed transaction, although distributed transactions are not
supported. (Bug#31703)

• Data cached from the connection string could return invalid information because the internal routines were not using case-sensitive
semantics. This lead to updated connection string options not being recognized if they were of a different case than the existing
cached values. (Bug#31433)

• Trying to use a connection that was not open could return an ambiguous and misleading error message. (Bug#31262)

• Column name metadata was not using the character set as deifned within the connection string being used. (Bug#31185)

• Memory usage could increase and decrease significantly when updating or inserting a large number of rows. (Bug#31090)

• Commands executed from within the state change handeler would fail with a NULL exception. (Bug#30964)

• Extracting data through XML functions within a query returns the data as System.Byte[]. This was due to Connector/NET in-
correctly identifying BLOB fields as binary, rather than text. (Bug#30233)

• When running a stored procedure multiple times on the same connection, the memory usage could increase indefinitely.
(Bug#30116)

• Column types with only 1-bit (such as BOOLEAN and TINYINT(1) were not returned as boolean fields. (Bug#27959)

• When accessing certain statements, the command would timeout before the command completed. Because this cannot always be
controlled through the individual command timeout options, a default command timeout has been added to the connection

MySQL Change History

2228

http://bugs.mysql.com/34220
http://bugs.mysql.com/34204
http://bugs.mysql.com/34082
http://bugs.mysql.com/34000
http://bugs.mysql.com/33909
http://bugs.mysql.com/33508
http://bugs.mysql.com/33347
http://bugs.mysql.com/27865
http://bugs.mysql.com/32094
http://bugs.mysql.com/32093
http://bugs.mysql.com/32010
http://bugs.mysql.com/31930
http://bugs.mysql.com/31731
http://bugs.mysql.com/31703
http://bugs.mysql.com/31433
http://bugs.mysql.com/31262
http://bugs.mysql.com/31185
http://bugs.mysql.com/31090
http://bugs.mysql.com/30964
http://bugs.mysql.com/30233
http://bugs.mysql.com/30116
http://bugs.mysql.com/27959


string options. (Bug#27958)

• The server error code was not updated in the Data[] hash, which prevented DbProviderFactory users from accessing the
server error code. (Bug#27436)

• The MySqlDbType.Datetime has been replaced with MySqlDbType.DateTime. The old format has been obsoleted.
(Bug#26344)

• Changing the connection string of a connection to one that changes the parameter marker after the connection had been assigned to a
command but before the connection is opened could cause parameters to not be found. (Bug#13991)

C.3.7. Changes in MySQL Connector/NET 5.1.3 (21 September 2007)
This is a new Beta development release, fixing recently discovered bugs.

Bugs fixed:

• An incorrect ConstraintException could be raised on an INSERT when adding rows to a table with a multiple-column
unique key index. (Bug#30204)

• A DATE field would be updated with a date/time value, causing a MySqlDataAdapter.Update() exception. (Bug#30077)

• The Saudi Hijri calendar was not supported. (Bug#29931)

• Calling SHOW CREATE PROCEDURE for routines with a hyphen in the catalog name produced a syntax error. (Bug#29526)

• Connecting to a MySQL server earlier than version 4.1 would raise a NullException. (Bug#29476)

• The availability of a MySQL server would not be reset when using pooled connections (pooling=true). This would lead to the
server being reported as unavailable, even if the server become available while the application was still running. (Bug#29409)

• A FormatException error would be raised if a parameter had not been found, instead of Re-
sources.ParameterMustBeDefined. (Bug#29312)

• An exception would be thrown when using the Manage Role functionality within the web administrator to assign a role to a user.
(Bug#29236)

• Using the membership/role providers when validationKey or decryptionKey parameters are set to AutoGenerate, an
exception would be raised when accessing the corresponding values. (Bug#29235)

• Certain operations would not check the UsageAdvisor setting, causing log messages from the Usage Advisor even when it was
disabled. (Bug#29124)

• Using the same connection string multiple times would result in Database=dbname appearing multiple times in the resulting
string. (Bug#29123)

• Visual Studio Plugin: Adding a new query based on a stored procedure that uses the SELECT statement would terminate the query/
TableAdapter wizard. (Bug#29098)

• Using TransactionScope would cause an InvalidOperationException. (Bug#28709)

C.3.8. Changes in MySQL Connector/NET 5.1.2 (18 June 2007)
This is a new Beta development release, fixing recently discovered bugs.

Bugs fixed:

• Log messages would be truncated to 300 bytes. (Bug#28706)

• Creating a user would fail due to the application name being set incorrectly. (Bug#28648)

MySQL Change History

2229

http://bugs.mysql.com/27958
http://bugs.mysql.com/27436
http://bugs.mysql.com/26344
http://bugs.mysql.com/13991
http://bugs.mysql.com/30204
http://bugs.mysql.com/30077
http://bugs.mysql.com/29931
http://bugs.mysql.com/29526
http://bugs.mysql.com/29476
http://bugs.mysql.com/29409
http://bugs.mysql.com/29312
http://bugs.mysql.com/29236
http://bugs.mysql.com/29235
http://bugs.mysql.com/29124
http://bugs.mysql.com/29123
http://bugs.mysql.com/29098
http://bugs.mysql.com/28709
http://bugs.mysql.com/28706
http://bugs.mysql.com/28648


• Visual Studio Plugin: Adding a new query based on a stored procedure that used a UPDATE, INSERT or DELETE statement would
terminate the query/TableAdapter wizard. (Bug#28536)

• Visual Studio Plugin: Query Builder would fail to show TINYTEXT columns, and any columns listed after a TINYTEXT column
correctly. (Bug#28437)

• Accessing the results from a large query when using data compression in the connection would fail to return all the data.
(Bug#28204)

• Visual Studio Plugin: Update commands would not be generated correctly when using the TableAdapter wizard. (Bug#26347)

C.3.9. Changes in MySQL Connector/NET 5.1.1 (23 May 2007)
Bugs fixed:

• Running the statement SHOW PROCESSLIST would return columns as byte arrays instead of native columns. (Bug#28448)

• Installation of the Connector/NET on Windows would fail if VisualStudio had not already been installed. (Bug#28260)

• Connector/NET would look for the wrong table when executing User.IsRole(). (Bug#28251)

• Building a connection string within a tight loop would show slow peformance. (Bug#28167)

• The UNSIGNED flag for parameters in a stored procedure would be ignored when using MySqlCommandBuilder to obtain the
parameter information. (Bug#27679)

• Using MySQLDataAdapter.FillSchema() on a stored procedure would raise an exception: Invalid attempt to ac-
cess a field before calling Read(). (Bug#27668)

• DATETIME fields from versions of MySQL bgefore 4.1 would be incorrectly parsed, resulting in a exception. (Bug#23342)

• Fixed password property on MySqlConnectionStringBuilder to use PasswordPropertyText attribute. This causes
dots to show instead of actual password text.

C.3.10. Changes in MySQL Connector/NET 5.1.0 (01 May 2007)
Functionality added or changed:

• Now compiles for .NET CF 2.0.

• Rewrote stored procedure parsing code using a new SQL tokenizer. Really nasty procedures including nested comments are now
supported.

• GetSchema will now report objects relative to the currently selected database. What this means is that passing in null as a database
restriction will report objects on the currently selected database only.

• Added Membership and Role provider contributed by Sean Wright (thanks!).

C.3.11. Changes in MySQL Connector/NET 5.0.9 (Not yet released)
Bugs fixed:

• Setting the size of a string parameter after the value could cause an exception. (Bug#32094)

• Creation of parameter objects with non-input direction using a constructor would fail. This was cause by some old legacy code pre-
venting their use. (Bug#32093)

• A date string could be returned incorrectly by MySqlDataTime.ToString() when the date returned by MySQL was
0000-00-00 00:00:00. (Bug#32010)

MySQL Change History

2230

http://bugs.mysql.com/28536
http://bugs.mysql.com/28437
http://bugs.mysql.com/28204
http://bugs.mysql.com/26347
http://bugs.mysql.com/28448
http://bugs.mysql.com/28260
http://bugs.mysql.com/28251
http://bugs.mysql.com/28167
http://bugs.mysql.com/27679
http://bugs.mysql.com/27668
http://bugs.mysql.com/23342
http://bugs.mysql.com/32094
http://bugs.mysql.com/32093
http://bugs.mysql.com/32010


• A syntax error in a set of batch statements could leave the data adapter in a state that appears hung. (Bug#31930)

• Installing over a failed uninstall of a previous version could result in multiple clients being registered in the machine.config.
This would prevent certain aspects of the MySQL connection within Visual Studio to work properly. (Bug#31731)

• Data cached from the connection string could return invalid information because the internal routines were not using case-sensitive
semantics. This lead to updated connection string options not being recognized if they were of a different case than the existing
cached values. (Bug#31433)

• Column name metadata was not using the character set as deifned within the connection string being used. (Bug#31185)

• Memory usage could increase and decrease significantly when updating or inserting a large number of rows. (Bug#31090)

• Commands executed from within the state change handeler would fail with a NULL exception. (Bug#30964)

• When running a stored procedure multiple times on the same connection, the memory usage could increase indefinitely.
(Bug#30116)

• The server error code was not updated in the Data[] hash, which prevented DbProviderFactory users from accessing the
server error code. (Bug#27436)

• Changing the connection string of a connection to one that changes the parameter marker after the connection had been assigned to a
command but before the connection is opened could cause parameters to not be found. (Bug#13991)

C.3.12. Changes in MySQL Connector/NET 5.0.8 (21 August 2007)

Note

This version introduces a new installer technology.

Bugs fixed:

• Extracting data through XML functions within a query returns the data as System.Byte[]. This was due to Connector/NET in-
correctly identifying BLOB fields as binary, rather than text. (Bug#30233)

• An incorrect ConstraintException could be raised on an INSERT when adding rows to a table with a multiple-column
unique key index. (Bug#30204)

• A DATE field would be updated with a date/time value, causing a MySqlDataAdapter.Update() exception. (Bug#30077)

• Fixed bug where Connector/Net was hand building some date time patterns rather than using the patterns provided under Culture-
Info. This caused problems with some calendars that do not support the same ranges as Gregorian.. (Bug#29931)

• Calling SHOW CREATE PROCEDURE for routines with a hyphen in the catalog name produced a syntax error. (Bug#29526)

• The availability of a MySQL server would not be reset when using pooled connections (pooling=true). This would lead to the
server being reported as unavailable, even if the server become available while the application was still running. (Bug#29409)

• A FormatException error would be raised if a parameter had not been found, instead of Re-
sources.ParameterMustBeDefined. (Bug#29312)

• Certain operations would not check the UsageAdvisor setting, causing log messages from the Usage Advisor even when it was
disabled. (Bug#29124)

• Using the same connection string multiple times would result in Database=dbname appearing multiple times in the resulting
string. (Bug#29123)

• Log messages would be truncated to 300 bytes. (Bug#28706)

• Accessing the results from a large query when using data compression in the connection will fail to return all the data. (Bug#28204)

• Fixed problem where MySqlConnection.BeginTransaction checked the drivers status var before checking if the connec-
tion was open. The result was that the driver could report an invalid condition on a previously opened connection.

MySQL Change History

2231

http://bugs.mysql.com/31930
http://bugs.mysql.com/31731
http://bugs.mysql.com/31433
http://bugs.mysql.com/31185
http://bugs.mysql.com/31090
http://bugs.mysql.com/30964
http://bugs.mysql.com/30116
http://bugs.mysql.com/27436
http://bugs.mysql.com/13991
http://bugs.mysql.com/30233
http://bugs.mysql.com/30204
http://bugs.mysql.com/30077
http://bugs.mysql.com/29931
http://bugs.mysql.com/29526
http://bugs.mysql.com/29409
http://bugs.mysql.com/29312
http://bugs.mysql.com/29124
http://bugs.mysql.com/29123
http://bugs.mysql.com/28706
http://bugs.mysql.com/28204


• Fixed problem where we were not closing prepared statement handles when commands are disposed. This could lead to using up all
prepared statement handles on the server.

• Fixed the database schema collection so that it works on servers that are not properly respecting the
lower_case_table_names setting.

• Fixed problem where any attempt to not read all the records returned from a select where each row of the select is greater than 1024
bytes would hang the driver.

• Fixed problem where a command timing out just after it actually finished would cause an exception to be thrown on the command
timeout thread which would then be seen as an unhandled exception.

• Fixed some serious issues with command timeout and cancel that could present as exceptions about thread ownership. The issue was
that not all queries cancel the same. Some produce resultsets while others don't. ExecuteReader had to be changed to check for this.

C.3.13. Changes in MySQL Connector/NET 5.0.7 (18 May 2007)
Bugs fixed:

• Running the statement SHOW PROCESSLIST would return columns as byte arrays instead of native columns. (Bug#28448)

• Building a connection string within a tight loop would show slow peformance. (Bug#28167)

• Using logging (with the logging=true parameter to the connection string) would not generate a log file. (Bug#27765)

• The UNSIGNED flag for parameters in a stored procedure would be ignored when using MySqlCommandBuilder to obtain the
parameter information. (Bug#27679)

• Using MySQLDataAdapter.FillSchema() on a stored procedure would raise an exception: Invalid attempt to ac-
cess a field before calling Read(). (Bug#27668)

• If you close an open connection with an active transaction, the transaction is not automatically rolled back. (Bug#27289)

• When cloning an open MySqlClient.MySqlConnection with the Persist Security Info=False option set, the
cloned connection is not usable because the security information has not been cloned. (Bug#27269)

• Enlisting a null transaction would affect the current connection object, such that further enlistment operations to the transaction are
not possible. (Bug#26754)

• Attempting to change the the Connection Protocol property within a PropertyGrid control would raise an exception.
(Bug#26472)

• The characterset property would not be identified during a connection (also affected Visual Studion Plugin). (Bug#26147,
Bug#27240)

• The CreateFormat column of the DataTypes collection did not contain a format specification for creating a new column type.
(Bug#25947)

• DATETIME fields from versions of MySQL bgefore 4.1 would be incorrectly parsed, resulting in a exception. (Bug#23342)

C.3.14. Changes in MySQL Connector/NET 5.0.6 (22 March 2007)
Bugs fixed:

• Publisher listed in "Add/Remove Programs" is not consistent with other MySQL products. (Bug#27253)

• DESCRIBE .... SQL statement returns byte arrays rather than data on MySQL versions older than 4.1.15. (Bug#27221)

• cmd.Parameters.RemoveAt("Id") will cause an error if the last item is requested. (Bug#27187)

• MySqlParameterCollection and parameters added with Insert method can not be retrieved later using

MySQL Change History

2232

http://bugs.mysql.com/28448
http://bugs.mysql.com/28167
http://bugs.mysql.com/27765
http://bugs.mysql.com/27679
http://bugs.mysql.com/27668
http://bugs.mysql.com/27289
http://bugs.mysql.com/27269
http://bugs.mysql.com/26754
http://bugs.mysql.com/26472
http://bugs.mysql.com/26147
http://bugs.mysql.com/27240
http://bugs.mysql.com/25947
http://bugs.mysql.com/23342
http://bugs.mysql.com/27253
http://bugs.mysql.com/27221
http://bugs.mysql.com/27187


. (Bug#27135)

• Exception thrown when using large values in UInt64 parameters. (Bug#27093)

• MySQL Visual Studio Plugin 1.1.2 does not work with Connector/Net 5.0.5. (Bug#26960)

C.3.15. Changes in MySQL Connector/NET 5.0.5 (07 March 2007)
Functionality added or changed:

• Reverted behavior that required parameter names to start with the parameter marker. We apologize for this back and forth but we
mistakenly changed the behavior to not match what SqlClient supports. We now support using either syntax for adding paramet-
ers however we also respond exactly like SqlClient in that if you ask for the index of a parameter using a syntax different from
when you added the parameter, the result will be -1.

• Assembly now properly appears in the Visual Studio 2005 Add/Remove Reference dialog.

• Fixed problem that prevented use of SchemaOnly or SingleRow command behaviors with stored procedures or prepared state-
ments.

• Added MySqlParameterCollection.AddWithValue and marked the Add(name, value) method as obsolete.

• Return parameters created with DeriveParameters now have the name RETURN_VALUE.

• Fixed problem with parameter name hashing where the hashes were not getting updated when parameters were removed from the
collection.

• Fixed problem with calling stored functions when a return parameter was not given.

• Added Use Procedure Bodies connection string option to allow calling procedures without using procedure metadata.

Bugs fixed:

• MySqlConnection.GetSchema fails with NullReferenceException for Foreign Keys. (Bug#26660)

• Connector/NET would fail to install under Windows Vista. (Bug#26430)

• Opening a connection would be slow due to hostname lookup. (Bug#26152)

• Incorrect values/formats would be applied when the OldSyntax connection string option was used. (Bug#25950)

• Registry would be incorrectly populated with installation locations. (Bug#25928)

• Times with negative values would be returned incorrectly. (Bug#25912)

• Returned data types of a DataTypes collection do not contain the right correctl CLR Datatype. (Bug#25907)

• GetSchema and DataTypes would throw an exception due to an incorrect table name. (Bug#25906)

• MySqlConnection throws an exception when connecting to MySQL v4.1.7. (Bug#25726)

• SELECT did not work correctly when using a WHERE clause containing a UTF-8 string. (Bug#25651)

• When closing and then re-opening a connection to a database, the character set specification is lost. (Bug#25614)

• Filling a table schema through a stored procedure triggers a runtime error. (Bug#25609)

• BINARY and VARBINARY columns would be returned as a string, not binary, datatype. (Bug#25605)

• A critical ConnectionPool error would result in repeated System.NullReferenceException. (Bug#25603)

• The UpdateRowSource.FirstReturnedRecord method does not work. (Bug#25569)

MySQL Change History

2233

http://bugs.mysql.com/27135
http://bugs.mysql.com/27093
http://bugs.mysql.com/26960
http://bugs.mysql.com/26660
http://bugs.mysql.com/26430
http://bugs.mysql.com/26152
http://bugs.mysql.com/25950
http://bugs.mysql.com/25928
http://bugs.mysql.com/25912
http://bugs.mysql.com/25907
http://bugs.mysql.com/25906
http://bugs.mysql.com/25726
http://bugs.mysql.com/25651
http://bugs.mysql.com/25614
http://bugs.mysql.com/25609
http://bugs.mysql.com/25605
http://bugs.mysql.com/25603
http://bugs.mysql.com/25569


• When connecting to a MySQL Server earlier than version 4.1, the connection would hang when reading data. (Bug#25458)

• Using ExecuteScalar() with more than one query, where one query fails, will hang the connection. (Bug#25443)

• When a MySqlConversionException is raised on a remote object, the client application would receive a Serializa-
tionException instead. (Bug#24957)

• When connecting to a server, the return code from the connection could be zero, even though the hostname was incorrect.
(Bug#24802)

• High CPU utilization would be experienced when there is no idle connection waiting when using pooled connections through
MySqlPool.GetConnection. (Bug#24373)

• Connector/NET would not compile properly when used with Mono 1.2. (Bug#24263)

• Applications would crash when calling with CommandType set to StoredProcedure.

C.3.16. Changes in MySQL Connector/NET 5.0.4 (Not released)
This is a new Beta development release, fixing recently discovered bugs.

C.3.17. Changes in MySQL Connector/NET 5.0.3 (05 January 2007)
Functionality added or changed:

• Usage Advisor has been implemented. The Usage Advisor checks your queries and will report if you are using the connection ineffi-
ciently.

• PerfMon hooks have been added to monitor the stored procedure cache hits and misses.

• The MySqlCommand object now supports asynchronous query methods. This is implemented useg the BeginExecuteNon-
Query and EndExecuteNonQuery methods.

• Metadata from storaed procedures and stored function execution are cached.

• The CommandBuilder.DeriveParameters function has been updated to the procedure cache.

• The ViewColumns GetSchema collection has been updated.

• Improved speed and performance by re-architecting certain sections of the code.

• Support for the embedded server and client library have been removed from this release. Support will be added back to a later re-
lease.

• The ShapZipLib library has been replaced with the deflate support provided within .NET 2.0.

• SSL support has been updated.

Bugs fixed:

• Additional text added to error message (Bug#25178)

• An exception would be raised, or the process would hang, if SELECT privileges on a database were not granted and a stored proced-
ure was used. (Bug#25033)

• When adding parameter objects to a command object, if the parameter direction is set to ReturnValue before the parameter is ad-
ded to the command object then when the command is executed it throws an error. (Bug#25013)

• Using Driver.IsTooOld() would return the wrong value. (Bug#24661)

• When using a DbNull.Value as the value for a parameter value, and then later setting a specific value type, the command would
fail with an exception because the wrong type was implied from the DbNull.Value. (Bug#24565)

MySQL Change History

2234

http://bugs.mysql.com/25458
http://bugs.mysql.com/25443
http://bugs.mysql.com/24957
http://bugs.mysql.com/24802
http://bugs.mysql.com/24373
http://bugs.mysql.com/24263
http://bugs.mysql.com/25178
http://bugs.mysql.com/25033
http://bugs.mysql.com/25013
http://bugs.mysql.com/24661
http://bugs.mysql.com/24565


• Stored procedure executions are not thread safe. (Bug#23905)

• Deleting a connection to a disconnected server when using the Visual Studio Plugin would cause an assertion failure. (Bug#23687)

• Nested transactions (which are unsupported)do not raise an error or warning. (Bug#22400)

C.3.18. Changes in MySQL Connector/NET 5.0.2 (06 November 2006)
Functionality added or changed:

• An Ignore Prepare option has been added to the connection string options. If enabled, prepared statements will be disabled ap-
plication-wide. The default for this option is true.

• Implemented a stored procedure cache. By default, the connector caches the metadata for the last 25 procedures that are seen. You
can change the numbver of procedures that are cacheds by using the procedure cache connection string.

• Important change: Due to a number of issues with the use of server-side prepared statements, Connector/NET 5.0.2 has disabled
their use by default. The disabling of server-side prepared statements does not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your connector string properties:

ignore prepare=false

The default value of this property is true.

Bugs fixed:

• One system where IPv6 was enabled, Connector/NET would incorrectly resolve hostnames. (Bug#23758)

• Column names with accented characters were not parsed properly causing malformed column names in result sets. (Bug#23657)

• An exception would be thrown when calling GetSchemaTable and fields was null. (Bug#23538)

• A System.FormatException exception would be raised when invoking a stored procedure with an ENUM input parameter.
(Bug#23268)

• During installation, an antivirus error message would be raised (indicating a malicious script problem). (Bug#23245)

• Creating a connection through the Server Explorer when using the Visual Studio Plugin would fail. The installer for the Visual Stu-
dio Plugin has been updated to ensure that Connector/NET 5.0.2 must be installed. (Bug#23071)

• Using Windows Vista (RC2) as a non-privileged user would raise a Registry key 'Global' access denied.
(Bug#22882)

• Within Mono, using the PreparedStatement interface could result in an error due to a BitArray copying error. (Bug#18186)

• Connector/NET did not work as a data source for the SqlDataSource object used by ASP.NET 2.0. (Bug#16126)

C.3.19. Changes in MySQL Connector/NET 5.0.1 (01 October 2006)
Bugs fixed:

• Connector/NET on a Tukish operating system, may fail to execute certain SQL statements correctly. (Bug#22452)

• Starting a transaction on a connection created by MySql.Data.MySqlClient.MySqlClientFactory, using Begin-
Transaction without specifying an isolation level, causes the SQL statement to fail with a syntax error. (Bug#22042)

• The MySqlexception class is now derived from the DbException class. (Bug#21874)

MySQL Change History

2235

http://bugs.mysql.com/23905
http://bugs.mysql.com/23687
http://bugs.mysql.com/22400
http://bugs.mysql.com/23758
http://bugs.mysql.com/23657
http://bugs.mysql.com/23538
http://bugs.mysql.com/23268
http://bugs.mysql.com/23245
http://bugs.mysql.com/23071
http://bugs.mysql.com/22882
http://bugs.mysql.com/18186
http://bugs.mysql.com/16126
http://bugs.mysql.com/22452
http://bugs.mysql.com/22042
http://bugs.mysql.com/21874


• The # would not be accepted within column/table names, even though it was valid. (Bug#21521)

• You can now install the Connector/NET MSI package from the command line using the /passive, /quiet, /q options.
(Bug#19994)

• Submitting an empty string to a command object through prepare raises an System.IndexOutOfRangeException, rather
than a Connector/Net exception. (Bug#18391)

• Using ExecuteScalar with a datetime field, where the value of the field is "0000-00-00 00:00:00", a MySqlConversionEx-
ception exception would be raised. (Bug#11991)

• An MySql.Data.Types.MySqlConversionException would be raised when trying to update a row that contained a date
field, where the date field contained a zero value (0000-00-00 00:00:00). (Bug#9619)

• Executing multiple queries as part of a transaction returns There is already an openDataReader associated
with this Connection which must be closed first. (Bug#7248)

• Incorrect field/data lengths could be returned for VARCHAR UTF8 columns. Bug (#14592)

C.3.20. Changes in MySQL Connector/NET 5.0.0 (08 August 2006)
Functionality added or changed:

• Replaced use of ICSharpCode with .NET 2.0 internal deflate support.

• Refactored test suite to test all protocols in a single pass.

• Added usage advisor warnings for requesting column values by the wrong type.

• Reimplemented PacketReader/PacketWriter support into MySqlStream class.

• Reworked connection string classes to be simpler and faster.

• Added procedure metadata caching.

• Added internal implemention of SHA1 so we don't have to distribute the OpenNetCF on mobile devices.

• Implemented MySqlClientFactory class.

• Added perfmon hooks for stored procedure cache hits and misses.

• Implemented classes and interfaces for ADO.Net 2.0 support.

• Added Async query methods.

• Implemented Usage Advisor.

• Completely refactored how column values are handled to avoid boxing in some cases.

• Implemented MySqlConnectionBuilder class.

Bugs fixed:

• CommandText: Question mark in comment line is being parsed as a parameter. (Bug#6214)

C.3.21. Changes in MySQL Connector/NET 1.0.11 (Not yet released)
Bugs fixed:

• Setting the size of a string parameter after the value could cause an exception. (Bug#32094)

MySQL Change History

2236

http://bugs.mysql.com/21521
http://bugs.mysql.com/19994
http://bugs.mysql.com/18391
http://bugs.mysql.com/11991
http://bugs.mysql.com/9619
http://bugs.mysql.com/7248
http://bugs.mysql.com/6214
http://bugs.mysql.com/32094


• Creation of parameter objects with non-input direction using a constructor would fail. This was cause by some old legacy code pre-
venting their use. (Bug#32093)

• Memory usage could increase and decrease significantly when updating or inserting a large number of rows. (Bug#31090)

• Commands executed from within the state change handeler would fail with a NULL exception. (Bug#30964)

• Extracting data through XML functions within a query returns the data as System.Byte[]. This was due to Connector/NET in-
correctly identifying BLOB fields as binary, rather than text. (Bug#30233)

• Using compression in the MySQL connection with Connector/NET would be slower than using native (uncompressed) communica-
tion. (Bug#27865)

• Changing the connection string of a connection to one that changes the parameter marker after the connection had been assigned to a
command but before the connection is opened could cause parameters to not be found. (Bug#13991)

C.3.22. Changes in MySQL Connector/NET 1.0.10 (24 August 2007)
Bugs fixed:

• An incorrect ConstraintException could be raised on an INSERT when adding rows to a table with a multiple-column
unique key index. (Bug#30204)

• The availability of a MySQL server would not be reset when using pooled connections (pooling=true). This would lead to the
server being reported as unavailable, even if the server become available while the application was still running. (Bug#29409)

• Publisher listed in "Add/Remove Programs" is not consistent with other MySQL products. (Bug#27253)

• MySqlParameterCollection and parameters added with Insert method can not be retrieved later using
ParameterName. (Bug#27135)

• BINARY and VARBINARY columns would be returned as a string, not binary, datatype. (Bug#25605)

• A critical ConnectionPool error would result in repeated System.NullReferenceException. (Bug#25603)

• When a MySqlConversionException is raised on a remote object, the client application would receive a Serializa-
tionException instead. (Bug#24957)

• High CPU utilization would be experienced when there is no idle connection waiting when using pooled connections through
MySqlPool.GetConnection. (Bug#24373)

C.3.23. Changes in MySQL Connector/NET 1.0.9 (02 February 2007)
Functionality added or changed:

• The ICSharpCode ZipLib is no longer used by the Connector, and is no longer distributed with it.

• Important change: Binaries for .NET 1.0 are no longer supplied with this release. If you need support for .NET 1.0, you must build
from source.

• Improved CommandBuilder.DeriveParameters to first try and use the procedure cache before querying for the stored pro-
cedure metadata. Return parameters created with DeriveParameters now have the name RETURN_VALUE.

• An Ignore Prepare option has been added to the connection string options. If enabled, prepared statements will be disabled ap-
plication-wide. The default for this option is true.

• Implemented a stored procedure cache. By default, the connector caches the metadata for the last 25 procedures that are seen. You
can change the numbver of procedures that are cacheds by using the procedure cache connection string.

• Important change: Due to a number of issues with the use of server-side prepared statements, Connector/NET 5.0.2 has disabled
their use by default. The disabling of server-side prepared statements does not affect the operation of the connector in any way.

MySQL Change History

2237

http://bugs.mysql.com/32093
http://bugs.mysql.com/31090
http://bugs.mysql.com/30964
http://bugs.mysql.com/30233
http://bugs.mysql.com/27865
http://bugs.mysql.com/13991
http://bugs.mysql.com/30204
http://bugs.mysql.com/29409
http://bugs.mysql.com/27253
http://bugs.mysql.com/27135
http://bugs.mysql.com/25605
http://bugs.mysql.com/25603
http://bugs.mysql.com/24957
http://bugs.mysql.com/24373


To enable server-side prepared statements you must add the following configuration property to your connector string properties:

ignore prepare=false

The default value of this property is true.

Bugs fixed:

• Times with negative values would be returned incorrectly. (Bug#25912)

• MySqlConnection throws a NullReferenceException and ArgumentNullException when connecting to MySQL
v4.1.7. (Bug#25726)

• SELECT did not work correctly when using a WHERE clause containing a UTF-8 string. (Bug#25651)

• When closing and then re-opening a connection to a database, the character set specification is lost. (Bug#25614)

• Trying to fill a table schema through a stored procedure triggers a runtime error. (Bug#25609)

• Using ExecuteScalar() with more than one query, where one query fails, will hang the connection. (Bug#25443)

• Additional text added to error message. (Bug#25178)

• When adding parameter objects to a command object, if the parameter direction is set to ReturnValue before the parameter is ad-
ded to the command object then when the command is executed it throws an error. (Bug#25013)

• When connecting to a server, the return code from the connection could be zero, even though the hostname was incorrect.
(Bug#24802)

• Using Driver.IsTooOld() would return the wrong value. (Bug#24661)

• When using a DbNull.Value as the value for a parameter value, and then later setting a specific value type, the command would
fail with an exception because the wrong type was implied from the DbNull.Value. (Bug#24565)

• Stored procedure executions are not thread safe. (Bug#23905)

• The CommandBuilder would mistakenly add insert parameters for a table column with auto incrementation enabled.
(Bug#23862)

• One system where IPv6 was enabled, Connector/NET would incorrectly resolve hostnames. (Bug#23758)

• Nested transactions do not raise an error or warning. (Bug#22400)

• An System.OverflowException would be raised when accessing a varchar field over 255 bytes. Bug (#23749)

• Within Mono, using the PreparedStatement interface could result in an error due to a BitArray copying error. (Bug 18186)

C.3.24. Changes in MySQL Connector/NET 1.0.8 (20 October 2006)
Functionality added or changed:

• Stored procedures are now cached.

• The method for retrieving stored procedured metadata has been changed so that users without SELECT privileges on the
mysql.proc table can use a stored procedure.

Bugs fixed:

• Connector/NET on a Tukish operating system, may fail to execute certain SQL statements correctly. (Bug#22452)

MySQL Change History

2238

http://bugs.mysql.com/25912
http://bugs.mysql.com/25726
http://bugs.mysql.com/25651
http://bugs.mysql.com/25614
http://bugs.mysql.com/25609
http://bugs.mysql.com/25443
http://bugs.mysql.com/25178
http://bugs.mysql.com/25013
http://bugs.mysql.com/24802
http://bugs.mysql.com/24661
http://bugs.mysql.com/24565
http://bugs.mysql.com/23905
http://bugs.mysql.com/23862
http://bugs.mysql.com/23758
http://bugs.mysql.com/22400
http://bugs.mysql.com/22452


• The # would not be accepted within column/table names, even though it was valid. (Bug#21521)

• Calling Close on a connection after calling a stored procedure would trigger a NullReferenceException. (Bug#20581)

• You can now install the Connector/NET MSI package from the command line using the /passive, /quiet, /q options.
(Bug#19994)

• The DiscoverParameters function would fail when a stored procedure used a NUMERIC parameter type. (Bug#19515)

• When running a query that included a date comparison, a DateReader error would be raised. (Bug#19481)

• IDataRecord.GetString would raise NullPointerException for null values in returned rows. Method now throws
SqlNullValueException. (Bug#19294)

• Parameter substitution in queries where the order of parameters and table fields did not match would substitute incorrect values.
(Bug#19261)

• Submitting an empty string to a command object through prepare raises an System.IndexOutOfRangeException, rather
than a Connector/Net exception. (Bug#18391)

• An exception would be raised when using an output parameter to a System.String value. (Bug#17814)

• CHAR type added to MySqlDbType. (Bug#17749)

• A SELECT query on a table with a date with a value of '0000-00-00' would hang the application. (Bug#17736)

• The CommandBuilder ignored Unsigned flag at Parameter creation. (Bug#17375)

• When working with multiple threads, character set initialization would generate errors. (Bug#17106)

• When using an unsigned 64-bit integer in a stored procedure, the unsigned bit would be lost stored. (Bug#16934)

• DataReader would show the value of the previous row (or last row with non-null data) if the current row contained a datetime
field with a null value. (Bug#16884)

• Unsigned data types were not properly supported. (Bug#16788)

• The connection string parser did not allow single or double quotes in the password. (Bug#16659)

• The MySqlDateTime class did not contain constructors. (Bug#15112)

• Called MySqlCommandBuilder.DeriveParameters for a stored procedure that has no paramers would cause an application
crash. (Bug#15077)

• Using ExecuteScalar with a datetime field, where the value of the field is "0000-00-00 00:00:00", a MySqlConversionEx-
ception exception would be raised. (Bug#11991)

• An MySql.Data.Types.MySqlConversionException would be raised when trying to update a row that contained a date
field, where the date field contained a zero value (0000-00-00 00:00:00). (Bug#9619)

• When using MySqlDataAdapter, connections to a MySQL server may remain open and active, even though the use of the con-
nection has been completed and the data received. (Bug#8131)

• Executing multiple queries as part of a transaction returns There is already an openDataReader associated
with this Connection which must be closed first. (Bug#7248)

• Incorrect field/data lengths could be returned for VARCHAR UTF8 columns. Bug (#14592)

C.3.25. Changes in MySQL Connector/NET 1.0.7 (21 November 2005)
Bugs fixed:

• Unsigned tinyint (NET byte) would lead to and incorrectly determined parameter type from the parameter value. (Bug#18570)

MySQL Change History

2239

http://bugs.mysql.com/21521
http://bugs.mysql.com/20581
http://bugs.mysql.com/19994
http://bugs.mysql.com/19515
http://bugs.mysql.com/19481
http://bugs.mysql.com/19294
http://bugs.mysql.com/19261
http://bugs.mysql.com/18391
http://bugs.mysql.com/17814
http://bugs.mysql.com/17749
http://bugs.mysql.com/17736
http://bugs.mysql.com/17375
http://bugs.mysql.com/17106
http://bugs.mysql.com/16934
http://bugs.mysql.com/16884
http://bugs.mysql.com/16788
http://bugs.mysql.com/16659
http://bugs.mysql.com/15112
http://bugs.mysql.com/15077
http://bugs.mysql.com/11991
http://bugs.mysql.com/9619
http://bugs.mysql.com/8131
http://bugs.mysql.com/7248
http://bugs.mysql.com/18570


• A #42000Query was empty exception occurred when executing a query built with MySqlCommandBuilder, if the query
string ended with a semicolon. (Bug#14631)

• The parameter collection object's Add() method added parameters to the list without first checking to see whether they already ex-
isted. Now it updates the value of the existing parameter object if it exists. (Bug#13927)

• Added support for the cp932 character set. (Bug#13806)

• Calling a stored procedure where a parameter contained special characters (such as '@') would produce an exception. Note that
ANSI_QUOTES had to be enabled to make this possible. (Bug#13753)

• The Ping() method did not update the State property of the Connection object. (Bug#13658)

• Implemented the MySqlCommandBuilder.DeriveParameters method that is used to discover the parameters for a stored
procedure. (Bug#13632)

• A statement that contained multiple references to the same parameter could not be prepared. (Bug#13541)

C.3.26. Changes in MySQL Connector/NET 1.0.6 (03 October 2005)
Bugs fixed:

• Connector/NET 1.0.5 could not connect on Mono. (Bug#13345)

• Serializing a parameter failed if the first value passed in was NULL. (Bug#13276)

• Field names that contained the following characters caused errors: ()%<>/ (Bug#13036)

• The nant build sequence had problems. (Bug#12978)

• The Connector/NET 1.0.5 installer would not install alongside Connector/NET 1.0.4. (Bug#12835)

C.3.27. Changes in MySQL Connector/NET 1.0.5 (29 August 2005)
Bugs fixed:

• Connector/NET could not connect to MySQL 4.1.14. (Bug#12771)

• With multiple hosts in the connection string, Connector/NET would not connect to the last host in the list. (Bug#12628)

• The ConnectionString property could not be set when a MySqlConnection object was added with the designer.
(Bug#12551, Bug#8724)

• The cp1250 character set was not supported. (Bug#11621)

• A call to a stored procedure caused an exception if the stored procedure had no parameters. (Bug#11542)

• Certain malformed queries would trigger a Connection must be valid and open error message. (Bug#11490)

• Trying to use a stored procedure when Connection.Database was not populated generated an exception. (Bug#11450)

• Connector/NET interpreted the new decimal data type as a byte array. (Bug#11294)

• Added support to call a stored function from Connector/NET. (Bug#10644)

• Connection could fail when .NET thread pool had no available worker threads. (Bug#10637)

• Calling MySqlConnection.clone when a connection string had not yet been set on the original connection would generate an
error. (Bug#10281)

• Decimal parameters caused syntax errors. (Bug#10152, Bug#11550, Bug#10486)

MySQL Change History

2240

http://bugs.mysql.com/14631
http://bugs.mysql.com/13927
http://bugs.mysql.com/13806
http://bugs.mysql.com/13753
http://bugs.mysql.com/13658
http://bugs.mysql.com/13632
http://bugs.mysql.com/13541
http://bugs.mysql.com/13345
http://bugs.mysql.com/13276
http://bugs.mysql.com/13036
http://bugs.mysql.com/12978
http://bugs.mysql.com/12835
http://bugs.mysql.com/12771
http://bugs.mysql.com/12628
http://bugs.mysql.com/12551
http://bugs.mysql.com/8724
http://bugs.mysql.com/11621
http://bugs.mysql.com/11542
http://bugs.mysql.com/11490
http://bugs.mysql.com/11450
http://bugs.mysql.com/11294
http://bugs.mysql.com/10644
http://bugs.mysql.com/10637
http://bugs.mysql.com/10281
http://bugs.mysql.com/10152
http://bugs.mysql.com/11550
http://bugs.mysql.com/10486


• Parameters were not recognized when they were separated by linefeeds. (Bug#9722)

• The MySqlCommandBuilder class could not handle queries that referenced tables in a database other than the default database.
(Bug#8382)

• Trying to read a TIMESTAMP column generated an exception. (Bug#7951)

• Connector/NET could not work properly with certain regional settings. (WL#8228)

C.3.28. Changes in MySQL Connector/NET 1.0.4 (20 January 2005)
Bugs fixed:

• MySqlReader.GetInt32 throws exception if column is unsigned. (Bug#7755)

• Quote character \222 not quoted in EscapeString. (Bug#7724)

• GetBytes is working no more. (Bug#7704)

• MySqlDataReader.GetString(index) returns non-Null value when field is Null. (Bug#7612)

• Clone method bug in MySqlCommand. (Bug#7478)

• Problem with Multiple resultsets. (Bug#7436)

• MySqlAdapter.Fill method throws error message Non-negative number required. (Bug#7345)

• MySqlCommand.Connection returns an IDbConnection. (Bug#7258)

• Calling prepare causing exception. (Bug#7243)

• Fixed problem with shared memory connections.

• Added or filled out several more topics in the API reference documentation.

• Fixed another small problem with prepared statements.

• Fixed problem that causes named pipes to not work with some blob functionality.

C.3.29. Changes in MySQL Connector/NET 1.0.3 (12 October 2004)
Bugs fixed:

• Invalid query string when using inout parameters (Bug#7133)

• Inserting DateTime causes System.InvalidCastException to be thrown. (Bug#7132)

• MySqlDateTime in Datatables sorting by Text, not Date. (Bug#7032)

• Exception stack trace lost when re-throwing exceptions. (Bug#6983)

• Errors in parsing stored procedure parameters. (Bug#6902)

• InvalidCast when using DATE_ADD-function. (Bug#6879)

• Int64 Support in MySqlCommand Parameters. (Bug#6863)

• Test suite fails with MySQL 4.0 because of case sensitivity of table names. (Bug#6831)

• MySqlDataReader.GetChar(int i) throws IndexOutOfRange exception. (Bug#6770)

• Integer "out" parameter from stored procedure returned as string. (Bug#6668)

MySQL Change History

2241

http://bugs.mysql.com/9722
http://bugs.mysql.com/8382
http://bugs.mysql.com/7951
http://bugs.mysql.com/7755
http://bugs.mysql.com/7724
http://bugs.mysql.com/7704
http://bugs.mysql.com/7612
http://bugs.mysql.com/7478
http://bugs.mysql.com/7436
http://bugs.mysql.com/7345
http://bugs.mysql.com/7258
http://bugs.mysql.com/7243
http://bugs.mysql.com/7133
http://bugs.mysql.com/7132
http://bugs.mysql.com/7032
http://bugs.mysql.com/6983
http://bugs.mysql.com/6902
http://bugs.mysql.com/6879
http://bugs.mysql.com/6863
http://bugs.mysql.com/6831
http://bugs.mysql.com/6770
http://bugs.mysql.com/6668


• An Open Connection has been Closed by the Host System. (Bug#6634)

• Fixed Invalid character set index: 200. (Bug#6547)

• Connections now do not have to give a database on the connection string.

• Installer now includes options to install into GAC and create START MENU items.

• Fixed major problem with detecting null values when using prepared statements.

• Fixed problem where multiple resultsets having different numbers of columns would cause a problem.

• Added ServerThread property to MySqlConnection to expose server thread id.

• Added Ping method to MySqlConnection.

• Changed the name of the test suite to MySql.Data.Tests.dll.

• Now SHOW COLLATION is used upon connection to retrieve the full list of charset ids.

• Made MySQL the default named pipe name.

C.3.30. Changes in MySQL Connector/NET 1.0.2 (15 November 2004)
Bugs fixed:

• Fixed Objects not being disposed (Bug#6649)

• Fixed Charset-map for UCS-2 (Bug#6541)

• Fixed Zero date "0000-00-00" is returned wrong when filling Dataset (Bug#6429)

• Fixed double type handling in MySqlParameter(string parameterName, object value) (Bug#6428)

• Fixed Installation directory ignored using custom installation (Bug#6329)

• Fixed #HY000 Illegal mix of collations (latin1_swedish_ci,IMPLICIT) and (utf8_general_ (Bug#6322)

• Added the TableEditor CS and VB sample

• Added charset connection string option

• Fixed problem with MySqlBinary where string values could not be used to update extended text columns

• Provider is now using character set specified by server as default

• Updated the installer to include the new samples

• Fixed problem where setting command text leaves the command in a prepared state

• Fixed Long inserts take very long time (Bu #5453)

• Fixed problem where calling stored procedures might cause an "Illegal mix of collations" problem.

C.3.31. Changes in MySQL Connector/NET 1.0.1 (27 October 2004)
Bugs fixed:

• Fixed IndexOutOfBounds when reading BLOB with DataReader with GetString(index) (Bug#6230)

• Fixed GetBoolean returns wrong values (Bug#6227)

MySQL Change History

2242

http://bugs.mysql.com/6634
http://bugs.mysql.com/6547
http://bugs.mysql.com/6649
http://bugs.mysql.com/6541
http://bugs.mysql.com/6429
http://bugs.mysql.com/6428
http://bugs.mysql.com/6329
http://bugs.mysql.com/6322
http://bugs.mysql.com/6230
http://bugs.mysql.com/6227


• Fixed Method TokenizeSql() uses only a limited set of valid characters for parameters (Bug#6217)

• Fixed NET Connector source missing resx files (Bug#6216)

• Fixed System.OverflowException when using YEAR datatype (Bug#6036)

• Fixed MySqlDateTime sets IsZero property on all subseq.records after first zero found (Bug#6006)

• Fixed serializing of floating point parameters (double, numeric, single, decimal) (Bug#5900)

• Fixed missing Reference in DbType setter (Bug#5897)

• Fixed Parsing the ';' char (Bug#5876)

• Fixed DBNull Values causing problems with retrieving/updating queries. (Bug#5798)

• IsNullable error (Bug#5796)

• Fixed problem where MySqlParameterCollection.Add() would throw unclear exception when given a null value (Bug#5621)

• Fixed construtor initialize problems in MySqlCommand() (Bug#5613)

• Fixed Yet Another "object reference not set to an instance of an object" (Bug#5496)

• Fixed Can't display Chinese correctly (Bug#5288)

• Fixed MySqlDataReader and 'show tables from ...' behavior (Bug#5256)

• Fixed problem in PacketReader where it could try to allocate the wrong buffer size in EnsureCapacity

• Fixed problem where using old syntax while using the interfaces caused problems

• Fixed Bug#5458 Calling GetChars on a longtext column throws an exception

• Added test case for resetting the command text on a prepared command

• Fixed Bug#5388 DataReader reports all rows as NULL if one row is NULL

• Fixed problem where connection lifetime on the connect string was not being respected

• Fixed Bug#5602 Possible bug in MySqlParameter(string, object) constructor

• Field buffers being reused to decrease memory allocations and increase speed

• Fixed Bug#5392 MySqlCommand sees "?" as parameters in string literals

• Added Aggregate function test (wasn't really a bug)

• Using PacketWriter instead of Packet for writing to streams

• Implemented SequentialAccess

• Fixed problem with ConnectionInternal where a key might be added more than once

• Fixed Russian character support as well

• Fixed Bug#5474 cannot run a stored procedure populating mysqlcommand.parameters

• Fixed problem where connector was not issuing a CMD_QUIT before closing the socket

• Fixed problem where Min Pool Size was not being respected

• Refactored compression code into CompressedStream to clean up NativeDriver

• CP1252 is now used for Latin1 only when the server is 4.1.2 and later

• Fixed Bug#5469 Setting DbType throws NullReferenceException

MySQL Change History

2243

http://bugs.mysql.com/6217
http://bugs.mysql.com/6216
http://bugs.mysql.com/6036
http://bugs.mysql.com/6006
http://bugs.mysql.com/5900
http://bugs.mysql.com/5897
http://bugs.mysql.com/5876
http://bugs.mysql.com/5798
http://bugs.mysql.com/5796
http://bugs.mysql.com/5621
http://bugs.mysql.com/5613
http://bugs.mysql.com/5496
http://bugs.mysql.com/5288
http://bugs.mysql.com/5256
http://bugs.mysql.com/5458
http://bugs.mysql.com/5388
http://bugs.mysql.com/5602
http://bugs.mysql.com/5392
http://bugs.mysql.com/5474
http://bugs.mysql.com/5469


• Virtualized driver subsystem so future releases could easily support client or embedded server support

C.3.32. Changes in MySQL Connector/NET 1.0.0 (01 September 2004)
Bugs fixed:

• Thai encoding not correctly supported. (Bug#3889)

• Bumped version number to 1.0.0 for beta 1 release.

• Removed all of the XML comment warnings.

• Added COPYING.rtf file for use in installer.

• Updated many of the test cases.

• Fixed problem with using compression.

• Removed some last references to ByteFX.

C.3.33. Changes in MySQL Connector/NET Version 0.9.0 (30 August 2004)

• Added test fixture for prepared statements.

• All type classes now implement a SerializeBinary method for sending their data to a PacketWriter.

• Added PacketWriter class that will enable future low-memory large object handling.

• Fixed many small bugs in running prepared statements and stored procedures.

• Changed command so that an exception will not be thrown in executing a stored procedure with parameters in old syntax mode.

• SingleRow behavior now working right even with limit.

• GetBytes now only works on binary columns.

• Logger now truncates long sql commands so blob columns don't blow out our log.

• host and database now have a default value of "" unless otherwise set.

• Connection Timeout seems to be ignored. (Bug#5214)

• Added test case for bug# 5051: GetSchema not working correctly.

• Fixed problem where GetSchema would return false for IsUnique when the column is key.

• MySqlDataReader GetXXX methods now using the field level MySqlValue object and not performing conversions.

• DataReader returning NULL for time column. (Bug#5097)

• Added test case for LOAD DATA LOCAL INFILE.

• Added replacetext custom nant task.

• Added CommandBuilderTest fixture.

• Added Last One Wins feature to CommandBuilder.

• Fixed persist security info case problem.

• Fixed GetBool so that 1, true, "true", and "yes" all count as true.

MySQL Change History

2244

http://bugs.mysql.com/3889
http://bugs.mysql.com/5214
http://bugs.mysql.com/5097


• Make parameter mark configurable.

• Added the "old syntax" connection string parameter to allow use of @ parameter marker.

• MySqlCommandBuilder. (Bug#4658)

• ByteFX.MySqlClient caches passwords if Persist Security Info is false. (Bug#4864)

• Updated license banner in all source files to include FLOSS exception.

• Added new .Types namespace and implementations for most current MySql types.

• Added MySqlField41 as a subclass of MySqlField.

• Changed many classes to now use the new .Types types.

• Changed type enum int to Int32, short to Int16, and bigint to Int64.

• Added dummy types UInt16, UInt32, and UInt64 to allow an unsigned parameter to be made.

• Connections are now reset when they are pulled from the connection pool.

• Refactored auth code in driver so it can be used for both auth and reset.

• Added UserReset test in PoolingTests.cs.

• Connections are now reset using COM_CHANGE_USER when pulled from the pool.

• Implemented SingleResultSet behavior.

• Implemented support of unicode.

• Added char set mappings for utf-8 and ucs-2.

• Time fields overflow using bytefx .net mysql driver (Bug#4520)

• Modified time test in data type test fixture to check for time spans where hours > 24.

• Wrong string with backslash escaping in ByteFx.Data.MySqlClient.MySqlParameter. (Bug#4505)

• Added code to Parameter test case TestQuoting to test for backslashes.

• MySqlCommandBuilder fails with multi-word column names. (Bug#4486)

• Fixed bug in TokenizeSql where underscore would terminate character capture in parameter name.

• Added test case for spaces in column names.

• MySqlDataReader.GetBytes don't works correctly. (Bug#4324)

• Added GetBytes() test case to DataReader test fixture.

• Now reading all server variables in InternalConnection.Configure into Hashtable.

• Now using string[] for index map in CharSetMap.

• Added CRInSQL test case for carriage returns in SQL.

• Setting maxPacketSize to default value in Driver.ctor.

• Setting MySqlDbType on a parameter doesn't set generic type. (Bug#4442)

• Removed obsolete data types Long and LongLong.

• Overflow exception thrown when using "use pipe" on connection string. (Bug#4071)

• Changed "use pipe" keyword to "pipe name" or just "pipe".

MySQL Change History

2245

http://bugs.mysql.com/4658
http://bugs.mysql.com/4864
http://bugs.mysql.com/4520
http://bugs.mysql.com/4505
http://bugs.mysql.com/4486
http://bugs.mysql.com/4324
http://bugs.mysql.com/4442
http://bugs.mysql.com/4071


• Allow reading multiple resultsets from a single query.

• Added flags attribute to ServerStatusFlags enum.

• Changed name of ServerStatus enum to ServerStatusFlags.

• Inserted data row doesn't update properly.

• Error processing show create table. (Bug#4074)

• Change Packet.ReadLenInteger to ReadPackedLong and added packet.ReadPackedInteger that always reads in-
tegers packed with 2,3,4.

• Added syntax.cs test fixture to test various SQL syntax bugs.

• Improper handling of time values. Now time value of 00:00:00 is not treated as null. (Bug#4149)

• Moved all test suite files into TestSuite folder.

• Fixed bug where null column would move the result packet pointer backward.

• Added new nant build script.

• Clear tablename so it will be regen'ed properly during the next GenerateSchema. (Bug#3917)

• GetValues was always returning zero and was also always trying to copy all fields rather than respecting the size of the array
passed in. (Bug#3915)

• Implemented shared memory access protocol.

• Implemented prepared statements for MySQL 4.1.

• Implemented stored procedures for MySQL 5.0.

• Renamed MySqlInternalConnection to InternalConnection.

• SQL is now parsed as chars, fixes problems with other languages.

• Added logging and allow batch connection string options.

• RowUpdating event not set when setting the DataAdapter property. (Bug#3888)

• Fixed bug in char set mapping.

• Implemented 4.1 authentication.

• Improved open/auth code in driver.

• Improved how connection bits are set during connection.

• Database name is now passed to server during initial handshake.

• Changed namespace for client to MySql.Data.MySqlClient.

• Changed assembly name of client to MySql.Data.dll.

• Changed license text in all source files to GPL.

• Added the MySqlClient.build Nant file.

• Removed the mono batch files.

• Moved some of the unused files into notused folder so nant build file can use wildcards.

• Implemented shared memory access.

• Major revamp in code structure.

MySQL Change History

2246

http://bugs.mysql.com/4074
http://bugs.mysql.com/4149
http://bugs.mysql.com/3917
http://bugs.mysql.com/3915
http://bugs.mysql.com/3888


• Prepared statements now working for MySql 4.1.1 and later.

• Finished implementing auth for 4.0, 4.1.0, and 4.1.1.

• Changed namespace from MySQL.Data.MySQLClient back to MySql.Data.MySqlClient.

• Fixed bug in CharSetMapping where it was trying to use text names as ints.

• Changed namespace to MySQL.Data.MySQLClient.

• Integrated auth changes from UC2004.

• Fixed bug where calling any of the GetXXX methods on a datareader before or after reading data would not throw the appropriate
exception (thanks Luca Morelli).

• Added TimeSpan code in parameter.cs to properly serialize a timespan object to mysql time format (thanks Gianluca Colombo).

• Added TimeStamp to parameter serialization code. Prevented DataAdatper updates from working right (thanks Michael King).

• Fixed a misspelling in MySqlHelper.cs (thanks Patrick Kristiansen).

C.3.34. Changes in MySQL Connector/NET Version 0.76

• Driver now using charset number given in handshake to create encoding.

• Changed command editor to point to MySqlClient.Design.

• Fixed bug in Version.isAtLeast.

• Changed DBConnectionString to support changes done to MySqlConnectionString.

• Removed SqlCommandEditor and DataAdapterPreviewDialog.

• Using new long return values in many places.

• Integrated new CompressedStream class.

• Changed ConnectionString and added attributes to allow it to be used in MySqlClient.Design.

• Changed packet.cs to support newer lengths in ReadLenInteger.

• Changed other classes to use new properties and fields of MySqlConnectionString.

• ConnectionInternal is now using PING to see whether the server is alive.

• Moved toolbox bitmaps into resource folder.

• Changed field.cs to allow values to come directly from row buffer.

• Changed to use the new driver.Send syntax.

• Using a new packet queueing system.

• Started work handling the "broken" compression packet handling.

• Fixed bug in StreamCreator where failure to connect to a host would continue to loop infinitly (thanks Kevin Casella).

• Improved connectstring handling.

• Moved designers into Pro product.

• Removed some old commented out code from command.cs.

• Fixed a problem with compression.

MySQL Change History

2247



• Fixed connection object where an exception throw prior to the connection opening would not leave the connection in the connecting
state (thanks Chris Cline).

• Added GUID support.

• Fixed sequence out of order bug (thanks Mark Reay).

C.3.35. Changes in MySQL Connector/NET Version 0.75

• Enum values now supported as parameter values (thanks Philipp Sumi).

• Year datatype now supported.

• Fixed compression.

• Fixed bug where a parameter with a TimeSpan as the value would not serialize properly.

• Fixed bug where default constructor would not set default connection string values.

• Added some XML comments to some members.

• Work to fix/improve compression handling.

• Improved ConnectionString handling so that it better matches the standard set by SqlClient.

• A MySqlException is now thrown if a username is not included in the connection string.

• Localhost is now used as the default if not specified on the connection string.

• An exception is now thrown if an attempt is made to set the connection string while the connection is open.

• Small changes to ConnectionString docs.

• Removed MultiHostStream and MySqlStream. Replaced it with Common/StreamCreator.

• Added support for Use Pipe connection string value.

• Added Platform class for easier access to platform utility functions.

• Fixed small pooling bug where new connection was not getting created after IsAlive fails.

• Added Platform.cs and StreamCreator.cs.

• Fixed Field.cs to properly handle 4.1 style timestamps.

• Changed Common.Version to Common.DBVersion to avoid name conflict.

• Fixed field.cs so that text columns return the right field type.

• Added MySqlError class to provide some reference for error codes (thanks Geert Veenstra).

C.3.36. Changes in MySQL Connector/NET Version 0.74

• Added Unix socket support (thanks Mohammad DAMT).

• Only calling Thread.Sleep when no data is available.

• Improved escaping of quote characters in parameter data.

• Removed misleading comments from parameter.cs.

• Fixed pooling bug.

MySQL Change History

2248



• Fixed ConnectionString editor dialog (thanks marco p (pomarc)).

• UserId now supported in connection strings (thanks Jeff Neeley).

• Attempting to create a parameter that is not input throws an exception (thanks Ryan Gregg).

• Added much documentation.

• Checked in new MultiHostStream capability. Big thanks to Dan Guisinger for this. he originally submitted the code and idea of
supporting multiple machines on the connect string.

• Added a lot of documentation.

• Fixed speed issue with 0.73.

• Changed to Thread.Sleep(0) in MySqlDataStream to help optimize the case where it doesn't need to wait (thanks Todd German).

• Prepopulating the idlepools to MinPoolSize.

• Fixed MySqlPool deadlock condition as well as stupid bug where CreateNewPooledConnection was not ever adding new connec-
tions to the pool. Also fixed MySqlStream.ReadBytes and ReadByte to not use TicksPerSecond which does not appear
to always be right. (thanks Matthew J. Peddlesden)

• Fix for precision and scale (thanks Matthew J. Peddlesden).

• Added Thread.Sleep(1) to stream reading methods to be more cpu friendly (thanks Sean McGinnis).

• Fixed problem where ExecuteReader would sometime return null (thanks Lloyd Dupont).

• Fixed major bug with null field handling (thanks Naucki).

• Enclosed queries for max_allowed_packet and characterset inside try catch (and set defaults).

• Fixed problem where socket was not getting closed properly (thanks Steve!).

• Fixed problem where ExecuteNonQuery was not always returning the right value.

• Fixed InternalConnection to not use @@session.max_allowed_packet but use @@max_allowed_packet.
(Thanks Miguel)

• Added many new XML doc lines.

• Fixed sql parsing to not send empty queries (thanks Rory).

• Fixed problem where the reader was not unpeeking the packet on close.

• Fixed problem where user variables were not being handled (thanks Sami Vaaraniemi).

• Fixed loop checking in the MySqlPool (thanks Steve M. Brown)

• Fixed ParameterCollection.Add method to match SqlClient (thanks Joshua Mouch).

• Fixed ConnectionString parsing to handle no and yes for boolean and not lowercase values (thanks Naucki).

• Added InternalConnection class, changes to pooling.

• Implemented Persist Security Info.

• Added security.cs and version.cs to project

• Fixed DateTime handling in Parameter.cs (thanks Burkhard Perkens-Golomb).

• Fixed parameter serialization where some types would throw a cast exception.

• Fixed DataReader to convert all returned values to prevent casting errors (thanks Keith Murray).

• Added code to Command.ExecuteReader to return null if the initial SQL statement throws an exception (thanks Burkhard

MySQL Change History

2249



Perkens-Golomb).

• Fixed ExecuteScalar bug introduced with restructure.

• Restructure to allow for LOCAL DATA INFILE and better sequencing of packets.

• Fixed several bugs related to restructure.

• Early work done to support more secure passwords in Mysql 4.1. Old passwords in 4.1 not supported yet.

• Parameters appearing after system parameters are now handled correctly (Adam M. (adammil)).

• Strings can now be assigned directly to blob fields (Adam M.).

• Fixed float parameters (thanks Pent).

• Improved Parameter constructor and ParameterCollection.Add methods to better match SqlClient (thanks Joshua Mouch).

• Corrected Connection.CreateCommand to return a MySqlCommand type.

• Fixed connection string designer dialog box problem (thanks Abraham Guyt).

• Fixed problem with sending commands not always reading the response packet (thanks Joshua Mouch).

• Fixed parameter serialization where some blobs types were not being handled (thanks Sean McGinnis).

• Removed spurious MessageBox.show from DataReader code (thanks Joshua Mouch).

• Fixed a nasty bug in the split sql code (thanks everyone!).

C.3.37. Changes in MySQL Connector/NET Version 0.71

• Fixed bug in MySqlStream where too much data could attempt to be read (thanks Peter Belbin)

• Implemented HasRows (thanks Nash Pherson).

• Fixed bug where tables with more than 252 columns cause an exception (thanks Joshua Kessler).

• Fixed bug where SQL statements ending in ; would cause a problem (thanks Shane Krueger).

• Fixed bug in driver where error messages were getting truncated by 1 character (thanks Shane Krueger).

• Made MySqlException serializable (thanks Mathias Hasselmann).

C.3.38. Changes in MySQL Connector/NET Version 0.70

• Updated some of the character code pages to be more accurate.

• Fixed problem where readers could be opened on connections that had readers open.

• Moved test to separate assembly MySqlClientTests.

• Fixed stupid problem in driver with sequence out of order (Thanks Peter Belbin).

• Added some pipe tests.

• Increased default max pool size to 50.

• Compiles with Mono 0-24.

• Fixed connection and data reader dispose problems.

MySQL Change History

2250



• Added String datatype handling to parameter serialization.

• Fixed sequence problem in driver that occurred after thrown exception (thanks Burkhard Perkens-Golomb).

• Added support for CommandBehavior.SingleRow to DataReader.

• Fixed command sql processing so quotes are better handled (thanks Theo Spears).

• Fixed parsing of double, single, and decimal values to account for non-English separators. You still have to use the right syntax if
you using hard coded sql, but if you use parameters the code will convert floating point types to use '.' appropriately internal both in-
to the server and out.

• Added MySqlStream class to simplify timeouts and driver coding.

• Fixed DataReader so that it is closed properly when the associated connection is closed. [thanks smishra]

• Made client more SqlClient compliant so that DataReaders have to be closed before the connection can be used to run another com-
mand.

• Improved DBNull.Value handling in the fields.

• Added several unit tests.

• Fixed MySqlException base class.

• Improved driver coding

• Fixed bug where NextResult was returning false on the last resultset.

• Added more tests for MySQL.

• Improved casting problems by equating unsigned 32bit values to Int64 and unsigned 16bit values to Int32, and so forth.

• Added new constructor for MySqlParameter for (name, type, size, srccol)

• Fixed bug in MySqlDataReader where it didn't check for null fieldlist before returning field count.

• Started adding MySqlClient unit tests (added MySqlClient/Tests folder and some test cases).

• Fixed some things in Connection String handling.

• Moved INIT_DB to MySqlPool. I may move it again, this is in preparation of the conference.

• Fixed bug inside CommandBuilder that prevented inserts from happening properly.

• Reworked some of the internals so that all three execute methods of Command worked properly.

• Fixed many small bugs found during benchmarking.

• The first cut of CoonectionPooling is working. "min pool size" and "max pool size" are respected.

• Work to enable multiple resultsets to be returned.

• Character sets are handled much more intelligently now. The driver queries MySQL at startup for the default character set. That
character set is then used for conversions if that code page can be loaded. If not, then the default code page for the current OS is
used.

• Added code to save the inferred type in the name,value constructor of Parameter.

• Also, inferred type if value of null parameter is changed using Value property.

• Converted all files to use proper Camel case. MySQL is now MySql in all files. PgSQL is now PgSql.

• Added attribute to PgSql code to prevent designer from trying to show.

• Added MySQLDbType property to Parameter object and added proper conversion code to convert from DbType to MySQLDb-
Type).

MySQL Change History

2251



• Removed unused ObjectToString method from MySQLParameter.cs.

• Fixed Add(..) method in ParameterCollection so that it doesn't use Add(name, value) instead.

• Fixed IndexOf and Contains in ParameterCollection to be aware that parameter names are now stored without @.

• Fixed Command.ConvertSQLToBytes so it only allows characters that can be in MySQL variable names.

• Fixed DataReader and Field so that blob fields read their data from Field.cs and GetBytes works right.

• Added simple query builder editor to CommandText property of MySQLCommand.

• Fixed CommandBuilder and Parameter serialization to account for Parameters not storing @ in their names.

• Removed MySQLFieldType enum from Field.cs. Now using MySQLDbType enum.

• Added Designer attribute to several classes to prevent designer view when using VS.Net.

• Fixed Initial catalog typo in ConnectionString designer.

• Removed 3 parameter constructor for MySQLParameter that conflicted with (name, type, value).

• Changed MySQLParameter so paramName is now stored without leading @ (this fixed null inserts when using designer).

• Changed TypeConverter for MySQLParameter to use the constructor with all properties.

C.3.39. Changes in MySQL Connector/NET Version 0.68

• Fixed sequence issue in driver.

• Added DbParametersEditor to make parameter editing more like SqlClient.

• Fixed Command class so that parameters can be edited using the designer

• Update connection string designer to support Use Compression flag.

• Fixed string encoding so that European characters will work correctly.

• Creating base classes to aid in building new data providers.

• Added support for UID key in connection string.

• Field, parameter, command now using DBNull.Value instead of null.

• CommandBuilder using DBNull.Value.

• CommandBuilder now builds insert command correctly when an auto_insert field is not present.

• Field now uses typeof keyword to return System.Types (performance).

C.3.40. Changes in MySQL Connector/NET Version 0.65

• MySQLCommandBuilder now implemented.

• Transaction support now implemented (not all table types support this).

• GetSchemaTable fixed to not use xsd (for Mono).

• Driver is now Mono-compatible.

• TIME data type now supported.

MySQL Change History

2252



• More work to improve Timestamp data type handling.

• Changed signatures of all classes to match corresponding SqlClient classes.

C.3.41. Changes in MySQL Connector/NET Version 0.60

• Protocol compression using SharpZipLib (www.icsharpcode.net).

• Named pipes on Windows now working properly.

• Work done to improve Timestamp data type handling.

• Implemented IEnumerable on DataReader so DataGrid would work.

C.3.42. Changes in MySQL Connector/NET Version 0.50

• Speed increased dramatically by removing bugging network sync code.

• Driver no longer buffers rows of data (more ADO.Net compliant).

• Conversion bugs related to TIMESTAMP and DATETIME fields fixed.

C.4. MySQL Visual Studio Plugin Change History
Note

As of Connector/NET 5.1.2 (14 June 2007), the Visual Studion Plugin is part of the main Connector/NET package. For the
change history for the Visual Studio Plugin, see Section C.3, “MySQL Connector/NET Change History”.

C.4.1. Changes in MySQL Visual Studio Plugin 1.0.3 (Not yet released)
Bugs fixed:

• Running queries based on a stored procedure would cause the data set designer to terminate. (Bugs #26364)

• DataSet wizard would show all tables instead of only the tables available within the selected database. (Bugs #26348)

C.4.2. Changes in MySQL Visual Studio Plugin 1.0.2 (Not yet released)
Bugs fixed:

• The Add Connection dialog of the Server Explorer would freeze when accessing databases with capitalized characters in their name.
(Bug#24875)

• Creating a connection through the Server Explorer when using the Visual Studio Plugin would fail. The installer for the Visual Stu-
dio Plugin has been updated to ensure that Connector/NET 5.0.2 must be installed. (Bug#23071)

C.4.3. Changes in MySQL Visual Studio Plugin 1.0.1 (4 October 2006)
This is a bug fix release to resolve an incompatibility issue with Connector/NET 5.0.1.

It is critical that this release only be used with Connector/NET 5.0.1. After installing Connector/NET 5.0.1, you will need to make a
small change in your machine.config file. This file should be located at
%win%\Microsoft.Net\Framework\v2.0.50727\CONFIG\machine.config (%win% should be the location of your

MySQL Change History

2253

http://bugs.mysql.com/24875
http://bugs.mysql.com/23071


Windows folder). Near the bottom of the file you will see a line like this:

<add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient"
description=".Net Framework Data Provider for MySQL"
type="MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data"/>

It needs to be changed to be like this:

<add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient"
description=".Net Framework Data Provider for MySQL"
type="MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data,
Version=5.0.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d"/>

C.4.4. Changes in MySQL Visual Studio Plugin 1.0.0 (4 October 2006)
Bugs fixed:

• Ability to work with MySQL objects (tables, views, stored procedures, etc) from within Server Explorer.

• DDEX (Data Designer Extensibility) compatibility.

C.5. MySQL Connector/J Change History

C.5.1. Changes in MySQL Connector/J 5.1.x

C.5.1.1. Changes in MySQL Connector/J 5.1.6 (Not yet released)

Functionality added or changed:

• Multiple result sets were not supported when using streaming mode to return data. Both normal statements and the resul sets from
stored procedures now return multiple results sets, with the exception of result sets using registered OUTPUT paramaters.
(Bug#33678)

• XAConnections and datasources have been updated to the JDBC-4.0 standard.

• The profiler event handling has been made extensible via the profilerEventHandler connection property.

• Add the verifyServerCertificate propery. If set to "false" the driver will not verify the server's certificate when useSSL
is set to "true"

When using this feature, the keystore parameters should be specified by the clientCertificateKeyStore* properties, rather
than system properties, as the JSSE doesn't it straightforward to have a non-verifying trust store and the "default" key store.

Bugs fixed:

• MysqlConnectionPoolDataSource does not support ReplicationConnection. Notice that we implemented
com.mysql.jdbc.Connection for ReplicationConnection, however, only accessors from ConnectionProperties are
implemented (not the mutators), and they return values from the currently active connection. All other methods from
com.mysql.jdbc.Connection are implemented, and operate on the currently active connection, with the exception of re-
setServerState() and changeUser(). (Bug#34937)

• ResultSet.getTimestamp() returns incorrect values for month/day of TIMESTAMPs when using server-side prepared state-
ments (not enabled by default). (Bug#34913)

• RowDataStatic does't always set the metadata in ResultSetRow, which can lead to failures when unpacking DATE, TIME,
DATETIME and TIMESTAMP types when using absolute, relative, and previous result set navigation methods. (Bug#34762)

• When calling isValid() on an active connection, if the timeout is non-zero then the Connection is invalidated even if the
Connection is valid. (Bug#34703)

MySQL Change History

2254

http://bugs.mysql.com/33678
http://bugs.mysql.com/34937
http://bugs.mysql.com/34913
http://bugs.mysql.com/34762
http://bugs.mysql.com/34703


• It was not possible to truncate a BLOB using Blog.truncate() when using 0 as an argument. (Bug#34677)

• When using a cursor fetch for a statement, the internal prepared statement could cause a memory leak until the connection was
closed. The internal prepared statement is now deleted when the corresponding result set is closed. (Bug#34518)

• When retrieving the column type name of a geometry field, the driver would return UNKNOWN instead of GEOMETRY. (Bug#34194)

• Statements with batched values do not return correct values for getGeneratedKeys() when rewriteBatchedState-
ments is set to true, and the statement has an ON DUPLICATE KEY UPDATE clause. (Bug#34093)

• The internal class ResultSetInternalMethods referenced the non-public class
com.mysql.jdbc.CachedResultSetMetaData. (Bug#33823)

• A NullPointerException could be raised when using client-side prepared statements and enabled the prepared statement
cache using the cachePrepStmts. (Bug#33734)

• Using server side cursors and cursor fetch, the table metadata information would return the data type name instead of the column
name. (Bug#33594)

• ResultSet.getTimestamp() would throw a NullPointerException instead of a SQLException when called on an
empty ResultSet. (Bug#33162)

• Load balancing connection using best response time would incorrectly "stick" to hosts that were down when the connection was first
created.

We solve this problem with a black list that is used during the picking of new hosts. If the black list ends up including all configured
hosts, the driver will retry for a configurable number of times (the retriesAllDown configuration property, with a default of 120
times), sleeping 250ms between attempts to pick a new connection.

We've also went ahead and made the balancing strategy extensible. To create a new strategy, implement the interface
com.mysql.jdbc.BalanceStrategy (which also includes our standard "extension" interface), and tell the driver to use it by
passing in the class name via the loadBalanceStrategy configuration property. (Bug#32877)

• During a Daylight Savings Time (DST) switchover, there was no way to store two timestamp/datetime values , as the hours end up
being the same when sent as the literal that MySQL requires.

Note that to get this scenario to work with MySQL (since it doesn't support per-value timezones), you need to configure your server
(or session) to be in UTC, and tell the driver not to use the legacy date/time code by setting useLegacyDatetimeCode to
"false". This will cause the driver to always convert to/from the server and client timezone consistently.

This bug fix also fixes Bug#15604, by adding entirely new date/time handling code that can be switched on by useLegacyDate-
timeCode being set to "false" as a JDBC configuration property. For Connector/J 5.1.x, the default is "true", in trunk and beyond
it will be "false" (i.e. the old date/time handling code will be deprecated) (Bug#32577, Bug#15604)

• When unpacking rows directly, we don't hand off error message packets to the internal method which decodes them correctly, so no
exception is raised, and the driver than hangs trying to read rows that aren't there. This tends to happen when calling stored proced-
ures, as normal SELECTs won't have an error in this spot in the protocol unless an I/O error occurs. (Bug#32246)

• When using a connection from ConnectionPoolDataSource, some Connection.prepareStatement() methods
would return null instead of the prepared statement. (Bug#32101)

• Using CallableStatement.setNull() on a stored function would throw an ArrayIndexOutOfBounds exception when
setting the last parameter to null. (Bug#31823)

• MysqlValidConnectionChecker doesn't properly handle connections created using ReplicationConnection.
(Bug#31790)

• Retrieving the server version information for an active connection could return invalid information if the default character encoding
on the host was not ASCII compatible. (Bug#31192)

• Further fixes have been made to this bug in the event that a node is non-responsive. Connector/J will now try a different random
node instead of waiting for the node to recover before continuing. (Bug#31053)

• ResultSet returned by Statement.getGeneratedKeys() is not closed automatically when statement that created it is
closed. (Bug#30508)

MySQL Change History

2255

http://bugs.mysql.com/34677
http://bugs.mysql.com/34518
http://bugs.mysql.com/34194
http://bugs.mysql.com/34093
http://bugs.mysql.com/33823
http://bugs.mysql.com/33734
http://bugs.mysql.com/33594
http://bugs.mysql.com/33162
http://bugs.mysql.com/32877
http://bugs.mysql.com/15604
http://bugs.mysql.com/32577
http://bugs.mysql.com/15604
http://bugs.mysql.com/32246
http://bugs.mysql.com/32101
http://bugs.mysql.com/31823
http://bugs.mysql.com/31790
http://bugs.mysql.com/31192
http://bugs.mysql.com/31053
http://bugs.mysql.com/30508


• DatabaseMetadata.getColumns() doesn't return the correct column names if the connection character isn't UTF-8. A bug
in MySQL server compounded the issue, but was fixed within the MySQL 5.0 release cycle. The fix includes changes to all the sec-
tions of the code that access the server metadata. (Bug#20491)

• Fixed ResultSetMetadata.getColumnName() for result sets returned from Statement.getGeneratedKeys() - it
was returning null instead of "GENERATED_KEY" as in 5.0.x.

C.5.1.2. Changes in MySQL Connector/J 5.1.5 (09 October 2007)

The following features are new, compared to the 5.0 series of Connector/J

• Support for JDBC-4.0 NCHAR, NVARCHAR and NCLOB types.

• JDBC-4.0 support for setting per-connection client information (which can be viewed in the comments section of a query via SHOW
PROCESSLIST on a MySQL server, or can be extended to support custom persistence of the information via a public interface).

• Support for JDBC-4.0 XML processing via JAXP interfaces to DOM, SAX and StAX.

• JDBC-4.0 standardized unwrapping to interfaces that include vendor extensions.

Functionality added or changed:

• Added autoSlowLog configuration property, overrides slowQueryThreshold* properties, driver determines slow queries by
those that are slower than 5 * stddev of the mean query time (outside the 96% percentile).

Bugs fixed:

• When a connection is in read-only mode, queries that are wrapped in parentheses were incorrectly identified DML statements.
(Bug#28256)

C.5.1.3. Changes in MySQL Connector/J 5.1.4 (Not Released)

Only released internally.

C.5.1.4. Changes in MySQL Connector/J 5.1.3 (10 September 2007)

The following features are new, compared to the 5.0 series of Connector/J

• Support for JDBC-4.0 NCHAR, NVARCHAR and NCLOB types.

• JDBC-4.0 support for setting per-connection client information (which can be viewed in the comments section of a query via SHOW
PROCESSLIST on a MySQL server, or can be extended to support custom persistence of the information via a public interface).

• Support for JDBC-4.0 XML processing via JAXP interfaces to DOM, SAX and StAX.

• JDBC-4.0 standardized unwrapping to interfaces that include vendor extensions.

Functionality added or changed:

• Connector/J now connects using an initial character set of utf-8 solely for the purpose of authentication to allow user names or
database names in any character set to be used in the JDBC connection URL. (Bug#29853)

• Added two configuration parameters:

• blobsAreStrings — Should the driver always treat BLOBs as Strings. Added specifically to work around dubious metadata
returned by the server for GROUP BY clauses. Defaults to false.

MySQL Change History

2256

http://bugs.mysql.com/20491
http://bugs.mysql.com/28256
http://bugs.mysql.com/29853


• functionsNeverReturnBlobs — Should the driver always treat data from functions returning BLOBs as Strings. Added
specifically to work around dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

• Setting rewriteBatchedStatements to true now causes CallableStatements with batched arguments to be re-written in the
form "CALL (...); CALL (...); ..." to send the batch in as few client-server round trips as possible.

• The driver now picks appropriate internal row representation (whole row in one buffer, or individual byte[]s for each column value)
depending on heuristics, including whether or not the row has BLOB or TEXT types and the overall row-size. The threshold for row
size that will cause the driver to use a buffer rather than individual byte[]s is configured by the configuration property lar-
geRowSizeThreshold, which has a default value of 2KB.

• The data (and how it's stored) for ResultSet rows are now behind an interface which allows us (in some cases) to allocate less
memory per row, in that for "streaming" result sets, we re-use the packet used to read rows, since only one row at a time is ever act-
ive.

• Added experimental support for statement "interceptors" via the com.mysql.jdbc.StatementInterceptor interface, ex-
amples are in com/mysql/jdbc/interceptors. Implement this interface to be placed "in between" query execution, so that
it can be influenced (currently experimental).

• The driver will automatically adjust the server session variable net_write_timeout when it determines its been asked for a
"streaming" result, and resets it to the previous value when the result set has been consumed. (The configuration property is named
netTimeoutForStreamingResults, with a unit of seconds, the value '0' means the driver will not try and adjust this value).

• JDBC-4.0 ease-of-development features including auto-registration with the DriverManager via the service provider mechan-
ism, standardized Connection validity checks and categorized SQLExceptions based on recoverability/retry-ability and class of
the underlying error.

• Statement.setQueryTimeout()s now affect the entire batch for batched statements, rather than the individual statements
that make up the batch.

• Errors encountered during Statement/PreparedStatement/CallableStatement.executeBatch() when re-
writeBatchStatements has been set to true now return BatchUpdateExceptions according to the setting of con-
tinueBatchOnError.

If continueBatchOnError is set to true, the update counts for the "chunk" that were sent as one unit will all be set to EX-
ECUTE_FAILED, but the driver will attempt to process the remainder of the batch. You can determine which "chunk" failed by
looking at the update counts returned in the BatchUpdateException.

If continueBatchOnError is set to "false", the update counts returned will contain all updates up-to and including the failed
"chunk", with all counts for the failed "chunk" set to EXECUTE_FAILED.

Since MySQL doesn't return multiple error codes for multiple-statements, or for multi-value INSERT/REPLACE, it is the applica-
tion's responsibility to handle determining which item(s) in the "chunk" actually failed.

• New methods on com.mysql.jdbc.Statement: setLocalInfileInputStream() and getLocalInfileInputStream():

• setLocalInfileInputStream() sets an InputStream instance that will be used to send data to the MySQL server for
a LOAD DATA LOCAL INFILE statement rather than a FileInputStream or URLInputStream that represents the
path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE statement, and will automatically
be closed by the driver, so it needs to be reset before each call to execute*() that would cause the MySQL server to request
data to fulfill the request for LOAD DATA LOCAL INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or URLInputStream as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send data in response to a
LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set via setLocalInfileInputStream().

• Setting useBlobToStoreUTF8OutsideBMP to true tells the driver to treat [MEDIUM/LONG]BLOB columns as
[LONG]VARCHAR columns holding text encoded in UTF-8 that has characters outside the BMP (4-byte encodings), which MySQL
server can't handle natively.

MySQL Change History

2257



Set utf8OutsideBmpExcludedColumnNamePattern to a regex so that column names matching the given regex will still
be treated as BLOBs The regex must follow the patterns used for the java.util.regexpackage. The default is to exclude no
columns, and include all columns.

Set utf8OutsideBmpIncludedColumnNamePattern to specify exclusion rules to
utf8OutsideBmpExcludedColumnNamePattern". The regex must follow the patterns used for the java.util.regex package.

Bugs fixed:

• setObject(int, Object, int, int) delegate in PreparedStatmentWrapper delegates to wrong method. (Bug#30892)

• NPE with null column values when padCharsWithSpace is set to true. (Bug#30851)

• Collation on VARBINARY column types would be misidentified. A fix has been added, but this fix only works for MySQL server
versions 5.0.25 and newer, since earlier versions didn't consistently return correct metadata for functions, and thus results from sub-
queries and functions were indistinguishable from each other, leading to type-related bugs. (Bug#30664)

• An ArithmeticException or NullPointerException would be raised when the batch had zero members and re-
writeBatchedStatements=true when addBatch() was never called, or executeBatch() was called immediately
after clearBatch(). (Bug#30550)

• Closing a load-balanced connection would cause a ClassCastException. (Bug#29852)

• Connection checker for JBoss didn't use same method parameters via reflection, causing connections to always seem "bad".
(Bug#29106)

• DatabaseMetaData.getTypeInfo() for the types DECIMAL and NUMERIC will return a precision of 254 for server ver-
sions older than 5.0.3, 64 for versions 5.0.3-5.0.5 and 65 for versions newer than 5.0.5. (Bug#28972)

• CallableStatement.executeBatch() doesn't work when connection property noAccessToProcedureBodies has
been set to true.

The fix involves changing the behavior of noAccessToProcedureBodies,in that the driver will now report all paramters as
"IN" paramters but allow callers to call registerOutParameter() on them without throwing an exception. (Bug#28689)

• DatabaseMetaData.getColumns() doesn't contain SCOPE_* or IS_AUTOINCREMENT columns. (Bug#27915)

• Schema objects with identifiers other than the connection character aren't retrieved correctly in ResultSetMetadata.
(Bug#27867)

• Connection.getServerCharacterEncoding() doesn't work for servers with version >= 4.1. (Bug#27182)

• The automated SVN revisions in DBMD.getDriverVersion(). The SVN revision of the directory is now inserted into the ver-
sion information during the build. (Bug#21116)

• Specifying a "validation query" in your connection pool that starts with "/* ping */" _exactly_ will cause the driver to instead send a
ping to the server and return a fake result set (much lighter weight), and when using a ReplicationConnection or a LoadBalanced-
Connection, will send the ping across all active connections.

C.5.1.5. Changes in MySQL Connector/J 5.1.2 (29 June 2007)

This is a new Beta development release, fixing recently discovered bugs.

Functionality added or changed:

• Setting the configuration property rewriteBatchedStatements to true will now cause the driver to rewrite batched pre-
pared statements with more than 3 parameter sets in a batch into multi-statements (separated by ";") if they are not plain (that is,
without SELECT or ON DUPLICATE KEY UPDATE clauses) INSERT or REPLACE statements.

C.5.1.6. Changes in MySQL Connector/J 5.1.1 (22 June 2007)

MySQL Change History

2258

http://bugs.mysql.com/30892
http://bugs.mysql.com/30851
http://bugs.mysql.com/30664
http://bugs.mysql.com/30550
http://bugs.mysql.com/29852
http://bugs.mysql.com/29106
http://bugs.mysql.com/28972
http://bugs.mysql.com/28689
http://bugs.mysql.com/27915
http://bugs.mysql.com/27867
http://bugs.mysql.com/27182
http://bugs.mysql.com/21116


This is a new Alpha development release, adding new features and fixing recently discovered bugs.

Functionality added or changed:

• Incompatible Change: Pulled vendor-extension methods of Connection implementation out into an interface to support
java.sql.Wrapper functionality from ConnectionPoolDataSource. The vendor extensions are javadoc'd in the
com.mysql.jdbc.Connection interface.

For those looking further into the driver implementation, it is not an API that is used for plugability of implementations inside our
driver (which is why there are still references to ConnectionImpl throughout the code).

We've also added server and client prepareStatement() methods that cover all of the variants in the JDBC API.

Connection.serverPrepare(String) has been re-named to Connection.serverPrepareStatement() for con-
sistency with Connection.clientPrepareStatement().

• Row navigation now causes any streams/readers open on the result set to be closed, as in some cases we're reading directly from a
shared network packet and it will be overwritten by the "next" row.

• Made it possible to retrieve prepared statement parameter bindings (to be used in StatementInterceptors, primarily).

• Externalized the descriptions of connection properties.

• The data (and how it's stored) for ResultSet rows are now behind an interface which allows us (in some cases) to allocate less
memory per row, in that for "streaming" result sets, we re-use the packet used to read rows, since only one row at a time is ever act-
ive.

• Similar to Connection, we pulled out vendor extensions to Statement into an interface named com.mysql.Statement,
and moved the Statement class into com.mysql.StatementImpl. The two methods (javadoc'd in
com.mysql.Statement are enableStreamingResults(), which already existed, and disableStreamingRes-
ults() which sets the statement instance back to the fetch size and result set type it had before enableStreamingRes-
ults() was called.

• Driver now picks appropriate internal row representation (whole row in one buffer, or individual byte[]s for each column value) de-
pending on heuristics, including whether or not the row has BLOB or TEXT types and the overall row-size. The threshold for row
size that will cause the driver to use a buffer rather than individual byte[]s is configured by the configuration property lar-
geRowSizeThreshold, which has a default value of 2KB.

• Added experimental support for statement "interceptors" via the com.mysql.jdbc.StatementInterceptor interface, ex-
amples are in com/mysql/jdbc/interceptors.

Implement this interface to be placed "in between" query execution, so that you can influence it. (currently experimental).

StatementInterceptors are "chainable" when configured by the user, the results returned by the "current" interceptor will be
passed on to the next on in the chain, from left-to-right order, as specified by the user in the JDBC configuration property state-
mentInterceptors.

• See the sources (fully javadoc'd) for com.mysql.jdbc.StatementInterceptor for more details until we iron out the API
and get it documented in the manual.

• Setting rewriteBatchedStatements to true now causes CallableStatements with batched arguments to be re-
written in the form CALL (...); CALL (...); ... to send the batch in as few client-server round trips as possible.

C.5.1.7. Changes in MySQL Connector/J 5.1.0 (11 April 2007)

This is the first public alpha release of the current Connector/J 5.1 development branch, providing an insight to upcoming features. Al-
though some of these are still under development, this release includes the following new features and changes (in comparison to the
current Connector/J 5.0 production release):

Important change: Due to a number of issues with the use of server-side prepared statements, Connector/J 5.0.5 has disabled their use
by default. The disabling of server-side prepared statements does not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your connector string:

MySQL Change History

2259



useServerPrepStmts=true

The default value of this property is false (that is, Connector/J does not use server-side prepared statements).

Note

The disabling of server-side prepared statements does not affect the operation of the connector. However, if you use the
useTimezone=true connection option and use client-side prepared statements (instead of server-side prepared state-
ments) you should also set useSSPSCompatibleTimezoneShift=true.

Functionality added or changed:

• Refactored CommunicationsException into a JDBC-3.0 version, and a JDBC-4.0 version (which extends SQLRecover-
ableException, now that it exists).

Note

This change means that if you were catching com.mysql.jdbc.CommunicationsException in your applications
instead of looking at the SQLState class of 08, and are moving to Java 6 (or newer), you need to change your imports to
that exception to be com.mysql.jdbc.exceptions.jdbc4.CommunicationsException, as the old class
will not be instantiated for communications link-related errors under Java 6.

• Added support for JDBC-4.0 categorized SQLExceptions.

• Added support for JDBC-4.0's NCLOB, and NCHAR/NVARCHAR types.

• com.mysql.jdbc.java6.javac — full path to your Java-6 javac executable

• Added support for JDBC-4.0's SQLXML interfaces.

• Re-worked Ant buildfile to build JDBC-4.0 classes separately, as well as support building under Eclipse (since Eclipse can't mix/
match JDKs).

To build, you must set JAVA_HOME to J2SDK-1.4.2 or Java-5, and set the following properties on your Ant command line:

• com.mysql.jdbc.java6.javac — full path to your Java-6 javac executable

• com.mysql.jdbc.java6.rtjar — full path to your Java-6 rt.jar file

• New feature — driver will automatically adjust session variable net_write_timeout when it determines it has been asked for a
"streaming" result, and resets it to the previous value when the result set has been consumed. (configuration property is named
netTimeoutForStreamingResults value and has a unit of seconds, the value 0 means the driver will not try and adjust this
value).

• Added support for JDBC-4.0's client information. The backend storage of information provided via Connec-
tion.setClientInfo() and retrieved by Connection.getClientInfo() is pluggable by any class that implements the
com.mysql.jdbc.JDBC4ClientInfoProvider interface and has a no-args constructor.

The implementation used by the driver is configured using the clientInfoProvider configuration property (with a default of
value of com.mysql.jdbc.JDBC4CommentClientInfoProvider, an implementation which lists the client information as
a comment prepended to every query sent to the server).

This functionality is only available when using Java-6 or newer.

• com.mysql.jdbc.java6.rtjar — full path to your Java-6 rt.jar file

• Added support for JDBC-4.0's Wrapper interface.

C.5.2. Changes in MySQL Connector/J 5.0.x

C.5.2.1. Changes in MySQL Connector/J 5.0.8 (09 October 2007)

Functionality added or changed:

MySQL Change History

2260



• blobsAreStrings — Should the driver always treat BLOBs as Strings. Added specifically to work around dubious metadata re-
turned by the server for GROUP BY clauses. Defaults to false.

• Added two configuration parameters:

• blobsAreStrings — Should the driver always treat BLOBs as Strings. Added specifically to work around dubious metadata
returned by the server for GROUP BY clauses. Defaults to false.

• functionsNeverReturnBlobs — Should the driver always treat data from functions returning BLOBs as Strings. Added
specifically to work around dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

• functionsNeverReturnBlobs — Should the driver always treat data from functions returning BLOBs as Strings. Added spe-
cifically to work around dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

• XAConnections now start in auto-commit mode (as per JDBC-4.0 specification clarification).

• Driver will now fall back to sane defaults for max_allowed_packet and net_buffer_length if the server reports them in-
correctly (and will log this situation at WARN level, since it's actually an error condition).

Bugs fixed:

• Connections established using URLs of the form jdbc:mysql:loadbalance:// weren't doing failover if they tried to connect
to a MySQL server that was down. The driver now attempts connections to the next "best" (depending on the load balance strategy
in use) server, and continues to attempt connecting to the next "best" server every 250 milliseconds until one is found that is up and
running or 5 minutes has passed.

If the driver gives up, it will throw the last-received SQLException. (Bug#31053)

• setObject(int, Object, int, int) delegate in PreparedStatmentWrapper delegates to wrong method. (Bug#30892)

• NPE with null column values when padCharsWithSpace is set to true. (Bug#30851)

• Collation on VARBINARY column types would be misidentified. A fix has been added, but this fix only works for MySQL server
versions 5.0.25 and newer, since earlier versions didn't consistently return correct metadata for functions, and thus results from sub-
queries and functions were indistinguishable from each other, leading to type-related bugs. (Bug#30664)

• An ArithmeticException or NullPointerException would be raised when the batch had zero members and re-
writeBatchedStatements=true when addBatch() was never called, or executeBatch() was called immediately
after clearBatch(). (Bug#30550)

• Closing a load-balanced connection would cause a ClassCastException. (Bug#29852)

• Connection checker for JBoss didn't use same method parameters via reflection, causing connections to always seem "bad".
(Bug#29106)

• DatabaseMetaData.getTypeInfo() for the types DECIMAL and NUMERIC will return a precision of 254 for server ver-
sions older than 5.0.3, 64 for versions 5.0.3-5.0.5 and 65 for versions newer than 5.0.5. (Bug#28972)

• CallableStatement.executeBatch() doesn't work when connection property noAccessToProcedureBodies has
been set to true.

The fix involves changing the behavior of noAccessToProcedureBodies,in that the driver will now report all paramters as
"IN" paramters but allow callers to call registerOutParameter() on them without throwing an exception. (Bug#28689)

• When a connection is in read-only mode, queries that are wrapped in parentheses were incorrectly identified DML statements.
(Bug#28256)

• UNSIGNED types not reported via DBMD.getTypeInfo(), and capitalization of type names is not consistent between DB-
MD.getColumns(), RSMD.getColumnTypeName() and DBMD.getTypeInfo().

This fix also ensures that the precision of UNSIGNED MEDIUMINT and UNSIGNED BIGINT is reported correctly via DB-
MD.getColumns(). (Bug#27916)

• DatabaseMetaData.getColumns() doesn't contain SCOPE_* or IS_AUTOINCREMENT columns. (Bug#27915)

MySQL Change History

2261

http://bugs.mysql.com/31053
http://bugs.mysql.com/30892
http://bugs.mysql.com/30851
http://bugs.mysql.com/30664
http://bugs.mysql.com/30550
http://bugs.mysql.com/29852
http://bugs.mysql.com/29106
http://bugs.mysql.com/28972
http://bugs.mysql.com/28689
http://bugs.mysql.com/28256
http://bugs.mysql.com/27916
http://bugs.mysql.com/27915


• Schema objects with identifiers other than the connection character aren't retrieved correctly in ResultSetMetadata.
(Bug#27867)

• Cached metadata with PreparedStatement.execute() throws NullPointerException. (Bug#27412)

• Connection.getServerCharacterEncoding() doesn't work for servers with version >= 4.1. (Bug#27182)

• The automated SVN revisions in DBMD.getDriverVersion(). The SVN revision of the directory is now inserted into the ver-
sion information during the build. (Bug#21116)

• Specifying a "validation query" in your connection pool that starts with "/* ping */" _exactly_ will cause the driver to instead send a
ping to the server and return a fake result set (much lighter weight), and when using a ReplicationConnection or a LoadBalanced-
Connection, will send the ping across all active connections.

C.5.2.2. Changes in MySQL Connector/J 5.0.7 (20 July 2007)

Functionality added or changed:

• The driver will now automatically set useServerPrepStmts to true when useCursorFetch has been set to true, since
the feature requires server-side prepared statements in order to function.

• tcpKeepAlive - Should the driver set SO_KEEPALIVE (default true)?

• Give more information in EOFExceptions thrown out of MysqlIO (how many bytes the driver expected to read, how many it actu-
ally read, say that communications with the server were unexpectedly lost).

• Driver detects when it is running in a ColdFusion MX server (tested with version 7), and uses the configuration bundle coldFu-
sion, which sets useDynamicCharsetInfo to false (see previous entry), and sets useLocalSessionState and
autoReconnect to true.

• tcpNoDelay - Should the driver set SO_TCP_NODELAY (disabling the Nagle Algorithm, default true)?

• Added configuration property slowQueryThresholdNanos - if useNanosForElapsedTime is set to true, and this prop-
erty is set to a non-zero value the driver will use this threshold (in nanosecond units) to determine if a query was slow, instead of us-
ing millisecond units.

• tcpRcvBuf - Should the driver set SO_RCV_BUF to the given value? The default value of '0', means use the platform default
value for this property.

• Setting useDynamicCharsetInfo to false now causes driver to use static lookups for collations as well (makes ResultSet-
Metadata.isCaseSensitive() much more efficient, which leads to performance increase for ColdFusion, which calls this method for
every column on every table it sees, it appears).

• Added configuration properties to allow tuning of TCP/IP socket parameters:

• tcpNoDelay - Should the driver set SO_TCP_NODELAY (disabling the Nagle Algorithm, default true)?

• tcpKeepAlive - Should the driver set SO_KEEPALIVE (default true)?

• tcpRcvBuf - Should the driver set SO_RCV_BUF to the given value? The default value of '0', means use the platform default
value for this property.

• tcpSndBuf - Should the driver set SO_SND_BUF to the given value? The default value of '0', means use the platform default
value for this property.

• tcpTrafficClass - Should the driver set traffic class or type-of-service fields? See the documentation for
java.net.Socket.setTrafficClass() for more information.

• Setting the configuration parameter useCursorFetch to true for MySQL-5.0+ enables the use of cursors that allow Connector/
J to save memory by fetching result set rows in chunks (where the chunk size is set by calling setFetchSize() on a Statement or Res-
ultSet) by using fully-materialized cursors on the server.

• tcpSndBuf - Should the driver set SO_SND_BUF to the given value? The default value of '0', means use the platform default
value for this property.

MySQL Change History

2262

http://bugs.mysql.com/27867
http://bugs.mysql.com/27412
http://bugs.mysql.com/27182
http://bugs.mysql.com/21116


• tcpTrafficClass - Should the driver set traffic class or type-of-service fields? See the documentation for
java.net.Socket.setTrafficClass() for more information.

• Added new debugging functionality - Setting configuration property includeInnodbStatusInDeadlockExceptions to
true will cause the driver to append the output of SHOW ENGINE INNODB STATUS to deadlock-related exceptions, which will
enumerate the current locks held inside InnoDB.

• Added configuration property useNanosForElapsedTime - for profiling/debugging functionality that measures elapsed time,
should the driver try to use nanoseconds resolution if available (requires JDK >= 1.5)?

Note

If useNanosForElapsedTime is set to true, and this property is set to "0" (or left default), then elapsed times will
still be measured in nanoseconds (if possible), but the slow query threshold will be converted from milliseconds to nano-
seconds, and thus have an upper bound of approximately 2000 milliseconds (as that threshold is represented as an integer,
not a long).

Bugs fixed:

• Don't send any file data in response to LOAD DATA LOCAL INFILE if the feature is disabled at the client side. This is to prevent a
malicious server or man-in-the-middle from asking the client for data that the client is not expecting. Thanks to Jan Kneschke for
discovering the exploit and Andrey "Poohie" Hristov, Konstantin Osipov and Sergei Golubchik for discussions about implications
and possible fixes. (Bug#29605)

• Parser in client-side prepared statements runs to end of statement, rather than end-of-line for '#' comments. Also added support for '-
-' single-line comments. (Bug#28956)

• Parser in client-side prepared statements eats character following '/' if it's not a multi-line comment. (Bug#28851)

• PreparedStatement.getMetaData() for statements containing leading one-line comments is not returned correctly.

As part of this fix, we also overhauled detection of DML for executeQuery() and SELECTs for executeUpdate() in plain
and prepared statements to be aware of the same types of comments. (Bug#28469)

C.5.2.3. Changes in MySQL Connector/J 5.0.6 (15 May 2007)

Functionality added or changed:

• Added an experimental load-balanced connection designed for use with SQL nodes in a MySQL Cluster/NDB environment (This is
not for master-slave replication. For that, we suggest you look at ReplicationConnection or lbpool).

If the JDBC URL starts with jdbc:mysql:loadbalance://host-1,host-2,...host-n, the driver will create an im-
plementation of java.sql.Connection that load balances requests across a series of MySQL JDBC connections to the given
hosts, where the balancing takes place after transaction commit.

Therefore, for this to work (at all), you must use transactions, even if only reading data.

Physical connections to the given hosts will not be created until needed.

The driver will invalidate connections that it detects have had communication errors when processing a request. A new connection
to the problematic host will be attempted the next time it is selected by the load balancing algorithm.

There are two choices for load balancing algorithms, which may be specified by the loadBalanceStrategy JDBC URL con-
figuration property:

• random — the driver will pick a random host for each request. This tends to work better than round-robin, as the randomness
will somewhat account for spreading loads where requests vary in response time, while round-robin can sometimes lead to over-
loaded nodes if there are variations in response times across the workload.

• bestResponseTime — the driver will route the request to the host that had the best response time for the previous transac-
tion.

MySQL Change History

2263

http://bugs.mysql.com/29605
http://bugs.mysql.com/28956
http://bugs.mysql.com/28851
http://bugs.mysql.com/28469


• bestResponseTime — the driver will route the request to the host that had the best response time for the previous transaction.

• Added configuration property padCharsWithSpace (defaults to false). If set to true, and a result set column has the CHAR
type and the value does not fill the amount of characters specified in the DDL for the column, the driver will pad the remaining
characters with space (for ANSI compliance).

• When useLocalSessionState is set to true and connected to a MySQL-5.0 or later server, the JDBC driver will now de-
termine whether an actual commit or rollback statement needs to be sent to the database when Connection.commit() or
Connection.rollback() is called.

This is especially helpful for high-load situations with connection pools that always call Connection.rollback() on connec-
tion check-in/check-out because it avoids a round-trip to the server.

• Added configuration property useDynamicCharsetInfo. If set to false (the default), the driver will use a per-connection
cache of character set information queried from the server when necessary, or when set to true, use a built-in static mapping that is
more efficient, but isn't aware of custom character sets or character sets implemented after the release of the JDBC driver.

Note

This only affects the padCharsWithSpace configuration property and the ResultSet-
MetaData.getColumnDisplayWidth() method.

• New configuration property, enableQueryTimeouts (default true).

When enabled, query timeouts set via Statement.setQueryTimeout() use a shared java.util.Timer instance for
scheduling. Even if the timeout doesn't expire before the query is processed, there will be memory used by the TimerTask for the
given timeout which won't be reclaimed until the time the timeout would have expired if it hadn't been cancelled by the driver.
High-load environments might want to consider disabling this functionality. (this configuration property is part of the maxPer-
formance configuration bundle).

• Give better error message when "streaming" result sets, and the connection gets clobbered because of exceeding
net_write_timeout on the server.

• random — the driver will pick a random host for each request. This tends to work better than round-robin, as the randomness will
somewhat account for spreading loads where requests vary in response time, while round-robin can sometimes lead to overloaded
nodes if there are variations in response times across the workload.

• com.mysql.jdbc.[NonRegistering]Driver now understands URLs of the format jdbc:mysql:replication://
and jdbc:mysql:loadbalance:// which will create a ReplicationConnection (exactly like when using
[NonRegistering]ReplicationDriver) and an experimental load-balanced connection designed for use with SQL nodes
in a MySQL Cluster/NDB environment, respectively.

In an effort to simplify things, we're working on deprecating multiple drivers, and instead specifying different core behavior based
upon JDBC URL prefixes, so watch for [NonRegistering]ReplicationDriver to eventually disappear, to be replaced
with com.mysql.jdbc[NonRegistering]Driver with the new URL prefix.

• Fixed issue where a failed-over connection would let an application call setReadOnly(false), when that call should be ig-
nored until the connection is reconnected to a writable master unless failoverReadOnly had been set to false.

• Driver will now use INSERT INTO ... VALUES (DEFAULT)form of statement for updatable result sets for Result-
Set.insertRow(), rather than pre-populating the insert row with values from DatabaseMetaData.getColumns()(which
results in a SHOW FULL COLUMNS on the server for every result set). If an application requires access to the default values before
insertRow() has been called, the JDBC URL should be configured with populateInsertRowWithDefaultValues set
to true.

This fix specifically targets performance issues with ColdFusion and the fact that it seems to ask for updatable result sets no matter
what the application does with them.

• More intelligent initial packet sizes for the "shared" packets are used (512 bytes, rather than 16K), and initial packets used during
handshake are now sized appropriately as to not require reallocation.

Bugs fixed:

• More useful error messages are generated when the driver thinks a result set is not updatable. (Thanks to Ashley Martens for the

MySQL Change History

2264



patch). (Bug#28085)

• Connection.getTransactionIsolation() uses "SHOW VARIABLES LIKE" which is very inefficient on MySQL-5.0+
servers. (Bug#27655)

• Fixed issue where calling getGeneratedKeys() on a prepared statement after calling execute() didn't always return the
generated keys (executeUpdate() worked fine however). (Bug#27655)

• CALL /* ... */ some_proc() doesn't work. As a side effect of this fix, you can now use /* */ and # comments when
preparing statements using client-side prepared statement emulation.

If the comments happen to contain parameter markers (?), they will be treated as belonging to the comment (that is, not recognized)
rather than being a parameter of the statement.

Note

The statement when sent to the server will contain the comments as-is, they're not stripped during the process of preparing
the PreparedStatement or CallableStatement.

(Bug#27400)

• ResultSet.get*() with a column index < 1 returns misleading error message. (Bug#27317)

• Using ResultSet.get*() with a column index less than 1 returns a misleading error message. (Bug#27317)

• Comments in DDL of stored procedures/functions confuse procedure parser, and thus metadata about them can not be created, lead-
ing to inability to retrieve said metadata, or execute procedures that have certain comments in them. (Bug#26959)

• Fast date/time parsing doesn't take into account 00:00:00 as a legal value. (Bug#26789)

• PreparedStatement is not closed in BlobFromLocator.getBytes(). (Bug#26592)

• When the configuration property useCursorFetch was set to true, sometimes server would return new, more exact metadata
during the execution of the server-side prepared statement that enables this functionality, which the driver ignored (using the origin-
al metadata returned during prepare()), causing corrupt reading of data due to type mismatch when the actual rows were re-
turned. (Bug#26173)

• CallableStatements with OUT/INOUT parameters that are "binary" (BLOB, BIT, (VAR)BINARY, JAVA_OBJECT) have
extra 7 bytes. (Bug#25715)

• Whitespace surrounding storage/size specifiers in stored procedure parameters declaration causes NumberFormatException to
be thrown when calling stored procedure on JDK-1.5 or newer, as the Number classes in JDK-1.5+ are whitespace intolerant.
(Bug#25624)

• Client options not sent correctly when using SSL, leading to stored procedures not being able to return results. Thanks to Don Co-
hen for the bug report, testcase and patch. (Bug#25545)

• Statement.setMaxRows() is not effective on result sets materialized from cursors. (Bug#25517)

• BIT(> 1) is returned as java.lang.String from ResultSet.getObject() rather than byte[]. (Bug#25328)

C.5.2.4. Changes in MySQL Connector/J 5.0.5 (02 March 2007)

Functionality added or changed:

• Usage Advisor will now issue warnings for result sets with large numbers of rows. You can configure the trigger value by using the
resultSetSizeThreshold parameter, which has a default value of 100.

• The rewriteBatchedStatements feature can now be used with server-side prepared statements.

• Important change: Due to a number of issues with the use of server-side prepared statements, Connector/J 5.0.5 has disabled their
use by default. The disabling of server-side prepared statements does not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your connector string:

MySQL Change History

2265

http://bugs.mysql.com/28085
http://bugs.mysql.com/27655
http://bugs.mysql.com/27655
http://bugs.mysql.com/27400
http://bugs.mysql.com/27317
http://bugs.mysql.com/27317
http://bugs.mysql.com/26959
http://bugs.mysql.com/26789
http://bugs.mysql.com/26592
http://bugs.mysql.com/26173
http://bugs.mysql.com/25715
http://bugs.mysql.com/25624
http://bugs.mysql.com/25545
http://bugs.mysql.com/25517
http://bugs.mysql.com/25328


useServerPrepStmts=true

The default value of this property is false (that is, Connector/J does not use server-side prepared statements).

• Improved speed of datetime parsing for ResultSets that come from plain or non-server-side prepared statements. You can enable
old implementation with useFastDateParsing=false as a configuration parameter.

• Usage Advisor now detects empty results sets and does not report on columns not referenced in those empty sets.

• Fixed logging of XA commands sent to server, it's now configurable via logXaCommands property (defaults to false).

• Added configuration property localSocketAddress,which is the hostname or IP address given to explicitly configure the inter-
face that the driver will bind the client side of the TCP/IP connection to when connecting.

• We've added a new configuration option treatUtilDateAsTimestamp, which is false by default, as (1) We already had
specific behavior to treat java.util.Date as a java.sql.Timestamp because it's useful to many folks, and (2) that behavior will very
likely be required for drivers JDBC-post-4.0.

Bugs fixed:

• Connection property socketFactory wasn't exposed via correctly named mutator/accessor, causing data source implementations
that use JavaBean naming conventions to set properties to fail to set the property (and in the case of SJAS, fail silently when trying
to set this parameter). (Bug#26326)

• A query execution which timed out did not always throw a MySQLTimeoutException. (Bug#25836)

• Storing a java.util.Date object in a BLOB column would not be serialized correctly during setObject. (Bug#25787)

• Timer instance used for Statement.setQueryTimeout() created per-connection, rather than per-VM, causing memory leak.
(Bug#25514)

• EscapeProcessor gets confused by multiple backslashes. We now push the responsibility of syntax errors back on to the server
for most escape sequences. (Bug#25399)

• INOUT parameters in CallableStatements get doubly-escaped. (Bug#25379)

• When using the rewriteBatchedStatements connection option with PreparedState.executeBatch() an internal
memory leak would occur. (Bug#25073)

• Fixed issue where field-level for metadata from DatabaseMetaData when using INFORMATION_SCHEMA didn't have refer-
ences to current connections, sometimes leading to Null Pointer Exceptions (NPEs) when introspecting them via ResultSet-
MetaData. (Bug#25073)

• StringUtils.indexOfIgnoreCaseRespectQuotes() isn't case-insensitive on the first character of the target. This bug
also affected rewriteBatchedStatements functionality when prepared statements did not use uppercase for the VALUES
clause. (Bug#25047)

• Client-side prepared statement parser gets confused by in-line comments /*...*/ and therefore cannot rewrite batch statements or
reliably detect the type of statements when they are used. (Bug#25025)

• Results sets from UPDATE statements that are part of multi-statement queries would cause an SQLException error, "Result is
from UPDATE". (Bug#25009)

• Specifying US-ASCII as the character set in a connection to a MySQL 4.1 or newer server does not map correctly. (Bug#24840)

• Using DatabaseMetaData.getSQLKeywords() does not return a all of the of the reserved keywords for the current MySQL
version. Current implementation returns the list of reserved words for MySQL 5.1, and does not distinguish between versions.
(Bug#24794)

• Calling Statement.cancel() could result in a Null Pointer Exception (NPE). (Bug#24721)

• Using setFetchSize() breaks prepared SHOW and other commands. (Bug#24360)

MySQL Change History

2266

http://bugs.mysql.com/26326
http://bugs.mysql.com/25836
http://bugs.mysql.com/25787
http://bugs.mysql.com/25514
http://bugs.mysql.com/25399
http://bugs.mysql.com/25379
http://bugs.mysql.com/25073
http://bugs.mysql.com/25073
http://bugs.mysql.com/25047
http://bugs.mysql.com/25025
http://bugs.mysql.com/25009
http://bugs.mysql.com/24840
http://bugs.mysql.com/24794
http://bugs.mysql.com/24721
http://bugs.mysql.com/24360


• Calendars and timezones are now lazily instantiated when required. (Bug#24351)

• Using DATETIME columns would result in time shifts when useServerPrepStmts was true. The reason was due to different
behavior when using client-side compared to server-side prepared statements and the useJDBCCompliantTimezoneShift
option. This is now fixed if moving from server-side prepared statements to client-side prepared statements by setting
useSSPSCompatibleTimezoneShift to true, as the driver can't tell if this is a new deployment that never used server-side
prepared statements, or if it is an existing deployment that is switching to client-side prepared statements from server-side prepared
statements. (Bug#24344)

• Connector/J now returns a better error message when server doesn't return enough information to determine stored procedure/func-
tion parameter types. (Bug#24065)

• A connection error would occur when connecting to a MySQL server with certain character sets. Some collations/character sets re-
ported as "unknown" (specifically cias variants of existing character sets), and inability to override the detected server character
set. (Bug#23645)

• Inconsistency between getSchemas and INFORMATION_SCHEMA. (Bug#23304)

• DatabaseMetaData.getSchemas() doesn't return a TABLE_CATALOG column. (Bug#23303)

• When using a JDBC connection URL that is malformed, the NonRegisteringDriver.getPropertyInfo method will
throw a Null Pointer Exception (NPE). (Bug#22628)

• Some exceptions thrown out of StandardSocketFactory were needlessly wrapped, obscuring their true cause, especially
when using socket timeouts. (Bug#21480)

• When using a server-side prepared statement the driver would send timestamps to the server using nanoseconds instead of milli-
seconds. (Bug#21438)

• When using server-side prepared statements and timestamp columns, value would be incorrectly populated (with nanoseconds, not
microseconds). (Bug#21438)

• ParameterMetaData throws NullPointerException when prepared SQL has a syntax error. Added generateSim-
pleParameterMetadata configuration property, which when set to true will generate metadata reflecting VARCHAR for
every parameter (the default is false, which will cause an exception to be thrown if no parameter metadata for the statement is ac-
tually available). (Bug#21267)

• Fixed an issue where XADataSources couldn't be bound into JNDI, as the DataSourceFactory didn't know how to create
instances of them.

Other changes:

• Avoid static synchronized code in JVM class libraries for dealing with default timezones.

• Performance enhancement of initial character set configuration, driver will only send commands required to configure connection
character set session variables if the current values on the server do not match what is required.

• Re-worked stored procedure parameter parser to be more robust. Driver no longer requires BEGIN in stored procedure definition,
but does have requirement that if a stored function begins with a label directly after the "returns" clause, that the label is not a
quoted identifier.

• Throw exceptions encountered during timeout to thread calling Statement.execute*(), rather than RuntimeException.

• Changed cached result set metadata (when using cacheResultSetMetadata=true) to be cached per-connection rather than
per-statement as previously implemented.

• Reverted back to internal character conversion routines for single-byte character sets, as the ones internal to the JVM are using
much more CPU time than our internal implementation.

• When extracting foreign key information from SHOW CREATE TABLE in DatabaseMetaData, ignore exceptions relating to
tables being missing (which could happen for cross-reference or imported-key requests, as the list of tables is generated first, then it-
erated).

• Fixed some Null Pointer Exceptions (NPEs) when cached metadata was used with UpdatableResultSets.

MySQL Change History

2267

http://bugs.mysql.com/24351
http://bugs.mysql.com/24344
http://bugs.mysql.com/24065
http://bugs.mysql.com/23645
http://bugs.mysql.com/23304
http://bugs.mysql.com/23303
http://bugs.mysql.com/22628
http://bugs.mysql.com/21480
http://bugs.mysql.com/21438
http://bugs.mysql.com/21438
http://bugs.mysql.com/21267


• Take localSocketAddress property into account when creating instances of CommunicationsException when the un-
deryling exception is a java.net.BindException, so that a friendlier error message is given with a little internal diagnostics.

• Fixed cases where ServerPreparedStatements weren't using cached metadata when cacheResultSet-
Metadata=true was used.

• Use a java.util.TreeMap to map column names to ordinal indexes for ResultSet.findColumn() instead of a
HashMap. This allows us to have case-insensitive lookups (required by the JDBC specification) without resorting to the many tran-
sient object instances needed to support this requirement with a normal HashMap with either case-adjusted keys, or case-insensitive
keys. (In the worst case scenario for lookups of a 1000 column result set, TreeMaps are about half as fast wall-clock time as a
HashMap, however in normal applications their use gives many orders of magnitude reduction in transient object instance creation
which pays off later for CPU usage in garbage collection).

• When using cached metadata, skip field-level metadata packets coming from the server, rather than reading them and discarding
them without creating com.mysql.jdbc.Field instances.

C.5.2.5. Changes in MySQL Connector/J 5.0.4 (20 October 2006)

Bugs fixed:

• DBMD.getColumns() does not return expected COLUMN_SIZE for the SET type, now returns length of largest possible set disreg-
arding whitespace or the "," delimitters to be consistent with the ODBC driver. (Bug#22613)

• Added new _ci collations to CharsetMapping - utf8_unicode_ci not working. (Bug#22456)

• Driver was using milliseconds for Statement.setQueryTimeout() when specification says argument is to be in seconds. (Bug#22359)

• Workaround for server crash when calling stored procedures via a server-side prepared statement (driver now detects prepare(stored
procedure) and substitutes client-side prepared statement). (Bug#22297)

• Driver issues truncation on write exception when it shouldn't (due to sending big decimal incorrectly to server with server-side pre-
pared statement). (Bug#22290)

• Newlines causing whitespace to span confuse procedure parser when getting parameter metadata for stored procedures.
(Bug#22024)

• When using information_schema for metadata, COLUMN_SIZE for getColumns() is not clamped to range of java.lang.Integer as is
the case when not using information_schema, thus leading to a truncation exception that isn't present when not using informa-
tion_schema. (Bug#21544)

• Column names don't match metadata in cases where server doesn't return original column names (column functions) thus breaking
compatibility with applications that expect 1-1 mappings between findColumn() and rsmd.getColumnName(), usually manifests it-
self as "Can't find column ('')" exceptions. (Bug#21379)

• Driver now sends numeric 1 or 0 for client-prepared statement setBoolean() calls instead of '1' or '0'.

• Fixed configuration property jdbcCompliantTruncation was not being used for reads of result set values.

• DatabaseMetaData correctly reports true for supportsCatalog*() methods.

• Driver now supports {call sp} (without "()" if procedure has no arguments).

C.5.2.6. Changes in MySQL Connector/J 5.0.3 (26 July 2006)

Functionality added or changed:

• Added configuration option noAccessToProcedureBodies which will cause the driver to create basic parameter metadata for
CallableStatements when the user does not have access to procedure bodies via SHOW CREATE PROCEDURE or selecting
from mysql.proc instead of throwing an exception. The default value for this option is false

Bugs fixed:

MySQL Change History

2268

http://bugs.mysql.com/22613
http://bugs.mysql.com/22456
http://bugs.mysql.com/22359
http://bugs.mysql.com/22297
http://bugs.mysql.com/22290
http://bugs.mysql.com/22024
http://bugs.mysql.com/21544
http://bugs.mysql.com/21379


• Fixed Statement.cancel() causes NullPointerException if underlying connection has been closed due to server fail-
ure. (Bug#20650)

• If the connection to the server has been closed due to a server failure, then the cleanup process will call Statement.cancel(),
triggering a NullPointerException, even though there is no active connection. (Bug#20650)

C.5.2.7. Changes in MySQL Connector/J 5.0.2 (11 July 2006)

Bugs fixed:

• MysqlXaConnection.recover(int flags) now allows combinations of XAResource.TMSTARTRSCAN and
TMENDRSCAN. To simulate the “scanning” nature of the interface, we return all prepared XIDs for TMSTARTRSCAN, and no new
XIDs for calls with TMNOFLAGS, or TMENDRSCAN when not in combination with TMSTARTRSCAN. This change was made for
API compliance, as well as integration with IBM WebSphere's transaction manager. (Bug#20242)

• Fixed MysqlValidConnectionChecker for JBoss doesn't work with MySQLXADataSources. (Bug#20242)

• Added connection/datasource property pinGlobalTxToPhysicalConnection (defaults to false). When set to true,
when using XAConnections, the driver ensures that operations on a given XID are always routed to the same physical connec-
tion. This allows the XAConnection to support XA START ... JOIN after XA END has been called, and is also a workaround
for transaction managers that don't maintain thread affinity for a global transaction (most either always maintain thread affinity, or
have it as a configuration option). (Bug#20242)

• Better caching of character set converters (per-connection) to remove a bottleneck for multibyte character sets. (Bug#20242)

• Fixed ConnectionProperties (and thus some subclasses) are not serializable, even though some J2EE containers expect them
to be. (Bug#19169)

• Fixed driver fails on non-ASCII platforms. The driver was assuming that the platform character set would be a superset of MySQL's
latin1 when doing the handshake for authentication, and when reading error messages. We now use Cp1252 for all strings sent to
the server during the handshake phase, and a hard-coded mapping of the language systtem variable to the character set that is
used for error messages. (Bug#18086)

• Fixed can't use XAConnection for local transactions when no global transaction is in progress. (Bug#17401)

C.5.2.8. Changes in MySQL Connector/J 5.0.1 (Not Released)

Not released due to a packaging error

C.5.2.9. Changes in MySQL Connector/J 5.0.0 (22 December 2005)

Bugs fixed:

• Added support for Connector/MXJ integration via url subprotocol jdbc:mysql:mxj://.... (Bug#14729)

• Idle timeouts cause XAConnections to whine about rolling themselves back. (Bug#14729)

• When fix for Bug#14562 was merged from 3.1.12, added functionality for CallableStatement's parameter metadata to return
correct information for .getParameterClassName(). (Bug#14729)

• Added service-provider entry to META-INF/services/java.sql.Driver for JDBC-4.0 support. (Bug#14729)

• Fuller synchronization of Connection to avoid deadlocks when using multithreaded frameworks that multithread a single connec-
tion (usually not recommended, but the JDBC spec allows it anyways), part of fix to Bug#14972). (Bug#14729)

• Moved all SQLException constructor usage to a factory in SQLError (ground-work for JDBC-4.0 SQLState-based exception
classes). (Bug#14729)

• Removed Java5-specific calls to BigDecimal constructor (when result set value is '', (int)0 was being used as an argument
indirectly via method return value. This signature doesn't exist prior to Java5.) (Bug#14729)

MySQL Change History

2269

http://bugs.mysql.com/20650
http://bugs.mysql.com/20650
http://bugs.mysql.com/20242
http://bugs.mysql.com/20242
http://bugs.mysql.com/20242
http://bugs.mysql.com/20242
http://bugs.mysql.com/19169
http://bugs.mysql.com/18086
http://bugs.mysql.com/17401
http://bugs.mysql.com/14729
http://bugs.mysql.com/14729
http://bugs.mysql.com/14562
http://bugs.mysql.com/14729
http://bugs.mysql.com/14729
http://bugs.mysql.com/14972
http://bugs.mysql.com/14729
http://bugs.mysql.com/14729
http://bugs.mysql.com/14729


• Implementation of Statement.cancel() and Statement.setQueryTimeout(). Both require MySQL-5.0.0 or newer
server, require a separate connection to issue the KILL QUERY statement, and in the case of setQueryTimeout() creates an
additional thread to handle the timeout functionality.

Note: Failures to cancel the statement for setQueryTimeout() may manifest themselves as RuntimeExceptions rather
than failing silently, as there is currently no way to unblock the thread that is executing the query being cancelled due to timeout ex-
piration and have it throw the exception instead. (Bug#14729)

• Return "[VAR]BINARY" for RSMD.getColumnTypeName() when that is actually the type, and it can be distinguished
(MySQL-4.1 and newer). (Bug#14729)

• Attempt detection of the MySQL type BINARY (it's an alias, so this isn't always reliable), and use the
java.sql.Types.BINARY type mapping for it.

• Added unit tests for XADatasource, as well as friendlier exceptions for XA failures compared to the "stock" XAException
(which has no messages).

• If the connection useTimezone is set to true, then also respect time zone conversions in escape-processed string literals (for ex-
ample, "{ts ...}" and "{t ...}").

• Don't allow .setAutoCommit(true), or .commit() or .rollback() on an XA-managed connection as per the JDBC
specification.

• XADataSource implemented (ported from 3.2 branch which won't be released as a product). Use
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource as your datasource class name in your application server to
utilize XA transactions in MySQL-5.0.10 and newer.

• Moved -bin-g.jar file into separate debug subdirectory to avoid confusion.

• Return original column name for RSMD.getColumnName() if the column was aliased, alias name for .getColumnLabel()
(if aliased), and original table name for .getTableName(). Note this only works for MySQL-4.1 and newer, as older servers
don't make this information available to clients.

• Setting useJDBCCompliantTimezoneShift=true (it's not the default) causes the driver to use GMT for all
TIMESTAMP/DATETIME time zones, and the current VM time zone for any other type that refers to time zones. This feature can
not be used when useTimezone=true to convert between server and client time zones.

• PreparedStatement.setString() didn't work correctly when sql_mode on server contained
NO_BACKSLASH_ESCAPES and no characters that needed escaping were present in the string.

• Add one level of indirection of internal representation of CallableStatement parameter metadata to avoid class not found is-
sues on JDK-1.3 for ParameterMetadata interface (which doesn't exist prior to JDBC-3.0).

C.5.3. Changes in MySQL Connector/J 3.1.x

C.5.3.1. Changes in MySQL Connector/J 3.1.15 (Not yet released)

Important change: Due to a number of issues with the use of server-side prepared statements, Connector/J 5.0.5 has disabled their use
by default. The disabling of server-side prepared statements does not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your connector string:

useServerPrepStmts=true

The default value of this property is false (that is, Connector/J does not use server-side prepared statements).

Bugs fixed:

• Specifying US-ASCII as the character set in a connection to a MySQL 4.1 or newer server does not map correctly. (Bug#24840)

C.5.3.2. Changes in MySQL Connector/J 3.1.14 (10-19-2006)

MySQL Change History

2270

http://bugs.mysql.com/14729
http://bugs.mysql.com/14729
http://bugs.mysql.com/24840


Bugs fixed:

• Check and store value for continueBatchOnError property in constructor of Statements, rather than when executing batches, so that
Connections closed out from underneath statements don't cause NullPointerExceptions when it's required to check this property.
(Bug#22290)

• Fixed Bug#18258 - DatabaseMetaData.getTables(), columns() with bad catalog parameter threw exception rather than return empty
result set (as required by spec). (Bug#22290)

• Driver now sends numeric 1 or 0 for client-prepared statement setBoolean() calls instead of '1' or '0'. (Bug#22290)

• Fixed bug where driver would not advance to next host if roundRobinLoadBalance=true and the last host in the list is down.
(Bug#22290)

• Driver issues truncation on write exception when it shouldn't (due to sending big decimal incorrectly to server with server-side pre-
pared statement). (Bug#22290)

• Fixed bug when calling stored functions, where parameters weren't numbered correctly (first parameter is now the return value, sub-
sequent parameters if specified start at index "2"). (Bug#22290)

• Removed logger autodetection altogether, must now specify logger explicitly if you want to use a logger other than one that logs to
STDERR. (Bug#21207)

• DDriver throws NPE when tracing prepared statements that have been closed (in asSQL()). (Bug#21207)

• ResultSet.getSomeInteger() doesn't work for BIT(>1). (Bug#21062)

• Escape of quotes in client-side prepared statements parsing not respected. Patch covers more than bug report, including
NO_BACKSLASH_ESCAPES being set, and stacked quote characters forms of escaping (that is, '' or ""). (Bug#20888)

• Fixed can't pool server-side prepared statements, exception raised when re-using them. (Bug#20687)

• Fixed Updatable result set that contains a BIT column fails when server-side prepared statements are used. (Bug#20485)

• Fixed updatable result set throws ClassCastException when there is row data and moveToInsertRow() is called. (Bug#20479)

• Fixed ResultSet.getShort() for UNSIGNED TINYINT returns incorrect values when using server-side prepared statements.
(Bug#20306)

• ReplicationDriver does not always round-robin load balance depending on URL used for slaves list. (Bug#19993)

• Fixed calling toString() on ResultSetMetaData for driver-generated (that is, from DatabaseMetaData method calls, or from getGen-
eratedKeys()) result sets would raise a NullPointerException. (Bug#19993)

• Connection fails to localhost when using timeout and IPv6 is configured. (Bug#19726)

• ResultSet.getFloatFromString() can't retrieve values near Float.MIN/MAX_VALUE. (Bug#18880)

• Fixed memory leak with profileSQL=true. (Bug#16987)

• Fixed NullPointerException in MysqlDataSourceFactory due to Reference containing RefAddrs with null content. (Bug#16791)

C.5.3.3. Changes in MySQL Connector/J 3.1.13 (26 May 2006)

Bugs fixed:

• Fixed PreparedStatement.setObject(int, Object, int) doesn't respect scale of BigDecimals. (Bug#19615)

• Fixed ResultSet.wasNull() returns incorrect value when extracting native string from server-side prepared statement gener-
ated result set. (Bug#19282)

• Fixed invalid classname returned for ResultSetMetaData.getColumnClassName() for BIGINT type. (Bug#19282)

MySQL Change History

2271

http://bugs.mysql.com/22290
http://bugs.mysql.com/18258
http://bugs.mysql.com/22290
http://bugs.mysql.com/22290
http://bugs.mysql.com/22290
http://bugs.mysql.com/22290
http://bugs.mysql.com/22290
http://bugs.mysql.com/21207
http://bugs.mysql.com/21207
http://bugs.mysql.com/21062
http://bugs.mysql.com/20888
http://bugs.mysql.com/20687
http://bugs.mysql.com/20485
http://bugs.mysql.com/20479
http://bugs.mysql.com/20306
http://bugs.mysql.com/19993
http://bugs.mysql.com/19993
http://bugs.mysql.com/19726
http://bugs.mysql.com/18880
http://bugs.mysql.com/16987
http://bugs.mysql.com/16791
http://bugs.mysql.com/19615
http://bugs.mysql.com/19282
http://bugs.mysql.com/19282


• Fixed case where driver wasn't reading server status correctly when fetching server-side prepared statement rows, which in some
cases could cause warning counts to be off, or multiple result sets to not be read off the wire. (Bug#19282)

• Fixed data truncation and getWarnings() only returns last warning in set. (Bug#18740)

• Fixed aliased column names where length of name > 251 are corrupted. (Bug#18554)

• Improved performance of retrieving BigDecimal, Time, Timestamp and Date values from server-side prepared statements by
creating fewer short-lived instances of Strings when the native type is not an exact match for the requested type. (Bug#18496)

• Added performance feature, re-writing of batched executes for Statement.executeBatch() (for all DML statements) and
PreparedStatement.executeBatch() (for INSERTs with VALUE clauses only). Enable by using "rewriteBatchedState-
ments=true" in your JDBC URL. (Bug#18041)

• Fixed issue where server-side prepared statements don't cause truncation exceptions to be thrown when truncation happens.
(Bug#18041)

• Fixed CallableStatement.registerOutParameter() not working when some parameters pre-populated. Still waiting
for feedback from JDBC experts group to determine what correct parameter count from getMetaData() should be, however.
(Bug#17898)

• Fixed calling clearParameters() on a closed prepared statement causes NPE. (Bug#17587)

• Map "latin1" on MySQL server to CP1252 for MySQL > 4.1.0. (Bug#17587)

• Added additional accessor and mutator methods on ConnectionProperties so that DataSource users can use same naming as regular
URL properties. (Bug#17587)

• Fixed ResultSet.wasNull() not always reset correctly for booleans when done via conversion for server-side prepared state-
ments. (Bug#17450)

• Fixed Statement.getGeneratedKeys() throws NullPointerException when no query has been processed.
(Bug#17099)

• Fixed updatable result set doesn't return AUTO_INCREMENT values for insertRow() when multiple column primary keys are
used. (the driver was checking for the existence of single-column primary keys and an autoincrement value > 0 instead of a straight-
forward isAutoIncrement() check). (Bug#16841)

• DBMD.getColumns() returns wrong type for BIT. (Bug#15854)

• lib-nodist directory missing from package breaks out-of-box build. (Bug#15676)

• Fixed issue with ReplicationConnection incorrectly copying state, doesn't transfer connection context correctly when trans-
itioning between the same read-only states. (Bug#15570)

• No "dos" character set in MySQL > 4.1.0. (Bug#15544)

• INOUT parameter does not store IN value. (Bug#15464)

• PreparedStatement.setObject() serializes BigInteger as object, rather than sending as numeric value (and is thus not
complementary to .getObject() on an UNSIGNED LONG type). (Bug#15383)

• Fixed issue where driver was unable to initialize character set mapping tables. Removed reliance on .properties files to hold
this information, as it turns out to be too problematic to code around class loader hierarchies that change depending on how an ap-
plication is deployed. Moved information back into the CharsetMapping class. (Bug#14938)

• Exception thrown for new decimal type when using updatable result sets. (Bug#14609)

• Driver now aware of fix for BIT type metadata that went into MySQL-5.0.21 for server not reporting length consistently .
(Bug#13601)

• Added support for Apache Commons logging, use "com.mysql.jdbc.log.CommonsLogger" as the value for the "logger" configura-
tion property. (Bug#13469)

• Fixed driver trying to call methods that don't exist on older and newer versions of Log4j. The fix is not trying to auto-detect pres-
ence of log4j, too many different incompatible versions out there in the wild to do this reliably.

MySQL Change History

2272

http://bugs.mysql.com/19282
http://bugs.mysql.com/18740
http://bugs.mysql.com/18554
http://bugs.mysql.com/18496
http://bugs.mysql.com/18041
http://bugs.mysql.com/18041
http://bugs.mysql.com/17898
http://bugs.mysql.com/17587
http://bugs.mysql.com/17587
http://bugs.mysql.com/17587
http://bugs.mysql.com/17450
http://bugs.mysql.com/17099
http://bugs.mysql.com/16841
http://bugs.mysql.com/15854
http://bugs.mysql.com/15676
http://bugs.mysql.com/15570
http://bugs.mysql.com/15544
http://bugs.mysql.com/15464
http://bugs.mysql.com/15383
http://bugs.mysql.com/14938
http://bugs.mysql.com/14609
http://bugs.mysql.com/13601
http://bugs.mysql.com/13469


If you relied on autodetection before, you will need to add "logger=com.mysql.jdbc.log.Log4JLogger" to your JDBC URL to enable
Log4J usage, or alternatively use the new "CommonsLogger" class to take care of this. (Bug#13469)

• LogFactory now prepends "com.mysql.jdbc.log" to log class name if it can't be found as-specified. This allows you to use "short
names" for the built-in log factories, for example "logger=CommonsLogger" instead of "log-
ger=com.mysql.jdbc.log.CommonsLogger". (Bug#13469)

• ResultSet.getShort() for UNSIGNED TINYINT returned wrong values. (Bug#11874)

C.5.3.4. Changes in MySQL Connector/J 3.1.12 (30 November 2005)

Bugs fixed:

• Process escape tokens in Connection.prepareStatement(...). You can disable this behavior by setting the JDBC URL
configuration property processEscapeCodesForPrepStmts to false. (Bug#15141)

• Usage advisor complains about unreferenced columns, even though they've been referenced. (Bug#15065)

• Driver incorrectly closes streams passed as arguments to PreparedStatements. Reverts to legacy behavior by setting the JD-
BC configuration property autoClosePStmtStreams to true (also included in the 3-0-Compat configuration “bundle”).
(Bug#15024)

• Deadlock while closing server-side prepared statements from multiple threads sharing one connection. (Bug#14972)

• Unable to initialize character set mapping tables (due to J2EE classloader differences). (Bug#14938)

• Escape processor replaces quote character in quoted string with string delimiter. (Bug#14909)

• DatabaseMetaData.getColumns() doesn't return TABLE_NAME correctly. (Bug#14815)

• storesMixedCaseIdentifiers() returns false (Bug#14562)

• storesLowerCaseIdentifiers() returns true (Bug#14562)

• storesMixedCaseQuotedIdentifiers() returns false (Bug#14562)

• storesMixedCaseQuotedIdentifiers() returns true (Bug#14562)

• If lower_case_table_names=0 (on server):

• storesLowerCaseIdentifiers() returns false

• storesLowerCaseQuotedIdentifiers() returns false

• storesMixedCaseIdentifiers() returns true

• storesMixedCaseQuotedIdentifiers() returns true

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

(Bug#14562)

• storesUpperCaseIdentifiers() returns false (Bug#14562)

• storesUpperCaseQuotedIdentifiers() returns true (Bug#14562)

• If lower_case_table_names=1 (on server):

• storesLowerCaseIdentifiers() returns true

• storesLowerCaseQuotedIdentifiers() returns true

MySQL Change History

2273

http://bugs.mysql.com/13469
http://bugs.mysql.com/13469
http://bugs.mysql.com/11874
http://bugs.mysql.com/15141
http://bugs.mysql.com/15065
http://bugs.mysql.com/15024
http://bugs.mysql.com/14972
http://bugs.mysql.com/14938
http://bugs.mysql.com/14909
http://bugs.mysql.com/14815
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562


• storesMixedCaseIdentifiers() returns false

• storesMixedCaseQuotedIdentifiers() returns false

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

(Bug#14562)

• storesLowerCaseQuotedIdentifiers() returns true (Bug#14562)

• Fixed DatabaseMetaData.stores*Identifiers():

• If lower_case_table_names=0 (on server):

• storesLowerCaseIdentifiers() returns false

• storesLowerCaseQuotedIdentifiers() returns false

• storesMixedCaseIdentifiers() returns true

• storesMixedCaseQuotedIdentifiers() returns true

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

• If lower_case_table_names=1 (on server):

• storesLowerCaseIdentifiers() returns true

• storesLowerCaseQuotedIdentifiers() returns true

• storesMixedCaseIdentifiers() returns false

• storesMixedCaseQuotedIdentifiers() returns false

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

(Bug#14562)

• storesMixedCaseIdentifiers() returns true (Bug#14562)

• storesLowerCaseQuotedIdentifiers() returns false (Bug#14562)

• Java type conversion may be incorrect for MEDIUMINT. (Bug#14562)

• storesLowerCaseIdentifiers() returns false (Bug#14562)

• Added configuration property useGmtMillisForDatetimes which when set to true causes ResultSet.getDate(),
.getTimestamp() to return correct millis-since GMT when .getTime() is called on the return value (currently default is
false for legacy behavior). (Bug#14562)

• Extraneous sleep on autoReconnect. (Bug#13775)

• Reconnect during middle of executeBatch() should not occur if autoReconnect is enabled. (Bug#13255)

• maxQuerySizeToLog is not respected. Added logging of bound values for execute() phase of server-side prepared state-
ments when profileSQL=true as well. (Bug#13048)

• OpenOffice expects DBMD.supportsIntegrityEnhancementFacility() to return true if foreign keys are supported
by the datasource, even though this method also covers support for check constraints, which MySQL doesn't have. Setting the con-
figuration property overrideSupportsIntegrityEnhancementFacility to true causes the driver to return true for

MySQL Change History

2274

http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/14562
http://bugs.mysql.com/13775
http://bugs.mysql.com/13255
http://bugs.mysql.com/13048


this method. (Bug#12975)

• Added com.mysql.jdbc.testsuite.url.default system property to set default JDBC url for testsuite (to speed up bug
resolution when I'm working in Eclipse). (Bug#12975)

• logSlowQueries should give better info. (Bug#12230)

• Don't increase timeout for failover/reconnect. (Bug#6577)

• Fixed client-side prepared statement bug with embedded ? characters inside quoted identifiers (it was recognized as a placeholder,
when it was not).

• Don't allow executeBatch() for CallableStatements with registered OUT/INOUT parameters (JDBC compliance).

• Fall back to platform-encoding for URLDecoder.decode() when parsing driver URL properties if the platform doesn't have a
two-argument version of this method.

C.5.3.5. Changes in MySQL Connector/J 3.1.11 (07 October 2005)

Bugs fixed:

• The configuration property sessionVariables now allows you to specify variables that start with the “@” sign. (Bug#13453)

• URL configuration parameters don't allow “&” or “=” in their values. The JDBC driver now parses configuration parameters as if
they are encoded using the application/x-www-form-urlencoded format as specified by java.net.URLDecoder (ht-
tp://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html).

If the “%” character is present in a configuration property, it must now be represented as %25, which is the encoded form of “%”
when using application/x-www-form-urlencoded encoding. (Bug#13453)

• Workaround for Bug#13374: ResultSet.getStatement() on closed result set returns NULL (as per JDBC 4.0 spec, but not
backward-compatible). Set the connection property retainStatementAfterResultSetClose to true to be able to re-
trieve a ResultSet's statement after the ResultSet has been closed via .getStatement() (the default is false, to be JD-
BC-compliant and to reduce the chance that code using JDBC leaks Statement instances). (Bug#13277)

• ResultSetMetaData from Statement.getGeneratedKeys() caused a NullPointerException to be thrown
whenever a method that required a connection reference was called. (Bug#13277)

• Backport of VAR[BINARY|CHAR] [BINARY] types detection from 5.0 branch. (Bug#13277)

• Fixed NullPointerException when converting catalog parameter in many DatabaseMetaDataMethods to byte[]s
(for the result set) when the parameter is null. (null isn't technically allowed by the JDBC specification, but we've historically al-
lowed it). (Bug#13277)

• Backport of Field class, ResultSetMetaData.getColumnClassName(), and ResultSet.getObject(int)
changes from 5.0 branch to fix behavior surrounding VARCHAR BINARY/VARBINARY and related types. (Bug#13277)

• Read response in MysqlIO.sendFileToServer(), even if the local file can't be opened, otherwise next query issued will fail,
because it's reading the response to the empty LOAD DATA INFILE packet sent to the server. (Bug#13277)

• When gatherPerfMetrics is enabled for servers older than 4.1.0, a NullPointerException is thrown from the con-
structor of ResultSet if the query doesn't use any tables. (Bug#13043)

• java.sql.Types.OTHER returned for BINARY and VARBINARY columns when using Database-
MetaData.getColumns(). (Bug#12970)

• ServerPreparedStatement.getBinding() now checks if the statement is closed before attempting to reference the list of
parameter bindings, to avoid throwing a NullPointerException. (Bug#12970)

• Tokenizer for = in URL properties was causing sessionVariables=.... to be parameterized incorrectly. (Bug#12753)

• cp1251 incorrectly mapped to win1251 for servers newer than 4.0.x. (Bug#12752)

• getExportedKeys() (Bug#12541)

MySQL Change History

2275

http://bugs.mysql.com/12975
http://bugs.mysql.com/12975
http://bugs.mysql.com/12230
http://bugs.mysql.com/6577
http://bugs.mysql.com/13453
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html
http://bugs.mysql.com/13453
http://bugs.mysql.com/13374
http://bugs.mysql.com/13277
http://bugs.mysql.com/13277
http://bugs.mysql.com/13277
http://bugs.mysql.com/13277
http://bugs.mysql.com/13277
http://bugs.mysql.com/13277
http://bugs.mysql.com/13043
http://bugs.mysql.com/12970
http://bugs.mysql.com/12970
http://bugs.mysql.com/12753
http://bugs.mysql.com/12752
http://bugs.mysql.com/12541


• Specifying a catalog works as stated in the API docs. (Bug#12541)

• Specifying NULL means that catalog will not be used to filter the results (thus all databases will be searched), unless you've set
nullCatalogMeansCurrent=true in your JDBC URL properties. (Bug#12541)

• getIndexInfo() (Bug#12541)

• getProcedures() (and thus indirectly getProcedureColumns()) (Bug#12541)

• getImportedKeys() (Bug#12541)

• Specifying "" means “current” catalog, even though this isn't quite JDBC spec compliant, it's there for legacy users. (Bug#12541)

• getCrossReference() (Bug#12541)

• Added Connection.isMasterConnection() for clients to be able to determine if a multi-host master/slave connection is
connected to the first host in the list. (Bug#12541)

• getColumns() (Bug#12541)

• Handling of catalog argument in DatabaseMetaData.getIndexInfo(), which also means changes to the following meth-
ods in DatabaseMetaData:

• getBestRowIdentifier()

• getColumns()

• getCrossReference()

• getExportedKeys()

• getImportedKeys()

• getIndexInfo()

• getPrimaryKeys()

• getProcedures() (and thus indirectly getProcedureColumns())

• getTables()

The catalog argument in all of these methods now behaves in the following way:

• Specifying NULL means that catalog will not be used to filter the results (thus all databases will be searched), unless you've set
nullCatalogMeansCurrent=true in your JDBC URL properties.

• Specifying "" means “current” catalog, even though this isn't quite JDBC spec compliant, it's there for legacy users.

• Specifying a catalog works as stated in the API docs.

• Made Connection.clientPrepare() available from “wrapped” connections in the jdbc2.optional package
(connections built by ConnectionPoolDataSource instances).

(Bug#12541)

• getBestRowIdentifier() (Bug#12541)

• Made Connection.clientPrepare() available from “wrapped” connections in the jdbc2.optional package
(connections built by ConnectionPoolDataSource instances). (Bug#12541)

• getTables() (Bug#12541)

• getPrimaryKeys() (Bug#12541)

• Connection.prepareCall() is database name case-sensitive (on Windows systems). (Bug#12417)

• explainSlowQueries hangs with server-side prepared statements. (Bug#12229)

MySQL Change History

2276

http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12541
http://bugs.mysql.com/12417
http://bugs.mysql.com/12229


• Properties shared between master and slave with replication connection. (Bug#12218)

• Geometry types not handled with server-side prepared statements. (Bug#12104)

• maxPerformance.properties mis-spells “elideSetAutoCommits”. (Bug#11976)

• ReplicationConnection won't switch to slave, throws “Catalog can't be null” exception. (Bug#11879)

• Pstmt.setObject(...., Types.BOOLEAN) throws exception. (Bug#11798)

• Escape tokenizer doesn't respect stacked single quotes for escapes. (Bug#11797)

• GEOMETRY type not recognized when using server-side prepared statements. (Bug#11797)

• Foreign key information that is quoted is parsed incorrectly when DatabaseMetaData methods use that information.
(Bug#11781)

• The sendBlobChunkSize property is now clamped to max_allowed_packet with consideration of stream buffer size and
packet headers to avoid PacketTooBigExceptions when max_allowed_packet is similar in size to the default send-
BlobChunkSize which is 1M. (Bug#11781)

• CallableStatement.clearParameters() now clears resources associated with INOUT/OUTPUT parameters as well as
INPUT parameters. (Bug#11781)

• Fixed regression caused by fix for Bug#11552 that caused driver to return incorrect values for unsigned integers when those integers
where within the range of the positive signed type. (Bug#11663)

• Moved source code to Subversion repository. (Bug#11663)

• Incorrect generation of testcase scripts for server-side prepared statements. (Bug#11663)

• Fixed statements generated for testcases missing ; for “plain” statements. (Bug#11629)

• Spurious ! on console when character encoding is utf8. (Bug#11629)

• StringUtils.getBytes() doesn't work when using multi-byte character encodings and a length in characters is specified.
(Bug#11614)

• DBMD.storesLower/Mixed/UpperIdentifiers() reports incorrect values for servers deployed on Windows.
(Bug#11575)

• Reworked Field class, *Buffer, and MysqlIO to be aware of field lengths > Integer.MAX_VALUE. (Bug#11498)

• Escape processor didn't honor strings demarcated with double quotes. (Bug#11498)

• Updated DBMD.supportsCorrelatedQueries() to return true for versions > 4.1, supportsGroupByUnrelated()
to return true and getResultSetHoldability() to return HOLD_CURSORS_OVER_COMMIT. (Bug#11498)

• Lifted restriction of changing streaming parameters with server-side prepared statements. As long as all streaming parameters
were set before execution, .clearParameters() does not have to be called. (due to limitation of client/server protocol, pre-
pared statements can not reset individual stream data on the server side). (Bug#11498)

• ResultSet.moveToCurrentRow() fails to work when preceded by a call to ResultSet.moveToInsertRow().
(Bug#11190)

• VARBINARY data corrupted when using server-side prepared statements and .setBytes(). (Bug#11115)

• Statement.getWarnings() fails with NPE if statement has been closed. (Bug#10630)

• Only get char[] from SQL in PreparedStatement.ParseInfo() when needed. (Bug#10630)

C.5.3.6. Changes in MySQL Connector/J 3.1.10 (23 June 2005)

Bugs fixed:

MySQL Change History

2277

http://bugs.mysql.com/12218
http://bugs.mysql.com/12104
http://bugs.mysql.com/11976
http://bugs.mysql.com/11879
http://bugs.mysql.com/11798
http://bugs.mysql.com/11797
http://bugs.mysql.com/11797
http://bugs.mysql.com/11781
http://bugs.mysql.com/11781
http://bugs.mysql.com/11781
http://bugs.mysql.com/11552
http://bugs.mysql.com/11663
http://bugs.mysql.com/11663
http://bugs.mysql.com/11663
http://bugs.mysql.com/11629
http://bugs.mysql.com/11629
http://bugs.mysql.com/11614
http://bugs.mysql.com/11575
http://bugs.mysql.com/11498
http://bugs.mysql.com/11498
http://bugs.mysql.com/11498
http://bugs.mysql.com/11498
http://bugs.mysql.com/11190
http://bugs.mysql.com/11115
http://bugs.mysql.com/10630
http://bugs.mysql.com/10630


• Initial implemention of ParameterMetadata for PreparedStatement.getParameterMetadata(). Only works fully
for CallableStatements, as current server-side prepared statements return every parameter as a VARCHAR type.

• Fixed connecting without a database specified raised an exception in MysqlIO.changeDatabaseTo().

C.5.3.7. Changes in MySQL Connector/J 3.1.9 (22 June 2005)

Bugs fixed:

• Production package doesn't include JBoss integration classes. (Bug#11411)

• Removed nonsensical “costly type conversion” warnings when using usage advisor. (Bug#11411)

• Fixed PreparedStatement.setClob() not accepting null as a parameter. (Bug#11360)

• Connector/J dumping query into SQLException twice. (Bug#11360)

• autoReconnect ping causes exception on connection startup. (Bug#11259)

• Connection.setCatalog() is now aware of the useLocalSessionState configuration property, which when set to
true will prevent the driver from sending USE ... to the server if the requested catalog is the same as the current catalog.
(Bug#11115)

• 3-0-Compat — Compatibility with Connector/J 3.0.x functionality (Bug#11115)

• maxPerformance — maximum performance without being reckless (Bug#11115)

• solarisMaxPerformance — maximum performance for Solaris, avoids syscalls where it can (Bug#11115)

• Added maintainTimeStats configuration property (defaults to true), which tells the driver whether or not to keep track of
the last query time and the last successful packet sent to the server's time. If set to false, removes two syscalls per query.
(Bug#11115)

• VARBINARY data corrupted when using server-side prepared statements and ResultSet.getBytes(). (Bug#11115)

• Added the following configuration bundles, use one or many via the useConfigs configuration property:

• maxPerformance — maximum performance without being reckless

• solarisMaxPerformance — maximum performance for Solaris, avoids syscalls where it can

• 3-0-Compat — Compatibility with Connector/J 3.0.x functionality

(Bug#11115)

• Try to handle OutOfMemoryErrors more gracefully. Although not much can be done, they will in most cases close the connec-
tion they happened on so that further operations don't run into a connection in some unknown state. When an OOM has happened,
any further operations on the connection will fail with a “Connection closed” exception that will also list the OOM exception as the
reason for the implicit connection close event. (Bug#10850)

• Setting cachePrepStmts=true now causes the Connection to also cache the check the driver performs to determine if a
prepared statement can be server-side or not, as well as caches server-side prepared statements for the lifetime of a connection. As
before, the prepStmtCacheSize parameter controls the size of these caches. (Bug#10850)

• Don't send COM_RESET_STMT for each execution of a server-side prepared statement if it isn't required. (Bug#10850)

• 0-length streams not sent to server when using server-side prepared statements. (Bug#10850)

• Driver detects if you're running MySQL-5.0.7 or later, and does not scan for LIMIT ?[,?] in statements being prepared, as the
server supports those types of queries now. (Bug#10850)

• Reorganized directory layout. Sources now are in src folder. Don't pollute parent directory when building, now output goes to
./build, distribution goes to ./dist. (Bug#10496)

MySQL Change History

2278

http://bugs.mysql.com/11411
http://bugs.mysql.com/11411
http://bugs.mysql.com/11360
http://bugs.mysql.com/11360
http://bugs.mysql.com/11259
http://bugs.mysql.com/11115
http://bugs.mysql.com/11115
http://bugs.mysql.com/11115
http://bugs.mysql.com/11115
http://bugs.mysql.com/11115
http://bugs.mysql.com/11115
http://bugs.mysql.com/11115
http://bugs.mysql.com/10850
http://bugs.mysql.com/10850
http://bugs.mysql.com/10850
http://bugs.mysql.com/10850
http://bugs.mysql.com/10850
http://bugs.mysql.com/10496


• Added support/bug hunting feature that generates .sql test scripts to STDERR when autoGenerateTestcaseScript is set
to true. (Bug#10496)

• SQLException is thrown when using property characterSetResults with cp932 or eucjpms. (Bug#10496)

• The datatype returned for TINYINT(1) columns when tinyInt1isBit=true (the default) can be switched between
Types.BOOLEAN and Types.BIT using the new configuration property transformedBitIsBoolean, which defaults to
false. If set to false (the default), DatabaseMetaData.getColumns() and ResultSet-
MetaData.getColumnType() will return Types.BOOLEAN for TINYINT(1) columns. If true, Types.BOOLEAN will
be returned instead. Regardless of this configuration property, if tinyInt1isBit is enabled, columns with the type TINY-
INT(1) will be returned as java.lang.Boolean instances from ResultSet.getObject(...), and ResultSet-
MetaData.getColumnClassName() will return java.lang.Boolean. (Bug#10485)

• SQLException thrown when retrieving YEAR(2) with ResultSet.getString(). The driver will now always treat YEAR
types as java.sql.Dates and return the correct values for getString(). Alternatively, the yearIsDateType connection
property can be set to false and the values will be treated as SHORTs. (Bug#10485)

• Driver doesn't support {?=CALL(...)} for calling stored functions. This involved adding support for function retrieval to Data-
baseMetaData.getProcedures() and getProcedureColumns() as well. (Bug#10310)

• Unsigned SMALLINT treated as signed for ResultSet.getInt(), fixed all cases for UNSIGNED integer values and server-side
prepared statements, as well as ResultSet.getObject() for UNSIGNED TINYINT. (Bug#10156)

• Made ServerPreparedStatement.asSql() work correctly so auto-explain functionality would work with server-side pre-
pared statements. (Bug#10155)

• Double quotes not recognized when parsing client-side prepared statements. (Bug#10155)

• Made JDBC2-compliant wrappers public in order to allow access to vendor extensions. (Bug#10155)

• DatabaseMetaData.supportsMultipleOpenResults() now returns true. The driver has supported this for some
time, DBMD just missed that fact. (Bug#10155)

• Cleaned up logging of profiler events, moved code to dump a profiler event as a string to com.mysql.jdbc.log.LogUtils
so that third parties can use it. (Bug#10155)

• Made enableStreamingResults() visible on com.mysql.jdbc.jdbc2.optional.StatementWrapper.
(Bug#10155)

• Actually write manifest file to correct place so it ends up in the binary jar file. (Bug#10144)

• Added createDatabaseIfNotExist property (default is false), which will cause the driver to ask the server to create the
database specified in the URL if it doesn't exist. You must have the appropriate privileges for database creation for this to work.
(Bug#10144)

• Memory leak in ServerPreparedStatement if serverPrepare() fails. (Bug#10144)

• com.mysql.jdbc.PreparedStatement.ParseInfo does unnecessary call to toCharArray(). (Bug#9064)

• Driver now correctly uses CP932 if available on the server for Windows-31J, CP932 and MS932 java encoding names, otherwise it
resorts to SJIS, which is only a close approximation. Currently only MySQL-5.0.3 and newer (and MySQL-4.1.12 or .13, depending
on when the character set gets backported) can reliably support any variant of CP932.

• Overhaul of character set configuration, everything now lives in a properties file.

C.5.3.8. Changes in MySQL Connector/J 3.1.8 (14 April 2005)

Bugs fixed:

• Should accept null for catalog (meaning use current) in DBMD methods, even though it's not JDBC-compliant for legacy's sake.
Disable by setting connection property nullCatalogMeansCurrent to false (which will be the default value in C/J 3.2.x).
(Bug#9917)

• Fixed driver not returning true for -1 when ResultSet.getBoolean() was called on result sets returned from server-side

MySQL Change History

2279

http://bugs.mysql.com/10496
http://bugs.mysql.com/10496
http://bugs.mysql.com/10485
http://bugs.mysql.com/10485
http://bugs.mysql.com/10310
http://bugs.mysql.com/10156
http://bugs.mysql.com/10155
http://bugs.mysql.com/10155
http://bugs.mysql.com/10155
http://bugs.mysql.com/10155
http://bugs.mysql.com/10155
http://bugs.mysql.com/10155
http://bugs.mysql.com/10144
http://bugs.mysql.com/10144
http://bugs.mysql.com/10144
http://bugs.mysql.com/9064
http://bugs.mysql.com/9917


prepared statements. (Bug#9778)

• Added a Manifest.MF file with implementation information to the .jar file. (Bug#9778)

• More tests in Field.isOpaqueBinary() to distinguish opaque binary (that is, fields with type CHAR(n) and CHARACTER
SET BINARY) from output of various scalar and aggregate functions that return strings. (Bug#9778)

• DBMD.getTables() shouldn't return tables if views are asked for, even if the database version doesn't support views.
(Bug#9778)

• Should accept null for name patterns in DBMD (meaning “%”), even though it isn't JDBC compliant, for legacy's sake. Disable by
setting connection property nullNamePatternMatchesAll to false (which will be the default value in C/J 3.2.x).
(Bug#9769)

• Then fallback to our STDERR logging. (Bug#9704)

• The performance metrics feature now gathers information about number of tables referenced in a SELECT. (Bug#9704)

• The logging system is now automatically configured. If the value has been set by the user, via the URL property logger or the
system property com.mysql.jdbc.logger, then use that, otherwise, autodetect it using the following steps:

1. Log4j, if it's available,

2. Then JDK1.4 logging,

3. Then fallback to our STDERR logging.

(Bug#9704)

• Then JDK1.4 logging, (Bug#9704)

• Log4j, if it's available, (Bug#9704)

• Statement.getMoreResults() could throw NPE when existing result set was .close()d. (Bug#9704)

• Stored procedures with DECIMAL parameters with storage specifications that contained “,” in them would fail. (Bug#9682)

• PreparedStatement.setObject(int, Object, int type, int scale) now uses scale value for BigDecimal
instances. (Bug#9682)

• Added support for the c3p0 connection pool's (http://c3p0.sf.net/) validation/connection checker interface which uses the light-
weight COM_PING call to the server if available. To use it, configure your c3p0 connection pool's connectionTesterClass-
Name property to use com.mysql.jdbc.integration.c3p0.MysqlConnectionTester. (Bug#9320)

• PreparedStatement.getMetaData() inserts blank row in database under certain conditions when not using server-side
prepared statements. (Bug#9320)

• Better detection of LIMIT inside/outside of quoted strings so that the driver can more correctly determine whether a prepared state-
ment can be prepared on the server or not. (Bug#9320)

• Connection.canHandleAsPreparedStatement() now makes “best effort” to distinguish LIMIT clauses with placehold-
ers in them from ones without in order to have fewer false positives when generating work-arounds for statements the server cannot
currently handle as server-side prepared statements. (Bug#9320)

• Fixed build.xml to not compile log4j logging if log4j not available. (Bug#9320)

• Added finalizers to ResultSet and Statement implementations to be JDBC spec-compliant, which requires that if not expli-
citly closed, these resources should be closed upon garbage collection. (Bug#9319)

• Stored procedures with same name in different databases confuse the driver when it tries to determine parameter counts/types.
(Bug#9319)

• A continuation of Bug#8868, where functions used in queries that should return non-string types when resolved by temporary tables
suddenly become opaque binary strings (work-around for server limitation). Also fixed fields with type of CHAR(n) CHARACTER
SET BINARY to return correct/matching classes for RSMD.getColumnClassName() and ResultSet.getObject().
(Bug#9236)

MySQL Change History

2280

http://bugs.mysql.com/9778
http://bugs.mysql.com/9778
http://bugs.mysql.com/9778
http://bugs.mysql.com/9778
http://bugs.mysql.com/9769
http://bugs.mysql.com/9704
http://bugs.mysql.com/9704
http://bugs.mysql.com/9704
http://bugs.mysql.com/9704
http://bugs.mysql.com/9704
http://bugs.mysql.com/9704
http://bugs.mysql.com/9682
http://bugs.mysql.com/9682
http://c3p0.sf.net/
http://bugs.mysql.com/9320
http://bugs.mysql.com/9320
http://bugs.mysql.com/9320
http://bugs.mysql.com/9320
http://bugs.mysql.com/9320
http://bugs.mysql.com/9319
http://bugs.mysql.com/9319
http://bugs.mysql.com/8868
http://bugs.mysql.com/9236


• Cannot use UTF-8 for characterSetResults configuration property. (Bug#9206)

• PreparedStatement.addBatch() doesn't work with server-side prepared statements and streaming BINARY data.
(Bug#9040)

• ServerPreparedStatements now correctly “stream” BLOB/CLOB data to the server. You can configure the threshold chunk
size using the JDBC URL property blobSendChunkSize (the default is 1MB). (Bug#8868)

• DATE_FORMAT() queries returned as BLOBs from getObject(). (Bug#8868)

• Server-side session variables can be preset at connection time by passing them as a comma-delimited list for the connection property
sessionVariables. (Bug#8868)

• BlobFromLocator now uses correct identifier quoting when generating prepared statements. (Bug#8868)

• Fixed regression in ping() for users using autoReconnect=true. (Bug#8868)

• Check for empty strings ('') when converting CHAR/VARCHAR column data to numbers, throw exception if emptyString-
sConvertToZero configuration property is set to false (for backward-compatibility with 3.0, it is now set to true by default,
but will most likely default to false in 3.2). (Bug#8803)

• DATA_TYPE column from DBMD.getBestRowIdentifier() causes ArrayIndexOutOfBoundsException when ac-
cessed (and in fact, didn't return any value). (Bug#8803)

• DBMD.supportsMixedCase*Identifiers() returns wrong value on servers running on case-sensitive filesystems.
(Bug#8800)

• DBMD.supportsResultSetConcurrency() not returning true for forward-only/read-only result sets (we obviously sup-
port this). (Bug#8792)

• Fixed ResultSet.getTime() on a NULL value for server-side prepared statements throws NPE.

• Made Connection.ping() a public method.

• Added support for new precision-math DECIMAL type in MySQL 5.0.3 and up.

• Fixed DatabaseMetaData.getTables() returning views when they were not asked for as one of the requested table types.

C.5.3.9. Changes in MySQL Connector/J 3.1.7 (18 February 2005)

Bugs fixed:

• PreparedStatements not creating streaming result sets. (Bug#8487)

• Don't pass NULL to String.valueOf() in ResultSet.getNativeConvertToString(), as it stringifies it (that is, re-
turns null), which is not correct for the method in question. (Bug#8487)

• Fixed NPE in ResultSet.realClose() when using usage advisor and result set was already closed. (Bug#8428)

• ResultSet.getString() doesn't maintain format stored on server, bug fix only enabled when noDatetimeStringSync
property is set to true (the default is false). (Bug#8428)

• Added support for BIT type in MySQL-5.0.3. The driver will treat BIT(1-8) as the JDBC standard BIT type (which maps to
java.lang.Boolean), as the server does not currently send enough information to determine the size of a bitfield when < 9 bits
are declared. BIT(>9) will be treated as VARBINARY, and will return byte[] when getObject() is called. (Bug#8424)

• Added useLocalSessionState configuration property, when set to true the JDBC driver trusts that the application is well-
behaved and only sets autocommit and transaction isolation levels using the methods provided on java.sql.Connection, and
therefore can manipulate these values in many cases without incurring round-trips to the database server. (Bug#8424)

• Added enableStreamingResults() to Statement for connection pool implementations that check State-
ment.setFetchSize() for specification-compliant values. Call Statement.setFetchSize(>=0) to disable the stream-
ing results for that statement. (Bug#8424)

MySQL Change History

2281

http://bugs.mysql.com/9206
http://bugs.mysql.com/9040
http://bugs.mysql.com/8868
http://bugs.mysql.com/8868
http://bugs.mysql.com/8868
http://bugs.mysql.com/8868
http://bugs.mysql.com/8868
http://bugs.mysql.com/8803
http://bugs.mysql.com/8803
http://bugs.mysql.com/8800
http://bugs.mysql.com/8792
http://bugs.mysql.com/8487
http://bugs.mysql.com/8487
http://bugs.mysql.com/8428
http://bugs.mysql.com/8428
http://bugs.mysql.com/8424
http://bugs.mysql.com/8424
http://bugs.mysql.com/8424


• ResultSet.getBigDecimal() throws exception when rounding would need to occur to set scale. The driver now chooses a
rounding mode of “half up” if non-rounding BigDecimal.setScale() fails. (Bug#8424)

• Fixed synchronization issue with ServerPreparedStatement.serverPrepare() that could cause deadlocks/crashes if
connection was shared between threads. (Bug#8096)

• Emulated locators corrupt binary data when using server-side prepared statements. (Bug#8096)

• Infinite recursion when “falling back” to master in failover configuration. (Bug#7952)

• Disable multi-statements (if enabled) for MySQL-4.1 versions prior to version 4.1.10 if the query cache is enabled, as the server re-
turns wrong results in this configuration. (Bug#7952)

• Removed dontUnpackBinaryResults functionality, the driver now always stores results from server-side prepared statements
as is from the server and unpacks them on demand. (Bug#7952)

• Fixed duplicated code in configureClientCharset() that prevented useOldUTF8Behavior=true from working prop-
erly. (Bug#7952)

• Added holdResultsOpenOverStatementClose property (default is false), that keeps result sets open over state-
ment.close() or new execution on same statement (suggested by Kevin Burton). (Bug#7715)

• Detect new sql_mode variable in string form (it used to be integer) and adjust quoting method for strings appropriately.
(Bug#7715)

• Timestamps converted incorrectly to strings with server-side prepared statements and updatable result sets. (Bug#7715)

• Timestamp key column data needed _binary stripped for UpdatableResultSet.refreshRow(). (Bug#7686)

• Choose correct “direction” to apply time adjustments when both client and server are in GMT time zone when using Result-
Set.get(..., cal) and PreparedStatement.set(...., cal). (Bug#4718)

• Remove _binary introducer from parameters used as in/out parameters in CallableStatement. (Bug#4718)

• Always return byte[]s for output parameters registered as *BINARY. (Bug#4718)

• By default, the driver now scans SQL you are preparing via all variants of Connection.prepareStatement() to determine
if it is a supported type of statement to prepare on the server side, and if it is not supported by the server, it instead prepares it as a
client-side emulated prepared statement. You can disable this by passing emulateUnsupportedPstmts=false in your JDBC
URL. (Bug#4718)

• Added dontTrackOpenResources option (default is false, to be JDBC compliant), which helps with memory use for non-
well-behaved apps (that is, applications that don't close Statement objects when they should). (Bug#4718)

• Send correct value for “boolean” true to server for PreparedStatement.setObject(n, "true", Types.BIT).
(Bug#4718)

• Fixed bug with Connection not caching statements from prepareStatement() when the statement wasn't a server-side pre-
pared statement. (Bug#4718)

C.5.3.10. Changes in MySQL Connector/J 3.1.6 (23 December 2004)

Bugs fixed:

• DBMD.getProcedures() doesn't respect catalog parameter. (Bug#7026)

• Fixed hang on SocketInputStream.read() with Statement.setMaxRows() and multiple result sets when driver has to
truncate result set directly, rather than tacking a LIMIT n on the end of it.

C.5.3.11. Changes in MySQL Connector/J 3.1.5 (02 December 2004)

Bugs fixed:

MySQL Change History

2282

http://bugs.mysql.com/8424
http://bugs.mysql.com/8096
http://bugs.mysql.com/8096
http://bugs.mysql.com/7952
http://bugs.mysql.com/7952
http://bugs.mysql.com/7952
http://bugs.mysql.com/7952
http://bugs.mysql.com/7715
http://bugs.mysql.com/7715
http://bugs.mysql.com/7715
http://bugs.mysql.com/7686
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/4718
http://bugs.mysql.com/7026


• Use 1MB packet for sending file for LOAD DATA LOCAL INFILE if that is < max_allowed_packet on server. (Bug#6537)

• SUM() on DECIMAL with server-side prepared statement ignores scale if zero-padding is needed (this ends up being due to conver-
sion to DOUBLE by server, which when converted to a string to parse into BigDecimal, loses all “padding” zeros). (Bug#6537)

• Use DatabaseMetaData.getIdentifierQuoteString() when building DBMD queries. (Bug#6537)

• Use our own implementation of buffered input streams to get around blocking behavior of java.io.BufferedInputStream.
Disable this with useReadAheadInput=false. (Bug#6399)

• Make auto-deserialization of java.lang.Objects stored in BLOB columns configurable via autoDeserialize property
(defaults to false). (Bug#6399)

• ResultSetMetaData.getColumnDisplaySize() returns incorrect values for multi-byte charsets. (Bug#6399)

• Re-work Field.isOpaqueBinary() to detect CHAR(n) CHARACTER SET BINARY to support fixed-length binary fields
for ResultSet.getObject(). (Bug#6399)

• Failing to connect to the server when one of the addresses for the given host name is IPV6 (which the server does not yet bind on).
The driver now loops through all IP addresses for a given host, and stops on the first one that accepts() a sock-
et.connect(). (Bug#6348)

• Removed unwanted new Throwable() in ResultSet constructor due to bad merge (caused a new object instance that was nev-
er used for every result set created). Found while profiling for Bug#6359. (Bug#6225)

• ServerSidePreparedStatement allocating short-lived objects unnecessarily. (Bug#6225)

• Use null-safe-equals for key comparisons in updatable result sets. (Bug#6225)

• Fixed too-early creation of StringBuffer in EscapeProcessor.escapeSQL(), also return String when escaping not
needed (to avoid unnecessary object allocations). Found while profiling for Bug#6359. (Bug#6225)

• UNSIGNED BIGINT unpacked incorrectly from server-side prepared statement result sets. (Bug#5729)

• Added experimental configuration property dontUnpackBinaryResults, which delays unpacking binary result set values until
they're asked for, and only creates object instances for non-numerical values (it is set to false by default). For some usecase/jvm
combinations, this is friendlier on the garbage collector. (Bug#5706)

• Don't throw exceptions for Connection.releaseSavepoint(). (Bug#5706)

• Inefficient detection of pre-existing string instances in ResultSet.getNativeString(). (Bug#5706)

• Use a per-session Calendar instance by default when decoding dates from ServerPreparedStatements (set to old, less
performant behavior by setting property dynamicCalendars=true). (Bug#5706)

• Fixed batched updates with server prepared statements weren't looking if the types had changed for a given batched set of paramet-
ers compared to the previous set, causing the server to return the error “Wrong arguments to mysql_stmt_execute()”. (Bug#5235)

• Handle case when string representation of timestamp contains trailing “.” with no numbers following it. (Bug#5235)

• Server-side prepared statements did not honor zeroDateTimeBehavior property, and would cause class-cast exceptions when
using ResultSet.getObject(), as the all-zero string was always returned. (Bug#5235)

• Fix comparisons made between string constants and dynamic strings that are converted with either toUpperCase() or to-
LowerCase() to use Locale.ENGLISH, as some locales “override” case rules for English. Also use Strin-
gUtils.indexOfIgnoreCase() instead of .toUpperCase().indexOf(), avoids creating a very short-lived transient
String instance.

C.5.3.12. Changes in MySQL Connector/J 3.1.4 (04 September 2004)

Bugs fixed:

• Fixed ServerPreparedStatement to read prepared statement metadata off the wire, even though it's currently a placeholder
instead of using MysqlIO.clearInputStream() which didn't work at various times because data wasn't available to read

MySQL Change History

2283

http://bugs.mysql.com/6537
http://bugs.mysql.com/6537
http://bugs.mysql.com/6537
http://bugs.mysql.com/6399
http://bugs.mysql.com/6399
http://bugs.mysql.com/6399
http://bugs.mysql.com/6399
http://bugs.mysql.com/6348
http://bugs.mysql.com/6359
http://bugs.mysql.com/6225
http://bugs.mysql.com/6225
http://bugs.mysql.com/6225
http://bugs.mysql.com/6359
http://bugs.mysql.com/6225
http://bugs.mysql.com/5729
http://bugs.mysql.com/5706
http://bugs.mysql.com/5706
http://bugs.mysql.com/5706
http://bugs.mysql.com/5706
http://bugs.mysql.com/5235
http://bugs.mysql.com/5235
http://bugs.mysql.com/5235


from the server yet. This fixes sporadic errors users were having with ServerPreparedStatements throwing ArrayIndex-
OutOfBoundExceptions. (Bug#5032)

• Added three ways to deal with all-zero datetimes when reading them from a ResultSet: exception (the default), which throws
an SQLException with an SQLState of S1009; convertToNull, which returns NULL instead of the date; and round, which
rounds the date to the nearest closest value which is '0001-01-01'. (Bug#5032)

• The driver is more strict about truncation of numerics on ResultSet.get*(), and will throw an SQLException when trunca-
tion is detected. You can disable this by setting jdbcCompliantTruncation to false (it is enabled by default, as this func-
tionality is required for JDBC compliance). (Bug#5032)

• You can now use URLs in LOAD DATA LOCAL INFILE statements, and the driver will use Java's built-in handlers for retreiving
the data and sending it to the server. This feature is not enabled by default, you must set the allowUrlInLocalInfile connec-
tion property to true. (Bug#5032)

• ResultSet.getObject() doesn't return type Boolean for pseudo-bit types from prepared statements on 4.1.x (shortcut for
avoiding extra type conversion when using binary-encoded result sets obscured test in getObject() for “pseudo” bit type).
(Bug#5032)

• Use com.mysql.jdbc.Message's classloader when loading resource bundle, should fix sporadic issues when the caller's class-
loader can't locate the resource bundle. (Bug#5032)

• ServerPreparedStatements dealing with return of DECIMAL type don't work. (Bug#5012)

• Track packet sequence numbers if enablePacketDebug=true, and throw an exception if packets received out-of-order.
(Bug#4689)

• ResultSet.wasNull() does not work for primatives if a previous null was returned. (Bug#4689)

• Optimized integer number parsing, enable “old” slower integer parsing using JDK classes via useFastIntParsing=false
property. (Bug#4642)

• Added useOnlyServerErrorMessages property, which causes message text in exceptions generated by the server to only
contain the text sent by the server (as opposed to the SQLState's “standard” description, followed by the server's error message).
This property is set to true by default. (Bug#4642)

• ServerPreparedStatement.execute*() sometimes threw ArrayIndexOutOfBoundsException when unpacking
field metadata. (Bug#4642)

• Connector/J 3.1.3 beta does not handle integers correctly (caused by changes to support unsigned reads in Buffer.readInt() -
> Buffer.readShort()). (Bug#4510)

• Added support in DatabaseMetaData.getTables() and getTableTypes() for views, which are now available in
MySQL server 5.0.x. (Bug#4510)

• ResultSet.getObject() returns wrong type for strings when using prepared statements. (Bug#4482)

• Calling MysqlPooledConnection.close() twice (even though an application error), caused NPE. Fixed. (Bug#4482)

C.5.3.13. Changes in MySQL Connector/J 3.1.3 (07 July 2004)

Bugs fixed:

• Support new time zone variables in MySQL-4.1.3 when useTimezone=true. (Bug#4311)

• Error in retrieval of mediumint column with prepared statements and binary protocol. (Bug#4311)

• Support for unsigned numerics as return types from prepared statements. This also causes a change in Result-
Set.getObject() for the bigint unsigned type, which used to return BigDecimal instances, it now returns instances of
java.lang.BigInteger. (Bug#4311)

• Externalized more messages (on-going effort). (Bug#4119)

• Null bitmask sent for server-side prepared statements was incorrect. (Bug#4119)

MySQL Change History

2284

http://bugs.mysql.com/5032
http://bugs.mysql.com/5032
http://bugs.mysql.com/5032
http://bugs.mysql.com/5032
http://bugs.mysql.com/5032
http://bugs.mysql.com/5032
http://bugs.mysql.com/5012
http://bugs.mysql.com/4689
http://bugs.mysql.com/4689
http://bugs.mysql.com/4642
http://bugs.mysql.com/4642
http://bugs.mysql.com/4642
http://bugs.mysql.com/4510
http://bugs.mysql.com/4510
http://bugs.mysql.com/4482
http://bugs.mysql.com/4482
http://bugs.mysql.com/4311
http://bugs.mysql.com/4311
http://bugs.mysql.com/4311
http://bugs.mysql.com/4119
http://bugs.mysql.com/4119


• Added constants for MySQL error numbers (publicly accessible, see com.mysql.jdbc.MysqlErrorNumbers), and the abil-
ity to generate the mappings of vendor error codes to SQLStates that the driver uses (for documentation purposes). (Bug#4119)

• Added packet debuging code (see the enablePacketDebug property documentation). (Bug#4119)

• Use SQL Standard SQL states by default, unless useSqlStateCodes property is set to false. (Bug#4119)

• Mangle output parameter names for CallableStatements so they will not clash with user variable names.

• Added support for INOUT parameters in CallableStatements.

C.5.3.14. Changes in MySQL Connector/J 3.1.2 (09 June 2004)

Bugs fixed:

• Don't enable server-side prepared statements for server version 5.0.0 or 5.0.1, as they aren't compatible with the '4.1.2+' style that
the driver uses (the driver expects information to come back that isn't there, so it hangs). (Bug#3804)

• getWarnings() returns SQLWarning instead of DataTruncation. (Bug#3804)

• getProcedureColumns() doesn't work with wildcards for procedure name. (Bug#3540)

• getProcedures() does not return any procedures in result set. (Bug#3539)

• Fixed DatabaseMetaData.getProcedures() when run on MySQL-5.0.0 (output of SHOW PROCEDURE STATUS
changed between 5.0.0 and 5.0.1. (Bug#3520)

• Added connectionCollation property to cause driver to issue set collation_connection=... query on connection
init if default collation for given charset is not appropriate. (Bug#3520)

• DBMD.getSQLStateType() returns incorrect value. (Bug#3520)

• Correctly map output parameters to position given in prepareCall() versus. order implied during registerOutParamet-
er(). (Bug#3146)

• Cleaned up detection of server properties. (Bug#3146)

• Correctly detect initial character set for servers >= 4.1.0. (Bug#3146)

• Support placeholder for parameter metadata for server >= 4.1.2. (Bug#3146)

• Added gatherPerformanceMetrics property, along with properties to control when/where this info gets logged (see docs for
more info).

• Fixed case when no parameters could cause a NullPointerException in CallableState-
ment.setOutputParameters().

• Enabled callable statement caching via cacheCallableStmts property.

• Fixed sending of split packets for large queries, enabled nio ability to send large packets as well.

• Added .toString() functionality to ServerPreparedStatement, which should help if you're trying to debug a query that
is a prepared statement (it shows SQL as the server would process).

• Added logSlowQueries property, along with slowQueriesThresholdMillis property to control when a query should be
considered “slow.”

• Removed wrapping of exceptions in MysqlIO.changeUser().

• Fixed stored procedure parameter parsing info when size was specified for a parameter (for example, char(), varchar()).

• ServerPreparedStatements weren't actually de-allocating server-side resources when .close() was called.

• Fixed case when no output parameters specified for a stored procedure caused a bogus query to be issued to retrieve out parameters,

MySQL Change History

2285

http://bugs.mysql.com/4119
http://bugs.mysql.com/4119
http://bugs.mysql.com/4119
http://bugs.mysql.com/3804
http://bugs.mysql.com/3804
http://bugs.mysql.com/3540
http://bugs.mysql.com/3539
http://bugs.mysql.com/3520
http://bugs.mysql.com/3520
http://bugs.mysql.com/3520
http://bugs.mysql.com/3146
http://bugs.mysql.com/3146
http://bugs.mysql.com/3146
http://bugs.mysql.com/3146


leading to a syntax error from the server.

C.5.3.15. Changes in MySQL Connector/J 3.1.1 (14 February 2004)

Bugs fixed:

• Use DocBook version of docs for shipped versions of drivers. (Bug#2671)

• NULL fields were not being encoded correctly in all cases in server-side prepared statements. (Bug#2671)

• Fixed rare buffer underflow when writing numbers into buffers for sending prepared statement execution requests. (Bug#2671)

• Fixed ConnectionProperties that weren't properly exposed via accessors, cleaned up ConnectionProperties code.
(Bug#2623)

• Class-cast exception when using scrolling result sets and server-side prepared statements. (Bug#2623)

• Merged unbuffered input code from 3.0. (Bug#2623)

• Enabled streaming of result sets from server-side prepared statements. (Bug#2606)

• Server-side prepared statements were not returning datatype YEAR correctly. (Bug#2606)

• Fixed charset conversion issue in getTables(). (Bug#2502)

• Implemented multiple result sets returned from a statement or stored procedure. (Bug#2502)

• Implemented Connection.prepareCall(), and DatabaseMetaData. getProcedures() and getProcedure-
Columns(). (Bug#2359)

• Merged prepared statement caching, and .getMetaData() support from 3.0 branch. (Bug#2359)

• Fixed off-by-1900 error in some cases for years in TimeUtil.fastDate/TimeCreate() when unpacking results from server-
side prepared statements. (Bug#2359)

• Reset long binary parameters in ServerPreparedStatement when clearParameters() is called, by sending
COM_RESET_STMT to the server. (Bug#2359)

• NULL values for numeric types in binary encoded result sets causing NullPointerExceptions. (Bug#2359)

• Display where/why a connection was implicitly closed (to aid debugging). (Bug#1673)

• DatabaseMetaData.getColumns() is not returning correct column ordinal info for non-'%' column name patterns.
(Bug#1673)

• Fixed NullPointerException in ServerPreparedStatement.setTimestamp(), as well as year and month descre-
pencies in ServerPreparedStatement.setTimestamp(), setDate(). (Bug#1673)

• Added ability to have multiple database/JVM targets for compliance and regression/unit tests in build.xml. (Bug#1673)

• Fixed sending of queries larger than 16M. (Bug#1673)

• Merged fix of datatype mapping from MySQL type FLOAT to java.sql.Types.REAL from 3.0 branch. (Bug#1673)

• Fixed NPE and year/month bad conversions when accessing some datetime functionality in ServerPreparedStatements and
their resultant result sets. (Bug#1673)

• Added named and indexed input/output parameter support to CallableStatement. MySQL-5.0.x or newer. (Bug#1673)

• CommunicationsException implemented, that tries to determine why communications was lost with a server, and displays
possible reasons when .getMessage() is called. (Bug#1673)

• Detect collation of column for RSMD.isCaseSensitive(). (Bug#1673)

MySQL Change History

2286

http://bugs.mysql.com/2671
http://bugs.mysql.com/2671
http://bugs.mysql.com/2671
http://bugs.mysql.com/2623
http://bugs.mysql.com/2623
http://bugs.mysql.com/2623
http://bugs.mysql.com/2606
http://bugs.mysql.com/2606
http://bugs.mysql.com/2502
http://bugs.mysql.com/2502
http://bugs.mysql.com/2359
http://bugs.mysql.com/2359
http://bugs.mysql.com/2359
http://bugs.mysql.com/2359
http://bugs.mysql.com/2359
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673
http://bugs.mysql.com/1673


• Optimized Buffer.readLenByteArray() to return shared empty byte array when length is 0.

• Fix support for table aliases when checking for all primary keys in UpdatableResultSet.

• Unpack “unknown” data types from server prepared statements as Strings.

• Implemented Statement.getWarnings() for MySQL-4.1 and newer (using SHOW WARNINGS).

• Ensure that warnings are cleared before executing queries on prepared statements, as-per JDBC spec (now that we support warn-
ings).

• Correctly initialize datasource properties from JNDI Refs, including explicitly specified URLs.

• Implemented long data (Blobs, Clobs, InputStreams, Readers) for server prepared statements.

• Deal with 0-length tokens in EscapeProcessor (caused by callable statement escape syntax).

• DatabaseMetaData now reports supportsStoredProcedures() for MySQL versions >= 5.0.0

• Support for mysql_change_user(). See the changeUser() method in com.mysql.jdbc.Connection.

• Removed useFastDates connection property.

• Support for NIO. Use useNIO=true on platforms that support NIO.

• Check for closed connection on delete/update/insert row operations in UpdatableResultSet.

• Support for transaction savepoints (MySQL >= 4.0.14 or 4.1.1).

• Support “old” profileSql capitalization in ConnectionProperties. This property is deprecated, you should use pro-
fileSQL if possible.

• Fixed character encoding issues when converting bytes to ASCII when MySQL doesn't provide the character set, and the JVM is set
to a multi-byte encoding (usually affecting retrieval of numeric values).

• Centralized setting of result set type and concurrency.

• Fixed bug with UpdatableResultSets not using client-side prepared statements.

• Default result set type changed to TYPE_FORWARD_ONLY (JDBC compliance).

• Fixed IllegalAccessError to Calendar.getTimeInMillis() in DateTimeValue (for JDK < 1.4).

• Allow contents of PreparedStatement.setBlob() to be retained between calls to .execute*().

• Fixed stack overflow in Connection.prepareCall() (bad merge).

• Refactored how connection properties are set and exposed as DriverPropertyInfo as well as Connection and Data-
Source properties.

• Reduced number of methods called in average query to be more efficient.

• Prepared Statements will be re-prepared on auto-reconnect. Any errors encountered are postponed until first attempt to re-
execute the re-prepared statement.

C.5.3.16. Changes in MySQL Connector/J 3.1.0 (18 February 2003)

Bugs fixed:

• Added useServerPrepStmts property (default false). The driver will use server-side prepared statements when the server
version supports them (4.1 and newer) when this property is set to true. It is currently set to false by default until all bind/fetch
functionality has been implemented. Currently only DML prepared statements are implemented for 4.1 server-side prepared state-
ments.

MySQL Change History

2287



• Added requireSSL property.

• Track open Statements, close all when Connection.close() is called (JDBC compliance).

C.5.4. Changes in MySQL Connector/J 3.0.x

C.5.4.1. Changes in MySQL Connector/J 3.0.17 (23 June 2005)

Bugs fixed:

• Workaround for server Bug#9098: Default values of CURRENT_* for DATE, TIME, DATETIME, and TIMESTAMP columns can't
be distinguished from string values, so UpdatableResultSet.moveToInsertRow() generates bad SQL for inserting
default values. (Bug#8812)

• NON_UNIQUE column from DBMD.getIndexInfo() returned inverted value. (Bug#8812)

• EUCKR charset is sent as SET NAMES euc_kr which MySQL-4.1 and newer doesn't understand. (Bug#8629)

• Added support for the EUC_JP_Solaris character encoding, which maps to a MySQL encoding of eucjpms (backported from
3.1 branch). This only works on servers that support eucjpms, namely 5.0.3 or later. (Bug#8629)

• Use hex escapes for PreparedStatement.setBytes() for double-byte charsets including “aliases” Windows-31J,
CP934, MS932. (Bug#8629)

• DatabaseMetaData.supportsSelectForUpdate() returns correct value based on server version. (Bug#8629)

• Which requires hex escaping of binary data when using multi-byte charsets with prepared statements. (Bug#8064)

• Fixed duplicated code in configureClientCharset() that prevented useOldUTF8Behavior=true from working prop-
erly. (Bug#7952)

• Backported SQLState codes mapping from Connector/J 3.1, enable with useSqlStateCodes=true as a connection property, it
defaults to false in this release, so that we don't break legacy applications (it defaults to true starting with Connector/J 3.1).
(Bug#7686)

• Timestamp key column data needed _binary stripped for UpdatableResultSet.refreshRow(). (Bug#7686)

• MS932, SHIFT_JIS, and Windows_31J not recognized as aliases for sjis. (Bug#7607)

• Handle streaming result sets with more than 2 billion rows properly by fixing wraparound of row number counter. (Bug#7601)

• PreparedStatement.fixDecimalExponent() adding extra +, making number unparseable by MySQL server.
(Bug#7601)

• Escape sequence {fn convert(..., type)} now supports ODBC-style types that are prepended by SQL_. (Bug#7601)

• Statements created from a pooled connection were returning physical connection instead of logical connection when getConnec-
tion() was called. (Bug#7316)

• Support new protocol type MYSQL_TYPE_VARCHAR. (Bug#7081)

• Added useOldUTF8Behavior' configuration property, which causes JDBC driver to act like it did with MySQL-4.0.x and earli-
er when the character encoding is utf-8 when connected to MySQL-4.1 or newer. (Bug#7081)

• DatabaseMetaData.getIndexInfo() ignored unique parameter. (Bug#7081)

• PreparedStatement.fixDecimalExponent() adding extra +, making number unparseable by MySQL server.
(Bug#7061)

• PreparedStatements don't encode Big5 (and other multi-byte) character sets correctly in static SQL strings. (Bug#7033)

• Connections starting up failed-over (due to down master) never retry master. (Bug#6966)

• Adding CP943 to aliases for sjis. (Bug#6549, Bug#7607)

MySQL Change History

2288

http://bugs.mysql.com/9098
http://bugs.mysql.com/8812
http://bugs.mysql.com/8812
http://bugs.mysql.com/8629
http://bugs.mysql.com/8629
http://bugs.mysql.com/8629
http://bugs.mysql.com/8629
http://bugs.mysql.com/8064
http://bugs.mysql.com/7952
http://bugs.mysql.com/7686
http://bugs.mysql.com/7686
http://bugs.mysql.com/7607
http://bugs.mysql.com/7601
http://bugs.mysql.com/7601
http://bugs.mysql.com/7601
http://bugs.mysql.com/7316
http://bugs.mysql.com/7081
http://bugs.mysql.com/7081
http://bugs.mysql.com/7081
http://bugs.mysql.com/7061
http://bugs.mysql.com/7033
http://bugs.mysql.com/6966
http://bugs.mysql.com/6549
http://bugs.mysql.com/7607


• Timestamp/Time conversion goes in the wrong “direction” when useTimeZone=true and server time zone differs from client
time zone. (Bug#5874)

C.5.4.2. Changes in MySQL Connector/J 3.0.16 (15 November 2004)

Bugs fixed:

• Made TINYINT(1) -> BIT/Boolean conversion configurable via tinyInt1isBit property (default true to be JDBC com-
pliant out of the box). (Bug#5664)

• Off-by-one bug in Buffer.readString(string). (Bug#5664)

• ResultSet.updateByte() when on insert row throws ArrayOutOfBoundsException. (Bug#5664)

• Fixed regression where useUnbufferedInput was defaulting to false. (Bug#5664)

• ResultSet.getTimestamp() on a column with TIME in it fails. (Bug#5664)

• Fixed DatabaseMetaData.getTypes() returning incorrect (this is, non-negative) scale for the NUMERIC type. (Bug#5664)

• Only set character_set_results during connection establishment if server version >= 4.1.1. (Bug#5664)

• Fixed ResultSetMetaData.isReadOnly() to detect non-writable columns when connected to MySQL-4.1 or newer, based
on existence of “original” table and column names.

• Re-issue character set configuration commands when re-using pooled connections and/or Connection.changeUser() when
connected to MySQL-4.1 or newer.

C.5.4.3. Changes in MySQL Connector/J 3.0.15 (04 September 2004)

Bugs fixed:

• ResultSet.getMetaData() should not return incorrectly initialized metadata if the result set has been closed, but should in-
stead throw an SQLException. Also fixed for getRow() and getWarnings() and traversal methods by calling check-
Closed() before operating on instance-level fields that are nullified during .close(). (Bug#5069)

• Use _binary introducer for PreparedStatement.setBytes() and set*Stream() when connected to MySQL-4.1.x or
newer to avoid misinterpretation during character conversion. (Bug#5069)

• Parse new time zone variables from 4.1.x servers. (Bug#5069)

• ResultSet should release Field[] instance in .close(). (Bug#5022)

• RSMD.getPrecision() returning 0 for non-numeric types (should return max length in chars for non-binary types, max length
in bytes for binary types). This fix also fixes mapping of RSMD.getColumnType() and RSMD.getColumnTypeName() for
the BLOB types based on the length sent from the server (the server doesn't distinguish between TINYBLOB, BLOB, MEDIUMBLOB
or LONGBLOB at the network protocol level). (Bug#4880)

• “Production” is now “GA” (General Availability) in naming scheme of distributions. (Bug#4860, Bug#4138)

• DBMD.getColumns() returns incorrect JDBC type for unsigned columns. This affects type mappings for all numeric types in the
RSMD.getColumnType() and RSMD.getColumnTypeNames() methods as well, to ensure that “like” types from DB-
MD.getColumns() match up with what RSMD.getColumnType() and getColumnTypeNames() return. (Bug#4860,
Bug#4138)

• Calling .close() twice on a PooledConnection causes NPE. (Bug#4808)

• DOUBLE mapped twice in DBMD.getTypeInfo(). (Bug#4742)

• Added FLOSS license exemption. (Bug#4742)

• Removed redundant calls to checkRowPos() in ResultSet. (Bug#4334)

MySQL Change History

2289

http://bugs.mysql.com/5874
http://bugs.mysql.com/5664
http://bugs.mysql.com/5664
http://bugs.mysql.com/5664
http://bugs.mysql.com/5664
http://bugs.mysql.com/5664
http://bugs.mysql.com/5664
http://bugs.mysql.com/5664
http://bugs.mysql.com/5069
http://bugs.mysql.com/5069
http://bugs.mysql.com/5069
http://bugs.mysql.com/5022
http://bugs.mysql.com/4880
http://bugs.mysql.com/4860
http://bugs.mysql.com/4138
http://bugs.mysql.com/4860
http://bugs.mysql.com/4138
http://bugs.mysql.com/4808
http://bugs.mysql.com/4742
http://bugs.mysql.com/4742
http://bugs.mysql.com/4334


• Failover for autoReconnect not using port numbers for any hosts, and not retrying all hosts.

Warning

This required a change to the SocketFactory connect() method signature, which is now public Socket
connect(String host, int portNumber, Properties props); therefore, any third-party socket factor-
ies will have to be changed to support this signature.

(Bug#4334)

• Logical connections created by MysqlConnectionPoolDataSource will now issue a rollback() when they are closed
and sent back to the pool. If your application server/connection pool already does this for you, you can set the rollbackOn-
PooledClose property to false to avoid the overhead of an extra rollback(). (Bug#4334)

• StringUtils.escapeEasternUnicodeByteStream was still broken for GBK. (Bug#4010)

C.5.4.4. Changes in MySQL Connector/J 3.0.14 (28 May 2004)

Bugs fixed:

• Fixed URL parsing error.

C.5.4.5. Changes in MySQL Connector/J 3.0.13 (27 May 2004)

Bugs fixed:

• No Database Selected when using MysqlConnectionPoolDataSource. (Bug#3920)

• PreparedStatement.getGeneratedKeys() method returns only 1 result for batched insertions. (Bug#3873)

• Using a MySQLDatasource without server name fails. (Bug#3848)

C.5.4.6. Changes in MySQL Connector/J 3.0.12 (18 May 2004)

Bugs fixed:

• Inconsistent reporting of data type. The server still doesn't return all types for *BLOBs *TEXT correctly, so the driver won't return
those correctly. (Bug#3570)

• UpdatableResultSet not picking up default values for moveToInsertRow(). (Bug#3557)

• Not specifying database in URL caused MalformedURL exception. (Bug#3554)

• Auto-convert MySQL encoding names to Java encoding names if used for characterEncoding property. (Bug#3554)

• Use junit.textui.TestRunner for all unit tests (to allow them to be run from the command line outside of Ant or Eclipse).
(Bug#3554)

• Added encoding names that are recognized on some JVMs to fix case where they were reverse-mapped to MySQL encoding names
incorrectly. (Bug#3554)

• Made StringRegressionTest 4.1-unicode aware. (Bug#3520)

• Fixed regression in PreparedStatement.setString() and eastern character encodings. (Bug#3520)

• DBMD.getSQLStateType() returns incorrect value. (Bug#3520)

• Renamed StringUtils.escapeSJISByteStream() to more appropriate escapeEasternUnicodeByteStream().
(Bug#3511)

MySQL Change History

2290

http://bugs.mysql.com/4334
http://bugs.mysql.com/4334
http://bugs.mysql.com/4010
http://bugs.mysql.com/3920
http://bugs.mysql.com/3873
http://bugs.mysql.com/3848
http://bugs.mysql.com/3570
http://bugs.mysql.com/3557
http://bugs.mysql.com/3554
http://bugs.mysql.com/3554
http://bugs.mysql.com/3554
http://bugs.mysql.com/3554
http://bugs.mysql.com/3520
http://bugs.mysql.com/3520
http://bugs.mysql.com/3520
http://bugs.mysql.com/3511


• StringUtils.escapeSJISByteStream() not covering all eastern double-byte charsets correctly. (Bug#3511)

• Return creating statement for ResultSets created by getGeneratedKeys(). (Bug#2957)

• Use SET character_set_results during initialization to allow any charset to be returned to the driver for result sets.
(Bug#2670)

• Don't truncate BLOB or CLOB values when using setBytes() and/or setBinary/CharacterStream(). . (Bug#2670)

• Dynamically configure character set mappings for field-level character sets on MySQL-4.1.0 and newer using SHOW COLLATION
when connecting. (Bug#2670)

• Map binary character set to US-ASCII to support DATETIME charset recognition for servers >= 4.1.2. (Bug#2670)

• Use charsetnr returned during connect to encode queries before issuing SET NAMES on MySQL >= 4.1.0. (Bug#2670)

• Add helper methods to ResultSetMetaData (getColumnCharacterEncoding() and getColumnCharacterSet())
to allow end-users to see what charset the driver thinks it should be using for the column. (Bug#2670)

• Only set character_set_results for MySQL >= 4.1.0. (Bug#2670)

• Allow url parameter for MysqlDataSource and MysqlConnectionPool DataSource so that passing of other properties
is possible from inside appservers.

• Don't escape SJIS/GBK/BIG5 when using MySQL-4.1 or newer.

• Backport documentation tooling from 3.1 branch.

• Added failOverReadOnly property, to allow end-user to configure state of connection (read-only/writable) when failed over.

• Allow java.util.Date to be sent in as parameter to PreparedStatement.setObject(), converting it to a
Timestamp to maintain full precision. . (Bug#103)

• Add unsigned attribute to DatabaseMetaData.getColumns() output in the TYPE_NAME column.

• Map duplicate key and foreign key errors to SQLState of 23000.

• Backported “change user” and “reset server state” functionality from 3.1 branch, to allow clients of MysqlConnection-
PoolDataSource to reset server state on getConnection() on a pooled connection.

C.5.4.7. Changes in MySQL Connector/J 3.0.11 (19 February 2004)

Bugs fixed:

• Return java.lang.Double for FLOAT type from ResultSetMetaData.getColumnClassName(). (Bug#2855)

• Return [B instead of java.lang.Object for BINARY, VARBINARY and LONGVARBINARY types from ResultSet-
MetaData.getColumnClassName() (JDBC compliance). (Bug#2855)

• Issue connection events on all instances created from a ConnectionPoolDataSource. (Bug#2855)

• Return java.lang.Integer for TINYINT and SMALLINT types from ResultSet-
MetaData.getColumnClassName(). (Bug#2852)

• Added useUnbufferedInput parameter, and now use it by default (due to JVM issue ht-
tp://developer.java.sun.com/developer/bugParade/bugs/4401235.html) (Bug#2578)

• Fixed failover always going to last host in list. (Bug#2578)

• Detect on/off or 1, 2, 3 form of lower_case_table_names value on server. (Bug#2578)

• AutoReconnect time was growing faster than exponentially. (Bug#2447)

• Trigger a SET NAMES utf8 when encoding is forced to utf8 or utf-8 via the characterEncoding property. Previously,

MySQL Change History

2291

http://bugs.mysql.com/3511
http://bugs.mysql.com/2957
http://bugs.mysql.com/2670
http://bugs.mysql.com/2670
http://bugs.mysql.com/2670
http://bugs.mysql.com/2670
http://bugs.mysql.com/2670
http://bugs.mysql.com/2670
http://bugs.mysql.com/2670
http://bugs.mysql.com/103
http://bugs.mysql.com/2855
http://bugs.mysql.com/2855
http://bugs.mysql.com/2855
http://bugs.mysql.com/2852
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html
http://bugs.mysql.com/2578
http://bugs.mysql.com/2578
http://bugs.mysql.com/2578
http://bugs.mysql.com/2447


only the Java-style encoding name of utf-8 would trigger this.

C.5.4.8. Changes in MySQL Connector/J 3.0.10 (13 January 2004)

Bugs fixed:

• Enable caching of the parsing stage of prepared statements via the cachePrepStmts, prepStmtCacheSize, and prepSt-
mtCacheSqlLimit properties (disabled by default). (Bug#2006)

• Fixed security exception when used in Applets (applets can't read the system property file.encoding which is needed for LOAD
DATA LOCAL INFILE). (Bug#2006)

• Speed up parsing of PreparedStatements, try to use one-pass whenever possible. (Bug#2006)

• Fixed exception Unknown character set 'danish' on connect with JDK-1.4.0 (Bug#2006)

• Fixed mappings in SQLError to report deadlocks with SQLStates of 41000. (Bug#2006)

• Removed static synchronization bottleneck from instance factory method of SingleByteCharsetConverter. (Bug#2006)

• Removed static synchronization bottleneck from PreparedStatement.setTimestamp(). (Bug#2006)

• ResultSet.findColumn() should use first matching column name when there are duplicate column names in SELECT query
(JDBC-compliance). (Bug#2006)

• maxRows property would affect internal statements, so check it for all statement creation internal to the driver, and set to 0 when it
is not. (Bug#2006)

• Use constants for SQLStates. (Bug#2006)

• Map charset ko18_ru to ko18r when connected to MySQL-4.1.0 or newer. (Bug#2006)

• Ensure that Buffer.writeString() saves room for the \0. (Bug#2006)

• ArrayIndexOutOfBounds when parameter number == number of parameters + 1. (Bug#1958)

• Connection property maxRows not honored. (Bug#1933)

• Statements being created too many times in DBMD.extractForeignKeyFromCreateTable(). (Bug#1925)

• Support escape sequence {fn convert ... }. (Bug#1914)

• Implement ResultSet.updateClob(). (Bug#1913)

• Autoreconnect code didn't set catalog upon reconnect if it had been changed. (Bug#1913)

• ResultSet.getObject() on TINYINT and SMALLINT columns should return Java type Integer. (Bug#1913)

• Added more descriptive error message Server Configuration Denies Access to DataSource, as well as retrieval
of message from server. (Bug#1913)

• ResultSetMetaData.isCaseSensitive() returned wrong value for CHAR/VARCHAR columns. (Bug#1913)

• Added alwaysClearStream connection property, which causes the driver to always empty any remaining data on the input
stream before each query. (Bug#1913)

• DatabaseMetaData.getSystemFunction() returning bad function VResultsSion. (Bug#1775)

• Foreign Keys column sequence is not consistent in
DatabaseMetaData.getImported/Exported/CrossReference(). (Bug#1731)

• Fix for ArrayIndexOutOfBounds exception when using Statement.setMaxRows(). (Bug#1695)

• Subsequent call to ResultSet.updateFoo() causes NPE if result set is not updatable. (Bug#1630)

MySQL Change History

2292

http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/2006
http://bugs.mysql.com/1958
http://bugs.mysql.com/1933
http://bugs.mysql.com/1925
http://bugs.mysql.com/1914
http://bugs.mysql.com/1913
http://bugs.mysql.com/1913
http://bugs.mysql.com/1913
http://bugs.mysql.com/1913
http://bugs.mysql.com/1913
http://bugs.mysql.com/1913
http://bugs.mysql.com/1775
http://bugs.mysql.com/1731
http://bugs.mysql.com/1695
http://bugs.mysql.com/1630


• Fix for 4.1.1-style authentication with no password. (Bug#1630)

• Cross-database updatable result sets are not checked for updatability correctly. (Bug#1592)

• DatabaseMetaData.getColumns() should return Types.LONGVARCHAR for MySQL LONGTEXT type. (Bug#1592)

• Fixed regression of Statement.getGeneratedKeys() and REPLACE statements. (Bug#1576)

• Barge blobs and split packets not being read correctly. (Bug#1576)

• Backported fix for aliased tables and UpdatableResultSets in checkUpdatability() method from 3.1 branch.
(Bug#1534)

• “Friendlier” exception message for PacketTooLargeException. (Bug#1534)

• Don't count quoted IDs when inside a 'string' in PreparedStatement parsing. (Bug#1511)

C.5.4.9. Changes in MySQL Connector/J 3.0.9 (07 October 2003)

Bugs fixed:

• ResultSet.get/setString mashing char 127. (Bug#1247)

• Added property to “clobber” streaming results, by setting the clobberStreamingResults property to true (the default is
false). This will cause a “streaming” ResultSet to be automatically closed, and any oustanding data still streaming from the
server to be discarded if another query is executed before all the data has been read from the server. (Bug#1247)

• Added com.mysql.jdbc.util.BaseBugReport to help creation of testcases for bug reports. (Bug#1247)

• Backported authentication changes for 4.1.1 and newer from 3.1 branch. (Bug#1247)

• Made databaseName, portNumber, and serverName optional parameters for MysqlDataSourceFactory. (Bug#1246)

• Optimized CLOB.setChracterStream(). (Bug#1131)

• Fixed CLOB.truncate(). (Bug#1130)

• Fixed deadlock issue with Statement.setMaxRows(). (Bug#1099)

• DatabaseMetaData.getColumns() getting confused about the keyword “set” in character columns. (Bug#1099)

• Clip +/- INF (to smallest and largest representative values for the type in MySQL) and NaN (to 0) for setDouble/setFloat(),
and issue a warning on the statement when the server does not support +/- INF or NaN. (Bug#884)

• Don't fire connection closed events when closing pooled connections, or on PooledConnection.getConnection() with
already open connections. (Bug#884)

• Double-escaping of '\' when charset is SJIS or GBK and '\' appears in non-escaped input. (Bug#879)

• When emptying input stream of unused rows for “streaming” result sets, have the current thread yield() every 100 rows in order
to not monopolize CPU time. (Bug#879)

• Issue exception on ResultSet.getXXX() on empty result set (wasn't caught in some cases). (Bug#848)

• Don't hide messages from exceptions thrown in I/O layers. (Bug#848)

• Fixed regression in large split-packet handling. (Bug#848)

• Better diagnostic error messages in exceptions for “streaming” result sets. (Bug#848)

• Don't change timestamp TZ twice if useTimezone==true. (Bug#774)

• Don't wrap SQLExceptions in RowDataDynamic. (Bug#688)

MySQL Change History

2293

http://bugs.mysql.com/1630
http://bugs.mysql.com/1592
http://bugs.mysql.com/1592
http://bugs.mysql.com/1576
http://bugs.mysql.com/1576
http://bugs.mysql.com/1534
http://bugs.mysql.com/1534
http://bugs.mysql.com/1511
http://bugs.mysql.com/1247
http://bugs.mysql.com/1247
http://bugs.mysql.com/1247
http://bugs.mysql.com/1247
http://bugs.mysql.com/1246
http://bugs.mysql.com/1131
http://bugs.mysql.com/1130
http://bugs.mysql.com/1099
http://bugs.mysql.com/1099
http://bugs.mysql.com/884
http://bugs.mysql.com/884
http://bugs.mysql.com/879
http://bugs.mysql.com/879
http://bugs.mysql.com/848
http://bugs.mysql.com/848
http://bugs.mysql.com/848
http://bugs.mysql.com/848
http://bugs.mysql.com/774
http://bugs.mysql.com/688


• Don't try and reset isolation level on reconnect if MySQL doesn't support them. (Bug#688)

• The insertRow in an UpdatableResultSet is now loaded with the default column values when moveToInsertRow() is
called. (Bug#688)

• DatabaseMetaData.getColumns() wasn't returning NULL for default values that are specified as NULL. (Bug#688)

• Change default statement type/concurrency to TYPE_FORWARD_ONLY and CONCUR_READ_ONLY (spec compliance). (Bug#688)

• Fix UpdatableResultSet to return values for getXXX() when on insert row. (Bug#675)

• Support InnoDB contraint names when extracting foreign key information in DatabaseMetaData (implementing ideas from
Parwinder Sekhon). (Bug#664, Bug#517)

• Backported 4.1 protocol changes from 3.1 branch (server-side SQL states, new field information, larger client capability flags, con-
nect-with-database, and so forth). (Bug#664, Bug#517)

• refreshRow didn't work when primary key values contained values that needed to be escaped (they ended up being doubly es-
caped). (Bug#661)

• Fixed ResultSet.previous() behavior to move current position to before result set when on first row of result set. (Bug#496)

• Fixed Statement and PreparedStatement issuing bogus queries when setMaxRows() had been used and a LIMIT clause
was present in the query. (Bug#496)

• Faster date handling code in ResultSet and PreparedStatement (no longer uses Date methods that synchronize on static
calendars).

• Fixed test for end of buffer in Buffer.readString().

C.5.4.10. Changes in MySQL Connector/J 3.0.8 (23 May 2003)

Bugs fixed:

• Fixed SJIS encoding bug, thanks to Naoto Sato. (Bug#378)

• Fix problem detecting server character set in some cases. (Bug#378)

• Allow multiple calls to Statement.close(). (Bug#378)

• Return correct number of generated keys when using REPLACE statements. (Bug#378)

• Unicode character 0xFFFF in a string would cause the driver to throw an ArrayOutOfBoundsException. . (Bug#378)

• Fix row data decoding error when using very large packets. (Bug#378)

• Optimized row data decoding. (Bug#378)

• Issue exception when operating on an already closed prepared statement. (Bug#378)

• Optimized usage of EscapeProcessor. (Bug#378)

• Use JVM charset with filenames and LOAD DATA [LOCAL] INFILE.

• Fix infinite loop with Connection.cleanup().

• Changed Ant target compile-core to compile-driver, and made testsuite compilation a separate target.

• Fixed result set not getting set for Statement.executeUpdate(), which affected getGeneratedKeys() and getUp-
dateCount() in some cases.

• Return list of generated keys when using multi-value INSERTS with Statement.getGeneratedKeys().

• Allow bogus URLs in Driver.getPropertyInfo().

MySQL Change History

2294

http://bugs.mysql.com/688
http://bugs.mysql.com/688
http://bugs.mysql.com/688
http://bugs.mysql.com/688
http://bugs.mysql.com/675
http://bugs.mysql.com/664
http://bugs.mysql.com/517
http://bugs.mysql.com/664
http://bugs.mysql.com/517
http://bugs.mysql.com/661
http://bugs.mysql.com/496
http://bugs.mysql.com/496
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378
http://bugs.mysql.com/378


C.5.4.11. Changes in MySQL Connector/J 3.0.7 (08 April 2003)

Bugs fixed:

• Fixed charset issues with database metadata (charset was not getting set correctly).

• You can now toggle profiling on/off using Connection.setProfileSql(boolean).

• 4.1 Column Metadata fixes.

• Fixed MysqlPooledConnection.close() calling wrong event type.

• Fixed StringIndexOutOfBoundsException in PreparedStatement.setClob().

• IOExceptions during a transaction now cause the Connection to be closed.

• Remove synchronization from Driver.connect() and Driver.acceptsUrl().

• Fixed missing conversion for YEAR type in ResultSetMetaData.getColumnTypeName().

• Updatable ResultSets can now be created for aliased tables/columns when connected to MySQL-4.1 or newer.

• Fixed LOAD DATA LOCAL INFILE bug when file > max_allowed_packet.

• Don't pick up indexes that start with pri as primary keys for DBMD.getPrimaryKeys().

• Ensure that packet size from alignPacketSize() does not exceed max_allowed_packet (JVM bug)

• Don't reset Connection.isReadOnly() when autoReconnecting.

• Fixed escaping of 0x5c ('\') character for GBK and Big5 charsets.

• Fixed ResultSet.getTimestamp() when underlying field is of type DATE.

• Throw SQLExceptions when trying to do operations on a forcefully closed Connection (that is, when a communication link
failure occurs).

C.5.4.12. Changes in MySQL Connector/J 3.0.6 (18 February 2003)

Bugs fixed:

• Backported 4.1 charset field info changes from Connector/J 3.1.

• Fixed Statement.setMaxRows() to stop sending LIMIT type queries when not needed (performance).

• Fixed DBMD.getTypeInfo() and DBMD.getColumns() returning different value for precision in TEXT and BLOB types.

• Fixed SQLExceptions getting swallowed on initial connect.

• Fixed ResultSetMetaData to return "" when catalog not known. Fixes NullPointerExceptions with Sun's Cached-
RowSet.

• Allow ignoring of warning for “non transactional tables” during rollback (compliance/usability) by setting ignoreNonTxTables
property to true.

• Clean up Statement query/method mismatch tests (that is, INSERT not allowed with .executeQuery()).

• Fixed ResultSetMetaData.isWritable() to return correct value.

• More checks added in ResultSet traversal method to catch when in closed state.

• Implemented Blob.setBytes(). You still need to pass the resultant Blob back into an updatable ResultSet or Prepared-
Statement to persist the changes, because MySQL does not support “locators”.

MySQL Change History

2295



• Add “window” of different NULL sorting behavior to DBMD.nullsAreSortedAtStart (4.0.2 to 4.0.10, true; otherwise, no).

C.5.4.13. Changes in MySQL Connector/J 3.0.5 (22 January 2003)

Bugs fixed:

• Fixed ResultSet.isBeforeFirst() for empty result sets.

• Added missing LONGTEXT type to DBMD.getColumns().

• Implemented an empty TypeMap for Connection.getTypeMap() so that some third-party apps work with MySQL (IBM
WebSphere 5.0 Connection pool).

• Added update options for foreign key metadata.

• Fixed Buffer.fastSkipLenString() causing ArrayIndexOutOfBounds exceptions with some queries when unpack-
ing fields.

• Quote table names in DatabaseMetaData.getColumns(), getPrimaryKeys(), getIndexInfo(), getBestRow-
Identifier().

• Retrieve TX_ISOLATION from database for Connection.getTransactionIsolation() when the MySQL version sup-
ports it, instead of an instance variable.

• Greatly reduce memory required for setBinaryStream() in PreparedStatements.

C.5.4.14. Changes in MySQL Connector/J 3.0.4 (06 January 2003)

Bugs fixed:

• Streamlined character conversion and byte[] handling in PreparedStatements for setByte().

• Fixed PreparedStatement.executeBatch() parameter overwriting.

• Added quoted identifiers to database names for Connection.setCatalog.

• Added support for 4.0.8-style large packets.

• Reduce memory footprint of PreparedStatements by sharing outbound packet with MysqlIO.

• Added strictUpdates property to allow control of amount of checking for “correctness” of updatable result sets. Set this to
false if you want faster updatable result sets and you know that you create them from SELECT statements on tables with primary
keys and that you have selected all primary keys in your query.

• Added support for quoted identifiers in PreparedStatement parser.

C.5.4.15. Changes in MySQL Connector/J 3.0.3 (17 December 2002)

Bugs fixed:

• Allow user to alter behavior of Statement/ PreparedStatement.executeBatch() via continueBatchOnError
property (defaults to true).

• More robust escape tokenizer: Recognize -- comments, and allow nested escape sequences (see test-
suite.EscapeProcessingTest).

• Fixed Buffer.isLastDataPacket() for 4.1 and newer servers.

• NamedPipeSocketFactory now works (only intended for Windows), see README for instructions.

MySQL Change History

2296



• Changed charsToByte in SingleByteCharConverter to be non-static.

• Use non-aliased table/column names and database names to fully qualify tables and columns in UpdatableResultSet (requires
MySQL-4.1 or newer).

• LOAD DATA LOCAL INFILE ... now works, if your server is configured to allow it. Can be turned off with the allow-
LoadLocalInfile property (see the README).

• Implemented Connection.nativeSQL().

• Fixed ResultSetMetaData.getColumnTypeName() returning BLOB for TEXT and TEXT for BLOB types.

• Fixed charset handling in Fields.java.

• Because of above, implemented ResultSetMetaData.isAutoIncrement() to use Field.isAutoIncrement().

• Substitute '?' for unknown character conversions in single-byte character sets instead of '\0'.

• Added CLIENT_LONG_FLAG to be able to get more column flags (isAutoIncrement() being the most important).

• Honor lower_case_table_names when enabled in the server when doing table name comparisons in DatabaseMetaData
methods.

• DBMD.getImported/ExportedKeys() now handles multiple foreign keys per table.

• More robust implementation of updatable result sets. Checks that all primary keys of the table have been selected.

• Some MySQL-4.1 protocol support (extended field info from selects).

• Check for connection closed in more Connection methods (createStatement, prepareStatement, setTransac-
tionIsolation, setAutoCommit).

• Fixed ResultSetMetaData.getPrecision() returning incorrect values for some floating-point types.

• Changed SingleByteCharConverter to use lazy initialization of each converter.

C.5.4.16. Changes in MySQL Connector/J 3.0.2 (08 November 2002)

Bugs fixed:

• Implemented Clob.setString().

• Added com.mysql.jdbc.MiniAdmin class, which allows you to send shutdown command to MySQL server. This is inten-
ded to be used when “embedding” Java and MySQL server together in an end-user application.

• Added SSL support. See README for information on how to use it.

• All DBMD result set columns describing schemas now return NULL to be more compliant with the behavior of other JDBC drivers
for other database systems (MySQL does not support schemas).

• Use SHOW CREATE TABLE when possible for determining foreign key information for DatabaseMetaData. Also allows cas-
cade options for DELETE information to be returned.

• Implemented Clob.setCharacterStream().

• Failover and autoReconnect work only when the connection is in an autoCommit(false) state, in order to stay transaction-
safe.

• Fixed DBMD.supportsResultSetConcurrency() so that it returns true for Result-
Set.TYPE_SCROLL_INSENSITIVE and ResultSet.CONCUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE.

• Implemented Clob.setAsciiStream().

• Removed duplicate code from UpdatableResultSet (it can be inherited from ResultSet, the extra code for each method to

MySQL Change History

2297



handle updatability I thought might someday be necessary has not been needed).

• Fixed UnsupportedEncodingException thrown when “forcing” a character encoding via properties.

• Fixed incorrect conversion in ResultSet.getLong().

• Implemented ResultSet.updateBlob().

• Removed some not-needed temporary object creation by smarter use of Strings in EscapeProcessor, Connection and
DatabaseMetaData classes.

• Escape 0x5c character in strings for the SJIS charset.

• PreparedStatement now honors stream lengths in setBinary/Ascii/Character Stream() unless you set the connection property
useStreamLengthsInPrepStmts to false.

• Fixed issue with updatable result sets and PreparedStatements not working.

• Fixed start position off-by-1 error in Clob.getSubString().

• Added connectTimeout parameter that allows users of JDK-1.4 and newer to specify a maximum time to wait to establish a
connection.

• Fixed various non-ASCII character encoding issues.

• Fixed ResultSet.isLast() for empty result sets (should return false).

• Added driver property useHostsInPrivileges. Defaults to true. Affects whether or not @hostname will be used in DB-
MD.getColumn/TablePrivileges.

• Fixed ResultSet.setFetchDirection(FETCH_UNKNOWN).

• Added queriesBeforeRetryMaster property that specifies how many queries to issue when failed over before attempting to
reconnect to the master (defaults to 50).

• Fixed issue when calling Statement.setFetchSize() when using arbitrary values.

• Properly restore connection properties when autoReconnecting or failing-over, including autoCommit state, and isolation level.

• Implemented Clob.truncate().

C.5.4.17. Changes in MySQL Connector/J 3.0.1 (21 September 2002)

Bugs fixed:

• Charsets now automatically detected. Optimized code for single-byte character set conversion.

• Fixed ResultSetMetaData.isSigned() for TINYINT and BIGINT.

• Fixed RowDataStatic.getAt() off-by-one bug.

• Fixed ResultSet.getRow() off-by-one bug.

• Massive code clean-up to follow Java coding conventions (the time had come).

• Implemented ResultSet.getCharacterStream().

• Added limited Clob functionality (ResultSet.getClob(), PreparedStatemtent.setClob(), PreparedState-
ment.setObject(Clob).

• Connection.isClosed() no longer “pings” the server.

• Connection.close() issues rollback() when getAutoCommit() is false.

MySQL Change History

2298



• Added socketTimeout parameter to URL.

• Added LOCAL TEMPORARY to table types in DatabaseMetaData.getTableTypes().

• Added paranoid parameter, which sanitizes error messages by removing “sensitive” information from them (such as hostnames,
ports, or usernames), as well as clearing “sensitive” data structures when possible.

C.5.4.18. Changes in MySQL Connector/J 3.0.0 (31 July 2002)

Bugs fixed:

• General source-code cleanup.

• The driver now only works with JDK-1.2 or newer.

• Fix and sort primary key names in DBMetaData (SF bugs 582086 and 582086).

• ResultSet.getTimestamp() now works for DATE types (SF bug 559134).

• Float types now reported as java.sql.Types.FLOAT (SF bug 579573).

• Support for streaming (row-by-row) result sets (see README) Thanks to Doron.

• Testsuite now uses Junit (which you can get from http://www.junit.org.

• JDBC Compliance: Passes all tests besides stored procedure tests.

• ResultSet.getDate/Time/Timestamp now recognizes all forms of invalid values that have been set to all zeros by
MySQL (SF bug 586058).

• Added multi-host failover support (see README).

• Repackaging: New driver name is com.mysql.jdbc.Driver, old name still works, though (the driver is now provided by
MySQL-AB).

• Support for large packets (new addition to MySQL-4.0 protocol), see README for more information.

• Better checking for closed connections in Statement and PreparedStatement.

• Performance improvements in string handling and field metadata creation (lazily instantiated) contributed by Alex Twisleton-Wyke-
ham-Fiennes.

• JDBC-3.0 functionality including Statement/PreparedStatement.getGeneratedKeys() and Result-
Set.getURL().

• Overall speed improvements via controlling transient object creation in MysqlIO class when reading packets.

• !!! LICENSE CHANGE !!! The driver is now GPL. If you need non-GPL licenses, please contact me <mark@mysql.com>.

• Performance enchancements: Driver is now 50–100% faster in most situations, and creates fewer temporary objects.

C.5.5. Changes in MySQL Connector/J 2.0.x

C.5.5.1. Changes in MySQL Connector/J 2.0.14 (16 May 2002)

Bugs fixed:

• ResultSet.getDouble() now uses code built into JDK to be more precise (but slower).

• Fixed typo for relaxAutoCommit parameter.

• LogicalHandle.isClosed() calls through to physical connection.

MySQL Change History

2299

http://www.junit.org


• Added SQL profiling (to STDERR). Set profileSql=true in your JDBC URL. See README for more information.

• PreparedStatement now releases resources on .close(). (SF bug 553268)

• More code cleanup.

• Quoted identifiers not used if server version does not support them. Also, if server started with --ansi or -
-sql-mode=ANSI_QUOTES, “"” will be used as an identifier quote character, otherwise “'” will be used.

C.5.5.2. Changes in MySQL Connector/J 2.0.13 (24 April 2002)

Bugs fixed:

• Fixed unicode chars being read incorrectly. (SF bug 541088)

• Faster blob escaping for PrepStmt.

• Added setURL() to MySQLXADataSource. (SF bug 546019)

• Added set/getPortNumber() to DataSource(s). (SF bug 548167)

• PreparedStatement.toString() fixed. (SF bug 534026)

• More code cleanup.

• Rudimentary version of Statement.getGeneratedKeys() from JDBC-3.0 now implemented (you need to be using JDK-1.4
for this to work, I believe).

• DBMetaData.getIndexInfo() - bad PAGES fixed. (SF BUG 542201)

• ResultSetMetaData.getColumnClassName() now implemented.

C.5.5.3. Changes in MySQL Connector/J 2.0.12 (07 April 2002)

Bugs fixed:

• Fixed testsuite.Traversal afterLast() bug, thanks to Igor Lastric.

• Added new types to getTypeInfo(), fixed existing types thanks to Al Davis and Kid Kalanon.

• Fixed time zone off-by-1-hour bug in PreparedStatement (538286, 528785).

• Added identifier quoting to all DatabaseMetaData methods that need them (should fix 518108).

• Added support for BIT types (51870) to PreparedStatement.

• ResultSet.insertRow() should now detect auto_increment fields in most cases and use that value in the new row. This de-
tection will not work in multi-valued keys, however, due to the fact that the MySQL protocol does not return this information.

• Relaxed synchronization in all classes, should fix 520615 and 520393.

• DataSources - fixed setUrl bug (511614, 525565), wrong datasource class name (532816, 528767).

• Added support for YEAR type (533556).

• Fixes for ResultSet updatability in PreparedStatement.

• ResultSet: Fixed updatability (values being set to null if not updated).

• Added getTable/ColumnPrivileges() to DBMD (fixes 484502).

• Added getIdleFor() method to Connection and MysqlLogicalHandle.

MySQL Change History

2300



• ResultSet.refreshRow() implemented.

• Fixed getRow() bug (527165) in ResultSet.

• General code cleanup.

C.5.5.4. Changes in MySQL Connector/J 2.0.11 (27 January 2002)

Bugs fixed:

• Full synchronization of Statement.java.

• Fixed missing DELETE_RULE value in DBMD.getImported/ExportedKeys() and getCrossReference().

• More changes to fix Unexpected end of input stream errors when reading BLOB values. This should be the last fix.

C.5.5.5. Changes in MySQL Connector/J 2.0.10 (24 January 2002)

Bugs fixed:

• Fixed null-pointer-exceptions when using MysqlConnectionPoolDataSource with Websphere 4 (bug 505839).

• Fixed spurious Unexpected end of input stream errors in MysqlIO (bug 507456).

C.5.5.6. Changes in MySQL Connector/J 2.0.9 (13 January 2002)

Bugs fixed:

• Fixed extra memory allocation in MysqlIO.readPacket() (bug 488663).

• Added detection of network connection being closed when reading packets (thanks to Todd Lizambri).

• Fixed casting bug in PreparedStatement (bug 488663).

• DataSource implementations moved to org.gjt.mm.mysql.jdbc2.optional package, and (initial) implementations of
PooledConnectionDataSource and XADataSource are in place (thanks to Todd Wolff for the implementation and testing
of PooledConnectionDataSource with IBM WebSphere 4).

• Fixed quoting error with escape processor (bug 486265).

• Removed concatenation support from driver (the || operator), as older versions of VisualAge seem to be the only thing that use it,
and it conflicts with the logical || operator. You will need to start mysqld with the --ansi flag to use the || operator as concat-
enation (bug 491680).

• Ant build was corrupting included jar files, fixed (bug 487669).

• Report batch update support through DatabaseMetaData (bug 495101).

• Implementation of DatabaseMetaData.getExported/ImportedKeys() and getCrossReference().

• Fixed off-by-one-hour error in PreparedStatement.setTimestamp() (bug 491577).

• Full synchronization on methods modifying instance and class-shared references, driver should be entirely thread-safe now (please
let me know if you have problems).

C.5.5.7. Changes in MySQL Connector/J 2.0.8 (25 November 2001)

Bugs fixed:

MySQL Change History

2301



• XADataSource/ConnectionPoolDataSource code (experimental)

• DatabaseMetaData.getPrimaryKeys() and getBestRowIdentifier() are now more robust in identifying primary
keys (matches regardless of case or abbreviation/full spelling of Primary Key in Key_type column).

• Batch updates now supported (thanks to some inspiration from Daniel Rall).

• PreparedStatement.setAnyNumericType() now handles positive exponents correctly (adds + so MySQL can under-
stand it).

C.5.5.8. Changes in MySQL Connector/J 2.0.7 (24 October 2001)

Bugs fixed:

• Character sets read from database if useUnicode=true and characterEncoding is not set. (thanks to Dmitry
Vereshchagin)

• Initial transaction isolation level read from database (if avaialable). (thanks to Dmitry Vereshchagin)

• Fixed PreparedStatement generating SQL that would end up with syntax errors for some queries.

• PreparedStatement.setCharacterStream() now implemented

• Captialize type names when captializeTypeNames=true is passed in URL or properties (for WebObjects. (thanks to Anjo
Krank)

• ResultSet.getBlob() now returns null if column value was null.

• Fixed ResultSetMetaData.getPrecision() returning one less than actual on newer versions of MySQL.

• Fixed dangling socket problem when in high availability (autoReconnect=true) mode, and finalizer for Connection will
close any dangling sockets on GC.

• Fixed time zone issue in PreparedStatement.setTimestamp(). (thanks to Erik Olofsson)

• PreparedStatement.setDouble() now uses full-precision doubles (reverting a fix made earlier to truncate them).

• Fixed DatabaseMetaData.supportsTransactions(), and supportsTransactionIsolationLevel() and
getTypeInfo() SQL_DATETIME_SUB and SQL_DATA_TYPE fields not being readable.

• Updatable result sets now correctly handle NULL values in fields.

• PreparedStatement.setBoolean() will use 1/0 for values if your MySQL version is 3.21.23 or higher.

• Fixed ResultSet.isAfterLast() always returning false.

C.5.5.9. Changes in MySQL Connector/J 2.0.6 (16 June 2001)

Bugs fixed:

• Fixed PreparedStatement parameter checking.

• Fixed case-sensitive column names in ResultSet.java.

C.5.5.10. Changes in MySQL Connector/J 2.0.5 (13 June 2001)

Bugs fixed:

• ResultSet.insertRow() works now, even if not all columns are set (they will be set to NULL).

MySQL Change History

2302



• Added Byte to PreparedStatement.setObject().

• Fixed data parsing of TIMESTAMP values with 2-digit years.

• Added ISOLATION level support to Connection.setIsolationLevel()

• DataBaseMetaData.getCrossReference() no longer ArrayIndexOOB.

• ResultSet.getBoolean() now recognizes -1 as true.

• ResultSet has +/-Inf/inf support.

• getObject() on ResultSet correctly does TINYINT->Byte and SMALLINT->Short.

• Fixed ResultSetMetaData.getColumnTypeName for TEXT/BLOB.

• Fixed ArrayIndexOutOfBounds when sending large BLOB queries. (Max size packet was not being set)

• Fixed NPE on PreparedStatement.executeUpdate() when all columns have not been set.

• Fixed ResultSet.getBlob() ArrayIndex out-of-bounds.

C.5.5.11. Changes in MySQL Connector/J 2.0.3 (03 December 2000)

Bugs fixed:

• Fixed composite key problem with updatable result sets.

• Faster ASCII string operations.

• Fixed off-by-one error in java.sql.Blob implementation code.

• Fixed incorrect detection of MAX_ALLOWED_PACKET, so sending large blobs should work now.

• Added detection of -/+INF for doubles.

• Added ultraDevHack URL parameter, set to true to allow (broken) Macromedia UltraDev to use the driver.

• Implemented getBigDecimal() without scale component for JDBC2.

C.5.5.12. Changes in MySQL Connector/J 2.0.1 (06 April 2000)

Bugs fixed:

• Columns that are of type TEXT now return as Strings when you use getObject().

• Cleaned up exception handling when driver connects.

• Fixed RSMD.isWritable() returning wrong value. Thanks to Moritz Maass.

• DatabaseMetaData.getPrimaryKeys() now works correctly with respect to key_seq. Thanks to Brian Slesinsky.

• Fixed many JDBC-2.0 traversal, positioning bugs, especially with respect to empty result sets. Thanks to Ron Smits, Nick Brook,
Cessar Garcia and Carlos Martinez.

• No escape processing is done on PreparedStatements anymore per JDBC spec.

• Fixed some issues with updatability support in ResultSet when using multiple primary keys.

C.5.5.13. Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000)

MySQL Change History

2303



• Fixed Bad Handshake problem.

C.5.5.14. Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000)

• Fixes to ResultSet for insertRow() - Thanks to Cesar Garcia

• Fix to Driver to recognize JDBC-2.0 by loading a JDBC-2.0 class, instead of relying on JDK version numbers. Thanks to John
Baker.

• Fixed ResultSet to return correct row numbers

• Statement.getUpdateCount() now returns rows matched, instead of rows actually updated, which is more SQL-92 like.

10-29-99

• Statement/PreparedStatement.getMoreResults() bug fixed. Thanks to Noel J. Bergman.

• Added Short as a type to PreparedStatement.setObject(). Thanks to Jeff Crowder

• Driver now automagically configures maximum/preferred packet sizes by querying server.

• Autoreconnect code uses fast ping command if server supports it.

• Fixed various bugs with respect to packet sizing when reading from the server and when alloc'ing to write to the server.

C.5.5.15. Changes in MySQL Connector/J 2.0.0pre (17 August 1999)

• Now compiles under JDK-1.2. The driver supports both JDK-1.1 and JDK-1.2 at the same time through a core set of classes. The
driver will load the appropriate interface classes at runtime by figuring out which JVM version you are using.

• Fixes for result sets with all nulls in the first row. (Pointed out by Tim Endres)

• Fixes to column numbers in SQLExceptions in ResultSet (Thanks to Blas Rodriguez Somoza)

• The database no longer needs to specified to connect. (Thanks to Christian Motschke)

C.5.6. Changes in MySQL Connector/J 1.2b (04 July 1999)

• Better Documentation (in progress), in doc/mm.doc/book1.html

• DBMD now allows null for a column name pattern (not in spec), which it changes to '%'.

• DBMD now has correct types/lengths for getXXX().

• ResultSet.getDate(), getTime(), and getTimestamp() fixes. (contributed by Alan Wilken)

• EscapeProcessor now handles \{ \} and { or } inside quotes correctly. (thanks to Alik for some ideas on how to fix it)

• Fixes to properties handling in Connection. (contributed by Juho Tikkala)

• ResultSet.getObject() now returns null for NULL columns in the table, rather than bombing out. (thanks to Ben Grosman)

• ResultSet.getObject() now returns Strings for types from MySQL that it doesn't know about. (Suggested by Chris Perdue)

• Removed DataInput/Output streams, not needed, 1/2 number of method calls per IO operation.

• Use default character encoding if one is not specified. This is a work-around for broken JVMs, because according to spec, EVERY
JVM must support "ISO8859_1", but they don't.

MySQL Change History

2304



• Fixed Connection to use the platform character encoding instead of "ISO8859_1" if one isn't explicitly set. This fixes problems
people were having loading the character- converter classes that didn't always exist (JVM bug). (thanks to Fritz Elfert for pointing
out this problem)

• Changed MysqlIO to re-use packets where possible to reduce memory usage.

• Fixed escape-processor bugs pertaining to {} inside quotes.

C.5.7. Changes in MySQL Connector/J 1.2.x and lower

C.5.7.1. Changes in MySQL Connector/J 1.2a (14 April 1999)

• Fixed character-set support for non-Javasoft JVMs (thanks to many people for pointing it out)

• Fixed ResultSet.getBoolean() to recognize 'y' & 'n' as well as '1' & '0' as boolean flags. (thanks to Tim Pizey)

• Fixed ResultSet.getTimestamp() to give better performance. (thanks to Richard Swift)

• Fixed getByte() for numeric types. (thanks to Ray Bellis)

• Fixed DatabaseMetaData.getTypeInfo() for DATE type. (thanks to Paul Johnston)

• Fixed EscapeProcessor for "fn" calls. (thanks to Piyush Shah at locomotive.org)

• Fixed EscapeProcessor to not do extraneous work if there are no escape codes. (thanks to Ryan Gustafson)

• Fixed Driver to parse URLs of the form "jdbc:mysql://host:port" (thanks to Richard Lobb)

C.5.7.2. Changes in MySQL Connector/J 1.1i (24 March 1999)

• Fixed Timestamps for PreparedStatements

• Fixed null pointer exceptions in RSMD and RS

• Re-compiled with jikes for valid class files (thanks ms!)

C.5.7.3. Changes in MySQL Connector/J 1.1h (08 March 1999)

• Fixed escape processor to deal with unmatched { and } (thanks to Craig Coles)

• Fixed escape processor to create more portable (between DATETIME and TIMESTAMP types) representations so that it will work
with BETWEEN clauses. (thanks to Craig Longman)

• MysqlIO.quit() now closes the socket connection. Before, after many failed connections some OS's would run out of file descriptors.
(thanks to Michael Brinkman)

• Fixed NullPointerException in Driver.getPropertyInfo. (thanks to Dave Potts)

• Fixes to MysqlDefs to allow all *text fields to be retrieved as Strings. (thanks to Chris at Leverage)

• Fixed setDouble in PreparedStatement for large numbers to avoid sending scientific notation to the database. (thanks to J.S. Fer-
guson)

• Fixed getScale() and getPrecision() in RSMD. (contrib'd by James Klicman)

• Fixed getObject() when field was DECIMAL or NUMERIC (thanks to Bert Hobbs)

• DBMD.getTables() bombed when passed a null table-name pattern. Fixed. (thanks to Richard Lobb)

MySQL Change History

2305



• Added check for "client not authorized" errors during connect. (thanks to Hannes Wallnoefer)

C.5.7.4. Changes in MySQL Connector/J 1.1g (19 February 1999)

• Result set rows are now byte arrays. Blobs and Unicode work bidriectonally now. The useUnicode and encoding options are imple-
mented now.

• Fixes to PreparedStatement to send binary set by setXXXStream to be sent untouched to the MySQL server.

• Fixes to getDriverPropertyInfo().

C.5.7.5. Changes in MySQL Connector/J 1.1f (31 December 1998)

• Changed all ResultSet fields to Strings, this should allow Unicode to work, but your JVM must be able to convert between the char-
acter sets. This should also make reading data from the server be a bit quicker, because there is now no conversion from StringBuf-
fer to String.

• Changed PreparedStatement.streamToString() to be more efficient (code from Uwe Schaefer).

• URL parsing is more robust (throws SQL exceptions on errors rather than NullPointerExceptions)

• PreparedStatement now can convert Strings to Time/Date values via setObject() (code from Robert Currey).

• IO no longer hangs in Buffer.readInt(), that bug was introduced in 1.1d when changing to all byte-arrays for result sets. (Pointed out
by Samo Login)

C.5.7.6. Changes in MySQL Connector/J 1.1b (03 November 1998)

• Fixes to DatabaseMetaData to allow both IBM VA and J-Builder to work. Let me know how it goes. (thanks to Jac Kersing)

• Fix to ResultSet.getBoolean() for NULL strings (thanks to Barry Lagerweij)

• Beginning of code cleanup, and formatting. Getting ready to branch this off to a parallel JDBC-2.0 source tree.

• Added "final" modifier to critical sections in MysqlIO and Buffer to allow compiler to inline methods for speed.

9-29-98

• If object references passed to setXXX() in PreparedStatement are null, setNull() is automatically called for you. (Thanks for the sug-
gestion goes to Erik Ostrom)

• setObject() in PreparedStatement will now attempt to write a serialized representation of the object to the database for objects of
Types.OTHER and objects of unknown type.

• Util now has a static method readObject() which given a ResultSet and a column index will re-instantiate an object serialized in the
above manner.

C.5.7.7. Changes in MySQL Connector/J 1.1 (02 September 1998)

• Got rid of "ugly hack" in MysqlIO.nextRow(). Rather than catch an exception, Buffer.isLastDataPacket() was fixed.

• Connection.getCatalog() and Connection.setCatalog() should work now.

• Statement.setMaxRows() works, as well as setting by property maxRows. Statement.setMaxRows() overrides maxRows set via
properties or url parameters.

MySQL Change History

2306



• Automatic re-connection is available. Because it has to "ping" the database before each query, it is turned off by default. To use it,
pass in "autoReconnect=true" in the connection URL. You may also change the number of reconnect tries, and the initial timeout
value via "maxReconnects=n" (default 3) and "initialTimeout=n" (seconds, default 2) parameters. The timeout is an exponential
backoff type of timeout; for example, if you have initial timeout of 2 seconds, and maxReconnects of 3, then the driver will timeout
2 seconds, 4 seconds, then 16 seconds between each re-connection attempt.

C.5.7.8. Changes in MySQL Connector/J 1.0 (24 August 1998)

• Fixed handling of blob data in Buffer.java

• Fixed bug with authentication packet being sized too small.

• The JDBC Driver is now under the LPGL

8-14-98

• Fixed Buffer.readLenString() to correctly read data for BLOBS.

• Fixed PreparedStatement.stringToStream to correctly read data for BLOBS.

• Fixed PreparedStatement.setDate() to not add a day. (above fixes thanks to Vincent Partington)

• Added URL parameter parsing (?user=... and so forth).

C.5.7.9. Changes in MySQL Connector/J 0.9d (04 August 1998)

• Big news! New package name. Tim Endres from ICE Engineering is starting a new source tree for GNU GPL'd Java software. He's
graciously given me the org.gjt.mm package directory to use, so now the driver is in the org.gjt.mm.mysql package scheme. I'm "leg-
al" now. Look for more information on Tim's project soon.

• Now using dynamically sized packets to reduce memory usage when sending commands to the DB.

• Small fixes to getTypeInfo() for parameters, and so forth.

• DatabaseMetaData is now fully implemented. Let me know if these drivers work with the various IDEs out there. I've heard that
they're working with JBuilder right now.

• Added JavaDoc documentation to the package.

• Package now available in .zip or .tar.gz.

C.5.7.10. Changes in MySQL Connector/J 0.9 (28 July 1998)

• Implemented getTypeInfo(). Connection.rollback() now throws an SQLException per the JDBC spec.

• Added PreparedStatement that supports all JDBC API methods for PreparedStatement including InputStreams. Please check this out
and let me know if anything is broken.

• Fixed a bug in ResultSet that would break some queries that only returned 1 row.

• Fixed bugs in DatabaseMetaData.getTables(), DatabaseMetaData.getColumns() and DatabaseMetaData.getCatalogs().

• Added functionality to Statement that allows executeUpdate() to store values for IDs that are automatically generated for
AUTO_INCREMENT fields. Basically, after an executeUpdate(), look at the SQLWarnings for warnings like
"LAST_INSERTED_ID = 'some number', COMMAND = 'your SQL query'". If you are using AUTO_INCREMENT fields in your
tables and are executing a lot of executeUpdate()s on one Statement, be sure to clearWarnings() every so often to save memory.

MySQL Change History

2307



C.5.7.11. Changes in MySQL Connector/J 0.8 (06 July 1998)

• Split MysqlIO and Buffer to separate classes. Some ClassLoaders gave an IllegalAccess error for some fields in those two classes.
Now mm.mysql works in applets and all classloaders. Thanks to Joe Ennis <jce@mail.boone.com> for pointing out the problem and
working on a fix with me.

C.5.7.12. Changes in MySQL Connector/J 0.7 (01 July 1998)

• Fixed DatabaseMetadata problems in getColumns() and bug in switch statement in the Field constructor. Thanks to Costin Mano-
lache <costin@tdiinc.com> for pointing these out.

C.5.7.13. Changes in MySQL Connector/J 0.6 (21 May 1998)

• Incorporated efficiency changes from Richard Swift <Richard.Swift@kanatek.ca> in MysqlIO.java and ResultSet.java:

• We're now 15% faster than gwe's driver.

• Started working on DatabaseMetaData.

• The following methods are implemented:

• getTables()

• getTableTypes()

• getColumns()

• getCatalogs()

C.6. MySQL Connector/MXJ Change History

C.6.1. Changes in MySQL Connector/MXJ 5.0.6 (04 May 2007)
Functionality added or changed:

• Updated internal jar file names to include version information and be more consistent with Connector/J jar naming. For example,
connector-mxj.jar is now mysql-connector-mxj-${mxj-version}.jar.

• Updated commercial license files.

• Added copyright notices to some classes which were missing them.

• Added InitializeUser and QueryUtil classes to support new feature.

• Added new tests for initial-user & expanded some existing tests.

• ConnectorMXJUrlTestExample and ConnectorMXJObjectTestExample now demonstrate the initialization of user/
password and creating the initial database (rather than using "test").

• Added new connection property initialize-user which, if set to true will remove the default, un-passworded anonymous
and root users, and create the user/password from the connection url.

• Removed obsolete field SimpleMysqldDynamicMBean.lastInvocation.

• Clarified code in DefaultsMap.entrySet().

• Removed obsolete PatchedStandardSocketFactory java file.

MySQL Change History

2308



• Added main(String[]) to com/mysql/management/AllTestsSuite.java.

• Errors reading portFile are now reported using stacktrace(err), previously System.err was used.

• portFile now contains a new-line to be consistent with pidFile.

• Fixed where versionString.trim() was ignored.

• Removed references to File.deleteOnExit, a warning is printed instead.

Bugs fixed:

• Changed tests to shutdown mysqld prior to deleting files.

• Fixed port file to always be writen to datadir.

• Added os.name-os.arch to resource directory mapping properties file.

• Swapped out commercial binaries for v5.0.40.

• Delete portFile on shutdown.

• Moved platform-map.properties into db-files.jar.

• Clarified the startup max wait numbers.

• Updated build.xml in preperation for next beta build.

• Removed use-default-architecture property replaced.

• Added null-check to deal with C/MXJ being loaded by the bootstrap classloaders with JVMs for which getClassLoader() re-
turns null.

• Added robustness around reading portfile.

• Removed PatchedStandardSocketFactory (fixed in Connetor/J 5.0.6).

• Refactored duplication from tests and examples to QueryUtil.

• Removed obsolete InitializePasswordExample

C.6.2. Changes in MySQL Connector/MXJ 5.0.5 (14 March 2007)
Bugs fixed:

• Moved MysqldFactory to main package.

• Reformatting: Added newlines some files which did not end in them.

• Swapped out commercial binaries for v5.0.36.

• Found and removed dynamic linking in mysql_kill; updated solution.

• Changed protected constructor of SimpleMysqldDynamicMBean from taking a MysqldResource to taking a Mysqld-
Factory, in order to lay groundwork for addressing BUG discovered by Andrew Rubinger. See: MySQL Forums (Actual testing
with JBoss, and filing a bug, is still required.)

• build.xml: usage now slightly more verbose; some reformatting.

• Now incoporates Reggie Bernett's SafeTerminateProcess and only calls the unsafe TerminateProcess as a final last resort.

• New windows kill.exe fixes bug where mysqld was being force terminated. Issue reported by bruno haleblian and others, see:

MySQL Change History

2309

http://forums.mysql.com/read.php?39,143046,143046#msg-143046


MySQL Forums.

• Replaced Boolean.parseBoolean with JDK 1.4 compliant valueOf.

• Changed connector-mxj.properties default mysql version to 5.0.37.

• In testing so far mysqld reliably shuts down cleanly much faster.

• Added testcase to com.mysql.management.jmx.AcceptanceTest which demonstrats that dataDir is a mutable MBean
property.

• Updated build.xml in prep for next release.

• Changed SimpleMysqldDynamicMBean to create MysqldResource on demand in order to allow setting of datadir.
(Rubinger bug groundwork).

• Clarified the synchronization of MysqldResource methods.

• SIGHUP is replaced with MySQLShutdown<PID> event.

• Clarified the immutability of baseDir, dataDir, pidFile, portFile.

• Added 5.1.15 binaries to the repository.

• Removed 5.1.14 binaries from the repository.

• Added getDataDir() to interface MysqldResourceI.

• Added 5.1.14 binaries to repository.

• Replaced windows kill.exe resource with re-written version specific to mysqld.

• Added Patched StandardSocketFactory from Connector/J 5-0 HEAD.

• Ensured 5.1.14 compatibility.

• Swapped out gpl binaries for v5.0.37.

• Removed 5.0.22 binaries from the repository.

C.6.3. Changes in MySQL Connector/MXJ 5.0.4 (28 January 2007)
Bugs fixed:

• Allow multiple calls to start server from URL connection on non-3306 port. (Bug#24004)

• Updated build.xml to build to handle with different gpl and commercial mysld version numbers.

• Only populate the options map from the help text if specifically requested or in the MBean case.

• Introduced property for Linux & WinXX to default to 32bit versions.

• Swapped out gpl binaries for v5.0.27.

• Swapped out commercial binaries for v5.0.32.

• Moved mysqld binary resourced into separate jar file NOTICE: CLASSPATH will now need to connector-
mxj-db-files.jar.

• Minor test robustness improvements.

• Moved default version string out of java class into a text editable properties file (connector-mxj.properties) in the re-
sources directory.

MySQL Change History

2310

http://forums.mysql.com/read.php?39,140623,140623#msg-140623
http://bugs.mysql.com/24004


• Fixed test to be tollerant of /tmp being a symlink to /foo/tmp.

C.6.4. Changes in MySQL Connector/MXJ 5.0.3 (24 June 2006)
Bugs fixed:

• Removed unused imports, formatted code, made minor edits to tests.

• Removed "TeeOutputStream" - no longer needed.

• Swapped out the mysqld binaries for MySQL v5.0.22.

C.6.5. Changes in MySQL Connector/MXJ 5.0.2 (15 June 2006)
Bugs fixed:

• Replaced string parsing with JDBC connection attempt for determining if a mysqld is "ready for connections" CLASSPATH will
now need to include Connector/J jar.

• "platform" directories replace spaces with underscores

• extracted array and list printing to ListToString utility class

• Swapped out the mysqld binaries for MySQL v5.0.21

• Added trace level logging with Aspect/J. CLASSPATH will now need to include lib/aspectjrt.jar

• reformatted code

• altered to be "basedir" rather than "port" oriented.

• help parsing test reflects current help options

• insulated users from problems with "." in basedir

• swapped out the mysqld binaries for MySQL v5.0.18

• Made tests more robust be deleting the /tmp/test-c.mxj directory before running tests.

• ServerLauncherSocketFactory.shutdown API change: now takes File parameter (basedir) instead of port.

• socket is now "mysql.sock" in datadir

• added ability to specify "mysql-version" as an url parameter

• Extended timeout for help string parsing, to avoid cases where the help text was getting prematurely flushed, and thus truncated.

• swapped out the mysqld binaries for MySQL v5.0.19

• MysqldResource now tied to dataDir as well as basedir (API CHANGE)

• moved PID file into datadir

• ServerLauncherSocketFactory.shutdown now works across JVMs.

• extracted splitLines(String) to Str utility class

• ServerLauncherSocketFactory.shutdown(port) no longer throws, only reports to System.err

• ServerLauncherSocketFactory now treats URL parameters in the form of &server.foo=null as serverOption-
Map.put("foo", null)

MySQL Change History

2311



• ServerLauncherSocketFactory.shutdown API change: now takes 2 File parameters (basedir, datadir)

C.6.6. Changes in MySQL Connector/MXJ 5.0.1 (Never released)
This was an internal only release.

C.6.7. Changes in MySQL Connector/MXJ 5.0.0 (09 December 2005)
Bugs fixed:

• Removed HelpOptionsParser's need to reference a MysqldResource.

• Reorganized utils into a single "Utils" collaborator.

• Minor test tweaks

• Altered examples and tests to use new Connector/J 5.0 URL syntax for for launching Connector/MXJ ("jdbc:mysql:mxj://")

• Swapped out the mysqld binaries for MySQL v5.0.16.

• Ditched "ClassUtil" (merged with Str).

• Minor refactorings for type casting and exception handling.

C.7. MySQL Proxy Change History

C.7.1. Changes in MySQL Proxy 0.6.0 (Not yet released)
Functionality added or changed:

• When using read/write splitting and the rw-splitting.lua example script, connecting a second user to the proxy returns an er-
ror message. (Bug#30867)

• Added support in read_query_result() to overwrite the result-set.

• Added --no-daemon and --pid-file.

• Added hooks for read_auth(), read_handshake() and read_auth_result().

• Added handling of proxy.connection.backend_ndx in connect_server() and read_query() to support read/write
splitting.

• Added support for proxy.response.packets.

• Added testcases.

• Added --no-proxy to disable the proxy.

• Added support for listening UNIX sockets.

• Added a global lua-scope proxy.global.*.

• Added connection pooling.

Bugs fixed:

• Fixed assertion on COM_BINLOG_DUMP. (Bug#29764)

MySQL Change History

2312

http://bugs.mysql.com/30867
http://bugs.mysql.com/29764


• Fixed assertion on result-packets like [ field-len | fields | EOF | ERR ]. (Bug#29732)

• Fixed assertion at login with empty password + empty default db. (Bug#29719)

• Fixed assertion at COM_SHUTDOWN. (Bug#29719)

• Fixed crash if proxy.connection is used in connect_server().

• Fixed check for glib2 to require at least 2.6.0.

• Fixed assertion when all backends are down and we try to connect.

• Fixed connection-stalling if read_query_result() throws an assert()ion.

• Fixed len-encoding on proxy.resulsets.

• Fixed compilation on win32.

• Fixed assertion when connecting to the MySQL 6.0.1.

• Fixed decoding of len-encoded ints for 3-byte notation.

• Fixed inj.resultset.affected_rows on SELECT queries.

• Fixed handling of (SQL) NULL in result-sets.

• Fixed mem-leak with proxy.response.* is used.

C.7.2. Changes in MySQL Proxy 0.5.1 (30 June 2007)
Functionality added or changed:

• Added resultset.affected_rows and resultset.insert_id.

• Changed --proxy.profiling to --proxy-skip-profiling.

• Added missing dependency to libmysqlclient-dev to the INSTALL file.

• Added inj.query_time and inj.response_time into the lua scripts.

• Added support for pre-4.1 passwords in a 4.1 connection.

• Added script examples for rewriting and injection.

• Added proxy.VERSION.

• Added support for UNIX sockets.

• Added protection against duplicate resultsets from a script.

Bugs fixed:

• Fixed mysql check in configure to die when mysql.h isn't detected.

• Fixed handling of duplicate ERR on COM_CHANGE_USER in MySQL 5.1.18+.

• Fixed compile error with MySQL 4.1.x on missing COM_STMT_*.

• Fixed crash on fields > 250 bytes when the resultset is inspected.

• Fixed warning if connect_server() is not provided.

• Fixed assertion when a error occurs at initial script exec time.

MySQL Change History

2313

http://bugs.mysql.com/29732
http://bugs.mysql.com/29719
http://bugs.mysql.com/29719


• Fixed assertion when read_query_result() is not provided when PROXY_SEND_QUERY is used.

C.7.3. Changes in MySQL Proxy 0.5.0 (19 June 2007)
This is the first beta release.

Bugs fixed:

• Added automake/autoconf support.

• Added cmake support.

MySQL Change History

2314



Appendix D. Restrictions and Limits
The discussion here describes restrictions that apply to the use of MySQL features such as subqueries or views.

D.1. Restrictions on Stored Routines, Triggers, and Events
Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures and stored functions. Some of these re-
strictions apply only to stored functions, and not to stored procedures.

All of the restrictions for stored functions also apply to triggers.

All of the restrictions for stored procedures also apply to the DO clause of event definitions. For additional event-related restrictions, see
Section 22.6, “Event Scheduler Limitations and Restrictions”.

Stored routines cannot contain arbitrary SQL statements. The following statements are disallowed:

• The locking statements LOCK TABLES, UNLOCK TABLES.

• LOAD DATA and LOAD TABLE.

• SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE) can be used in stored procedures, but not stored func-
tions or triggers. Implication: You cannot use dynamic SQL within stored functions or triggers (where you construct dynamically
statements as strings and then execute them).

In addition, SQL statements that are not permitted within prepared statements are also not permitted in stored routines. See Sec-
tion 12.7, “SQL Syntax for Prepared Statements”, for a list of statements supported in prepared statements. Statements not listed
there are not supported for SQL prepared statements and thus are also not supported for stored routines unless noted otherwise in
Chapter 20, Stored Procedures and Functions.

For stored functions (but not stored procedures), the following additional statements or operations are disallowed:

• Statements that do explicit or implicit commit or rollback.

• Statements that return a result set. This includes SELECT statements that do not have an INTO var_list clause and SHOW state-
ments. A function can process a result set either with SELECT ... INTO var_list or by using a cursor and FETCH state-
ments. See Section 20.2.7.3, “SELECT ... INTO Statement”.

• FLUSH statements.

• Recursive statements. That is, stored functions cannot be used recursively.

• Within a stored function or trigger, it is not permitted to modify a table that is already being used (for reading or writing) by the
statement that invoked the function or trigger.

• ALTER VIEW.

Note that although some restrictions normally apply to stored functions and triggers but not to stored procedures, those restrictions do
apply to stored procedures if they are invoked from within a stored function or trigger. For example, although you can use FLUSH in a
stored procedure, such a stored procedure cannot be called from a stored function or trigger.

It is possible for the same identifier to be used for a routine parameter, a local variable, and a table column. Also, the same local vari-
able name can be used in nested blocks. For example:

CREATE PROCEDURE p (i INT)
BEGIN
DECLARE i INT DEFAULT 0;
SELECT i FROM t;
BEGIN
DECLARE i INT DEFAULT 1;
SELECT i FROM t;

END;
END;

2315



In such cases the identifier is ambiguous and the following precedence rules apply:

• A local variable takes precedence over a routine parameter or table column

• A routine parameter takes precedence over a table column

• A local variable in an inner block takes precedence over a local variable in an outer block

The behavior that variables take precedence over table columns is non-standard.

Use of stored routines can cause replication problems. This issue is discussed further in Section 20.4, “Binary Logging of Stored
Routines and Triggers”.

INFORMATION_SCHEMA does not have a PARAMETERS table until MySQL 6.0, so applications that need to acquire routine paramet-
er information at runtime must use workarounds such as parsing the output of SHOW CREATE statements or the param_list column
of the mysql.proc table. param_list contents can be processed from within a stored routine, unlike the output from SHOW.

There are no stored routine debugging facilities.

Before MySQL 5.1.4, CALL statements cannot be prepared. This true both for server-side prepared statements and for SQL prepared
statements.

UNDO handlers are not supported.

FOR loops are not supported.

To prevent problems of interaction between server threads, when a client issues a statement, the server uses a snapshot of routines and
triggers available for execution of the statement. That is, the server calculates a list of procedures, functions, and triggers that may be
used during execution of the statement, loads them, and then proceeds to execute the statement. This means that while the statement ex-
ecutes, it will not see changes to routines performed by other threads.

For triggers, the following additional statements or operations are disallowed:

• Triggers currently are not activated by foreign key actions.

• The RETURN statement is disallowed in triggers, which cannot return a value. To exit a trigger immediately, use the LEAVE state-
ment.

• Triggers are not allowed on tables in the mysql database.

Stored routines and triggers in MySQL Cluster. Stored functions, stored procedures, and triggers are all supported by tables using
the NDB storage engine; however, it is important to keep in mind that they do not propagate automatically between MySQL Servers act-
ing as Cluster SQL nodes. This is because of the following:

• Stored routine definitions are kept in tables in the mysql system database using the MyISAM storage engine, and so do not particip-
ate in clustering.

• The .TRN and .TRG files containing trigger definitions are not read by the NDB storage engine, and are not copied between Cluster
nodes.

Any stored routine or trigger that interacts with MySQL Cluster tables must be re-created by running the appropriate CREATE PRO-
CEDURE, CREATE FUNCTION, or CREATE TRIGGER statements on each MySQL Server that participates in the cluster where you
wish to use the stored routine or trigger. Similarly, any changes to existing stored routines or triggers must be carried out explicitly on
all Cluster SQL nodes, using the appropriate ALTER or DROP statements on each MySQL Server accessing the cluster.

Warning

Do not attempt to work around the issue described in the first item mentioned previously by converting any mysql data-
base tables to use the NDB storage engine. Altering the system tables in the mysql database is very likely to produce un-
desirable results, and is not supported by MySQL AB.

Restrictions and Limits

2316



D.2. Restrictions on Server-Side Cursors
Server-side cursors are implemented in the C API via the mysql_stmt_attr_set() function. The same implementation is used for
cursors in stored routines. A server-side cursor allows a result set to be generated on the server side, but not transferred to the client ex-
cept for those rows that the client requests. For example, if a client executes a query but is only interested in the first row, the remaining
rows are not transferred.

In MySQL, a server-side cursor is materialized into a temporary table. Initially, this is a MEMORY table, but is converted to a MyISAM
table if its size reaches the value of the max_heap_table_size system variable. One limitation of the implementation is that for a
large result set, retrieving its rows through a cursor might be slow.

Cursors are read only; you cannot use a cursor to update rows.

UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF are not implemented, because updatable cursors are not sup-
ported.

Cursors are non-holdable (not held open after a commit).

Cursors are asensitive.

Cursors are non-scrollable.

Cursors are not named. The statement handler acts as the cursor ID.

You can have open only a single cursor per prepared statement. If you need several cursors, you must prepare several statements.

You cannot use a cursor for a statement that generates a result set if the statement is not supported in prepared mode. This includes
statements such as CHECK TABLES, HANDLER READ, and SHOW BINLOG EVENTS.

D.3. Restrictions on Subqueries

• In MySQL 5.1 before 5.1.16, if you compare a NULL value to a subquery using ALL, ANY, or SOME, and the subquery returns an
empty result, the comparison might evaluate to the non-standard result of NULL rather than to TRUE or FALSE.

• A subquery's outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET, or DO.

• Subquery optimization for IN is not as effective as for the = operator or for the IN(value_list) operator.

A typical case for poor IN subquery performance is when the subquery returns a small number of rows but the outer query returns a
large number of rows to be compared to the subquery result.

The problem is that, for a statement that uses an IN subquery, the optimizer rewrites it as a correlated subquery. Consider the fol-
lowing statement that uses an uncorrelated subquery:

SELECT ... FROM t1 WHERE t1.a IN (SELECT b FROM t2);

The optimizer rewrites the statement to a correlated subquery:

SELECT ... FROM t1 WHERE EXISTS (SELECT 1 FROM t2 WHERE t2.b = t1.a);

If the inner and outer queries return M and N rows, respectively, the execution time becomes on the order of O(M×N), rather than
O(M+N) as it would be for an uncorrelated subquery.

An implication is that an IN subquery can be much slower than a query written using an IN(value_list) operator that lists the
same values that the subquery would return.

• In general, you cannot modify a table and select from the same table in a subquery. For example, this limitation applies to state-
ments of the following forms:

DELETE FROM t WHERE ... (SELECT ... FROM t ...);
UPDATE t ... WHERE col = (SELECT ... FROM t ...);
{INSERT|REPLACE} INTO t (SELECT ... FROM t ...);

Exception: The preceding prohibition does not apply if you are using a subquery for the modified table in the FROM clause. Ex-

Restrictions and Limits

2317



ample:

UPDATE t ... WHERE col = (SELECT (SELECT ... FROM t...) AS _t ...);

Here the prohibition does not apply because the result from a subquery in the FROM clause is stored as a temporary table, so the rel-
evant rows in t have already been selected by the time the update to t takes place.

• Row comparison operations are only partially supported:

• For expr IN (subquery), expr can be an n-tuple (specified via row constructor syntax) and the subquery can return rows
of n-tuples.

• For expr op {ALL|ANY|SOME} (subquery), expr must be a scalar value and the subquery must be a column sub-
query; it cannot return multiple-column rows.

In other words, for a subquery that returns rows of n-tuples, this is supported:

(val_1, ..., val_n) IN (subquery)

But this is not supported:

(val_1, ..., val_n) op {ALL|ANY|SOME} (subquery)

The reason for supporting row comparisons for IN but not for the others is that IN is implemented by rewriting it as a sequence of =
comparisons and AND operations. This approach cannot be used for ALL, ANY, or SOME.

• Row constructors are not well optimized. The following two expressions are equivalent, but only the second can be optimized:

(col1, col2, ...) = (val1, val2, ...)
col1 = val1 AND col2 = val2 AND ...

• Subqueries in the FROM clause cannot be correlated subqueries. They are materialized (executed to produce a result set) before eval-
uating the outer query, so they cannot be evaluated per row of the outer query.

• The optimizer is more mature for joins than for subqueries, so in many cases a statement that uses a subquery can be executed more
efficiently if you rewrite it as a join.

An exception occurs for the case where an IN subquery can be rewritten as a SELECT DISTINCT join. Example:

SELECT col FROM t1 WHERE id_col IN (SELECT id_col2 FROM t2 WHERE condition);

That statement can be rewritten as follows:

SELECT DISTINCT col FROM t1, t2 WHERE t1.id_col = t2.id_col AND condition;

But in this case, the join requires an extra DISTINCT operation and is not more efficient than the subquery.

• Possible future optimization: MySQL does not rewrite the join order for subquery evaluation. In some cases, a subquery could be
executed more efficiently if MySQL rewrote it as a join. This would give the optimizer a chance to choose between more execution
plans. For example, it could decide whether to read one table or the other first.

Example:

SELECT a FROM outer_table AS ot
WHERE a IN (SELECT a FROM inner_table AS it WHERE ot.b = it.b);

For that query, MySQL always scans outer_table first and then executes the subquery on inner_table for each row. If
outer_table has a lot of rows and inner_table has few rows, the query probably will not be as fast as it could be.

The preceding query could be rewritten like this:

SELECT a FROM outer_table AS ot, inner_table AS it
WHERE ot.a = it.a AND ot.b = it.b;

Restrictions and Limits

2318



In this case, we can scan the small table (inner_table) and look up rows in outer_table, which will be fast if there is an in-
dex on (ot.a,ot.b).

• Possible future optimization: A correlated subquery is evaluated for each row of the outer query. A better approach is that if the out-
er row values do not change from the previous row, do not evaluate the subquery again. Instead, use its previous result.

• Possible future optimization: A subquery in the FROM clause is evaluated by materializing the result into a temporary table, and this
table does not use indexes. This does not allow the use of indexes in comparison with other tables in the query, although that might
be useful.

• Possible future optimization: If a subquery in the FROM clause resembles a view to which the merge algorithm can be applied, re-
write the query and apply the merge algorithm so that indexes can be used. The following statement contains such a subquery:

SELECT * FROM (SELECT * FROM t1 WHERE t1.t1_col)
AS _t1, t2 WHERE t2.t2_col;

The statement can be rewritten as a join like this:

SELECT * FROM t1, t2 WHERE t1.t1_col AND t2.t2_col;

This type of rewriting would provide two benefits:

• It avoids the use of a temporary table for which no indexes can be used. In the rewritten query, the optimizer can use indexes on
t1.

• It gives the optimizer more freedom to choose between different execution plans. For example, rewriting the query as a join al-
lows the optimizer to use t1 or t2 first.

• Possible future optimization: For IN, = ANY, <> ANY, = ALL, and <> ALL with uncorrelated subqueries, use an in-memory hash
for a result or a temporary table with an index for larger results. Example:

SELECT a FROM big_table AS bt
WHERE non_key_field IN (SELECT non_key_field FROM table WHERE condition)

In this case, we could create a temporary table:

CREATE TABLE t (key (non_key_field))
(SELECT non_key_field FROM table WHERE condition)

Then, for each row in big_table, do a key lookup in t based on bt.non_key_field.

D.4. Restrictions on Views
View processing is not optimized:

• It is not possible to create an index on a view.

• Indexes can be used for views processed using the merge algorithm. However, a view that is processed with the temptable algorithm
is unable to take advantage of indexes on its underlying tables (although indexes can be used during generation of the temporary
tables).

Subqueries cannot be used in the FROM clause of a view. This limitation will be lifted in the future.

There is a general principle that you cannot modify a table and select from the same table in a subquery. See Section D.3, “Restrictions
on Subqueries”.

The same principle also applies if you select from a view that selects from the table, if the view selects from the table in a subquery and
the view is evaluated using the merge algorithm. Example:

CREATE VIEW v1 AS
SELECT * FROM t2 WHERE EXISTS (SELECT 1 FROM t1 WHERE t1.a = t2.a);

Restrictions and Limits

2319



UPDATE t1, v2 SET t1.a = 1 WHERE t1.b = v2.b;

If the view is evaluated using a temporary table, you can select from the table in the view subquery and still modify that table in the out-
er query. In this case the view will be stored in a temporary table and thus you are not really selecting from the table in a subquery and
modifying it “at the same time.” (This is another reason you might wish to force MySQL to use the temptable algorithm by specifying
ALGORITHM = TEMPTABLE in the view definition.)

You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition (which invalidates the view) and
no warning results from the drop or alter operation. An error occurs later when the view is used.

A view definition is “frozen” by certain statements:

• If a statement prepared by PREPARE refers to a view, the view contents seen each time the statement is executed later will be the
contents of the view at the time it was prepared. This is true even if the view definition is changed after the statement is prepared
and before it is executed. Example:

CREATE VIEW v AS SELECT 1;
PREPARE s FROM 'SELECT * FROM v';
ALTER VIEW v AS SELECT 2;
EXECUTE s;

The result returned by the EXECUTE statement is 1, not 2.

• If a statement in a stored routine refers to a view, the view contents seen by the statement are its contents the first time that statement
is executed. For example, this means that if the statement is executed in a loop, further iterations of the statement see the same view
contents, even if the view definition is changed later in the loop. Example:

CREATE VIEW v AS SELECT 1;
delimiter //
CREATE PROCEDURE p ()
BEGIN
DECLARE i INT DEFAULT 0;
WHILE i < 5 DO
SELECT * FROM v;
SET i = i + 1;
ALTER VIEW v AS SELECT 2;

END WHILE;
END;
//
delimiter ;
CALL p();

When the procedure p() is called, the SELECT returns 1 each time through the loop, even though the view definition is changed
within the loop.

With regard to view updatability, the overall goal for views is that if any view is theoretically updatable, it should be updatable in prac-
tice. This includes views that have UNION in their definition. Currently, not all views that are theoretically updatable can be updated.
The initial view implementation was deliberately written this way to get usable, updatable views into MySQL as quickly as possible.
Many theoretically updatable views can be updated now, but limitations still exist:

• Updatable views with subqueries anywhere other than in the WHERE clause. Some views that have subqueries in the SELECT list
may be updatable.

• You cannot use UPDATE to update more than one underlying table of a view that is defined as a join.

• You cannot use DELETE to update a view that is defined as a join.

There exists a shortcoming with the current implementation of views. If a user is granted the basic privileges necessary to create a view
(the CREATE VIEW and SELECT privileges), that user will be unable to call SHOW CREATE VIEW on that object unless the user is
also granted the SHOW VIEW privilege.

That shortcoming can lead to problems backing up a database with mysqldump, which may fail due to insufficient privileges. This
problem is described in Bug#22062.

Restrictions and Limits

2320

http://bugs.mysql.com/22062


The workaround to the problem is for the administrator to manually grant the SHOW VIEW privilege to users who are granted CREATE
VIEW, since MySQL doesn't grant it implicitly when views are created.

Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view is disallowed.

D.5. Restrictions on XA Transactions
XA transaction support is limited to the InnoDB storage engine.

The MySQL XA implementation is for “external XA,” where a MySQL server acts as a Resource Manager and client programs act as
Transaction Managers. “Internal XA” is not implemented. This would allow individual storage engines within a MySQL server to act as
RMs, and the server itself to act as a TM. Internal XA is required for handling XA transactions that involve more than one storage en-
gine. The implementation of internal XA is incomplete because it requires that a storage engine support two-phase commit at the table
handler level, and currently this is true only for InnoDB.

For XA START, the JOIN and RESUME clauses are not supported.

For XA END, the SUSPEND [FOR MIGRATE] clause is not supported.

The requirement that the bqual part of the xid value be different for each XA transaction within a global transaction is a limitation of
the current MySQL XA implementation. It is not part of the XA specification.

If an XA transaction has reached the PREPARED state and the MySQL server is killed (for example, with kill -9 on Unix) or shuts
down abnormally, the transaction can be continued after the server restarts. However, if the client reconnects and commits the transac-
tion, the transaction will be absent from the binary log even though it has been committed. This means the data and the binary log have
gone out of synchrony. An implication is that XA cannot be used safely together with replication.

It is possible that the server will roll back a pending XA transaction, even one that has reached the PREPARED state. This happens if a
client connection terminates and the server continues to run, or if clients are connected and the server shuts down gracefully. (In the lat-
ter case, the server marks each connection to be terminated, and then rolls back the PREPARED XA transaction associated with it.) It
should be possible to commit or roll back a PREPARED XA transaction, but this cannot be done without changes to the binary logging
mechanism.

D.6. Restrictions on Character Sets

• Identifiers are stored in mysql database tables (user, db, and so forth) using utf8, but identifiers can contain only characters in
the Basic Multilingual Plane (BMP). Supplementary characters are not allowed in identifiers.

• The ucs2 character sets has the following restrictions:

• It cannot be used as a client character set, which means that it does not work for SET NAMES or SET CHARACTER SET. (See
Section 9.1.4, “Connection Character Sets and Collations”.)

• It is currently not possible to use LOAD DATA INFILE to load data files that use this character set.

• FULLTEXT indexes cannot be created on a column that this character set. However, you can perform IN BOOLEAN MODE
searches on the column without an index.

• The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multi-byte safe and may produce unexpected results
with multi-byte character sets. In addition, these operators compare characters by their byte values and accented characters may not
compare as equal even if a given collation treats them as equal.

D.7. Limits in MySQL
This section lists current limits in MySQL 5.1.

D.7.1. Limits of Joins
The maximum number of tables that can be referenced in a single join is 61. This also applies to the number of tables that can be refer-
enced in the definition of a view.

Restrictions and Limits

2321



D.7.2. The Maximum Number of Columns Per Table
There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given table. The exact limit depends on
several interacting factors, listed in the following discussion.

• Every table has a maximum row size of 65,535 bytes. This maximum applies to all storage engines, but a given engine might have
additional constraints that result in a lower effective maximum row size.

The maximum row size constrains the number of columns because the total width of all columns cannot exceed this size. For ex-
ample, utf8 characters require up to three bytes per character, so for a CHAR(255) CHARACTER SET utf8 column, the serv-
er must allocate 255 × 3 = 765 bytes per value. Consequently, a table cannot contain more than 65,535 / 765 = 85 such columns.

Storage for variable-length columns includes length bytes, which are assessed against the row size. For example, a
VARCHAR(255) CHARACTER SET utf8 column takes two bytes to store the length of the value, so each value can take up to
767 bytes.

BLOB and TEXT columns count from one to four plus eight bytes each toward the row-size limit because their contents are stored
separately.

Declaring columns NULL can reduce the maximum number of columns allowed. NULL columns require additional space in the row
to record whether or not their values are NULL.

For MyISAM tables, each NULL column takes one bit extra, rounded up to the nearest byte. The maximum row length in bytes can
be calculated as follows:

row length = 1
+ (sum of column lengths)
+ (number of NULL columns + delete_flag + 7)/8
+ (number of variable-length columns)

delete_flag is 1 for tables with static row format. Static tables use a bit in the row record for a flag that indicates whether the
row has been deleted. delete_flag is 0 for dynamic tables because the flag is stored in the dynamic row header.

These calculations do not apply for InnoDB tables, for which storage size is no different for NULL columns than for NOT NULL
columns.

The following statement to create table t1 succeeds because the columns require 32,765 + 2 bytes and 32,766 + 2 bytes, which falls
within the maximum row size of 65,535 bytes:

mysql> CREATE TABLE t1
-> (c1 VARCHAR(32765) NOT NULL, c2 VARCHAR(32766) NOT NULL);

Query OK, 0 rows affected (0.01 sec)

The following statement to create table t2 fails because the columns are NULL and require additional space that causes the row size
to exceed 65,535 bytes:

mysql> CREATE TABLE t2
-> (c1 VARCHAR(32765) NULL, c2 VARCHAR(32766) NULL);

ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

• Each table has an .frm file that contains the table definition. The .frm file size limit is fixed at 64KB. If a table definition reaches
this size, no more columns can be added. The expression that checks information to be stored in the .frm file against the limit
looks like this:

if (info_length+(ulong) create_fields.elements*FCOMP+288+
n_length+int_length+com_length > 65535L || int_count > 255)

The relevant factors in this expression are:

• info_length is space needed for “screens.” This is related to MySQL's Unireg heritage.

• create_fields.elements is the number of columns.

• FCOMP is 17.

Restrictions and Limits

2322



• n_length is the total length of all column names, including one byte per name as a separator.

• int_length is related to the list of values for SET and ENUM columns.

• com_length is the total length of column and table comments.

Thus, using long column names can reduce the maximum number of columns, as can the inclusion of ENUM or SET columns, or use
of column or table comments.

• Individual storage engines might impose additional restrictions that limit table column count. Examples:

• InnoDB allows no more than 1000 columns.

• InnoDB restricts row size to something less than half a database page (approximately 8000 bytes), not including VARBINARY,
VARCHAR, BLOB, or TEXT columns.

• Different InnoDB storage formats (COMPRESSED, REDUNDANT) use different amounts of page header and trailer data, which
affects the amount of storage available for rows.

D.7.3. Windows Platform Limitations
The following limitations apply only to the Windows platform:

• The number of open file descriptors on Windows is limited to a maximum of 2048, which may limit the ability to open a large num-
ber of tables simultaneously. This limit is due to the compatibility functions used to open files on Windows that use the POSIX
compatibility layer.

This limitation will also cause problems if you try to set max_open_files to a value greater than the 2048 file limit.

• On Windows 32-bit platforms it is not possible to use more than 2GB of RAM within a single process, including MySQL. This is
because the physical address limit on Windows 32-bit is 4GB and the default setting within Windows is to split the virtual address
space between kernel (2GB) and user/applications (2GB).

To use more memory than this you will need to use a 64-bit version of Windows.

• When using MyISAM tables, you cannot use aliases within Windows link to the data files on another volume and then link back to
the main MySQL datadir location.

This facility is often used to move the data and index files to a RAID or other fast solution, while retaining the main .FRM files in
the default data directory configured with the datadir option.

• The timers within MySQL used on Windows are of a lower precision than the timers used on Linux. For most situations you may
not notice a difference, but the delay implied by a call to SLEEP() on Windows and Linux may differ slightly due to the differ-
ences in precision.

• There is no 64-bit OLEDB Provider for ODBC (MSDASQL) in any 64-bit Windows operating system up to and including Windows
Vista. In practical terms this means that you can't use the MySQL ODBC driver from ADO and other users of OLEDB.

Restrictions and Limits

2323



Appendix E. Credits
This appendix lists the developers, contributors, and supporters that have helped to make MySQL what it is today.

E.1. Developers at MySQL AB
These are the developers that are or have been employed by MySQL AB to work on the MySQL database software, roughly in the order
they started to work with us. Following each developer is a small list of the tasks that the developer is responsible for, or the accom-
plishments they have made. All developers are involved in support.

• Michael (Monty) Widenius

• Lead developer and main author of the MySQL server (mysqld).

• New functions for the string library.

• Most of the mysys library.

• The ISAM and MyISAM libraries (B-tree index file handlers with index compression and different record formats).

• The HEAP library. A memory table system with our superior full dynamic hashing. In use since 1981 and published around
1984.

• The replace program (take a look at it, it's COOL!).

• Connector/ODBC (MyODBC), the ODBC driver for Windows.

• Fixing bugs in MIT-pthreads to get it to work for MySQL Server. And also Unireg, a curses-based application tool with many
utilities.

• Porting of mSQL tools like msqlperl, DBD/DBI, and DB2mysql.

• Most of crash-me and the foundation for the MySQL benchmarks.

• David Axmark

• Initial main writer of the Reference Manual, including enhancements to texi2html.

• Automatic Web site updating from the manual.

• Initial Autoconf, Automake, and Libtool support.

• Licensing.

• Parts of all the text files. (Nowadays only the README is left. The rest ended up in the manual.)

• Lots of testing of new features.

• Our in-house Free Software legal expert.

• Mailing list maintainer (who never has the time to do it right...).

• Our original portability code (now more than 10 years old). Nowadays only some parts of mysys are left.

• Someone for Monty to call in the middle of the night when he just got that new feature to work.

• Chief "Open Sourcerer" (MySQL community relations).

• Jani Tolonen

• mysqlimport

• A lot of extensions to the command-line clients.

2324



• PROCEDURE ANALYSE()

• Sinisa Milivojevic (now in support)

• Compression (with zlib) in the client/server protocol.

• Perfect hashing for the lexical analyzer phase.

• Multi-row INSERT

• mysqldump -e option

• LOAD DATA LOCAL INFILE

• SQL_CALC_FOUND_ROWS SELECT option

• --max-user-connections=... option

• net_read and net_write_timeout

• GRANT/REVOKE and SHOW GRANTS FOR

• New client/server protocol for 4.0

• UNION in 4.0

• Multiple-table DELETE/UPDATE

• Subqueries in the FROM clause (4.1).

• User resources management

• Initial developer of the MySQL++ C++ API and the MySQLGUI client.

• Tonu Samuel (past developer)

• VIO interface (the foundation for the encrypted client/server protocol).

• MySQL Filesystem (a way to use MySQL databases as files and directories).

• The CASE expression.

• The MD5() and COALESCE() functions.

• RAID support for MyISAM tables.

• Sasha Pachev (past developer)

• Initial implementation of replication (up to version 4.0).

• SHOW CREATE TABLE.

• mysql-bench

• Matt Wagner

• MySQL test suite.

• Webmaster (until 2002).

• Miguel Solorzano (now in support)

• Win32 development and release builds.

• Windows NT server code.

Credits

2325



• WinMySQLAdmin

• Timothy Smith (now in development)

• Dynamic character sets support.

• configure, RPMs and other parts of the build system.

• Initial developer of libmysqld, the embedded server.

• Sergei Golubchik

• Full-text search.

• Added keys to the MERGE library.

• Precision math.

• Jeremy Cole (past developer)

• Proofreading and editing this fine manual.

• ALTER TABLE ... ORDER BY ....

• UPDATE ... ORDER BY ....

• DELETE ... ORDER BY ....

• Indrek Siitan

• Designing/programming of our Web interface.

• Author of our newsletter management system.

• Jorge del Conde (past developer)

• MySQLCC (MySQL Control Center)

• Win32 development

• Initial implementation of the Web site portals.

• Venu Anuganti (past developer)

• MyODBC 3.51

• New client/server protocol for 4.1 (for prepared statements).

• Arjen Lentz (also handled community, 2004-2006; now works in Support)

• Maintainer of the MySQL Reference Manual (2001-2004).

• Preparing the O'Reilly printed edition of the manual (2002).

• Alexander (Bar) Barkov, Alexey (Holyfoot) Botchkov, and Ramil Kalimullin

• Spatial data (GIS) and R-Trees implementation for 4.1

• Unicode and character sets for 4.1; documentation for same

• Oleksandr (Sanja) Byelkin

• Query cache in 4.0

• Implementation of subqueries (4.1).

Credits

2326



• Implementation of views (5.0).

• Aleksey (Walrus) Kishkin and Alexey (Ranger) Stroganov

• Benchmarks design and analysis.

• Maintenance of the MySQL test suite.

• Zak Greant (past employee)

• Open Source advocate, MySQL community relations.

• Carsten Pedersen

• The MySQL Certification program.

• Lenz Grimmer

• Production (build and release) engineering.

• Peter Zaitsev

• SHA1(), AES_ENCRYPT() and AES_DECRYPT() functions.

• Debugging, cleaning up various features.

• Alexander (Salle) Keremidarski

• Support.

• Debugging.

• Per-Erik Martin

• Lead developer for stored procedures (5.0).

• Jim Winstead

• Former lead Web developer.

• Improving server, fixing bugs.

• Mark Matthews

• Connector/J driver (Java).

• Peter Gulutzan

• SQL standards compliance.

• Documentation of existing MySQL code/algorithms.

• Character set documentation.

• Guilhem Bichot

• Replication, from MySQL version 4.0.

• Fixed handling of exponents for DECIMAL.

• Author of mysql_tableinfo.

• Backup (in 5.1).

• Antony T. Curtis

Credits

2327



• Porting of the MySQL Database software to OS/2.

• Mikael Ronstrom

• Much of the initial work on NDB Cluster until 2000. Roughly half the code base at that time. Transaction protocol, node recov-
ery, system restart and restart code and parts of the API functionality.

• Lead Architect, developer, debugger of NDB Cluster 1994-2004

• Lots of optimizations

• Jonas Oreland

• On-line Backup

• The automatic test environment of MySQL Cluster

• Portability Library for NDB Cluster

• Lots of other things

• Pekka Nouisiainen

• Ordered index implementation of MySQL Cluster

• BLOB support in MySQL Cluster

• Charset support in MySQL Cluster

• Martin Skold

• Unique index implementation of MySQL Cluster

• Integration of NDB Cluster into MySQL

• Magnus Svensson

• The test framework for MySQL Cluster

• Integration of NDB Cluster into MySQL

• Tomas Ulin

• Lots of work on configuration changes for simple installation and use of MySQL Cluster

• Konstantin Osipov

• Prepared statements.

• Cursors.

• Dmitri Lenev

• Time zone support.

• Triggers (in 5.0).

E.2. Contributors to MySQL
Although MySQL AB owns all copyrights in the MySQL server and the MySQL manual, we wish to recognize those who have
made contributions of one kind or another to the MySQL distribution. Contributors are listed here, in somewhat random order:

• Gianmassimo Vigazzola <qwerg@mbox.vol.it> or <qwerg@tin.it>

Credits

2328



The initial port to Win32/NT.

• Per Eric Olsson

For more or less constructive criticism and real testing of the dynamic record format.

• Irena Pancirov <irena@mail.yacc.it>

Win32 port with Borland compiler. mysqlshutdown.exe and mysqlwatch.exe

• David J. Hughes

For the effort to make a shareware SQL database. At TcX, the predecessor of MySQL AB, we started with mSQL, but found that it
couldn't satisfy our purposes so instead we wrote an SQL interface to our application builder Unireg. mysqladmin and mysql cli-
ent are programs that were largely influenced by their mSQL counterparts. We have put a lot of effort into making the MySQL syn-
tax a superset of mSQL. Many of the API's ideas are borrowed from mSQL to make it easy to port free mSQL programs to the
MySQL API. The MySQL software doesn't contain any code from mSQL. Two files in the distribution (client/in-
sert_test.c and client/select_test.c) are based on the corresponding (non-copyrighted) files in the mSQL distribu-
tion, but are modified as examples showing the changes necessary to convert code from mSQL to MySQL Server. (mSQL is copy-
righted David J. Hughes.)

• Patrick Lynch

For helping us acquire http://www.mysql.com/.

• Fred Lindberg

For setting up qmail to handle the MySQL mailing list and for the incredible help we got in managing the MySQL mailing lists.

• Igor Romanenko <igor@frog.kiev.ua>

mysqldump (previously msqldump, but ported and enhanced by Monty).

• Yuri Dario

For keeping up and extending the MySQL OS/2 port.

• Tim Bunce

Author of mysqlhotcopy.

• Zarko Mocnik <zarko.mocnik@dem.si>

Sorting for Slovenian language.

• "TAMITO" <tommy@valley.ne.jp>

The _MB character set macros and the ujis and sjis character sets.

• Joshua Chamas <joshua@chamas.com>

Base for concurrent insert, extended date syntax, debugging on NT, and answering on the MySQL mailing list.

• Yves Carlier <Yves.Carlier@rug.ac.be>

mysqlaccess, a program to show the access rights for a user.

• Rhys Jones <rhys@wales.com> (And GWE Technologies Limited)

For one of the early JDBC drivers.

• Dr Xiaokun Kelvin ZHU <X.Zhu@brad.ac.uk>

Further development of one of the early JDBC drivers and other MySQL-related Java tools.

• James Cooper <pixel@organic.com>

Credits

2329

http://www.mysql.com/


For setting up a searchable mailing list archive at his site.

• Rick Mehalick <Rick_Mehalick@i-o.com>

For xmysql, a graphical X client for MySQL Server.

• Doug Sisk <sisk@wix.com>

For providing RPM packages of MySQL for Red Hat Linux.

• Diemand Alexander V. <axeld@vial.ethz.ch>

For providing RPM packages of MySQL for Red Hat Linux-Alpha.

• Antoni Pamies Olive <toni@readysoft.es>

For providing RPM versions of a lot of MySQL clients for Intel and SPARC.

• Jay Bloodworth <jay@pathways.sde.state.sc.us>

For providing RPM versions for MySQL 3.21.

• David Sacerdote <davids@secnet.com>

Ideas for secure checking of DNS hostnames.

• Wei-Jou Chen <jou@nematic.ieo.nctu.edu.tw>

Some support for Chinese(BIG5) characters.

• Wei He <hewei@mail.ied.ac.cn>

A lot of functionality for the Chinese(GBK) character set.

• Jan Pazdziora <adelton@fi.muni.cz>

Czech sorting order.

• Zeev Suraski <bourbon@netvision.net.il>

FROM_UNIXTIME() time formatting, ENCRYPT() functions, and bison advisor. Active mailing list member.

• Luuk de Boer <luuk@wxs.nl>

Ported (and extended) the benchmark suite to DBI/DBD. Have been of great help with crash-me and running benchmarks. Some
new date functions. The mysql_setpermission script.

• Alexis Mikhailov <root@medinf.chuvashia.su>

User-defined functions (UDFs); CREATE FUNCTION and DROP FUNCTION.

• Andreas F. Bobak <bobak@relog.ch>

The AGGREGATE extension to user-defined functions.

• Ross Wakelin <R.Wakelin@march.co.uk>

Help to set up InstallShield for MySQL-Win32.

• Jethro Wright III <jetman@li.net>

The libmysql.dll library.

• James Pereria <jpereira@iafrica.com>

Mysqlmanager, a Win32 GUI tool for administering MySQL Servers.

Credits

2330



• Curt Sampson <cjs@portal.ca>

Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.

• Martin Ramsch <m.ramsch@computer.org>

Examples in the MySQL Tutorial.

• Steve Harvey

For making mysqlaccess more secure.

• Konark IA-64 Centre of Persistent Systems Private Limited

http://www.pspl.co.in/konark/. Help with the Win64 port of the MySQL server.

• Albert Chin-A-Young.

Configure updates for Tru64, large file support and better TCP wrappers support.

• John Birrell

Emulation of pthread_mutex() for OS/2.

• Benjamin Pflugmann

Extended MERGE tables to handle INSERTS. Active member on the MySQL mailing lists.

• Jocelyn Fournier

Excellent spotting and reporting innumerable bugs (especially in the MySQL 4.1 subquery code).

• Marc Liyanage

Maintaining the Mac OS X packages and providing invaluable feedback on how to create Mac OS X PKGs.

• Robert Rutherford

Providing invaluable information and feedback about the QNX port.

• Previous developers of NDB Cluster

Lots of people were involved in various ways summer students, master thesis students, employees. In total more than 100 people so
too many to mention here. Notable name is Ataullah Dabaghi who up until 1999 contributed around a third of the code base. A spe-
cial thanks also to developers of the AXE system which provided much of the architectural foundations for NDB Cluster with
blocks, signals and crash tracing functionality. Also credit should be given to those who believed in the ideas enough to allocate of
their budgets for its development from 1992 to present time.

Other contributors, bugfinders, and testers: James H. Thompson, Maurizio Menghini, Wojciech Tryc, Luca Berra, Zarko Mocnik, Wim
Bonis, Elmar Haneke, <jehamby@lightside>, <psmith@BayNetworks.com>, <duane@connect.com.au>, Ted Deppn-
er <ted@psyber.com>, Mike Simons, Jaakko Hyvatti.

And lots of bug report/patches from the folks on the mailing list.

A big tribute goes to those that help us answer questions on the MySQL mailing lists:

• Daniel Koch <dkoch@amcity.com>

Irix setup.

• Luuk de Boer <luuk@wxs.nl>

Benchmark questions.

• Tim Sailer <tps@users.buoy.com>

Credits

2331

http://www.pspl.co.in/konark/


DBD::mysql questions.

• Boyd Lynn Gerber <gerberb@zenez.com>

SCO-related questions.

• Richard Mehalick <RM186061@shellus.com>

xmysql-related questions and basic installation questions.

• Zeev Suraski <bourbon@netvision.net.il>

Apache module configuration questions (log & auth), PHP-related questions, SQL syntax-related questions and other general ques-
tions.

• Francesc Guasch <frankie@citel.upc.es>

General questions.

• Jonathan J Smith <jsmith@wtp.net>

Questions pertaining to OS-specifics with Linux, SQL syntax, and other things that might need some work.

• David Sklar <sklar@student.net>

Using MySQL from PHP and Perl.

• Alistair MacDonald <A.MacDonald@uel.ac.uk>

Is flexible and can handle Linux and perhaps HP-UX. Tries to get users to use mysqlbug.

• John Lyon <jlyon@imag.net>

Questions about installing MySQL on Linux systems, using either .rpm files or compiling from source.

• Lorvid Ltd. <lorvid@WOLFENET.com>

Simple billing/license/support/copyright issues.

• Patrick Sherrill <patrick@coconet.com>

ODBC and VisualC++ interface questions.

• Randy Harmon <rjharmon@uptimecomputers.com>

DBD, Linux, some SQL syntax questions.

E.3. Documenters and translators
The following people have helped us with writing the MySQL documentation and translating the documentation or error messages in
MySQL.

• Paul DuBois

Ongoing help with making this manual correct and understandable. That includes rewriting Monty's and David's attempts at English
into English as other people know it.

• Kim Aldale

Helped to rewrite Monty's and David's early attempts at English into English.

• Michael J. Miller Jr. <mke@terrapin.turbolift.com>

Credits

2332



For the first MySQL manual. And a lot of spelling/language fixes for the FAQ (that turned into the MySQL manual a long time
ago).

• Yan Cailin

First translator of the MySQL Reference Manual into simplified Chinese in early 2000 on which the Big5 and HK coded (ht-
tp://mysql.hitstar.com/) versions were based. Personal home page at linuxdb.yeah.net.

• Jay Flaherty <fty@mediapulse.com>

Big parts of the Perl DBI/DBD section in the manual.

• Paul Southworth <pauls@etext.org>, Ray Loyzaga <yar@cs.su.oz.au>

Proof-reading of the Reference Manual.

• Therrien Gilbert <gilbert@ican.net>, Jean-Marc Pouyot <jmp@scalaire.fr>

French error messages.

• Petr Snajdr, <snajdr@pvt.net>

Czech error messages.

• Jaroslaw Lewandowski <jotel@itnet.com.pl>

Polish error messages.

• Miguel Angel Fernandez Roiz

Spanish error messages.

• Roy-Magne Mo <rmo@www.hivolda.no>

Norwegian error messages and testing of MySQL 3.21.xx.

• Timur I. Bakeyev <root@timur.tatarstan.ru>

Russian error messages.

• <brenno@dewinter.com> & Filippo Grassilli <phil@hyppo.com>

Italian error messages.

• Dirk Munzinger <dirk@trinity.saar.de>

German error messages.

• Billik Stefan <billik@sun.uniag.sk>

Slovak error messages.

• Stefan Saroiu <tzoompy@cs.washington.edu>

Romanian error messages.

• Peter Feher

Hungarian error messages.

• Roberto M. Serqueira

Portuguese error messages.

• Carsten H. Pedersen

Credits

2333

http://mysql.hitstar.com/
http://mysql.hitstar.com/
http://linuxdb.yeah.net


Danish error messages.

• Arjen Lentz

Dutch error messages, completing earlier partial translation (also work on consistency and spelling).

E.4. Libraries used by and included with MySQL
The following is a list of the creators of the libraries we have included with the MySQL server source to make it easy to compile and in-
stall MySQL. We are very thankfully to all individuals that have created these and it has made our life much easier.

• Fred Fish

For his excellent C debugging and trace library. Monty has made a number of smaller improvements to the library (speed and addi-
tional options).

• Richard A. O'Keefe

For his public domain string library.

• Henry Spencer

For his regex library, used in WHERE column REGEXP regexp.

• Chris Provenzano

Portable user level pthreads. From the copyright: This product includes software developed by Chris Provenzano, the University of
California, Berkeley, and contributors. We are currently using version 1_60_beta6 patched by Monty (see mit-
pthreads/Changes-mysql).

• Jean-loup Gailly and Mark Adler

For the zlib library (used on MySQL on Windows).

• Bjorn Benson

For his safe_malloc (memory checker) package which is used in when you build MySQL using one of the BUILD/com-
pile-*-debug scripts, or manually set the -DSAFE_MALLOC.

• Free Software Foundation

The readline library (used by the mysql command-line client).

• The NetBSD foundation

The libedit package (optionally used by the mysql command-line client).

• www.netlib.org

MySQL incorporates work covered by the following copyright and permission notice:

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that this entire
notice is included in all copies of any software which is or includes a copy or modification of this software and in all copies of the
supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN PARTICU-
LAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CON-
CERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

Credits

2334

http://www.netlib.org


E.5. Packages that support MySQL
The following is a list of creators/maintainers of some of the most important API/packages/applications that a lot of people use with
MySQL.

We can't list every possible package here because the list would then be way to hard to maintain. For other packages, please refer to the
software portal at http://solutions.mysql.com/software/.

• Tim Bunce, Alligator Descartes

For the DBD (Perl) interface.

• Andreas Koenig <a.koenig@mind.de>

For the Perl interface for MySQL Server.

• Jochen Wiedmann <wiedmann@neckar-alb.de>

For maintaining the Perl DBD::mysql module.

• Eugene Chan <eugene@acenet.com.sg>

For porting PHP for MySQL Server.

• Georg Richter

MySQL 4.1 testing and bug hunting. New PHP 5.0 mysqli extension (API) for use with MySQL 4.1 and up.

• Giovanni Maruzzelli <maruzz@matrice.it>

For porting iODBC (Unix ODBC).

• Xavier Leroy <Xavier.Leroy@inria.fr>

The author of LinuxThreads (used by the MySQL Server on Linux).

E.6. Tools that were used to create MySQL
The following is a list of some of the tools we have used to create MySQL. We use this to express our thanks to those that has created
them as without these we could not have made MySQL what it is today.

• Free Software Foundation

From whom we got an excellent compiler (gcc), an excellent debugger (gdb and the libc library (from which we have borrowed
strto.c to get some code working in Linux).

• Free Software Foundation & The XEmacs development team

For a really great editor/environment used by almost everybody at MySQL AB.

• Julian Seward

Author of valgrind, an excellent memory checker tool that has helped us find a lot of otherwise hard to find bugs in MySQL.

• Dorothea Lütkehaus and Andreas Zeller

For DDD (The Data Display Debugger) which is an excellent graphical front end to gdb).

E.7. Supporters of MySQL
Although MySQL AB owns all copyrights in the MySQL server and the MySQL manual, we wish to recognize the following com-

Credits

2335

http://solutions.mysql.com/software/


panies, which helped us finance the development of the MySQL server, such as by paying us for developing a new feature or giving
us hardware for development of the MySQL server.

• VA Linux / Andover.net

Funded replication.

• NuSphere

Editing of the MySQL manual.

• Stork Design studio

The MySQL Web site in use between 1998-2000.

• Intel

Contributed to development on Windows and Linux platforms.

• Compaq

Contributed to Development on Linux/Alpha.

• SWSoft

Development on the embedded mysqld version.

• FutureQuest

--skip-show-database

Credits

2336



Index

Symbols
! (logical NOT), 691
!= (not equal), 687
", 597
#mysql50 identifier prefix, 598, 601
%, 712
% (modulo), 716
% (wildcard character), 595
& (bitwise AND), 758
&& (logical AND), 691
() (parentheses), 684
(Control-Z) \Z, 595, 827
* (multiplication), 711
+ (addition), 711
- (subtraction), 711
- (unary minus), 711
--bind-address option (ndb_mgmd), 1177
--config-file option (ndb_mgmd), 1177
--connect-string option (MySQL Cluster), 1175
--debug option (MySQL Cluster), 1175
--execute option (MySQL Cluster), 1175
--help option

MySQL Cluster programs, 1174
--initial option (ndbd), 1176
--initial-start option (ndbd), 1176
--ndb-log-update-as-write (mysqld option), 1239
--nodaemon option (ndbd), 1176
--nostart option (ndbd), 1177
--nowait-nodes option (ndbd), 1176
--password option, 471
--print-full-config option (ndb_mgmd), 1177
--usage option

MySQL Cluster programs, 1174
--version option (MySQL Cluster), 1175
-? option

MySQL Cluster programs, 1174
-c option (MySQL Cluster), 1175
-c option (ndb_mgmd) (OBSOLETE), 1177
-e option (MySQL Cluster), 1175
-f option (ndb_mgmd), 1177
-n option (ndbd), 1177
-p option, 471
-P option (ndb_mgmd), 1177
-V option (MySQL Cluster), 1175
.my.cnf file, 172, 173, 452, 458, 471, 484
.mysql_history file, 202
.pid (process ID) file, 502
/ (division), 712
/etc/passwd, 440, 834
:= (assignment), 607
< (less than), 687
<<, 160
<< (left shift), 759
<= (less than or equal), 687
<=> (equal to), 687
<> (not equal), 687
<errortext>Table is full</errortext> error

MySQL Cluster, 1892, 1895
= (assignment), 607
= (equal), 687

> (greater than), 687
>= (greater than or equal), 687
>> (right shift), 759
[api] (MySQL Cluster), 1156
[mgm] (MySQL Cluster), 1155
[ndbd default] (MySQL Cluster), 1149
[ndbd] (MySQL Cluster), 1149
[ndb_mgmd] (MySQL Cluster), 1155
[SQL] (MySQL Cluster), 1156
\" (double quote), 594
\' (single quote), 594
\. (mysql client command), 156, 206
\0 (ASCII 0), 594, 827
\b (backspace), 594, 827
\n (linefeed), 595, 827
\n (newline), 595, 827
\N (NULL), 827
\r (carriage return), 595, 827
\t (tab), 595, 827
\Z (Control-Z) ASCII 26, 595, 827
\\ (escape), 595
^ (bitwise XOR), 758
_ (wildcard character), 595
_rowid, 800
`, 597
| (bitwise OR), 758
|| (logical OR), 691
~, 759

A
abort-slave-event-count option

mysqld, 309
aborted clients, 1926
aborted connection, 1926
ABS(), 713
access control, 452
access denied errors, 1919
access privileges, 444
account privileges

adding, 466
accounts

anonymous user, 98
root, 98

ACID, 21, 942
ACLs, 444
ACOS(), 713
Active Server Pages (ASP), 1571
ActiveState Perl, 134
add-drop-database option

mysqldump, 222
add-drop-table option

mysqldump, 222
add-locks option

mysqldump, 222
add-user option

mysqlmanager, 271
ADDDATE(), 721
adding

character sets, 641
native functions, 1869
new account privileges, 466
new functions, 1859
new user privileges, 466
new users, 69, 72

2337



procedures, 1870
user-defined functions, 1861

addition (+), 711
ADDTIME(), 721
addtodest option

mysqlhotcopy, 268
administrative programs, 167
AES_DECRYPT(), 760
AES_ENCRYPT(), 760
After create

thread state, 579
age

calculating, 147
alias, 1940
alias names

case sensitivity, 599
aliases

for expressions, 778
for tables, 832
in GROUP BY clauses, 778
names, 597
on expressions, 832

ALL, 835, 847
all-databases option

mysqlcheck, 216
mysqldump, 222

all-in-1 option
mysqlcheck, 216

all-tablespaces option
mysqldump, 222

allocating local table
thread state, 583

allow-keywords option
mysqldump, 222

allow-suspicious-udfs option
mysqld, 309, 441

allowold option
mysqlhotcopy, 268

ALLOW_INVALID_DATES SQL mode, 418
ALTER COLUMN, 785
ALTER DATABASE, 779
ALTER EVENT, 1350
ALTER FUNCTION, 1326
ALTER LOGFILE GROUP, 780

(see also MySQL Cluster Disk Data)
ALTER PROCEDURE, 1326
ALTER SCHEMA, 779
ALTER SERVER, 780
ALTER TABLE, 781, 785, 1943
ALTER TABLESPACE, 790

(see also MySQL Cluster Disk Data)
ALTER VIEW, 1360
altering

database, 779
schema, 779

analyze option
myisamchk, 251
mysqlcheck, 216

ANALYZE TABLE, 879
Analyzing

thread state, 579
AND

bitwise, 758
logical, 691

angel-pid-file option

mysqlmanager, 271
anonymous user, 98, 98, 453, 455
ANSI mode

running, 18
ansi option

mysqld, 309
ANSI SQL mode, 417, 422
ANSI_QUOTES SQL mode, 418
answering questions

etiquette, 13
ANY, 847
Apache, 164
API node (MySQL Cluster)

defined, 1093
API nodes (see SQL nodes)
API's

list of, 2335
APIs, 1401

Perl, 1492
apply_status table (OBSOLETE), 1228

(see also MySQL Cluster replication)
approximate-value literals, 1394
ArbitrationDelay, 1124, 1145
ArbitrationRank, 1123, 1144
ArbitrationTimeout (DEPRECATED), 1139
arbitrator, 1893, 1898
ARCHIVE storage engine, 930, 1008
Area(), 1313, 1314
argument processing, 1865
arithmetic expressions, 711
arithmetic functions, 758
AS, 832, 836
AsBinary(), 1310
ASCII(), 695
ASIN(), 713
AsText(), 1310
asynchronous replication (see MySQL Cluster replication)
ATAN(), 713
ATAN2(), 713
attackers

security against, 439
attribute promotion (MySQL Cluster), 1200
auto-generate-sql option

mysqlslap, 240
auto-generate-sql-add-autoincrement option

mysqlslap, 240
auto-generate-sql-execute-number option

mysqlslap, 240
auto-generate-sql-guid-primary option

mysqlslap, 240
auto-generate-sql-load-type option

mysqlslap, 240
auto-generate-sql-secondary-indexes option

mysqlslap, 240
auto-generate-sql-unique-query-number option

mysqlslap, 240
auto-generate-sql-unique-write-number option

mysqlslap, 240
auto-generate-sql-write-number option

mysqlslap, 240
AUTO-INCREMENT

ODBC, 1568
auto-rehash option

mysql, 197
auto-repair option

Index

2338



mysqlcheck, 216
autoclose option

mysqld_safe, 182
AUTO_INCREMENT, 160

and NULL values, 1940
AVG(), 773
AVG(DISTINCT), 773

B
backslash

escape character, 594
backspace (\b), 594, 827
backup identifiers

native backup and restore, 1198
backup option

myisamchk, 250
myisampack, 254

BACKUP TABLE, 879
BackupDataBufferSize, 1204
BackupDataBufferSize (MySQL Cluster configuration parameter), 1142
BackupDataDir, 1125
BackupLogBufferSize, 1142, 1204
BackupMaxWriteSize, 1143, 1204
BackupMemory, 1142, 1204
BackupReportFrequency, 1142
backups, 486

database, 879
in MySQL Cluster, 1197, 1197, 1198, 1204
in MySQL Cluster replication, 1234

backups, troubleshooting
in MySQL Cluster, 1204

BackupWriteSize, 1143, 1204
base64-output option

mysqlbinlog, 262
basedir option

mysql.server, 185
mysqld, 309
mysqld_safe, 182
mysql_upgrade, 194

batch mode, 155
batch option

mysql, 197
BatchByteSize, 1145
batched updates (MySQL Cluster Replication), 1232
BatchSize, 1145
BatchSizePerLocalScan, 1130
BdMPolyFromText(), 1306
BdMPolyFromWKB(), 1307
BdPolyFromText(), 1306
BdPolyFromWKB(), 1307
BEGIN, 860, 1328

XA transactions, 868
benchmark suite, 506
BENCHMARK(), 763
benchmarks, 506
BETWEEN ... AND, 688
big-tables option

mysqld, 310
big5, 1900, 1902
Big5 Chinese character encoding, 1937
BIGINT data type, 651
BIN(), 695
BINARY, 746
BINARY data type, 655, 667

binary distributions, 34
installing, 67
on Linux, 108

binary log, 428
binary logging

and MySQL Cluster, 1255
bind-address option

mysqld, 310
mysqlmanager, 271

Binlog Dump
thread command, 577

binlog-do-db option
mysqld, 429

binlog-format option
mysqld, 310

binlog-ignore-db option
mysqld, 429

binlog-row-event-max-size option
mysqld, 310

binlog_index table (OBSOLETE), 1226
(see also MySQL Cluster replication)

BIT data type, 650
BitKeeper tree, 79
BIT_AND(), 773
BIT_COUNT, 160
BIT_COUNT(), 759
bit_functions

example, 160
BIT_LENGTH(), 695
BIT_OR, 160
BIT_OR(), 773
BIT_XOR(), 773
BLACKHOLE storage engine, 930, 1010
BLOB

inserting binary data, 596
size, 674

BLOB columns
default values, 669
indexing, 556, 800

BLOB data type, 655, 668
block-search option

myisamchk, 251
BOOL data type, 650
BOOLEAN data type, 650
bootstrap option

mysqld, 310
Borland Builder 4, 1572
Boundary(), 1311
brackets

square, 650
brief option

mysqlaccess, 259
buffer sizes

client, 1401
mysqld server, 566

Buffer(), 1316
bug reports

criteria for, 14
bugs

known, 1944
reporting, 14

bugs database, 14
bugs.mysql.com, 14
building

client programs, 1489

Index

2339



C
C API

data types, 1405
functions, 1409
linking problems, 1489

C prepared statement API
functions, 1460

C++ APIs, 1492
C++ Builder, 1572
C++ compiler

gcc, 77
C++ compiler cannot create executables, 82
C:\my.cnf file, 484
CACHE INDEX, 913

and partitioning, 1291
caches

clearing, 914
calculating

dates, 147
calendar, 735
CALL, 1327
calling sequences for aggregate functions

UDF, 1864
calling sequences for simple functions

UDF, 1863
can't create/write to file, 1928
carriage return (\r), 595, 827
CASE, 692, 1334
case sensitivity

in access checking, 447
in identifiers, 599
in names, 599
in searches, 1937
in string comparisons, 703

case-sensitivity
of database names, 19
of table names, 19

CAST, 746
cast functions, 746
cast operators, 746
casts, 685, 686, 746
CC environment variable, 77, 77, 83, 132
cc1plus problems, 82
CEIL(), 714
CEILING(), 714
Centroid(), 1314
CFLAGS environment variable, 77, 83, 132
CHANGE MASTER TO, 919

in MySQL Cluster, 1230
Change user

thread command, 577
ChangeLog, 2003
changes

log, 2003
MySQL 5.1, 2003

changes to privileges, 456
changing

column, 785
column order, 1943
field, 785
table, 781, 785, 1943

Changing master
thread state, 585

changing socket location, 77, 95, 1937
CHAR data type, 654, 666
CHAR VARYING data type, 655
CHAR(), 695
CHARACTER data type, 654
character sets, 78, 640

adding, 641
Character sets, 611
CHARACTER VARYING data type, 655
character-set-client-handshake option

mysqld, 311
character-set-filesystem option

mysqld, 311
character-set-server option

mysqld, 311
character-sets-dir option

myisamchk, 250
myisampack, 254
mysql, 197
mysqladmin, 212
mysqlbinlog, 262
mysqlcheck, 216
mysqld, 311
mysqldump, 223
mysqlimport, 232
mysqlshow, 236

characters
multi-byte, 644

CHARACTER_LENGTH(), 696
CHARACTER_SETS

INFORMATION_SCHEMA table, 1373
charset option

comp_err, 189
CHARSET(), 764
CHAR_LENGTH(), 696
check option

myisamchk, 249
mysqlcheck, 216

check options
myisamchk, 249

CHECK TABLE, 880
check-only-changed option

myisamchk, 249
mysqlcheck, 216

check-password-file option
mysqlmanager, 271

check-upgrade option
mysqlcheck, 216

checking
tables for errors, 495

Checking master version
thread state, 584

Checking table
thread state, 579

CHECKPOINT Events (MySQL Cluster), 1184
checkpoint option

mysqlhotcopy, 268
Checksum, 1146
Checksum (MySQL Cluster), 1147, 1148
checksum errors, 114
CHECKSUM TABLE, 882
Chinese, 1937
Chinese, Japanese, Korean character sets

frequently asked questions, 1900
choosing

Index

2340



a MySQL version, 31
choosing types, 675
chroot option

mysqld, 311
mysqlhotcopy, 268

circular replication
in MySQL Cluster, 1223

CJK
FAQ, 1900

CJK (Chinese, Japanese, Korean)
Access, PHP, etc., 1900, 1905
availability of specific characters, 1900, 1907
available character sets, 1900, 1900
big5, 1900, 1902
character sets available, 1900, 1900
characters displayed as question marks, 1900
CJKV, 1900, 1909
collations, 1900, 1900, 1907, 1908
conversion problems with Japanese character sets, 1900, 1903
data truncation, 1900, 1904
Database and table names, 1900, 1909
documentation in Chinese, 1900, 1909
documentation in Japanese, 1900, 1909
documentation in Korean, 1900, 1909
gb2312, gbk, 1900, 1900
Japanese character sets, 1900, 1903
Korean character set, 1900, 1904
LIKE and FULLTEXT, 1900, 1906
MySQL 4.0 behavior, 1900, 1905
ORDER BY treatment, 1900, 1900, 1907, 1908
problems with Access, PHP, etc., 1900, 1905
problems with Big5 character sets (Chinese), 1900, 1902
problems with data truncation, 1900, 1904
problems with euckr character set (Korean), 1900, 1904
problems with GB character sets (Chinese), 1900, 1900
problems with LIKE and FULLTEXT, 1900, 1906
problems with Yen sign (Japanese), 1900, 1903
rejected characters, 1900, 1909
sort order problems, 1900, 1900, 1907, 1908
sorting problems, 1900, 1900, 1907, 1908
testing availability of characters, 1900, 1907
Unicode collations, 1900, 1908
Vietnamese, 1900, 1909
Yen sign, 1900, 1903

clean-password-file option
mysqlmanager, 271

cleaning up
thread state, 579

Clearing
thread state, 587

clearing
caches, 914

client connection threads, 588
client programs, 166

building, 1489
client tools, 1401
clients

debugging, 1877
threaded, 1489

CLOSE, 1332
Close stmt

thread command, 577
closing

tables, 565
closing tables

thread state, 579
cluster database (OBSOLETE), 1226

(see also MySQL Cluster replication)
cluster logs, 1181, 1183
cluster.binlog_index table (OBSOLETE) (see MySQL Cluster replica-
tion)
Clustering (see MySQL Cluster)
CLUSTERLOG commands (MySQL Cluster), 1183
CLUSTERLOG STATISTICS command (MySQL Cluster), 1187
cluster_replication database (OBSOLETE) (see MySQL Cluster replica-
tion)
CMake, 85
COALESCE(), 688
COERCIBILITY(), 764
ColdFusion, 1572
collating

strings, 643
COLLATION(), 764
collation-server option

mysqld, 312
COLLATIONS

INFORMATION_SCHEMA table, 1373
COLLATION_CHARACTER_SET_APPLICABILITY

INFORMATION_SCHEMA table, 1374
column

changing, 785
types, 650

column comments, 799
column format, 799
column names

case sensitivity, 599
column storage, 799
column-names option

mysql, 197
column-type-info option

mysql, 197
columns

changing, 1943
indexes, 556
names, 597
other types, 675
selecting, 145
storage requirements, 672

COLUMNS
INFORMATION_SCHEMA table, 1370

columns option
mysqlimport, 232

COLUMN_PRIVILEGES
INFORMATION_SCHEMA table, 1373

comma-separated values data, reading, 826, 835
command options

mysql, 195
mysqladmin, 211
mysqld, 308

command options (MySQL Cluster), 1174
mysqld, 1159
ndbd, 1175
ndb_mgm, 1177
ndb_mgmd, 1177

command syntax, 3
command-line history

mysql, 202
commands

for binary distribution, 67
commands out of sync, 1928

Index

2341



Comment syntax, 610
comments

adding, 610
starting, 25

comments option
mysql, 198
mysqldump, 223

COMMIT, 21, 860
XA transactions, 868

commit option
mysqlaccess, 259
mysqlslap, 240

Committing events to binlog
thread state, 586

compact option
mysqldump, 223

comparison operators, 686
compatibility

between MySQL versions, 101
with mSQL, 704
with ODBC, 599, 652, 685, 688, 798, 838
with Oracle, 19, 775, 857
with PostgreSQL, 20
with standard SQL, 17
with Sybase, 859

compatible option
mysqldump, 223

compiler
C++ gcc, 77

compiling
on Windows, 88
optimizing, 566
problems, 81
speed, 587
statically, 77
user-defined functions, 1867

complete-insert option
mysqldump, 223

compliance
Y2K, 665

composite partitioning, 1273
compress option

mysql, 198
mysqladmin, 212
mysqlcheck, 217
mysqldump, 223
mysqlimport, 232
mysqlshow, 236
mysqlslap, 240

COMPRESS(), 760
compressed tables, 940
CompressedBackup, 1134
CompressedLCP, 1134
comp_err, 165

charset option, 189
debug option, 189
debug-info option, 189
header_file option, 189
help option, 189
in_file option, 189
name_file option, 189
out_dir option, 189
out_file option, 189
statefile option, 190
version option, 190

CONCAT(), 696
CONCAT_WS(), 696
concurrency option

mysqlslap, 240
concurrent inserts, 551, 554
Conditions, 1329
config-file option

mysqld_multi, 186
my_print_defaults, 287
ndb_config, 1207

config.cache, 82
config.cache file, 81
config.ini (MySQL Cluster), 1110, 1119, 1119, 1174
configuration

MySQL Cluster, 1149
configuration files, 458
configuration options, 72
configure

disable-grant-options option, 78
enable-thread-safe-client option, 78
localstatedir option, 76
prefix option, 76
running after prior invocation, 82
with-big-tables option, 78
with-charset option, 78
with-collation option, 78
with-debug option, 78
with-embedded-server option, 76
with-extra-charsets option, 78, 78
with-unix-socket-path option, 77
without-server option, 76

configure option
--with-low-memory, 82

configure script, 72
configuring backups

in MySQL Cluster, 1204
configuring MySQL Cluster, 1105, 1116, 1171, 1174
Configuring MySQL Cluster (concepts), 1093
conflict resolution

enabling, 1239
in MySQL Cluster Replication, 1238
mysqld startup options, 1239

Connect
thread command, 577

Connect Out
thread command, 577

connecting
remotely with SSH, 479
to the server, 137, 451
verification, 452

Connecting to master
thread state, 584

connection
aborted, 1926

CONNECTION Events (MySQL Cluster), 1184
CONNECTION_ID(), 765
Connector/JDBC, 1494
Connector/MXJ, 1494
Connector/NET, 1494, 1578

reporting problems, 1744
Connector/ODBC, 1494, 1494

Borland, 1571
Borland Database Engine, 1571
reporting problems, 1577, 1577

Connectors

Index

2342



MySQL, 1494
connectstring (see MySQL Cluster)
connect_timeout variable, 202, 213
console option

mysqld, 312
constant table, 509, 518
constraints, 25
CONSTRAINTS

INFORMATION_SCHEMA table, 1374
Contains(), 1317
contributing companies

list of, 2335
contributors

list of, 2328
control access, 452
control flow functions, 691
CONV(), 714
conventions

typographical, 2
CONVERT, 746
CONVERT TO, 786
converting HEAP to MyISAM

thread state, 579
CONVERT_TZ(), 721
ConvexHull(), 1316
copy option

mysqlaccess, 259
copy to tmp table

thread state, 579
copying databases, 106
copying tables, 808
Copying to group table

thread state, 579
Copying to tmp table

thread state, 579
Copying to tmp table on disk

thread state, 579
core-file option

mysqld, 312
core-file-size option

mysqld_safe, 182
correct-checksum option

myisamchk, 250
correlated subqueries, 849
COS(), 714
COT(), 714
count option

myisam_ftdump, 244
mysqladmin, 212
mysqlshow, 236

COUNT(), 773
COUNT(DISTINCT), 773
counting

table rows, 151
crash, 1872

recovery, 494
repeated, 1934

crash-me, 506
crash-me program, 504, 506
CRC32(), 714
CREATE DATABASE, 791
Create DB

thread command, 577
CREATE EVENT, 1351
CREATE FUNCTION, 1323, 1860

CREATE INDEX, 791
CREATE LOGFILE GROUP, 794

(see also MySQL Cluster Disk Data)
create option

mysqlslap, 241
CREATE PROCEDURE, 1323
CREATE SCHEMA, 791
CREATE SERVER, 794
CREATE TABLE, 795
CREATE TABLESPACE, 809

(see also MySQL Cluster Disk Data)
CREATE TRIGGER, 1341
CREATE USER, 870
CREATE VIEW, 1360
create-options option

mysqldump, 223
create-schema option

mysqlslap, 241
creating

bug reports, 14
database, 791
databases, 140
default startup options, 172
function, 1860
schema, 791
tables, 141

Creating delayed handler
thread state, 583

Creating index
thread state, 579

Creating sort index
thread state, 579

creating table
thread state, 579

Creating table from master dump
thread state, 586

Creating tmp table
thread state, 579

creating user accounts, 870
CROSS JOIN, 836
Crosses(), 1317
CR_SERVER_GONE_ERROR, 1924
CR_SERVER_LOST_ERROR, 1924
CSV data, reading, 826, 835
csv option

mysqlslap, 241
CSV storage engine, 930, 1009
CURDATE(), 722
CURRENT_DATE, 722
CURRENT_TIME, 722
CURRENT_TIMESTAMP, 722
CURRENT_USER(), 765
Cursors, 1331
CURTIME(), 722
customers

of MySQL, 505
CXX environment variable, 77, 77, 82, 82, 83, 132
CXXFLAGS environment variable, 77, 83, 132

D
Daemon

thread command, 577
data

character sets, 640

Index

2343



importing, 206
loading into tables, 143
retrieving, 143
size, 555

data node (MySQL Cluster)
defined, 1093

Data truncation with CJK characters, 1900, 1904
data type

BIGINT, 651
BINARY, 655, 667
BIT, 650
BLOB, 655, 668
BOOL, 650, 675
BOOLEAN, 650, 675
CHAR, 654, 666
CHAR VARYING, 655
CHARACTER, 654
CHARACTER VARYING, 655
DATE, 653, 660
DATETIME, 653, 660
DEC, 653
DECIMAL, 652, 1394
DOUBLE, 652
DOUBLE PRECISION, 652
ENUM, 656, 669
FIXED, 653
FLOAT, 652, 652, 652
GEOMETRY, 1305
GEOMETRYCOLLECTION, 1305
INT, 651
INTEGER, 651
LINESTRING, 1305
LONG, 668
LONGBLOB, 656
LONGTEXT, 656
MEDIUMBLOB, 655
MEDIUMINT, 651
MEDIUMTEXT, 655
MULTILINESTRING, 1305
MULTIPOINT, 1305
MULTIPOLYGON, 1305
NATIONAL CHAR, 654
NATIONAL VARCHAR, 655
NCHAR, 654
NUMERIC, 653
NVARCHAR, 655
POINT, 1305
POLYGON, 1305
REAL, 652
SET, 656, 671
SMALLINT, 651
TEXT, 655, 668
TIME, 653, 664
TIMESTAMP, 653, 660
TINYBLOB, 655
TINYINT, 650
TINYTEXT, 655
VARBINARY, 655, 667
VARCHAR, 655, 666
VARCHARACTER, 655
YEAR, 653, 665

data types, 650
C API, 1405
overview, 650

data-file-length option

myisamchk, 250
database

altering, 779
creating, 791
deleting, 810

database design, 555
Database information

obtaining, 889
database metadata, 1367
database names

case sensitivity, 599
case-sensitivity, 19

database option
mysql, 198
mysqlbinlog, 262

DATABASE(), 765
databases

backups, 486
copying, 106
creating, 140
defined, 4
information about, 154
names, 597
replicating, 1038
selecting, 141
symbolic links, 591
using, 140

databases option
mysqlcheck, 217
mysqldump, 223

DataDir, 1124, 1125
datadir option

mysql.server, 185
mysqld, 312
mysqld_safe, 182
mysql_upgrade, 194

DataJunction, 1573
DataMemory, 1126, 1157
DATE, 1938
date and time functions, 719
Date and Time types, 659
date calculations, 147
DATE columns

problems, 1938
DATE data type, 653, 660
date functions

Y2K compliance, 665
date types, 673

Y2K issues, 665
date values

problems, 661
DATE(), 722
DATEDIFF(), 722
dates

used with partitioning, 1265
used with partitioning (examples), 1267, 1270, 1274, 1288

DATETIME data type, 653, 660
DATE_ADD(), 722
DATE_FORMAT(), 724
DATE_SUB(), 722, 726
DAY(), 726
DAYNAME(), 726
DAYOFMONTH(), 726
DAYOFWEEK(), 726
DAYOFYEAR(), 726

Index

2344



db option
mysqlaccess, 259

db table
sorting, 455

DB2 SQL mode, 422
DBI interface, 1492
DBI->quote, 596
DBI->trace, 1875
DBI/DBD interface, 1492
DBI_TRACE environment variable, 132, 1875
DBI_USER environment variable, 132
DBUG package, 1878
DEALLOCATE PREPARE, 927, 928
Debug

thread command, 577
debug option

comp_err, 189
make_win_bin_dist, 190
myisamchk, 247
myisampack, 254
mysql, 198
mysqlaccess, 259
mysqladmin, 212
mysqlbinlog, 262
mysqlcheck, 217
mysqld, 312
mysqldump, 223
mysqlhotcopy, 268
mysqlimport, 232
mysqlmanager, 271
mysqlshow, 236
mysqlslap, 241
my_print_defaults, 287

debug-check option
mysql, 198
mysqladmin, 208
mysqlbinlog, 262
mysqlcheck, 217
mysqldump, 223
mysqlimport, 232
mysqlshow, 236
mysqlslap, 241
mysql_upgrade, 194

debug-info option
comp_err, 189
mysql, 198
mysqladmin, 208
mysqlbinlog, 262
mysqlcheck, 217
mysqldump, 223
mysqlimport, 232
mysqlshow, 236
mysqlslap, 241
mysql_upgrade, 194

debugging
client, 1877
server, 1872

debugging support, 72
DEC data type, 653
decimal arithmetic, 1394
DECIMAL data type, 652, 1394
decimal point, 650
DECLARE, 1328
DECODE(), 761
decode_bits myisamchk variable, 248

DEFAULT
constraint, 26

default
privileges, 98

default hostname, 451
default installation location, 41
default options, 172
DEFAULT value clause, 656, 799
default values, 504, 656, 799, 818

BLOB and TEXT columns, 669
explicit, 656
implicit, 656
suppression, 26

DEFAULT(), 769
default-character-set option

mysql, 198
mysqladmin, 212
mysqlcheck, 217
mysqld, 313
mysqldump, 224
mysqlimport, 232
mysqlshow, 236

default-collation option
mysqld, 313

default-mysqld-path option
mysqlmanager, 271

default-storage-engine option
mysqld, 313

default-table-type option
mysqld, 313

default-time-zone option
mysqld, 313

defaults
embedded, 1402

defaults-extra-file option, 176
mysqld_multi, 186
mysqld_safe, 182
my_print_defaults, 287

defaults-file option, 176
mysqld_multi, 186
mysqld_safe, 182
mysqlmanager, 271
my_print_defaults, 287

defaults-group-suffix option, 176
my_print_defaults, 287

DEGREES(), 714
delay-key-write option

mysqld, 313, 937
DELAYED, 820

when ignored, 819
Delayed insert

thread command, 577
delayed inserts

thread states, 582
delayed-insert option

mysqldump, 224
delayed_insert_limit, 821
DELETE, 813

and MySQL Cluster, 1251
delete option

mysqlimport, 232
delete-master-logs option

mysqldump, 224
deleting

database, 810

Index

2345



foreign key, 786, 966
function, 1861
index, 785, 811
primary key, 785
rows, 1941
schema, 810
table, 812
user, 468, 870
users, 468, 870

deleting from main table
thread state, 579

deleting from reference tables
thread state, 579

deletion
mysql.sock, 1937

delimiter option
mysql, 198
mysqlslap, 241
ndb_select_all, 1213

Delphi, 1572
derived tables, 849
des-key-file option

mysqld, 314
DESC, 856
descending option

ndb_select_all, 1213
DESCRIBE, 154, 856
description option

myisamchk, 251
design

choices, 555
issues, 1944
limitations, 504

DES_DECRYPT(), 761
DES_ENCRYPT(), 761
detach option

mysqlslap, 241
developers

list of, 2324
development source tree, 79
Difference(), 1316
digits, 650
Dimension(), 1310
directory structure

default, 41
disable-grant-options option

configure, 78
disable-keys option

mysqldump, 224
disable-log-bin option

mysqlbinlog, 263
DISCARD TABLESPACE, 786, 947
discard_or_import_tablespace

thread state, 580
disconnect-slave-event-count option

mysqld, 314
disconnecting

from the server, 137
Disjoint(), 1317
Disk Data tables (MySQL Cluster) (see MySQL Cluster Disk Data)
disk full, 1935
disk issues, 591
disk option

ndb_select_all, 1213
DiskCheckpointSpeed, 1138

DiskCheckpointSpeedInRestart, 1138
Diskless, 1133
DiskPageBufferMemory, 1245
disks

splitting data across, 593
DiskSyncSize, 1138
display size, 650
display triggers, 909
display width, 650
displaying

information
Cardinality, 901
Collation, 901
SHOW, 889, 891, 901, 902, 909

table status, 907
Distance(), 1317
DISTINCT, 146, 536, 835

AVG(), 773
COUNT(), 773
MAX(), 774
MIN(), 774
SUM(), 775

DISTINCTROW, 835
DIV, 712
division (/), 712
DNS, 590
DO, 816
DocBook XML

documentation source format, 1
Documentation

in Chinese, 1900, 1909
in Japanese, 1900, 1909
in Korean, 1900, 1909

Documenters
list of, 2332

DOUBLE data type, 652
DOUBLE PRECISION data type, 652
double quote (\"), 594
downgrades

MySQL Cluster, 1166, 1166, 1168
downgrading, 106
downloading, 39
drbd

FAQ, 1910
DRBD, 1910, 1910
DRBD licence, 1910, 1910
DROP DATABASE, 810
Drop DB

thread command, 577
DROP EVENT, 1355
DROP FOREIGN KEY, 786, 966
DROP FUNCTION, 1327, 1861
DROP INDEX, 785, 811
DROP LOGFILE GROUP, 811

(see also MySQL Cluster Disk Data)
DROP PREPARE, 928
DROP PRIMARY KEY, 785
DROP PROCEDURE, 1327
DROP SCHEMA, 810
DROP SERVER, 811
DROP TABLE, 812

and MySQL Cluster, 1251
DROP TABLESPACE, 812

(see also MySQL Cluster Disk Data)
DROP TRIGGER, 1344

Index

2346



DROP USER, 870
DROP VIEW, 1366
drop-user option

mysqlmanager, 271
dropping

user, 468, 870
dryrun option

mysqlhotcopy, 268
DUAL, 832
dump option

myisam_ftdump, 244
dump-date option

mysqldump, 224
DUMPFILE, 835
dynamic table characteristics, 939

E
edit-user option

mysqlmanager, 271
Eiffel Wrapper, 1493
ELT(), 696
email lists, 11
embedded MySQL server library, 1401
embedded option

make_win_bin_dist, 190
enable-named-pipe option

mysqld, 314
enable-pstack option

mysqld, 314
enable-thread-safe-client option

configure, 78
ENCODE(), 761
ENCRYPT(), 762
encryption, 472
encryption functions, 759
end

thread state, 580
END, 1328
EndPoint(), 1312
engine option

mysqlslap, 241
ENGINES

INFORMATION_SCHEMA table, 1379
ENTER SINGLE USER MODE command (MySQL Cluster), 1181
entering

queries, 138
ENUM

size, 675
ENUM data type, 656, 669
Envelope(), 1311
environment variable

CC, 77, 77, 83
CFLAGS, 77, 83
CXX, 77, 77, 83
CXXFLAGS, 77, 83
HOME, 202
LD_RUN_PATH, 110, 115
MYSQL_DEBUG, 169
MYSQL_HISTFILE, 202
MYSQL_HOST, 452
MYSQL_PWD, 169, 452
MYSQL_TCP_PORT, 169, 484, 484
MYSQL_UNIX_PORT, 169, 484, 484
PATH, 68, 170

USER, 452
Environment variable

CC, 132
CFLAGS, 132
CXX, 82, 132
CXXFLAGS, 132
DBI_TRACE, 132, 1875
DBI_USER, 132
HOME, 132
LD_LIBRARY_PATH, 135
LD_RUN_PATH, 132, 135
MYSQL_DEBUG, 132, 1877
MYSQL_GROUP_SUFFIX, 132
MYSQL_HISTFILE, 132
MYSQL_HOME, 132
MYSQL_HOST, 132
MYSQL_PS1, 132
MYSQL_PWD, 132
MYSQL_TCP_PORT, 132
MYSQL_UNIX_PORT, 93, 132
PATH, 132
TMPDIR, 93, 132
TZ, 132, 1937
UMASK, 132, 1931
UMASK_DIR, 132, 1931
USER, 132

Environment variables
CXX, 82

environment variables, 169, 179, 458
list of, 132

equal (=), 687
Equals(), 1317
Error

thread command, 577
ERROR Events (MySQL Cluster), 1186
error logs (MySQL Cluster), 1172
error messages

can't find file, 1931
languages, 641, 641

errors
access denied, 1919
checking tables for, 495
common, 1918
directory checksum, 114
handling for UDFs, 1867
in subqueries, 851
known, 1944
linking, 1930
list of, 1919
lost connection, 1922
reporting, 1, 14, 14

ERROR_FOR_DIVISION_BY_ZERO SQL mode, 418
escape (\\), 595
escape characters, 594
estimating

query performance, 517
event log format (MySQL Cluster), 1184
event logs (MySQL Cluster), 1181, 1183, 1183
event restrictions, 2315
event scheduler

thread states, 586
Event Scheduler, 1347

altering events, 1350
and MySQL privileges, 1356
and mysqladmin debug, 1355

Index

2347



and SHOW PROCESSLIST, 1348
concepts, 1347
creating events, 1351
dropping events, 1355
enabling and disabling, 1348
event metadata, 1355
obtaining status information, 906, 1355
SQL statements, 1349
starting and stopping, 1348

event severity levels (MySQL Cluster), 1183
event types (MySQL Cluster), 1182, 1184
event-scheduler option

mysqld, 314
events, 1347

altering, 1350
creating, 1351
dropping, 1355
limitations, 1358
metadata, 1355
status variables, 1358

EVENTS
INFORMATION_SCHEMA table, 1357, 1382

events option
mysqldump, 224

exact-value literals, 1394
example option

mysqld_multi, 186
EXAMPLE storage engine, 930, 1002
examples

compressed tables, 255
myisamchk output, 498
queries, 156

exe-suffix option
make_win_bin_dist, 190

Execute
thread command, 577

EXECUTE, 927, 928
execute option

mysql, 198
ExecuteOnComputer, 1122, 1124, 1144
executing SQL statements from text files, 155, 206
Execution of init_command

thread state, 580
EXISTS

with subqueries, 848
EXIT command (MySQL Cluster), 1181
EXIT SINGLE USER MODE command (MySQL Cluster), 1181
exit-info option

mysqld, 314
EXP(), 715
EXPLAIN, 507, 857
EXPLAIN PARTITIONS, 1285, 1286
EXPLAIN used with partitioned tables, 1285
explicit default values, 656
EXPORT_SET(), 696
expression aliases, 778, 832
expressions

extended, 149
extend-check option

myisamchk, 249, 250
extended option

mysqlcheck, 217
extended-insert option

mysqldump, 224
extensions

to standard SQL, 17
ExteriorRing(), 1314
external locking, 315, 325, 381, 494, 554, 582
external-locking option

mysqld, 315
extra-file option

my_print_defaults, 287
extra-partition-info option

ndb_desc, 1210
EXTRACT(), 726
extracting

dates, 147
ExtractValue(), 749

F
failover

in MySQL Cluster replication, 1233
FALSE, 596, 597

testing for, 687, 688
fast option

myisamchk, 249
mysqlcheck, 217

fatal signal 11, 82
features of MySQL, 5
FEDERATED storage engine, 930, 1003
Fetch

thread command, 577
FETCH, 1332
field

changing, 785
Field List

thread command, 577
FIELD(), 697
fields option

ndb_config, 1207
fields-enclosed-by option

mysqldump, 224, 232
fields-escaped-by option

mysqldump, 224, 232
fields-optionally-enclosed-by option

mysqldump, 224, 232
fields-terminated-by option

mysqldump, 224, 232
FILE, 698
files

binary log, 428
config.cache, 81
error messages, 641
general query log, 427
log, 72, 436
my.cnf, 1070
not found message, 1931
permissions, 1931
repairing, 250
script, 155
size limits, 1927
slow query log, 436
text, 206
tmp, 93

FILES
INFORMATION_SCHEMA table, 1385

(see also MySQL Cluster Disk Data)
filesort optimization, 533
FileSystemPath, 1125

Index

2348



FIND_IN_SET(), 697
Finished reading one binlog; switching to next binlog

thread state, 584
firewalls (software)

and MySQL Cluster, 1192, 1193
first-slave option

mysqldump, 224
fix-db-names option

mysqlcheck, 217
fix-table-names option

mysqlcheck, 217
FIXED data type, 653
fixed-point arithmetic, 1394
FLOAT data type, 652, 652, 652
floating-point number, 652
floats, 596
FLOOR(), 715
FLUSH, 914
flush option

mysqld, 315
flush tables, 210
flush-logs option

mysqldump, 224
flush-privileges option

mysqldump, 224
Flushing tables

thread state, 580
flushlog option

mysqlhotcopy, 268
FOR UPDATE, 835
FORCE INDEX, 842, 1942
FORCE KEY, 842
force option

myisamchk, 249, 250
myisampack, 254
mysql, 198
mysqladmin, 212
mysqlcheck, 217
mysqldump, 224
mysqlimport, 232
mysql_upgrade, 194

force-read option
mysqlbinlog, 263

foreign key
constraint, 26
deleting, 786, 966

foreign keys, 23, 158, 786
FORMAT(), 697
Forums, 13
FOUND_ROWS(), 765
FragmentLogFileSize, 1131
FreeBSD troubleshooting, 83
freeing items

thread state, 580
frequently-asked questions about DRBD, 1910
frequently-asked questions about MySQL Cluster, 1892
FROM, 832
FROM_DAYS(), 726
FROM_UNIXTIME(), 727
ft_max_word_len myisamchk variable, 248
ft_min_word_len myisamchk variable, 248
ft_stopword_file myisamchk variable, 248
full disk, 1935
full-text search, 735
FULLTEXT, 735

fulltext
stopword list, 744

FULLTEXT initialization
thread state, 580

function
creating, 1860
deleting, 1861

function names
parsing, 602
resolving ambiguity, 602

functions, 677
arithmetic, 758
bit, 758
C API, 1409
C prepared statement API, 1460
cast, 746
control flow, 691
date and time, 719
encryption, 759
GROUP BY, 772
grouping, 684
information, 763
mathematical, 713
miscellaneous, 769
native

adding, 1869
new, 1859
string, 693
string comparison, 703
user-defined, 1859

adding, 1861
Functions

user-defined, 1860, 1861
functions for SELECT and WHERE clauses, 677
Future development of MySQL Cluster, 1258

G
gap lock, 954, 975, 976
gb2312, gbk, 1900, 1900
gcc, 77
gci option

ndb_select_all, 1213
gdb

using, 1874
gdb option

mysqld, 315
general information, 1
General Public License, 4
general query log, 427
general-log option

mysqld, 315
geographic feature, 1297
GeomCollFromText(), 1305
GeomCollFromWKB(), 1306
geometry, 1297
GEOMETRY data type, 1305
GEOMETRYCOLLECTION data type, 1305
GeometryCollection(), 1307
GeometryCollectionFromText(), 1305
GeometryCollectionFromWKB(), 1306
GeometryFromText(), 1305
GeometryFromWKB(), 1306
GeometryN(), 1315
GeometryType(), 1311

Index

2349



GeomFromText(), 1305, 1310
GeomFromWKB(), 1306, 1310
geospatial feature, 1297
getting MySQL, 39
GET_FORMAT(), 727
GET_LOCK(), 769
GIS, 1297, 1297
GLength(), 1312, 1313
global privileges, 871, 878
GLOBAL_STATUS

INFORMATION_SCHEMA table, 1391
GLOBAL_VARIABLES

INFORMATION_SCHEMA table, 1391
goals of MySQL, 5
got handler lock

thread state, 583
got old table

thread state, 583
GRANT, 871
GRANT statement, 466
grant tables, 456

re-creating, 94
sorting, 454, 455

granting
privileges, 871

GRANTS, 900
greater than (>), 687
greater than or equal (>=), 687
GREATEST(), 689
GROUP BY, 535

aliases in, 778
extensions to standard SQL, 777, 833

GROUP BY functions, 772
grouping

expressions, 684
GROUP_CONCAT(), 774

H
HANDLER, 816
Handlers, 1330
handling

errors, 1867
Has read all relay log; waiting for the slave I/O thread to update it

thread state, 585
Has sent all binlog to slave; waiting for binlog to be updated

thread state, 584
hash partitioning, 1269
hash partitions

managing, 1284
splitting and merging, 1284

HAVING, 833
header option

ndb_select_all, 1213
header_file option

comp_err, 189
HEAP storage engine, 930, 1001
HeartbeatIntervalDbApi, 1136
HeartbeatIntervalDbDb, 1136
HELP command (MySQL Cluster), 1180
help option

comp_err, 189
myisamchk, 247
myisampack, 254
myisam_ftdump, 244

mysql, 197
mysqlaccess, 259
mysqladmin, 212
mysqlbinlog, 262
mysqlcheck, 216
mysqld, 309
mysqldump, 222
mysqld_multi, 186
mysqld_safe, 181
mysqlhotcopy, 268
mysqlimport, 232
mysqlmanager, 270
mysqlshow, 236
mysqlslap, 240
mysql_explain_log, 282
mysql_find_rows, 283
mysql_setpermission, 284
mysql_upgrade, 194
mysql_waitpid, 284
my_print_defaults, 287
perror, 288
resolveip, 290
resolve_stack_dump, 288

HELP statement, 857
HEX(), 697, 715
hex-blob option

mysqldump, 225
hexadecimal values, 596
hexdump option

mysqlbinlog, 263
HIGH_NOT_PRECEDENCE SQL mode, 418
HIGH_PRIORITY, 836
hints, 18

index, 832, 842
history of MySQL, 5
HOME environment variable, 132, 202
host option

mysql, 198
mysqlaccess, 259
mysqladmin, 212
mysqlbinlog, 263
mysqlcheck, 217
mysqldump, 225
mysqlhotcopy, 268
mysqlimport, 233
mysqlshow, 237
mysqlslap, 241
mysql_explain_log, 282
mysql_setpermission, 284
ndb_config, 1207

host table, 456
sorting, 455

Host*SciId* parameters, 1148
host.frm

problems finding, 91
hostname

default, 451
HostName, 1123, 1124, 1144
HostName (MySQL Cluster), 1191
hostname caching, 590
HOUR(), 727
howto option

mysqlaccess, 260
html option

mysql, 198

Index

2350



I
i-am-a-dummy option

mysql, 200
icc

and MySQL Cluster support>, 1872
Id, 1122, 1124, 1144
ID

unique, 1488
id option

ndb_config, 1207
identifiers, 597

case sensitivity, 599
quoting, 597

IF, 1333
IF(), 692
IFNULL(), 693
IGNORE

with partitioned tables, 819
IGNORE INDEX, 842
IGNORE KEY, 842
ignore option

mysqlimport, 233
ignore-lines option

mysqlimport, 233
ignore-spaces option

mysql, 198
ignore-table option

mysqldump, 225
IGNORE_SPACE SQL mode, 418
implicit default values, 656
IMPORT TABLESPACE, 786, 947
importing

data, 206
IN, 689, 847
increasing

performance, 1081, 1082
increasing with replication

speed, 1038
index

deleting, 785, 811
index hints, 832, 842
indexes, 791

and BLOB columns, 556, 800
and IS NULL, 559
and LIKE, 558
and NULL values, 800
and TEXT columns, 556, 800
assigning to key cache, 913
block size, 357
columns, 556
leftmost prefix of, 558
multi-column, 557
multiple-part, 791
names, 597
use of, 557

IndexMemory, 1127, 1157
INET_ATON(), 770
INET_NTOA(), 770
INFO Events (MySQL Cluster), 1186
information functions, 763
information option

myisamchk, 249
INFORMATION_SCHEMA, 1367

and security issues, 1196
INFORMATION_SCHEMA.ENGINES table

used with MySQL Cluster, 1189
INFORMATION_SCHEMA.GLOBAL_STATUS table

used with MySQL Cluster, 1190
INFORMATION_SCHEMA.GLOBAL_VARIABLES table

used with MySQL Cluster, 1189
init

thread state, 580
Init DB

thread command, 577
init-file option

mysqld, 316
Initialized

thread state, 587
InitialNoOfOpenFiles, 1131
INNER JOIN, 836
innochecksum, 167
InnoDB, 942

NFS, 943, 994
Solaris 10 x86_64 issues, 114

innodb option
mysqld, 951

InnoDB storage engine, 930, 942
InnoDB tables, 21
innodb_status_file option

mysqld, 951
INSERT, 546, 817
insert

thread state, 583
INSERT ... SELECT, 820
INSERT DELAYED, 820, 820
INSERT statement

grant privileges, 467
INSERT(), 697
insert-ignore option

mysqldump, 225
inserting

speed of, 546
inserts

concurrent, 551, 554
install option

mysqlmanager, 271
INSTALL PLUGIN, 1846
installation layouts, 41
installation overview, 69
installing

binary distribution, 67
Linux RPM packages, 60
Mac OS X PKG packages, 63
overview, 29
Perl, 133
Perl on Windows, 134
Solaris PKG packages, 65
source distribution, 69
user-defined functions, 1867

installing MySQL Cluster, 1105, 1108, 1117
installing plugins, 1846
INSTR(), 698
INT data type, 651
integer arithmetic, 1394
INTEGER data type, 651
integers, 596
InteriorRingN(), 1314
internal compiler errors, 82

Index

2351



internal locking, 550
internals, 1843
internationalization, 611
Internet Relay Chat, 13
Intersection(), 1316
Intersects(), 1318
INTERVAL(), 690
introducer

string literal, 594, 616
invalid data

constraint, 26
in_file option

comp_err, 189
IRC, 13
IS boolean_value, 687
IS NOT boolean_value, 688
IS NOT NULL, 688
IS NULL, 524, 688

and indexes, 559
isamlog, 167
IsClosed(), 1313
IsEmpty(), 1311
ISNULL(), 689
ISOLATION LEVEL, 865
IsRing(), 1313
IsSimple(), 1311
IS_FREE_LOCK(), 770
IS_USED_LOCK(), 770
ITERATE, 1335
iterations option

mysqlslap, 241

J
Japanese character sets

conversion, 1900, 1903
Japanese, Korean, Chinese character sets

frequently asked questions, 1900
JOIN, 836
join option

myisampack, 254

K
keepold option

mysqlhotcopy, 269
Key cache

MyISAM, 559
key cache

assigning indexes to, 913
key partitioning, 1272
key partitions

managing, 1284
splitting and merging, 1284

key space
MyISAM, 938

keys, 556
foreign, 23, 158
multi-column, 557
searching on two, 160

keys option
mysqlshow, 237

keys-used option
myisamchk, 250

keywords, 605
key_buffer_size myisamchk variable, 248

KEY_COLUMN_USAGE
INFORMATION_SCHEMA table, 1374

Kill
thread command, 577

KILL, 915
Killed

thread state, 580
Killing slave

thread state, 586
known errors, 1944
Korean, 1900, 1904
Korean, Chinese, Japanese character sets

frequently asked questions, 1900

L
language option

mysqld, 316
language support

error messages, 641
large-pages option

mysqld, 316
last row

unique ID, 1488
LAST_DAY(), 728
LAST_INSERT_ID(), 23, 819
LAST_INSERT_ID() and stored routines, 1336
LAST_INSERT_ID() and triggers, 1336
LAST_INSERT_ID([<replaceable>expr</replaceable>]), 766
layout of installation, 41
LCASE(), 698
LD_LIBRARY_PATH environment variable, 135
LD_RUN_PATH environment variable, 110, 115, 132, 135
LEAST(), 690
LEAVE, 1335
ledir option

mysqld_safe, 182
LEFT JOIN, 525, 836
LEFT OUTER JOIN, 836
LEFT(), 698
leftmost prefix of indexes, 558
legal names, 597
length option

myisam_ftdump, 244
LENGTH(), 698
less than (<), 687
less than or equal (<=), 687
libmysqld, 1401

options, 1402
libraries

list of, 2334
library

mysqlclient, 1401
mysqld, 1401

LIKE, 703
and indexes, 558
and wildcards, 558

LIMIT, 540, 765, 834
limitations

design, 504
MySQL Limitations, 2321
replication, 1070

limitations of MySQL Cluster, 1250
limits

file-size, 1927

Index

2352



MySQL Limits, limits in MySQL, 2321
line-numbers option

mysql, 198
linear hash partitioning, 1271
linear key partitioning, 1273
linefeed (\n), 595, 827
LineFromText(), 1306
LineFromWKB(), 1306
lines-terminated-by option

mysqldump, 225, 233
LINESTRING data type, 1305
LineString(), 1307
LineStringFromText(), 1306
LineStringFromWKB(), 1306
linking, 1489

errors, 1930
problems, 1489
speed, 587

links
symbolic, 591

Linux
binary distribution, 108
source distribution, 109

list partitioning, 1268
list partitions

adding and dropping, 1280
managing, 1280

list-users option
mysqlmanager, 271

literals, 594
LN(), 715
LOAD DATA FROM MASTER, 921
LOAD DATA INFILE, 823, 1939
LOAD INDEX INTO CACHE

and partitioning, 1291
LOAD TABLE FROM MASTER, 922
loading

tables, 143
LOAD_FILE(), 698
local checkpoints (MySQL Cluster), 1157
local option

mysqlimport, 233
local-infile option

mysql, 198
mysqld, 441

local-load option
mysqlbinlog, 263

localization, 611
localstatedir option

configure, 76
LOCALTIME, 728
LOCALTIMESTAMP, 728
LOCATE(), 698
LOCK IN SHARE MODE, 835
lock option

ndb_select_all, 1213
LOCK TABLES, 862
lock-all-tables option

mysqldump, 225
lock-directory option

mysqlslap, 241
lock-tables option

mysqldump, 225
mysqlimport, 233

Locked

thread state, 580
LockExecuteThreadToCPU, 1143
locking, 566

external, 315, 325, 381, 494, 554, 582
internal, 550
row-level, 23, 550
table-level, 550

locking methods, 550
LockMaintThreadsToCPU, 1143
LockPagesInMainMemory, 1133
log

changes, 2003
log files, 72, 424

maintaining, 436
log files (MySQL Cluster), 1172
log option

mysqld, 317
mysqld_multi, 186
mysqlmanager, 271

LOG(), 715
log-bin option

mysqld, 317
log-bin-index option

mysqld, 317
log-bin-trust-function-creators option

mysqld, 317
log-error option

mysqld, 317
mysqldump, 225
mysqld_safe, 182

log-isam option
mysqld, 318

log-long-format option
mysqld, 318

log-output option
mysqld, 318

log-queries-not-using-indexes option
mysqld, 318

log-short-format option
mysqld, 319

log-slave-updates option
mysqld, 1051

log-slow-admin-statements option
mysqld, 319

log-slow-queries option
mysqld, 319

log-slow-slave-statements option
mysqld, 319

log-tc option
mysqld, 319

log-tc-size option
mysqld, 320

log-warnings option
mysqld, 320, 1051

LOG10(), 716
LOG2(), 716
LogDestination, 1123
logging commands (MySQL Cluster), 1183
logging slow query

thread state, 580
logical operators, 690
login

thread state, 580
LogLevelCheckpoint (MySQL Cluster configuration parameter), 1141
LogLevelCongestion, 1141

Index

2353



LogLevelConnection (MySQL Cluster configuration parameter), 1141
LogLevelError, 1141
LogLevelInfo, 1141
LogLevelNodeRestart (MySQL Cluster configuration parameter), 1141
LogLevelShutdown, 1141
LogLevelStartup, 1140
LogLevelStatistic (MySQL Cluster configuration parameter), 1141
Long Data

thread command, 578
LONG data type, 668
LONGBLOB data type, 656
LongMessageBuffer, 1130
LONGTEXT data type, 656
LOOP, 1334
loops option

ndb_show_tables, 1215
lost connection errors, 1922
low-priority option

mysqlimport, 233
low-priority-updates option

mysqld, 320
LOWER(), 698
LPAD(), 699
LTRIM(), 699

M
Mac OS X, 1494

installation, 63
mailing list address, 1
mailing lists, 11

archive location, 11
guidelines, 13

main features of MySQL, 5
maintaining

log files, 436
tables, 502

MAKEDATE(), 728
MAKETIME(), 728
make_binary_distribution, 165
MAKE_SET(), 699
make_win_bin_dist, 166

debug option, 190
embedded option, 190
exe-suffix option, 190
no-debug option, 190
no-embedded option, 190
only-debug option, 190

Making temp file
thread state, 585

malicious SQL statements
and MySQL Cluster, 1195

management node (MySQL Cluster)
defined, 1093

managing MySQL Cluster, 1178
managing MySQL Cluster processes, 1171
manual

available formats, 1
online location, 1
typographical conventions, 2

master-connect-retry option
mysqld, 1051

master-data option
mysqldump, 225

master-host option

mysqld, 1052
master-info-file option

mysqld, 1052
master-password option

mysqld, 1052
master-port option

mysqld, 1052
master-retry-count option

mysqld, 1052
master-ssl option

mysqld, 1052
master-ssl-ca option

mysqld, 1052
master-ssl-capath option

mysqld, 1052
master-ssl-cert option

mysqld, 1052
master-ssl-cipher option

mysqld, 1052
master-ssl-key option

mysqld, 1052
master-user option

mysqld, 1052
MASTER_POS_WAIT(), 771, 922
MATCH ... AGAINST(), 735
matching

patterns, 149
math, 1394
mathematical functions, 713
MAX(), 774
MAX(DISTINCT), 774
max-binlog-dump-events option

mysqld, 321
max-record-length option

myisamchk, 250
max-relay-log-size option

mysqld, 1052
MaxBufferedEpochs, 1137
MAXDB SQL mode, 422
maximum memory used, 211
maximums

maximum columns per table, 2322
maximum tables per join, 2321

MaxNoOfAttributes, 1132
MaxNoOfConcurrentIndexOperations, 1129
MaxNoOfConcurrentOperations, 1128
MaxNoOfConcurrentScans, 1130
MaxNoOfConcurrentTransactions, 1128
MaxNoOfFiredTriggers, 1129
MaxNoOfIndexes, 1133
MaxNoOfLocalOperations, 1129
MaxNoOfLocalScans, 1130
MaxNoOfOpenFiles, 1131
MaxNoOfOrderedIndexes, 1132
MaxNoOfSavedMessages, 1132
MaxNoOfTables, 1132
MaxNoOfTriggers, 1132
MaxNoOfUniqueHashIndexes, 1132
MaxScanBatchSize, 1145
max_allowed_packet variable, 202
MAX_CONNECTIONS_PER_HOUR, 469
max_join_size variable, 202
MAX_QUERIES_PER_HOUR, 469
MAX_UPDATES_PER_HOUR, 469
MAX_USER_CONNECTIONS, 469

Index

2354



MBR, 1316
MBRContains(), 1316
MBRDisjoint(), 1316
MBREqual(), 1316
MBRIntersects(), 1316
MBROverlaps(), 1316
MBRTouches(), 1317
MBRWithin(), 1317
MD5(), 762
medium-check option

myisamchk, 249
mysqlcheck, 217

MEDIUMBLOB data type, 655
MEDIUMINT data type, 651
MEDIUMTEXT data type, 655
memlock option

mysqld, 321
MEMORY storage engine, 930, 1001
memory usage

myisamchk, 252
memory use, 211, 588

in MySQL Cluster, 1251
MemReportFrequency, 1141
MERGE storage engine, 930, 997
MERGE tables

defined, 997
metadata

database, 1367
method option

mysqlhotcopy, 269
methods

locking, 550
mgmd (MySQL Cluster)

defined, 1093
(see also management node (MySQL Cluster))

MICROSECOND(), 728
Microsoft Access, 1569
Microsoft ADO, 1571
Microsoft Excel, 1570
Microsoft Visual Basic, 1570
Microsoft Visual InterDev, 1570
MID(), 699
MIN(), 774
MIN(DISTINCT), 774
min-examined-row-limit option

mysqld, 320
Minimum Bounding Rectangle, 1316
minus

unary (-), 711
MINUTE(), 728
mirror sites, 39
miscellaneous functions, 769
MIT-pthreads, 84
MLineFromText(), 1306
MLineFromWKB(), 1306
MOD (modulo), 716
MOD(), 716
modes

batch, 155
modulo (%), 716
modulo (MOD), 716
monitor

terminal, 137
monitoring-interval option

mysqlmanager, 272

Mono, 1578
MONTH(), 728
MONTHNAME(), 729
MPointFromText(), 1306
MPointFromWKB(), 1306
MPolyFromText(), 1306
MPolyFromWKB(), 1307
mSQL compatibility, 704
MSSQL SQL mode, 422
multi-byte character sets, 1929

and MySQL Cluster (replication), 1222
multi-byte characters, 644
multi-column indexes, 557
MULTILINESTRING data type, 1305
MultiLineString(), 1307
MultiLineStringFromText(), 1306
MultiLineStringFromWKB(), 1306
multiple servers, 479
multiple-part index, 791
multiplication (*), 711
MULTIPOINT data type, 1305
MultiPoint(), 1307
MultiPointFromText(), 1306
MultiPointFromWKB(), 1306
MULTIPOLYGON data type, 1305
MultiPolygon(), 1307
MultiPolygonFromText(), 1306
MultiPolygonFromWKB(), 1307
My

derivation, 5
my.cnf

and MySQL Cluster, 1110, 1119, 1119
in MySQL Cluster, 1171

my.cnf file, 1070
MyISAM

compressed tables, 940
row size, 672

MyISAM key cache, 559
MyISAM storage engine, 930, 935
myisam-recover option

mysqld, 321, 937
myisamchk, 78, 167

analyze option, 251
backup option, 250
block-search option, 251
character-sets-dir option, 250
check option, 249
check-only-changed option, 249
correct-checksum option, 250
data-file-length option, 250
debug option, 247
description option, 251
example output, 498
extend-check option, 249, 250
fast option, 249
force option, 249, 250
help option, 247
information option, 249
keys-used option, 250
max-record-length option, 250
medium-check option, 249
no-symlinks option, 250
options, 247
parallel-recover option, 250
quick option, 250

Index

2355



read-only option, 249
recover option, 251
safe-recover option, 251
set-auto-increment[ option, 251
set-character-set option, 251
set-collation option, 251
silent option, 247
sort-index option, 252
sort-records option, 252
sort-recover option, 251
tmpdir option, 251
unpack option, 251
update-state option, 250
verbose option, 247
version option, 248
wait option, 248

myisamlog, 167
myisampack, 167, 809, 940

backup option, 254
character-sets-dir option, 254
debug option, 254
force option, 254
help option, 254
join option, 254
silent option, 254
test option, 254
tmpdir option, 254
verbose option, 255
version option, 255
wait option, 255

myisam_block_size myisamchk variable, 248
myisam_ftdump, 167

count option, 244
dump option, 244
help option, 244
length option, 244
stats option, 244
verbose option, 244

MyODBC, 1494
MySQL

defined, 4
introduction, 4
pronunciation, 5

mysql, 166
auto-rehash option, 197
batch option, 197
character-sets-dir option, 197
column-names option, 197
column-type-info option, 197
comments option, 198
compress option, 198
database option, 198
debug option, 198
debug-check option, 198
debug-info option, 198
default-character-set option, 198
delimiter option, 198
execute option, 198
force option, 198
help option, 197
host option, 198
html option, 198
i-am-a-dummy option, 200
ignore-spaces option, 198
line-numbers option, 198

local-infile option, 198
named-commands option, 199
no-auto-rehash option, 199
no-beep option, 199
no-named-commands option, 199
no-pager option, 199
no-tee option, 199
one-database option, 199
pager option, 199
password option, 199
port option, 199
prompt option, 199
protocol option, 199
quick option, 200
raw option, 200
reconnect option, 200
safe-updates option, 200
secure-auth option, 200
show-warnings option, 200
sigint-ignore option, 200
silent option, 200
skip-column-names option, 200
skip-line-numbers option, 200
socket option, 200
SSL options, 200
table option, 200
tee option, 200
unbuffered option, 201
user option, 201
verbose option, 201
version option, 201
vertical option, 201
wait option, 201
xml option, 201

MySQL AB
defined, 3

MySQL binary distribution, 31
MYSQL C type, 1406
MySQL Cluster, 1092

"quick" configuration, 1117
<errortext>Table is full</errortext> error, 1892, 1895
<foreignphrase>vs</foreignphrase> replication, 1892, 1893
administration, 1159, 1174, 1175, 1177, 1177, 1180, 1187
and DNS, 1106
and INFORMATION_SCHEMA, 1196
and IP addressing, 1106
and MySQL privileges, 1194
and MySQL root user, 1195, 1197
and networking, 1107
and transactions, 1892, 1896
API node, 1093, 1144
arbitrator, 1893, 1898
attribute promotion, 1200
available platforms, 1092
backups, 1197, 1197, 1198, 1204, 1204
benchmarks, 1249
CHECKPOINT Events, 1184
cluster logs, 1181, 1183
CLUSTERLOG commands, 1183
CLUSTERLOG STATISTICS command, 1187
commands, 1159, 1174, 1175, 1177, 1177, 1180
compiling from source, 1116
compiling with icc, 1872
concepts, 1093
configuration, 1105, 1116, 1117, 1122, 1122, 1124, 1144, 1157,

Index

2356



, 1174
configuration (example), 1119
configuration changes, 1166
configuration files, 1110, 1119
configuration parameters, 1149, 1149, 1155, 1156
configuring, 1204
CONNECTION Events, 1184
connectstring, 1121
data node, 1093, 1124
data types supported, 1893, 1898
defining node hosts, 1122
direct connections between nodes, 1146
Disk Data tables (see MySQL Cluster Disk Data)
ENTER SINGLE USER MODE command, 1181
ERROR Events, 1186
error logs, 1172
error messages, 1892, 1896
event log format, 1184
event logging thresholds, 1183
event logs, 1181, 1183
event severity levels, 1183
event types, 1182, 1184
EXIT command, 1181
EXIT SINGLE USER MODE command, 1181
FAQ, 1892
features new in MySQL 5.1, 1258
general description, 1092
hardware requirements, 1892, 1894
HELP command, 1180
HostName parameter

and security, 1191
how to obtain, 1893, 1896
importing existing tables, 1893, 1898
INFO Events, 1186
information sources, 1092
insecurity of communication protocols, 1191
installation, 1105, 1108, 1117
interconnects, 1246
log files, 1172
logging commands, 1183
management commands, 1187
management node, 1093, 1122
managing, 1178
memory requirements, 1892, 1894
memory usage and recovery, 1166, 1251
mgm, 1174
mgm client, 1180
mgm management client, 1187
mgm process, 1177
mgmd, 1174
mgmd process, 1177
mysqld process, 1159, 1171
ndbd, 1174
ndbd process, 1175, 1187
ndb_mgm, 1112
ndb_size.pl (utility), 1895
network configuration

and security, 1191
network configuration (SCI), 1247
network transporters, 1246, 1246
networking, 1146, 1147, 1148
networking requirements, 1892, 1892, 1893, 1896
node failure (single user mode), 1188
node identifiers, 1147, 1148
node logs, 1181

node types, 1894
NODERESTART Events, 1185
nodes and node groups, 1094
nodes and types, 1093
number of computers required, 1892, 1893
obtaining, 1108
partitioning support, 1251
partitions, 1094
performance, 1249
performing queries, 1113
platforms supported, 1892, 1894
preparing for replication, 1229
process management, 1171
QUIT command, 1181
replicas, 1094
replication, 1220

(see also MySQL Cluster replication)
REPORT command, 1181
requirements, 1107
resetting, 1166
RESTART command, 1180
restarting, 1116
roles of computers, 1892, 1894
runtime statistics, 1187
SCI (Scalable Coherent Interface), 1148, 1246
SCI drivers, 1248
SCI network configuration, 1247
SCI software installation, 1247
SCI software requirements, 1246
security, 1190, 1896

and firewalls, 1192, 1193
and HostName parameter, 1191
and network configuration, 1191
and network ports, 1194
and remote administration, 1194
networking, 1190

security procedures, 1196
shared memory transport, 1147
SHOW command, 1180
SHUTDOWN command, 1181
shutting down, 1116
single user mode, 1181, 1187
SQL node, 1093, 1144
SQL nodes, 1171
SQL statements, 1892, 1896
SQL statements for monitoring, 1188
START BACKUP command, 1234
START command, 1180
start phases (summary), 1178
starting, 1117
starting and stopping, 1893, 1899
starting nodes, 1112
starting or restarting, 1178
STARTUP Events, 1184
STATISTICS Events, 1186
STATUS command, 1181
STOP command, 1180
storage requirements, 673
terminology, 1259
thread states, 586
trace files, 1173
transaction handling, 1252
transactions, 1127
transporters

Scalable Coherent Interface (SCI), 1148

Index

2357



shared memory (SHM), 1147
TCP/IP, 1146

troubleshooting backups, 1204
upgrades and downgrades, 1166, 1166, 1168
using in a virtual machine, 1892, 1895
using tables and data, 1113

MySQL Cluster Disk Data, 1242
creating log file groups, 1242
creating tables, 1242, 1244
creating tablespaces, 1243
dropping Disk Data objects, 1244
storage requirements, 1245

MySQL Cluster Glossary, 1259
MySQL Cluster How-To, 1105
MySQL Cluster in MySQL 5.0 and 5.1, 1258
MySQL Cluster limitations, 1250

and differences from standard MySQL limits, 1251
autodiscovery, 1257
binary logging, 1255
character sets, 1257
CREATE TABLE statements, 1257
database objects, 1253
Disk Data storage, 1255
error handling and reporting, 1253
geometry data types, 1251
implementation, 1254
imposed by configuration, 1252
INSERT IGNORE, UPDATE IGNORE, and REPLACE statements,
1257
memory usage and transaction handling, 1252
multiple management servers, 1256
multiple MySQL servers, 1255
partitioning, 1251
performance, 1254
replication, 1251, 1257
resolved in current version from previous versions, 1256
syntax, 1250
transactions, 1252
unsupported features, 1254

MySQL Cluster processes (types), 1171
MySQL Cluster replication, 1220, 1232

and --initial option, 1226
and auto_increment* variables, 1226
and circular replication, 1223
and DDL, 1226
and multi-byte character sets, 1222
and primary key, 1226
backups, 1234, 1236
concepts, 1221, 1222
failover, 1233
known issues, 1222
loss of connection, 1222
preparing, 1229
reset-slave.pl backup automation script, 1236
restoring from backups, 1234
starting, 1231
storage engines other than NDB on slave, 1226
system tables used, 1226

MySQL Cluster utilities, 1205
mysql command options, 195
mysql commands

list of, 202
MySQL Dolphin name, 5
MySQL history, 5
mysql history file, 202

MySQL mailing lists, 11
MySQL name, 5
MySQL privileges

and MySQL Cluster, 1195
mysql prompt command, 204
MySQL server

mysqld, 291
mysql source (command for reading from text files), 156, 206
MySQL source distribution, 31
mysql status command, 203
MySQL storage engines, 930
MySQL system tables

and MySQL Cluster, 1195
MySQL version, 39
mysql \. (command for reading from text files), 156, 206
MySQL++, 1492
mysql.event table, 1358
mysql.ndb_binlog_index table (see MySQL Cluster replication)
mysql.server, 165

basedir option, 185
datadir option, 185
pid-file option, 185
service-startup-timeout option, 185
use-manager option, 185
use-mysqld_safe option, 185
user option, 185

mysql.sock
changing location of, 77
protection, 1937

MYSQL323 SQL mode, 422
MYSQL40 SQL mode, 422
mysqlaccess, 167

brief option, 259
commit option, 259
copy option, 259
db option, 259
debug option, 259
help option, 259
host option, 259
howto option, 260
old_server option, 260
password option, 260
plan option, 260
preview option, 260
relnotes option, 260
rhost option, 260
rollback option, 260
spassword option, 260
superuser option, 260
table option, 260
user option, 260
version option, 260

mysqladmin, 166, 791, 811, 907, 910, 914, 915
character-sets-dir option, 212
compress option, 212
count option, 212
debug option, 212
debug-check option, 208
debug-info option, 208
default-character-set option, 212
force option, 212
help option, 212
host option, 212
no-beep option, 212
password option, 213

Index

2358



port option, 213
protocol option, 213
relative option, 213
silent option, 213
sleep option, 213
socket option, 213
SSL options, 213
user option, 213
verbose option, 213
version option, 213
vertical option, 213
wait option, 213

mysqladmin command options, 211
mysqladmin option

mysqld_multi, 186
mysqlbinlog, 167

base64-output option, 262
character-sets-dir option, 262
database option, 262
debug option, 262
debug-check option, 262
debug-info option, 262
disable-log-bin option, 263
force-read option, 263
help option, 262
hexdump option, 263
host option, 263
local-load option, 263
offset option, 263
password option, 263
port option, 263
position option, 263
protocol option, 263
read-from-remote-server option, 263
result-file option, 263
server-id option, 263
set-charset option, 263
short-form option, 264
socket option, 264
start-datetime option, 264
start-position option, 264
stop-datetime option, 264
stop-position option, 264
to-last-log option, 264
user option, 264
version option, 264

mysqlbug script, 17
mysqlcheck, 166

all-databases option, 216
all-in-1 option, 216
analyze option, 216
auto-repair option, 216
character-sets-dir option, 216
check option, 216
check-only-changed option, 216
check-upgrade option, 216
compress option, 217
databases option, 217
debug option, 217
debug-check option, 217
debug-info option, 217
default-character-set option, 217
extended option, 217
fast option, 217
fix-db-names option, 217

fix-table-names option, 217
force option, 217
help option, 216
host option, 217
medium-check option, 217
optimize option, 217
password option, 217
port option, 218
protocol option, 218
quick option, 218
repair option, 218
silent option, 218
socket option, 218
SSL options, 218
tables option, 218
use-frm option, 218
user option, 218
verbose option, 218
version option, 218
write-binlog option, 264

mysqlclient library, 1401
mysqld, 165

abort-slave-event-count option, 309
allow-suspicious-udfs option, 309, 441
ansi option, 309
as MySQL Cluster process, 1159, 1171
basedir option, 309
big-tables option, 310
bind-address option, 310
binlog-do-db option, 429
binlog-format option, 310
binlog-ignore-db option, 429
binlog-row-event-max-size option, 310
bootstrap option, 310
character-set-client-handshake option, 311
character-set-filesystem option, 311
character-set-server option, 311
character-sets-dir option, 311
chroot option, 311
collation-server option, 312
command options, 308
console option, 312
core-file option, 312
datadir option, 312
debug option, 312
default-character-set option, 313
default-collation option, 313
default-storage-engine option, 313
default-table-type option, 313
default-time-zone option, 313
delay-key-write option, 313, 937
des-key-file option, 314
disconnect-slave-event-count option, 314
enable-named-pipe option, 314
enable-pstack option, 314
event-scheduler option, 314
exit-info option, 314
external-locking option, 315
flush option, 315
gdb option, 315
general-log option, 315
help option, 309
init-file option, 316
innodb option, 951
innodb_status_file option, 951

Index

2359



language option, 316
large-pages option, 316
local-infile option, 441
log option, 317
log-bin option, 317
log-bin-index option, 317
log-bin-trust-function-creators option, 317
log-error option, 317
log-isam option, 318
log-long-format option, 318
log-output option, 318
log-queries-not-using-indexes option, 318
log-short-format option, 319
log-slave-updates option, 1051
log-slow-admin-statements option, 319
log-slow-queries option, 319
log-slow-slave-statements option, 319
log-tc option, 319
log-tc-size option, 320
log-warnings option, 320, 1051
low-priority-updates option, 320
master-connect-retry option, 1051
master-host option, 1052
master-info-file option, 1052
master-password option, 1052
master-port option, 1052
master-retry-count option, 1052
master-ssl option, 1052
master-ssl-ca option, 1052
master-ssl-capath option, 1052
master-ssl-cert option, 1052
master-ssl-cipher option, 1052
master-ssl-key option, 1052
master-user option, 1052
max-binlog-dump-events option, 321
max-relay-log-size option, 1052
memlock option, 321
min-examined-row-limit option, 320
myisam-recover option, 321, 937
MySQL server, 291
ndb-cluster-connection-pool option, 1159
ndb-connectstring option, 1160
ndbcluster option, 1160
old-passwords option, 322, 441
old-style-user-limits option, 322
one-thread option, 322
open-files-limit option, 322
pid-file option, 323
port option, 323
port-open-timeout option, 323
read-only option, 1052
relay-log option, 1052
relay-log-index option, 1052
relay-log-info-file option, 1052
relay-log-purge option, 1053
relay-log-space-limit option, 1053
replicate-do-db option, 1053
replicate-do-table option, 1054
replicate-ignore-db option, 1054
replicate-ignore-table option, 1054
replicate-rewrite-db option, 1054
replicate-same-server-id option, 1054
replicate-wild-do-table option, 1055
replicate-wild-ignore-table option, 1055
report-host option, 1055

report-password option, 1055
report-port option, 1055
report-user option, 1055
role in MySQL Cluster (see SQL Node (MySQL Cluster))
safe-mode option, 323
safe-show-database option, 323, 442
safe-user-create option, 324, 442
secure-auth option, 324, 442
secure-file-priv option, 324, 442
shared-memory option, 325
shared-memory-base-name option, 325
show-slave-auth-info option, 1055
skip-concurrent-insert option, 325
skip-external-locking option, 325
skip-grant-tables option, 325, 442
skip-host-cache option, 325
skip-innodb option, 325
skip-merge option, 442
skip-name-resolve option, 325, 442
skip-ndbcluster option, 1160
skip-networking option, 325, 442
skip-safemalloc option, 326
skip-show-database option, 326, 442
skip-slave-start option, 1056
skip-stack-trace option, 326
skip-symbolic-links option, 326
skip-thread-priority option, 326
slave-load-tmpdir option, 1056
slave-net-timeout option, 1056
slave-skip-errors option, 1056
slave_compressed_protocol option, 1056
slow-query-log option, 326
socket option, 327
sporadic-binlog-dump-fail option, 325
sql-mode option, 327
SSL options, 325, 442
standalone option, 326
starting, 443
symbolic-links option, 326
sysdate-is-now option, 327
tc-heuristic-recover option, 328
temp-pool option, 328
tmpdir option, 328
transaction-isolation option, 328
user option, 329
version option, 329

mysqld library, 1401
mysqld option

mysqld_multi, 187
mysqld_safe, 182

mysqld options, 567
mysqld server

buffer sizes, 566
mysqld-safe-compatible option

mysqlmanager, 272
mysqld-version option

mysqld_safe, 182
mysqldump, 106, 166

add-drop-database option, 222
add-drop-table option, 222
add-locks option, 222
all-databases option, 222
all-tablespaces option, 222
allow-keywords option, 222
character-sets-dir option, 223

Index

2360



comments option, 223
compact option, 223
compatible option, 223
complete-insert option, 223
compress option, 223
create-options option, 223
databases option, 223
debug option, 223
debug-check option, 223
debug-info option, 223
default-character-set option, 224
delayed-insert option, 224
delete-master-logs option, 224
disable-keys option, 224
dump-date option, 224
events option, 224
extended-insert option, 224
fields-enclosed-by option, 224, 232
fields-escaped-by option, 224, 232
fields-optionally-enclosed-by option, 224, 232
fields-terminated-by option, 224, 232
first-slave option, 224
flush-logs option, 224
flush-privileges option, 224
force option, 224
help option, 222
hex-blob option, 225
host option, 225
ignore-table option, 225
insert-ignore option, 225
lines-terminated-by option, 225, 233
lock-all-tables option, 225
lock-tables option, 225
log-error option, 225
master-data option, 225
no-autocommit option, 225
no-create-db option, 225
no-create-info option, 226
no-data option, 226
opt option, 226
order-by-primary option, 226
password option, 226
port option, 226
problems, 230, 2320
protocol option, 226
quick option, 226
quote-names option, 226
replace option, 226
result-file option, 226
routines option, 226
set-charset option, 227
single-transaction option, 227
skip-comments option, 227
skip-opt option, 227
socket option, 227
SSL options, 227
tab option, 227
tables option, 228
triggers option, 228
tz-utc option, 228
user option, 228
verbose option, 228
version option, 228
views, 230, 2320
where option, 228

workarounds, 230, 2320
xml option, 228

mysqld_multi, 165
config-file option, 186
defaults-extra-file option, 186
defaults-file option, 186
example option, 186
help option, 186
log option, 186
mysqladmin option, 186
mysqld option, 187
no-defaults option, 186
no-log option, 187
password option, 187
silent option, 187
tcp-ip option, 187
user option, 187
verbose option, 187
version option, 187

mysqld_safe, 165
autoclose option, 182
basedir option, 182
core-file-size option, 182
datadir option, 182
defaults-extra-file option, 182
defaults-file option, 182
help option, 181
ledir option, 182
log-error option, 182
mysqld option, 182
mysqld-version option, 182
nice option, 182
no-defaults option, 182
open-files-limit option, 182
pid-file option, 183
port option, 183
skip-kill-mysqld option, 183
skip-syslog option, 183
socket option, 183
syslog option, 183
syslog-tag option, 183
timezone option, 183
user option, 183

mysqlhotcopy, 167
addtodest option, 268
allowold option, 268
checkpoint option, 268
chroot option, 268
debug option, 268
dryrun option, 268
flushlog option, 268
help option, 268
host option, 268
keepold option, 269
method option, 269
noindices option, 269
password option, 269
port option, 269
quiet option, 269
record_log_pos option, 269
regexp option, 269
resetmaster option, 269
resetslave option, 269
socket option, 269
suffix option, 269

Index

2361



tmpdir option, 269
user option, 269

mysqlimport, 106, 166, 823
character-sets-dir option, 232
columns option, 232
compress option, 232
debug option, 232
debug-check option, 232
debug-info option, 232
default-character-set option, 232
delete option, 232
force option, 232
help option, 232
host option, 233
ignore option, 233
ignore-lines option, 233
local option, 233
lock-tables option, 233
low-priority option, 233
password option, 233
port option, 233
protocol option, 233
replace option, 233
silent option, 233
socket option, 234
SSL options, 234
use-threads option, 234
user option, 234
verbose option, 234
version option, 234

mysqlmanager, 167
add-user option, 271
angel-pid-file option, 271
bind-address option, 271
check-password-file option, 271
clean-password-file option, 271
debug option, 271
default-mysqld-path option, 271
defaults-file option, 271
drop-user option, 271
edit-user option, 271
help option, 270
install option, 271
list-users option, 271
log option, 271
monitoring-interval option, 272
mysqld-safe-compatible option, 272
password option, 272
password-file option, 272
pid-file option, 272
port option, 272
print-defaults option, 272
print-password-line option, 272
remove option, 273
run-as-service option, 273
socket option, 273
standalone option, 273
user option, 273
username option, 273
version option, 273
wait-timeout option, 273

mysqlshow, 166
character-sets-dir option, 236
compress option, 236
count option, 236

debug option, 236
debug-check option, 236
debug-info option, 236
default-character-set option, 236
help option, 236
host option, 237
keys option, 237
password option, 237
port option, 237
protocol option, 237
show-table-type option, 237
socket option, 237
SSL options, 237
status option, 237
user option, 237
verbose option, 237
version option, 237

mysqlslap, 167
auto-generate-sql option, 240
auto-generate-sql-add-autoincrement option, 240
auto-generate-sql-execute-number option, 240
auto-generate-sql-guid-primary option, 240
auto-generate-sql-load-type option, 240
auto-generate-sql-secondary-indexes option, 240
auto-generate-sql-unique-query-number option, 240
auto-generate-sql-unique-write-number option, 240
auto-generate-sql-write-number option, 240
commit option, 240
compress option, 240
concurrency option, 240
create option, 241
create-schema option, 241
csv option, 241
debug option, 241
debug-check option, 241
debug-info option, 241
delimiter option, 241
detach option, 241
engine option, 241
help option, 240
host option, 241
iterations option, 241
lock-directory option, 241
number-char-cols option, 241
number-int-cols option, 241
number-of-queries option, 241
only-print option, 241
password option, 242, 242
port option, 242
post-query option, 242
post-system option, 242
pre-query option, 242
pre-system option, 242
preserve-schema option, 242
protocol option, 242
query option, 242
silent option, 242
slave option, 242
socket option, 242
SSL options, 242
use-threads option, 242
user option, 243
verbose option, 243
version option, 243

mysqltest

Index

2362



MySQL Test Suite, 1843
mysql_affected_rows(), 1413
mysql_autocommit(), 1414
MYSQL_BIND C type, 1456
mysql_change_user(), 1414
mysql_character_set_name(), 1415
mysql_close(), 1415
mysql_commit(), 1415
mysql_connect(), 1416
mysql_convert_table_format, 167
mysql_create_db(), 1416
mysql_data_seek(), 1417
MYSQL_DEBUG environment variable, 132, 169, 1877
mysql_debug(), 1417
mysql_drop_db(), 1417
mysql_dump_debug_info(), 1418
mysql_eof(), 1418
mysql_errno(), 1419
mysql_error(), 1420
mysql_escape_string(), 1420
mysql_explain_log

help option, 282
host option, 282
password option, 282
socket option, 282
user option, 282

mysql_fetch_field(), 1420
mysql_fetch_fields(), 1421
mysql_fetch_field_direct(), 1421
mysql_fetch_lengths(), 1422
mysql_fetch_row(), 1422
MYSQL_FIELD C type, 1406
mysql_field_count(), 1423, 1435
MYSQL_FIELD_OFFSET C type, 1406
mysql_field_seek(), 1424
mysql_field_tell(), 1424
mysql_find_rows, 168

help option, 283
regexp option, 283
rows option, 283
skip-use-db option, 283
start_row option, 283

mysql_fix_extensions, 168
mysql_fix_privilege_tables, 166
mysql_free_result(), 1424
mysql_get_character_set_info(), 1425
mysql_get_client_info(), 1425
mysql_get_client_version(), 1425
mysql_get_host_info(), 1426
mysql_get_proto_info(), 1426
mysql_get_server_info(), 1426
mysql_get_server_version(), 1426
mysql_get_ssl_cipher(), 1427
MYSQL_GROUP_SUFFIX environment variable, 132
mysql_hex_string(), 1427
MYSQL_HISTFILE environment variable, 132, 202
MYSQL_HOME environment variable, 132
MYSQL_HOST environment variable, 132, 452
mysql_info(), 789, 819, 830, 856, 1428
mysql_init(), 1428
mysql_insert_id(), 23, 819, 1429
mysql_install_db, 166
mysql_install_db script, 93
mysql_kill(), 1430
mysql_library_end(), 1430

mysql_library_init(), 1430
mysql_list_dbs(), 1431
mysql_list_fields(), 1432
mysql_list_processes(), 1433
mysql_list_tables(), 1433
mysql_more_results(), 1434
mysql_next_result(), 1434
mysql_num_fields(), 1435
mysql_num_rows(), 1436
mysql_options(), 1436
mysql_ping(), 1439
MYSQL_PS1 environment variable, 132
MYSQL_PWD environment variable, 132, 169, 452
mysql_query(), 1440, 1487
mysql_real_connect(), 1440
mysql_real_escape_string(), 596, 1443
mysql_real_query(), 1444
mysql_refresh(), 1445
mysql_reload(), 1446
MYSQL_RES C type, 1406
mysql_rollback(), 1446
MYSQL_ROW C type, 1406
mysql_row_seek(), 1447
mysql_row_tell(), 1447
mysql_secure_installation, 166
mysql_select_db(), 1447
mysql_server_end(), 1486
mysql_server_init(), 1486
mysql_setpermission, 168

help option, 284
host option, 284
password option, 284
port option, 284
socket option, 284
user option, 284

mysql_set_character_set(), 1448
mysql_set_local_infile_default(), 1448, 1448
mysql_set_server_option(), 1449
mysql_shutdown(), 1450
mysql_sqlstate(), 1451
mysql_ssl_set(), 1451
mysql_stat(), 1452
MYSQL_STMT C type, 1456
mysql_stmt_affected_rows(), 1463
mysql_stmt_attr_get(), 1463
mysql_stmt_attr_set(), 1463
mysql_stmt_bind_param(), 1464
mysql_stmt_bind_result(), 1465
mysql_stmt_close(), 1466
mysql_stmt_data_seek(), 1466
mysql_stmt_errno(), 1467
mysql_stmt_error(), 1467
mysql_stmt_execute(), 1467
mysql_stmt_fetch(), 1470
mysql_stmt_fetch_column(), 1474
mysql_stmt_field_count(), 1474
mysql_stmt_free_result(), 1474
mysql_stmt_init(), 1475
mysql_stmt_insert_id(), 1475
mysql_stmt_num_rows(), 1475
mysql_stmt_param_count(), 1476
mysql_stmt_param_metadata(), 1476
mysql_stmt_prepare(), 1476
mysql_stmt_reset(), 1477
mysql_stmt_result_metadata, 1478

Index

2363



mysql_stmt_row_seek(), 1478
mysql_stmt_row_tell(), 1479
mysql_stmt_send_long_data(), 1479
mysql_stmt_sqlstate(), 1480
mysql_stmt_store_result(), 1481
mysql_store_result(), 1452, 1487
MYSQL_TCP_PORT environment variable, 132, 169, 484, 484
mysql_thread_end(), 1485
mysql_thread_id(), 1453
mysql_thread_init(), 1485
mysql_thread_safe(), 1486
MYSQL_TIME C type, 1458
mysql_tzinfo_to_sql, 166
MYSQL_UNIX_PORT environment variable, 93, 132, 169, 484, 484
mysql_upgrade, 166, 458

basedir option, 194
datadir option, 194
debug-check option, 194
debug-info option, 194
force option, 194
help option, 194
user option, 194
verbose option, 194

mysql_use_result(), 1454
mysql_waitpid, 168

help option, 284
verbose option, 284
version option, 284

mysql_warning_count(), 1454
mysql_zap, 168
my_bool C type, 1406
my_bool values

printing, 1406
my_init(), 1485
my_print_defaults, 168

config-file option, 287
debug option, 287
defaults-extra-file option, 287
defaults-file option, 287
defaults-group-suffix option, 287
extra-file option, 287
help option, 287
no-defaults option, 287
verbose option, 287
version option, 287

my_ulonglong C type, 1406
my_ulonglong values

printing, 1406

N
named pipes, 52, 56
named-commands option

mysql, 199
names, 597

case sensitivity, 599
variables, 607

NAME_CONST(), 771
name_file option

comp_err, 189
naming

releases of MySQL, 31
NATIONAL CHAR data type, 654
NATIONAL VARCHAR data type, 655
native backup and restore

and management client, 1198
backup identifiers, 1198

native functions
adding, 1869

native thread support, 30
NATURAL LEFT JOIN, 836
NATURAL LEFT OUTER JOIN, 836
NATURAL RIGHT JOIN, 836
NATURAL RIGHT OUTER JOIN, 836
NCHAR data type, 654
NDB, 1892, 1893
ndb option

perror, 288
NDB storage engine (see MySQL Cluster)

FAQ, 1892
NDB tables

and MySQL root user, 1195
NDB utilities

security issues, 1197
ndb-cluster-connection-pool option

mysqld, 1159
ndb-connectstring option

mysqld, 1160
ndb_config, 1207

ndbcluster option
mysqld, 1160

ndbd (MySQL Cluster)
defined, 1093

(see also data node (MySQL Cluster))
ndb_apply_status table (MySQL Cluster replication), 1228, 1233

(see also MySQL Cluster replication)
ndb_binlog_index table (MySQL Cluster replication), 1226, 1233

(see also MySQL Cluster replication)
ndb_config, 1205

config-file option, 1207
fields option, 1207
host option, 1207
id option, 1207
ndb-connectstring option, 1207
nodeid option, 1207
nodes option, 1207
query option, 1207, 1207
rows option, 1207
type option, 1207
usage option, 1207
version option, 1207

ndb_cpcd, 1205
ndb_delete_all, 1205

transactional option, 1209
ndb_desc, 1205

extra-partition-info option, 1210
ndb_drop_index, 1205
ndb_drop_table, 1205
ndb_error_reporter, 1205
ndb_mgm (MySQL Cluster management node client), 1112
ndb_mgmd (MySQL Cluster)

defined, 1093
(see also management node (MySQL Cluster))

ndb_print_backup_file, 1205
ndb_print_schema_file, 1205
ndb_print_sys_file, 1205
ndb_restore

errors, 1204
ndb_schema table (MySQL Cluster replication), 1229

(see also MySQL Cluster replication)

Index

2364



ndb_select_all, 1205
delimiter option, 1213
descending option, 1213
disk option, 1213
gci option, 1213
header option, 1213
lock option, 1213
nodata option, 1213
order option, 1213
rowid option, 1213
tupscan option, 1213
useHexFormat option, 1213

ndb_select_count, 1205
ndb_show_tables, 1205

loops option, 1215
parsable option, 1215
type option, 1215
unqualified option, 1215

ndb_size.pl, 1205
ndb_size.pl (utility), 1895
ndb_waiter, 1205

no-contact option, 1219
not-started option, 1219
timeout option, 1219

negative values, 596
nested queries, 845
net etiquette, 13
netmask notation

in mysql.user table, 452
NetWare, 65
network ports

and MySQL Cluster, 1194
net_buffer_length variable, 202
New features in MySQL Cluster, 1258
new procedures

adding, 1870
new users

adding, 69, 72
newline (\n), 595, 827
next-key lock, 954, 975, 976
NFS

InnoDB, 943, 994
nice option

mysqld_safe, 182
no matching rows, 1941
no-auto-rehash option

mysql, 199
no-autocommit option

mysqldump, 225
no-beep option

mysql, 199
mysqladmin, 212

no-contact option
ndb_waiter, 1219

no-create-db option
mysqldump, 225

no-create-info option
mysqldump, 226

no-data option
mysqldump, 226

no-debug option
make_win_bin_dist, 190

no-defaults option, 176
mysqld_multi, 186
mysqld_safe, 182

my_print_defaults, 287
no-embedded option

make_win_bin_dist, 190
no-log option

mysqld_multi, 187
no-named-commands option

mysql, 199
no-pager option

mysql, 199
no-symlinks option

myisamchk, 250
no-tee option

mysql, 199
nodata option

ndb_select_all, 1213
node groups (MySQL Cluster), 1094
node identifiers (MySQL Cluster), 1147, 1148
node logs (MySQL Cluster), 1181
nodeid option

ndb_config, 1207
NODERESTART Events (MySQL Cluster), 1185
nodes option

ndb_config, 1207
noindices option

mysqlhotcopy, 269
non-delimited strings, 661
Non-transactional tables, 1940
NoOfDiskPagesToDiskAfterRestartACC

calculating, 1157
NoOfDiskPagesToDiskAfterRestartACC (DEPRECATED), 1138
NoOfDiskPagesToDiskAfterRestartTUP

calculating, 1157
NoOfDiskPagesToDiskAfterRestartTUP (DEPRECATED), 1138
NoOfDiskPagesToDiskDuringRestartACC (DEPRECATED), 1139
NoOfDiskPagesToDiskDuringRestartTUP (DEPRECATED), 1139
NoOfFragmentLogFiles, 1131

calculating, 1157
NoOfReplicas, 1125
NOT

logical, 691
NOT BETWEEN, 688
not equal (!=), 687
not equal (<>), 687
NOT EXISTS

with subqueries, 848
NOT IN, 689
NOT LIKE, 704
NOT NULL

constraint, 26
NOT REGEXP, 704
not-started option

ndb_waiter, 1219
Novell NetWare, 65
NOW(), 729
NOWAIT (START BACKUP command), 1198
NO_AUTO_CREATE_USER SQL mode, 418
NO_AUTO_VALUE_ON_ZERO SQL mode, 418
NO_BACKSLASH_ESCAPES SQL mode, 419
NO_DIR_IN_CREATE SQL mode, 419
NO_FIELD_OPTIONS SQL mode, 419
NO_KEY_OPTIONS SQL mode, 419
NO_TABLE_OPTIONS SQL mode, 419
NO_UNSIGNED_SUBTRACTION SQL mode, 419
NO_ZERO_DATE SQL mode, 420
NO_ZERO_IN_DATE SQL mode, 420

Index

2365



NUL, 594, 827
NULL, 149, 1939

ORDER BY, 533, 833
testing for null, 687, 688, 688, 688, 693

NULL value, 149, 597
NULL values

and AUTO_INCREMENT columns, 1940
and indexes, 800
and TIMESTAMP columns, 1940
vs. empty values, 1939

NULLIF(), 693
number-char-cols option

mysqlslap, 241
number-int-cols option

mysqlslap, 241
number-of-queries option

mysqlslap, 241
numbers, 596
NUMERIC data type, 653
numeric types, 673
numeric-dump-file option

resolve_stack_dump, 288
NumGeometries(), 1315
NumInteriorRings(), 1314
NumPoints(), 1312
NVARCHAR data type, 655

O
obtaining information about partitions, 1285
Obtaining MySQL Cluster, 1108
OCT(), 716
OCTET_LENGTH(), 699
ODBC, 1494
ODBC compatibility, 599, 652, 685, 688, 798, 838
ODirect, 1134
offset option

mysqlbinlog, 263
OLAP, 775
old-passwords option

mysqld, 322, 441
old-style-user-limits option

mysqld, 322
OLD_PASSWORD(), 762
old_server option

mysqlaccess, 260
ON DUPLICATE KEY, 817
one-database option

mysql, 199
one-thread option

mysqld, 322
online location of manual, 1
only-debug option

make_win_bin_dist, 190
only-print option

mysqlslap, 241
ONLY_FULL_GROUP_BY

SQL mode, 777
ONLY_FULL_GROUP_BY SQL mode, 420
OPEN, 1332
Open Source

defined, 4
open tables, 211, 565
open-files-limit option

mysqld, 322

mysqld_safe, 182
OpenGIS, 1297
opening

tables, 565
Opening master dump table

thread state, 586
Opening mysql.ndb_apply_status

thread state, 586
Opening table

thread state, 580
Opening tables

thread state, 580
opens, 210
OpenSSL, 472, 473
open_files_limit variable, 264
operating systems

file-size limits, 1927
supported, 30
Windows versus Unix, 58

operations
arithmetic, 711

operators, 677
assignment, 607
cast, 710, 746
logical, 690
precedence, 684

opt option
mysqldump, 226

optimization
subquery, 537
tips, 548

optimizations, 517, 522
optimize option

mysqlcheck, 217
OPTIMIZE TABLE, 882
optimizer

controlling, 570
optimizing

DISTINCT, 536
filesort, 533
GROUP BY, 535
LEFT JOIN, 525
LIMIT, 540
tables, 497

option files, 172, 458
option modifiers, 172
options

command-line
mysql, 195
mysqladmin, 211

configure, 72
embedded server, 1402
libmysqld, 1402
myisamchk, 247
provided by MySQL, 137
replication, 1070

OR, 160, 522
bitwise, 758
logical, 691

OR Index Merge optimization, 522
Oracle compatibility, 19, 775, 857
ORACLE SQL mode, 422
ORD(), 699
ORDER BY, 146, 785, 833

NULL, 533, 833

Index

2366



order option
ndb_select_all, 1213

order-by-primary option
mysqldump, 226

OUTFILE, 834
out_dir option

comp_err, 189
out_file option

comp_err, 189
Overlaps(), 1318
overview, 1

P
packages

list of, 2335
PAD_CHAR_TO_FULL_LENGTH SQL mode, 420
pager option

mysql, 199
parallel-recover option

myisamchk, 250
parameters

server, 566
parentheses ( and ), 684
parsable option

ndb_show_tables, 1215
PARTITION, 1262
partition management, 1279
partition pruning, 1287
partitioning, 1262

advantages, 1264
and dates, 1265
and foreign keys, 1291
and FULLTEXT indexes, 1291
and key cache, 1291
and server SQL mode, 1290
and subqueries, 1291
and temporary tables, 1291, 1291
by hash, 1269
by key, 1272
by linear hash, 1271
by linear key, 1273
by list, 1268
by range, 1266
concepts, 1262
data type of partitioning key, 1291
enabling, 1263
functions supported in partitioning expressions, 1295
limitations, 1290
operators disallowed in partitioning expressions, 1290
operators supported in partitioning expressions, 1290
optimization, 1286, 1287
resources, 1262
storage engines (limitations), 1294
subpartitioning, 1291
support, 1263
support in MySQL Cluster, 1251
types, 1264

Partitioning
maximum number of partitions, 1291

partitioning information statements, 1285
partitioning keys and primary keys, 1291
partitioning keys and unique keys, 1291
partitions

adding and dropping, 1279

analyzing, 1285
checking, 1285
managing, 1279
modifying, 1279
optimizing, 1285
repairing, 1285
splitting and merging, 1279

PARTITIONS
INFORMATION_SCHEMA table, 1380

partitions (MySQL Cluster), 1094
password

root user, 98
password encryption

reversibility of, 762
password option

mysql, 199
mysqlaccess, 260
mysqladmin, 213
mysqlbinlog, 263
mysqlcheck, 217
mysqldump, 226
mysqld_multi, 187
mysqlhotcopy, 269
mysqlimport, 233
mysqlmanager, 272
mysqlshow, 237
mysqlslap, 242, 242
mysql_explain_log, 282
mysql_setpermission, 284

PASSWORD(), 453, 470, 762, 1929
password-file option

mysqlmanager, 272
passwords

for users, 465
forgotten, 1932
lost, 1932
resetting, 1932
security, 444
setting, 470, 875, 878

PATH environment variable, 68, 132, 170
pattern matching, 149, 705
performance

benchmarks, 506
disk issues, 591
estimating, 517
improving, 555, 1081, 1082

PERIOD_ADD(), 729
PERIOD_DIFF(), 729
Perl

installing, 133
installing on Windows, 134

Perl API, 1492
Perl DBI/DBD

installation problems, 135
permission checks

effect on speed, 507
perror, 168

--ndb option, 1896
help option, 288
ndb option, 288
silent option, 288
verbose option, 288
version option, 289

PHP API, 1490
PI(), 716

Index

2367



pid-file option
mysql.server, 185
mysqld, 323
mysqld_safe, 183
mysqlmanager, 272

Ping
thread command, 578

PIPES_AS_CONCAT SQL mode, 421
plan option

mysqlaccess, 260
plugin API, 1844
PLUGINS

INFORMATION_SCHEMA table, 1379
plugins

adding, 1844
installing, 1846
uninstalling, 1847

POINT data type, 1305
point in time recovery, 492
Point(), 1307
PointFromText(), 1306
PointFromWKB(), 1307
PointN(), 1313
PointOnSurface(), 1315
PolyFromText(), 1306
PolyFromWKB(), 1307
POLYGON data type, 1305
Polygon(), 1308
PolygonFromText(), 1306
PolygonFromWKB(), 1307
port option

mysql, 199
mysqladmin, 213
mysqlbinlog, 263
mysqlcheck, 218
mysqld, 323
mysqldump, 226
mysqld_safe, 183
mysqlhotcopy, 269
mysqlimport, 233
mysqlmanager, 272
mysqlshow, 237
mysqlslap, 242
mysql_setpermission, 284

port-open-timeout option
mysqld, 323

portability, 504
types, 675

porting
to other systems, 1871

PortNumber, 1123, 1146
position option

mysqlbinlog, 263
POSITION(), 699
post-install

multiple servers, 479
post-installation

setup and testing, 88
post-query option

mysqlslap, 242
post-system option

mysqlslap, 242
PostgreSQL compatibility, 20
POSTGRESQL SQL mode, 422
POW(), 716

POWER(), 717
pre-query option

mysqlslap, 242
pre-system option

mysqlslap, 242
precedence

operator, 684
precision

arithmetic, 1394
precision math, 1394
prefix option

configure, 76
Prepare

thread command, 578
PREPARE, 927, 927

XA transactions, 868
preparing

thread state, 580
preserve-schema option

mysqlslap, 242
preview option

mysqlaccess, 260
primary key

constraint, 26
deleting, 785

PRIMARY KEY, 785, 799
primary keys

and partitioning keys, 1291
print-defaults option, 176

mysqlmanager, 272
print-password-line option

mysqlmanager, 272
privilege

changes, 456
privilege information

location, 448
privilege system, 444

described, 444
privileges

access, 444
adding, 466
default, 98
deleting, 468, 870
display, 900
dropping, 468, 870
granting, 871
revoking, 878

problems
access denied errors, 1919
common errors, 1918
compiling, 81
DATE columns, 1938
date values, 661
installing on IBM-AIX, 121
installing on Solaris, 114
installing Perl, 135
linking, 1930
lost connection errors, 1922
ODBC, 1577
reporting, 14
starting the server, 96
table locking, 552
time zone, 1937

PROCEDURE, 834
procedures

Index

2368



adding, 1870
stored, 23, 1322

process management (MySQL Cluster), 1171
process support, 30
processes

display, 904
processing

arguments, 1865
Processing events

thread state, 586
Processing events from schema table

thread state, 586
Processlist

thread command, 578
PROCESSLIST, 904

INFORMATION_SCHEMA table, 1389
program variables

setting, 176
program-development utilities, 168
programs

administrative, 167
client, 166, 1489
crash-me, 504
utility, 167

prompt option
mysql, 199

prompts
meanings, 139

pronunciation
MySQL, 5

protocol option
mysql, 199
mysqladmin, 213
mysqlbinlog, 263
mysqlcheck, 218
mysqldump, 226
mysqlimport, 233
mysqlshow, 237
mysqlslap, 242

PURGE MASTER LOGS, 917
PURGE STALE SESSIONS, 1179
Purging old relay logs

thread state, 580
Python API, 1492

Q
QUARTER(), 729
queries

entering, 138
estimating performance, 517
examples, 156
speed of, 507
Twin Studies project, 162

Query
thread command, 578

Query Cache, 571
query end

thread state, 580
query option

mysqlslap, 242
ndb_config, 1207, 1207

questions, 210
answering, 13

Queueing master event to the relay log

thread state, 585
quick option

myisamchk, 250
mysql, 200
mysqlcheck, 218
mysqldump, 226

quiet option
mysqlhotcopy, 269

Quit
thread command, 578

QUIT command (MySQL Cluster), 1181
QUOTE(), 699
quote-names option

mysqldump, 226
quotes

in strings, 595
quoting, 596
quoting binary data, 595
quoting of identifiers, 597

R
RADIANS(), 717
RAND(), 717
range partitioning, 1266
range partitions

adding and dropping, 1280
managing, 1280

raw option
mysql, 200

re-creating
grant tables, 94

read-from-remote-server option
mysqlbinlog, 263

read-only option
myisamchk, 249
mysqld, 1052

Reading event from the relay log
thread state, 585

Reading from net
thread state, 581

Reading master dump table data
thread state, 586

read_buffer_size myisamchk variable, 248
REAL data type, 652
RealtimeScheduler, 1143
REAL_AS_FLOAT SQL mode, 421
Rebuilding the index on master dump table

thread state, 586
ReceiveBufferMemory, 1146
reconfiguring, 81, 82
reconnect option

mysql, 200
Reconnecting after a failed binlog dump request

thread state, 584
Reconnecting after a failed master event read

thread state, 585
record_log_pos option

mysqlhotcopy, 269
RECOVER

XA transactions, 868
recover option

myisamchk, 251
recovery

from crash, 494

Index

2369



point in time, 492
RedoBuffer, 1140
reducing

data size, 555
references, 786
REFERENTIAL_CONSTRAINTS

INFORMATION_SCHEMA table, 1390
Refresh

thread command, 578
ref_or_null, 524
REGEXP, 704
REGEXP operator, 705
regexp option

mysqlhotcopy, 269
mysql_find_rows, 283

Register Slave
thread command, 578

Registering slave on master
thread state, 584

regular expression syntax, 705
Related(), 1318
relational databases

defined, 4
relative option

mysqladmin, 213
relay-log option

mysqld, 1052
relay-log-index option

mysqld, 1052
relay-log-info-file option

mysqld, 1052
relay-log-purge option

mysqld, 1053
relay-log-space-limit option

mysqld, 1053
release numbers, 31
RELEASE SAVEPOINT, 862
releases

naming scheme, 31
testing, 32
updating, 33

RELEASE_LOCK(), 771
relnotes option

mysqlaccess, 260
remote administration (MySQL Cluster)

and security issues, 1194
remove option

mysqlmanager, 273
Removing duplicates

thread state, 581
removing tmp table

thread state, 581
rename

thread state, 581
RENAME DATABASE, 813
rename result table

thread state, 581
RENAME TABLE, 813
RENAME USER, 877
renaming user accounts, 877
Reopen tables

thread state, 581
reordering

columns, 1943
Repair by sorting

thread state, 581
Repair done

thread state, 581
repair option

mysqlcheck, 218
repair options

myisamchk, 250
REPAIR TABLE, 883
Repair with keycache

thread state, 581
repairing

tables, 495
REPEAT, 1335
REPEAT(), 700
replace, 168
REPLACE, 830
replace option

mysqldump, 226
mysqlimport, 233

REPLACE(), 700
replicas (MySQL Cluster), 1094
replicate-do-db option

mysqld, 1053
replicate-do-table option

mysqld, 1054
replicate-ignore-db option

mysqld, 1054
replicate-ignore-table option

mysqld, 1054
replicate-rewrite-db option

mysqld, 1054
replicate-same-server-id option

mysqld, 1054
replicate-wild-do-table option

mysqld, 1055
replicate-wild-ignore-table option

mysqld, 1055
replication, 1038

circular, 1223
in MySQL Cluster, 1220

(see also MySQL Cluster replication)
replication implementation, 1086
replication limitations, 1070
replication master

thread states, 584
replication masters

statements, 917
replication options, 1070
replication slave

thread states, 584, 585, 585
replication slaves

statements, 919
replication, asynchronous (see MySQL Cluster replication)
REPORT command (MySQL Cluster), 1181
report-host option

mysqld, 1055
report-password option

mysqld, 1055
report-port option

mysqld, 1055
report-user option

mysqld, 1055
reporting

bugs, 14
Connector/NET problems, 1744

Index

2370



Connector/ODBC problems, 1577, 1577
errors, 1, 14

Requesting binlog dump
thread state, 584

REQUIRE GRANT option, 876
reschedule

thread state, 583
reserved words, 605
RESET MASTER, 918
RESET SLAVE, 922
Reset stmt

thread command, 578
reset-slave.pl (see MySQL Cluster replication)
resetmaster option

mysqlhotcopy, 269
resetslave option

mysqlhotcopy, 269
resolveip, 168

help option, 290
silent option, 290
version option, 290

resolve_stack_dump, 168
help option, 288
numeric-dump-file option, 288
symbols-file option, 288
version option, 288

RESTART command (MySQL Cluster), 1180
restarting

the server, 91
RestartOnErrorInsert, 1134
RESTORE TABLE, 884
restoring from backups

in MySQL Cluster replication, 1234
restrictions

events, 2315
server-side cursors, 2317
stored routines, 2315
subqueries, 2317
triggers, 2315
views, 2319

result-file option
mysqlbinlog, 263
mysqldump, 226

retrieving
data from tables, 143

RETURN, 1336
return (\r), 595, 827
return values

UDFs, 1867
REVERSE(), 700
REVOKE, 878
revoking

privileges, 878
rhost option

mysqlaccess, 260
RIGHT JOIN, 836
RIGHT OUTER JOIN, 836
RIGHT(), 700
RLIKE, 704
ROLLBACK, 21, 860

XA transactions, 868
rollback option

mysqlaccess, 260
ROLLBACK TO SAVEPOINT, 862
Rolling back

thread state, 581
rolling restart (MySQL Cluster), 1166
rolling upgrades and downgrades (MySQL Cluster), 1166
ROLLUP, 775
root password, 98
root user

password resetting, 1932
ROUND(), 717
rounding, 1394
rounding errors, 651
ROUTINES

INFORMATION_SCHEMA table, 1375
routines option

mysqldump, 226
ROW, 848
row subqueries, 848
row-level locking, 550
rowid option

ndb_select_all, 1213
rows

counting, 151
deleting, 1941
locking, 23
matching problems, 1941
selecting, 144
sorting, 146

rows option
mysql_find_rows, 283
ndb_config, 1207

ROW_COUNT(), 768
RPAD(), 700
RPM file, 60
RPM Package Manager, 60
RTRIM(), 700
RTS-threads, 1879
run-as-service option

mysqlmanager, 273
running

ANSI mode, 18
batch mode, 155
multiple servers, 479
queries, 138

running configure after prior invocation, 82

S
safe-mode option

mysqld, 323
safe-recover option

myisamchk, 251
safe-show-database option

mysqld, 323, 442
safe-updates option, 207

mysql, 200
safe-user-create option

mysqld, 324, 442
Sakila, 5
SAVEPOINT, 862
Saving state

thread state, 581
scale

arithmetic, 1394
SchedulerExecutionTimer, 1144
SchedulerSpinTimer, 1144
schema

Index

2371



altering, 779
creating, 791
deleting, 810

SCHEMA(), 768
SCHEMATA

INFORMATION_SCHEMA table, 1368
SCHEMA_PRIVILEGES

INFORMATION_SCHEMA table, 1372
SCI (Scalable Coherent Interface) (see MySQL Cluster)
script files, 155
scripts

mysqlbug, 17
mysql_install_db, 93

searching
and case sensitivity, 1937
full-text, 735
MySQL Web pages, 14
two keys, 160

Searching rows for update
thread state, 581

SECOND(), 729
secure-auth option

mysql, 200
mysqld, 324, 442

secure-file-priv option
mysqld, 324, 442

securing a MySQL Cluster, 1196
security

against attackers, 439
and malicious SQL statements, 1195
and NDB utilities, 1197

security system, 444
SEC_TO_TIME(), 730
SELECT

LIMIT, 831
optimizing, 507, 857
Query Cache, 571

SELECT INTO, 1329
SELECT INTO TABLE, 21
SELECT speed, 517
selecting

databases, 141
select_limit variable, 202
SendBufferMemory, 1146
Sending binlog event to slave

thread state, 584
SendLimit, 1148
SendSignalId, 1146, 1147, 1148
SEQUENCE, 160
sequence emulation, 768
sequences, 160
SERIAL, 651
SERIAL DEFAULT VALUE, 665
server

connecting, 137, 451
debugging, 1872
disconnecting, 137
restart, 91
shutdown, 91
signal handling, 423
starting, 90
starting and stopping, 94
starting problems, 96

server variables, 329, 910
server-id option

mysqlbinlog, 263
server-side cursor restrictions, 2317
ServerPort, 1124
servers

multiple, 479
service-startup-timeout option

mysql.server, 185
SESSION_STATUS

INFORMATION_SCHEMA table, 1391
SESSION_USER(), 768
SESSION_VARIABLES

INFORMATION_SCHEMA table, 1391
SET, 884, 1329

AUTOCOMMIT, 884
BIG_TABLES, 884
CHARACTER SET, 618, 884
FOREIGN_KEY_CHECKS, 884
IDENTITY, 884
INSERT_ID, 884
LAST_INSERT_ID, 884
NAMES, 618, 884
ONE_SHOT, 884
size, 675
SQL_AUTO_IS_NULL, 884
SQL_BIG_SELECTS, 884
SQL_BUFFER_SELECT, 884
SQL_LOG_BIN, 884
SQL_LOG_OFF, 884
SQL_LOG_UPDATE, 884
SQL_NOTES, 884
SQL_QUOTE_SHOW_CREATE, 884
SQL_SAFE_UPDATES, 884
SQL_SELECT_LIMIT, 884
SQL_WARNINGS, 884
TIMESTAMP, 884
UNIQUE_CHECKS, 884

SET data type, 656, 671
SET GLOBAL SQL_SLAVE_SKIP_COUNTER, 923
Set option

thread command, 578
SET OPTION, 884
SET PASSWORD, 878
SET PASSWORD statement, 470
SET SQL_LOG_BIN, 918
SET TRANSACTION, 865
set-auto-increment[ option

myisamchk, 251
set-character-set option

myisamchk, 251
set-charset option

mysqlbinlog, 263
mysqldump, 227

set-collation option
myisamchk, 251

setting
passwords, 470

setting passwords, 878
setting program variables, 176
setup

post-installation, 88
thread state, 581

SHA(), 763
SHA1(), 763
shared memory transporter (see MySQL Cluster)
shared-memory option

Index

2372



mysqld, 325
shared-memory-base-name option

mysqld, 325
SharedBufferSize, 1148
SharedGlobalMemory, 1245
shell syntax, 3
ShmKey, 1147
ShmSize, 1147
short-form option

mysqlbinlog, 264
SHOW

in MySQL Cluster management client, 1119
SHOW AUTHORS, 889, 890
SHOW BINARY LOGS, 918
SHOW BINLOG EVENTS, 890, 918
SHOW CHARACTER SET, 889, 890
SHOW COLLATION, 889, 890
SHOW COLUMNS, 889, 891
SHOW command (MySQL Cluster), 1180
SHOW CONTRIBUTORS, 889, 892
SHOW CREATE DATABASE, 889, 892
SHOW CREATE EVENT, 889
SHOW CREATE FUNCTION, 889, 893
SHOW CREATE PROCEDURE, 889, 893
SHOW CREATE SCHEMA, 889, 892
SHOW CREATE TABLE, 889, 893
SHOW CREATE TRIGGER, 889, 894
SHOW CREATE VIEW, 889, 894
SHOW DATABASES, 889, 894
SHOW ENGINE, 889, 895

used with MySQL Cluster, 1188
SHOW ENGINE INNODB STATUS, 895
SHOW ENGINE NDB STATUS, 895, 1188
SHOW ENGINE NDBCLUSTER STATUS, 895, 1188
SHOW ENGINES, 889, 897

used with MySQL Cluster, 1188
SHOW ERRORS, 889, 899

and MySQL Cluster, 1896
SHOW EVENTS, 889
SHOW extensions, 1392
SHOW FIELDS, 889, 892
SHOW FUNCTION CODE, 889, 903
SHOW FUNCTION STATUS, 889, 904
SHOW GRANTS, 889, 900
SHOW INDEX, 889, 901
SHOW INNODB STATUS, 889
SHOW KEYS, 889, 901
SHOW MASTER LOGS, 890, 918
SHOW MASTER STATUS, 890, 918
SHOW OPEN TABLES, 889, 902
SHOW PLUGINS, 889, 903
SHOW PRIVILEGES, 889, 903
SHOW PROCEDURE CODE, 889, 903
SHOW PROCEDURE STATUS, 889, 904
SHOW PROCESSLIST, 889, 904
SHOW SCHEDULER STATUS, 889, 1355
SHOW SCHEMAS, 889, 894
SHOW SLAVE HOSTS, 890, 919
SHOW SLAVE STATUS, 890, 923
SHOW STATUS, 889

used with MySQL Cluster, 1190
SHOW STORAGE ENGINES, 897
SHOW TABLE STATUS, 889
SHOW TABLE TYPES, 889, 897
SHOW TABLES, 889, 909

SHOW TRIGGERS, 889, 909
SHOW VARIABLES, 889

used with MySQL Cluster, 1189
SHOW WARNINGS, 889, 911

and MySQL Cluster, 1896
SHOW with WHERE, 1367, 1392
show-slave-auth-info option

mysqld, 1055
show-table-type option

mysqlshow, 237
show-warnings option

mysql, 200
Shutdown

thread command, 578
SHUTDOWN command (MySQL Cluster), 1181
shutdown_timeout variable, 214
shutting down

the server, 91
Shutting down

thread state, 586
sigint-ignore option

mysql, 200
SIGN(), 718
signals

server response, 423
silent column changes, 809
silent option

myisamchk, 247
myisampack, 254
mysql, 200
mysqladmin, 213
mysqlcheck, 218
mysqld_multi, 187
mysqlimport, 233
mysqlslap, 242
perror, 288
resolveip, 290

SIN(), 718
single quote (\'), 594
single user mode (MySQL Cluster), 1181, 1187

and ndb_restore, 1200
single-transaction option

mysqldump, 227
size of tables, 1927
sizes

display, 650
skip-column-names option

mysql, 200
skip-comments option

mysqldump, 227
skip-concurrent-insert option

mysqld, 325
skip-external-locking option

mysqld, 325
skip-grant-tables option

mysqld, 325, 442
skip-host-cache option

mysqld, 325
skip-innodb option

mysqld, 325
skip-kill-mysqld option

mysqld_safe, 183
skip-line-numbers option

mysql, 200
skip-merge option

Index

2373



mysqld, 442
skip-name-resolve option

mysqld, 325, 442
skip-ndbcluster option

mysqld, 1160
skip-networking option

mysqld, 325, 442
skip-opt option

mysqldump, 227
skip-safemalloc option

mysqld, 326
skip-show-database option

mysqld, 326, 442
skip-slave-start option

mysqld, 1056
skip-stack-trace option

mysqld, 326
skip-symbolic-links option

mysqld, 326
skip-syslog option

mysqld_safe, 183
skip-thread-priority option

mysqld, 326
skip-use-db option

mysql_find_rows, 283
slave option

mysqlslap, 242
slave-load-tmpdir option

mysqld, 1056
slave-net-timeout option

mysqld, 1056
slave-skip-errors option

mysqld, 1056
slave_allow_batching, 1232
slave_compressed_protocol option

mysqld, 1056
Sleep

thread command, 578
sleep option

mysqladmin, 213
SLEEP(), 771
slow queries, 210
slow query log, 436
slow-query-log option

mysqld, 326
SMALLINT data type, 651
socket location

changing, 77
socket option

mysql, 200
mysqladmin, 213
mysqlbinlog, 264
mysqlcheck, 218
mysqld, 327
mysqldump, 227
mysqld_safe, 183
mysqlhotcopy, 269
mysqlimport, 234
mysqlmanager, 273
mysqlshow, 237
mysqlslap, 242
mysql_explain_log, 282
mysql_setpermission, 284

Solaris
installation, 65

Solaris installation problems, 114
Solaris troubleshooting, 83
Solaris x86_64 issues, 979
SOME, 847
sort-index option

myisamchk, 252
sort-records option

myisamchk, 252
sort-recover option

myisamchk, 251
sorting

character sets, 640
data, 146
grant tables, 454, 455
table rows, 146

Sorting for group
thread state, 581

Sorting for order
thread state, 581

Sorting index
thread state, 582

Sorting result
thread state, 582

sort_buffer_size myisamchk variable, 248
sort_key_blocks myisamchk variable, 248
SOUNDEX(), 701
SOUNDS LIKE, 701
source (mysql client command), 156, 206
source distribution

installing, 69
source distributions

on Linux, 109
SPACE(), 701
spassword option

mysqlaccess, 260
Spatial Extensions in MySQL, 1297
speed

compiling, 587
increasing with replication, 1038
inserting, 546
linking, 587
of queries, 507, 517

sporadic-binlog-dump-fail option
mysqld, 325

SQL
defined, 4

SQL mode
ONLY_FULL_GROUP_BY, 777

SQL node (MySQL Cluster)
defined, 1093

SQL nodes (MySQL Cluster), 1171
SQL statements

replication masters, 917
replication slaves, 919

SQL statements relating to MySQL Cluster, 1188
SQL-92

extensions to, 17
sql-mode option

mysqld, 327
SQL_BIG_RESULT, 836
SQL_BUFFER_RESULT, 836
SQL_CACHE, 573, 836
SQL_CALC_FOUND_ROWS, 836
SQL_NO_CACHE, 573, 836
SQL_SMALL_RESULT, 836

Index

2374



sql_yacc.cc problems, 82
SQRT(), 718
square brackets, 650
SRID(), 1311
SSH, 479
SSL, 473
SSL and X509 Basics, 472
SSL command options, 474
ssl option, 475
SSL options

mysql, 200
mysqladmin, 213
mysqlcheck, 218
mysqld, 325, 442
mysqldump, 227
mysqlimport, 234
mysqlshow, 237
mysqlslap, 242

SSL related options, 876
ssl-ca option, 475
ssl-capath option, 475
ssl-cert option, 475
ssl-cipher option, 475
ssl-key option, 476
ssl-verify-server-cert option, 476
standalone option

mysqld, 326
mysqlmanager, 273

Standard SQL
differences from, 21, 877
extensions to, 17, 18

standards compatibility, 17
START

XA transactions, 868
START BACKUP, 1198

NOWAIT, 1198
WAIT COMPLETED, 1198
WAIT STARTED, 1198

START command (MySQL Cluster), 1180
START SLAVE, 926
START TRANSACTION, 860
start-datetime option

mysqlbinlog, 264
start-position option

mysqlbinlog, 264
StartFailureTimeout, 1135
starting

comments, 25
mysqld, 443
the server, 90
the server automatically, 94

Starting many servers, 479
starting slave

thread state, 586
StartPartialTimeout, 1135
StartPartitionedTimeout, 1135
StartPoint(), 1313
STARTUP Events (MySQL Cluster), 1184
startup options

default, 172
startup parameters, 566

mysql, 195
mysqladmin, 211
tuning, 566

start_row option

mysql_find_rows, 283
statefile option

comp_err, 190
statements

GRANT, 466
INSERT, 467
replication masters, 917
replication slaves, 919

statically
compiling, 77

Statistics
thread command, 578

statistics
thread state, 582

STATISTICS
INFORMATION_SCHEMA table, 1371

STATISTICS Events (MySQL Cluster), 1186
stats option

myisam_ftdump, 244
stats_method myisamchk variable, 248
status

tables, 907
status command

results, 210
STATUS command (MySQL Cluster), 1181
status option

mysqlshow, 237
status variables, 402, 906
STD(), 775
STDDEV(), 775
STDDEV_POP(), 775
STDDEV_SAMP(), 775
STOP command (MySQL Cluster), 1180
STOP SLAVE, 927
stop-datetime option

mysqlbinlog, 264
stop-position option

mysqlbinlog, 264
StopOnError, 1133
stopping

the server, 94
stopword list

user-defined, 744
storage engine

ARCHIVE, 1008
storage engines

choosing, 930
storage of data, 555
storage requirements

data type, 672
storage space

minimizing, 555
stored functions

and INSERT DELAYED, 819
stored procedures, 1322
stored procedures and triggers

defined, 23
stored routine restrictions, 2315
stored routines

LAST_INSERT_ID(), 1336
storing row into queue

thread state, 583
STRAIGHT_JOIN, 836, 836
STRCMP(), 705
STRICT SQL mode, 417

Index

2375



STRICT_ALL_TABLES SQL mode, 421
STRICT_TRANS_TABLES SQL mode, 417, 421
string collating, 643
string comparison functions, 703
string comparisons

case sensitivity, 703
string functions, 693
string literal introducer, 594, 616
string types, 666
StringMemory, 1127
strings

defined, 594
escaping characters, 594
non-delimited, 661

striping
defined, 591

STR_TO_DATE(), 730
SUBDATE(), 730
subpartitioning, 1273
subpartitions, 1273
subqueries, 845

correlated, 849
errors, 851
rewriting as joins, 854
with ALL, 847
with ANY, IN, SOME, 847
with EXISTS, 848
with NOT EXISTS, 848
with ROW, 848

subquery, 845
subquery optimization, 537
subquery restrictions, 2317
subselects, 845
SUBSTR(), 701
SUBSTRING(), 701
SUBSTRING_INDEX(), 702
SUBTIME(), 730
subtraction (-), 711
suffix option

mysqlhotcopy, 269
SUM(), 775
SUM(DISTINCT), 775
superuser, 98
superuser option

mysqlaccess, 260
support

for operating systems, 30
suppression

default values, 26
Sybase compatibility, 859
symbolic links, 591, 593
symbolic-links option

mysqld, 326
symbols-file option

resolve_stack_dump, 288
SymDifference(), 1316
Syncing ndb table schema operation and binlog

thread state, 586
syntax

regular expression, 705
SYSDATE(), 731
sysdate-is-now option

mysqld, 327
syslog option

mysqld_safe, 183

syslog-tag option
mysqld_safe, 183

system
privilege, 444
security, 437

System lock
thread state, 582

system optimization, 566
system table, 509
system variables, 329, 393, 910
SYSTEM_USER(), 768

T
tab (\t), 595, 827
tab option

mysqldump, 227
table

changing, 781, 785, 1943
deleting, 812

table aliases, 832
table cache, 565
Table Dump

thread command, 578
table is full, 886, 1927
Table lock

thread state, 582
table names

case sensitivity, 599
case-sensitivity, 19

table option
mysql, 200
mysqlaccess, 260

table scans
avoiding, 541

table types
choosing, 930

table-level locking, 550
tables

BLACKHOLE, 1010
changing column order, 1943
checking, 249
closing, 565
compressed format, 940
constant, 509, 518
copying, 808
counting rows, 151
creating, 141
CSV, 1009
defragment, 939
defragmenting, 503, 882
deleting rows, 1941
displaying status, 907
dynamic, 939
error checking, 495
EXAMPLE, 1002
FEDERATED, 1003
flush, 210
fragmentation, 882
grant, 456
HEAP, 1001
host, 456
improving performance, 555
information, 498
information about, 154

Index

2376



InnoDB, 942
loading data, 143
maintenance schedule, 502
maximum size, 1927
MEMORY, 1001
MERGE, 997
merging, 997
multiple, 153
MyISAM, 935
names, 597
open, 565
opening, 565
optimizing, 497
partitioning, 997
repairing, 495
retrieving data, 143
selecting columns, 145
selecting rows, 144
sorting rows, 146
symbolic links, 592
system, 509
too many, 566
unique ID for last row, 1488
updating, 21

TABLES
INFORMATION_SCHEMA table, 1369

tables option
mysqlcheck, 218
mysqldump, 228

table_open_cache, 565
TABLE_PRIVILEGES

INFORMATION_SCHEMA table, 1372
TAN(), 718
tar

problems on Solaris, 65, 114
tc-heuristic-recover option

mysqld, 328
Tcl API, 1493
tcp-ip option

mysqld_multi, 187
TCP/IP, 52, 56
tee option

mysql, 200
temp-pool option

mysqld, 328
temporary file

write access, 93
temporary tables

internal, 590
problems, 1944

terminal monitor
defined, 137

test option
myisampack, 254

testing
connection to the server, 452
installation, 90
of MySQL releases, 32
post-installation, 88

testing mysqld
mysqltest, 1843

TEXT
size, 674

TEXT columns
default values, 669

indexing, 556, 800
TEXT data type, 655, 668
text files

importing, 206
thread cache, 588
thread command

Binlog Dump, 577
Change user, 577
Close stmt, 577
Connect, 577
Connect Out, 577
Create DB, 577
Daemon, 577
Debug, 577
Delayed insert, 577
Drop DB, 577
Error, 577
Execute, 577
Fetch, 577
Field List, 577
Init DB, 577
Kill, 577
Long Data, 578
Ping, 578
Prepare, 578
Processlist, 578
Query, 578
Quit, 578
Refresh, 578
Register Slave, 578
Reset stmt, 578
Set option, 578
Shutdown, 578
Sleep, 578
Statistics, 578
Table Dump, 578
Time, 578

thread commands, 577
thread packages

differences between, 1880
thread state

After create, 579
allocating local table, 583
Analyzing, 579
Changing master, 585
Checking master version, 584
Checking table, 579
cleaning up, 579
Clearing, 587
closing tables, 579
Committing events to binlog, 586
Connecting to master, 584
converting HEAP to MyISAM, 579
copy to tmp table, 579
Copying to group table, 579
Copying to tmp table, 579
Copying to tmp table on disk, 579
Creating delayed handler, 583
Creating index, 579
Creating sort index, 579
creating table, 579
Creating table from master dump, 586
Creating tmp table, 579
deleting from main table, 579
deleting from reference tables, 579

Index

2377



discard_or_import_tablespace, 580
end, 580
Execution of init_command, 580
Finished reading one binlog; switching to next binlog, 584
Flushing tables, 580
freeing items, 580
FULLTEXT initialization, 580
got handler lock, 583
got old table, 583
Has read all relay log; waiting for the slave I/O thread to update it,
585
Has sent all binlog to slave; waiting for binlog to be updated, 584
init, 580
Initialized, 587
insert, 583
Killed, 580
Killing slave, 586
Locked, 580
logging slow query, 580
login, 580
Making temp file, 585
Opening master dump table, 586
Opening mysql.ndb_apply_status, 586
Opening table, 580
Opening tables, 580
preparing, 580
Processing events, 586
Processing events from schema table, 586
Purging old relay logs, 580
query end, 580
Queueing master event to the relay log, 585
Reading event from the relay log, 585
Reading from net, 581
Reading master dump table data, 586
Rebuilding the index on master dump table, 586
Reconnecting after a failed binlog dump request, 584
Reconnecting after a failed master event read, 585
Registering slave on master, 584
Removing duplicates, 581
removing tmp table, 581
rename, 581
rename result table, 581
Reopen tables, 581
Repair by sorting, 581
Repair done, 581
Repair with keycache, 581
Requesting binlog dump, 584
reschedule, 583
Rolling back, 581
Saving state, 581
Searching rows for update, 581
Sending binlog event to slave, 584
setup, 581
Shutting down, 586
Sorting for group, 581
Sorting for order, 581
Sorting index, 582
Sorting result, 582
starting slave, 586
statistics, 582
storing row into queue, 583
Syncing ndb table schema operation and binlog, 586
System lock, 582
Table lock, 582
update, 583

Updating, 582
updating main table, 582
updating reference tables, 582
upgrading lock, 583
User lock, 582
waiting for delay_list, 583
Waiting for event from ndbcluster, 586
Waiting for first event from ndbcluster, 586
waiting for handler insert, 583
waiting for handler lock, 583
waiting for handler open, 583
Waiting for INSERT, 583
Waiting for master to send event, 584
Waiting for master update, 584
Waiting for ndbcluster binlog update to reach current position, 586
Waiting for ndbcluster to start, 586
Waiting for next activation, 587
Waiting for scheduler to stop, 587
Waiting for schema epoch, 586
Waiting for slave mutex on exit, 585, 585
Waiting for table, 582
Waiting for tables, 582
Waiting for the next event in relay log, 585
Waiting for the slave SQL thread to free enough relay log space, 585
Waiting on cond, 582
Waiting on empty queue, 587
Waiting to finalize termination, 584
Waiting to reconnect after a failed binlog dump request, 584
Waiting to reconnect after a failed master event read, 585
Writing to net, 582

thread states
delayed inserts, 582
event scheduler, 586
general, 578
MySQL Cluster, 586
replication master, 584
replication slave, 584, 585, 585

thread support, 30
non-native, 84

threaded clients, 1489
threads, 210, 904, 1843

display, 904
RTS, 1879

Time
thread command, 578

TIME data type, 653, 664
time types, 673
time zone problems, 1937
TIME(), 731
TimeBetweenEpochs, 1136
TimeBetweenEpochsTimeout, 1137
TimeBetweenGlobalCheckpoints, 1136
TimeBetweenInactiveTransactionAbortCheck, 1137
TimeBetweenLocalCheckpoints, 1136
TimeBetweenWatchDogCheck, 1135
TimeBetweenWatchDogCheckInitial, 1135
TIMEDIFF(), 731
timeout, 346, 769, 821

connect_timeout variable, 202, 213
shutdown_timeout variable, 214

timeout option
ndb_waiter, 1219

TIMESTAMP
and NULL values, 1940

TIMESTAMP data type, 653, 660

Index

2378



TIMESTAMP(), 731
TIMESTAMPADD(), 731
TIMESTAMPDIFF(), 732
timezone option

mysqld_safe, 183
TIME_FORMAT(), 732
TIME_TO_SEC(), 732
TINYBLOB data type, 655
TINYINT data type, 650
TINYTEXT data type, 655
tips

optimization, 548
TMPDIR environment variable, 93, 132
tmpdir option

myisamchk, 251
myisampack, 254
mysqld, 328
mysqlhotcopy, 269

to-last-log option
mysqlbinlog, 264

TODO
symlinks, 593

tools
list of, 2335

Touches(), 1318
TO_DAYS(), 732
trace DBI method, 1875
trace files (MySQL Cluster), 1173
TRADITIONAL SQL mode, 417, 422
transaction-isolation option

mysqld, 328
transaction-safe tables, 21, 942
transactional option

ndb_delete_all, 1209
TransactionBufferMemory, 1130
TransactionDeadlockDetectionTimeout (MySQL Cluster configuration
parameter), 1137
TransactionInactiveTimeout (MySQL Cluster configuration parameter),
1137
transactions

support, 21, 942
Translators

list of, 2332
trigger restrictions, 2315
trigger, creating, 1341
trigger, dropping, 1344
triggers, 23, 909, 1341

and INSERT DELAYED, 819
LAST_INSERT_ID(), 1336

TRIGGERS
INFORMATION_SCHEMA table, 1377

triggers option
mysqldump, 228

TRIM(), 702
troubleshooting

FreeBSD, 83
Solaris, 83

TRUE, 596, 597
testing for, 687, 688

TRUNCATE, 854
and MySQL Cluster, 1251

TRUNCATE(), 719
tupscan option

ndb_select_all, 1213
tutorial, 137

Twin Studies
queries, 162

type conversions, 685, 686
type option

ndb_config, 1207
ndb_show_tables, 1215

types
column, 650
columns, 675
data, 650
date, 673
Date and Time, 659
numeric, 673
of tables, 930
portability, 675
strings, 666
time, 673

typographical conventions, 2
TZ environment variable, 132, 1937
tz-utc option

mysqldump, 228

U
UCASE(), 702
UCS-2, 611
UDFs, 1860, 1861

compiling, 1867
defined, 1859
return values, 1867

ulimit, 1930
UMASK environment variable, 132, 1931
UMASK_DIR environment variable, 132, 1931
unary minus (-), 711
unbuffered option

mysql, 201
UNCOMPRESS(), 763
UNCOMPRESSED_LENGTH(), 763
UndoDataBuffer, 1140
UndoIndexBuffer, 1139
UNHEX(), 702
Unicode, 611
Unicode Collation Algorithm, 632
UNINSTALL PLUGIN, 1847
uninstalling plugins, 1847
UNION, 160, 843
Union(), 1316
UNIQUE, 785
unique ID, 1488
unique key

constraint, 26
unique keys

and partitioning keys, 1291
Unix, 1494, 1578
UNIX_TIMESTAMP(), 732
UNKNOWN

testing for, 687, 688
unloading

tables, 143
UNLOCK TABLES, 862
unnamed views, 849
unpack option

myisamchk, 251
unqualified option

ndb_show_tables, 1215

Index

2379



UNTIL, 1335
update

thread state, 583
UPDATE, 855
update-state option

myisamchk, 250
UpdateXML(), 751
updating

releases of MySQL, 33
tables, 21

Updating
thread state, 582

updating main table
thread state, 582

updating reference tables
thread state, 582

upgrades
MySQL Cluster, 1166, 1166, 1168

upgrades and downgrades (MySQL Cluster)
compatibility between versions, 1168

upgrading, 100
different architecture, 106
to &current-series;, 101

upgrading lock
thread state, 583

UPPER(), 702
uptime, 210
URLs for downloading MySQL, 39
usage option

ndb_config, 1207
USE, 859
USE INDEX, 842
USE KEY, 842
use-frm option

mysqlcheck, 218
use-manager option

mysql.server, 185
use-mysqld_safe option

mysql.server, 185
use-threads option

mysqlimport, 234
mysqlslap, 242

useHexFormat option
ndb_select_all, 1213

user accounts
creating, 870
renaming, 877

USER environment variable, 132, 452
User lock

thread state, 582
user option

mysql, 201
mysql.server, 185
mysqlaccess, 260
mysqladmin, 213
mysqlbinlog, 264
mysqlcheck, 218
mysqld, 329
mysqldump, 228
mysqld_multi, 187
mysqld_safe, 183
mysqlhotcopy, 269
mysqlimport, 234
mysqlmanager, 273
mysqlshow, 237

mysqlslap, 243
mysql_explain_log, 282
mysql_setpermission, 284
mysql_upgrade, 194

user privileges
adding, 466
deleting, 468, 870
dropping, 468, 870

user table
sorting, 454

user variables, 607
USER(), 769
user-defined functions

adding, 1859, 1861
User-defined functions, 1860, 1861
username option

mysqlmanager, 273
usernames

and passwords, 465
users

adding, 69, 72
deleting, 468, 870
root, 98

USER_PRIVILEGES
INFORMATION_SCHEMA table, 1371

uses
of MySQL, 505

using multiple disks to start data, 593
UTC_DATE(), 733
UTC_TIME(), 733
UTC_TIMESTAMP(), 733
UTF-8, 611
utilities

program-development, 168
utility programs, 167
UUID(), 771

V
valid numbers

examples, 596
VALUES(), 772
VARBINARY data type, 655, 667
VARCHAR

size, 674
VARCHAR data type, 655, 666
VARCHARACTER data type, 655
variables

environment, 169
mysqld, 567
server, 329, 910
status, 402, 906
system, 329, 393, 910
user, 607

VARIANCE(), 775
VAR_POP(), 775
VAR_SAMP(), 775
verbose option

myisamchk, 247
myisampack, 255
myisam_ftdump, 244
mysql, 201
mysqladmin, 213
mysqlcheck, 218
mysqldump, 228

Index

2380



mysqld_multi, 187
mysqlimport, 234
mysqlshow, 237
mysqlslap, 243
mysql_upgrade, 194
mysql_waitpid, 284
my_print_defaults, 287
perror, 288

version
choosing, 31
latest, 39

version option
comp_err, 190
myisamchk, 248
myisampack, 255
mysql, 201
mysqlaccess, 260
mysqladmin, 213
mysqlbinlog, 264
mysqlcheck, 218
mysqld, 329
mysqldump, 228
mysqld_multi, 187
mysqlimport, 234
mysqlmanager, 273
mysqlshow, 237
mysqlslap, 243
mysql_waitpid, 284
my_print_defaults, 287
ndb_config, 1207
perror, 289
resolveip, 290
resolve_stack_dump, 288

VERSION(), 769
vertical option

mysql, 201
mysqladmin, 213

Vietnamese, 1900, 1909
view restrictions, 2319
views, 24, 1360, 1360

updatable, 24, 1360
VIEWS

INFORMATION_SCHEMA table, 1376
Views

limitations, 2320
privileges, 2320
problems, 2320

virtual memory
problems while compiling, 82

Vision, 1573
Visual Objects, 1571
Visual Studio, 85
Visual Studio Plugin, 1494

W
WAIT COMPLETED (START BACKUP command), 1198
wait option

myisamchk, 248
myisampack, 255
mysql, 201
mysqladmin, 213

WAIT STARTED (START BACKUP command), 1198
wait-timeout option

mysqlmanager, 273

waiting for delay_list
thread state, 583

Waiting for event from ndbcluster
thread state, 586

Waiting for first event from ndbcluster
thread state, 586

waiting for handler insert
thread state, 583

waiting for handler lock
thread state, 583

waiting for handler open
thread state, 583

Waiting for INSERT
thread state, 583

Waiting for master to send event
thread state, 584

Waiting for master update
thread state, 584

Waiting for ndbcluster binlog update to reach current position
thread state, 586

Waiting for ndbcluster to start
thread state, 586

Waiting for next activation
thread state, 587

Waiting for scheduler to stop
thread state, 587

Waiting for schema epoch
thread state, 586

Waiting for slave mutex on exit
thread state, 585, 585

Waiting for table
thread state, 582

Waiting for tables
thread state, 582

Waiting for the next event in relay log
thread state, 585

Waiting for the slave SQL thread to free enough relay log space
thread state, 585

Waiting on cond
thread state, 582

Waiting on empty queue
thread state, 587

Waiting to finalize termination
thread state, 584

Waiting to reconnect after a failed binlog dump request
thread state, 584

Waiting to reconnect after a failed master event read
thread state, 585

WEEK(), 733
WEEKDAY(), 734
WEEKOFYEAR(), 734
Well-Known Binary format, 1304
Well-Known Text format, 1303
WHERE, 517

with SHOW, 1367, 1392
where option

mysqldump, 228
WHILE, 1335
widths

display, 650
Wildcard character (%), 595
Wildcard character (_), 595
wildcards

and LIKE, 558
in mysql.columns_priv table, 455

Index

2381



in mysql.db table, 455
in mysql.host table, 455
in mysql.procs_priv table, 455
in mysql.tables_priv table, 455
in mysql.user table, 452

Windows, 1494, 1578
compiling on, 88
open issues, 60
upgrading, 58
versus Unix, 58

with-big-tables option, 72
configure, 78

with-debug option
configure, 78

with-embedded-server option
configure, 76

with-extra-charsets option
configure, 78

with-unix-socket-path option
configure, 77

Within(), 1318
without-server option, 72

configure, 76
WKB format, 1304
WKT format, 1303
wrappers

Eiffel, 1493
write access

tmp, 93
write-binlog option

mysqlcheck, 264
write_buffer_size myisamchk variable, 248
Writing to net

thread state, 582

X
X(), 1312
X509/Certificate, 472
XA BEGIN, 868
XA COMMIT, 868
XA PREPARE, 868
XA RECOVER, 868
XA ROLLBACK, 868
XA START, 868
XA transactions, 866

transaction identifiers, 868
xid

XA transaction identifier, 868
xml option

mysql, 201
mysqldump, 228

XOR
bitwise, 758
logical, 691

Y
Y(), 1312
yaSSL, 472, 473
Year 2000 compliance, 665
Year 2000 issues, 665
YEAR data type, 653, 665
YEAR(), 734
YEARWEEK(), 735
Yen sign (Japanese), 1900, 1903

Index

2382


	MySQL 5.1 Reference Manual
	Table of Contents
	Preface
	Chapter 1. General Information
	1.1. About This Manual
	1.2. Conventions Used in This Manual
	1.3. Overview of MySQL AB
	1.4. Overview of the MySQL Database Management System
	1.4.1. What is MySQL?
	1.4.2. History of MySQL
	1.4.3. The Main Features of MySQL

	1.5. MySQL Development Roadmap
	1.5.1. What's New in MySQL 5.1
	1.5.2. What's Planned for MySQL 6.0

	1.6. MySQL Information Sources
	1.6.1. MySQL Mailing Lists
	1.6.1.1. Guidelines for Using the Mailing Lists

	1.6.2. MySQL Community Support at the MySQL Forums
	1.6.3. MySQL Community Support on Internet Relay Chat (IRC)
	1.6.4. MySQL Enterprise

	1.7. How to Report Bugs or Problems
	1.8. MySQL Standards Compliance
	1.8.1. What Standards MySQL Follows
	1.8.2. Selecting SQL Modes
	1.8.3. Running MySQL in ANSI Mode
	1.8.4. MySQL Extensions to Standard SQL
	1.8.5. MySQL Differences from Standard SQL
	1.8.5.1. SELECT INTO TABLE
	1.8.5.2. Transactions and Atomic Operations
	1.8.5.3. Stored Routines and Triggers
	1.8.5.4. Foreign Keys
	1.8.5.5. Views
	1.8.5.6. '--' as the Start of a Comment

	1.8.6. How MySQL Deals with Constraints
	1.8.6.1. PRIMARY KEY and UNIQUE Index Constraints
	1.8.6.2. Constraints on Invalid Data
	1.8.6.3. ENUM and SET Constraints



	Chapter 2. Installing and Upgrading MySQL
	2.1. General Installation Issues
	2.1.1. Operating Systems Supported by MySQL Community Server
	2.1.2. Choosing Which MySQL Distribution to Install
	2.1.2.1. Choosing Which Version of MySQL to Install
	2.1.2.2. Choosing a Distribution Format
	2.1.2.3. How and When Updates Are Released
	2.1.2.4. MySQL Binaries Compiled by MySQL AB

	2.1.3. How to Get MySQL
	2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG
	2.1.4.1. Verifying the MD5 Checksum
	2.1.4.2. Signature Checking Using GnuPG
	2.1.4.3. Signature Checking Using RPM

	2.1.5. Installation Layouts

	2.2. Standard MySQL Installation Using a Binary Distribution
	2.3. Installing MySQL on Windows
	2.3.1. Choosing An Installation Package
	2.3.2. Installing MySQL with the Automated Installer
	2.3.3. Using the MySQL Installation Wizard
	2.3.3.1. Introduction to the Installation Wizard
	2.3.3.2. Downloading and Starting the MySQL Installation Wizard
	2.3.3.3. Choosing an Install Type
	2.3.3.4. The Custom Install Dialog
	2.3.3.5. The Confirmation Dialog
	2.3.3.6. Changes Made by MySQL Installation Wizard
	2.3.3.7. Upgrading MySQL with the Installation Wizard

	2.3.4. Using the Configuration Wizard
	2.3.4.1. Introduction to the Configuration Wizard
	2.3.4.2. Starting the MySQL Configuration Wizard
	2.3.4.3. Choosing a Maintenance Option
	2.3.4.4. Choosing a Configuration Type
	2.3.4.5. The Server Type Dialog
	2.3.4.6. The Database Usage Dialog
	2.3.4.7. The InnoDB Tablespace Dialog
	2.3.4.8. The Concurrent Connections Dialog
	2.3.4.9. The Networking and Strict Mode Options Dialog
	2.3.4.10. The Character Set Dialog
	2.3.4.11. The Service Options Dialog
	2.3.4.12. The Security Options Dialog
	2.3.4.13. The Confirmation Dialog
	2.3.4.14. The Location of the my.ini File
	2.3.4.15. Editing the my.ini File

	2.3.5. Installing MySQL from a Noinstall Zip Archive
	2.3.6. Extracting the Install Archive
	2.3.7. Creating an Option File
	2.3.8. Selecting a MySQL Server Type
	2.3.9. Starting the Server for the First Time
	2.3.10. Starting MySQL from the Windows Command Line
	2.3.11. Starting MySQL as a Windows Service
	2.3.12. Testing The MySQL Installation
	2.3.13. Troubleshooting a MySQL Installation Under Windows
	2.3.14. Upgrading MySQL on Windows
	2.3.15. MySQL on Windows Compared to MySQL on Unix

	2.4. Installing MySQL from RPM Packages on Linux
	2.5. Installing MySQL on Mac OS X
	2.6. Installing MySQL on Solaris
	2.7. Installing MySQL on NetWare
	2.8. Installing MySQL from tar.gz Packages on Other Unix-Like Systems
	2.9. MySQL Installation Using a Source Distribution
	2.9.1. Source Installation Overview
	2.9.2. Typical configure Options
	2.9.3. Installing from the Development Source Tree
	2.9.4. Dealing with Problems Compiling MySQL
	2.9.5. MIT-pthreads Notes
	2.9.6. Installing MySQL from Source on Windows
	2.9.6.1. Building MySQL from Source Using CMake and Visual Studio

	2.9.7. Compiling MySQL Clients on Windows

	2.10. Post-Installation Setup and Testing
	2.10.1. Windows Post-Installation Procedures
	2.10.2. Unix Post-Installation Procedures
	2.10.2.1. Problems Running mysql_install_db
	2.10.2.2. Starting and Stopping MySQL Automatically
	2.10.2.3. Starting and Troubleshooting the MySQL Server

	2.10.3. Securing the Initial MySQL Accounts

	2.11. Upgrading MySQL
	2.11.1. Upgrading from MySQL 5.0 to 5.1
	2.11.2. Copying MySQL Databases to Another Machine

	2.12. Downgrading MySQL
	2.12.1. Downgrading to MySQL 5.0

	2.13. Operating System-Specific Notes
	2.13.1. Linux Notes
	2.13.1.1. Linux Operating System Notes
	2.13.1.2. Linux Binary Distribution Notes
	2.13.1.3. Linux Source Distribution Notes
	2.13.1.4. Linux Post-Installation Notes
	2.13.1.5. Linux x86 Notes
	2.13.1.6. Linux SPARC Notes
	2.13.1.7. Linux Alpha Notes
	2.13.1.8. Linux PowerPC Notes
	2.13.1.9. Linux MIPS Notes
	2.13.1.10. Linux IA-64 Notes
	2.13.1.11. SELinux Notes

	2.13.2. Mac OS X Notes
	2.13.2.1. Mac OS X 10.x (Darwin)
	2.13.2.2. Mac OS X Server 1.2 (Rhapsody)

	2.13.3. Solaris Notes
	2.13.3.1. Solaris 2.7/2.8 Notes
	2.13.3.2. Solaris x86 Notes

	2.13.4. BSD Notes
	2.13.4.1. FreeBSD Notes
	2.13.4.2. NetBSD Notes
	2.13.4.3. OpenBSD 2.5 Notes
	2.13.4.4. BSD/OS Version 2.x Notes
	2.13.4.5. BSD/OS Version 3.x Notes
	2.13.4.6. BSD/OS Version 4.x Notes

	2.13.5. Other Unix Notes
	2.13.5.1. HP-UX Version 10.20 Notes
	2.13.5.2. HP-UX Version 11.x Notes
	2.13.5.3. IBM-AIX notes
	2.13.5.4. SunOS 4 Notes
	2.13.5.5. Alpha-DEC-UNIX Notes (Tru64)
	2.13.5.6. Alpha-DEC-OSF/1 Notes
	2.13.5.7. SGI Irix Notes
	2.13.5.8. SCO UNIX and OpenServer 5.0.x Notes
	2.13.5.9. SCO OpenServer 6.0.x Notes
	2.13.5.10. SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes


	2.14. Environment Variables
	2.15. Perl Installation Notes
	2.15.1. Installing Perl on Unix
	2.15.2. Installing ActiveState Perl on Windows
	2.15.3. Problems Using the Perl DBI/DBD Interface


	Chapter 3. Tutorial
	3.1. Connecting to and Disconnecting from the Server
	3.2. Entering Queries
	3.3. Creating and Using a Database
	3.3.1. Creating and Selecting a Database
	3.3.2. Creating a Table
	3.3.3. Loading Data into a Table
	3.3.4. Retrieving Information from a Table
	3.3.4.1. Selecting All Data
	3.3.4.2. Selecting Particular Rows
	3.3.4.3. Selecting Particular Columns
	3.3.4.4. Sorting Rows
	3.3.4.5. Date Calculations
	3.3.4.6. Working with NULL Values
	3.3.4.7. Pattern Matching
	3.3.4.8. Counting Rows
	3.3.4.9. Using More Than one Table


	3.4. Getting Information About Databases and Tables
	3.5. Using mysql in Batch Mode
	3.6. Examples of Common Queries
	3.6.1. The Maximum Value for a Column
	3.6.2. The Row Holding the Maximum of a Certain Column
	3.6.3. Maximum of Column per Group
	3.6.4. The Rows Holding the Group-wise Maximum of a Certain Field
	3.6.5. Using User-Defined Variables
	3.6.6. Using Foreign Keys
	3.6.7. Searching on Two Keys
	3.6.8. Calculating Visits Per Day
	3.6.9. Using AUTO_INCREMENT

	3.7. Queries from the Twin Project
	3.7.1. Find All Non-distributed Twins
	3.7.2. Show a Table of Twin Pair Status

	3.8. Using MySQL with Apache

	Chapter 4. MySQL Programs
	4.1. Overview of MySQL Programs
	4.2. Using MySQL Programs
	4.2.1. Invoking MySQL Programs
	4.2.2. Specifying Program Options
	4.2.2.1. Using Options on the Command Line
	4.2.2.1.1. Program Option Modifiers

	4.2.2.2. Using Option Files
	4.2.2.2.1. Command-Line Options that Affect Option-File Handling
	4.2.2.2.2. Preconfigured Option Files

	4.2.2.3. Using Options to Set Program Variables
	4.2.2.4. Option Defaults, Options Expecting Values, and the = Sign

	4.2.3. Setting Environment Variables

	4.3. MySQL Server and Server-Startup Programs
	4.3.1. mysqld — The MySQL Server
	4.3.2. mysqld_safe — MySQL Server Startup Script
	4.3.3. mysql.server — MySQL Server Startup Script
	4.3.4. mysqld_multi — Manage Multiple MySQL Servers

	4.4. MySQL Installation-Related Programs
	4.4.1. comp_err — Compile MySQL Error Message File
	4.4.2. make_win_bin_dist — Package MySQL Distribution as ZIP Archive
	4.4.3. mysqlbug — Generate Bug Report
	4.4.4. mysql_fix_privilege_tables — Upgrade MySQL System Tables
	4.4.5. mysql_install_db — Initialize MySQL Data Directory
	4.4.6. mysql_secure_installation — Improve MySQL Installation Security
	4.4.7. mysql_tzinfo_to_sql — Load the Time Zone Tables
	4.4.8. mysql_upgrade — Check Tables for MySQL Upgrade

	4.5. MySQL Client Programs
	4.5.1. mysql — The MySQL Command-Line Tool
	4.5.1.1. mysql Options
	4.5.1.2. mysql Commands
	4.5.1.3. mysql Server-Side Help
	4.5.1.4. Executing SQL Statements from a Text File
	4.5.1.5. mysql Tips
	4.5.1.5.1. Displaying Query Results Vertically
	4.5.1.5.2. Using the --safe-updates Option
	4.5.1.5.3. Disabling mysql Auto-Reconnect


	4.5.2. mysqladmin — Client for Administering a MySQL Server
	4.5.3. mysqlcheck — A Table Maintenance and Repair Program
	4.5.4. mysqldump — A Database Backup Program
	4.5.5. mysqlimport — A Data Import Program
	4.5.6. mysqlshow — Display Database, Table, and Column Information
	4.5.7. mysqlslap — Load Emulation Client

	4.6. MySQL Administrative and Utility Programs
	4.6.1. innochecksum — Offline InnoDB File Checksum Utility
	4.6.2. myisam_ftdump — Display Full-Text Index information
	4.6.3. myisamchk — MyISAM Table-Maintenance Utility
	4.6.3.1. myisamchk General Options
	4.6.3.2. myisamchk Check Options
	4.6.3.3. myisamchk Repair Options
	4.6.3.4. Other myisamchk Options
	4.6.3.5. myisamchk Memory Usage

	4.6.4. myisamlog — Display MyISAM Log File Contents
	4.6.5. myisampack — Generate Compressed, Read-Only MyISAM Tables
	4.6.6. mysqlaccess — Client for Checking Access Privileges
	4.6.7. mysqlbinlog — Utility for Processing Binary Log Files
	4.6.8. mysqlhotcopy — A Database Backup Program
	4.6.9. mysqlmanager — The MySQL Instance Manager
	4.6.9.1. MySQL Instance Manager Command Options
	4.6.9.2. MySQL Instance Manager Configuration Files
	4.6.9.3. Starting the MySQL Server with MySQL Instance Manager
	4.6.9.4. Instance Manager User and Password Management
	4.6.9.5. MySQL Server Instance Status Monitoring
	4.6.9.6. Connecting to MySQL Instance Manager
	4.6.9.7. MySQL Instance Manager Commands

	4.6.10. mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
	4.6.11. mysql_find_rows — Extract SQL Statements from Files
	4.6.12. mysql_fix_extensions — Normalize Table Filename Extensions
	4.6.13. mysql_setpermission — Interactively Set Permissions in Grant Tables
	4.6.14. mysql_waitpid — Kill Process and Wait for Its Termination
	4.6.15. mysql_zap — Kill Processes That Match a Pattern

	4.7. MySQL Program Development Utilities
	4.7.1. msql2mysql — Convert mSQL Programs for Use with MySQL
	4.7.2. mysql_config — Get Compile Options for Compiling Clients
	4.7.3. my_print_defaults — Display Options from Option Files
	4.7.4. resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

	4.8. Miscellaneous Programs
	4.8.1. perror — Explain Error Codes
	4.8.2. replace — A String-Replacement Utility
	4.8.3. resolveip — Resolve Hostname to IP Address or Vice Versa


	Chapter 5. MySQL Server Administration
	5.1. The MySQL Server
	5.1.1. Option and Variable Reference
	5.1.2. Command Options
	5.1.3. System Variables
	5.1.4. Using System Variables
	5.1.4.1. Structured System Variables
	5.1.4.2. Dynamic System Variables

	5.1.5. Status Variables
	5.1.6. SQL Modes
	5.1.7. Server-Side Help
	5.1.8. Server Response to Signals
	5.1.9. The Shutdown Process

	5.2. MySQL Server Logs
	5.2.1. Selecting General Query and Slow Query Log Output Destinations
	5.2.2. The Error Log
	5.2.3. The General Query Log
	5.2.4. The Binary Log
	5.2.4.1. Binary Logging Formats
	5.2.4.2. Setting The Binary Log Format
	5.2.4.3. Mixed Binary Logging Format
	5.2.4.4. Logging Format for Changes to mysql Database Tables

	5.2.5. The Slow Query Log
	5.2.6. Server Log Maintenance

	5.3. General Security Issues
	5.3.1. General Security Guidelines
	5.3.2. Making MySQL Secure Against Attackers
	5.3.3. Security-Related mysqld Options
	5.3.4. Security Issues with LOAD DATA LOCAL
	5.3.5. How to Run MySQL as a Normal User

	5.4. The MySQL Access Privilege System
	5.4.1. What the Privilege System Does
	5.4.2. How the Privilege System Works
	5.4.3. Privileges Provided by MySQL
	5.4.4. Connecting to the MySQL Server
	5.4.5. Access Control, Stage 1: Connection Verification
	5.4.6. Access Control, Stage 2: Request Verification
	5.4.7. When Privilege Changes Take Effect
	5.4.8. Causes of Access denied Errors
	5.4.9. Password Hashing as of MySQL 4.1
	5.4.9.1. Implications of Password Hashing Changes for Application Programs


	5.5. MySQL User Account Management
	5.5.1. MySQL Usernames and Passwords
	5.5.2. Adding New User Accounts to MySQL
	5.5.3. Removing User Accounts from MySQL
	5.5.4. Limiting Account Resources
	5.5.5. Assigning Account Passwords
	5.5.6. Keeping Your Password Secure
	5.5.7. Using Secure Connections
	5.5.7.1. Basic SSL Concepts
	5.5.7.2. Using SSL Connections
	5.5.7.3. SSL Command Options
	5.5.7.4. Setting Up SSL Certificates for MySQL
	5.5.7.5. Connecting to MySQL Remotely from Windows with SSH


	5.6. Running Multiple MySQL Servers on the Same Machine
	5.6.1. Running Multiple Servers on Windows
	5.6.1.1. Starting Multiple Windows Servers at the Command Line
	5.6.1.2. Starting Multiple Windows Servers as Services

	5.6.2. Running Multiple Servers on Unix
	5.6.3. Using Client Programs in a Multiple-Server Environment


	Chapter 6. Backup and Recovery
	6.1. Database Backups
	6.2. Example Backup and Recovery Strategy
	6.2.1. Backup Policy
	6.2.2. Using Backups for Recovery
	6.2.3. Backup Strategy Summary

	6.3. Point-in-Time Recovery
	6.3.1. Specifying Times for Recovery
	6.3.2. Specifying Positions for Recovery

	6.4. Table Maintenance and Crash Recovery
	6.4.1. Using myisamchk for Crash Recovery
	6.4.2. How to Check MyISAM Tables for Errors
	6.4.3. How to Repair Tables
	6.4.4. Table Optimization
	6.4.5. Getting Information About a Table
	6.4.6. Setting Up a Table Maintenance Schedule


	Chapter 7. Optimization
	7.1. Optimization Overview
	7.1.1. MySQL Design Limitations and Tradeoffs
	7.1.2. Designing Applications for Portability
	7.1.3. What We Have Used MySQL For
	7.1.4. The MySQL Benchmark Suite
	7.1.5. Using Your Own Benchmarks

	7.2. Optimizing SELECT and Other Statements
	7.2.1. Optimizing Queries with EXPLAIN
	7.2.2. Estimating Query Performance
	7.2.3. Speed of SELECT Queries
	7.2.4. WHERE Clause Optimization
	7.2.5. Range Optimization
	7.2.5.1. The Range Access Method for Single-Part Indexes
	7.2.5.2. The Range Access Method for Multiple-Part Indexes

	7.2.6. Index Merge Optimization
	7.2.6.1. The Index Merge Intersection Access Algorithm
	7.2.6.2. The Index Merge Union Access Algorithm
	7.2.6.3. The Index Merge Sort-Union Access Algorithm

	7.2.7. IS NULL Optimization
	7.2.8. LEFT JOIN and RIGHT JOIN Optimization
	7.2.9. Nested Join Optimization
	7.2.10. Outer Join Simplification
	7.2.11. ORDER BY Optimization
	7.2.12. GROUP BY Optimization
	7.2.12.1. Loose index scan
	7.2.12.2. Tight index scan

	7.2.13. DISTINCT Optimization
	7.2.14. Optimizing IN/=ANY Subqueries
	7.2.15. LIMIT Optimization
	7.2.16. How to Avoid Table Scans
	7.2.17. INFORMATION_SCHEMA Optimization
	7.2.18. Speed of INSERT Statements
	7.2.19. Speed of UPDATE Statements
	7.2.20. Speed of DELETE Statements
	7.2.21. Other Optimization Tips

	7.3. Locking Issues
	7.3.1. Internal Locking Methods
	7.3.2. Table Locking Issues
	7.3.3. Concurrent Inserts
	7.3.4. External Locking

	7.4. Optimizing Database Structure
	7.4.1. Design Choices
	7.4.2. Make Your Data as Small as Possible
	7.4.3. Column Indexes
	7.4.4. Multiple-Column Indexes
	7.4.5. How MySQL Uses Indexes
	7.4.6. The MyISAM Key Cache
	7.4.6.1. Shared Key Cache Access
	7.4.6.2. Multiple Key Caches
	7.4.6.3. Midpoint Insertion Strategy
	7.4.6.4. Index Preloading
	7.4.6.5. Key Cache Block Size
	7.4.6.6. Restructuring a Key Cache

	7.4.7. MyISAM Index Statistics Collection
	7.4.8. How MySQL Opens and Closes Tables
	7.4.9. Drawbacks to Creating Many Tables in the Same Database

	7.5. Optimizing the MySQL Server
	7.5.1. System Factors and Startup Parameter Tuning
	7.5.2. Tuning Server Parameters
	7.5.3. Controlling Query Optimizer Performance
	7.5.4. The MySQL Query Cache
	7.5.4.1. How the Query Cache Operates
	7.5.4.2. Query Cache SELECT Options
	7.5.4.3. Query Cache Configuration
	7.5.4.4. Query Cache Status and Maintenance

	7.5.5. Examining Thread Information
	7.5.5.1. Thread Command Values
	7.5.5.2. General Thread States
	7.5.5.3. Delayed-Insert Thread States
	7.5.5.4. Replication Master Thread States
	7.5.5.5. Replication Slave I/O Thread States
	7.5.5.6. Replication Slave SQL Thread States
	7.5.5.7. Replication Slave Connection Thread States
	7.5.5.8. MySQL Cluster Thread States
	7.5.5.9. Event Scheduler Thread States

	7.5.6. How Compiling and Linking Affects the Speed of MySQL
	7.5.7. How MySQL Uses Threads for Client Connections
	7.5.8. How MySQL Uses Memory
	7.5.9. How MySQL Uses Internal Temporary Tables
	7.5.10. How MySQL Uses DNS

	7.6. Disk Issues
	7.6.1. Using Symbolic Links
	7.6.1.1. Using Symbolic Links for Databases on Unix
	7.6.1.2. Using Symbolic Links for Tables on Unix
	7.6.1.3. Using Symbolic Links for Databases on Windows



	Chapter 8. Language Structure
	8.1. Literal Values
	8.1.1. Strings
	8.1.2. Numbers
	8.1.3. Hexadecimal Values
	8.1.4. Boolean Values
	8.1.5. Bit-Field Values
	8.1.6. NULL Values

	8.2. Schema Object Names
	8.2.1. Identifier Qualifiers
	8.2.2. Identifier Case Sensitivity
	8.2.3. Mapping of Identifiers to Filenames
	8.2.4. Function Name Parsing and Resolution

	8.3. Reserved Words
	8.4. User-Defined Variables
	8.5. Comment Syntax

	Chapter 9. Internationalization and Localization
	9.1. Character Set Support
	9.1.1. Character Sets and Collations in General
	9.1.2. Character Sets and Collations in MySQL
	9.1.3. Specifying Character Sets and Collations
	9.1.3.1. Server Character Set and Collation
	9.1.3.2. Database Character Set and Collation
	9.1.3.3. Table Character Set and Collation
	9.1.3.4. Column Character Set and Collation
	9.1.3.5. Character String Literal Character Set and Collation
	9.1.3.6. National Character Set
	9.1.3.7. Examples of Character Set and Collation Assignment
	9.1.3.8. Compatibility with Other DBMSs

	9.1.4. Connection Character Sets and Collations
	9.1.5. Collation Issues
	9.1.5.1. Using COLLATE in SQL Statements
	9.1.5.2. COLLATE Clause Precedence
	9.1.5.3. BINARY Operator
	9.1.5.4. Some Special Cases Where the Collation Determination Is Tricky
	9.1.5.5. Collations Must Be for the Right Character Set
	9.1.5.6. Examples of the Effect of Collation

	9.1.6. String Repertoire
	9.1.7. Operations Affected by Character Set Support
	9.1.7.1. Result Strings
	9.1.7.2. CONVERT() and CAST()
	9.1.7.3. SHOW Statements and INFORMATION_SCHEMA

	9.1.8. Unicode Support
	9.1.9. UTF-8 for Metadata
	9.1.10. Column Character Set Conversion
	9.1.11. Character Sets and Collations That MySQL Supports
	9.1.11.1. Unicode Character Sets
	9.1.11.2. West European Character Sets
	9.1.11.3. Central European Character Sets
	9.1.11.4. South European and Middle East Character Sets
	9.1.11.5. Baltic Character Sets
	9.1.11.6. Cyrillic Character Sets
	9.1.11.7. Asian Character Sets
	9.1.11.7.1. The cp932 Character Set



	9.2. The Character Set Used for Data and Sorting
	9.2.1. Using the German Character Set

	9.3. Setting the Error Message Language
	9.4. Adding a New Character Set
	9.4.1. The Character Definition Arrays
	9.4.2. String Collating Support
	9.4.3. Multi-Byte Character Support

	9.5. Problems With Character Sets
	9.6. MySQL Server Time Zone Support
	9.7. MySQL Server Locale Support

	Chapter 10. Data Types
	10.1. Data Type Overview
	10.1.1. Overview of Numeric Types
	10.1.2. Overview of Date and Time Types
	10.1.3. Overview of String Types
	10.1.4. Data Type Default Values

	10.2. Numeric Types
	10.3. Date and Time Types
	10.3.1. The DATETIME, DATE, and TIMESTAMP Types
	10.3.1.1. TIMESTAMP Properties

	10.3.2. The TIME Type
	10.3.3. The YEAR Type
	10.3.4. Year 2000 Issues and Date Types

	10.4. String Types
	10.4.1. The CHAR and VARCHAR Types
	10.4.2. The BINARY and VARBINARY Types
	10.4.3. The BLOB and TEXT Types
	10.4.4. The ENUM Type
	10.4.5. The SET Type

	10.5. Data Type Storage Requirements
	10.6. Choosing the Right Type for a Column
	10.7. Using Data Types from Other Database Engines

	Chapter 11. Functions and Operators
	11.1. Operator and Function Reference
	11.2. Operators
	11.2.1. Operator Precedence
	11.2.2. Type Conversion in Expression Evaluation
	11.2.3. Comparison Functions and Operators
	11.2.4. Logical Operators

	11.3. Control Flow Functions
	11.4. String Functions
	11.4.1. String Comparison Functions
	11.4.2. Regular Expressions

	11.5. Numeric Functions
	11.5.1. Arithmetic Operators
	11.5.2. Mathematical Functions

	11.6. Date and Time Functions
	11.7. What Calendar Is Used By MySQL?
	11.8. Full-Text Search Functions
	11.8.1. Natural Language Full-Text Searches
	11.8.2. Boolean Full-Text Searches
	11.8.3. Full-Text Searches with Query Expansion
	11.8.4. Full-Text Stopwords
	11.8.5. Full-Text Restrictions
	11.8.6. Fine-Tuning MySQL Full-Text Search

	11.9. Cast Functions and Operators
	11.10. XML Functions
	11.11. Other Functions
	11.11.1. Bit Functions
	11.11.2. Encryption and Compression Functions
	11.11.3. Information Functions
	11.11.4. Miscellaneous Functions

	11.12. Functions and Modifiers for Use with GROUP BY Clauses
	11.12.1. GROUP BY (Aggregate) Functions
	11.12.2. GROUP BY Modifiers
	11.12.3. GROUP BY and HAVING with Hidden Fields


	Chapter 12. SQL Statement Syntax
	12.1. Data Definition Statements
	12.1.1. ALTER DATABASE Syntax
	12.1.2. ALTER LOGFILE GROUP Syntax
	12.1.3. ALTER SERVER Syntax
	12.1.4. ALTER TABLE Syntax
	12.1.5. ALTER TABLESPACE Syntax
	12.1.6. CREATE DATABASE Syntax
	12.1.7. CREATE INDEX Syntax
	12.1.8. CREATE LOGFILE GROUP Syntax
	12.1.9. CREATE SERVER Syntax
	12.1.10. CREATE TABLE Syntax
	12.1.10.1. Silent Column Specification Changes

	12.1.11. CREATE TABLESPACE Syntax
	12.1.12. DROP DATABASE Syntax
	12.1.13. DROP INDEX Syntax
	12.1.14. DROP LOGFILE GROUP Syntax
	12.1.15. DROP SERVER Syntax
	12.1.16. DROP TABLE Syntax
	12.1.17. DROP TABLESPACE Syntax
	12.1.18. RENAME DATABASE Syntax
	12.1.19. RENAME TABLE Syntax

	12.2. Data Manipulation Statements
	12.2.1. DELETE Syntax
	12.2.2. DO Syntax
	12.2.3. HANDLER Syntax
	12.2.4. INSERT Syntax
	12.2.4.1. INSERT ... SELECT Syntax
	12.2.4.2. INSERT DELAYED Syntax
	12.2.4.3. INSERT ... ON DUPLICATE KEY UPDATE Syntax

	12.2.5. LOAD DATA INFILE Syntax
	12.2.6. REPLACE Syntax
	12.2.7. SELECT Syntax
	12.2.7.1. JOIN Syntax
	12.2.7.2. Index Hint Syntax
	12.2.7.3. UNION Syntax

	12.2.8. Subquery Syntax
	12.2.8.1. The Subquery as Scalar Operand
	12.2.8.2. Comparisons Using Subqueries
	12.2.8.3. Subqueries with ANY, IN, and SOME
	12.2.8.4. Subqueries with ALL
	12.2.8.5. Row Subqueries
	12.2.8.6. EXISTS and NOT EXISTS
	12.2.8.7. Correlated Subqueries
	12.2.8.8. Subqueries in the FROM clause
	12.2.8.9. Subquery Errors
	12.2.8.10. Optimizing Subqueries
	12.2.8.11. Rewriting Subqueries as Joins

	12.2.9. TRUNCATE Syntax
	12.2.10. UPDATE Syntax

	12.3. MySQL Utility Statements
	12.3.1. DESCRIBE Syntax
	12.3.2. EXPLAIN Syntax
	12.3.3. HELP Syntax
	12.3.4. USE Syntax

	12.4. MySQL Transactional and Locking Statements
	12.4.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax
	12.4.2. Statements That Cannot Be Rolled Back
	12.4.3. Statements That Cause an Implicit Commit
	12.4.4. SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax
	12.4.5. LOCK TABLES and UNLOCK TABLES Syntax
	12.4.6. SET TRANSACTION Syntax
	12.4.7. XA Transactions
	12.4.7.1. XA Transaction SQL Syntax
	12.4.7.2. XA Transaction States


	12.5. Database Administration Statements
	12.5.1. Account Management Statements
	12.5.1.1. CREATE USER Syntax
	12.5.1.2. DROP USER Syntax
	12.5.1.3. GRANT Syntax
	12.5.1.4. RENAME USER Syntax
	12.5.1.5. REVOKE Syntax
	12.5.1.6. SET PASSWORD Syntax

	12.5.2. Table Maintenance Statements
	12.5.2.1. ANALYZE TABLE Syntax
	12.5.2.2. BACKUP TABLE Syntax
	12.5.2.3. CHECK TABLE Syntax
	12.5.2.4. CHECKSUM TABLE Syntax
	12.5.2.5. OPTIMIZE TABLE Syntax
	12.5.2.6. REPAIR TABLE Syntax
	12.5.2.7. RESTORE TABLE Syntax

	12.5.3. SET Syntax
	12.5.4. SHOW Syntax
	12.5.4.1. SHOW AUTHORS Syntax
	12.5.4.2. SHOW CHARACTER SET Syntax
	12.5.4.3. SHOW COLLATION Syntax
	12.5.4.4. SHOW COLUMNS Syntax
	12.5.4.5. SHOW CONTRIBUTORS Syntax
	12.5.4.6. SHOW CREATE DATABASE Syntax
	12.5.4.7. SHOW CREATE EVENT
	12.5.4.8. SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION Syntax
	12.5.4.9. SHOW CREATE TABLE Syntax
	12.5.4.10. SHOW CREATE TRIGGER Syntax
	12.5.4.11. SHOW CREATE VIEW Syntax
	12.5.4.12. SHOW DATABASES Syntax
	12.5.4.13. SHOW ENGINE Syntax
	12.5.4.14. SHOW ENGINES Syntax
	12.5.4.15. SHOW ERRORS Syntax
	12.5.4.16. SHOW EVENTS
	12.5.4.17. SHOW GRANTS Syntax
	12.5.4.18. SHOW INDEX Syntax
	12.5.4.19. SHOW INNODB STATUS Syntax
	12.5.4.20. SHOW OPEN TABLES Syntax
	12.5.4.21. SHOW PLUGINS Syntax
	12.5.4.22. SHOW PRIVILEGES Syntax
	12.5.4.23. SHOW PROCEDURE CODE and SHOW FUNCTION CODE Syntax
	12.5.4.24. SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS Syntax
	12.5.4.25. SHOW PROCESSLIST Syntax
	12.5.4.26. SHOW SCHEDULER STATUS Syntax
	12.5.4.27. SHOW STATUS Syntax
	12.5.4.28. SHOW TABLE STATUS Syntax
	12.5.4.29. SHOW TABLES Syntax
	12.5.4.30. SHOW TRIGGERS Syntax
	12.5.4.31. SHOW VARIABLES Syntax
	12.5.4.32. SHOW WARNINGS Syntax

	12.5.5. Other Administrative Statements
	12.5.5.1. CACHE INDEX Syntax
	12.5.5.2. FLUSH Syntax
	12.5.5.3. KILL Syntax
	12.5.5.4. LOAD INDEX INTO CACHE Syntax
	12.5.5.5. RESET Syntax


	12.6. Replication Statements
	12.6.1. SQL Statements for Controlling Master Servers
	12.6.1.1. PURGE MASTER LOGS Syntax
	12.6.1.2. RESET MASTER Syntax
	12.6.1.3. SET SQL_LOG_BIN Syntax
	12.6.1.4. SHOW BINLOG EVENTS Syntax
	12.6.1.5. SHOW BINARY LOGS Syntax
	12.6.1.6. SHOW MASTER STATUS Syntax
	12.6.1.7. SHOW SLAVE HOSTS Syntax

	12.6.2. SQL Statements for Controlling Slave Servers
	12.6.2.1. CHANGE MASTER TO Syntax
	12.6.2.2. LOAD DATA FROM MASTER Syntax
	12.6.2.3. LOAD TABLE tbl_name FROM MASTER Syntax
	12.6.2.4. MASTER_POS_WAIT() Syntax
	12.6.2.5. RESET SLAVE Syntax
	12.6.2.6. SET GLOBAL SQL_SLAVE_SKIP_COUNTER Syntax
	12.6.2.7. SHOW SLAVE STATUS Syntax
	12.6.2.8. START SLAVE Syntax
	12.6.2.9. STOP SLAVE Syntax


	12.7. SQL Syntax for Prepared Statements

	Chapter 13. Storage Engines
	13.1. Overview of MySQL Storage Engine Architecture
	13.1.1. The Common Database Server Layer
	13.1.2. Pluggable Storage Engine Architecture

	13.2. Supported Storage Engines
	13.2.1. Choosing a Storage Engine
	13.2.2. Comparing Transaction and Non-Transaction Engines
	13.2.3. Other Storage Engines

	13.3. Setting the Storage Engine
	13.4. The MyISAM Storage Engine
	13.4.1. MyISAM Startup Options
	13.4.2. Space Needed for Keys
	13.4.3. MyISAM Table Storage Formats
	13.4.3.1. Static (Fixed-Length) Table Characteristics
	13.4.3.2. Dynamic Table Characteristics
	13.4.3.3. Compressed Table Characteristics

	13.4.4. MyISAM Table Problems
	13.4.4.1. Corrupted MyISAM Tables
	13.4.4.2. Problems from Tables Not Being Closed Properly


	13.5. The InnoDB Storage Engine
	13.5.1. InnoDB Overview
	13.5.2. InnoDB Contact Information
	13.5.3. InnoDB Configuration
	13.5.3.1. Using Per-Table Tablespaces
	13.5.3.2. Using Raw Devices for the Shared Tablespace

	13.5.4. InnoDB Startup Options and System Variables
	13.5.5. Creating the InnoDB Tablespace
	13.5.5.1. Dealing with InnoDB Initialization Problems

	13.5.6. Creating and Using InnoDB Tables
	13.5.6.1. How to Use Transactions in InnoDB with Different APIs
	13.5.6.2. Converting MyISAM Tables to InnoDB
	13.5.6.3. How AUTO_INCREMENT Handling Works in InnoDB
	13.5.6.3.1. “Traditional” InnoDB Auto-Increment Locking
	13.5.6.3.2. Configurable InnoDB Auto-Increment Locking

	13.5.6.4. FOREIGN KEY Constraints
	13.5.6.5. InnoDB and MySQL Replication

	13.5.7. Adding and Removing InnoDB Data and Log Files
	13.5.8. Backing Up and Recovering an InnoDB Database
	13.5.8.1. Forcing InnoDB Recovery
	13.5.8.2. Checkpoints

	13.5.9. Moving an InnoDB Database to Another Machine
	13.5.10. InnoDB Transaction Model and Locking
	13.5.10.1. InnoDB Lock Modes
	13.5.10.2. InnoDB and AUTOCOMMIT
	13.5.10.3. InnoDB and TRANSACTION ISOLATION LEVEL
	13.5.10.4. Consistent Non-Locking Read
	13.5.10.5. SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE Locking Reads
	13.5.10.6. Next-Key Locking: Avoiding the Phantom Problem
	13.5.10.7. An Example of Consistent Read in InnoDB
	13.5.10.8. Locks Set by Different SQL Statements in InnoDB
	13.5.10.9. Implicit Transaction Commit and Rollback
	13.5.10.10. Deadlock Detection and Rollback
	13.5.10.11. How to Cope with Deadlocks

	13.5.11. InnoDB Performance Tuning Tips
	13.5.11.1. SHOW ENGINE INNODB STATUS and the InnoDB Monitors

	13.5.12. Implementation of Multi-Versioning
	13.5.13. InnoDB Table and Index Structures
	13.5.13.1. Physical Structure of an Index
	13.5.13.2. Insert Buffering
	13.5.13.3. Adaptive Hash Indexes
	13.5.13.4. Physical Row Structure

	13.5.14. InnoDB File Space Management and Disk I/O
	13.5.14.1. InnoDB Disk I/O
	13.5.14.2. File Space Management
	13.5.14.3. Defragmenting a Table

	13.5.15. InnoDB Error Handling
	13.5.15.1. InnoDB Error Codes
	13.5.15.2. Operating System Error Codes

	13.5.16. Restrictions on InnoDB Tables
	13.5.17. InnoDB Troubleshooting
	13.5.17.1. Troubleshooting InnoDB Data Dictionary Operations


	13.6. The MERGE Storage Engine
	13.6.1. MERGE Table Problems

	13.7. The MEMORY (HEAP) Storage Engine
	13.8. The EXAMPLE Storage Engine
	13.9. The FEDERATED Storage Engine
	13.9.1. FEDERATED Storage Engine Overview
	13.9.2. How to Create FEDERATED Tables
	13.9.2.1. Creating a FEDERATED Table Using CONNECTION
	13.9.2.2. Creating a FEDERATED Table Using CREATE SERVER

	13.9.3. FEDERATED Storage Engine Notes and Tips
	13.9.4. FEDERATED Storage Engine Resources

	13.10. The ARCHIVE Storage Engine
	13.11. The CSV Storage Engine
	13.11.1. Repairing and Checking CSV Tables
	13.11.2. CSV Limitations

	13.12. The BLACKHOLE Storage Engine

	Chapter 14. High Availability and Scalability
	14.1. Using MySQL with DRBD for High Availability
	14.1.1. Configuring the DRBD Environment
	14.1.1.1. Setting Up the OS for DRBD
	14.1.1.2. Installing and Configuring DRBD
	14.1.1.3. Setting Up a DRBD Primary Node
	14.1.1.4. Setting Up a DRBD Secondary Node
	14.1.1.5. Monitoring and Managing Your DRBD Device
	14.1.1.6. Additional DRBD Configuration Options

	14.1.2. Configuring MySQL for DRBD
	14.1.3. Optimizing Performance and Reliability
	14.1.3.1. Using Bonded Ethernet Network Interfaces
	14.1.3.2. Optimizing the Synchronization Rate


	14.2. Using Linux HA Heartbeat
	14.2.1. Heartbeat Configuration
	14.2.2. Using Heartbeat with MySQL and DRBD
	14.2.3. Using Heartbeat with DRBD and dopd
	14.2.4. Dealing with System Level Errors


	Chapter 15. MySQL Load Balancer
	15.1. Installing MySQL Load Balancer
	15.2. Getting Started
	15.3. Using MySQL Load Balancer
	15.4. Known Issues
	15.5. MySQL Load Balancer FAQ

	Chapter 16. Replication
	16.1. Replication Configuration
	16.1.1. How to Set Up Replication
	16.1.1.1. Creating a User for Replication
	16.1.1.2. Setting the Replication Master Configuration
	16.1.1.3. Setting the Replication Slave Configuration
	16.1.1.4. Obtaining the Master Replication Information
	16.1.1.5. Creating a Data Snapshot Using mysqldump
	16.1.1.6. Creating a Data Snapshot Using Raw Data Files
	16.1.1.7. Setting Up Replication with New Master and Slaves
	16.1.1.8. Setting Up Replication with Existing Data
	16.1.1.9. Introducing Additional Slaves to an Existing Replication Environment
	16.1.1.10. Setting the Master Configuration on the Slave

	16.1.2. Replication Formats
	16.1.2.1. Comparison of Statement-Based Versus Row-Based Replication

	16.1.3. Replication Options and Variables
	16.1.4. Common Replication Administration Tasks
	16.1.4.1. Checking Replication Status
	16.1.4.2. Pausing Replication on the Slave


	16.2. Replication Solutions
	16.2.1. Using Replication for Backups
	16.2.1.1. Backing Up a Slave Using mysqldump
	16.2.1.2. Backing Up Raw Data from a Slave
	16.2.1.3. Backing Up a Master or Slave by Making It Read Only

	16.2.2. Using Replication with Different Master and Slave Storage Engines
	16.2.3. Using Replication for Scale-Out
	16.2.4. Replicating Different Databases to Different Slaves
	16.2.5. Improving Replication Performance
	16.2.6. Switching Masters During Failover
	16.2.7. Setting Up Replication Using SSL

	16.3. Replication Notes and Tips
	16.3.1. Replication Features and Issues
	16.3.1.1. Replication and AUTO_INCREMENT
	16.3.1.2. Replication and Character Sets
	16.3.1.3. Replication of CREATE TABLE ... SELECT Statements
	16.3.1.4. Replication and DIRECTORY Statements
	16.3.1.5. Replication of Invoked Features
	16.3.1.6. Replication with Floating-Point Values
	16.3.1.7. Replication and FLUSH
	16.3.1.8. Replication and System Functions
	16.3.1.9. Replication and LIMIT
	16.3.1.10. Replication and LOAD DATA
	16.3.1.11. Replication During a Master Crash
	16.3.1.12. Replication During a Master Shutdown
	16.3.1.13. Replication with MEMORY Tables
	16.3.1.14. Replication of the System mysql Database
	16.3.1.15. Replication and Reserved Words
	16.3.1.16. Slave Errors during Replication
	16.3.1.17. Replication during a Slave Shutdown
	16.3.1.18. Replication and Temporary Tables
	16.3.1.19. Replication Retries and Timeouts
	16.3.1.20. Replication and Time Zones
	16.3.1.21. Replication and Transactions
	16.3.1.22. Replication with Differing Tables on Master and Slave
	16.3.1.22.1. Replication with More Columns on Master or Slave
	16.3.1.22.2. Replication with Columns Having Different Data Types

	16.3.1.23. Replication and Variables
	16.3.1.24. Replication and Views

	16.3.2. Replication Compatibility Between MySQL Versions
	16.3.3. Upgrading a Replication Setup
	16.3.4. Replication FAQ
	16.3.5. Troubleshooting Replication
	16.3.6. How to Report Replication Bugs or Problems

	16.4. Replication Implementation
	16.4.1. Replication Implementation Details
	16.4.2. Replication Relay and Status Files
	16.4.2.1. The Slave Relay Log
	16.4.2.2. The Slave Status Files

	16.4.3. How Servers Evaluate Replication Rules


	Chapter 17. MySQL Cluster
	17.1. MySQL Cluster Overview
	17.1.1. MySQL Cluster Core Concepts
	17.1.2. MySQL Cluster Nodes, Node Groups, Replicas, and Partitions

	17.2. MySQL Cluster 5.1 Carrier Grade Edition
	17.2.1. Major Differences Between MySQL 5.1 and MySQL Cluster 5.1 Carrier Grade Edition
	17.2.1.1. ndb-6.1.x Features
	17.2.1.2. ndb-6.2.x Features
	17.2.1.3. ndb-6.3.x Features

	17.2.2. MySQL Cluster 5.1 Carrier Grade Edition Releases

	17.3. Simple Multi-Computer How-To
	17.3.1. Hardware, Software, and Networking
	17.3.2. Multi-Computer Installation
	17.3.3. Multi-Computer Configuration
	17.3.4. Initial Startup
	17.3.5. Loading Sample Data and Performing Queries
	17.3.6. Safe Shutdown and Restart

	17.4. MySQL Cluster Configuration
	17.4.1. Building MySQL Cluster from Source Code
	17.4.2. Installing the Cluster Software
	17.4.3. Quick Test Setup of MySQL Cluster
	17.4.4. Configuration File
	17.4.4.1. Basic Example Configuration
	17.4.4.2. The Cluster Connectstring
	17.4.4.3. Defining Cluster Computers
	17.4.4.4. Defining the Management Server
	17.4.4.5. Defining Data Nodes
	17.4.4.6. Defining SQL and Other API Nodes
	17.4.4.7. Cluster TCP/IP Connections
	17.4.4.8. TCP/IP Connections Using Direct Connections
	17.4.4.9. Shared-Memory Connections
	17.4.4.10. SCI Transport Connections

	17.4.5. Overview of Cluster Configuration Parameters
	17.4.5.1. Data Node Configuration Parameters
	17.4.5.2. Management Node Configuration Parameters
	17.4.5.3. SQL Node and API Node Configuration Parameters

	17.4.6. Configuring Parameters for Local Checkpoints

	17.5. MySQL Cluster Options and Variables
	17.5.1. MySQL Cluster Server Option and Variable Reference
	17.5.2. MySQL Cluster-Related Command Options for mysqld
	17.5.3. MySQL Cluster System Variables
	17.5.4. MySQL Cluster Status Variables

	17.6. Upgrading and Downgrading MySQL Cluster
	17.6.1. Performing a Rolling Restart of the Cluster
	17.6.2. Cluster Upgrade and Downgrade Compatibility

	17.7. Process Management in MySQL Cluster
	17.7.1. MySQL Server Process Usage for MySQL Cluster
	17.7.2. ndbd — The Storage Engine Node Process
	17.7.3. ndb_mgmd — The Management Server Process
	17.7.4. ndb_mgm — The Management Client Process
	17.7.5. Command Options for MySQL Cluster Processes
	17.7.5.1. Command Options for ndbd
	17.7.5.2. Command Options for ndb_mgmd
	17.7.5.3. Command Options for ndb_mgm


	17.8. Management of MySQL Cluster
	17.8.1. Summary of MySQL Cluster Start Phases
	17.8.2. Commands in the MySQL Cluster Management Client
	17.8.3. Event Reports Generated in MySQL Cluster
	17.8.3.1. Logging Management Commands
	17.8.3.2. Log Events
	17.8.3.3. Using CLUSTERLOG STATISTICS

	17.8.4. Single User Mode
	17.8.5. Quick Reference: MySQL Cluster SQL Statements

	17.9. MySQL Cluster Security Issues
	17.9.1. MySQL Cluster Security and Networking Issues
	17.9.2. MySQL Cluster and MySQL Privileges
	17.9.3. MySQL Cluster and MySQL Security Procedures

	17.10. On-line Backup of MySQL Cluster
	17.10.1. Cluster Backup Concepts
	17.10.2. Using The Management Client to Create a Backup
	17.10.3. ndb_restore — Restore a Cluster Backup
	17.10.4. Configuration for Cluster Backup
	17.10.5. Backup Troubleshooting

	17.11. Cluster Utility Programs
	17.11.1. ndb_config — Extract NDB Configuration Information
	17.11.2. ndb_cpcd — Automate Testing for NDB Development
	17.11.3. ndb_delete_all — Delete All Rows from NDB Table
	17.11.4. ndb_desc — Describe NDB Tables
	17.11.5. ndb_drop_index — Drop Index from NDB Table
	17.11.6. ndb_drop_table — Drop NDB Table
	17.11.7. ndb_error_reporter — NDB Error-Reporting Utility
	17.11.8. ndb_print_backup_file — Print NDB Backup File Contents
	17.11.9. ndb_print_schema_file — Print NDB Schema File Contents
	17.11.10. ndb_print_sys_file — Print NDB System File Contents
	17.11.11. ndbd_redo_log_reader — Check and Print Content of Cluster Redo Log
	17.11.12. ndb_select_all — Print Rows from NDB Table
	17.11.13. ndb_select_count — Print Row Counts for NDB Tables
	17.11.14. ndb_show_tables — Display List of NDB Tables
	17.11.15. ndb_size.pl — NDBCluster Size Requirement Estimator
	17.11.16. ndb_waiter — Wait for Cluster to Reach a Given Status

	17.12. MySQL Cluster Replication
	17.12.1. Abbreviations and Symbols
	17.12.2. Assumptions and General Requirements
	17.12.3. Known Issues in MySQL Cluster Replication
	17.12.4. Cluster Replication Schema and Tables
	17.12.5. Preparing the Cluster for Replication
	17.12.6. Starting Replication (Single Replication Channel)
	17.12.7. Using Two Replication Channels
	17.12.8. Implementing Failover with MySQL Cluster
	17.12.9. MySQL Cluster Backups With Replication
	17.12.9.1. Automating Synchronization of the Slave to the Master binlog

	17.12.10. MySQL Cluster Replication Conflict Resolution

	17.13. MySQL Cluster Disk Data Tables
	17.13.1. Disk Data Objects
	17.13.2. Disk Data Storage Requirements
	17.13.3. Disk Data Configuration Parameters

	17.14. Using High-Speed Interconnects with MySQL Cluster
	17.14.1. Configuring MySQL Cluster to use SCI Sockets
	17.14.2. MySQL Cluster Interconnects and Performance

	17.15. Known Limitations of MySQL Cluster
	17.15.1. Non-Compliance In SQL Syntax
	17.15.2. Limits and Differences from Standard MySQL Limits
	17.15.3. Limits Relating to Transaction Handling
	17.15.4. Error Handling
	17.15.5. Limits Associated with Database Objects
	17.15.6. Unsupported Or Missing Features
	17.15.7. Limitations Relating to Performance
	17.15.8. Issues Exclusive to MySQL Cluster
	17.15.9. Limitations Relating to Disk Data Storage
	17.15.10. Limitations Relating to Multiple Cluster Nodes
	17.15.11. Previous MySQL Cluster Issues Resolved in MySQL 5.1

	17.16. MySQL Cluster Development Roadmap
	17.16.1. MySQL Cluster Changes in MySQL 5.1

	17.17. MySQL Cluster Glossary

	Chapter 18. Partitioning
	18.1. Overview of Partitioning in MySQL
	18.2. Partition Types
	18.2.1. RANGE Partitioning
	18.2.2. LIST Partitioning
	18.2.3. HASH Partitioning
	18.2.3.1. LINEAR HASH Partitioning

	18.2.4. KEY Partitioning
	18.2.5. Subpartitioning
	18.2.6. How MySQL Partitioning Handles NULL Values

	18.3. Partition Management
	18.3.1. Management of RANGE and LIST Partitions
	18.3.2. Management of HASH and KEY Partitions
	18.3.3. Maintenance of Partitions
	18.3.4. Obtaining Information About Partitions

	18.4. Partition Pruning
	18.5. Restrictions and Limitations on Partitioning
	18.5.1. Partitioning Keys, Primary Keys, and Unique Keys
	18.5.2. Partitioning Limitations Relating to Storage Engines
	18.5.3. Partitioning Limitations Relating to Functions


	Chapter 19. Spatial Extensions
	19.1. Introduction to MySQL Spatial Support
	19.2. The OpenGIS Geometry Model
	19.2.1. The Geometry Class Hierarchy
	19.2.2. Class Geometry
	19.2.3. Class Point
	19.2.4. Class Curve
	19.2.5. Class LineString
	19.2.6. Class Surface
	19.2.7. Class Polygon
	19.2.8. Class GeometryCollection
	19.2.9. Class MultiPoint
	19.2.10. Class MultiCurve
	19.2.11. Class MultiLineString
	19.2.12. Class MultiSurface
	19.2.13. Class MultiPolygon

	19.3. Supported Spatial Data Formats
	19.3.1. Well-Known Text (WKT) Format
	19.3.2. Well-Known Binary (WKB) Format

	19.4. Creating a Spatially Enabled MySQL Database
	19.4.1. MySQL Spatial Data Types
	19.4.2. Creating Spatial Values
	19.4.2.1. Creating Geometry Values Using WKT Functions
	19.4.2.2. Creating Geometry Values Using WKB Functions
	19.4.2.3. Creating Geometry Values Using MySQL-Specific Functions

	19.4.3. Creating Spatial Columns
	19.4.4. Populating Spatial Columns
	19.4.5. Fetching Spatial Data

	19.5. Analyzing Spatial Information
	19.5.1. Geometry Format Conversion Functions
	19.5.2. Geometry Functions
	19.5.2.1. General Geometry Functions
	19.5.2.2. Point Functions
	19.5.2.3. LineString Functions
	19.5.2.4. MultiLineString Functions
	19.5.2.5. Polygon Functions
	19.5.2.6. MultiPolygon Functions
	19.5.2.7. GeometryCollection Functions

	19.5.3. Functions That Create New Geometries from Existing Ones
	19.5.3.1. Geometry Functions That Produce New Geometries
	19.5.3.2. Spatial Operators

	19.5.4. Functions for Testing Spatial Relations Between Geometric Objects
	19.5.5. Relations on Geometry Minimal Bounding Rectangles (MBRs)
	19.5.6. Functions That Test Spatial Relationships Between Geometries

	19.6. Optimizing Spatial Analysis
	19.6.1. Creating Spatial Indexes
	19.6.2. Using a Spatial Index

	19.7. MySQL Conformance and Compatibility

	Chapter 20. Stored Procedures and Functions
	20.1. Stored Routines and the Grant Tables
	20.2. Stored Routine Syntax
	20.2.1. CREATE PROCEDURE and CREATE FUNCTION Syntax
	20.2.2. ALTER PROCEDURE and ALTER FUNCTION Syntax
	20.2.3. DROP PROCEDURE and DROP FUNCTION Syntax
	20.2.4. CALL Statement Syntax
	20.2.5. BEGIN ... END Compound Statement Syntax
	20.2.6. DECLARE Statement Syntax
	20.2.7. Variables in Stored Routines
	20.2.7.1. DECLARE Local Variables
	20.2.7.2. Variable SET Statement
	20.2.7.3. SELECT ... INTO Statement

	20.2.8. Conditions and Handlers
	20.2.8.1. DECLARE Conditions
	20.2.8.2. DECLARE Handlers

	20.2.9. Cursors
	20.2.9.1. Declaring Cursors
	20.2.9.2. Cursor OPEN Statement
	20.2.9.3. Cursor FETCH Statement
	20.2.9.4. Cursor CLOSE Statement

	20.2.10. Flow Control Constructs
	20.2.10.1. IF Statement
	20.2.10.2. CASE Statement
	20.2.10.3. LOOP Statement
	20.2.10.4. LEAVE Statement
	20.2.10.5. ITERATE Statement
	20.2.10.6. REPEAT Statement
	20.2.10.7. WHILE Statement

	20.2.11. RETURN Statement Syntax

	20.3. Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()
	20.4. Binary Logging of Stored Routines and Triggers

	Chapter 21. Triggers
	21.1. CREATE TRIGGER Syntax
	21.2. DROP TRIGGER Syntax
	21.3. Using Triggers

	Chapter 22. Event Scheduler
	22.1. Event Scheduler Overview
	22.2. Event Scheduler Syntax
	22.2.1. ALTER EVENT Syntax
	22.2.2. CREATE EVENT Syntax
	22.2.3. DROP EVENT Syntax

	22.3. Event Metadata
	22.4. Event Scheduler Status
	22.5. The Event Scheduler and MySQL Privileges
	22.6. Event Scheduler Limitations and Restrictions

	Chapter 23. Views
	23.1. ALTER VIEW Syntax
	23.2. CREATE VIEW Syntax
	23.3. DROP VIEW Syntax

	Chapter 24. INFORMATION_SCHEMA Tables
	24.1. The INFORMATION_SCHEMA SCHEMATA Table
	24.2. The INFORMATION_SCHEMA TABLES Table
	24.3. The INFORMATION_SCHEMA COLUMNS Table
	24.4. The INFORMATION_SCHEMA STATISTICS Table
	24.5. The INFORMATION_SCHEMA USER_PRIVILEGES Table
	24.6. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	24.7. The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	24.8. The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	24.9. The INFORMATION_SCHEMA CHARACTER_SETS Table
	24.10. The INFORMATION_SCHEMA COLLATIONS Table
	24.11. The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	24.12. The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	24.13. The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	24.14. The INFORMATION_SCHEMA ROUTINES Table
	24.15. The INFORMATION_SCHEMA VIEWS Table
	24.16. The INFORMATION_SCHEMA TRIGGERS Table
	24.17. The INFORMATION_SCHEMA PLUGINS Table
	24.18. The INFORMATION_SCHEMA ENGINES Table
	24.19. The INFORMATION_SCHEMA PARTITIONS Table
	24.20. The INFORMATION_SCHEMA EVENTS Table
	24.21. The INFORMATION_SCHEMA FILES Table
	24.22. The INFORMATION_SCHEMA PROCESSLIST Table
	24.23. The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
	24.24. The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
	24.25. The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
	24.26. Other INFORMATION_SCHEMA Tables
	24.27. Extensions to SHOW Statements

	Chapter 25. Precision Math
	25.1. Types of Numeric Values
	25.2. DECIMAL Data Type Changes
	25.3. Expression Handling
	25.4. Rounding Behavior
	25.5. Precision Math Examples

	Chapter 26. APIs and Libraries
	26.1. libmysqld, the Embedded MySQL Server Library
	26.1.1. Compiling Programs with libmysqld
	26.1.2. Restrictions When Using the Embedded MySQL Server
	26.1.3. Options with the Embedded Server
	26.1.4. Embedded Server Examples
	26.1.5. Licensing the Embedded Server

	26.2. MySQL C API
	26.2.1. C API Data Types
	26.2.2. C API Function Overview
	26.2.3. C API Function Descriptions
	26.2.3.1. mysql_affected_rows()
	26.2.3.2. mysql_autocommit()
	26.2.3.3. mysql_change_user()
	26.2.3.4. mysql_character_set_name()
	26.2.3.5. mysql_close()
	26.2.3.6. mysql_commit()
	26.2.3.7. mysql_connect()
	26.2.3.8. mysql_create_db()
	26.2.3.9. mysql_data_seek()
	26.2.3.10. mysql_debug()
	26.2.3.11. mysql_drop_db()
	26.2.3.12. mysql_dump_debug_info()
	26.2.3.13. mysql_eof()
	26.2.3.14. mysql_errno()
	26.2.3.15. mysql_error()
	26.2.3.16. mysql_escape_string()
	26.2.3.17. mysql_fetch_field()
	26.2.3.18. mysql_fetch_field_direct()
	26.2.3.19. mysql_fetch_fields()
	26.2.3.20. mysql_fetch_lengths()
	26.2.3.21. mysql_fetch_row()
	26.2.3.22. mysql_field_count()
	26.2.3.23. mysql_field_seek()
	26.2.3.24. mysql_field_tell()
	26.2.3.25. mysql_free_result()
	26.2.3.26. mysql_get_character_set_info()
	26.2.3.27. mysql_get_client_info()
	26.2.3.28. mysql_get_client_version()
	26.2.3.29. mysql_get_host_info()
	26.2.3.30. mysql_get_proto_info()
	26.2.3.31. mysql_get_server_info()
	26.2.3.32. mysql_get_server_version()
	26.2.3.33. mysql_get_ssl_cipher()
	26.2.3.34. mysql_hex_string()
	26.2.3.35. mysql_info()
	26.2.3.36. mysql_init()
	26.2.3.37. mysql_insert_id()
	26.2.3.38. mysql_kill()
	26.2.3.39. mysql_library_end()
	26.2.3.40. mysql_library_init()
	26.2.3.41. mysql_list_dbs()
	26.2.3.42. mysql_list_fields()
	26.2.3.43. mysql_list_processes()
	26.2.3.44. mysql_list_tables()
	26.2.3.45. mysql_more_results()
	26.2.3.46. mysql_next_result()
	26.2.3.47. mysql_num_fields()
	26.2.3.48. mysql_num_rows()
	26.2.3.49. mysql_options()
	26.2.3.50. mysql_ping()
	26.2.3.51. mysql_query()
	26.2.3.52. mysql_real_connect()
	26.2.3.53. mysql_real_escape_string()
	26.2.3.54. mysql_real_query()
	26.2.3.55. mysql_refresh()
	26.2.3.56. mysql_reload()
	26.2.3.57. mysql_rollback()
	26.2.3.58. mysql_row_seek()
	26.2.3.59. mysql_row_tell()
	26.2.3.60. mysql_select_db()
	26.2.3.61. mysql_set_character_set()
	26.2.3.62. mysql_set_local_infile_default()
	26.2.3.63. mysql_set_local_infile_handler()
	26.2.3.64. mysql_set_server_option()
	26.2.3.65. mysql_shutdown()
	26.2.3.66. mysql_sqlstate()
	26.2.3.67. mysql_ssl_set()
	26.2.3.68. mysql_stat()
	26.2.3.69. mysql_store_result()
	26.2.3.70. mysql_thread_id()
	26.2.3.71. mysql_use_result()
	26.2.3.72. mysql_warning_count()

	26.2.4. C API Prepared Statements
	26.2.5. C API Prepared Statement Data types
	26.2.6. C API Prepared Statement Function Overview
	26.2.7. C API Prepared Statement Function Descriptions
	26.2.7.1. mysql_stmt_affected_rows()
	26.2.7.2. mysql_stmt_attr_get()
	26.2.7.3. mysql_stmt_attr_set()
	26.2.7.4. mysql_stmt_bind_param()
	26.2.7.5. mysql_stmt_bind_result()
	26.2.7.6. mysql_stmt_close()
	26.2.7.7. mysql_stmt_data_seek()
	26.2.7.8. mysql_stmt_errno()
	26.2.7.9. mysql_stmt_error()
	26.2.7.10. mysql_stmt_execute()
	26.2.7.11. mysql_stmt_fetch()
	26.2.7.12. mysql_stmt_fetch_column()
	26.2.7.13. mysql_stmt_field_count()
	26.2.7.14. mysql_stmt_free_result()
	26.2.7.15. mysql_stmt_init()
	26.2.7.16. mysql_stmt_insert_id()
	26.2.7.17. mysql_stmt_num_rows()
	26.2.7.18. mysql_stmt_param_count()
	26.2.7.19. mysql_stmt_param_metadata()
	26.2.7.20. mysql_stmt_prepare()
	26.2.7.21. mysql_stmt_reset()
	26.2.7.22. mysql_stmt_result_metadata()
	26.2.7.23. mysql_stmt_row_seek()
	26.2.7.24. mysql_stmt_row_tell()
	26.2.7.25. mysql_stmt_send_long_data()
	26.2.7.26. mysql_stmt_sqlstate()
	26.2.7.27. mysql_stmt_store_result()

	26.2.8. C API Prepared Statement Problems
	26.2.9. C API Handling of Multiple Statement Execution
	26.2.10. C API Handling of Date and Time Values
	26.2.11. C API Threaded Function Descriptions
	26.2.11.1. my_init()
	26.2.11.2. mysql_thread_end()
	26.2.11.3. mysql_thread_init()
	26.2.11.4. mysql_thread_safe()

	26.2.12. C API Embedded Server Function Descriptions
	26.2.12.1. mysql_server_init()
	26.2.12.2. mysql_server_end()

	26.2.13. Controlling Automatic Reconnect Behavior
	26.2.14. Common Questions and Problems When Using the C API
	26.2.14.1. Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns Success
	26.2.14.2. What Results You Can Get from a Query
	26.2.14.3. How to Get the Unique ID for the Last Inserted Row
	26.2.14.4. Problems Linking with the C API

	26.2.15. Building Client Programs
	26.2.16. How to Make a Threaded Client

	26.3. MySQL PHP API
	26.3.1. Common Problems with MySQL and PHP
	26.3.2. Enabling Both mysql and mysqli in PHP

	26.4. MySQL Perl API
	26.5. MySQL C++ API
	26.6. MySQL Python API
	26.7. MySQL Tcl API
	26.8. MySQL Eiffel Wrapper

	Chapter 27. Connectors
	27.1. MySQL Connector/ODBC
	27.1.1. Connector/ODBC Versions
	27.1.2. Connector/ODBC Introduction
	27.1.2.1. Connector/ODBC Roadmap
	27.1.2.2. General Information About ODBC and Connector/ODBC
	27.1.2.2.1. Connector/ODBC Architecture
	27.1.2.2.2. ODBC Driver Managers


	27.1.3. Connector/ODBC Installation
	27.1.3.1. Installing Connector/ODBC from a Binary Distribution on Windows
	27.1.3.1.1. Installing the Windows Connector/ODBC Driver using an installer
	27.1.3.1.2. Installing the Windows Connector/ODBC Driver using the Zipped DLL package

	27.1.3.2. Installing Connector/ODBC from a Binary Distribution on Unix
	27.1.3.2.1. Installing Connector/ODBC from a Binary Tarball Distribution
	27.1.3.2.2. Installing Connector/ODBC from an RPM Distribution

	27.1.3.3. Installing Connector/ODBC from a Binary Distribution on Mac OS X
	27.1.3.4. Installing Connector/ODBC from a Source Distribution on Windows
	27.1.3.4.1. Building Connector/ODBC 3.51
	27.1.3.4.2. Testing

	27.1.3.5. Installing Connector/ODBC from a Source Distribution on Unix
	27.1.3.5.1. Typical configure Options
	27.1.3.5.2. Additional configure Options
	27.1.3.5.3. Building and Compilation
	27.1.3.5.4. Building Shared Libraries
	27.1.3.5.5. Installing Driver Libraries
	27.1.3.5.6. Testing Connector/ODBC on Unix
	27.1.3.5.7. Building Connector/ODBC from Source on Mac OS X
	27.1.3.5.8. Building Connector/ODBC from Source on HP-UX
	27.1.3.5.9. Building Connector/ODBC from Source on AIX

	27.1.3.6. Installing Connector/ODBC from the Development Source Tree

	27.1.4. Connector/ODBC Configuration
	27.1.4.1. Data Source Names
	27.1.4.2. Connector/ODBC Connection Parameters
	27.1.4.3. Configuring a Connector/ODBC DSN on Windows
	27.1.4.3.1. Configuring a Connector/ODBC 3.51 DSN on Windows
	27.1.4.3.2. Configuring a Connector/ODBC 5.1 DSN on Windows
	27.1.4.3.3. Errors and Debugging

	27.1.4.4. Configuring a Connector/ODBC DSN on Mac OS X
	27.1.4.5. Configuring a Connector/ODBC DSN on Unix
	27.1.4.6. Connecting Without a Predefined DSN
	27.1.4.7. ODBC Connection Pooling
	27.1.4.8. Getting an ODBC Trace File
	27.1.4.8.1. Enabling ODBC Tracing on Windows
	27.1.4.8.2. Enabling ODBC Tracing on Mac OS X
	27.1.4.8.3. Enabling ODBC Tracing on Unix
	27.1.4.8.4. Enabling a Connector/ODBC Log


	27.1.5. Connector/ODBC Examples
	27.1.5.1. Basic Connector/ODBC Application Steps
	27.1.5.2. Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC
	27.1.5.3. Connector/ODBC and Third-Party ODBC Tools
	27.1.5.4. Using Connector/ODBC with Microsoft Access
	27.1.5.4.1. Exporting Access Data to MySQL
	27.1.5.4.2. Importing MySQL Data to Access
	27.1.5.4.3. Using Microsoft Access as a Front-end to MySQL

	27.1.5.5. Using Connector/ODBC with Microsoft Word or Excel
	27.1.5.6. Using Connector/ODBC with Crystal Reports
	27.1.5.7. Connector/ODBC Programming
	27.1.5.7.1. Using Connector/ODBC with Visual Basic Using ADO, DAO and RDO
	27.1.5.7.1.1. ADO: rs.addNew, rs.delete, and rs.update
	27.1.5.7.1.2. DAO: rs.addNew, rs.update, and Scrolling
	27.1.5.7.1.3. RDO: rs.addNew and rs.update

	27.1.5.7.2. Using Connector/ODBC with .NET
	27.1.5.7.2.1. Using Connector/ODBC with ODBC.NET and C# (C sharp)
	27.1.5.7.2.2. Using Connector/ODBC with ODBC.NET and Visual Basic



	27.1.6. Connector/ODBC Reference
	27.1.6.1. Connector/ODBC API Reference
	27.1.6.2. Connector/ODBC Data Types
	27.1.6.3. Connector/ODBC Error Codes

	27.1.7. Connector/ODBC Notes and Tips
	27.1.7.1. Connector/ODBC General Functionality
	27.1.7.1.1. Obtaining Auto-Increment Values
	27.1.7.1.2. Dynamic Cursor Support
	27.1.7.1.3. Connector/ODBC Performance
	27.1.7.1.4. Setting ODBC Query Timeout in Windows

	27.1.7.2. Connector/ODBC Application Specific Tips
	27.1.7.2.1. Using Connector/ODBC with Microsoft Applications
	27.1.7.2.1.1. Microsoft Access
	27.1.7.2.1.2. Microsoft Excel and Column Types
	27.1.7.2.1.3. Microsoft Visual Basic
	27.1.7.2.1.4. Microsoft Visual InterDev
	27.1.7.2.1.5. Visual Objects
	27.1.7.2.1.6. Microsoft ADO
	27.1.7.2.1.7. Using Connector/ODBC with Active Server Pages (ASP)
	27.1.7.2.1.8. Using Connector/ODBC with Visual Basic (ADO, DAO and RDO) and ASP

	27.1.7.2.2. Using Connector/ODBC with Borland Applications
	27.1.7.2.2.1. Using Connector/ODBC with Borland Builder 4
	27.1.7.2.2.2. Using Connector/ODBC with Delphi
	27.1.7.2.2.3. Using Connector/ODBC with C++ Builder

	27.1.7.2.3. Using Connector/ODBC with ColdFusion
	27.1.7.2.4. Using Connector/ODBC with OpenOffice
	27.1.7.2.5. Using Connector/ODBC with Sambar Server
	27.1.7.2.6. Using Connector/ODBC with Pervasive Software DataJunction
	27.1.7.2.7. Using Connector/ODBC with SunSystems Vision

	27.1.7.3. Connector/ODBC Errors and Resolutions (FAQ)

	27.1.8. Connector/ODBC Support
	27.1.8.1. Connector/ODBC Community Support
	27.1.8.2. How to Report Connector/ODBC Problems or Bugs
	27.1.8.3. How to Submit a Connector/ODBC Patch
	27.1.8.4. Connector/ODBC Change History
	27.1.8.5. Credits


	27.2. MySQL Connector/NET
	27.2.1. Connector/NET Versions
	27.2.2. Connector/NET Installation
	27.2.2.1. Installing Connector/NET on Windows
	27.2.2.1.1. Installing Connector/NET using the Installer
	27.2.2.1.2. Installing Connector/NET using the Zip package

	27.2.2.2. Installing Connector/NET on Unix with Mono
	27.2.2.3. Installing Connector/NET using the Source

	27.2.3. Connector/NET Examples and Usage Guide
	27.2.3.1. Using MySqlCommand
	27.2.3.1.1. Class MySqlCommand Constructor Form 1
	27.2.3.1.2. Class MySqlCommand Constructor Form 2
	27.2.3.1.3. Class MySqlCommand Constructor Form 3
	27.2.3.1.4. Class MySqlCommand Constructor Form 4
	27.2.3.1.5. ExecuteNonQuery
	27.2.3.1.6. ExecuteReader1
	27.2.3.1.7. Using ExecuteReader
	27.2.3.1.8. Using Prepare
	27.2.3.1.9. ExecuteScalar
	27.2.3.1.10. CommandText
	27.2.3.1.11. CommandTimeout
	27.2.3.1.12. CommandType
	27.2.3.1.13. Connection
	27.2.3.1.14. IsPrepared
	27.2.3.1.15. Parameters
	27.2.3.1.16. Transaction
	27.2.3.1.17. UpdatedRowSource

	27.2.3.2. Using MySqlCommandBuilder
	27.2.3.2.1. Class MySqlCommandBuilder Constructor
	27.2.3.2.2. Class MySqlCommandBuilder Constructor Form 1
	27.2.3.2.3. Class MySqlCommandBuilder Constructor Form 2
	27.2.3.2.4. Class MySqlCommandBuilder Constructor Form 3
	27.2.3.2.5. DataAdapter
	27.2.3.2.6. QuotePrefix
	27.2.3.2.7. QuoteSuffix
	27.2.3.2.8. DeriveParameters
	27.2.3.2.9. GetDeleteCommand
	27.2.3.2.10. GetInsertCommand
	27.2.3.2.11. GetUpdateCommand
	27.2.3.2.12. RefreshSchema

	27.2.3.3. Using MySqlConnection
	27.2.3.3.1. Class MySqlConnection Constructor (Default)
	27.2.3.3.2. Class MySqlConnection Constructor Form 1
	27.2.3.3.3. ConnectionString
	27.2.3.3.4. Open
	27.2.3.3.5. Database
	27.2.3.3.6. State
	27.2.3.3.7. ServerVersion
	27.2.3.3.8. Close
	27.2.3.3.9. CreateCommand
	27.2.3.3.10. BeginTransaction
	27.2.3.3.11. BeginTransaction1
	27.2.3.3.12. ChangeDatabase
	27.2.3.3.13. StateChange
	27.2.3.3.14. InfoMessage
	27.2.3.3.15. ConnectionTimeout

	27.2.3.4. Using MySqlDataAdapter
	27.2.3.4.1. Class MySqlDataAdapter Constructor
	27.2.3.4.2. Class MySqlDataAdapter Constructor Form 1
	27.2.3.4.3. Class MySqlDataAdapter Constructor Form 2
	27.2.3.4.4. Class MySqlDataAdapter Constructor Form 3
	27.2.3.4.5. DeleteCommand
	27.2.3.4.6. InsertCommand
	27.2.3.4.7. UpdateCommand
	27.2.3.4.8. SelectCommand

	27.2.3.5. Using MySqlDataReader
	27.2.3.5.1. GetBytes
	27.2.3.5.2. GetTimeSpan
	27.2.3.5.3. GetDateTime
	27.2.3.5.4. GetMySqlDateTime
	27.2.3.5.5. GetString
	27.2.3.5.6. GetDecimal
	27.2.3.5.7. GetDouble
	27.2.3.5.8. GetFloat
	27.2.3.5.9. GetGiud
	27.2.3.5.10. GetInt16
	27.2.3.5.11. GetInt32
	27.2.3.5.12. GetInt64
	27.2.3.5.13. GetUInt16
	27.2.3.5.14. GetUInt32
	27.2.3.5.15. GetUInt64

	27.2.3.6. Using MySqlException
	27.2.3.7. Using MySqlParameter
	27.2.3.8. Using MySqlParameterCollection
	27.2.3.9. Using MySqlTransaction
	27.2.3.9.1. Rollback
	27.2.3.9.2. Commit


	27.2.4. Connector/NET Reference
	27.2.4.1. MySql.Data.MySqlClient
	27.2.4.1.1. MySql.Data.MySqlClientHierarchy
	27.2.4.1.2. MySqlCommand Class
	27.2.4.1.2.1. MySqlCommand Members
	27.2.4.1.2.1.1. MySqlCommand Constructor
	27.2.4.1.2.1.1.1. MySqlCommand Constructor ()
	27.2.4.1.2.1.1.2. MySqlCommand Constructor (String)
	27.2.4.1.2.1.1.3. MySqlCommand Constructor
	27.2.4.1.2.1.1.3.1. MySqlConnection Class
	27.2.4.1.2.1.1.3.1.1. MySqlConnection Members
	27.2.4.1.2.1.1.3.1.1.1. MySqlConnection Constructor
	27.2.4.1.2.1.1.3.1.1.1.1. MySqlConnection Constructor
	27.2.4.1.2.1.1.3.1.1.1.2. MySqlConnection Constructor

	27.2.4.1.2.1.1.3.1.1.2. ConnectionString Property
	27.2.4.1.2.1.1.3.1.1.3. ConnectionTimeout Property
	27.2.4.1.2.1.1.3.1.1.4. Database Property
	27.2.4.1.2.1.1.3.1.1.5. DataSource Property
	27.2.4.1.2.1.1.3.1.1.6. ServerThread Property
	27.2.4.1.2.1.1.3.1.1.7. ServerVersion Property
	27.2.4.1.2.1.1.3.1.1.8. State Property
	27.2.4.1.2.1.1.3.1.1.9. UseCompression Property
	27.2.4.1.2.1.1.3.1.1.10. BeginTransaction Method
	27.2.4.1.2.1.1.3.1.1.10.1. MySqlConnection.BeginTransaction Method
	27.2.4.1.2.1.1.3.1.1.10.1.1. MySqlTransaction Class
	27.2.4.1.2.1.1.3.1.1.10.1.1.1. MySqlTransaction Members
	27.2.4.1.2.1.1.3.1.1.10.1.1.1.1. Connection Property
	27.2.4.1.2.1.1.3.1.1.10.1.1.1.2. IsolationLevel Property
	27.2.4.1.2.1.1.3.1.1.10.1.1.1.3. MySqlTransaction.Commit Method
	27.2.4.1.2.1.1.3.1.1.10.1.1.1.4. MySqlTransaction.Rollback Method



	27.2.4.1.2.1.1.3.1.1.10.2. MySqlConnection.BeginTransaction Method

	27.2.4.1.2.1.1.3.1.1.11. MySqlConnection.ChangeDatabase Method
	27.2.4.1.2.1.1.3.1.1.12. MySqlConnection.Close Method
	27.2.4.1.2.1.1.3.1.1.13. MySqlConnection.CreateCommand Method
	27.2.4.1.2.1.1.3.1.1.14. MySqlConnection.Open Method
	27.2.4.1.2.1.1.3.1.1.15. MySqlConnection.Ping Method
	27.2.4.1.2.1.1.3.1.1.16. MySqlConnection.InfoMessage Event
	27.2.4.1.2.1.1.3.1.1.16.1. MySqlInfoMessageEventHandler Delegate
	27.2.4.1.2.1.1.3.1.1.16.1.1. MySqlInfoMessageEventArgs Class
	27.2.4.1.2.1.1.3.1.1.16.1.1.1. MySqlInfoMessageEventArgs Members
	27.2.4.1.2.1.1.3.1.1.16.1.1.1.1. MySqlInfoMessageEventArgs Constructor
	27.2.4.1.2.1.1.3.1.1.16.1.1.1.2. MySqlInfoMessageEventArgs.errors Field
	27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1. MySqlError Class
	27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1. MySqlError Members
	27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.1. MySqlError Constructor
	27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.2. Code Property
	27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.3. Level Property
	27.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.4. Message Property







	27.2.4.1.2.1.1.3.1.1.17. MySqlConnection.StateChange Event



	27.2.4.1.2.1.1.4. MySqlCommand Constructor

	27.2.4.1.2.1.2. CommandText Property
	27.2.4.1.2.1.3. CommandTimeout Property
	27.2.4.1.2.1.4. CommandType Property
	27.2.4.1.2.1.5. Connection Property
	27.2.4.1.2.1.6. IsPrepared Property
	27.2.4.1.2.1.7. Parameters Property
	27.2.4.1.2.1.7.1. MySqlParameterCollection Class
	27.2.4.1.2.1.7.1.1. MySqlParameterCollection Members
	27.2.4.1.2.1.7.1.1.1. MySqlParameterCollection Constructor
	27.2.4.1.2.1.7.1.1.2. Count Property
	27.2.4.1.2.1.7.1.1.3. Item Property
	27.2.4.1.2.1.7.1.1.3.1. MySqlParameter Class
	27.2.4.1.2.1.7.1.1.3.1.1. MySqlParameter Members
	27.2.4.1.2.1.7.1.1.3.1.1.1. MySqlParameter Constructor
	27.2.4.1.2.1.7.1.1.3.1.1.1.1. MySqlParameter Constructor ()
	27.2.4.1.2.1.7.1.1.3.1.1.1.2. MySqlParameter Constructor
	27.2.4.1.2.1.7.1.1.3.1.1.1.2.1. MySqlDbType Enumeration

	27.2.4.1.2.1.7.1.1.3.1.1.1.3. MySqlParameter Constructor (String, MySqlDbType, Int32)
	27.2.4.1.2.1.7.1.1.3.1.1.1.4. MySqlParameter Constructor
	27.2.4.1.2.1.7.1.1.3.1.1.1.4.1. Value Property

	27.2.4.1.2.1.7.1.1.3.1.1.1.5. MySqlParameter Constructor
	27.2.4.1.2.1.7.1.1.3.1.1.1.6. MySqlParameter Constructor

	27.2.4.1.2.1.7.1.1.3.1.1.2. DbType Property
	27.2.4.1.2.1.7.1.1.3.1.1.3. Direction Property
	27.2.4.1.2.1.7.1.1.3.1.1.4. IsNullable Property
	27.2.4.1.2.1.7.1.1.3.1.1.5. IsUnsigned Property
	27.2.4.1.2.1.7.1.1.3.1.1.6. MySqlDbType Property
	27.2.4.1.2.1.7.1.1.3.1.1.7. ParameterName Property
	27.2.4.1.2.1.7.1.1.3.1.1.8. Precision Property
	27.2.4.1.2.1.7.1.1.3.1.1.9. Scale Property
	27.2.4.1.2.1.7.1.1.3.1.1.10. Size Property
	27.2.4.1.2.1.7.1.1.3.1.1.11. SourceColumn Property
	27.2.4.1.2.1.7.1.1.3.1.1.12. SourceVersion Property
	27.2.4.1.2.1.7.1.1.3.1.1.13. MySqlParameter.ToString Method


	27.2.4.1.2.1.7.1.1.3.2. Item Property (Int32)
	27.2.4.1.2.1.7.1.1.3.3. Item Property (String)

	27.2.4.1.2.1.7.1.1.4. Add Method
	27.2.4.1.2.1.7.1.1.4.1. MySqlParameterCollection.Add Method
	27.2.4.1.2.1.7.1.1.4.2. MySqlParameterCollection.Add Method
	27.2.4.1.2.1.7.1.1.4.3. MySqlParameterCollection.Add Method
	27.2.4.1.2.1.7.1.1.4.4. MySqlParameterCollection.Add Method
	27.2.4.1.2.1.7.1.1.4.5. MySqlParameterCollection.Add Method
	27.2.4.1.2.1.7.1.1.4.6. MySqlParameterCollection.Add Method

	27.2.4.1.2.1.7.1.1.5. MySqlParameterCollection.Clear Method
	27.2.4.1.2.1.7.1.1.6. Contains Method
	27.2.4.1.2.1.7.1.1.6.1. MySqlParameterCollection.Contains Method
	27.2.4.1.2.1.7.1.1.6.2. MySqlParameterCollection.Contains Method

	27.2.4.1.2.1.7.1.1.7. MySqlParameterCollection.CopyTo Method
	27.2.4.1.2.1.7.1.1.8. IndexOf Method
	27.2.4.1.2.1.7.1.1.8.1. MySqlParameterCollection.IndexOf Method
	27.2.4.1.2.1.7.1.1.8.2. MySqlParameterCollection.IndexOf Method

	27.2.4.1.2.1.7.1.1.9. MySqlParameterCollection.Insert Method
	27.2.4.1.2.1.7.1.1.10. MySqlParameterCollection.Remove Method
	27.2.4.1.2.1.7.1.1.11. RemoveAt Method
	27.2.4.1.2.1.7.1.1.11.1. MySqlParameterCollection.RemoveAt Method
	27.2.4.1.2.1.7.1.1.11.2. MySqlParameterCollection.RemoveAt Method




	27.2.4.1.2.1.8. Transaction Property
	27.2.4.1.2.1.9. UpdatedRowSource Property
	27.2.4.1.2.1.10. MySqlCommand.Cancel Method
	27.2.4.1.2.1.11. MySqlCommand.CreateParameter Method
	27.2.4.1.2.1.12. MySqlCommand.ExecuteNonQuery Method
	27.2.4.1.2.1.13. ExecuteReader Method
	27.2.4.1.2.1.13.1. MySqlCommand.ExecuteReader Method
	27.2.4.1.2.1.13.1.1. MySqlDataReader Class
	27.2.4.1.2.1.13.1.1.1. MySqlDataReader Members
	27.2.4.1.2.1.13.1.1.1.1. Depth Property
	27.2.4.1.2.1.13.1.1.1.2. FieldCount Property
	27.2.4.1.2.1.13.1.1.1.3. HasRows Property
	27.2.4.1.2.1.13.1.1.1.4. IsClosed Property
	27.2.4.1.2.1.13.1.1.1.5. Item Property
	27.2.4.1.2.1.13.1.1.1.5.1. Item Property (Int32)
	27.2.4.1.2.1.13.1.1.1.5.2. Item Property (String)

	27.2.4.1.2.1.13.1.1.1.6. RecordsAffected Property
	27.2.4.1.2.1.13.1.1.1.7. MySqlDataReader.Close Method
	27.2.4.1.2.1.13.1.1.1.8. MySqlDataReader.GetBoolean Method
	27.2.4.1.2.1.13.1.1.1.9. MySqlDataReader.GetByte Method
	27.2.4.1.2.1.13.1.1.1.10. MySqlDataReader.GetBytes Method
	27.2.4.1.2.1.13.1.1.1.11. MySqlDataReader.GetChar Method
	27.2.4.1.2.1.13.1.1.1.12. MySqlDataReader.GetChars Method
	27.2.4.1.2.1.13.1.1.1.13. MySqlDataReader.GetDataTypeName Method
	27.2.4.1.2.1.13.1.1.1.14. MySqlDataReader.GetDateTime Method
	27.2.4.1.2.1.13.1.1.1.15. MySqlDataReader.GetDecimal Method
	27.2.4.1.2.1.13.1.1.1.16. MySqlDataReader.GetDouble Method
	27.2.4.1.2.1.13.1.1.1.17. MySqlDataReader.GetFieldType Method
	27.2.4.1.2.1.13.1.1.1.18. MySqlDataReader.GetFloat Method
	27.2.4.1.2.1.13.1.1.1.19. MySqlDataReader.GetGuid Method
	27.2.4.1.2.1.13.1.1.1.20. MySqlDataReader.GetInt16 Method
	27.2.4.1.2.1.13.1.1.1.21. MySqlDataReader.GetInt32 Method
	27.2.4.1.2.1.13.1.1.1.22. MySqlDataReader.GetInt64 Method
	27.2.4.1.2.1.13.1.1.1.23. MySqlDataReader.GetMySqlDateTime Method
	27.2.4.1.2.1.13.1.1.1.24. MySqlDataReader.GetName Method
	27.2.4.1.2.1.13.1.1.1.25. MySqlDataReader.GetOrdinal Method
	27.2.4.1.2.1.13.1.1.1.26. MySqlDataReader.GetSchemaTable Method
	27.2.4.1.2.1.13.1.1.1.27. MySqlDataReader.GetString Method
	27.2.4.1.2.1.13.1.1.1.28. MySqlDataReader.GetTimeSpan Method
	27.2.4.1.2.1.13.1.1.1.29. MySqlDataReader.GetUInt16 Method
	27.2.4.1.2.1.13.1.1.1.30. MySqlDataReader.GetUInt32 Method
	27.2.4.1.2.1.13.1.1.1.31. MySqlDataReader.GetUInt64 Method
	27.2.4.1.2.1.13.1.1.1.32. MySqlDataReader.GetValue Method
	27.2.4.1.2.1.13.1.1.1.33. MySqlDataReader.GetValues Method
	27.2.4.1.2.1.13.1.1.1.34. MySqlDataReader.IsDBNull Method
	27.2.4.1.2.1.13.1.1.1.35. MySqlDataReader.NextResult Method
	27.2.4.1.2.1.13.1.1.1.36. MySqlDataReader.Read Method



	27.2.4.1.2.1.13.2. MySqlCommand.ExecuteReader Method

	27.2.4.1.2.1.14. MySqlCommand.ExecuteScalar Method
	27.2.4.1.2.1.15. MySqlCommand.Prepare Method


	27.2.4.1.3. MySqlCommandBuilder Class
	27.2.4.1.3.1. MySqlCommandBuilder Members
	27.2.4.1.3.1.1. DeriveParameters Method
	27.2.4.1.3.1.1.1. MySqlCommandBuilder.DeriveParameters Method
	27.2.4.1.3.1.1.2. MySqlCommandBuilder.DeriveParameters Method

	27.2.4.1.3.1.2. MySqlCommandBuilder Constructor
	27.2.4.1.3.1.2.1. MySqlCommandBuilder Constructor
	27.2.4.1.3.1.2.2. MySqlCommandBuilder Constructor
	27.2.4.1.3.1.2.2.1. MySqlDataAdapter Class
	27.2.4.1.3.1.2.2.1.1. MySqlDataAdapter Members
	27.2.4.1.3.1.2.2.1.1.1. MySqlDataAdapter Constructor
	27.2.4.1.3.1.2.2.1.1.1.1. MySqlDataAdapter Constructor
	27.2.4.1.3.1.2.2.1.1.1.2. MySqlDataAdapter Constructor
	27.2.4.1.3.1.2.2.1.1.1.3. MySqlDataAdapter Constructor
	27.2.4.1.3.1.2.2.1.1.1.4. MySqlDataAdapter Constructor

	27.2.4.1.3.1.2.2.1.1.2. DeleteCommand Property
	27.2.4.1.3.1.2.2.1.1.3. InsertCommand Property
	27.2.4.1.3.1.2.2.1.1.4. SelectCommand Property
	27.2.4.1.3.1.2.2.1.1.5. UpdateCommand Property
	27.2.4.1.3.1.2.2.1.1.6. MySqlDataAdapter.RowUpdated Event
	27.2.4.1.3.1.2.2.1.1.6.1. MySqlRowUpdatedEventHandler Delegate
	27.2.4.1.3.1.2.2.1.1.6.1.1. MySqlRowUpdatedEventArgs Class
	27.2.4.1.3.1.2.2.1.1.6.1.1.1. MySqlRowUpdatedEventArgs Members
	27.2.4.1.3.1.2.2.1.1.6.1.1.1.1. MySqlRowUpdatedEventArgs Constructor
	27.2.4.1.3.1.2.2.1.1.6.1.1.1.2. Command Property




	27.2.4.1.3.1.2.2.1.1.7. MySqlDataAdapter.RowUpdating Event
	27.2.4.1.3.1.2.2.1.1.7.1. MySqlRowUpdatingEventHandler Delegate
	27.2.4.1.3.1.2.2.1.1.7.1.1. MySqlRowUpdatingEventArgs Class
	27.2.4.1.3.1.2.2.1.1.7.1.1.1. MySqlRowUpdatingEventArgs Members
	27.2.4.1.3.1.2.2.1.1.7.1.1.1.1. MySqlRowUpdatingEventArgs Constructor
	27.2.4.1.3.1.2.2.1.1.7.1.1.1.2. Command Property







	27.2.4.1.3.1.2.3. MySqlCommandBuilder Constructor
	27.2.4.1.3.1.2.4. MySqlCommandBuilder Constructor

	27.2.4.1.3.1.3. DataAdapter Property
	27.2.4.1.3.1.4. QuotePrefix Property
	27.2.4.1.3.1.5. QuoteSuffix Property
	27.2.4.1.3.1.6. MySqlCommandBuilder.GetDeleteCommand Method
	27.2.4.1.3.1.7. MySqlCommandBuilder.GetInsertCommand Method
	27.2.4.1.3.1.8. MySqlCommandBuilder.GetUpdateCommand Method
	27.2.4.1.3.1.9. MySqlCommandBuilder.RefreshSchema Method


	27.2.4.1.4. MySqlException Class
	27.2.4.1.4.1. MySqlException Members
	27.2.4.1.4.1.1. Number Property


	27.2.4.1.5. MySqlHelper Class
	27.2.4.1.5.1. MySqlHelper Members
	27.2.4.1.5.1.1. MySqlHelper.ExecuteDataRow Method
	27.2.4.1.5.1.2. ExecuteDataset Method
	27.2.4.1.5.1.2.1. MySqlHelper.ExecuteDataset Method
	27.2.4.1.5.1.2.2. MySqlHelper.ExecuteDataset Method
	27.2.4.1.5.1.2.3. MySqlHelper.ExecuteDataset Method
	27.2.4.1.5.1.2.4. MySqlHelper.ExecuteDataset Method

	27.2.4.1.5.1.3. ExecuteNonQuery Method
	27.2.4.1.5.1.3.1. MySqlHelper.ExecuteNonQuery Method
	27.2.4.1.5.1.3.2. MySqlHelper.ExecuteNonQuery Method

	27.2.4.1.5.1.4. ExecuteReader Method
	27.2.4.1.5.1.4.1. MySqlHelper.ExecuteReader Method
	27.2.4.1.5.1.4.2. MySqlHelper.ExecuteReader Method

	27.2.4.1.5.1.5. ExecuteScalar Method
	27.2.4.1.5.1.5.1. MySqlHelper.ExecuteScalar Method
	27.2.4.1.5.1.5.2. MySqlHelper.ExecuteScalar Method
	27.2.4.1.5.1.5.3. MySqlHelper.ExecuteScalar Method
	27.2.4.1.5.1.5.4. MySqlHelper.ExecuteScalar Method

	27.2.4.1.5.1.6. MySqlHelper.UpdateDataSet Method


	27.2.4.1.6. MySqlErrorCode Enumeration

	27.2.4.2. MySql.Data.Types
	27.2.4.2.1. MySql.Data.TypesHierarchy
	27.2.4.2.2. MySqlConversionException Class
	27.2.4.2.2.1. MySqlConversionException Members
	27.2.4.2.2.1.1. MySqlConversionException Constructor


	27.2.4.2.3. MySqlDateTime Class
	27.2.4.2.3.1. MySqlDateTime Members
	27.2.4.2.3.1.1. MySqlDateTime Explicit MySqlDateTime to DateTime Conversion
	27.2.4.2.3.1.2. Day Property
	27.2.4.2.3.1.3. Hour Property
	27.2.4.2.3.1.4. IsNull Property
	27.2.4.2.3.1.4.1. MySqlValue Class
	27.2.4.2.3.1.4.1.1. MySqlValue Members
	27.2.4.2.3.1.4.1.1.1. MySqlValue.numberFormat Field
	27.2.4.2.3.1.4.1.1.2. MySqlValue Constructor
	27.2.4.2.3.1.4.1.1.3. ValueAsObject Property
	27.2.4.2.3.1.4.1.1.4. MySqlValue.ToString Method
	27.2.4.2.3.1.4.1.1.5. MySqlValue.classType Field
	27.2.4.2.3.1.4.1.1.6. MySqlValue.dbType Field
	27.2.4.2.3.1.4.1.1.7. MySqlValue.mySqlDbType Field
	27.2.4.2.3.1.4.1.1.8. MySqlValue.mySqlTypeName Field
	27.2.4.2.3.1.4.1.1.9. MySqlValue.objectValue Field



	27.2.4.2.3.1.5. IsValidDateTime Property
	27.2.4.2.3.1.6. Minute Property
	27.2.4.2.3.1.7. Month Property
	27.2.4.2.3.1.8. Second Property
	27.2.4.2.3.1.9. Year Property
	27.2.4.2.3.1.10. MySqlDateTime.GetDateTime Method
	27.2.4.2.3.1.11. MySqlDateTime.ToString Method




	27.2.5. Connector/NET Notes and Tips
	27.2.5.1. Connecting to MySQL Using Connector/NET
	27.2.5.1.1. Introduction
	27.2.5.1.2. Creating a Connection String
	27.2.5.1.3. Opening a Connection
	27.2.5.1.4. Handling Connection Errors

	27.2.5.2. Using the Connector/NET with Prepared Statements
	27.2.5.2.1. Introduction
	27.2.5.2.2. Preparing Statements in Connector/NET

	27.2.5.3. Accessing Stored Procedures with Connector/NET
	27.2.5.3.1. Introduction
	27.2.5.3.2. Creating Stored Procedures from Connector/NET
	27.2.5.3.3. Calling a Stored Procedure from Connector/NET

	27.2.5.4. Handling BLOB Data With Connector/NET
	27.2.5.4.1. Introduction
	27.2.5.4.2. Preparing the MySQL Server
	27.2.5.4.3. Writing a File to the Database
	27.2.5.4.4. Reading a BLOB from the Database to a File on Disk

	27.2.5.5. Using Connector/NET with Crystal Reports
	27.2.5.5.1. Introduction
	27.2.5.5.2. Creating a Data Source
	27.2.5.5.3. Creating the Report
	27.2.5.5.4. Displaying the Report

	27.2.5.6. Handling Date and Time Information in Connector/NET
	27.2.5.6.1. Introduction
	27.2.5.6.2. Problems when Using Invalid Dates
	27.2.5.6.3. Restricting Invalid Dates
	27.2.5.6.4. Handling Invalid Dates
	27.2.5.6.5. Handling NULL Dates

	27.2.5.7. Frequently Asked Questions

	27.2.6. Connector/NET Support
	27.2.6.1. Connector/NET Community Support
	27.2.6.2. How to report Connector/NET Problems or Bugs
	27.2.6.3. Connector/NET Change History


	27.3. MySQL Visual Studio Plugin
	27.3.1. Installing the MySQL Visual Studio Plugin
	27.3.2. Creating a connection to the MySQL server
	27.3.3. Using the MySQL Visual Studio Plugin
	27.3.3.1. Editing Tables
	27.3.3.1.1. Column Editor
	27.3.3.1.2. Indexes tab
	27.3.3.1.3. Foreign Keys tab
	27.3.3.1.4. Column Details tab
	27.3.3.1.5. Table Properties window

	27.3.3.2. Editing Table Data
	27.3.3.3. Editing Views
	27.3.3.4. Editing Stored Procedures and Functions
	27.3.3.5. Editing Triggers
	27.3.3.6. Editing User Defined Functions (UDF)
	27.3.3.7. Dropping database objects
	27.3.3.8. Cloning database objects

	27.3.4. Visual Studio Plugin Support
	27.3.4.1. Visual Studio Plugin FAQ


	27.4. MySQL Connector/J
	27.4.1. Connector/J Versions
	27.4.1.1. Java Versions Supported

	27.4.2. Connector/J Installation
	27.4.2.1. Installing Connector/J from a Binary Distribution
	27.4.2.2. Installing the Driver and Configuring the CLASSPATH
	27.4.2.3. Upgrading from an Older Version
	27.4.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1
	27.4.2.3.2. Upgrading to MySQL Connector/J 5.1.x
	27.4.2.3.3. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

	27.4.2.4. Installing from the Development Source Tree

	27.4.3. Connector/J Examples
	27.4.4. Connector/J (JDBC) Reference
	27.4.4.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
	27.4.4.2. JDBC API Implementation Notes
	27.4.4.3. Java, JDBC and MySQL Types
	27.4.4.4. Using Character Sets and Unicode
	27.4.4.5. Connecting Securely Using SSL
	27.4.4.6. Using Master/Slave Replication with ReplicationConnection
	27.4.4.7. Mapping MySQL Error Numbers to SQLStates

	27.4.5. Connector/J Notes and Tips
	27.4.5.1. Basic JDBC Concepts
	27.4.5.1.1. Connecting to MySQL Using the DriverManager Interface
	27.4.5.1.2. Using Statements to Execute SQL
	27.4.5.1.3. Using CallableStatements to Execute Stored Procedures
	27.4.5.1.4. Retrieving AUTO_INCREMENT Column Values

	27.4.5.2. Using Connector/J with J2EE and Other Java Frameworks
	27.4.5.2.1. General J2EE Concepts
	27.4.5.2.1.1. Understanding Connection Pooling

	27.4.5.2.2. Using Connector/J with Tomcat
	27.4.5.2.3. Using Connector/J with JBoss
	27.4.5.2.4. Using Connector/J with Spring
	27.4.5.2.4.1. Using JdbcTemplate
	27.4.5.2.4.2. Transactional JDBC Access
	27.4.5.2.4.3. Connection Pooling


	27.4.5.3. Common Problems and Solutions

	27.4.6. Connector/J Support
	27.4.6.1. Connector/J Community Support
	27.4.6.2. How to Report Connector/J Bugs or Problems
	27.4.6.3. Connector/J Change History


	27.5. MySQL Connector/MXJ
	27.5.1. Connector/MXJ Overview
	27.5.2. Connector/MXJ Versions
	27.5.3. Connector/MXJ Installation
	27.5.3.1. Supported Platforms
	27.5.3.2. Connector/MXJ Base Installation
	27.5.3.3. Connector/MXJ Quick Start Guide
	27.5.3.4. Deploying Connector/MXJ using Driver Launch
	27.5.3.5. Deploying Connector/MXJ within JBoss
	27.5.3.6. Verifying Installation using JUnit
	27.5.3.6.1. JUnit Test Requirements
	27.5.3.6.2. Running the JUnit Tests


	27.5.4. Connector/MXJ Configuration
	27.5.4.1. Running as part of the JDBC Driver
	27.5.4.2. Running within a Java Object
	27.5.4.3. Setting server options

	27.5.5. Connector/MXJ Reference
	27.5.5.1. MysqldResource Constructors
	27.5.5.2. MysqldResource Methods

	27.5.6. Connector/MXJ Notes and Tips
	27.5.6.1. Creating your own Connector/MXJ Package
	27.5.6.2. Deploying Connector/MXJ with a pre-configured database
	27.5.6.3. Running within a JMX Agent (custom)
	27.5.6.4. Deployment in a standard JMX Agent environment (JBoss)

	27.5.7. Connector/MXJ Support
	27.5.7.1. Connector/MXJ Community Support
	27.5.7.2. How to Report Connector/MXJ Problems
	27.5.7.3. Connector/MXJ Change History


	27.6. Connector/PHP

	Chapter 28. MySQL Proxy
	28.1. MySQL Proxy Supported Platforms
	28.2. Installing MySQL Proxy
	28.2.1. Installing MySQL Proxy from a binary distribution
	28.2.2. Installing MySQL Proxy from a source distribution
	28.2.3. Installing MySQL Proxy from the Subversion repository

	28.3. MySQL Proxy Command Line Options
	28.4. MySQL Proxy Scripting
	28.4.1. Proxy Scripting Sequence During Query Injection
	28.4.2. Internal Structures
	28.4.3. Capturing a connection with connect_server()
	28.4.4. Examining the handshake with read_handshake()
	28.4.5. Examining the authentication credentials with read_auth()
	28.4.6. Accessing authentication information with read_auth_result()
	28.4.7. Manipulating Queries with read_query()
	28.4.8. Manipulating Results with read_query_result()

	28.5. Using MySQL Proxy
	28.5.1. Using the Administration Interface


	Chapter 29. Extending MySQL
	29.1. MySQL Internals
	29.1.1. MySQL Threads
	29.1.2. MySQL Test Suite

	29.2. The MySQL Plugin Interface
	29.2.1. Characteristics of the Plugin Interface
	29.2.2. Full-Text Parser Plugins
	29.2.3. INSTALL PLUGIN Syntax
	29.2.4. UNINSTALL PLUGIN Syntax
	29.2.5. Writing Plugins
	29.2.5.1. General Plugin Structures and Functions
	29.2.5.2. Type-Specific Plugin Structures and Functions
	29.2.5.3. Creating a Plugin Library


	29.3. Adding New Functions to MySQL
	29.3.1. Features of the User-Defined Function Interface
	29.3.2. CREATE FUNCTION Syntax
	29.3.3. DROP FUNCTION Syntax
	29.3.4. Adding a New User-Defined Function
	29.3.4.1. UDF Calling Sequences for Simple Functions
	29.3.4.2. UDF Calling Sequences for Aggregate Functions
	29.3.4.3. UDF Argument Processing
	29.3.4.4. UDF Return Values and Error Handling
	29.3.4.5. Compiling and Installing User-Defined Functions
	29.3.4.6. User-Defined Function Security Precautions

	29.3.5. Adding a New Native Function

	29.4. Adding New Procedures to MySQL
	29.4.1. PROCEDURE ANALYSE
	29.4.2. Writing a Procedure

	29.5. Debugging and Porting MySQL
	29.5.1. Debugging a MySQL Server
	29.5.1.1. Compiling MySQL for Debugging
	29.5.1.2. Creating Trace Files
	29.5.1.3. Using pdb to create a Windows crashdump
	29.5.1.4. Debugging mysqld under gdb
	29.5.1.5. Using a Stack Trace
	29.5.1.6. Using Server Logs to Find Causes of Errors in mysqld
	29.5.1.7. Making a Test Case If You Experience Table Corruption

	29.5.2. Debugging a MySQL Client
	29.5.3. The DBUG Package
	29.5.4. Comments about RTS Threads
	29.5.5. Differences Between Thread Packages


	Appendix A. MySQL 5.1 Frequently Asked Questions
	A.1. MySQL 5.1 FAQ — General
	A.2. MySQL 5.1 FAQ — Storage Engines
	A.3. MySQL 5.1 FAQ — Server SQL Mode
	A.4. MySQL 5.1 FAQ — Stored Procedures
	A.5. MySQL 5.1 FAQ — Triggers
	A.6. MySQL 5.1 FAQ — Views
	A.7. MySQL 5.0 FAQ — INFORMATION_SCHEMA
	A.8. MySQL 5.1 FAQ — Migration
	A.9. MySQL 5.1 FAQ — Security
	A.10. MySQL 5.1 FAQ — MySQL Cluster
	A.11. MySQL 5.1 FAQ — MySQL Chinese, Japanese, and Korean Character Sets
	A.12. MySQL 5.1 FAQ — Connectors & APIs
	A.13. MySQL 5.1 FAQ — Replication
	A.14. MySQL 5.1 FAQ — MySQL, DRBD, and Heartbeat
	A.14.1. Distributed Replicated Block Device (DRBD)
	A.14.2. Linux Heartbeat
	A.14.3. DRBD Architecture
	A.14.4. DRBD and MySQL Replication
	A.14.5. DRBD and File Systems
	A.14.6. DRBD and LVM
	A.14.7. DRBD and Virtualization
	A.14.8. DRBD and Security
	A.14.9. DRBD and System Requirements
	A.14.10. DBRD and Support and Consulting


	Appendix B. Errors, Error Codes, and Common Problems
	B.1. Problems and Common Errors
	B.1.1. How to Determine What Is Causing a Problem
	B.1.2. Common Errors When Using MySQL Programs
	B.1.2.1. Access denied
	B.1.2.2. Can't connect to [local] MySQL server
	B.1.2.2.1. Connection to MySQL Server Failing on Windows

	B.1.2.3. Lost connection to MySQL server
	B.1.2.4. Client does not support authentication protocol
	B.1.2.5. Password Fails When Entered Interactively
	B.1.2.6. Host 'host_name' is blocked
	B.1.2.7. Too many connections
	B.1.2.8. Out of memory
	B.1.2.9. MySQL server has gone away
	B.1.2.10. Packet too large
	B.1.2.11. Communication Errors and Aborted Connections
	B.1.2.12. The table is full
	B.1.2.13. Can't create/write to file
	B.1.2.14. Commands out of sync
	B.1.2.15. Ignoring user
	B.1.2.16. Table 'tbl_name' doesn't exist
	B.1.2.17. Can't initialize character set
	B.1.2.18. 'File' Not Found and Similar Errors
	B.1.2.19. Table-Corruption Issues

	B.1.3. Installation-Related Issues
	B.1.3.1. Problems Linking to the MySQL Client Library
	B.1.3.2. Problems with File Permissions

	B.1.4. Administration-Related Issues
	B.1.4.1. How to Reset the Root Password
	B.1.4.1.1. Resetting the Root Password on Windows Systems
	B.1.4.1.2. Resetting the Root Password on Unix Systems

	B.1.4.2. What to Do If MySQL Keeps Crashing
	B.1.4.3. How MySQL Handles a Full Disk
	B.1.4.4. Where MySQL Stores Temporary Files
	B.1.4.5. How to Protect or Change the MySQL Unix Socket File
	B.1.4.6. Time Zone Problems

	B.1.5. Query-Related Issues
	B.1.5.1. Case Sensitivity in Searches
	B.1.5.2. Problems Using DATE Columns
	B.1.5.3. Problems with NULL Values
	B.1.5.4. Problems with Column Aliases
	B.1.5.5. Rollback Failure for Non-Transactional Tables
	B.1.5.6. Deleting Rows from Related Tables
	B.1.5.7. Solving Problems with No Matching Rows
	B.1.5.8. Problems with Floating-Point Comparisons

	B.1.6. Optimizer-Related Issues
	B.1.7. Table Definition-Related Issues
	B.1.7.1. Problems with ALTER TABLE
	B.1.7.2. How to Change the Order of Columns in a Table
	B.1.7.3. TEMPORARY TABLE Problems

	B.1.8. Known Issues in MySQL
	B.1.8.1. Open Issues in MySQL
	B.1.8.2. Additional Known Issues


	B.2. Server Error Codes and Messages
	B.3. Client Error Codes and Messages

	Appendix C. MySQL Change History
	C.1. Changes in release 5.1.x (Development)
	C.1.1. Changes in MySQL 5.1.24-maria (Not yet released)
	C.1.2. Changes in MySQL 5.1.24 (08 April 2008)
	C.1.3. Changes in MySQL 5.1.24 Carrier Grade Edition
	C.1.3.1. Changes in MySQL 5.1.24-ndb-6.3.13 (10 April 2008)
	C.1.3.2. Changes in MySQL 5.1.24-ndb-6.2.16 (Not yet released)

	C.1.4. Changes in MySQL 5.1.23 (29 January 2008)
	C.1.5. Changes in MySQL 5.1.23 Carrier Grade Edition
	C.1.5.1. Changes in MySQL 5.1.23-ndb-6.3.12 (05 April 2008)
	C.1.5.2. Changes in MySQL 5.1.23-ndb-6.3.11 (28 March 2008)
	C.1.5.3. Changes in MySQL 5.1.23-ndb-6.3.10 (17 February 2008)
	C.1.5.4. Changes in MySQL 5.1.23-ndb-6.3.9 (12 February 2008)
	C.1.5.5. Changes in MySQL 5.1.23-ndb-6.3.8 (29 January 2008)
	C.1.5.6. Changes in MySQL 5.1.23-ndb-6.3.7 (19 December 2007)
	C.1.5.7. Changes in MySQL 5.1.23-ndb-6.2.15 (Not yet released)
	C.1.5.8. Changes in MySQL 5.1.23-ndb-6.2.14 (05 March 2008)
	C.1.5.9. Changes in MySQL 5.1.23-ndb-6.2.13 (22 February 2008)
	C.1.5.10. Changes in MySQL 5.1.23-ndb-6.2.12 (12 February 2008)
	C.1.5.11. Changes in MySQL 5.1.23-ndb-6.2.11 (28 January 2008)
	C.1.5.12. Changes in MySQL 5.1.23-ndb-6.2.10 (19 December 2007)

	C.1.6. Changes in MySQL 5.1.22 (24 September 2007: Release Candidate)
	C.1.7. Changes in MySQL 5.1.22 Carrier Grade Edition
	C.1.7.1. Changes in MySQL 5.1.22-ndb-6.3.6 (08 November 2007)
	C.1.7.2. Changes in MySQL 5.1.22-ndb-6.3.5 (17 October 2007)
	C.1.7.3. Changes in MySQL 5.1.22-ndb-6.3.4 (15 October 2007)
	C.1.7.4. Changes in MySQL 5.1.22-ndb-6.3.3 (20 September 2007)
	C.1.7.5. Changes in MySQL 5.1.22-ndb-6.3.2 (07 September 2007)
	C.1.7.6. Changes in MySQL 5.1.22-ndb-6.2.9 (22 November 2007)
	C.1.7.7. Changes in MySQL 5.1.22-ndb-6.2.8 (08 November 2007)
	C.1.7.8. Changes in MySQL 5.1.22-ndb-6.2.7 (10 October 2008)
	C.1.7.9. Changes in MySQL 5.1.22-ndb-6.2.6 (20 September 2007)
	C.1.7.10. Changes in MySQL 5.1.22-ndb-6.2.5 (06 September 2007)

	C.1.8. Changes in MySQL 5.1.21 (16 August 2007)
	C.1.9. Changes in MySQL 5.1.20 (25 June 2007)
	C.1.10. Changes in MySQL 5.1.19 (25 May 2007)
	C.1.11. Changes in MySQL 5.1.19 Carrier Grade Edition
	C.1.11.1. Changes in MySQL 5.1.19-ndb-6.3.1 (04 July 2007)
	C.1.11.2. Changes in MySQL 5.1.19-ndb-6.3.0 (02 July 2007)
	C.1.11.3. Changes in MySQL 5.1.19-ndb-6.2.4 (04 July 2007)
	C.1.11.4. Changes in MySQL 5.1.19-ndb-6.2.3 (02 July 2007)

	C.1.12. Changes in MySQL 5.1.18 (08 May 2007)
	C.1.13. Changes in MySQL 5.1.18 Carrier Grade Edition
	C.1.13.1. Changes in MySQL 5.1.18-ndb-6.2.2 (07 May 2007)
	C.1.13.2. Changes in MySQL 5.1.18-ndb-6.2.1 (30 April 2007)

	C.1.14. Changes in MySQL 5.1.17 (04 April 2007)
	C.1.15. Changes in MySQL 5.1.16 (26 February 2007)
	C.1.16. Changes in MySQL 5.1.16 Carrier Grade Edition
	C.1.16.1. Changes in MySQL 5.1.16-ndb-6.2.0 (03 March 2007)

	C.1.17. Changes in MySQL 5.1.15 (25 January 2007)
	C.1.18. Changes in MySQL 5.1.15 Carrier Grade Edition
	C.1.18.1. Changes in MySQL 5.1.15-ndb-6.1.23 (20 November 2007)
	C.1.18.2. Changes in MySQL 5.1.15-ndb-6.1.22 (19 October 2007)
	C.1.18.3. Changes in MySQL 5.1.15-ndb-6.1.21 (01 October 2007)
	C.1.18.4. Changes in MySQL 5.1.15-ndb-6.1.20 (14 September 2007)
	C.1.18.5. Changes in MySQL 5.1.15-ndb-6.1.19 (01 August 2007)
	C.1.18.6. Changes in MySQL 5.1.15-ndb-6.1.18 (Not released)
	C.1.18.7. Changes in MySQL 5.1.15-ndb-6.1.17 (03 July 2007)
	C.1.18.8. Changes in MySQL 5.1.15-ndb-6.1.16 (29 June 2007)
	C.1.18.9. Changes in MySQL 5.1.15-ndb-6.1.15 (20 June 2007)
	C.1.18.10. Changes in MySQL 5.1.15-ndb-6.1.14 (19 June 2007)
	C.1.18.11. Changes in MySQL 5.1.15-ndb-6.1.13 (15 June 2007)
	C.1.18.12. Changes in MySQL 5.1.15-ndb-6.1.12 (13 June 2007)
	C.1.18.13. Changes in MySQL 5.1.15-ndb-6.1.11 (06 June 2007)
	C.1.18.14. Changes in MySQL 5.1.15-ndb-6.1.10 (30 May 2007)
	C.1.18.15. Changes in MySQL 5.1.15-ndb-6.1.9 (24 May 2007)
	C.1.18.16. Changes in MySQL 5.1.15-ndb-6.1.8 (05 May 2007)
	C.1.18.17. Changes in MySQL 5.1.15-ndb-6.1.7 (05 May 2007)
	C.1.18.18. Changes in MySQL 5.1.15-ndb-6.1.6 (Not released)
	C.1.18.19. Changes in MySQL 5.1.15-ndb-6.1.5 (15 March 2007)
	C.1.18.20. Changes in MySQL 5.1.15-ndb-6.1.4 (09 March 2007))
	C.1.18.21. Changes in MySQL 5.1.15-ndb-6.1.3 (25 February 2007)
	C.1.18.22. Changes in MySQL 5.1.15-ndb-6.1.2 (07 February 2007)
	C.1.18.23. Changes in MySQL 5.1.15-ndb-6.1.1 (01 February 2007)

	C.1.19. Changes in MySQL 5.1.14 (05 December 2006)
	C.1.20. Changes in MySQL 5.1.14 Carrier Grade Edition
	C.1.20.1. Changes in MySQL 5.1.14-ndb-6.1.0 (20 December 2006)

	C.1.21. Changes in MySQL 5.1.13 (Not released)
	C.1.22. Changes in MySQL 5.1.12 (24 October 2006)
	C.1.23. Changes in MySQL 5.1.11 (26 May 2006)
	C.1.24. Changes in MySQL 5.1.10 (Not released)
	C.1.25. Changes in MySQL 5.1.9 (12 April 2006)
	C.1.26. Changes in MySQL 5.1.8 (Not released)
	C.1.27. Changes in MySQL 5.1.7 (27 February 2006)
	C.1.28. Changes in MySQL 5.1.6 (01 February 2006)
	C.1.29. Changes in MySQL 5.1.5 (10 January 2006)
	C.1.30. Changes in MySQL 5.1.4 (21 December 2005)
	C.1.31. Changes in MySQL 5.1.3 (29 November 2005)
	C.1.32. Changes in MySQL 5.1.2 (Not released)
	C.1.33. Changes in MySQL 5.1.1 (Not released)

	C.2. MySQL Connector/ODBC (MyODBC) Change History
	C.2.1. Changes in MySQL Connector/ODBC 5.1.3 (Not yet released)
	C.2.2. Changes in MySQL Connector/ODBC 5.1.2 (13 February 2008)
	C.2.3. Changes in MySQL Connector/ODBC 5.1.1 (13 December 2007)
	C.2.4. Changes in MySQL Connector/ODBC 5.1.0 (10 September 2007)
	C.2.5. Changes in MySQL Connector/ODBC 5.0.12 (Never released)
	C.2.6. Changes in MySQL Connector/ODBC 5.0.11 (31 January 2007)
	C.2.7. Changes in MySQL Connector/ODBC 5.0.10 (14 December 2006)
	C.2.8. Changes in MySQL Connector/ODBC 5.0.9 (22 November 2006)
	C.2.9. Changes in MySQL Connector/ODBC 5.0.8 (17 November 2006)
	C.2.10. Changes in MySQL Connector/ODBC 5.0.7 (08 November 2006)
	C.2.11. Changes in MySQL Connector/ODBC 5.0.6 (03 November 2006)
	C.2.12. Changes in MySQL Connector/ODBC 5.0.5 (17 October 2006)
	C.2.13. Changes in Connector/ODBC 5.0.3 (Connector/ODBC 5.0 Alpha 3) (20 June 2006)
	C.2.14. Changes in Connector/ODBC 5.0.2 (Never released)
	C.2.15. Changes in Connector/ODBC 5.0.1 (Connector/ODBC 5.0 Alpha 2) (05 June 2006)
	C.2.16. Changes in MySQL Connector/ODBC 3.51.24 (Not yet released)
	C.2.17. Changes in MySQL Connector/ODBC 3.51.23 (09 January 2008)
	C.2.18. Changes in MySQL Connector/ODBC 3.51.22 (13 November 2007)
	C.2.19. Changes in MySQL Connector/ODBC 3.51.21 (08 October 2007)
	C.2.20. Changes in MySQL Connector/ODBC 3.51.20 (10 September 2007)
	C.2.21. Changes in MySQL Connector/ODBC 3.51.19 (10 August 2007)
	C.2.22. Changes in MySQL Connector/ODBC 3.51.18 (08 August 2007)
	C.2.23. Changes in MySQL Connector/ODBC 3.51.17 (14 July 2007)
	C.2.24. Changes in MySQL Connector/ODBC 3.51.16 (14 June 2007)
	C.2.25. Changes in MySQL Connector/ODBC 3.51.15 (7 May 2007)
	C.2.26. Changes in MySQL Connector/ODBC 3.51.14 (08 March 2007)
	C.2.27. Changes in MySQL Connector/ODBC 3.51.13 (Never released)
	C.2.28. Changes in MySQL Connector/ODBC 3.51.12 (11 Febrauary 2005)
	C.2.29. Changes in MySQL Connector/ODBC 3.51.11 (28 January 2005)

	C.3. MySQL Connector/NET Change History
	C.3.1. Changes in MySQL Connector/NET 5.2.2 (Not yet released)
	C.3.2. Changes in MySQL Connector/NET 5.2.1 (27 February 2008)
	C.3.3. Changes in MySQL Connector/NET 5.2.0 (11 February 2008)
	C.3.4. Changes in MySQL Connector/NET 5.1.6 (Not yet released)
	C.3.5. Changes in MySQL Connector/NET 5.1.5 (Not yet released)
	C.3.6. Changes in MySQL Connector/NET 5.1.4 (20 November 2007)
	C.3.7. Changes in MySQL Connector/NET 5.1.3 (21 September 2007)
	C.3.8. Changes in MySQL Connector/NET 5.1.2 (18 June 2007)
	C.3.9. Changes in MySQL Connector/NET 5.1.1 (23 May 2007)
	C.3.10. Changes in MySQL Connector/NET 5.1.0 (01 May 2007)
	C.3.11. Changes in MySQL Connector/NET 5.0.9 (Not yet released)
	C.3.12. Changes in MySQL Connector/NET 5.0.8 (21 August 2007)
	C.3.13. Changes in MySQL Connector/NET 5.0.7 (18 May 2007)
	C.3.14. Changes in MySQL Connector/NET 5.0.6 (22 March 2007)
	C.3.15. Changes in MySQL Connector/NET 5.0.5 (07 March 2007)
	C.3.16. Changes in MySQL Connector/NET 5.0.4 (Not released)
	C.3.17. Changes in MySQL Connector/NET 5.0.3 (05 January 2007)
	C.3.18. Changes in MySQL Connector/NET 5.0.2 (06 November 2006)
	C.3.19. Changes in MySQL Connector/NET 5.0.1 (01 October 2006)
	C.3.20. Changes in MySQL Connector/NET 5.0.0 (08 August 2006)
	C.3.21. Changes in MySQL Connector/NET 1.0.11 (Not yet released)
	C.3.22. Changes in MySQL Connector/NET 1.0.10 (24 August 2007)
	C.3.23. Changes in MySQL Connector/NET 1.0.9 (02 February 2007)
	C.3.24. Changes in MySQL Connector/NET 1.0.8 (20 October 2006)
	C.3.25. Changes in MySQL Connector/NET 1.0.7 (21 November 2005)
	C.3.26. Changes in MySQL Connector/NET 1.0.6 (03 October 2005)
	C.3.27. Changes in MySQL Connector/NET 1.0.5 (29 August 2005)
	C.3.28. Changes in MySQL Connector/NET 1.0.4 (20 January 2005)
	C.3.29. Changes in MySQL Connector/NET 1.0.3 (12 October 2004)
	C.3.30. Changes in MySQL Connector/NET 1.0.2 (15 November 2004)
	C.3.31. Changes in MySQL Connector/NET 1.0.1 (27 October 2004)
	C.3.32. Changes in MySQL Connector/NET 1.0.0 (01 September 2004)
	C.3.33. Changes in MySQL Connector/NET Version 0.9.0 (30 August 2004)
	C.3.34. Changes in MySQL Connector/NET Version 0.76
	C.3.35. Changes in MySQL Connector/NET Version 0.75
	C.3.36. Changes in MySQL Connector/NET Version 0.74
	C.3.37. Changes in MySQL Connector/NET Version 0.71
	C.3.38. Changes in MySQL Connector/NET Version 0.70
	C.3.39. Changes in MySQL Connector/NET Version 0.68
	C.3.40. Changes in MySQL Connector/NET Version 0.65
	C.3.41. Changes in MySQL Connector/NET Version 0.60
	C.3.42. Changes in MySQL Connector/NET Version 0.50

	C.4. MySQL Visual Studio Plugin Change History
	C.4.1. Changes in MySQL Visual Studio Plugin 1.0.3 (Not yet released)
	C.4.2. Changes in MySQL Visual Studio Plugin 1.0.2 (Not yet released)
	C.4.3. Changes in MySQL Visual Studio Plugin 1.0.1 (4 October 2006)
	C.4.4. Changes in MySQL Visual Studio Plugin 1.0.0 (4 October 2006)

	C.5. MySQL Connector/J Change History
	C.5.1. Changes in MySQL Connector/J 5.1.x
	C.5.1.1. Changes in MySQL Connector/J 5.1.6 (Not yet released)
	C.5.1.2. Changes in MySQL Connector/J 5.1.5 (09 October 2007)
	C.5.1.3. Changes in MySQL Connector/J 5.1.4 (Not Released)
	C.5.1.4. Changes in MySQL Connector/J 5.1.3 (10 September 2007)
	C.5.1.5. Changes in MySQL Connector/J 5.1.2 (29 June 2007)
	C.5.1.6. Changes in MySQL Connector/J 5.1.1 (22 June 2007)
	C.5.1.7. Changes in MySQL Connector/J 5.1.0 (11 April 2007)

	C.5.2. Changes in MySQL Connector/J 5.0.x
	C.5.2.1. Changes in MySQL Connector/J 5.0.8 (09 October 2007)
	C.5.2.2. Changes in MySQL Connector/J 5.0.7 (20 July 2007)
	C.5.2.3. Changes in MySQL Connector/J 5.0.6 (15 May 2007)
	C.5.2.4. Changes in MySQL Connector/J 5.0.5 (02 March 2007)
	C.5.2.5. Changes in MySQL Connector/J 5.0.4 (20 October 2006)
	C.5.2.6. Changes in MySQL Connector/J 5.0.3 (26 July 2006)
	C.5.2.7. Changes in MySQL Connector/J 5.0.2 (11 July 2006)
	C.5.2.8. Changes in MySQL Connector/J 5.0.1 (Not Released)
	C.5.2.9. Changes in MySQL Connector/J 5.0.0 (22 December 2005)

	C.5.3. Changes in MySQL Connector/J 3.1.x
	C.5.3.1. Changes in MySQL Connector/J 3.1.15 (Not yet released)
	C.5.3.2. Changes in MySQL Connector/J 3.1.14 (10-19-2006)
	C.5.3.3. Changes in MySQL Connector/J 3.1.13 (26 May 2006)
	C.5.3.4. Changes in MySQL Connector/J 3.1.12 (30 November 2005)
	C.5.3.5. Changes in MySQL Connector/J 3.1.11 (07 October 2005)
	C.5.3.6. Changes in MySQL Connector/J 3.1.10 (23 June 2005)
	C.5.3.7. Changes in MySQL Connector/J 3.1.9 (22 June 2005)
	C.5.3.8. Changes in MySQL Connector/J 3.1.8 (14 April 2005)
	C.5.3.9. Changes in MySQL Connector/J 3.1.7 (18 February 2005)
	C.5.3.10. Changes in MySQL Connector/J 3.1.6 (23 December 2004)
	C.5.3.11. Changes in MySQL Connector/J 3.1.5 (02 December 2004)
	C.5.3.12. Changes in MySQL Connector/J 3.1.4 (04 September 2004)
	C.5.3.13. Changes in MySQL Connector/J 3.1.3 (07 July 2004)
	C.5.3.14. Changes in MySQL Connector/J 3.1.2 (09 June 2004)
	C.5.3.15. Changes in MySQL Connector/J 3.1.1 (14 February 2004)
	C.5.3.16. Changes in MySQL Connector/J 3.1.0 (18 February 2003)

	C.5.4. Changes in MySQL Connector/J 3.0.x
	C.5.4.1. Changes in MySQL Connector/J 3.0.17 (23 June 2005)
	C.5.4.2. Changes in MySQL Connector/J 3.0.16 (15 November 2004)
	C.5.4.3. Changes in MySQL Connector/J 3.0.15 (04 September 2004)
	C.5.4.4. Changes in MySQL Connector/J 3.0.14 (28 May 2004)
	C.5.4.5. Changes in MySQL Connector/J 3.0.13 (27 May 2004)
	C.5.4.6. Changes in MySQL Connector/J 3.0.12 (18 May 2004)
	C.5.4.7. Changes in MySQL Connector/J 3.0.11 (19 February 2004)
	C.5.4.8. Changes in MySQL Connector/J 3.0.10 (13 January 2004)
	C.5.4.9. Changes in MySQL Connector/J 3.0.9 (07 October 2003)
	C.5.4.10. Changes in MySQL Connector/J 3.0.8 (23 May 2003)
	C.5.4.11. Changes in MySQL Connector/J 3.0.7 (08 April 2003)
	C.5.4.12. Changes in MySQL Connector/J 3.0.6 (18 February 2003)
	C.5.4.13. Changes in MySQL Connector/J 3.0.5 (22 January 2003)
	C.5.4.14. Changes in MySQL Connector/J 3.0.4 (06 January 2003)
	C.5.4.15. Changes in MySQL Connector/J 3.0.3 (17 December 2002)
	C.5.4.16. Changes in MySQL Connector/J 3.0.2 (08 November 2002)
	C.5.4.17. Changes in MySQL Connector/J 3.0.1 (21 September 2002)
	C.5.4.18. Changes in MySQL Connector/J 3.0.0 (31 July 2002)

	C.5.5. Changes in MySQL Connector/J 2.0.x
	C.5.5.1. Changes in MySQL Connector/J 2.0.14 (16 May 2002)
	C.5.5.2. Changes in MySQL Connector/J 2.0.13 (24 April 2002)
	C.5.5.3. Changes in MySQL Connector/J 2.0.12 (07 April 2002)
	C.5.5.4. Changes in MySQL Connector/J 2.0.11 (27 January 2002)
	C.5.5.5. Changes in MySQL Connector/J 2.0.10 (24 January 2002)
	C.5.5.6. Changes in MySQL Connector/J 2.0.9 (13 January 2002)
	C.5.5.7. Changes in MySQL Connector/J 2.0.8 (25 November 2001)
	C.5.5.8. Changes in MySQL Connector/J 2.0.7 (24 October 2001)
	C.5.5.9. Changes in MySQL Connector/J 2.0.6 (16 June 2001)
	C.5.5.10. Changes in MySQL Connector/J 2.0.5 (13 June 2001)
	C.5.5.11. Changes in MySQL Connector/J 2.0.3 (03 December 2000)
	C.5.5.12. Changes in MySQL Connector/J 2.0.1 (06 April 2000)
	C.5.5.13. Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000)
	C.5.5.14. Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000)
	C.5.5.15. Changes in MySQL Connector/J 2.0.0pre (17 August 1999)

	C.5.6. Changes in MySQL Connector/J 1.2b (04 July 1999)
	C.5.7. Changes in MySQL Connector/J 1.2.x and lower
	C.5.7.1. Changes in MySQL Connector/J 1.2a (14 April 1999)
	C.5.7.2. Changes in MySQL Connector/J 1.1i (24 March 1999)
	C.5.7.3. Changes in MySQL Connector/J 1.1h (08 March 1999)
	C.5.7.4. Changes in MySQL Connector/J 1.1g (19 February 1999)
	C.5.7.5. Changes in MySQL Connector/J 1.1f (31 December 1998)
	C.5.7.6. Changes in MySQL Connector/J 1.1b (03 November 1998)
	C.5.7.7. Changes in MySQL Connector/J 1.1 (02 September 1998)
	C.5.7.8. Changes in MySQL Connector/J 1.0 (24 August 1998)
	C.5.7.9. Changes in MySQL Connector/J 0.9d (04 August 1998)
	C.5.7.10. Changes in MySQL Connector/J 0.9 (28 July 1998)
	C.5.7.11. Changes in MySQL Connector/J 0.8 (06 July 1998)
	C.5.7.12. Changes in MySQL Connector/J 0.7 (01 July 1998)
	C.5.7.13. Changes in MySQL Connector/J 0.6 (21 May 1998)


	C.6. MySQL Connector/MXJ Change History
	C.6.1. Changes in MySQL Connector/MXJ 5.0.6 (04 May 2007)
	C.6.2. Changes in MySQL Connector/MXJ 5.0.5 (14 March 2007)
	C.6.3. Changes in MySQL Connector/MXJ 5.0.4 (28 January 2007)
	C.6.4. Changes in MySQL Connector/MXJ 5.0.3 (24 June 2006)
	C.6.5. Changes in MySQL Connector/MXJ 5.0.2 (15 June 2006)
	C.6.6. Changes in MySQL Connector/MXJ 5.0.1 (Never released)
	C.6.7. Changes in MySQL Connector/MXJ 5.0.0 (09 December 2005)

	C.7. MySQL Proxy Change History
	C.7.1. Changes in MySQL Proxy 0.6.0 (Not yet released)
	C.7.2. Changes in MySQL Proxy 0.5.1 (30 June 2007)
	C.7.3. Changes in MySQL Proxy 0.5.0 (19 June 2007)


	Appendix D. Restrictions and Limits
	D.1. Restrictions on Stored Routines, Triggers, and Events
	D.2. Restrictions on Server-Side Cursors
	D.3. Restrictions on Subqueries
	D.4. Restrictions on Views
	D.5. Restrictions on XA Transactions
	D.6. Restrictions on Character Sets
	D.7. Limits in MySQL
	D.7.1. Limits of Joins
	D.7.2. The Maximum Number of Columns Per Table
	D.7.3. Windows Platform Limitations


	Appendix E. Credits
	E.1. Developers at MySQL AB
	E.2. Contributors to MySQL
	E.3. Documenters and translators
	E.4. Libraries used by and included with MySQL
	E.5. Packages that support MySQL
	E.6. Tools that were used to create MySQL
	E.7. Supporters of MySQL

	Index

